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Abstract 

A double stranded DNA locus allows six possible reading frames due to the triplet character of the genetic code. All 

reading frames have the potential to encode proteins, which, theoretically, allows for an overlapping encoding of two 

or more protein-coding genes at the same locus. In prokaryotes, sense overlaps of a few base pairs are common and 

are often associated with joint translational regulation. In contrast, the existence of large gene overlaps (≥30 nt) has 

mainly been accepted for viruses. However, studies addressing these nested gene constructs in prokaryotes are rare. In 

this study, two human pathogenic γ-Proteobacteria, Escherichia coli LF82 and Pseudomonas aeruginosa PAO1, were 

analysed for the presence and characteristics of overlapping genes. For both strains, multiple high-throughput 

experiments including transcriptome sequencing (RNA-seq) and ribosome profiling (Ribo-seq) were conducted under 

different conditions. In addition, application of the toxin RelE and the antibiotic retapamulin in modified Ribo-seq 

experiments was implemented to improve resolution and power of conventional Ribo-seq. Concerning RelE-supported 

Ribo-seq, the E. coli RelE toxin was overexpressed, purified and refolded prior to application in E. coli LF82 and 

P. aeruginosa PAO1 experiments. Retapamulin-assisted Ribo-seq required the generation of efflux deletion mutants 

and determination of the minimum inhibitory concentration for efficient stalling of ribosomes at start codons. Both 

methods were successfully adapted for the target organisms as indicated by a RelE induced periodicity signal as well 

as a retapamulin induced redistribution of ribosomes, both observed for annotated, protein-coding genes of E. coli 

LF82 (n = 4,586) and P. aeruginosa (n = 5,572), respectively. Different Ribo-seq prediction tools were applied to each 

of the Ribo-seq datasets generated, and the results were combined for reliable overlapping gene identification. In total, 

predicted hits resulting from 19 and 16 different prediction combinations based on 7 and 5 different Ribo-seq datasets 

were evaluated for E. coli LF82 and P. aeruginosa PAO1, respectively. Candidates being detected in more than half 

of all prediction combinations were visually inspected and curated, yielding 104 (E. coli LF82) and 63 (P. aeruginosa 

PAO1) promising overlapping gene candidates. Furthermore, 12 and 61 novel open reading frames in intergenic regions 

were identified. All candidates were bioinformatically characterized with respect to their expressability. The results 

obtained were comparable to those of annotated genes implying the genuine protein-coding capability of the novel 

overlapping gene candidates. For P. aeruginosa PAO1, data-dependent acquisition-based mass spectrometry confirmed 

the protein-coding potential of 47 gene candidates, and Cappable-seq aided in the determination of their transcription 

start sites. Two of the overlapping gene candidates showing large antisense overlaps of 957 and 1,536 nucleotides with 

annotated genes in P. aeruginosa PAO1 were characterized in more detail. Bioinformatic analyses confirmed the gene-

like structure, transcription and translation of both overlapping gene candidates. Multiple, high-confident peptides 

covering a wide range of both open reading frames were detected via mass spectrometry, and a subset of the peptides 

discovered were unequivocally validated by parallel reaction monitoring. Quantification of these peptides revealed a 

growth-phase dependent expression of both overlapping gene candidates, emphasising the potential functionality of 

the encoded protein products. Further support for functionality was obtained by evolutionary analyses indicating 

purifying selection. The novel gene candidates identified in this study expand the known coding capacity of E. coli 

LF82 and P. aeruginosa PAO1, thereby facilitating a deeper understanding of their genome complexity.
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Zusammenfassung 

Durch den Triplett-Charakter des genetischen Codes ermöglicht ein doppelsträngiger DNA-Lokus die Existenz von 

insgesamt sechs verschiedenen Leserastern. Alle sechs Leseraster können potenziell für Proteine kodieren, was zu einer 

Überlappung der kodierenden Sequenz zweier oder mehrerer Gene am selben Lokus führen kann. Solche Gene werden 

als überlappende Gene bezeichnet. In Prokaryoten sind sense Überlappungen von einigen wenigen Basenpaaren nicht 

unüblich, da diese häufig für die gekoppelte Regulation mehrerer Gene genutzt werden. Längere Überlappungen von 

mehr als 30 Nucleotiden hingegen sind vorwiegend in viralen Genomen akzeptiert; Studien zu entsprechenden Genen 

in Prokaryoten liegen jedoch kaum vor. In dieser Arbeit wurden die beiden humanpathogenen γ-Proteobakterien 

Escherichia coli LF82 und Pseudomonas aeruginosa PAO1 hinsichtlich der Existenz und der Eigenschaften von 

überlappenden Genen untersucht. Für beide Stämme wurden verschiedene Hochdurchsatz-Experimente wie 

beispielsweise Transkriptom-Sequenzierung (RNA-seq) und Ribosome profiling (Ribo-seq) unter mehreren 

Bedingungen durchgeführt. Zusätzlich sollten modifizierte Ribo-seq Protokolle unter Anwendung des Toxins RelE und 

des Antibiotikums Retapamulin durchgeführt werden, um die Aussagekraft von konventionellen Ribo-seq 

Experimenten zu erhöhen. Für die Durchführung von Ribo-seq Experimenten mit RelE musste das endogen in E. coli 

vorkommende Toxin zuerst überexprimiert, aufgereinigt und dann rückgefaltet werden. Retapamulin-gestütztes Ribo-

seq erforderte die Erstellung von Efflux-Deletionsmutanten sowie die Bestimmung der minimalen Hemmkonzentration, 

um eine effiziente Inhibierung von initiierenden Ribosomen und somit eine optimale Funktionalität von Retapamulin 

zu gewährleisten. Wie anhand des RelE induzierten Periodizitätssignals sowie der durch Retapamulin bedingten 

Umverteilung der Ribosomen an annotierten, protein-kodierenden Genen (n = 4586 und n = 5572) ersichtlich, wurden 

beide Methoden erfolgreich in den Ziel-Stämmen implementiert. Die generierten Ribo-seq Datensätze wurden unter 

Anwendung verschiedenster Vorhersagealgorithmen ausgewertet und die resultierenden Ergebnisse wurden vereinigt, 

um eine verlässliche Identifizierung überlappender Gene zu gewährleisten. Insgesamt wurden die Ergebnisse von 19 

beziehungsweise 16 verschiedenen Vorhersagekombinationen, die auf 7 und 5 Ribo-seq Datensätzen basierten, für 

E. coli LF82 und P. aeruginosa PAO1 ausgewertet. Kandidaten, die in mehr als der Hälfte aller Vorhersage-

Kombinationen detektiert wurden, wurden visuell inspiziert und gegebenenfalls manuell kuriert. Mit dieser Methode 

wurden 104 (E. coli LF82) und 63 (P. aeruginosa PAO1) vielversprechende überlappende Gen-Kandidaten sowie 12 

beziehungsweise 61 neue, translatierte Leserahmen in intergenischen Regionen identifiziert. Alle ermittelten 

Kandidaten wurden bioinformatisch hinsichtlich des Expressionspotentials charakterisiert. Die Eigenschaften der neuen 

Gen-Kandidaten waren mit denen aller annotierten Gene vergleichbar, was die Protein-kodierenden Fähigkeiten dieser 

neuen Gen-Kandidaten bestätigt. Das Protein-kodierende Potential von 47 in P. aeruginosa PAO1 identifizierten Gen-

Kandidaten wurde mittels datenabhängiger Massenspektrometrie verifiziert und die Durchführung von Cappable-seq 

ermöglichte die reproduzierbare Ermittlung der Transkriptionsstarts. Zwei Gen-Kandidaten, die außergewöhnlich lange 

antisense Überlappungen von 957 und 1536 Nucleotiden mit annotierten Genen in P. aeruginosa PAO1 zeigten, 

wurden näher untersucht. Bioinformatische Analysen bestätigten das Vorhandensein Gen-spezifischer Elemente, und 

die Transkription sowie Translation beider Gen-Kandidaten wurde nachgewiesen. Mehrere Peptide, die einen großen 

Bereich der kodierten Proteine abdeckten, wurden mittels Massenspektrometrie detektiert und eine Auswahl hiervon 

im Anschluss durch parallele Reaktionsüberwachung validiert. Die Quantifizierung der validierten Peptide ergab 

Hinweise auf eine Wachstumsphasen-abhängige Expression beider Gen-Kandidaten, welche auf eine potenzielle 

Funktionalität der kodierten Proteinprodukte hinwies. Weitere Hinweise auf Funktionalität wurden durch evolutionäre 

Analysen erhalten, deren Ergebnisse auf negative Selektion hindeuteten.  
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Die in dieser Arbeit identifizierten, neuen Gen-Kandidaten erweitern das bislang bekannte Kodierungspotential von 

E. coli LF82 und P. aeruginosa PAO1 und ermöglichen dadurch ein vertieftes Verständnis für die Genomkomplexität 

dieser Organismen. 
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1. Introduction 

1.1 Overlapping genes in bacterial genomes 

1.1.1 The genetic code and gene expression 

The genetic information of all living organisms is stored in nucleic acids, which are molecule chains composed of 

phosphate, sugar and nucleobases. Depending on their components and their structure, two different types can be 

distinguished: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA is the most common carrier of genetic 

information and consists of the purin nucleobases adenine (A) and guanine (G) and the pyrimidine nucleobases cytosine 

(C) and thymine (T), which are linked via a phosphate-deoxyribose backbone. The sequence of the nucleobases 

determines the genetic code, whereby always three nucleobases encode for one of the 20 proteinogenic amino acids 

(AA). Due to hydrogenic interactions between A and T or C and G of two antiparallel DNA strands, DNA naturally 

forms a double helix structure (Watson & Crick, 1953). Consequently, one DNA locus enables six possible reading 

frames (RF); all of them might be protein encoding, in theory (Figure 1).  

A prerequisite for translation of nucleic acids into proteins are open reading frames (ORFs), which are defined as DNA 

segments between start and stop codons. Together with regulatory elements, the DNA sequence of an ORF forms the 

structural basis of a protein-coding gene. To exert their function, those genes are transcribed into messenger RNA 

(mRNA) and translated into the final polypeptide (Figure 2).  

The first step in gene expression is the recruitment of the RNA polymerase (RNAP) guided by a promoter upstream 

of the ORF. This process is mediated by σ factors that recognize specific promoter elements and activate the RNAP 

core complex by forming the RNAP holoenzyme (Browning & Busby, 2004). The type of σ factor used for transcription 

initiation thereby depends on conserved sequence patterns and may vary in response to extracellular and intracellular 

signals (Paget & Helmann, 2003). The principal σ factor of Escherichia coli, σ70, for instance, directs general 

transcription of housekeeping genes by recognizing conserved -35 (5’TTGACA’3) and -10 elements (5’TATAAT’3) 

upstream of the transcription start site (TSS). However, deviations from the consensus sequence as well as the complete 

absence of the -35 element are frequently reported (Shultzaberger et al., 2007, Barne et al., 1997, Keilty & Rosenberg, 

1987). Other promoter-associated features influencing transcriptional activity and efficiency include an extended -10 

sequence (Keilty & Rosenberg, 1987), presence of UP elements -60 to -40 nt upstream of the TSS (Estrem et al., 1998), 

the spacer region between the -35 and -10 element (Aoyama et al., 1983) as well as the distance between the -10 

element and the TSS (Lewis & Adhya, 2004). Additional upstream sequences, e.g., cis-elements, can further modulate 

and regulate the transcriptional process by interacting with trans-elements like transcription factors.  

Figure 1. Schematic illustration of a double-stranded DNA locus with all possible reading frames (frame +1, +2 & +3 on the sense
strand; frame -1, -2 & -3 on the antisense strand). Figure from Scherer et al. (2018). 

 

 

frame +3 
frame +2 
frame +1 

frame -1 
frame -2 
frame -3 



12 

 

In bacteria, ORFs are commonly organized in operons, which are clusters of co-regulated genes sharing the same 

promoter (Ermolaeva et al., 2001). Once recruited, the RNAP starts to synthesize mRNA at the TSS (position +1) 

and elongates the nascent mRNA until it reaches a specific area at the end of a single gene or a whole operon, where 

the RNAP-DNA-mRNA complex dissociates, and transcription terminates. Termination can either be initiated by a 

GC-rich symmetric region followed by a stretch of Ts forming a RNA hairpin terminator (intrinsic termination; 

Gusarov & Nudler, 1999) or by adenosine triphosphate-dependent hydrolysis of the RNA induced by factor Rho (Rho-

dependent termination; Peters et al., 2009).  

After transcription, the synthesized mRNA is translated into a polypeptide in a three-stage process. Firstly, translation 

initiation is mediated by start codon recognition and the subsequent binding of a N-formylmethionyl-transfer RNA 

(tRNA) within the P site of the ribosome. The canonical codon AUG represents the most frequent start codon in 

E. coli (~83% of all genes), followed by GUG (14%) and UUG (3%). Other non-canonical start codon variants 

including NUG and AUN codons (N represents all possible nucleobases) may also initiate translation in rare cases, but 

at lower efficiency (Hecht et al., 2017, Chengguang et al., 2017). In a second step, the succeeding codon is recognised 

by the complementary aminoacyl-tRNA in the A site of the ribosome and a peptide bond with the previous AA located 

in the P site is formed. Finally, the ribosome translocates along the mRNA in a three-nucleotide (nt) wise manner, 

allowing the next codon to be decoded by the respective aminoacyl-tRNA. Several rounds of decoding, peptide bond 

formation and translocation lead to elongation of the nascent polypeptide chain. Translation ceases when termination 

factors like RF1 or RF2 recognize one of the stop codons UAG, UAA or UGA. After hydrolysis of the peptidyl-tRNA 

ester bond, those factors dissociate and ribosome recycling takes place (for review see Rodnina, 2018).  

The protein-coding sequence of an mRNA is flanked by untranslated regions (UTRs) at the 5´ and 3´ end. Those 

regions are involved in regulation of gene expression both at the transcriptional and at the translational level. The 

upstream 5´ UTR, for instance, harbours a Shine-Dalgarno (SD) sequence, which is complementary to a region at the 

3´ end of the 16S ribosomal RNA (rRNA), known as the anti-Shine-Dalgarno (aSD). Interaction between both mediates 

the correct positioning of the ribosome for translational initiation (Shine & Dalgarno, 1974). In ɣ-Proteobacteria, the 

aSD core sequence ‘CCUCC’ hybridizes with the SD sequence in an optimal aligned spacing of 7-9 nt relative to the 

start codon (Ma et al., 2002). However, deviations from the SD core sequence and the optimal spacing distance may 

also enable translation initiation, although with reduced efficiency (Komarova et al., 2020, Evfratov et al., 2017, 

Ma et al., 2002, Ringquist et al., 1992). Even in the complete absence of a SD sequence, translation can take place at 

high levels, indicating that SD presence is not mandatory for initiation (Skorski et al., 2006). Despite the SD sequence, 

other 5´UTR structures like riboswitches (Breaker, 2018), RNA thermometers (Loh et al., 2018), small upstream open 

reading frames (Orr et al., 2019) or small RNAs (Storz et al., 2011) exert a regulatory activity on gene expression. 

Figure 2. Schematic representation of a bacterial gene including structural elements necessary for its transcription and translation. 
Figure by Slonczewski & Foster (2009). 
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Further regulation of gene expression is mediated by the 3´UTR. Despite being involved in transcriptional regulation 

by enabling intrinsic or Rho-dependent termination, the 3´UTR was also shown to be involved in post-transcriptional 

regulation, e.g., by interacting with small RNAs or by affecting mRNA stability (Ren et al., 2017).  

1.1.2 Definition and occurrence of overlapping genes  

The presence of six possible reading frames facilitates the existence of overlapping genes (OLGs). Those are defined 

as genes sharing at least one nucleotide of their protein-coding region with the protein-coding region of another gene. 

The type of overlapping gene is determined by its location and orientation relative to the annotated ORF (anORF), 

also called mother gene. By definition, the mother gene is always encoded in frame +1 and the frame of the OLG is 

specified referring to the mother gene´s frame (Figure 3A). Both can be located either on the same strand (sense) or 

on different strands (antisense), whereby the OLG can either overlap completely (embedded) or partially with the 

mother gene (Figure 3B). Another criterion for OLG classification represents the length of the overlap. Small overlaps 

of a few base pairs (bp) are called non-trivial, whereas large overlaps of more than 30 bp are referred to as non-trivial 

overlaps. 

OLGs exist in all domains of life, including viruses, eukaryotes as well as prokaryotes. Probably the best studied 

genomes harbouring characterized OLGs are those of viruses. The first overlapping gene pair was indeed identified in 

a virus, the bacteriophage ΦX174, as early as 1976 (Barrell et al.). Since then, many trivial as well as non-trivial gene 

overlaps have been detected (e.g., Neuhaus et al., 2010). Schlub & Holmes (2020) recently analysed 5,976 genomes of 

RNA and DNA viruses with different genome structures and found 53% of them to have at least one gene overlap of 

more than 50 bp. This high prevalence of viral OLGs was for a long time believed to be an exclusive result of spatial 

limitations of the viral capsid, thus favouring small genome sizes (Chirico et al., 2010). In this context, OLGs were 

hypothesized to expand the coding capacity without affecting genome size (Belshaw et al., 2007). For these reasons, 

OLGs have been generally presumed to be a commonplace feature of viral genomes. In contrast, the presence of OLGs 

is rarely considered in other living organisms due to their larger genome sizes. Nevertheless, several publications 

demonstrated the occurrence of OLGs in eukaryotes, including mammalians like humans and mice (Sanna et al., 2008, 

Veeramachaneni et al., 2004). However, since eukaryotic OLGs are often located within the intragenic region of 

annotated genes and removed after splicing, these genes cannot be considered as ‘real’ OLGs according to our 

definition. In prokaryotes, gene overlaps are very common and account for approximately 30% of all microbial genes 

(Johnson & Chisholm, 2004). The vast majority among them shows same strand overlaps of a few base pairs, which 

often facilitate the joint transcriptional and translational regulation of both genes (Johnson & Chisholm, 2004, 

Scherbakov & Garber, 2000). In contrast, non-trivial OLGs are assumed to be rare due to a severe evolutionary 

constraint of the genetic information.  

Figure 3. Classification of overlapping genes (OLGs). (A) The frame of an OLG is designated in relation to the position of its 
mother gene encoded in frame +1. (B) OLGs can overlap on the same strand (sense) or on different strands (antisense) with their 
annotated mother gene, while overlapping either completely (embedded) or partially at the 5’ or 3’ end. 

A B 
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Mutational changes in the coding sequence of one gene may also affect the other overlapping gene, restricting its 

functionality and adaptability (Krakauer, 2000, Miyata & Yasunaga, 1978). Therefore, the existence of non-trivial 

OLGs in prokaryotes is generally called into question, and already annotated OLGs have been designated as mis-

annotations (Pallejà et al., 2008). In concordance with this assumption, detection of non-trivial OLGs is hampered by 

prokaryotic prediction algorithms like Glimmer (Delcher et al., 2007) or Prodigal (Hyatt et al., 2010) due to their 

systematic exclusion of overlapping ORFs (Warren et al., 2010). Hence, only the ORF with the highest score is chosen 

for annotation. Consequently, few non-trivial OLGs have been described in literature so far, often merely discovered 

by serendipity (e.g., Haycocks & Grainger, 2016, Balabanov et al., 2012, Jensen et al., 2006). Even in the well-studied 

model organism E. coli the number of known, non-trivial OLGs is severely limited, and a detailed experimental 

characterization was implemented for even fewer. So far, the best studied prokaryotic OLGs in this organism are (in 

chronological order): 

a) astA/tnpA: This overlapping gene pair was found to be encoded on a virulence plasmid in a human-derived 

E. coli strain. The 117 bp long gene astA is fully embedded in the transposon-like gene tnpA and exhibits 

enterotoxin activity after expression (McVeigh et al., 2000). 

b) setAB/pic: The protein products of setAB constitute different subunits of the oligomeric ShET1 enterotoxin. 

Both genes overlap with the pic gene encoding for a 109-kilodalton (kDa) secreted mucinase. SetA and setB 

seemed to be transcribed from the same transcript and showed a regulated expression, which was divergent 

from their mother gene (Behrens et al., 2002).  

c) ardD/tniA: ArdD is located within the tniA gene, which is a non-conjugative transposon gene mediating 

mercury resistance. ArdD confers anti-restriction activity against EcoKI, while showing only modest 

similarities to other known Ard proteins (Balabanov et al., 2012). 

d) morA/yghX: The morA gene encodes for a small peptide with an unusal AA composition and overlaps 

completely with the putative pseudogene yghX. Transcription and translation of morA were experimentally 

confirmed, and the molybdenum-dependent transcription factor ModE was shown to repress promoter activity 

(Kurata et al., 2013). 

e) htgA/yaaW: Transcription of this antisense overlapping gene pair was confirmed by promoter-fusions and 

5’RACE, and its functionality was indicated by differential phenotypes after introduction of stand-specific 

knockouts (Fellner et al., 2014). HtgA encodes for a positive regulator of the σ32 heat shock promoter 

(Delaye et al., 2008, Missiakas et al., 1993); the function of yaaW is unknown. 

f) nog1/citC: Nog1 represents a novel OLG, which presumably arose by genetic overprinting. It is completely 

embedded in the citrate lyase ligase-encoding citC gene and its expression is specifically upregulated in cow 

dung (Fellner et al., 2015).  

g) aatS/aatC: Haycocks & Grainger (2016) showed that transcription of aatS, a small gene located within the 

type I secretion system gene aatC, is regulated by the cAMP receptor protein CRP. AatS shows structural 

features of a protein-coding gene, but a potential functionality remains to be elucidated. 

h) laoB/ECs5115: LaoB encodes for a hypothetical protein of 41 AAs with unknown function and is completely 

embedded within the annotated gene, ECs5115. The latter encodes for a transcriptional regulator of the 

CadC family. Both genes showed signs of expression in transcriptome sequencing and ribosome profiling data 

and laoB functionality was analysed in competitive growth experiments (Hücker et al., 2018b).  

i) ano/ECs2385: Ano is encoded in frame -3 and overlaps almost completely with the transpeptidase gene, 

ECs2385. It has been shown to be part of a bicistronic operon and has a strong phenotype under anaerobic 

conditions (Hücker et al., 2018a).  
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j) asa/yccA: Vanderhaeghen et al. (2018) identified the novel gene asa, which is strongly regulated by growth 

phase and NaCl. It is predicted to encode for a disordered, secreted protein and overlaps completely in frame 

-2 with the putative TEGT transporter gene yccA. 

k) pop/ompA: Pop and ompA represent the most recent example of an overlapping gene pair. With a length of 

603 nt, pop is one of the longest, hitherto known OLGs, which is completely embedded into the mother gene. 

It seems to be regulated by pH and its final protein could be detected after overexpression (Zehentner et al., 

2020b).  

Additional studies in E. coli broadened the general knowledge of OLGs and their abundance in this species. Especially 

the application of novel high-throughput methods like ribosome profiling and modified variants of it made a substantial 

contribution to the detection of several OLGs (e.g., Meydan et al., 2019, Weaver et al., 2019). In addition to growing 

experimental evidence, statistical analyses of bacterial genomes revealed that ORFs in alternative reading frames are 

more frequent than expected. Mir et al. (2012), for instance, showed that the occurrence of long OLGs in frame -1 can 

be explained partly by the codon usage of the annotated gene. However, frame -2 and -3 also showed a significant 

depletion of stop codons, favouring the emergence of long OLGs. These findings provided initial evidence for a 

protective selection pressure on stop codon fixation caused by the coding capacity of an alternative, overlapping ORF. 

The average length of the ORF thereby depended on the overall GC-content of the respective genome. In general, GC-

rich organisms could harbour longer protein-coding genes because they contain less AT-rich stop codons (Mir et al., 

2012, Oliver & Marín, 1996). As a consequence, those organisms are also expected to have a higher number of non-

trivial OLGs (Merino et al., 1994). 

In fact, several OLGs have been successfully identified in the GC-rich genus Pseudomonas so far. By performing in 

vivo expression technology, Silby & Levy (2004) detected ten soil-induced genes, which overlapped antisense with 

annotated genes in Pseudomonas fluorescens Pf0-1. Four years later, one of the detected overlapping gene pairs, named 

cosA/Pfl_0939, was further characterized. Translation of both genes was confirmed by reverse transcription (RT)-

polymerase chain reaction (PCR) and mutational as well as complementation studies revealed a potential role of cosA 

in soil colonization (Silby & Levy, 2008). The role of the overlapping gene pairs iiv19/leuA2 and iiv8/ppk in soil 

environments was examined in follow-up studies (Silby et al., 2009, Kim & Levy, 2008). In an additional mass 

spectrometry study, peptide mapping confirmed the protein-coding nature of ten further OLGs, nine of them 

overlapping antisense and one of them overlapping sense with their mother genes (Kim et al., 2009). Despite 

P. fluorescens, strand-specific transcriptome sequencing revealed antisense transcription of several genes in the plant 

pathogen, Pseudomonas syringae pathovar tomato DC3000 (Filiatrault et al., 2010). A similar study was also 

performed for the human pathogenic strain, Pseudomonas aeruginosa PA14, indicating the potential presence of OLGs 

in this species (Eckweiler & Häussler, 2018). However, the existence of OLGs in the following genera, Streptomyces 

(Tunca et al., 2009), Mycobacterium (Smith et al., 2019), Bacillus (Wang et al., 1999a), Deinococcus (Willems et al., 

2020), Synechocystis (Cheregi et al., 2012) and others, indicates that non-trivial OLGs are a ubiquitous feature of 

prokaryotic organisms belonging to diverse phyla. 

1.1.3 Origin and evolution of overlapping genes 

Although initially assumed, compression of the genome size seems unlikely to be the key driver of OLG emergence in 

prokaryotes (Johnson & Chisholm, 2004). In concordance with this assumption, low volume utilization of the viral 

capsid necessitates another explanation for gene overlapping, e.g., evolution exploration or gene novelty (Brandes & 

Linial, 2016).  
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Several possibilities exist of how novel genes can arise. One of the first discovered mechanisms was gene duplication 

(Ohno, 1970). For a long time, this mechanism was believed to be the only way how new genes originate. Consequently, 

the almost exclusive prevailing dogma was that genetic novelty can only emerge from existing genes (Tautz, 2014). 

During the process of gene duplication, a redundant copy of a subsisting gene is generated, which then has four possible 

destinies: It can either be maintained to conserve the original function, become a pseudogene (pseudogenization), or 

develop a new (neofunctionalization) or subdivided function (subfunctionalization) of the former ancestral gene (Zhang, 

2003). The latter can contribute to the emergence of genetic novelty due to an evolutionary loss of similarity to the 

parental gene (Domazet-Loso & Tautz, 2003, Schmid & Aquadro, 2001). Other sources of genetic novelty based on 

present structures include domestication of transposable elements (Jangam et al., 2017), gene fusion and fission 

(Pasek et al., 2006) as well as horizontal transfer of genes from unrelated genomes (Boto, 2010). All mentioned 

processes have the advantage of providing existent structures like promoters or SD sequences necessary for gene 

expression. However, the widespread detection of orphan genes without any gene homology in other lineages suggested 

an alternative way of gene emergence. Orphan genes were detected as early as 1992 when the first entire yeast 

chromosome III was completely sequenced (Oliver et al., 1992). At this time, approximately a third of all detected 

genes showed no sequence similarity to other known genes, including those of the same species (Dujon, 1996, 

Casari et al., 1996). This observation was initially thought to be the result of a lack of sequenced genomes, and thus, 

of known homologues at that time. Notwithstanding, this hypothesis has not been confirmed with increasing 

completion of genome projects (Khalturin et al., 2009, Wilson et al., 2005). Quite the contrary, orphans have not only 

been discovered in a multitude of eukaryotic genomes in the subsequent years, but also with varying percentages in 

bacteria and archaea (Fukuchi & Nishikawa, 2004). The mere number and the ubiquitous appearance of orphans 

suggests the possibility of another type of gene evolution despite duplication and rapid-divergence, namely de novo 

gene birth (for review see Van Oss & Carvunis, 2019). This process describes the evolution of genes from formerly 

non-coding sequences and had been considered highly unlikely for a long time (Jacob, 1977). The underlying 

mechanisms of de novo gene birth are still obscure; possible mechanisms include continuum evolution or preadaptation. 

In the first case, a formerly non-coding sequence becomes coding by random mutational events. For example, the 

emergence of a start codon or the deletion of a stop codon may lead to the development of transitory proto-genes 

(Carvunis et al., 2012). These proto-genes are transcribed and translated pervasively at low levels and constitute a 

pool of evolutionary innovation. If the novel translated peptide is beneficial for organisms, the proto-gene can gradually 

maturate into a functional gene fixed by positive selection (Figure 4). Alternatively, proto-genes without adaptive 

potential can lose their protein-coding ability over time.  

Figure 4. De novo evolution of new genes via proto-genes. Non-coding sequences become coding by random mutational events. Upon 
translation, the risen proto-genes could successively evolve into genes, while other proto-genes without beneficial properties might 
get lost over time. Figure by Carvunis et al. (2012). 
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However, the continuum evolution hypothesis does not unequivocally explain how genes can emerge without forming 

deleterious aggregations (Monsellier & Chiti, 2007). As an alternative, preadaptation was suggested to be the 

underlying mechanism of de novo gene emergence. In contrast to continuum evolution, preadaptation describes an all 

or nothing process, during which only a preadapted sequence with gene-like structure becomes fixed (Wilson & Masel, 

2011). One special type of preadaptation is overprinting (Grassé, 1977). In this case, a formerly non-coding sequence, 

overlapping an existing gene located in a different reading frame, becomes coding. It has been suggested that OLGs 

might be the result of overprinting in viruses (Sabath et al., 2012, Keese & Gibbs, 1992), eukaryotes (Neme & Tautz, 

2013, Makalowska et al., 2005) and prokaryotes (Hücker et al., 2018b, Fellner et al., 2015). Indeed, OLGs show several 

indications of originating from de novo gene birth. They are typically characterized by a divergent codon composition 

compared to non-overlapping genes and are usually less conserved than their annotated counterparts (Fellner et al., 

2015, Delaye et al., 2008). These findings indicate different evolutionary ages and support the assumption that OLGs 

evolved rather recently (Rogozin et al., 2002a). As a consequent, OLGs often encode for structural disordered proteins 

(Willis & Masel, 2018, Rancurel et al., 2009) with accessory, non-essential functions (Moshensky & Alexeevski, 2019, 

Chen et al., 2012), offering an possible explanation for their rather low expression (Landstorfer et al., 2014). Their 

large percentage of high-degeneracy amino acids, in addition, may favour their birth and enhances the toleration 

towards point mutations (Pavesi et al., 2018). Nonetheless, two genes encoded at the same DNA locus are subjected 

to a severe evolutionary constraint (Krakauer, 2000), which differs depending on the frame. On the one hand, a 

sequence constraint provided by the mother gene could favour the emergence of OLGs. An OLG encoded in frame -2, 

for instance, is protected from non-synonymous substitutions if the annotated gene in frame +1 is under purifying 

selection (Mir et al., 2012, Rogozin et al., 2002a). On the other hand, the sequence constraint restricts the evolvability, 

and thus, the functionality of the overlapping gene pair. In this context, a de novo gene overlapping in frame -3 with 

the annotated gene in +1 is evolutionary favoured due to a higher degree of sequence freedom (Krakauer, 2000). 

However, the vast majority of the aforementioned studies have been conducted using eukaryotes or viruses, whereas 

detailed analyses of the evolution and the properties of OLGs in prokaryotes are still lacking. 

1.2 The model organisms  

1.2.1 Escherichia coli 

1.2.1.1 Discovery and properties 

Escherichia coli was first described in 1885 by the German-Austrian paediatrician, Theodor Escherich. He noticed a 

hitherto unknown bacterial population in the meconium and faeces of neonates, which he termed 

Bacterium coli commune (Escherich & Bettelheim, 1988). In 1919, Castellani and Chalmers introduced the name 

Escherichia coli out of respect for its initial discoverer.  

E. coli is a rod-shaped, flagellated Gram-negative bacterium belonging to the class of γ-Proteobacteria. This species is 

characterized by a high phenotypic diversity, flexibility in energy and carbon utilization and the capability to colonize 

a wide range of environmental niches (Brennan et al., 2013, Schaechter, 2009, Ishii & Sadowsky, 2008, Díaz et al., 

2001). As a commensal bacterium, E. coli is frequently found in the intestine of warm-blooded animals including 

humans, where it constitutes the most abundant facultative anaerobic species (Tenaillon et al., 2010, Savageau, 1983). 

In the laboratory context, E. coli is considered as the “working horse” for biologists and biotechnologists of several 

fields. This organism is not merely utilized to unravel fundamental biological and evolutional processes, but also to 

produce compounds for medicinal and industrial applications by metabolic engineering (for review see Blount, 2015, 
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or Chen et al., 2013) for several reasons. Those include, amongst others, a short generation time, availability of 

manipulation techniques and detailed knowledge about the genetic and genomic features. Based on whole-genome data 

as well as multi-locus sequence typing, eight different phylogenetic groups (A, B1, B2, C, D, E, F and Escherichia 

clade I) can be distinguished (Clermont et al., 2013); all of them showing different phenotypic and genotypic properties 

(Méric et al., 2013).  

1.2.1.2 Genome and classification 

The first sequenced genome of E. coli was reported in 1997 for the laboratory strain K-12 MG1655. With a size of 

4.6 Mbp and a nearly balanced GC content of 50.8%, this genome harbours 4,288 protein-coding genes, of which up 

to one-third are of unknown function (Hu et al., 2009, Blattner et al., 1997). To date, the genomes of many other 

strains have been sequenced. All of them share a core genome consisting of 1,000 to 3,000 genes (Lukjancenko et al., 

2010, Rasko et al., 2008), which can be distributed among the chromosome and one or multiple plasmids. Mobile 

genetic elements like transposable elements, plasmids, bacteriophages, and genomic islands additionally expand the 

core genome, and thus, contribute to the genomic plasticity of E. coli. Those elements often carry virulence and 

antimicrobial resistance-associated genes and can be disseminated via horizontal gene transfer (Rankin et al., 2011). 

Acquisition or loss of mobile genetic elements can convert commensal into virulent strains and vice versa 

(Touchon et al., 2009), resulting in genome size differences of up to 1 Mb within the species. In contrast to apathogenic 

E. coli, pathogenic strains can cause various diseases including enteric illnesses like gastroenteritis or extra-intestinal 

diseases like urinary tract infections or meningitis (Kaper et al., 2004). According to Nataro & Kaper (1998), six 

enteric pathotypes can be classified, namely, which are: diffusely adherent E. coli (DAEC), enteroaggregative E. coli 

(EAEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and 

enterotoxigenic E. coli (ETEC). Each pathotype is characterized by the presence of specific virulence attributes 

resulting in different pathogenicity profiles. Additionally, Boudeau et al. (1999) described a new pathotype of E. coli, 

recommending it to be named adherent-invasive E. coli (AIEC). 

1.2.1.3 AIEC pathotype and strain LF82 

The AIEC pathotype has been proposed to be involved in the etiology of inflammatory bowel diseases like Crohn´s 

disease (CD) or ulcerative colitis (Eaves-Pyles et al., 2008, Darfeuille-Michaud & Colombel, 2008). These illnesses are 

characterized by a chronic inflammation of the gastrointestinal tract and are often associated with a local dysbiosis in 

the microbial composition (Tamboli et al., 2004). Several mouse as well as human studies suggest AIEC strains play 

an important role in the induction of intestinal inflammation, and thus, may contribute to the development of 

inflammatory bowel diseases. Darfeuille-Michaud et al. (2004), for instance, showed that the prevalence of AIEC 

strains in the ileal mucosa is significantly increased in CD patients compared to healthy control individuals. Other 

independent research groups (e.g., Dogan et al., 2013, Martinez-Medina et al., 2009, Baumgart et al., 2007) made 

similar observations. In addition, AIECs are able to induce typical histopathological hallmarks of CD like the formation 

of granulomas (Meconi et al., 2007). However, there is still no unequivocal proof of whether AIECs are the initial 

trigger or just an enhancing factor in disease development and maintenance. The presence in healthy humans indicates 

the potential pathosymbiontic nature of AIECs, taking advantage of inflammation-related perturbations in the gut of 

susceptible individuals (Palmela et al., 2018, Dogan et al., 2014). In concordance with this hypothesis are the findings 

of Craven et al. (2012), who showed that a moderate to severe ileitis accompanied by inflammation favours the invasion 

and colonization of AIECs in a mouse model. In terms of virulence genes, AIECs are very diverse and clearly separate 



19 

 

from the diarrheagenic pathotypes. Typical characteristics for this pathotype include 1) the ability to adhere to 

intestinal cells (Darfeuille-Michaud et al., 1998), 2) the potential to invade epithelia cells via interacting with 

microtubule and actin microfilaments of the host cell (Boudeau et al., 1999), and 3) the capacity to survive and 

replicate intracellularly in macrophages without inducing cell death (Glasser et al., 2001). Despite sharing these 

common traits, AIEC strains show a high genetic and clonally diversity, and belong to different phylogenetic groups 

and serotypes (Camprubí-Font et al., 2020, Céspedes et al., 2017). 

The strain LF82 (serotype O83:H1; phylogroup B2) represents one of the current best characterized AIECs and was 

also a subject of this study. It was originally isolated from an ileal lesion of a patient with Crohn's disease 

(Boudeau et al., 1999), and shares several virulence determinants with extraintestinal pathogenic bacteria, indicating 

its potential to colonize other sites despite the gut (Conte et al., 2016). Important virulence factors include the type I 

pili. They mediate the adhesion of the bacterium to the intestinal epithelium by binding to the antigenic cell adhesion 

molecule 6 on the apical surface of ileal enterocytes (Barnich et al., 2007, Boudeau et al., 2001). The subsequent 

invasion is promoted by the outer membrane protein OmpA, which recognizes the stress response factor Gp96 on the 

ileal epithelium, leading to their fusion with outer membrane vesicles (Rolhion et al., 2010). After internalization, 

LF82 upregulates further virulence factors like the stress protein HtrA (Bringer et al., 2005) or enzymes like the 

oxidoreductase DsbA (Bringer et al., 2007) to survive and to replicate within macrophages, defying harsh acidic and 

oxidative conditions. Further knowledge of the genetic determinants for E. coli LF82s’ remarkable adaptability to 

variable environments is necessary to elucidate the role of AIECs in inflammatory bowel diseases and to elaborate 

prevention and treatment strategies.  

1.2.2 Pseudomonas aeruginosa 

1.2.2.1 Discovery and properties 

Pseudomonas aeruginosa, originally named Bacillus pyocyaneus, was first isolated in 1882 by the pharmacist, Carle 

Gessard. Gessard noticed that the isolated organism produces blue-green pus in cutaneous wounds of patients. This 

blue-green purulence, most likely caused by the phenazine metabolite pyocyanin, formed the basis for its later 

renaming. After Walter Migula (1894) proposed the generic term, “Pseudomonas”, for the whole genus, 

Bacillus pyocyaneus was renamed as Pseudomonas aeruginosa. The etymology of the species name thereby originates 

from the Latin word aerūgō (“verdigris”), thus referring to the ability of this organism to produce blue-green pigments 

(Palleroni, 2010).  

Like the genus Escherichia, P. aeruginosa belongs to the class of γ-Proteobacteria and is a Gram-negative, rod-shaped 

and motile bacterium. As a facultative anaerobic organism, it is able to acquire energy from both aerobic and anaerobic 

respiration; for the latter, nitrite or nitrate is used as a terminal electron acceptor instead of oxygen (Davies et al., 

1989). In the entire absence of electron acceptors, P. aeruginosa can also ferment arginine (Vander Wauven et al., 

1984) or pyruvate (Eschbach et al., 2004) for energy production. More than 100 different substances including aromatic 

hydrocarbons (Diggle & Whiteley, 2020) can be utilized as carbon and energy sources by different strains, confirming 

the exceptional metabolic versality (Frimmersdorf et al., 2010, Ramos, 2004) of this organism. Simultaneously, 

P. aeruginosa has only modest nutritional requirements (Palleroni et al., 1984) and can tolerate a broad range of 

temperatures from 4 to 42 °C (LaBauve & Wargo, 2012). These properties enable the colonization of a variety of 

different habitats with varying nutritional and physical conditions, including terrestrial ecosystems like soil 

(Szoboszlay et al., 2003, Green et al., 1974) as well as aquatic environments like sewage (Wheater et al., 1980) or sea 

water (Kimata et al., 2004).  
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1.2.2.2 Genome  

The comparatively large and complex genome of P. aeruginosa mirrors its impressive adaptability. In 2000, 

Stover et al. sequenced the first genome of P. aeruginosa, which was those of the strain, PAO1. The researchers 

observed a genome with a size of 6.3 Mbp, an average GC content of 66.6% and a high genetic complexity. The genome 

sequenced harboured 5,570 predicted genes, many of which belong to paralogous gene families and encode functionally 

diverse products. In concordance with the exceptional versatility of P. aeruginosa, a high percentage of genes encoded 

for proteins involved in nutrient uptake and metabolism. In addition, 8.4% of all PAO1 genes were shown to have a 

regulatory function. This is one of the highest proportions of regulatory genes detected for bacterial genomes and 

enables P. aeruginosa to respond to fluctuating environments. After initial sequencing of strain PAO1, many other 

strains were also subjected to genome sequencing. Nowadays, fully assembled genome sequences of 224 different 

P. aeruginosa strains are available on NCBI with sizes ranging from 6.12 to 7.76 Mbp (https://www.ncbi.nlm.nih.gov/; 

state: 04/16/20). All strains share a gene density of approximately 0.9 genes per 1 kb (Rogozin et al., 2002a) and have 

a highly conserved core genome (Wolfgang et al., 2003). In contrast, the accessory genome, constituting up to 18% of 

the total genome (Ozer et al., 2014), can vary widely. In both, the core and the accessory genome, several genes 

involved in antibiotic resistance and virulence can be found (Valot et al., 2015). 

1.2.2.3 Antibiotic resistance mechanisms 

P. aeruginosa shows a low susceptibility to many available antimicrobial agents, including β-lactam antibiotics, 

aminoglycosides, polymyxins and fluoroquinolone-based substances (for review see Poole, 2011). Moreover, three 

different modes of antibiotic resistance can be distinguished: intrinsic, acquired & adaptive resistance.  

Intrinsic resistance refers to an organism’s inherent ability to circumvent the adverse effects of antibiotics due to 

innate structural or functional features (Blair et al., 2015). For P. aeruginosa, intrinsic resistance is primarily conferred 

by its limited outer membrane permeability (Angus et al., 1982, Yoshimura & Nikaido, 1982) and the capacity to 

synthesise antibiotic-inactivating enzymes (Lambert, 2002). An additional factor, which contributes to the intrinsic 

resistance of P. aeruginosa, is the presence of resistance-nodulation-cell division (RND) multidrug efflux systems. 

Those efflux systems restrict the effect of various substances like toxins, heavy metals, organic molecules, endogenous 

metabolites and antibiotics due to proton-driven excretion from the cells’ cytoplasm (Blanco et al., 2016). To exert 

this function, three subunits are necessary (Figure 5): the actual RND transporter located in the cytoplasmic 

membrane (Murakami et al., 2002), an protein complex spanning the outer membrane (outer membrane factor, OMF) 

(Wong et al., 2001, Koronakis et al., 2000) and an periplasmic “adaptor” protein (membrane fusion protein, MFP), 

thereby stabilizing the interaction between the other two subunits (Takatsuka & Nikaido, 2009, Zgurskaya & Nikaido, 

1999). All three components are necessary for the functionality of the efflux system (Ma et al., 1995, Ma et al., 1993). 

In P. aeruginosa PAO1, up to 10 different genes encoding for RND efflux systems are present (Stover et al., 2000). 

Each system is regulated independently (Poole, 2008), and they partially complement each other with respect to their 

substrate specificity (Fernando & Kumar, 2013). Up to now, five RND pumps are known to be involved in the 

expulsion of antibiotics out of the cell, namely: MexAMFP-MexBRND-OprMOMF, MexXMFP-MexYRND-OprMOMF, MexCMFP-

MexDRND-OprJOMF, MexEMFP-MexFRND-OprNOMF and MexJMFP-MexKRND-OprMOMF (Housseini B Issa et al., 2018, 

Li et al., 2015, Lister et al., 2009). Probably the best studied efflux pump in P. aeruginosa is MexAMFP-MexBRND-

OprMOMF, which is a homologue to the AcrAMFP-AcrBRND-TolCOMF efflux system in E. coli. This is the only efflux 

system with constitutive expression and is able to eject a large number of structurally unrelated groups of antibiotics 

(Masuda et al., 2000). A chromosomal deletion of one or more MexAMFP-MexBRND-OprMOMF genes increases, inter alia, 
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the susceptibility against quinolones, β-lactam antibiotics, tetracyclin, chlorampehicol and aminoglycoside antibiotics 

compared to the wild type strain (Lomovskaya et al., 1999, Yoneyama et al., 1997, Gotoh et al., 1994, Poole et al., 

1993). When deleting multiple efflux pump genes, susceptibility is even more pronounced. The P. aeruginosa strain, 

PAO397 is a derivate of PAO1, lacking all five efflux pumps involved in antibiotic expulsion (ΔmexAB-oprM, 

ΔmexCD-oprJ, ΔmexJKL, ΔmexXY & ΔmexEF-oprN), and additionally, carrying a ΔopmH362 mutation 

(Chuanchuen et al., 2005). This strain, for example, shows a reduced minimal inhibitory concentration (MIC) of 

triclosan by a factor ≥64, when compared to the PAO1 parent strain (Chuanchuen et al., 2003). In addition, an 

elevated MIC was also observable for several other antibiotics including substances used for the treatment of human 

P. aeruginosa infections, e.g., aztreonam and carbenicillin (Iyer & Erwin, 2015, Giamarellou & Antoniadou, 2001). 

Spontaneous mutations affecting efflux pump systems also play an important role in acquired resistance. In this case, 

overexpression of the efflux pumps MexAMFP-MexBRND-OprMOMF (Ziha-Zarifi et al., 1999), MexCMFP-MexDRND-OprJOMF 

(Jakics et al., 1992) and MexEMFP-MexFRND-OprNOMF (Fukuda et al., 1995) is induced by mutational changes in their 

transcriptional regulators, thus, leading to a de-repression of the efflux pump expression (Stickland et al., 2010, 

Srikumar et al., 2000, Saito et al., 1999). Besides mutational alterations, resistance can also be acquired by the uptake 

of foreign antimicrobial genes like extended-spectrum β-lactamases or metallo-β-lactamases via transformation, 

transduction or conjugation (Arber, 2014, Bush, 2010).  

In contrast to intrinsic and acquired resistance, adaptive resistance is triggered by environmental stimuli leading to 

transient alterations in gene and protein expression (Fernandez & Hancock, 2012). A still enigmatic acquired resistance 

mechanism in P. aeruginosa is the formation of persister cells, which can enter a dormant state, when exposed to 

antibiotics or other environmental stresses (Balaban et al., 2013). Especially in cystic fibrosis patients, persistence and 

the thereby conferred multidrug tolerance constitutes an emerging challenge (Bianconi et al., 2019, Mulcahy et al., 

2010).  

1.2.2.4 Pathogenicity and clinical relevance 

P. aeruginosa possesses a sophisticated virulence machinery leading to a high degree of pathogenicity. One of the first 

steps in pathogenesis include colonization and adhesion, which are facilitated by surface structures like type IV pili 

(Tang et al., 1995) and flagella (Balloy et al., 2007). Once attached to the host cells, P. aeruginosa can secret effector 

proteins via six different secretion systems (type I – type VI secretion systems; T1SS -T6SS) (Filloux, 2011); of which 

Figure 5. Schematic illustration of an RND pump by Wang et al. (2012). OMF: outer membrane factor. MFP: membrane fusion 
protein. RND: resistance-nodulation-cell division transporter. 
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T2SS and T3SS are of decisive importance during pathogenesis (Jyot et al., 2011, Roy-Burman et al., 2001). The T2SS 

mediates secretion of enzymes like alkaline phosphatase PhoA, elastase LasA and LasB, exotoxin A as well as hemolytic 

and nonhemolytic phospholipases C into the extracellular space (Cianciotto, 2005). In contrast, T3SS enables direct 

injection of toxins including exotoxin S, T, U and Y into eukaryotic cells, where they can promote immune evasion 

and induce tissue damage (Engel & Balachandran, 2009). Other secreted molecules involved in pathogenesis are 

alginates as well as siderophores. The former promote biofilm formation, and thus, enhance resistance towards 

antibiotics and the host immune system (May et al., 1991); the latter ensure a sufficient availability of iron for bacterial 

growth and dissemination (Takase et al., 2000). This extensive repertoire of virulence factors enables P. aeruginosa to 

infect various hosts, such as humans, animals, plants, insects, amoebas, and nematodes (Pukatzki et al., 2002, 

Mahajan-Miklos et al., 2000, Plotnikova et al., 2000, Rahme et al., 2000, Mahajan-Miklos et al., 1999). In humans, a 

transient, asymptomatic colonization of P. aeruginosa is not unusual. Estepa et al. (2014), for instance, reported 

occurrence of P. aeruginosa in the faeces of 8.2% of all healthy individuals tested. Similar results were obtained by 

Morrison & Wenzel (1984), who reported an endogenous colonization rate in faecal samples ranging from 2.6% to 24%. 

However, colonization rates may be even higher during hospitalization (Valles et al., 2004). This is in concordance 

with the opportunistic nature of P. aeruginosa, which predominately infects individuals with compromised immune 

systems like patients suffering from severe burns, cancer, AIDS or cystic fibrosis (Govan & Deretic, 1996). A point 

prevalence study conducted in 75 countries revealed that 51.5% of all patients in intensive care units suffered from a 

bacterial infection, nearly 20% of them caused by P. aeruginosa (Vincent et al., 2009). The most common hospital-

acquired infections induced by P. aeruginosa are ventilator-associated infections of the respiratory tract, followed by 

infections of the urinary tract, surgical sites and bloodstream infections; all of them associated with high morbidity 

and mortality rates (Weinstein et al., 2005). Due to a global increase in the prevalence of multi-drug resistant strains, 

effective treatment options are limited (Bassetti et al., 2018, Livermore, 2009, Peña et al., 2009). Therefore, 

P. aeruginosa infections remain an ongoing challenge for today’s health care systems. 

1.3 Identification of protein-coding genes 

1.3.1 In silico gene prediction 

In the last few years, new sequencing technologies have enabled affordable, high-throughput generation of sequence 

data (Kahvejian et al., 2008, Metzker, 2005). This has led to a massive increase in the number of available eukaryotic 

as well as prokaryotic genomes. After genome assembly, a crucial part for subsequent studies is an accurate and reliable 

prediction of genes and their structural and functional annotation. To cope with the tremendous amount of sequencing 

data, this step is usually carried out by automated, computational methods with only limited manual curation. In 

general, two different approaches are used for gene delineation: ab initio prediction and homology-based prediction 

(for review see Overbeek et al., 2007, Zhang, 2002). In the first case, typical gene motifs like promoters, start and stop 

codons but also statistical properties, e.g., the GC-content or codon usage, were utilized for gene annotation by various 

programs like Glimmer (Delcher et al., 2007, Delcher et al., 1999, Salzberg et al., 1998), GeneMark (Besemer & 

Borodovsky, 2005, Borodovsky & McIninch, 1993) or Prodigal (Hyatt et al., 2010). In contrast, homology-based 

prediction, for example, using blast (Altschul et al., 1990), exclusively relies on sequence similarity to genes with 

known functions. However, both approaches suffer from certain limitations, particularly regarding sensitivity. 

Especially novel genes, without any significant homology to the ones deposited in databases as well as genes not 

complying with the criteria used in ab initio predictions, were often missed. In addition, many prediction pipelines 

have an arbitrary minimal gene size threshold of 110-150 bp (Wood et al., 2012, Boekhorst et al., 2011, Basrai et al., 

1997) in order to minimize false-positive hits and avoid over-prediction at the expense of under-prediction. As a result, 
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many prediction methods fail to detect small protein-encoding genes (e.g., Kremer et al., 2016, Wood et al., 2012, 

Warren et al., 2010). Another restricting factor for prokaryotic prediction algorithms is that they eliminate overlapping 

ORFs by allowing only one protein-coding ORF prediction per DNA locus (Warren et al., 2010, Delcher et al., 2007). 

1.3.2 Experimental gene identification by high-throughput methods 

1.3.2.1 RNA-seq & Cappable-seq 

To overcome the limitations of computational prediction, experimental data should be consulted in order to identify 

genomic regions with functionality (Richardson & Watson, 2013). However, experimental verification might be rather 

challenging, especially for small genes with weak expression. Molecular biological methods like sodium dodecyl 

sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) or Western blot often fail to detect small proteins due to 

inadequate resolving power, improper membrane transfer or poor retention. Next generation sequencing (NGS)-based 

methods are size-independent, and thus, also suitable for the verification of the coding capacity of short genes. Total 

RNA sequencing (RNA-seq), for example, enables cheap and rapid detection of RNA transcripts, and hence, is of 

increasing importance in transcriptome studies (Landstorfer et al., 2014, Costa et al., 2010). In contrast to methods 

like quantitative polymerase chain reaction (qPCR) or microarrays, RNA-seq enables whole genome expression analysis 

without prior specification of the transcripts to be identified (for review see Wang et al., 2009). The typical RNA-seq 

workflow starts with cultivation of the target organism followed by total RNA purification. Since rRNAs constitute 

up to 95% of the total RNA within the bacterial cell (Giannoukos et al., 2012), rRNA depletion is a crucial step during 

RNA-seq. After depletion, residual RNA is fragmented, ligated to adapters, and finally, converted to a complementary 

DNA (cDNA) library by RT and amplification. Several technologies are available for sequencing, whereby Illumina´s 

short-read sequencing represents the hitherto most commonly used technology. For this sequencing technique, the 

cDNA molecules are attached to the surface of a flow cell and copied via bridge amplification. During the sequencing 

process, fluorescent-labelled nucleotides are sequentially added, and incorporated nucleotides are visually detected 

after each cycle. The sequenced raw reads are bioinformatically processed, aligned against a reference genome, and 

then, evaluated according to the initial research question. Potential applications of RNA-seq include differential 

expression analysis (e.g., Landstorfer et al., 2014), unveiling of transcriptional dynamics (e.g., Wilhelm et al., 2008), 

identification of novel transcripts and revision of annotated gene and exon boundaries (e.g., Nagalakshmi et al., 2008).  

A more precise method to map boundaries of mRNA transcripts constitutes Cappable-seq (Figure 6), which was first 

described by Ettwiller et al. (2016). This method enables precise determination of TSS by selective 5´ end enrichment 

of primary transcripts. Those are characterized by a triphosphorylated nucleotide at their 5´ end, which is the first 

nucleotide that has been incorporated by RNAP. In contrast, the 5´ ends of processed transcripts including those of 

rRNAs and tRNAs are monophosphorylated. The different phosphorylation states are utilized to separate the two 

types of RNA: Only triphosphorylated fragments are capped with 3´-desthiobiotin-TEG-guanosine 5´triphosphate 

(DTB-Gppp), fragmented to 200 bp, and subsequently, captured by reversible interaction with streptavidin beads. In 

contrast, monophosphorylated transcripts do not interact with streptavidin beads, and thus, are eliminated from the 

sample. After elution of the captured primary transcripts, the desthiobiotinylated cap is removed, and the RNA 

fragments are subjected to library preparation and sequencing. This technique enables robust genome-wide 

identification of TSS at single base resolution, while reducing data complexity and archiving high rRNA depletion 

rates. By applying Cappable-seq to E. coli, Ettwiller et al. (2016) identified 16,539 TSS, whereby 41% have not been 

identified before, probably due to their weak expression. Therefore, this method seems to be rather sensitive, and thus, 

also suitable for TSS identification of transcribed OLGs. 
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1.3.2.2 Conventional Ribo-seq 

Another NGS-based method, which is often combined with RNA-seq, is ribosome profiling (Ribo-seq). This method 

allows the exploration of the global translational landscape by sequencing mRNA fragments, the so-called ribosome 

footprints (RFPs), covered by ribosomes (Ingolia et al., 2009). Like RNA-seq, the Ribo-seq procedure starts with 

sample collection (Figure 7). During this process, stalling of the ribosomes is crucial to preserve their original in vivo 

position on the mRNA. There are several possibilities for immobilizing ribosomes. Most commonly translation-

inhibiting drugs like harringtonine (e.g., Ingolia et al., 2012), cycloheximide (e.g., Schneider-Poetsch et al., 2010) or 

chloramphenicol (e.g., Oh et al., 2011) are used to avoid ribosomal run-off. However, the use of drugs is often 

accompanied by ongoing translation, especially of resistant genes, altered translational speed or redistribution of 

ribosomes, leading to biased results (Sharma et al., 2019, Hussmann et al., 2015, Gerashchenko & Gladyshev, 2014). 

Thus, alternatively, cells can either be harvested via rapid filtration or by cooling with dry ice, followed by 

centrifugation and flash freezing using liquid nitrogen (Hücker et al., 2017, Becker et al., 2013). The next step in Ribo-

seq comprises cryogenic cell homogenisation under conditions, which maintain the original ribosomal state. Cell lysis 

is followed by a nuclease footprinting assay. During this assay, RFPs, covered by ribosomes, and thus, physically 

protected from nuclease digestion, are generated. Several nucleases like ribonuclease I (RNase I, e.g., Neuhaus et al., 

2016), micrococcal nuclease (MNase, e.g., Mohammad et al., 2019) or a mixture of different nucleases (Hücker et al., 

2017) have been used in bacteria in order to obtain precise RFPs. The choice of nuclease, therefore, plays a pivotal 

role for ensuring data quality. Enzyme concentration as well as incubation time have to be optimized to digest all 

exposed mRNA as accurately as possible without affecting ribosomal integrity (Gerashchenko & Gladyshev, 2017). A 

sucrose gradient density centrifugation is optionally used to purify the generated monosome complexes. Following 

extraction, RNA fragments are separated by denaturing polyacrylamide (PAA) gel electrophoresis, and RFPs are 

excised from the gel. The size to be excised depends on several factors, inter alia, on the nuclease used for footprinting 

as well as on the research issue to be addressed (Glaub et al., 2020, Mohammad et al., 2016). Once separated, RFPs 

are subjected to rRNA depletion, library preparation and sequencing as described for RNA-seq.  

Figure 6. Scheme of the Cappable-seq pipeline for transcription start site (TSS) identification. After capping of 5´ triphosphorylated 
primary transcripts with 3´-desthiobiotin-TEG-guanosine 5´triphosphate (DTB-Gppp), RNA fragments are enriched by interaction 
with streptavidin beads. Processed transcripts with monophosphorylated 5´ ends are depleted. After elution and de-capping of the 
enriched primary transcripts, library preparation and sequencing are performed. Figure adapted from Ettwiller et al. (2016). 
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Although initially applied to yeast (Ingolia et al., 2009), Ribo-seq offers insights into translational processes of a variety 

of different organisms including eukaryotes (e.g., Ingolia et al., 2011), prokaryotes (e.g., Miranda-CasoLuengo et al., 

2016) and viruses (e.g., Stern-Ginossar & Ingolia, 2015). In these organisms, Ribo-seq was used for quantification of 

mRNA abundance, recording of translational dynamics, deciphering of control mechanisms and compartmentalization 

of gene expression, and the identification of novel, translated genes (for excellent review see Brar & Weissman, 2015). 

By applying this method, several novel genes of small length were identified, for instance, in Salmonella enterica 

Typhimurium 14028s (Baek et al., 2017) and E. coli O157:H7 (Hücker et al., 2017, Neuhaus et al., 2016). 

1.3.2.3 Modified Ribo-seq variants 

Recently, several modifications of the classical Ribo-seq protocol have been developed in order to optimize the 

resolution and power of such experiments, e.g., the implementation of nucleotide-precise footprints to determine the 

frame of translated ORFs. In eukaryotes, a three nt periodicity signal, indicating the translational frame, was obtained 

since the early beginnings employing Ribo-seq, mainly due to the use of the specific nuclease, RNase I (Ingolia et al., 

2009). Although RNase I was used successfully for bacterial Ribo-seq in the past (e.g., Neuhaus et al., 2016), some 

researchers claimed RNase I activity to be impaired in E. coli (e.g., Kitahara & Miyazaki, 2011). Consequently, MNase 

was commonly used as an alternative for nuclease footprinting. A major drawback of MNase, though, is its partially 

sequence-specific cleavage pattern (Dingwall et al., 1981), which leads to a sequence bias at both ends of the RFP, 

and thus, rules out a precise reading frame determination. In 2017, Hwang and Buskirk proposed the use of the 

endogenous type II toxin RelE to improve nucleotide resolution in bacteria. In an in vitro Ribo-seq experiment with 

E. coli MG1655, a combination of MNase and RelE enabled the detection of a highly resolved reading frame in the 

sum signal of all annotated genes as well as for single genes. This result was achieved by exploiting RelE´s unique 

feature of cleaving translating mRNA within the ribosomal A site codon (Figure 8, Pedersen et al., 2003). Under 

physiological conditions, cleavage by RelE induces a translational arrest and inhibits cell growth, which, in turn, 

Figure 7. Overview of the experimental procedure of Ribo-seq and RNA-seq. Both methods are carried out on a split sample with 
stalled ribosomes. During the Ribo-seq workflow, monosomes are generated by nuclease footprinting, and then, isolated by gradient
density centrifugation. Once purified, RNA is extracted and subjected to gel electrophoresis for size selection. Recovered RFPs were
used for library construction and deep sequencing. After mapping, a three-nucleotide periodicity indicates genuine translation. For 
RNA-seq, total RNA is extracted, fragmented, and sequenced. As a result, obtained reads should be distributed evenly across all
positions of transcribed regions. Figure adapted from Hsu et al. (2016). 
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decreases energy consumption and enhances cell survival (Christensen et al., 2001). Therefore, RelE is directly involved 

in several stress-response pathways, e.g., the stringent response (Christensen et al., 2001). The toxic endonuclease 

RelE as well as its cognate antitoxin RelB are both encoded in the relBE operon (Bech et al., 1985). This operon is 

autoregulated by RelB, which represses the transcription of both genes during steady-state cell growth 

(Overgaard et al., 2009). Under non-stress conditions, the antitoxin RelB is present in ~10-fold excess over the toxin 

RelE, leading to an efficient inactivation of the latter by direct protein-protein interaction (Overgaard et al., 2009, 

Galvani et al., 2001). However, under stress conditions, e.g., nutrient starvation, the transcription of the operon is 

strongly activated, and the antitoxin RelB is subsequently cleaved by the activated protease, Lon (Gerdes et al., 2005, 

Christensen et al., 2001). As a result, the global translation is arrested reversibly by RelEs cleavage between the second 

and third nucleotide of the codon located in the A site of the ribosome (Pedersen et al., 2003), yielding precise RFP 

3´ ends. In addition, RelE only cleaves in a ribosomal context (Pedersen et al., 2003) and shows a modest sequence 

preference (Hwang & Buskirk, 2017, Hurley et al., 2011). These singular properties of RelE are essential for obtaining 

exact positional information and for visualising the three nt periodicity, which reflects the codon-wise movement of 

ribosomes during translation (Wen et al., 2008). Consequently, translated regions can be unambiguously identified by 

differentiating RFPs generated by translational processes from RFPs caused by mere ribosomal occupancy.  

Other modified variants of Ribo-seq also take advantage of special inhibitors to facilitate translation initiation site 

(TIS) detection in prokaryotes, aiding the discovery of hitherto unknown genes. The accuracy of TIS identification 

strongly depends on the inhibitor’s mode of action. Ideally, assembly and positioning of the 70S ribosomal complex at 

the start codon of an mRNA should be guaranteed, whereas elongation after initiation must be effectively inhibited. 

Nakahigashi et al. (2016), for instance, used tetracycline for global mapping of TIS in a Ribo-seq experiment. The 

suitability of tetracycline in determining TSS, however, is limited due to its potential to act as a mere elongation 

inhibitor, able to stall also elongating and not only initiating ribosomes. Therefore, the distinction between RFPs 

generated by initiating ribosomes at TISs and RFP caused by pausing ribosomes is challenging. As a consequence, 

identification of unannotated TIS is hampered (Nakahigashi et al., 2016).  

Retapamulin-assisted ribosome profiling (Ribo-RET) represents an improved method for TIS detection. Meydan et al. 

(2019) showed that this method is capable of identifying not only TISs of annotated genes, but also a variety of 

alternative, yet functional TISs in the E. coli genome. Retapamulin (RET), the inhibitor used in this study, is a semi-

synthetic derivate of the pleuromutilin family and specifically traps initiating ribosomes at the start codon of a 

translated ORF. RET targets the peptidyl transferase centre, and thus, interferes with the placement of AAs in the P 

and A site of the ribosome, hence impeding peptide bond formation (Davidovich et al., 2007, Schlünzen et al., 2004). 

By displacing the aminoacyl moiety of the first tRNA and impairing the correct positioning of an elongator tRNA in 

the A site, cessation of the early elongation phase is initiated (Meydan et al., 2019). Even brief treatment with RET 

was sufficient for potent accumulation of ribosomes at start codons and for identification of primary as well as 

alternative TIS. However, deletion of the tolC gene, encoding for the outer part of the AcrAMFP-AcrBRND-TolCOMF 

multi-drug efflux system, was a prerequisite for RET to exert its full effect within E. coli. Ribo-seq with the proline-

rich antimicrobial peptide Onc112 seems to be a promising alternative to Ribo-RET, since application of Onc112 also 

resulted in reliable mapping of primary and alternative TIS by stalling ribosome initiation complexes. By combining 

both methods, Weaver et al. (2019) discovered novel ORFs in E. coli, including small and overlapping ones. One of 

the most recent modifications of the Ribo-seq protocol is the application of the antimicrobial peptide apidaecin. By 

sequestering release factors necessary for termination of translation, apidaecin arrests ribosomes at the stop codon of 

the translated ORFs (Mangano et al., 2020). This method offers another interesting option for further genome 

exploration. 
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1.3.2.4 Mass spectrometry 

Mass spectrometry (MS), which is capable of detecting and quantifying proteins on a large scale, is considered as one 

of the most effective methods for proteome analysis. A typical MS experiment starts with the enzymatic digest of all 

proteins present in a sample by trypsin or any other suitable protease to generate a pool of peptides (Tsiatsiani & 

Heck, 2015). Optionally, additional pre-fractionation can be performed at this stage to increase sensitivity, and thus, 

also the detectability of low abundant proteins (Nissum et al., 2007, Tang et al., 2005). In the next step, complex 

peptide mixtures are resolved by liquid chromatography (LC), which separates peptides according to their intrinsic 

properties, e.g., charge, polarity, size or hydrophobicity (for review see Manadas et al., 2010). Eluted peptides are 

converted into gas-phase ions using techniques like electrospray ionization (Fenn et al., 1989) or matrix-assisted laser 

desorption/ionization (Karas & Hillenkamp, 1988). Ionized molecules are then separated according to their mass-to-

charge ratio (m/z) by a mass analyser instrument. Most commonly, quadrupole, ion trap or time-of-flight mass 

analysers have been used, but also hybrid instruments, called tandem mass spectrometers, which combine multiple 

mass analysers in one system (for review see Pitt, 2009, Han et al., 2008). For each precursor and product ion, a MS 

spectrum is generated, which is then used for peptide identification employing search engines such as 

Andromeda/MaxQuant (Cox et al., 2011, Cox & Mann, 2008) or Mascot (Perkins et al., 1999). For tandem mass 

spectrometry (MS/MS), multiple MS spectra are recorded, one for each mass analyser. In between, selected ions are 

additionally fragmented, e.g., by collision-induced dissociation (Wells & McLuckey, 2005).  

Apart from the technical requirements, the type of data acquisition is also of central importance for a successful 

implementation of MS experiments. Three types of acquisition strategies can be distinguished: data-dependent 

acquisition (DDA), data-independent acquisition (DIA), and targeted data acquisition (TDA). In DDA, the most 

intense peptide precursors, obtained from the first mass spectrometer, are selected for further fragmentation and 

analysis by a second mass analyser. This process allows discovery-driven proteomics without the need for a priori 

knowledge about the proteins to be detected, but is accompanied by limited reproducibility and a bias against proteins 

with low abundance (Venable et al., 2004). In contrast, DIA enables more accurate and reproducible quantification 

by sequential isolation and fragmentation of precursors in a flexible m/z window. Repetition of this process with 

shifted m/z windows leads to a full scanning over the whole m/z range, thereby achieving excellent protein coverage 

rates (Gillet et al., 2012). The highest selectivity and sensitivity, however, is obtained by TDA, which is referred to 

as the gold standard for protein quantification (Peterson et al., 2012). During the targeted approach of parallel reaction 

Figure 8. Regulation and organisation of the RelE-encoding operon. The toxin RelE and the respective antitoxin RelB are encoded 
by the relBE operon, which is autoregulated at the transcriptional level by the amount of free RelB as well as the presence of the
non-toxic protein complex formed by RelB and RelE. RelB can be degraded by protease Lon, leading to an abrogation of 
neutralisation, and thus, to the activation of toxic RelE. Released RelE induces a translational arrest by cleaving mRNA between 
the second and the third codon which is located in the A site of the ribosome. Figure adapted from Pedersen et al. (2003). 
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monitoring (PRM), all product ions are simultaneously monitored based on the m/z and retention time information 

prior obtained for the target peptides. In addition, PRM efficiency can further be enhanced by the use of heavy isotope-

labelled standards derived from endogenous peptide sequences (for review see Rauniyar, 2015). Even though MS is 

under constant development, this method still reaches its limits when analysing low abundant proteins (Baldwin, 2004) 

and those lacking sufficient tryptic cleavage sites (Landry et al., 2015, Slavoff et al., 2013). Since most OLGs produce 

short proteins (e.g., Zehentner et al., 2020a), the encoded proteins are difficult to predict and to detect directly using 

conventional mass spectrometry (Hemm et al., 2020, Storz et al., 2014). However, substantial progress has been made 

in recent years detecting small proteins in mass spectrometry (Petruschke et al., 2020, Friedman et al., 2017).  

1.4 Perspectives of the study 

The aim of this study was to identify and characterize novel overlapping gene candidates in the human pathogenic 

bacteria E. coli LF82 and P. aeruginosa PAO1 by multiple high-throughput approaches. In detail, the following 

methods, covering different levels of gene expression (transcriptome, translatome & proteome), were applied: 

a) transcriptome sequencing (RNA-seq) 

b) Cappable-seq  
 

c) ribosome profiling (Ribo-seq) 

d) retapamulin-enhanced Ribo-seq (Ribo-RET) 

e) RelE-supported Ribo-seq 
 

f) mass spectrometry with data-dependent acquisition (DDA) 

g) mass spectrometry with targeted data acquisition (TDA) 

The results of the next generation sequencing-based methods a) to e) were combined for experimental delineation of 

translated ORFs. RNA-seq as well as Cappable-seq were applied for whole transcriptome description and for precise 

mapping of transcription start sites. Conventional Ribo-seq was used for the identification and quantification of 

translation events and for differentiation between coding and non-coding regions in both genomes. To expand the 

entire translatome analysis, the modified Ribo-seq variants Ribo-RET and RelE-supported Ribo-seq were performed. 

The use of the translational inhibitor, retapamulin enabled determination of genome-wide translation initiation sites. 

RelE-supported Ribo-seq was implemented to confirm genuine translation by visualizing the three nucleotide step-wise 

migration of the translating ribosome. All methods allowed global exploration of the genome, and thus, facilitated 

additional investigation of unannotated regions, e.g., novel intergenic genes. Promising novel gene candidates were 

further characterized bioinformatically. An organism-specific database covering all possible ORFs present in the 

genome of P. aeruginosa PAO1 was used for peptide discovery in a DDA tandem mass spectrometry experiment. 

Proteomics using TDA-based mass spectrometry validated and quantified some candidate peptides previously 

discovered by DDA. In addition, two exceptionally long OLGs in Pseudomonas aeruginosa PAO1 were analysed in 

more detail.  

transcriptome 

translatome 

 

proteome 
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2. Materials & Methods 

2.1 Materials 

2.1.1 Antibiotics 

All antibiotics used in this study are listed in Table 1. 

Table 1. Antibiotics. 

Antibiotic Manufacturer Working concentration [µg/mL] 
ampicillin Carl Roth 100-120  
chloramphenicol AppliChem 20 
kanamycin Carl Roth 10-30 
retapamulin (RET) Sigma-Aldrich variable 
spectinomycin AppliChem 50 
streptomycin Sigma-Aldrich 30 

2.1.2 Bacterial strains and plasmids 

All bacterial strains and plasmids used in this thesis are listed in Table 2 and 3, respectively.  

Table 2. Bacterial strains. 

Bacterial strain Relevant genotype/characteristics Source 
E. coli BL21 F– ompT gal dcm lon hsdSB(rB

–mB) 
[malB+]K-12(λS) 

Studier (1991) 

E. coli BL21(DE3) pLysS F– ompT gal dcm lon hsdSB(rB
–mB) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 

nin5]) [malB+]K-12(λS) pLysS[T7p20 
orip15A] (CmR) 

Studier (1991), Promega 

E. coli CC118λpir A(ara-leu) araD ΔlacX74 galE galK 
phoA20 thi1 rpsE rpoB argE(Am) 
recAl, λpir 

Manoil & Beckwith (1985) 

E. coli LF82 isolated from the ileal mucosa of a CD 
patient (Boudeau et al., 1999) 

Boudeau et al. (1999), obtained from Dr. 
Dirk Haller 

E. coli LF82ΔtolC TolC deletion strain of LF82 this work 
E. coli SM10λpir hi thr leu tonA lacY supE recA::RP4-2 

Tc::MuλpirR6K; KmR 
Simon et al. (1983) 

E. coli Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 
Δ(araleu)7697 galU galK rpsL (StrR) 
endA1 nupG 

Invitrogen, Thermo Fisher Scientific 

P. aeruginosa PAO1 laboratory strain of the original 
Australian PAO strain isolated from a 
wound (Holloway, 1955) 

German Collection of Microorganism and 
Cell Cultures (DSM No. 19880), 05/18. 

P. aeruginosa PAO397 Δ(mexAB-oprM) nfxB Δ(mexCD-oprJ) 
Δ(mexJKL) Δ(mexXY) ΔopmH362 
Δ(mexEF-oprN) 

Chuanchuen et al. (2005), obtained from 
Dr. Stephen Lory 
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Table 3. Plasmids. 

Plasmid Relevant characteristics Source 
pBAD/His C oripBR322, ParaB, AmpR, 6×His:MCS Invitrogen, Thermo Fisher Scientific 

 
pET-22b(+)His6:relBΔ9-relEWT T7 promoter, pelB, lacI, 6×His:relB Δ9, 

relE, AmpR  
Dunican et al. (2015), Griffin et al. (2013), 
obtained by Dr. Scott Strobel 

pKD4 oriR6Kγ, AmpR, NeoR/KanR, FRT Datsenko & Wanner (2000), addgene 
 

pKDsgRNA-p15 oripSC101, ParaB, exo, bet, gam, SmR Reisch & Prather (2015), addgene 
 

pKNG101 
 

oriR6K, mobRK2, sacBR, SmR Kaniga et al. (1991) 

pKNG101-TolC pKNG101 with a tolC-deletion fragment in 
the multiple cloning site  

this study 

pMRS101 oriR6K, oriE1, mobRK2, sacBR, SmR, 
AmpR 

Sarker & Cornelis (1997) 

pMRS101-TolC pMRS101 with a tolC-deletion fragment in 
the multiple cloning site

this study 

2.1.3 Commercial enzymes, ladders and kits 

Table 4 lists all commercial enzymes, ladders and kits used in this study. 

Table 4. Enzymes, kits and ladders. 

Category/Product Manufacturer 
Enzymes  
Antarctic Phosphatase 
Benzonase 
Exonuclease T (RNase T) 
Lysozym  
Micrococcal nuclease (MNase) 
Proteinase K 
Q5 High-Fidelity DNA Polymerase 
restriction enzymes (diverse)  
RNase A 
RNase R 
SsoAdvanced Universal SYBR Green Supermix  
SUPERase·In RNase Inhibitor  
SuperScript III Reverse Transcriptase  
SuperScript II Reverse Transcriptase 
T4 DNA Ligase  
T4 Polynucleotide Kinase 
T4 RNA Ligase 2, truncated 
Taq DNA Polymerase 
TURBO DNase  
XRN-1 

New England Biolabs 
Qiagen 
New England Biolabs 
Carl Roth 
Thermo Fisher Scientific 
Analytik Jena 
New England Biolabs 
Thermo Fisher Scientific 
Sigma-Aldrich 
Lucigen 
Bio-Rad Laboratories 
Invitrogen, Thermo Fisher Scientific  
Invitrogen, Thermo Fisher Scientific 
Invitrogen, Thermo Fisher Scientific 
Thermo Fisher Scientific 
New England Biolabs 
New England Biolabs 
New England Biolabs 
Invitrogen, Thermo Fisher Scientific 
New England Biolabs 

DNA ladders 
100 bp DNA ladder  
1 kb DNA ladder  
1 kb Plus DNA ladder 

New England Biolabs 
New England Biolabs 
New England Biolabs 

RNA ladders 
random N10 
random N19 

random N21 

random N23 

random N25 

random N27 

random N40 

 

Biomers 
Biomers 
Biomers 
Biomers 
Biomers 
Biomers 
Biomers 
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Protein ladders 
Page Ruler Prestained Protein Ladder 
Spectra Multicolor Low Range Protein Ladder 

Thermo Fisher Scientific 
Thermo Fisher Scientific

Kits 
Agilent High Sensitivity DNA Kit 
Agilent RNA 6000 Nano Kit 
GenElute Gel Extraction Kit 
GenElute PCR Clean-Up Kit 
GenElute Plasmid Miniprep Kit 
HiSeq Rapid SBS Kit v2 (50 cycles) 
miRNeasy Mini Kit 
MiSeq Reagent Kit v3 (150-cycles) 
Mix2Seq Kit 
QIAexpress Ni-NTA Fast Start Kit 
Qubit dsDNA HS Assay Kit 
Qubit RNA HS Assay Kit 
riboPOOL Kit (P. aeruginosa) 
Ribo-Zero rRNA Depletion Kit (discontinued in 2018) 
TruSeq Small RNA Library Prep Kit 

Agilent Technologies 
Agilent Technologies 
Sigma-Aldrich 
Sigma-Aldrich 
Sigma-Aldrich 
Illumina 
Qiagen 
Illumina 
Eurofins Genomics 
Qiagen 
Invitrogen, Thermo Fisher Scientific 
Invitrogen, Thermo Fisher Scientific 
siTOOLs Biotech 
Illumina 
Illumina 

2.1.4 Growth media and buffers 

The composition of all growth media and buffers are listed in Table 5 or in the subsequent chapters, respectively. All 

solutions were prepared with ultrapure water purified by a Milli-Q Elix Water Purification System (Merck). For RNA 

applications, ultrapure water was additionally treated with diethyl pyrocarbonate (DEPC) according to the supplier´s 

recommendation. If necessary, solutions were sterilized by filtration using a membrane filter with a pore size of 0.22 µm 

or by autoclaving at 121 °C for 15 min. For automated fast protein liquid chromatography (FPLC) applications, all 

solutions were degassed for 1 h at room temperature using a Sonorex Super RK 156 ultrasonic bath (Bandelin 

electronic). 

Table 5. Growth media with their composition. 

Medium  Component Concentration Remarks 
Lysogeny broth (LB) tryptone 

yeast extract 
NaCl 
agar (optional) 

10 g/L 
5 g/L 
5 g/L 
16 g/L 

adjusted to pH 7.4 
+ autoclaved 

Schaedler broth Schaedler bouillon 28.4 g/L autoclaved 
Super optimal broth with catabolite 
repression (SOC) 

tryptone 
yeast extract 
NaCl 
KCl 
MgCl2 

MgSO4 

glucose 

20 g/L 
5 g/L 
0.5 g/L 
0.186 g/L 
10 mM 
10 mM 
20 mM 

autoclaved 

2.1.5 Oligonucleotides 

All primer used in this thesis are listed in Table 6 and were purchased from Eurofins Genomics (Ebersberg) dissolved 

in H2O in a final concentration of 50 µM.  

Table 6. Primers used for PCR and cloning applications. 

Intended use/name (organism) Sequence (5’  3’) 
16S rRNA gene primer (E. coli) 
rrsHF 
rrsHR 

AATGTTGGGTTAAGTCCCGC 
GGAGGTGATCCAACCGCAGG
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16S rRNA gene primer (P. aeruginosa) 
PA_16S_F 
PA_16S_R 

GATGTTGGGTTAAGTCCCGT 
CCCCTACGGCTACCTTGTTA 

vector primer  
pBAD-C+165F 
pBAD-C+271F 
pBAD-C+494R 
pET22b(+)+69F  
pET22b(+)+359R 
pKD4_KanR-389F  
pKD4_KanR-1323R 
pKNG101+2358R 
pKNG101+976F 
pMRS101+2136F 
pMRS101+8640F 

CAGAAAAGTCCACATTGATT 
TCTACTGTTTCTCCATACC 
TGATTTAATCTGTATCAGGC 
GCTAGTTATTGCTCAGCGG 
TAATACGACTCACTATAGG 
CTTGCCGCCAAGGATCTGAT 
GTGGAATCGAAATCTCGTGA 
TCAGATCCTCTACGCCGGAC 
CTGGAGCGGATTTGCTCAAA 
ACCTTTGTCTCGATCCTAGA 
CGCAGGTATCGTATTAATTG 

RelE expression (E. coli) 
relB+184R 
relE+3F-XhoI 
relE+270R-HindI 

ATTACGAAGCCGTTCTTTCAC 
AGTACTCGAGGGGCGTATTTTCTGGATTTT 
ATTAAGCTTTCAGAGAATGCGTTTGACC 

inactivation of tolC according to Datsenko & Wanner (E. coli) 
pKD4_KanR-31TolCF 
 
pKD4_KanR-389F 
pKD4_KanR+935R 
pKD4_KanR-1507TolCR 
 
pKD4_KanR-1526TolCR 
 
pKDsgRNA-3182R 
pKDsgRNA_Redbeta+678F 
TolC-50F 
TolC-50R 

AATTTTACAGTTTGATCGCGCTAAATACTGCTTCACCAC
AAGGAATGCAAGTGTAGGCTGGAGCTGCTTC 
CTTGCCGCCAAGGATCTGAT 
GTCCAGATCATCCTGATCGACAAGA 
CAGACGGGGCCGAAGCCCCGTCGTCGTCATCAGTTACGG
AAAGGGTTATGCATATGAATATCCTCCTTA 
ATCTTTACGTTGCCTTACGTTCAGACGGGGCCGAAGCCC
CGTCGTCGTCAATGGGAATTAGCCATGGTCC 
AATACCCAGCCTCGCTTTGT 
GATATTTCGCCGCGACATTG 
AATTTTACAGTTTGATCGCGCTAAA 
ATCTTTACGTTGCCTTACGTTCAGA 

inactivation of tolC using conjugation (E. coli) 
pMRS101+458R 
pMRS101+8708F 
TolC-17R_US-EcoRI 
TolC+37F 
TolC-133R 
TolC-285F 
TolC-879R_DS-XbaI 
TolC-900F_US-BamHI 
TolC+1391R 
TolC+1462_DS-EcoRI 

CTTATCGATGATAAGCTGTC 
GACACTGAATACGGGGCAAC 
TAACTGAATTCCATTTGCATTCCTTGTGGTG 
CTCTCTGGGTTCAGTTCGTT 
ACCAGTGGTAAATACCCATCAGAAT 
GCCGCGATAAAGTGTTTCTC 
AGTCTAGAGTGTGAAAATTGAAACCGTA 
GCTTAGGATCCCAATTGTGAAAAGTTCATCT 
GCTATCAGGCGCATAACCAT 
AATCTGAATTCCATAACCCTTTCCGTAACTG 

full-length mRNA primer for olg1 & olg2 (P. aeruginosa) 
OLG1+34F 
OLG2+20F 
PA0260+800F  
PA1383+278F 

CTCGTAGGGAGTTTCCGCGCG 
TGACCAATACGCGCATCTCG 
ACGGCCTGTTCGAACCCCTC 
CCTACACCATCGATCCAGTG 

qPCR primer for gyrA, olg1 & olg2 (P. aeruginosa) 
OLG1+524F 
OLG1+640R 
PA_gyrA+346F 
PA_gyrA+458R 

TCGCCATTGCGCTTGCGTAC 
AGACGGTGGGACTTGCCAAC 
AACGCCGCAGCCATGCGATA 
CATGACCGCCGGGATCTGCT 

RT primer for olg1 & olg2 (P. aeruginosa) 
OLG1+730R_RT 
OLG2+1083R_RT 
PA0260+575F  
PA0260+423F  
PA1383+172F  

GCTGCCAGACGACCATCGAC 
CGTCGGTGGCGATAACACCG 
GCACCATGACCCATCCGCTGT 
CGAATGGCTGGACCGCAACG 
GTGGAAAATGGTGCCAACCT 
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2.1.6 Peptides 

All peptides used for targeted proteomics are listed in Table 7. Peptides were synthesized in crude purity by JPT 

Peptide Technologies (Berlin) as freeze-dried, isotopically labelled peptides that terminate with a heavy arginine (U-

13C6; U-15N4) or heavy lysine (U-13C6; U-15N2). 

Table 7. Isotopically labelled peptides used for targeted proteomics. 

Name Sequence (N-Terminus  C-Terminus) 
OLG1_1 AGDQNHAGAQFTSGK 
OLG1_2 LAALATHPAGAAYR 
OLG1_3 AVALAVAQR 
OLG1_4 MASAADELEDTFER 
Tle3_1 TIVSAQSITLPK 
Tle3_2 FASGAGGAAVR 
Tle3_3 TGLPQGFHQR 
Tle3_4 AETPYEAR 
Tle3_5 NSQLIDATVAYR 
OLG2_1 ISPHLDTYX 
OLG2_2 IPELGGX 
OLG2_3 LAEVEEHHVAAGX 
OLG2_4 LVEAQLB 
PA1383_1 VSLQNDPLNELX 
PA1383_2 VLHPLNLNNQDX 
PA1383_3 FDVGDLB 
PA1383_4 VDFENVX 
PA1383_5 AHETGVYTVTEVAB 

2.1.7 Reagents and chemicals 

All reagents and chemicals used in this study are listed in Supplementary Table 1.  
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2.2 Methods 

2.2.1 Microbiological methods 

2.2.1.1 Cultivation and storage of bacteria 

Unless otherwise stated, all E. coli and P. aeruginosa strains were cultivated aerobically in LB while shaking at 

150 rpm and 37 °C. For Ribo-seq experiments, E. coli LF82 was routinely cultivated in glass flasks filled with Schaedler 

broth (1/5 of the initial flask volume) under aerobic as well as anaerobic conditions. P. aeruginosa was exclusively 

cultivated in chicane flasks ensuring an optimal oxygen supply. Main cultures were inoculated with overnight (ON) 

cultures in a ratio of 1:100 (P. aeruginosa) or 1:1,000 (E. coli) respectively. For ON cultures, 5 mL LB or Schaedler 

broth was inoculated with 50 µL of the respective glycerol stock and incubated for 24 h. An additional ON culture 

was prepared for P. aeruginosa, which was inoculated with 100 µL of the first ON culture (in 10 mL LB) and again 

incubated for 24 h. Cultivation on solid media was performed on LB agar plates supplemented with an antibiotic, if 

necessary. Agar plates with bacterial colonies were stored at 4 °C for up to six weeks. For long-term deposit, glycerol 

stocks were prepared by mixing the cell suspension with the same volume of 80% glycerol and stored at -80 °C.  

2.2.1.2 Bacterial counting 

Bacterial numbers were either determined by plate counting or by spectrophotometry. For plate counting, ten-fold 

serial dilutions were prepared by using sterile phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.4) or LB and plated on solid agar plates (100 µL, each) in duplicates. After 

incubation at 37 °C for at least two days, plates with bacterial counts between 3 and 300 were used for the final 

calculation of colony-forming units (CFU) per mL according to the following equation: 

 

CFU/mL = ∑ n
1fa+0.1fb 

 ×DF ×10, (Equation 1)    

where: 

n = number of plates 

fa = number of plates of the lowest dilution stage 

fb = number of plates of the highest dilution stage 

DF = dilution factor 

Alternatively, total cell numbers were determined by measuring the optical density at a wavelength of 600 nm 

(OD600nm) using a spectrophotometer (LAMBDA Bio, Perkin Elmer). The respective cultivation media was used as a 

reference and to dilute the initial cell suspension, if necessary. 

2.2.1.3 Determination of minimum inhibitory concentration (MIC) 

The MIC of retapamulin (RET) was determined for the wild type strains P. aeruginosa PAO1 and E. coli LF82 as 

well as their deletion mutants P. aeruginosa PAO397 and E. coli LF82ΔtolC via the broth microdilution method. For 

this purpose, RET was dissolved in dimethyl sulfoxide (DMSO) and diluted with the respective growth media to 

obtain RET stock concentrations of 64-0.25 µg/mL in two-fold steps. Bacteria were grown to a cell density of 

1×108 CFU/mL as described previously and diluted to 1×106 CFU/mL. One hundred microliters of the cell culture 

were dispensed into each well of a 100-well plate and 100 µL of the different RET stock solutions were added to the 
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wells yielding final inoculum sizes of approximately 5×105 CFU/mL and RET working concentrations of 32-

0.125 µg/mL. Plain growth media without cell inoculum was used as a negative control (NC). Inoculated growth media 

(including 0.128% DMSO) without RET was prepared as a positive control. The plate was incubated for 24 h at 37 °C 

while shaking, and the optical density of each well was measured in an interval of 20 min using a Bioscreen C reader 

(Oy Growth Curves Ab Ltd). The MIC was subsequently determined as the lowest concentration of RET which 

inhibits visual growth of bacteria after the incubation period. This experiment was conducted in biological triplicates 

with three technical replicates each.  

2.2.2 Molecular biological methods 

All steps described in this chapter were carried out at room temperature unless otherwise stated. DNA and RNA 

samples were prepared with ultrapure or nuclease-free water and stored at -20 °C or -80 °C, respectively.  

2.2.2.1 Isolation and purification of nucleic acids 

2.2.2.1.1 Genomic DNA extraction 

Five milliliters of an ON culture were centrifuged for 10 min at 5,000 ×g. Pelleted cells were dissolved in 567 µL Tris 

(10 mM)/EDTA(1 mM, pH 8) solution and mechanically lysed by two cycles of bead-beating at 6.5 m/s for 45 sec 

with 0.1 mm zirconia beads using a FastPrep-24 5G instrument (MP Biomedicals). To avoid degradation, samples 

were incubated on ice for 5 min after each round of bead-beating. Following centrifugation (1 min, 13,000 ×g), the 

supernatant was incubated with 30 µL SDS (10%) and 3 µL Proteinase K for 3 h at 37 °C. After incubation with 

100 μL NaCl (5 M) and 80 µL CTAB/NaCl (10% CTAB in 700 mM NaCl) for 30 min at 65 °C, the same volume of 

RotiPhenol was added, and the sample was centrifuged for 5 min at 15,000 ×g. The aqueous phase was mixed with 

the same volume of RotiPhenol/chloroform/isoamylalcohol and centrifuged for 5 min at 15,000 ×g. This step was 

carried out twice, before DNA was precipitated with 0.6 volume fraction of cooled isopropyl at 4 °C for at least 20 min. 

Precipitated DNA was sedimented by centrifugation (5 min, 15,000 ×g, 4 °C), and washed twice by the addition of 

1 mL EtOH (70%) and subsequent centrifugation (5 min, 15,000 ×g, 4 °C). After removal of EtOH, the pellet was air-

dried for 20 min and dissolved in 100 µL H2O ON at 4 °C. DNA concentration was measured by NanoDrop and RNase 

digestion was performed as described in the following chapter. 

2.2.2.1.2 RNase digestion 

RNase digestion with RNase A was performed to remove residual RNA from genomic DNA samples. For this purpose, 

100 µg of DNA were incubated with 2 µL RNase A at 37 °C for 30 min. After adding 300 µL H2O, the sample was 

mixed with the same volume of RotiPhenol/chloroform/isoamylalcohol. Following centrifugation (5 min, 15,000 ×g), 

the upper phase was supplemented with 1 mL cold EtOH (100%) and 0.1 volume fractions of sodium acetate and 

incubated at -20 °C for at least 30 min. Precipitated DNA was sedimented by centrifugation (5 min, 15,000 ×g, 4 °C), 

washed, dried and dissolved as described previously. Quality of the extracted DNA was assessed via gel electrophoresis. 

2.2.2.1.3 RNA extraction 

Total RNA was extracted either from homogenized cell lysate (RNA-seq, Ribo-seq & Cappable-seq) or from pelleted 

cells (any other application) using TRIzol Reagent. For NGS-based applications, total RNA was incubated in 1 mL 

cooled TRIzol for 5 min. For other applications (e.g., qPCR), cell pellets were resuspended in 1 mL cooled TRIzol and 
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mechanically lysed by bead-beating as described for genomic DNA extraction using three cycles of beating instead of 

two. After 5 min of incubation with 200 µL ice-cold chloroform, phases were separated by centrifugation (15 min, 

12,000 ×g, 4 °C) and the aqueous phase was incubated for 30 min with 500 µL isopropyl and 1 µL glycogen to 

precipitate the RNA. Subsequently, RNA was pelleted by centrifugation (10 min, 12,000 ×g, 4 °C) and washed twice 

with 1 mL EtOH (70%) as described for DNA extraction. After removal of the supernatant, RNA was air-dried and 

dissolved in an appropriate volume of nuclease-free water. Concentration of the RNA was determined by NanoDrop 

and RNA integrity was verified by agarose gel electrophoresis or Bioanalyzer measurement prior to DNase digestion.  

2.2.2.1.4 DNase digestion 

Up to 10 µg of RNA were subjected to DNA removal by incubation with 2 U TURBO DNase in 1× TURBO DNase 

Buffer supplemented with 50 U SUPERase·In RNase Inhibitor for 1 h at 60 °C. After inactivation of the reaction 

with 15 mM EDTA for 10 min at 65 °C, RNA was precipitated ON at -20 °C using ethanol (70%), 3 M sodium acetate 

and glycogen (690, 27.6, and 1 µL, respectively). Afterward, the RNA was pelleted, washed, dried, and dissolved in 

nuclease-free water as described for RNA extraction. After quantity and quality assessment, entire DNA removal was 

verified by PCR with 16S rRNA gene primers using Taq DNA Polymerase (section 2.2.2.3.1). DNase digestion was 

repeated multiple times, if necessary. 

2.2.2.1.5 Plasmid isolation 

Three to five milliliters of bacterial culture were used for plasmid isolation using the GenElute Plasmid MiniPrep Kit 

according to the manufacturer’s instructions. Extracted plasmid DNA was eluted twice with in total 50 µL H2O and 

subjected to NanoDrop measurement and agarose gel electrophoresis as described in the subsequent chapters.  

2.2.2.1.6 Concentration of nucleic acids 

Concentration of nucleic acid was performed by centrifugation in a SpeedVac Vacuum Concentrator 5301 (Eppendorf) 

using standard settings (room temperature or 30 °C) for the evaporation of aqueous solutions. Alternatively, the 

sample volume was reduced by ethanol precipitation, followed by washing, drying and resuspension in a suitable 

volume of H2O as described previously. The latter method was also used when an additional purification was required. 

2.2.2.2 Nucleic acid quantitation and quality control 

2.2.2.2.1 Agarose gel electrophoresis 

RNA, DNA and PCR products were subjected to agarose gel electrophoresis to check the quality of the nucleic acids 

or to evaluate the size of PCR amplicons. Agarose was fully dissolved in TAE buffer (40 mM Tris, 20 mM acetic acid, 

1 mM EDTA) by microwaving. The ratio of agarose/TAE was adjusted to the type and size of the nucleic acid to be 

separated yielding a final agarose concentration of 1-2%. After heating, the evaporation loss was replenished with H2O 

and 15 µL of diluted RedSafe Nucleic Acid Staining Solution (1:20,000) were added. For sample preparation, 5 µL of 

PCR products and 400-800 ng of DNA or RNA were mixed with either 6× DNA Loading Dye (Thermo Fisher 

Scientific) or 2× RNA Loading Dye (New England Biolabs). Samples were loaded on the polymerized agarose gel 

alongside with 7 µL of an appropriate marker. Nucleic acids were separated in TAE for 30-45 min at 110 V and 

visualized using an UVsolo TS imaging system (Analytik Jena). For electrophoretic separation of RNA samples, all 

solutions were prepared with DEPC-treated water. 
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2.2.2.2.2 Capillary electrophoresis 

Additional quality and sizing controls were performed by capillary gel electrophoresis on a 2100 Bioanalyzer system 

(Agilent Technologies) following the manufacturer’s instructions. The High Sensitivity DNA Kit and the RNA 6000 

Nano Kit were used for separation of DNA and RNA samples, respectively. The RNA integrity number (RIN) allowed 

to evaluate the integrity of an RNA sample, ranging from 1 (totally degraded) to 10 (intact; Schroeder et al., 2006). 

Only samples with a RIN ≥8 were used for further applications. 

2.2.2.2.3 Measurement of nucleic acid concentration 

Nucleic acid concentration was determined by a NanoDrop UV-Vis spectrophotometer (Thermo Fisher Scientific). 

One microliter of the sample was loaded on the pedestal and measured using the same solution as that of the unknown 

sample as blank. The purity of nucleic acids was determined by the absorbance ratio of 260 nm/280 nm, allowing to 

differentiate between pure DNA (260/280 = ~1.8) and pure RNA (260/280 = ~2) as well as the 260 nm/230 nm ratio, 

indicting the presence of contaminates when being lower than ~2. 

As an alternative, fluorescence-based quantitation using a Qubit 4.0 Fluorometer (Thermo Fisher Scientific) was 

performed. The dsDNA HS Assay Kit and the RNA HS Assay Kit were used according to the manufacturer’s 

instructions for measuring DNA and RNA samples, respectively.  

2.2.2.3 Modification and detection of nucleic acids 

2.2.2.3.1 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) was carried out using two different polymerases (Taq and Q5 High-Fidelity DNA 

Polymerase). The choice of polymerase depended on the desired application and further processing of the PCR 

amplicons. Q5 High-Fidelity DNA Polymerase was used standardly for the amplification of DNA sequences required 

for subsequent cloning experiments due to its robust performance and low error rate. Taq DNA Polymerase, in contrast, 

was used for applications without need for a high-fidelity sequence amplification, e.g., in colony-PCR or RT-PCR. All 

PCR reactions were carried out in a thermal cycler (MWG Biotech Inc Primus 96 Thermal Cycler, MWG Biotech) 

with the settings listed below. Based on the specification of the polymerase used, elongation time during PCR was 

calculated for each fragment size individually. A negative control with H2O as template as well as an appropriate 

positive control was included for each PCR reaction. Amplicons were subjected to agarose gel electrophoresis and, if 

necessary, to subsequent purification using the GenElute PCR Clean-Up Kit or the GenElute Gel Extraction Kit 

according to manufacturer’s instructions. 

Conventional PCR (Q5) 

Conventional PCR was conducted as described in Tables 8 and 9 using Q5 High-Fidelity DNA Polymerase, enabling 

the amplification of 1 kb DNA in 30 sec. The appropriate annealing temperature during PCR was determined based 

on this equation: 

TA ሾ°Cሿ=TM, lowestሾ°Cሿ+3°C, (Equation 2) 

where: 

TA = annealing temperature 

TM, lowest = lowest melting temperature of the primers used 
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Colony-PCR 

Colony-PCR was conducted for the verification of insert integration after cloning and for the selection of correct 

transformants. Therefore, colonies were picked, resuspended in 15 µL sterile H2O and used as template for amplification 

by Taq DNA Polymerase (1 kb DNA in 60 sec) as described in Tables 8 and 9. The appropriate annealing temperature 

during PCR was determined based on this equation: 

TA ሾ°Cሿ= TM1+ TM2
2

ሾ°Cሿ-5°C,  (Equation 3) 

where: 

TA = annealing temperature 

TM1 = melting temperature of the forward primer 

TM2 = melting temperature of the reverse primer 

Table 8. Pipetting scheme for PCR with Q5 High-Fidelity or Taq DNA Polymerase. 

Type of PCR/ reagent Volume [µL] final concentration 
PCR using Q5 High-Fidelity DNA Polymerase 
Template DNA variable <1 µg 
Forward primer [10 µM] 2.5 0.5 µM 
Reverse primer [10 µM] 2.5 0.5 µM 
5× Q5 reaction buffer 10 1× 
dNTPs [10 mM each] 1 200 µM 
Q5 DNA Polymerase 0.5 0.02 U/µL 
H2O ad 50 - 
PCR using Taq DNA Polymerase 
Template DNA 2 - 
Forward primer [10 µM] 0.5 0.2 µM 
Reverse primer [10 µM] 0.5 0.2 µM 
10× ThermoPol buffer 2.5 1× 
dNTPs [10 mM each] 0.5 200 µM 
Taq DNA Polymerase 0.125 0.025 U/µL 
H2O ad 25 - 

 

Table 9. Thermal cycler settings for PCR with Q5 High-Fidelity or Taq DNA Polymerase. 

Step Temperature [°C] Time [sec] Cycles 
PCR using Q5 High-Fidelity DNA Polymerase 
Initial denaturation 98 30 1 
Denaturation 98 10  

     30 
 

Annealing variable (Equation 2) 30 
Elongation 72 1 kb/30 sec 
Final elongation 72 300  1 
Hold 4 ∞ - 
PCR using Taq DNA Polymerase 
Initial denaturation 95 300 1 
Denaturation 95 30  

     30 
 

Annealing variable (Equation 3) 60 
Elongation 68 1 kb/60 sec 
Final elongation 68 300  1 
Hold 4 ∞ - 
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16S-PCR 

16S-PCR was performed to check for the presence of DNA in RNA samples using 16S rRNA gene primers. This type 

of PCR was carried out as described for colony-PCR with 1 µL of template RNA. For determination of transcription 

termination sites, 1 µL of reverse transcribed cDNA was used for amplification following the colony-PCR protocol. 

2.2.2.3.2 Reverse transcription  

cDNA synthesis was performed using SuperScript III Reverse Transcriptase according to the manufacturer´s 

instructions with 500 ng of DNA-free RNA, 20 U SUPERase·In RNase Inhibitor and 50 pmol of random nonamers 

(Sigma-Aldrich) or 10 pmol of gene-specific primers. For each sample, a “no RT” control without reverse transcriptase 

was included for subsequent quantitative PCR analysis.  

In addition, reverse transcription (RT) was performed to identify transcription termination sites downstream of 

selected novel gene candidates. For this purpose, single-stranded cDNA was generated by using appropriate primers 

binding downstream of the stop codon. After synthesis, 1 µL cDNA were amplified according to the colony-PCR 

protocol with a respective forward primer located within the ORFs coding region. Binding of all primers was verified 

in an analogous PCR with genomic DNA as template. 

2.2.2.3.3 Quantitative PCR  

Quantitative PCR (qPCR) was used for relative quantification of the mRNA level of the selected OLG olg1. The 

housekeeping gene gyrA encoding for DNA gyrase subunit A served as internal control. Each reaction contained 10 µL 

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories), 1 µL of cDNA and 0.5 µM of each forward 

and reverse primer in a total rection volume of 20 µL. All primer used in qPCR were listed in Table 6 and were 

confirmed to have an amplification efficiency of 95 to 105%. Reactions with water as template were included for each 

run and served as negative controls. PCR was conducted using a CFX96 Touch Real-Time PCR Detection System 

(Bio-Rad Laboratories) with the subsequent settings: initial denaturation at 95 °C for 30 sec, and 40 cycles of 

denaturation (95 °C, 15 sec) and annealing (60 °C, 30 sec). A melt curve analysis with increments of 0.5 °C in a range 

of 65 to 95 °C ensured reaction specificity. All qPCR experiments were conducted in biological triplicates with three 

technical replicates each. Resulting data was evaluated using the ΔΔCt method according to Livak & Schmittgen 

(2001). A two-tailed Welch two sample t-test was used for statistical analysis at a significance level of 5% (p-

value ≤ 0.05). 

2.2.2.3.4 Restriction digest 

Vector DNA or amplified PCR fragments were digested using different restriction enzymes and suitable buffers. For 

the digestion of vector DNA, 1 µg template was incubated with 10 U of each restriction enzyme, 2 µL of buffer and 

H2O in a final reaction volume of 20 µL for 1.5 h at 37 °C. Digestion of 0.5 µg PCR amplicons in a volume of 10 µL 

was performed analogously in an increased reaction volume of 32 µL. If necessary, heat-inactivation of the restriction 

enzymes was carried out as described by the manufacturer. After digestion, plasmids and PCR products were purified 

using the GenElute Gel Extraction Kit or GenElute PCR Clean-Up Kit according to manufacturer’s instructions. 
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2.2.2.3.5 Ligation 

For ligation, 50 ng of linearized vector was mixed with insert DNA in an molar ration of 1:1 to 1:2 (vector:insert). 

Alternatively, two inserts were ligated in equimolar amounts. The mixture was incubated with 1 U T4 DNA Ligase, 

2 µL 10× Ligase Buffer and H2O in a final reaction volume of 20 µL for 1 h at 22 °C. The reaction was stopped by 

enzyme inactivation at 65 °C for 10 min. Self-circularization of vector DNA was carried out as described with 50 ng 

of linearized plasmid, 5 U T4 DNA Ligase and 5 µL 10× Ligase Buffer filled up to a volume of 50 µL with H2O. 

2.2.2.3.6 Sanger sequencing 

Sanger sequencing using the Mix2Seq Kit was performed to validate the correct sequence of plasmids, PCR products 

and cloning constructs. For this purpose, 15 µL of nucleic acids were mixed with 2 µL of an appropriate primer and 

sent to Eurofins Genomics (Ebersberg) for sequencing. 

2.2.2.4 Construction of genetically modified E. coli 

2.2.2.4.1 Preparation of electrocompetent cells 

Electrocompetent cells were prepared by cultivating bacteria in LB to exponential phase (OD600nm = ~0.5) and 

subsequent incubation on ice for 10 min while inverting several times. For cell harvest, 1 mL cell culture were 

centrifuged at 6,000 rpm for 10 min at 4 °C, and sedimented cells were resuspended in 1 mL cold H2O. After 

centrifugation and removal of the supernatant, cells were mixed with 0.5 mL cold H2O and once more sedimented by 

centrifugation, followed by another round of resuspension in 0.5 mL cold glycerol (10%) and centrifugation. Finally, 

pelleted cells were either dissolved in 50 µL H2O for immediate use or in 50 µL cold glycerol (10%) followed by flash 

freezing in liquid nitrogen for long-term storage at -80 °C.  

2.2.2.4.2 Transformation 

For transformation, template DNA was mixed with 50 µL of electrocompetent cells in a cooled electroporation cuvette 

(0.2 cm). Up to 100 ng vector DNA or up to 0.5 µg of PCR product (desalted a 0.025 μm Millipore membrane floating 

on H2O for 15 min) served as template; a negative control with H2O as template was included. An electric pulse of 

2.5 kV was applied using a MicroPulser Electroporator (Bio-Rad Laboratories) before cells were recovered in 450 µL 

pre-warmed SOC broth and incubated for 75 min at an appropriate temperature (28 °C or 37 °C, depending on the 

application) while shaking at 150 rpm. After incubation, 100 µL of the electroporated cells were plated on agar plates 

supplemented with a suitable antibiotic. Plates were incubated ON either at 28 °C or 37 °C, and grown colonies were 

subjected to colony-PCR with appropriate primer pairs to evaluate transformation success. 

2.2.2.4.3 Conjugation 

ON cultures of the donor and the recipient strain were mixed in equal volume fractions (500 µL each). After 

centrifugation (10,000 rpm, 5 min), the supernatant was decanted, and the retarded cells were resuspended in 100 µL 

LB and plated on LB agar. Conjugation plates were incubated ON at 37 °C and grown cells were flushed off the plate 

using 1.8 mL LB media. After preparing 10-fold dilutions (up to 10-3) with LB, 100 µL of the undiluted as well as each 

of the diluted solutions were plated on agar plates supplemented with appropriate antibiotics. The agar plates were 

incubated at 37 °C for a least 4 h followed by additional incubation at room temperature for three days. Colony-PCR 

was performed for selected colonies to confirm plasmid transfer into the recipient strain. 



41 

 

2.2.2.4.4 Gene inactivation according to Datsenko & Wanner (2000) 

One-step gene inactivation according to Datsenko & Wanner (2000) was implemented to generate a tolC deletion 

mutant strain of E. coli LF82. For this purpose, the plasmid pKD4 was propagated in E. coli BL21 and subsequently 

isolated as described in section 2.2.2.1.5. The kanamycin resistance cassette flaked by FLP recognition target sites of 

pKD4 was amplified in a conventional PCR with Q5 Polymerase. The primer pairs used for this PCR contained at 

least 50 bp of sequences homologous to regions flanking chromosomal tolC. The amplified resistance cassette was 

purified using the GenElute Gel Extraction Kit and digested with DpnI for vector DNA removal. Electrocompetent 

E. coli LF82 cells were prepared (section 2.2.2.4.1) and transformed with pKDsgRNA-15, carrying a spectinomycin 

resistance cassette, an arabinose-inducible λ Red recombinase gene and a temperature-sensitive origin of replication 

(ori). For this purpose, the cells were transformed as described in section 2.2.2.4.2 and incubated on spectinomycin-

supplemented LB plates at 28 °C to maintain the plasmid. Successfully transformed cells were cultivated in LBSpec50 

to OD600nm = 0.1, before expression of λ Red recombinase was induced by the addition of arabinose in a final 

concentration of 10 mM. Induced cells were harvested at OD600nm = 0.5 and electroporated for the immediate 

transformation with the amplified and desalted kanamycin cassette. After transformation, incubation in SOC broth 

was either performed at 37 °C to remove the temperature-sensitive pKDsgRNA-15 plasmid or at 28 °C (control samples 

without induction) to maintain the plasmid. Hundred microliters of the samples were plated on kanamycin-

supplemented LB agar plates and incubated ON at 37 °C. Grown colonies were re-streaked on LB plates supplemented 

either with spectinomycin or kanamycin to confirm curing of pKDsgRNA-15. Colony-PCRs and Sanger sequencing 

were performed to check for the correct insertion of the kanamycin cassette and the absence of the tolC locus. 

Elimination of the kanamycin cassette via thermal induction of a FLP recognition target sites recombinase encoded 

by the heat-curable helper plasmid pCP20 was not performed since the correct integration of the kanamycin cassette 

into the tolC locus failed multiple times.  

2.2.2.4.5 Gene inactivation via conjugation of a suicide plasmid 

Alternatively, the deletion mutant E. coli LF82ΔtolC was generated using the plasmid pMRS101, which harboured 

two genes conferring resistance against the antibiotics streptomycin and ampicillin, a NotI-flanked high-copy number 

ori, a pir-protein dependent ori, a multiple cloning site as well as the sacAB genes imparting sucrose sensitivity. In a 

first step, 900 nt of the up- and downstream region of the tolC gene were amplified using a conventional Q5-PCR with 

genomic DNA as template. The primers used introduced BamHI and EcoRI as well as EcoRI and XbaI cleavage sites 

to the upstream and downstream amplicons, respectively. Both PCR products were purified, digested with EcoRI and 

subsequently ligated. The ligated deletion fragment was amplified via PCR using Q5 Polymerase. The deletion 

fragment as well as pMRS101 were digested with XbaI and BamHI and ligated, yielding the vector pMRS101-TolC. 

Propagation of pMRS101-TolC was carried out by transformation into electrocompetent E. coli Top10, followed by 

cultivation and plasmid isolation. Correct insertion of the deletion fragment into the vector was confirmed by Sanger 

sequencing. Subsequently, pMRS101-TolC was digested with NotI to remove the NotI-flanked high-copy ori and the 

ampicillin resistance gene. Re-ligation of the residual vector backbone resulted in the suicide vector pKNG101-TolC 

carrying the deletion fragment, a streptomycin resistance gene, and the low copy number pir-dependent ori. 

Amplification of this vector was performed by transformation in E. coli CC118λpir, cultivation and plasmid isolation. 

The propagated suicide vector was transformed in E. coli SM10λpir and the success of the transformation was verified 

by colony-PCR. After conjugation of pKNG101-TolC to E. coli LF82, cells were plated on LB agar supplemented with 

streptomycin and ampicillin to verify successful transfer of the plasmid while inhibiting growth of ampicillin-sensitive 
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E. coli SM10λpir cells. Chromosomal integration mediated by the homologous regions in the multiple cloning site of 

pKNG101-TolC was confirmed by colony-PCR. A loop out was performed in order to remove the chromosomally 

integrated plasmid including the sacAB genes and the intrinsic tolC gene. For this purpose, a liquid culture of E. coli 

LF82 with the chromosomally integrated pKNG101-TolC backbone was cultivated until OD600nm = 0.7, and 25, 50 and 

100 µL of this culture were plated on sucrose-supplemented LB agar. The plates were incubated ON at 37 °C to select 

for cells lacking the sacB gene which codes for a levansucrase conferring cell toxicity in the presence of sucrose. Cells 

grown on LB agar plates supplemented with sucrose were tested for the absence of tolC using colony-PCR. In addition, 

colonies were re-streaked on LB plates containing streptomycin to counterselect for the presence of the plasmid 

backbone. Finally, the whole genomic locus was amplified by PCR using Q5 Polymerase. The PCR product was 

purified and subjected to Sanger sequencing to validate the genomic tolC deletion. 

2.2.3 Next generation sequencing-based methods 

The processing of RNA samples described in this chapter was preferably performed in an RNase-free environment at 

4 °C. RNA was routinely dissolved in nuclease-free water and stored at -80 °C. All buffers were prepared with nuclease-

free or DEPC-treated water. 

2.2.3.1 Transcriptome sequencing (RNA-seq) 

2.2.3.1.1 Inhibition of translation and cell lysis 

Cells were cultivated to a variable OD600nm (Table 10) and translation was inhibited by continual addition of ~80 g 

dry ice per 200 mL of initial cell culture while stirring. For the Ribo-RET experiments, 100× MIC of RET was added 

and incubated for 5 min while stirring before rapid cooling with dry ice was performed. A no drug (ND) control 

without retapamulin was included. After the cultures reached a final temperature of 4 °C, cells were sedimented by 

centrifugation in pre-chilled beakers for 5 min at 8,000 ×g and 4 °C. Pelleted cells were resuspended in 200-650 µL 

cold, sterile Polysome-Lysis-Buffer (100 mM NH4Cl, 20 mM Tris-HCl pH 8, 10 mM MgCl2, 5 mM CaCl2, 0.4% Triton 

X-100, 0.1% NP-40), optionally supplemented with 3 mM GMP-PNP and 0.32 U/µL SUPERase·In RNase Inhibitor. 

The resuspension was dropped into liquid nitrogen and stored at -80 °C. Cell lysis was conducted mechanically using 

a rechargeable driller (TE-CD 21 Li, Einhell Germany) with a pre-cooled pestle drill bit in the presence of liquid 

nitrogen. The lysate was cleared by several rounds of centrifugation (5 min, 8,000 ×g, 4 °C) until the cell debris was 

completely removed. The clarified lysate was stored at -80 °C until use for RNA-seq, Ribo-seq and Cappable-seq.
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Table 10. Detailed set-up of all Ribo-seq and RNA-seq experiments. 

Organism Condition OD  Translational 
stalling 

Footprinting  
nucleases 

Digestion  
buffer 

Reaction  
inactivation 

Size 
selection

rRNA 
depletion

RNA-seq 
 

Replicates 

E. coli LF82 aerobic 2 dry ice 750 U MNase 
250 U RNase I 
50 U RNase R 
12 U RNase T 
5 U XRN-1 

Buffer 4  
1 mM CaCl2 

150 U SUPERase·In 
(10 min) 

19-27 nt Ribo-Zero yes 1× 

E. coli LF82 anaerobic 2 dry ice 750 U MNase 
250 U RNase I 
50 U RNase R 
12 U RNase T 
5 U XRN-1 

Buffer 4  
1 mM CaCl2 

150 U SUPERase·In 
(10 min) 

19-27 nt Ribo-Zero yes 1× 

E. coli LF82ΔtolC aerobic 1.4 dry ice + RET 450 U MNase 2 mM CaCl2 6 mM EGTA (10 min) 27-40 nt - - - 
E. coli LF82ΔtolC aerobic 1.4 dry ice 450 U MNase 2 mM CaCl2 6 mM EGTA (10 min) 27-40 nt - - - 
E. coli LF82 aerobic 1.4 dry ice 450 U MNase 

1 nmol RelE 
6 mM CaCl2 6 mM EDTA (10 min) 10-40 nt Ribo-Zero yes - 

P. aeruginosa PAO1 aerobic 1 dry ice 250 U MNase 
250 U RNase I 
50 U RNase R 
12 U RNase T 
5 U XRN-1 

Buffer 4  
1 mM CaCl2 

150 U SUPERase·In  
6 mM EDTA 
(5 min each) 

19-27 nt Ribo-Zero yes - 

P. aeruginosa PAO1 aerobic 6 dry ice 250 U MNase 
250 U RNase I 
50 U RNase R 
12 U RNase T 
5 U XRN-1 

Buffer 4  
1 mM CaCl2 

150 U SUPERase·In  
6 mM EDTA 
(5 min each) 

19-27 nt Ribo-Zero yes - 

P. aeruginosa PAO1 aerobic 1 dry ice 62.5 U MNase 
18.75 U RNase R 
4.375 U RNase T 
1.875 U XRN-1 

Buffer 4  
1 mM CaCl2 

50 U SUPERase·In 
6 mM EGTA 
(5 min each) 

19-27 nt riboPOOL yes 1× 

P. aeruginosa PAO397 aerobic 1 dry ice + RET 450 U MNase 2 mM CaCl2 6 mM EGTA (10 min) 27-40 nt - - - 
P. aeruginosa PAO397 aerobic 1 dry ice 450 U MNase 2 mM CaCl2 6 mM EGTA (10 min) 27-40 nt - - - 
P. aeruginosa PAO1 aerobic 1 dry ice 450 U MNase 

2.5 nmol RelE 
6 mM CaCl2 6 mM EGTA (10 min) 10-40 nt - - - 

P. aeruginosa PAO1 aerobic 1 dry ice 450 U MNase 6 mM CaCl2 6 mM EGTA (10 min) 10-40 nt - - - 
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2.2.3.1.2 Ribosomal RNA depletion 

After RNA extraction and DNase digestion, DNase-free RNA was optionally subjected to rRNA removal using either 

the Ribo-Zero rRNA Depletion Kit or the P. aeruginosa-specific riboPOOL Kit (protocol v1-5, siTOOLs Biotech) 

according to manufacturer’s instructions. After depletion, samples were purified by ethanol precipitation. In case of 

using the P. aeruginosa-specific riboPOOL Kit for depletion, another DNase digestion step followed by precipitation 

was performed to remove residual DNA-based probes.  

2.2.3.1.3 Ultrasonic fragmentation 

One microgram of RNA was adjusted to a final volume of 50 µL with H2O, transferred to a microTUBE AFA Fiber 

Pre-Slit Snap-Cap (Covaris) and fragmented using a S220 Focused-ultrasonicator (Covaris) with the following settings: 

175 W, 10% duty cycle, 200 cycles for 180 sec. If necessary, the volume of the fragmented RNA was reduced by ethanol 

precipitation. 

2.2.3.1.4 RNA (de-)phosphorylation 

Samples were dephosphoylated using 10-20 U Antarctic phosphatase, 1× Antarctic Phosphatase Reaction Buffer and 

0.3 U/µL SUPERase·In RNase Inhibitor in variable reaction volumes for 30 min at 37 °C. Purification of the samples 

was performed using the miRNeasy Mini Kit according to manufacturer’s instructions with the following deviation: 

Samples were mixed with Buffer RWT in a final volume of 600 µL and transferred to a mini spin column. From this 

step on, purification was conducted as described by the manufacturer. Elution of the RNA was carried out using 30 µL 

H2O and repeated once with the flow through of the first elution round. Eluted samples were phosphorylated with 

20 U T4 Polynucleotide Kinase, 1× T4 Ligase Buffer and 0.3 U/µL SUPERase·In RNase Inhibitor in a final reaction 

volume of 30 µL for 60 min at 37 °C. Afterwards, samples were purified using the miRNeasy Mini Kit as described 

previously. 

2.2.3.1.5 Library preparation and normalization 

After volume reduction to 5 µL via vacuum concentration, samples were prepared for sequencing using the TruSeq 

Small RNA Library Prep Kit (Illumina) according to the manufacturer’s instructions. In short, adapters were ligated 

to the 5` and 3` ends of the footprints, cDNA synthesis was performed, and libraries were amplified using 11 PCR 

cycles. For size selection, samples were mixed with 6× DNA Loading Dye (Thermo Fisher Scientific) and 

electrophoretically separated in 1× TBE buffer (10× TBE: 0.9 M Tris, 0.9 M boric acid, 20 mM EDTA) for 90 min 

at 145 V using a 10% polyacrylamide gel (4.2 mL H2O, 2.47 mL Rotiphorese 30 NF 29:1, 0.75 mL 10× TBE, 75 µL 

10% APS & 4.5 µL TEMED). Following electrophoresis, the gel was incubated in 50 mL 1× TBE and 15 µL SYBR 

Gold for 15 min while shaking before DNA fragments in a range of 140 to 160 nt were excised. If necessary, the excised 

region was expanded depending on the expected fragment length. Excised gel fragments were chopped by centrifugation 

(20,000 ×g, 2 min) and incubated ON in 300 µL H2O at 22 °C and 700 rpm. The gel debris was transferred to a 2.2 µm 

cellulose-acetate filter and centrifuged at 6,000 ×g for 1 min before the flow through was precipitated ON at -20 °C 

using 100% EtOH, 3 M sodium acetate and glycogen (975, 30, and 2 µL, respectively). After fragment recovery, DNA 

pellets were dried at room temperature and resuspended in 15 µL 10 mM Tris-HCl (pH 8.5). Sample concentration 

was measured by Qubit and fragment size was determined using capillary electrophoresis. All libraries were diluted to 

a final concentration to 2 nM according to the following equation: 
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nM= 1 ng/µL
660 g

mol × ∅ DNA length [bp]
× 106,  (Equation 4) 

where: ∅ DNA length [bp] = mean fragment length in bp obtained after Bioanalyzer measurement 

If necessary, multiple libraries were mixed for sequencing. 

2.2.3.1.6 Sequencing 

Libraries were sequenced single-end either on a MiSeq System (Illumina) using a MiSeq Reagent Kit v3 (150-cycles) 

or on a HiSeq2500 System (Illumina) using a HiSeq Rapid SBS Kit v2 (50 cycles). Alternatively, sequencing was 

commissioned from the Laboratory for Functional Genome Analysis (LMU, Munich).  

2.2.3.2 Ribosome profiling (Ribo-seq) 

Ribosome profiling was conducted as described for transcriptome sequencing. The following, additional steps were 

carried out in order to generate and enrich RFPs for sequencing.  

2.2.3.2.1 Nuclease digestion 

Variable amounts of the clarified lysate were digested for 1 h at 25 °C and 850 rpm using one or a combination of the 

following nucleases: MNase, RNase I, RNase R, RNase T, XRN-I, and RelE. To ensure optimal activity of the 

nucleases, the lysate was supplemented with Buffer 4 (New England Biolabs), CaCl2 and/or SUPERase·In RNase 

Inhibitor, if necessary. The reaction was stopped by further incubation with either 6 mM EGTA, 6 mM EDTA and/or 

SUPERase·In RNase Inhibitor for 5-10 min. The detailed conditions and concentrations used for the single 

experiments are listed in Table 10.  

2.2.3.2.2 Sucrose gradient and monosome fractionation 

Monosome-mRNA-complexes were separated using sucrose gradient density centrifugation. For this purpose, cold, 

sterile Polysome-Gradient-Buffer (100 mM NH4Cl, 20 mM Tris-HCl pH 8, 10 mM MgCl2, 2 mM DTT) and sucrose 

solution (50% sucrose in Polysome-Gradient-Buffer) were used for the preparation of nine different gradient solutions 

with sucrose concentrations ranging from 10% to 50%. After the addition of an appropriate amount of SYBR Gold 

(1:10 diluted in H2O), 1.5 mL of each sucrose gradient solution starting with the highest concentration were transferred 

to an ultracentrifugation tube. The digested cell extract was loaded onto the gradient and centrifuged at 28,000 rpm 

and 4 °C for 3 h in a L7-65 Ultracentrifuge (Beckman). Subsequently, the layer containing the intact ribosome-mRNA-

complexes was visualized using black light lamps. For harvesting, the ultracentrifugation tube was pierced with a hot, 

sharp needle, which led to a slow release of gradient solution. The collected solution was aliquoted into 200 µL samples 

and subjected to RNA extraction and DNase digestion.  

2.2.3.2.3 Size selection and recovery of RNA 

For size selection, DNase-free RNA as well as random marker oligonucleotides of variable size (Table 4, RNA ladders) 

were mixed with 2× Novex TBE-Urea Sample Buffer (Thermo Fisher), incubated at 80 °C for 2 min and loaded to a 

16% denaturing polyacrylamide gel (2.6 mL Rotiphorese Sequencing gel diluent, 6.4 mL Rotiphorese Sequencing gel 



46 

 

concentrate, 1 mL Rotiphorese Sequencing gel buffer concentrate, 10 μL APS & 5 μL TEMED). To optimize separation 

of the RNA fragments according to their size, a defined amount of RNA was loaded, e.g., 50-100 μg per gel. After gel 

electrophoresis in 1× TBE for 110 min at 200 V, gels were stained with SYBR Gold and visualized using a FAS Nano 

Gel Documentation System (Nippon Genetics) before a region of variable size was excised from the gel (for detailed 

information see Table 10). The excised gel fragments were homogenized via centrifugation at 13,000 rpm for 2 min 

and 400 μL gel extraction buffer (300 mM NaOAc pH 5.5, 1 mM EDTA, 0.1 U/µL SUPERase·In RNase Inhibitor) 

were added to the gel debris. After ON incubation, the solution was transferred to a 0.2 μm cellulose-acetate filter and 

centrifuged for 2 min at 10,000 ×g. The RNA was precipitated ON at -20 °C using 1 μL glycogen and 690 μL 100% 

ethanol. Samples were centrifuged at 12,000 ×g at 4 °C for 20 min and the RNA was resuspended in 15 μL H2O. After 

NanoDrop measurement, RNA samples were processed as described for transcriptome sequencing. 

2.2.3.3 Cappable-seq for transcription start site (TSS) identification 

Cappable-seq was carried out by vertis Biotechnologie AG (Freising). For this purpose, P. aeruginosa was cultivated 

until OD600nm = 1 in biological triplicates and subjected to RNA extraction and DNase digestion. After quality control, 

5' triphosphorylated RNA was reversibly capped with 3'-desthiobiotin-TEG-guanosine 5' triphosphate using the 

Vaccinia Capping Enzyme. Capped RNA was purified and heat-fragmented followed by two rounds of streptavidin 

beads enrichment to capture biotinylated primary RNA transcripts. Enriched transcripts were poly(A)-tailed using 

Poly(A) Polymerase and dephosphorylated with Antarctic Phosphatase prior to elution. The desthiobiotin cap of the 

eluted RNA species was removed by RNA 5´ Pyrophosphohydrolase resulting in 5´ monophosphorylated RNA. The 

obtained RNA was ligated to adapters and converted into a cDNA using M-MLV Reverse Transcriptase and oligo(dT)-

adapter primer. The cDNA was amplified using 15-16 cycles of PCR while introducing sequencing barcodes. After 

fragmentation, cDNAs with a size of 200-600 bp were specifically isolated using magnetic beads. Bead-bound fragments 

were blunted and ligated to a 3` Illumina sequencing adapter. The final amplification of the size-selected cDNA was 

carried out using seven PCR cycles before samples were pooled and sequenced on an Illumina NextSeq 500 system 

using a read length of 75 bp. 

2.2.4 Protein chemical methods 

2.2.4.1 Overexpression of relE 

Two different approaches were tested in order to synthesize RelE. In a first attempt, the sequence of a Q5-PCR-

amplified relE sequence originating from E. coli Top10 was cloned in the expression vector pBAD/His C, which 

harboured an N-terminal histidine (His)-tag within the multiple cloning site. After transformation in E. coli Top10, 

relE expression was induced at OD600nm = 0.5 by the addition of different amounts of arabinose (0.00002 – 0.2%) and 

the cells were incubated for additional 4 h. This experiment was discontinued due to the toxic behaviour and small 

yield of RelE. Since the sole expression of relE failed, a co-expression of the toxin RelE together with the respective 

antitoxin RelB as described by Griffin et al. (2013) was performed. The plasmid which was used for this approach, 

pET-22b(+)His6:relBΔ9-relEWT, was received from the group of Dr. Scott Strobel and harboured a mutant His6-tagged 

relB sequence as well as the relE gene with an overlapping stop/start codon as found in the native system under the 

control of T7 RNA polymerase. An internal deletion of nine AAs within relB should disrupt the antitoxin´s interaction 

with the toxin, thus, enabling the selective purification of RelE after expression. The detailed experimental procedure 

of this approach is described in the following sections. If necessary, volumes were downscaled for pilot expression and 

purification experiments. All steps were carried out at room temperature unless otherwise stated.  
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2.2.4.1.1 Cultivation and induction of RelE synthesis 

pET-22b(+)His6:relBΔ9-relEWT was transformed into competent E. coli BL21 (DE3) pLysS cells. For protein expression, 

600 mL LB supplemented with ampicillin were inoculated with 5 mL ON culture of the transformed E. coli BL21 

(DE3) pLysS cells and incubated at 37 °C while shaking at 150 rpm. At OD600nm = 0.8, protein expression was induced 

by the addition of 1 mM IPTG. After additional 3 h of incubation, cells were centrifuged at 10,000 rpm and 4 °C for 

20 min. The supernatant was decanted, and the cell pellet was stored at -80 °C until further use. Samples of variable 

volume were taken throughout the entire cultivation process for SDS-PAGE analysis (section 2.2.4.3.1).  

2.2.4.1.2 Cell lysis 

Cell pellets were thawed on ice for 30 min and resuspended in 40 mL cold, sterile lysis buffer (300 mM NaCl, 50 mM 

NaH2PO4, 10 mM imidazole, 5 mM 2-mercaptoethanol, 0.1 mg/mL lysozyme, pH 8) supplemented with 4 complete 

Mini, EDTA-free Protease Inhibitor Cocktail tablets (Roche). After incubation for 30 min on ice, cell lysis was 

conducted by sonification at 4 °C (25% pulse intensity, 8× 20 sec with 20 sec pauses between each cycle) using a 

Sonopuls HD 2200 ultrasonic homogenizer (Bandelin electronic). The lysate was supplemented with 600 U Benzonase 

and incubated for 10 min at 4 °C before it was clarified by multiple rounds of centrifugation (9,000 ×g or 15,000 ×g 

at 4 °C for 30 min, each).  

2.2.4.2 Purification of RelE 

Purification of RelE was performed according to Griffin et al. (2013) and Dunican et al. (2015) using immobilized 

metal ion affinity chromatography (IMAC). Interaction between the His-tagged RelB-RelE complex and a nickel (Ni)-

charged nitrilotriacetic acid (NTA) affinity resin enabled immobilization of the complex under native conditions. 

Selective elution of RelE was carried out under denaturing conditions ensuring elimination of the conformation-

dependent interaction between the resin-bound RelB and its interaction partner RelE. In total, three different 

purification methods were tested in order to obtain pure RelE fractions: Purification using the QIAexpress Ni-NTA 

Fast Start Kit (section 2.2.4.2.1) or an FPLC system (section 2.2.4.2.2), either with a pre-packed or a manually packed 

chromatography column. Samples for SDS-PAGE and mass spectrometry (2.2.4.4.1) were taken throughout the entire 

process to evaluate the purification success.  

2.2.4.2.1 Kit-based affinity chromatography  

The clarified cell lysate was purified using the QIAexpress Ni-NTA Fast Start Kit with the buffers provided. In short, 

cell lysates were resuspended in native lysis buffer and applied to a Fast Start column according to the manufacturer’s 

instructions. The column was washed twice with native wash buffer before RelE was eluted twice using 4 mL of 

denaturing wash buffer. Finally, RelB was eluted by adding 2 mL of denaturing elution buffer. 

2.2.4.2.2 FPLC-based affinity chromatography  

For the use of a pre-packed chromatography column, cell pellets were lysed as described (section 2.2.4.1.2) but with a 

lower volume of lysis buffer (5 mL instead of 40 mL). The clarified lysate was sterile filtered and injected into a 5 mL 

sample loop of an ÄKTApurifier 10 FPLC system (GE Healthcare) operated with a HisTrap HP 1 mL column (GE 

Healthcare). The column was washed with at least 10 column volumes (CV) of cold lysis buffer and 20 CV of cold 

wash buffer (300 mM NaCl, 50 mM NaH2PO4, 35 mM imidazole, 5 mM 2-mercaptoethanol, 0.1 mg/mL lysozyme, 
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pH 8) under a constant flow rate of 1 mL/min. RelE was selectively eluted by adding 15 CV denaturation buffer 

(9.8 M urea, 100 mM NaH2PO4, 10 mM Tris-HCl, 1 mM 2-mercaptoethanol, pH 8). Optionally, the antitoxin RelB 

was eluted by washing with elution buffer (500 mM imidazole, 300 mM NaCl, 50 mM NaH2PO4, pH 8).  

Alternatively, 40 mL clarified cell lysate were sterile filtered and mixed with 8 mL of a nickel-charged nitrilotriacetic 

acid agarose resin (Machery-Nagel), which was equilibrated prior to use for 15 min at 4 °C in 10 CV plain wash buffer. 

The sample was incubated for 1 h at 4 °C while agitating and applied to an unpacked XK 16/20 column (Amersham 

Bioscience). After draining by gravity, the resin was washed thrice with 10 CV wash buffer before the column was 

packed at 4 °C. The column was connected to an ÄKTApurifier FPLC system, which was previously flushed with H2O 

and cold wash buffer under a constant flow of 2 mL/min. The connected column was additionally washed with wash 

buffer (~10 CV) until the ultraviolet (UV) signal at 280 nm reached the baseline. Finally, RelE was eluted by washing 

with 12 CV pre-warmed denaturation buffer and RelB was eluted by washing with 4 CV elution buffer. Fractions of 

0.8 mL were collected throughout the entire purification process.  

2.2.4.2.3 Protein refolding by diffusion dialysis 

Fractions containing eluted RelE were pooled (in total 4.5 mL), subjected to concentration measurement via Bradford 

assay (section 2.2.4.3.3) and diluted to a final concentration of ≤40 µg/mL using denaturation buffer. Subsequently, 

the diluted sample was transferred to a pre-equilibrated dialysis cassette (Thermo Fisher) with a molecular weight 

cut-off of 7 kDa and dialyzed into 4 L of dialysis buffer (8 M urea, 50 mM bicine, pH 8.4) for 2 h at room temperature. 

The last step was repeated twice with fresh buffer, once ON and once for additional 2 h. Afterwards, the dialysis 

cassette was changed and the RelE protein was dialyzed thrice into 10 L of refolding buffer (300 mM KCl, 70 mM 

NH4Cl, 50 mM Tris-HCl pH 7.5, 7 mM MgCl2, 1 mM dithiothreitol), each round for at least 8 h. The temperature 

during dialysis against refolding buffer was gradually reduced from room temperature to 4 °C in order to avoid 

precipitation of urea.  

2.2.4.2.4 Protein concentration via centrifugation 

Refolded protein was centrifuged in a swinging bucket rotor centrifuge 5810 R (Eppendorf) at 5,000 ×g and 4 °C for 

10 min using an Amicon Ultra-15 Centrifugal Filter Device (Merck) with a molecular weight cut-off of 10 kDa. Multiple 

rounds of centrifugation were necessary for the concentration of the entire protein solution. In between, the retentate 

was mixed by pipetting in order to avoid concentration gradients and clogging of the filter membrane. As a precaution, 

the flow through was additionally subjected to centrifugation using Amicon Ultra-15 Centrifugal Filter Device (Merck) 

with a molecular weight cut-off of 3 kDa. The retentates of all centrifugation steps were pooled and stored on ice. 

Filter membranes were flushed with refolding buffer, incubated for 30 min at 4 °C and then merged with the protein 

retentate.  

2.2.4.2.5 Protein storage 

The entire solution obtained after centrifugation (~3 mL) was centrifuged at 5,000 ×g for 15 sec to remove protein 

aggregates. Afterwards, the protein solution was dialysed into 1 L storage buffer (70 mM NH4Cl, 50 mM Tris-HCl 

pH 7.5, 30 mM KCl, 7 mM MgCl2, 1 mM dithiothreitol, 20% glycerol) at 4 °C twice (ON & 4 h). After buffer exchange, 

aliquots of 10 μL were flash frozen in liquid nitrogen and stored at -80 °C. 
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2.2.4.3 Protein detection and quantitation 

2.2.4.3.1 Electrophoretic separation via SDS-PAGE 

Samples were taken at different time points during the expression, purification, or refolding procedure in order to 

evaluate the success of the individual steps. For this purpose, whole cell pellets or liquid protein samples were mixed 

with an appropriate amount of sample buffer and heated to 95 °C for 10 min for cell lysis and protein denaturation. 

Whole cell lysates were additionally centrifuged at 13,200 rpm for 10 min to sediment cell debris. Samples were stored 

at -20 °C or directly used for SDS-PAGE analysis following the protocol of Laemmli (1970; Glycine–SDS-PAGE) or 

Schägger (2006; Tricine–SDS-PAGE). 

For SDS-PAGE analysis according to Laemmli, samples were mixed with 2× Laemmli sample buffer (62.5 mM Tris-

HCl pH 6.8, 25% glycerol, 5% 2-mercaptoethanol, 2% SDS, 0.01% bromphenolblue) and loaded on a discontinued SDS 

gel along with 5 µL of an appropriate size marker. The stacking gel had a total acrylamide monomer concentration 

(%T) of 6% and a crosslinker percentage (%C) of 2.7%; the resolving gel consisted of %T = 16% and %C = 2.7%. 

Electrophoresis was conducted in a chamber filled with running buffer (192 mM glycine, 25 mM Tris, 0.1% SDS) at 

an initial voltage of 60 V. After the migration front had reached the transition from stacking gel to resolving gel, the 

voltage was increased to 160 V. Electrophoretically-separated bands were visualized in staining solution (0.025% 

Coomassie Brilliant Blue G-250 in 10% acetic acid) for 2× 45 min and subsequently discoloured by washing twice with 

destain solution (10% acetic acid) before waving ON in H2O.  

To increase resolution of proteins smaller than 30 kDa, SDS-PAGE was alternatively performed according to Schägger 

using discontinuous gels with varying %T and %C percentages (stacking gel: %T = 4-5%, %C = 3,3%; resolving gel: 

%T = 16-18%, %C = 3.3-5%). Optionally, a spacer gel with %T = 10% and %C = 3.3% was casted between stacking 

and resolving gel. For sample preparation, varying volumes were mixed with 3× Schägger sample buffer (200 mM 

Tris-HCl pH 6.8, 40% glycerol, 2% SDS, 2% 2-mercaptoethanol, 0.04% Coomassie Brilliant Blue G-250) and heated 

before loading atop the gel. Gel electrophoresis was performed like described above with a few exceptions: Firstly, a 

constant electric current of 40 mA per gel was applied. Secondly, anode buffer and cathode buffer had slightly different 

compositions (anode buffer: 100 mM Tris, 22.5 mM HCl, pH 8.9; cathode buffer: 100 mM Tris, 100 mM tricine, 0.1% 

SDS, pH 8.25). Thirdly, the gels were incubated for at least 30 min in fixation solution (50% methanol, 10% acetic 

acid, 100 mM ammonium acetate) before they were stained as described. 

2.2.4.3.2 Western blot and immunodetection 

For Western blot analysis of expression as well as purification samples, SDS-PAGE was performed as described 

previously. A polyvinylidene difluoride membrane (Immobilon PSQ transfer membrane; Merck) and six filter papers 

were prepared. The membrane was incubated in 100% methanol for 10 sec and in H2O for 5 min prior to blotting. 

Both the membrane as well as the gel were additionally equilibrated in blotting buffer (14.3 g/L glycine, 3 g/L Tris, 

1 g/L SDS & 20% methanol) for 10 min before the transfer sandwich (3× filter paper, gel, membrane, 3× filter paper) 

was assembled. Semi dry blotting was carried out at 12 V for 45 min. After blotting, gels were waved 2× 10 min in 

fixation solution (0.2% glutaraldehyde, 0.1% Tween 20, in PBS), rinsed three times for 5 min in H2O and incubated 

in quenching buffer (200 mM glycine, 0.1% Tween 20, in PBS) for 10 min. After washing (3× 5 min in H2O), the 

membrane was incubated ON in TBS-T (150 mM NaCl, 20 mM Tris pH 8.0, 0.1% Tween 20) supplemented with 5% 

milk powder, rinsed 3× 10 min with TBS-T and covered with primary antibody solution (6× His-tag Monoclonal 

Antibody (Thermo Fisher), 1:1,000 diluted in TBS-T) for 1 h. After rinsing in TBS-T for 6× 5 min, the membrane 
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was overlaid with alkaline phosphatase secondary antibody solution (goat anti-mouse (Dianova); 1:10,000 diluted in 

TBS-T) for 1 h. The membrane was rinsed in TBS-T six times for 5 min each prior to incubation with 500 µL of 

alkaline phosphate solution (100 mM Tris-HCl pH 9.5, 150 mM NaCl & 5 mM MgCl2) for 2 min. For visualisation, 

500 µl of the solution CDP-Star AP substrate were pipetted atop of the membrane. Emitted chemiluminescence was 

detected using an IVIS Lumina in vivo imaging system (PerkinElmer) with exposure times of 10 to 30 sec. 

To evaluate successful transfer of the proteins, blotted membranes were stained using Ponceau S staining solution 

(0.5% Ponceau S in 10% acetic acid) for 5 min while agitating. Destaining was performed by washing with H2O before 

the membrane was dried at room temperature. 

2.2.4.3.3 Determination of protein concentration 

The concentration of protein samples was determined either spectroscopically at a wavelength of 280 nm by NanoDrop 

or calorimetrically via Bradford assay. The latter was performed using Roti-Quant 5X-staining solution as described 

by the manufacturer for sample quantification in microtiter plates. Each sample was serially diluted and measured 

three times at a wavelength of 600 nm using a Wallac Victor3 multilabel reader (Perkin Elmer). Multiple dilutions of 

bovine serum albumin (BSA) were used for the generation of a calibration curve. The total protein concentration of 

the samples was calculated based on the absorption values measured for the calibration curve samples.  

2.2.4.4 Analysis of proteins by mass spectrometry  

2.2.4.4.1 Detection of RelE  

Overexpression and purification samples were analysed regarding the presence and purity of RelE using mass 

spectrometry. Dr. Christina Ludwig (BayBioMS, TUM) or Dr. Per Haberkant (Proteomics Core Facility, EMBL 

Heidelberg) peformed data collection and analysis. Intensity Based Absolute Quantification (iBAQ; 

Schwanhäusser et al., 2011) or top3 (Silva et al., 2006) values were used for protein quantity estimations. 

2.2.4.4.2 Data dependent acquisition (DDA) for novel gene identification 

2.2.4.4.2.1 Sample collection and preparation 

P. aeruginosa PAO1 was cultivated as described previously (section 2.2.1.1). Samples of 1 mL were taken at an 

OD600nm = 1, sedimented by centrifugation at 12,000 ×g and 4 °C for 10 min and flash frozen in liquid nitrogen. All 

samples were stored at -80 °C prior to further preparation and analysis, which was carried out at the Bavarian Center 

for Biomolecular Mass Spectrometry (Freising). 

Samples were prepared following the protocol by Doellinger et al. (2020). In short, cells were resuspended in 100 µL 

absolute trifluoroacetic acid and lysed for 5 min at 55 °C while shaking at 1,000 rpm. For sample neutralisation, 900 µL 

Tris (2 M) were added and protein concentration was determined using Bradford reagent according to manufacturer’s 

instructions. Reduction and alkylation were performed by adding 10 mM Tris(2-carboxyethyl)phosphine and 55 mM 

chloroacetamide to 75 µg of each sample followed by incubation for 5 min at 95 °C. After dilution with the same 

volume of H2O, proteins were digested with trypsin ON at 30 °C and 400 rpm at a protein/enzyme ratio of 50:1. The 

digestion reaction was stopped by adding 3% formic acid (FA). 
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2.2.4.4.2.2 Sample purification and offline HPLC-fractionation 

StageTips (Rappsilber et al., 2007) were prepared by placing 3 discs of Empore C18 material (3M) in a conventional 

200 µL pipette tip. The conditioning of the StageTip was performed using 100% acetonitrile (ACN) followed by 

equilibration with 40% ACN/0.1% FA and 2% ACN/0.1% FA. Samples were loaded on the StageTip and desalted by 

washing with 2% ACN/0.1% FA before peptides were eluted with 40% ACN/0.1% FA.  

Offline peptide fractioning was performed using an XBridge BEH130 C18 3.5 µm 2.1 × 250 mm (Waters Corporation) 

reverse phase chromatography column operated by an 1100 series HPLC system (Agilent) at a constant flow rate of 

200 µL/min. After sample loading, peptides were separated by applying a gradient from 4% to 32% buffer B (80% 

ACN) over 45 min followed by a gradient from 32% to 85% buffer B in 6 min. Fractions of 200 µL were collected 

every 30 sec throughout the entire elution process. If necessary, fractions were pooled to a maximum of 48 peptide 

fractions prior to MS measurement. 

2.2.4.4.2.3 LC-MS/MS measurement 

For MS analysis, 0.5 µg of peptides were loaded on a self-packed ReproSil-pur C18-AQ, 5 µm, 20 mm×75 µm (Dr. 

Maisch) trap column operated by an Ultimate 3000 RSLCnano system (Thermo Fisher Scientific) for 10 min using a 

flow rate of 5 µL/min and solvent A (0.1% FA and 5% DMSO in HPLC-grade H2O). Peptides were separated with a 

self-packed ReproSil Gold C18-AQ, 3 µm, 450 mm×75 µm (Dr. Maisch) analytical column using a linear gradient from 

4% to 32% of solvent B (0.1% FA and 5% DMSO in ACN) for 50 min at a flow rate of 300 nL/min. Eluted peptides 

were analysed using a downstream Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific) 

operated in DDA and positive ionization mode with the following parameters: For recording of MS1 spectra, the scan 

spectrum was 360–1300 m/z using a resolution of 60,000, an automatic gain control (AGC) target value of 4×105 and 

a maximum injection time (maxIT) of 50 msec. Fragmentation of up to 20 peptide precursors with charge states of 

2+ to 6+ was performed using higher energy collision induced dissociation (HCD) with a normalized collision energy 

(NCE) of 30%. The dynamic exclusion duration was set to 20 sec and a precursor isolation window width of 1.3 m/z 

was selected. MS2 spectra were recorded at a resolution of 15,000 using an AGC target value of 5×104 and a maxIT 

of 22 msec. 

2.2.4.4.3 Parallel reaction monitoring (PRM) for novel gene verification and quantitation 

2.2.4.4.3.1 Sample collection and preparation 

Cell harvest and further sample preparation were carried out as described for DDA with the following modifications: 

Samples of variable volumes (1 to 150 mL) were taken 1 h, 2 h, 4 h, 6 h, 8 h, and 24 h after inoculation as well as at 

OD600nm = 1 (~160 min). If necessary, cell sedimentation by centrifugation was carried out multiple times with variable 

speed and time settings. Following cell lysis, 20 µg proteins per sample were reduced, alkylated and digested 

enzymatically using trypsin as described previously.  

2.2.4.4.3.2 Sample purification and fractionation using StageTips 

StageTips were packed, conditioned, and equilibrated as described for DDA-MS. After sample loading, 25 mM 

ammonium formate (pH 10) was added atop of the StageTips, and the flow through was collected (fraction 1). Further 

five-fold fractionation was achieved by washing the StageTips using 25 mM ammonium formate (pH 10) supplemented 

with variable ACN concentrations (5%, 10%, 15%, 25% and 50%).  
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Fraction 1 & 5, 2 & 6, and 3 & 4 were pooled, and the solvent was removed by centrifugation in a SpeedVac vacuum 

concentrator before dried peptides were dissolved in 2% ACN/0.1% FA. 

2.2.4.4.3.3 PRM assay development 

Peptides were separated as described previously using an Ultimate 3000 RSLCnano system (Thermo Fisher Scientific). 

PRM-MS analysis of eluted peptides was performed on a Q-Exactive HF-X mass spectrometer (Thermo Fisher 

Scientific) using the positive ionisation mode. MS1 spectra were measured at a resolution of 60,000 with an isolation 

window width of 360–1300 m/z, an AGC target value of 3×106, and a maxIT of 100 msec. Following HCD 

fragmentation with a NCE of 26%, MS2 spectra were acquired with a starting mass of 100 m/z and an isolation 

window size of 0.7 m/z using an orbitrap resolution of 60,000, an AGC target value of 1×106 and a maxIT of 118 ms. 

A selected set of 18 OLG and mother gene peptide precursors as well as 12 ProteomeTools Calibration Standard 

peptide precursors (Zolg et al., 2017) purchased from JPT were targeted within one single run. The scheduled retention 

time window was set to 5 min, and a cycle time of ~2.1 sec was chosen in order to collect ~10 data points per peak 

for precise quantification. 

Selection of the 18 target peptides was made based on the results obtained for the deep proteome DDA experiment 

(section 2.2.4.4.2, 48 fractions). The following criteria were used for the selection: peptide intensity, location within 

the coding region, charge state, modification type as well as the Andromeda score measured in the DDA experiment. 

For high confident peptide validation, selected peptides were synthesized as isotopically labelled internal reference 

peptides with either a heavy arginine (U-13C6; U-15N4) or heavy lysine (U-13C6; U-15N2) at the C-terminus. All 

peptides were pooled equally and spiked into the target sample for nano-flow PRM measurement yielding confident 

detection of all 18 peptides with MaxQuant scores >90. DDA experiment-derived spectral libraries as well as predicted 

spectral libraries obtained by the deep neural network Prosit (Gessulat et al., 2019) were generated using the Skyline-

daily (64-bit) software (v20.1.9.234 ; MacLean et al., 2010). 

2.2.5 Data processing and bioinformatic analyses 

2.2.5.1 Evaluation of next generation sequencing (NGS) data 

2.2.5.1.1 Transcriptome sequencing 

Processing of FASTQ files was carried out using custom perl, bash and python scripts. In short, read quality was 

evaluated using FastQC (Andrews, 2010) with default settings, and identified adapter sequences were trimmed using 

fastp (Chen et al., 2018). Clipped reads were mapped to the reference genome (E. coli LF82: GCF_000284495.1; 

P. aeruginosa PAO1: GCF_000006765.1_ASM676v1) using Bowtie2 v2.2.6 (Langmead & Salzberg, 2012) with a seed 

length of 17 nt in the --very-sensitive end-to-end mode. SAMTools (Li et al., 2009) and BEDTools (Quinlan & Hall, 

2010) were applied to remove reads mapping to rRNAs and tRNAs. Reads were visualized using the genome browser 

Artemis (Rutherford et al., 2000) and normalized to sequencing depth by calculating reads per million mapped reads 

(RPM) according to the following equation: 

RPM= RCtotal
106 , (Equation 5) 

where: 

RCtotal = total number of mapping reads (tRNA & rRNA excluded) 
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To compare the expression of different genes, reads were also normalized to the gene length using the following equation 

for determining reads per kilobase per million mapped reads (RPKM): 

RPKM= RCgene

RPM×Lgene
, (Equation 6) 

where: 

RCgene = number of reads mapping to a gene 

RPM = reads per million mapped reads 

Lgene = length of the gene in kb 

Normalized reads were averaged over biological replicates and plotted using pyGenomeTracks (Ramírez et al., 2018). 

Quantitative changes in expression levels were assessed by differential gene expression analysis using an exact test 

implemented in the Bioconductor package edgeR (Robinson et al., 2010). Prior to statistical analysis, read counts were 

scaled to the smallest library size for normalization. 

2.2.5.1.2 Conventional Ribo-seq 

Translatome FASTQ files were processed and analysed as described for transcriptome sequencing data. Translated 

ORFs were predicted by using three different tools: REPARATION (Ndah et al., 2017), DeepRibo (Clauwaert et al., 

2019) and the method according to Giess et al. (2017). The REPARATION algorithm is a de novo machine learning 

algorithm for delineation of bacterial ORFs based on experimental Ribo-seq data. REPARATION predicts ORFs as 

small as 10 AA based on i) start region RPKM; ii) stop region RPKM; iii) proportion of nucleotides within the ORF 

covered by RFPs; iv) proportion of nucleotides within the start region covered by RPFs; v) the ratio of the average 

RPF read count within the start region divided by the average RPF read count within the remaining ORF; and vi) 

ribosome binding site energy (Ndah et al., 2017). DeepRibo relies on convolutional as well as recurrent neural networks 

to delineate protein-coding ORFs based on DNA sequence motifs and Ribo-seq information. The scripts by Giess et al. 

(2017) utilize specific RFP read length patterns around the TISs in combination with the sequence context for 

prediction. All programs were executed using default settings, and obtained results were combined using a custom perl 

script. All hits including redundant ORFs arising from multiple start codons were filtered for a minimum length of 

93 nt and their annotation status was ascertained using the respective GFF file (E. coli: 

GCF_000284495.1_ASM28449v1_genomic.gff; P. aeruginosa: GCF_000006765.1_ASM676v1_genomic.gff). After 

removal of anORF predictions, the remaining ORFs were classified according to their type of overlap, and RPKM and 

coverage values were appraised. In addition, the translatability of the ORFs was determined by calculating the 

ribosome coverage value (RCV; Neuhaus et al., 2017) according to the following equation: 

RCV = RPKMRibo-seq

RPKMRNA-seq
,      (Equation 7) 

where: 

RPKMRibo-seq = reads per kilobase per million mapped reads of the translatome 

RPKMRNA-seq = reads per kilobase per million mapped reads of the transcriptome 
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2.2.5.1.3 RelE-supported Ribo-seq 

Due to the shorter size of RelE-cleaved RFPs (Hwang & Buskirk, 2017), all RelE-supported Ribo-seq datasets as well 

as the respective control Ribo-seq and RNA-seq datasets were processed using adjusted parameters. Firstly, the 

respective adapter sequences were trimmed with fastp (Chen et al., 2018) using a reduced minimal length requirement 

of -l 10 after clipping. Trimmed reads were aligned to the reference genome with Bowtie v1.1.2 (Langmead et al., 

2009) in the --best --strata mode reporting only unique mappers with a maximum of two seed mismatches (-m 1 --best 

--strata -n 2). All sequencing reads which mapped to rRNA or tRNA were removed using BEDTools (Quinlan & Hall, 

2010) and SAMTools (Li et al., 2009). The latter was also used for data quality and read length assessment. 

The cleavage preference of RelE was determined based on the nucleobase composition before and after the cleavage 

site using custom python scripts. For this purpose, the type of nucleobase was determined in a range of -3 (within 

read) to +3 (outside read) and summarized for all RFPs. Reading frame analysis was performed as described by Hwang 

& Buskirk (2017). In short, the 3´ends of all RFPs mapping to a certain genome region were assigned to the first, 

second or third sub-codon position. If necessary, reads mapping to the first and the last 30 nt of each ORF were 

excluded. In addition, reads mapping to the third sub-codon position and ending with the nucleobase C were shifted 

from the third to the second sub-codon position in order to balance out RelE´s cleavage specificity.  

2.2.5.1.4 Retapamulin-assisted Ribo-seq 

Ribo-RET datasets as well as the respective no drug (ND) datasets were processed as described for conventional Ribo-

seq experiments. For P site positioning, 15 nt or 17 nt were subtracted from the 3’ end of the RFPs. Strand-specific 

RPM values were calculated according to Equation 5 for every genome position. In addition, RPKM values were 

determined according to Equation 6 for all ND datasets.  

Genes with an RPM exceeding 100 in both the RET dataset as well as the ND dataset were used for metagene analysis 

according to Meydan et al. (2019). To avert inconclusive read assignment, same-strand encoded genes separated by 

fewer than 50 nt were excluded. For all genes complying with these criteria, normalized reads were calculated for each 

nucleotide position within the ORF as well as in a 30 nt region flanking the start and stop codon. For this purpose, 

the RPM value of each position was divided by the total PRM value obtained for the entire region. Afterwards, 

normalized values were averaged over an area ranging from 10 nt upstream to 50 nt downstream of the first start 

codon nucleotide. 

The assignment of the TIS obtained in the RET dataset was performed using the python scripts provided by 

Meydan et al. (2019). The original algorithm quarries the entire genome for RET peaks with values >1 RPM for the 

identification of annotated genes or values >5 for the more stringent delineation of novel genes. Once a matching peak 

is found, the algorithm checks for the presence of one of the start codons AUG, GUG, CUG, UUG, AUU and AUC in 

a 3 nt wide region around the RET peak. To optimize translated ORF detection, the scripts by Meydan et al. (2019) 

were adapted to the generated datasets by adjusting the identification parameters, e.g., RPM values of the peaks to 

be detected, as described in the Results sections. All predicted ORFs exceeding the defined threshold value were 

merged with the predictions obtained by DeepRibo (Clauwaert et al., 2019), REPARATION (Ndah et al., 2017) and 

the scripts by Giess et al. (2017) and processed as described previously. In addition, the ND dataset was also analysed 

using the three prediction programs in order to add another level of gene identification regardless of the results obtained 

for the RET dataset. 
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2.2.5.1.5 Cappable-seq 

Cappable-seq reads were processed as described for conventional RNA-seq and Ribo-seq. Resulting bam files were 

evaluated using the script provided by Ettwiller et al. (2016) for determination of TSS. In a first step, this script trims 

all reads to their leftmost 5´ends yielding 1-bp long reads. The trimmed reads were then used for the calculation of a 

strand-specific relative read score (RRS) for each position of the genome according to the following equation:  

RRS = n
N

×106, (Equation 8)    

where: 

n = number of reads mapping to a certain genome position 

N = number of reads mapping to the entire genome 

Genome positions being covered with at least one read (RRS > 0) were used for reproducibility analysis by calculating 

pairwise Pearson´s product-moment correlation coefficients of three biological experiments. A suitable cut-off value 

for TSS prediction (RRS = 1.5) was determined by comparing fold changes of TSS counts obtained after application 

of different threshold values for each of the three experiments as described in section 3.2.5. The optimal search distance 

for TSS detection was ascertained by analysing 5`UTR lengths of annotated, protein-coding genes showing a TSS with 

an RRS ≥1.5 within a 500 bp upstream region in three biological replicates. A region of 200 bp upstream of the start 

codon of novel gene candidates was searched for the presence of a TSS with a RRS ≥1.5. Only TSS detected in at least 

two of the three replicates were considered to be of genuine origin. Sequence conservation of promoter regions was 

analysed in a 20 bp window upstream the identified TSS, and the results were visualized using the tool WebLogo 

(Crooks et al., 2004).  

2.2.5.2 Evaluation of mass spectroscopical data 

2.2.5.2.1 DDA 

Data analysis was performed using the search engine Andromeda (Cox et al., 2011) integrated into the MaxQuant 

environment (v1.6.3.4; Tyanova et al., 2016). MS2 spectra were either searched against all protein-coding genes listed 

in the RefSeq protein file (GCF_000006765.1_ASM676v1_protein, 5,572 reviewed entries, downloaded on 

2020/12/07) supplemented with the AA sequences of the OLGs of interest, or against a six-frame translation of the 

genomic sequence of P. aeruginosa PAO1. The following settings were used for peptide identification and 

quantification: Common laboratory-originating contaminants were included into all databases, Trypsin/P was selected 

as digestion enzyme, and precursor and fragment ion tolerance were adjusted to 4.5 ppm and 20 ppm, respectively. 

Peptide spectrum match (PSM) and protein false discovery rates (FDR) were set to 1% using a target-decoy database 

comprised of reversed AA sequences. Seven AAs were selected as minimum peptide length, and the “match-between-

run” function was turned off. Methionine oxidation as well as N-terminal acetylation were specified as variable 

modifications and carbamidomethylation of cysteine residues was defined as a fixed modification. The Skyline-daily 

(64-bit) software (v20.1.9.234; MacLean et al., 2010) was used for the determination of dot products between 

experimental and predicted spectra. Finally, intensity and iBAQ (Schwanhäusser et al., 2011) values were calculated 

for protein quantification. 
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2.2.5.2.2 PRM 

The Skyline-daily (64-bit) software (v20.1.9.234; MacLean et al., 2010) was used for PRM data analysis. Data quality 

was controlled by visual inspection and adjustment of peak integration, integration boundaries as well as transition 

interferences. Two to six transitions per peptide were chosen for reliable quantification of the target proteins, and 

peptides were filtered using a “Library Dot Product” (correclation between aquired product ion intensity and library 

reference spectrum intensity) value ≥0.8, a “DotProductLightToHeavy” (the ratio of the summarized light transition 

peak areas and the summarized heavy transition peak areas) value ≥0.9 and a “Average Mass Error PPM” of less than +/−20 ppm. For each sample, the intensities of all light peptides passing quality control filtering were added up. All 

peptides were checked for uniqueness against the RefSeq protein database.  

2.2.5.3 In silico analyses of identified overlapping gene candidates 

2.2.5.3.1 Genomic distribution 

Phage regions within the genomes of E. coli LF82 and P. aeruginosa PAO1 were identified using PHASTER 

(Arndt et al., 2016) and their location as well as the genomic location of the novel gene candidates was visualized 

using GView (Petkau et al., 2010).  

2.2.5.3.2 Promoter determination 

The bacterial promoter prediction algorithm BPROM (Solovyev & Salamov, 2011) was used to identify putative 

σ70 promoters within a 300 nt region upstream of the respective start codon. A linear discriminant function (LDF) 

value ≥0.2 served as threshold for differentiation between promoter and non-promoter sequences based on functional 

motifs and oligonucleotide composition.  

2.2.5.3.3 Terminator identification 

Putative ρ-independent terminators within a 300 nt region downstream of the stop codon were predicted by FindTerm 

(Solovyev & Salamov, 2011) using a threshold ≤−3. To identify the hairpin structure necessary for termination, the 

predicted sequence was split into 30 nt fragments and subjected to secondary structure analysis using Mfold (Zuker, 

2003) 

2.2.5.3.4 Ribosome binding site identification 

Detection of SD sequences was carried out within a 30 nt region upstream of the start codon according to Hyatt et al. 

(2010) or Ma et al. (2002). For the latter, a minimum free energy (ΔGSD) threshold of ≤−2.9 kcal/mol was used. If 

necessary, a window of 20 bp around the start codon was used for SD sequence motif representation using WebLogo 

(Crooks et al., 2004). 

2.2.5.3.5 Detection of homologues 

Homologous protein sequences were identified by the Basic Local Alignment Search Tool (blast; Altschul et al., 1990) 

using default settings. AA sequence queries were compared to sequences included in the “Non-redundant protein 

sequences (nr)” and “RefSeq Select proteins (refseq_select)” databases, respectively. The e-value cut-off was set to ≤1×10-3.  
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2.2.5.3.6 Gene prediction  

Prodigal (Hyatt et al., 2010) with standard settings was applied in order to identify protein-coding genes in the genome 

of P. aeruginosa PAO1. For prediction of novel OLGs, the annotated mother genes were masked by replacing every 

nucleotide of all possible start codons upstream and within the coding region by any nucleotide (N). 

2.2.5.3.7 Evolutionary analyses  

Phylostratigraphic, stop codon and sequence constraint analyses were conducted by Dr. Zachary Ardern as described 

in Kreitmeier et al. (2021). Briefly, gene homologues were identified using blastp, DIAMOND blastp (Buchfink et al., 

2015), and the Entrez Programming Utilities (Kans, 2013) accessing the Identical Protein Groups database. After 

downsampling, QuickProbs2 (Gudyś & Deorowicz, 2017) was used to align unique sequences followed by the conversion 

into the corresponding codon alignments using PAL2NAL (Suyama et al., 2006). Aligned sequences were used for the 

reconstruction of phylogenetic trees by maximum likelihood using IQ-TREE (Nguyen et al., 2015) with 1000 bootstrap 

iterations. 

Testing of ORF lengths was performed using the codon permutation and synonymous mutation method by 

Schlub et al. (2018). Furthermore, evolution of the OLG loci was simulated along phylogenies according to 

Cassan et al. (2016) using Pyvolve (Spielman & Wilke, 2015). For olg1, an intact sequence from P. prosekii was chosen 

as outgroup, whereas various non-P. aeruginosa outgroup sequences without stop codons were available for olg2.  

The tools FRESCo (Sealfon et al., 2015) and OLGenie (Nelson et al., 2020) were applied to determine the constraint 

in synonymous and non-synonymous sites in the mother genes tle3 and PA1383 using a sliding window size of 

50 codons.  
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3. Results           

3.1 Identification of protein-coding genes in E. coli LF82 

In this study, the E. coli LF82 genome was globally screened for protein-coding genes by using high-throughput 

methods. With a size of 4,773,108 bp and a GC content of 50.7%, the genome harbours 4,586 annotated, protein-

coding genes (anORFs) according to RefSeq (Assembly: GCF_000284495.1). In addition, further 61,401 ORFs, 

constituting the longest possible ORFs (i.e., any codon as start codon allowed) between two stop codons with a 

minimum length of 93 bp, were detected and may also have the potential to encode for proteins. They are either 

located in intragenic regions (iORFs; 4,404) or overlap trivially (<30 nt; 1,170) or non-trivially (≥30 nt; 51,360) with 

annotated genes; the latter being divided into the categories listed in Table 11. For the remaining ORFs (4,467), a 

clear allocation was not possible because they were assigned to two or more categories (e.g., overlapping with multiple 

anORFs). 

Table 11. Number and classification of non-trivial overlapping genes (OLGs) predicted for the E. coli LF82 genome. All ORFs 
exceeding 93 nt and overlapping more than 30 nt with an annotated gene were determined and classified according to the type of 
overlap and their strand location. 

strand overlap type designation number 

sense 
embedded OLG_ES 15,771 

partially at 5`end OLG_PS5 1,071 
partially at 3`end OLG_PS3 905 

antisense 
embedded OLG_EA 28,641 

partially at 5`end OLG_PA5 2,664 
partially at 3`end OLG_PA3 2,308 

In order to discover new translation products encoded by unannotated ORFs in E. coli LF82, in total twelve NGS 

datasets were generated, which were: 

- Experiment 1 (Exp1) – eight datasets: Ribo-seq & RNA-seq at two different cultivation conditions 

(aerobic & anaerobic) enable a general insight into the transcriptional and translational landscape as well as 

evaluation of differential gene expression as an indicator of gene functionality. This experiment was conducted 

in two biological replicates to capture random biological variation (section 3.1.1). 

- Experiment 2 (Exp2) – two datasets: Ribo-RET facilitates the identification of translated genes by TIS 

mapping and allows correct assignment of their start codon position. An ND experiment without RET served 

as an internal expression control (section 3.1.2). 

- Experiment 3 (Exp3) – two datasets: Ribo-seq using endoribonuclease RelE was conducted to increase 

RFP resolution and to detect a triplet periodicity allowing differentiation between background signals and 

genuine translation signals. An RNA-seq experiment was performed as a negative control for reading frame 

analysis (section 3.1.3). 

In the following sections, all experiments are discussed and analysed individually with respect to annotated as well as 

unannotated ORFs. Finally, the results of the single experiment are combined and filtered in the final section to aid 

reliable OLG and iORF identification. The identified ORFs are further characterised by using different bioinformatic 

analyses.  
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3.1.1 Conventional RNA-seq & Ribo-seq  

Transcriptome sequencing and ribosome profiling were applied to detect transcribed and translated regions in the 

E. coli LF82 genome under aerobic as well as anaerobic conditions. The sequencing output of two biological replicates 

were analysed regarding data quality, read length distribution and reproducibility. Afterwards, signals obtained for 

annotated ORFs were investigated in order to provide metrics for genuine expression and to evaluate suitability for 

differential gene expression analysis. 

3.1.1.1 Sequencing output and data reproducibility 

E. coli LF82 was cultivated in Schaedler broth with or without oxygen and harvested at the stationary phase 

(OD600nm = 2, Figure 9), ensuring the availability of a sufficient amount of RNA for Ribo-seq. The cell lysate was 

processed for RNA-seq and Ribo-seq, and the extracted RNA was subjected to sequencing using an Illumina HiSeq 

2500 system, yielding 60.6 to 98.6 million reads for the single experiments (Table 12).  

Quality trimming and genome alignment resulted in 15.4 to 51.6 million mappable reads; the remaining reads were 

either too short for mapping or did not align to the target genome (Supplementary Table 2). Since the majority of 

reads mapping to rRNA were located at the antisense strand (Supplementary Figure 1), a carryover of the rRNA-

based hybridization probes used for rRNA depletion with the Ribo-Zero Kit (Illumina) seems most likely. Nevertheless, 

rRNA depletion is mandatory for RNA-seq experiments, since more than 80% of all cellular RNAs in bacteria are of 

ribosomal origin, and only 5% account for mRNAs (Westermann et al., 2012). After mapping, 32.6 to 93.6% of all 

reads could be assigned to mRNA, thus confirming rRNA depletion efficiency. On average, the percentage of reads 

mapping to mRNA was higher in Ribo-seq experiments (Ø aerobic = 78.6%; Ø anaerobic = 62.6%) compared to the 

RNA-seq experiments (Ø aerobic = 40.8%; Ø anaerobic = 51.1%) due to the implementation of additional RFP 

enrichment steps, e.g., by PAA gel electrophoresis or ultracentrifugation. In total, 5.9 to 29.2 and 6.9 to 21.2 million 

mRNA reads were obtained for the RNA-seq and Ribo-seq experiments, respectively.  

 

 

 

 

 

Figure 9. Growth curve of E. coli LF82 for RNA-seq and Ribo-seq. The optical density at 600 nm (OD600nm) was measured in LB 
in biological triplicates. The dotted line indicates the sampling time for the experiment Exp1. 
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Table 12. Overview of Ribo-seq and RNA-seq reads obtained for Exp1 in E. coli LF82 after sequencing. Shown are the total number 
of sequenced reads as well as the number of reads mapping to the E. coli LF82 genome in millions for two biological replicates. 
Percentages in brackets indicate the proportion of reads mapping to rRNA and tRNA as well as mRNA regions of the E. coli LF82 
genome. 

Aerobic cultivation 

Experiment Replicate Total Mapped rRNA & tRNA mRNA 

Ribo-seq 
I 65.1 15.4 5.6 (36.4%) 9.8 (63.6%)

II 79.6 22.6 1.4 (6.4%) 21.2 (93.6%)

RNA-seq  
I 64.5 18.2 12.3 (67.4%) 5.9 (32.6%)

II 81.2 44.1 22.5 (51.0%) 21.6 (49.0%)

Anaerobic cultivation 

Experiment Replicate Total Mapped rRNA mRNA 

Ribo-seq 
I 60.6 17.2 10.3 (59.9%) 6.9 (40.1%)

II 82.8 24.7 3.7 (15.0%) 21.0 (85.0%)

RNA-seq  
I 70.2 34.0 18.4 (54.3%) 15.5 (45.7%)

II 98.6 51.6 22.4 (43.5%) 29.2 (56.5%)

Data reproducibility was determined by calculating Pearson correlation coefficients r between reads numbers obtained 

in biological replicates. For this purpose, reads mapping to anORFs were normalized to sequencing depth and gene 

length, and obtained RPKM values were used for the pairwise calculation of Pearson's r. Pearson's r coefficient ranged 

between 0.65 and 0.95 (Figure 10), indicating a moderate to very strong linear relationship between the biological 

replicates.  

Figure 10. Reproducibility of biological Ribo-seq and RNA-seq experiments. Shown are the RPKM values obtained for all annotated
genes (n = 4,586) of two biological replicates cultivated under (A, B) aerobic and (C, D) anaerobic conditions with their respective 
Pearson correlation coefficients (r). 
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On average, the aerobic experiments exhibited a lower correlation coefficient than the anaerobic and the linear 

relationship was stronger for the RNA-seq experiments compared to the Ribo-seq experiments. The latter observation 

might be explained by the increased number of experimental steps required for Ribo-seq offering a higher possibility 

for variation throughout the experimental procedure. Technical replicates were not included since reproducibility of 

sequencing using the Illumina technology was shown to be excellent (e.g., Marioni et al., 2008). Therefore, variability 

as observed for the replicates can solely be traced back to biological and experimental variation.  

3.1.1.2 Analysis of anORF expression 

The RNA-seq and Ribo-seq data was investigated regarding transcription and translation of anORFs in the E. coli 

LF82 genome. In general, only slight differences between the aerobic and anaerobic datasets were observed when 

calculating RPKM and RCV values (Table 13). In both datasets, the median RPKM value of the translatome of all 

anORFs was around 15 and the respective values of the transcriptome marginally higher. To determine the number 

of active genes in transcriptome and translatome datasets, a RPKM threshold of 10 was applied. This threshold is 

commonly used to differentiate background signals from genuine signals (e.g., Fremin et al., 2020, Neuhaus et al., 

2016) and is 20-fold higher than the RPKM value obtained for background transcription as suggested by 

Landstorfer et al. (2014). When applying this conservative threshold on the translatome data, 59.6% (aerobic) and 

62.5% (anaerobic) of all anORFs had similar or higher expression levels under the conditions tested. This observation 

is in concordance with the results obtained from mass spectrometry detecting approximately 53% of all proteins 

encoded by anORFs after aerobic cultivation of E. coli LF82 (unpublished data). 

Table 13. Overview of expression metrics obtained for all annotated genes (n = 4,586) of E. coli LF82. Reads per million mapped 
reads (RPKM) were calculated for RNA-seq and Ribo-seq of Exp1 and averaged over biological replicates. Ribosome coverage values 
(RCVs) indicating translatability were calculated by dividing the RPKM values of the translatome by the RPKM values of the 
transcriptome. 

 RPKM RNA-seq RPKM Ribo-seq RCV 
 aerobic anaerobic aerobic anaerobic aerobic anaerobic 

Median 21.7 16.5 14.8 15.4 0.8 1.1 
1st quartile  6.6  4.4  5.5  6.7 0.5 0.7 
3rd quartile 76.0 59.8 54.3 51.3 1.3 2.1 

In order to detect genes regulated in response to the presence or absence of oxygen, differential gene expression analysis 

was performed. In total, 210 genes with a logFC ≥|1| and a p-value ≤0.05 (Supplementary Table 3) were detected 

to be differentially regulated depending on data type (RNA-seq or Ribo-seq) and cultivation conditions (aerobic vs. 

anaerobic). At the translational level, 143 genes were regulated when comparing the anaerobic condition with the 

aerobic reference condition. Eighty thereof showed upregulation, and the remaining 63 were downregulated during 

cultivation in the absence of oxygen (Supplementary Figure 2). At the transcriptional level, a lower number of 93 

genes were differentially expressed with a slightly higher proportion of downregulated genes under anaerobic conditions 

(Supplementary Table 3). Remarkably, the genes showing the highest downregulation in the anaerobic dataset 

were genes belonging to the flg and fli family, which are structural components of flagella or constitute regulatory 

factors of flagella-associated genes (Fitzgerald et al., 2014, Macnab, 1992). Transcription of such genes was shown to 

be repressed by RpoS (Dong et al., 2011, Dong & Schellhorn, 2009), which represents the general stress response 

σ factor in E. coli. Bayramoglu et al. (2017), who performed global transcriptome sequencing of planktonic E. coli 

MG1655 cultures with and without oxygen, observed a relation between anaerobic cultivation and downregulation of 

RpoS-regulated genes as well.  
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In addition, some of the genes reported to be upregulated by Bayramoglu et al. (2017) under anaerobic conditions 

were also detected in this study, including stress-associated genes like the cold shock inducible genes cspB and cspI 

(Wang et al., 1999b). Of all differential expressed genes, only 26 were regulated both at the transcriptional as well at 

the translational level.  

3.1.2 Ribo-RET for translation initiation site (TIS) detection 

The aim of this experiment was to identify TISs in E. coli LF82 by applying the recently published method Ribo-

RET. For this purpose, the tolC gene encoding for the TolC outer membrane efflux protein mediating resistance to 

RET had to be deleted in a first step to guarantee the proper functioning of the antibiotic. In a next step, RET´s 

efficiency in deletion mutant cells was examined by MIC testing in order to specify the amount of RET necessary for 

complete translational inhibition. Finally, the Ribo-RET experiment was conducted applying the 100× MIC. 

3.1.2.1 Construction of a ΔtolC deletion mutant 

The method according to Datsenko & Wanner (2000) was intended to be used for the creation of a tolC deletion 

mutant. An FRT-flanked kanamycin resistance cassette was amplified via PCR and ligated to 50 nt long regions which 

were homologous to the flanking sequences of the chromosomal tolC gene. Sequencing confirmed the construct. 

Transformation into competent LF82 cells expressing λ Red recombinase yielded several kanamycin-resistant colonies. 

However, colony-PCR using primers binding within tolC as well as sequencing confirmed that the tolC gene was still 

present in the genome of the putative transformants. Even after increasing the homologous sequences up to 900 nt, 

the correct genomic integration of the kanamycin cassette failed (results not shown). After multiple unsuccessful 

attempts, the one-step gene inactivation method was discontinued. 

Alternatively, a suicide plasmid containing upstream and downstream flanking regions of tolC was used for gene 

inactivation. In a first step, a 925 bp region located upstream of tolC as well as a 938 bp region located downstream 

of tolC were amplified via PCR and ligated using previously introduced restriction enzyme cleavage sites. This deletion 

fragment was inserted into the multiple cloning site of the vector pMRS101, yielding vector pMRS101-TolC, before 

plasmid and deletion fragment integrity were confirmed by sequencing (results not shown). After plasmid propagation, 

the high copy origin of pMRS101-TolC along with a gene conferring ampicillin resistance were removed from the 

plasmid. Agarose gel electrophoresis confirmed the excision of the 1,766 bp large fragment resulting in the 8,551 bp 

large suicide vector pKNG101-TolC after self-ligation. Circularized pKNG101-TolC was propagated and transformed 

into E. coli SM10λpir cells. After verifying the uptake of the plasmid via colony-PCR, a positive colony was chosen 

for plate mating with the ampicillin-resistant recipient strain E. coli LF82. Incubation on agar supplemented with 

ampicillin and kanamycin allowed for the selection of transformed E. coli LF82. Genomic insertion of pKNG101-TolC 

via homologous recombination either took place up- or downstream of the intrinsic tolC gene as indicated in Figure 11.  
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Colony-PCR using a tolC-flanking primer (TolC-285F) and a vector-specific primer (pMRS101+458R) confirmed that 

half of the tested colonies integrated the vector according to possibility 1 (Figure 11), whereas the remaining colonies 

had a crossover event according to possibility 2 (Figure 11) resulting in PCR band of 1,415 bp and 2,897 bp, 

respectively (data not shown). To remove the intrinsic tolC gene as well as the vector backbone, one mutant was 

picked and cultivated on sucrose agar to promote a loop out by homologous recombination. The conversion of sucrose 

to the cell-toxic levan catalysed by the sacB encoded enzyme levansucrase (Li et al., 2013, Gay et al., 1983) enabled 

selection of mutants, which have eliminated the vector backbone. Depending on the location of the second homologous 

recombination, the selected cells had either the wild type gene structure including the tolC gene or they had successfully 

eliminated the gene of interest (Figure 11, possibility 3 or 4). Multiple mutants were screened with colony-PCR using 

primer pairs binding either in tolC flanking regions (primer TolC-285F & primer TolC-133R) or within tolC (primer 

TolC+137F & TolC+1391R) yielding PCR amplicons of 1,900 and 1,374 bp (Figure 12), respectively. Only clone 

number 7 exhibited the desired band pattern, showing a band of the same size (448 bp) as the pKNG101-TolC vector 

after PCR with tolC flanking primers (Figure 12A, lane 7), and the absence of a 1,374 bp band after PCR using 

primers binding within tolC (Figure 12B, lane 7). Sequencing of clone number 7 unequivocally confirmed the absence 

of tolC, and therefore, this clone was used for the subsequent experiments. 

Figure 11. Scheme of the genomic integration and subsequent removal of the tolC deletion fragment in E. coli LF82. The suicide 
plasmid pKNG101-TolC with its origin of replication (oriR6K) and the genes sacB and strAB encoding for a levansucrase and
enzymes conferring resistance to streptomycin were integrated into the genome of E. coli LF82 by homologous recombination between 
the upstream flanking regions of tolC named “A” (possibility 1) or the downstream flanking regions named “B” (possibility 2).
Transformants with genomic integration of the plasmid were selected by PCR using the primer pairs TolC-285F and pMRS101+458R 
as indicated. A loop out of the integrated plasmid backbone facilitated by cultivation on sucrose agar resulted either in restoration
of the wild type genotype (possibility 3) or successful deletion of the tolC gene (possibility 4), which was confirmed by PCR using 
the primer pairs TolC+137F & TolC+1391R and TolC-285F & TolC-133R. Figure adapted from Graf (2019). 
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3.1.2.2 Determination of the minimum inhibitory concentration of retapamulin 

Clone number 7 was cultivated and diluted to approximately 1×106 CFU/mL with Schaedler broth. The adjusted 

suspension was used for MIC testing, using the microdilution method in 96-well plates in three biological and technical 

replicates. For each experiment, 100 µL of the cell suspension were mixed with 100 µL of Schaedler broth supplemented 

with varying RET concentrations in order to obtain an optimal inoculum size of 1×105 CFU/mL. E. coli LF82 wild 

type cells were used to compare the effect of RET, depending on the presence or absence of the tolC gene. 

Agar plating confirmed an initial cell concentration of 2.0×105 (±standard deviation 2.6×105) for the deletion mutant 

and 1.2×106 (±standard deviation 1.2×105) for the wild type strain yielding a final inoculum of 1.0×105 and 

6.0×106  CFU/mL, respectively. After 24 h of cultivation, the MIC was defined as the lowest concentration of RET 

which inhibited bacterial growth as indicated by a lack of turbidity. The wild type strain exhibited a MIC value of ≥32 µg/mL, while E. coli LF82ΔtolC was more susceptible to RET demonstrated by a lower MIC value of 0.25 µg/mL 

(Figure 13). Those values were replicated by all three biological experiments confirming their reliability after 24 h of 

cultivation. Continuous measurement throughout the entire cultivation time revealed modest variations in growth for 

the deletion mutant compared to the wild type strain, probably caused by larger fluctuations in the initial cell 

inoculum. However, the overall growth trend was fairly consistent (Supplementary Figure 3).  

Figure 13. Results of minimum inhibitory concentration (MIC) testing of retapamulin (RET) for E. coli LF82 and E. coli
LF82ΔtolC. The overall growth of both strains in the presence of different RET concentrations ranging from 0.125 to 32 µg/mL was
calculated after 24 h by dividing the measured optical density by the respective value of bacterial cultures without RET (positive 
control). Plain broth without cell inoculum was used as a negative control (NC). 
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Figure 12. Agarose gel analysis of putative E. coli LF82ΔtolC deletion mutants. Shown are the band patterns for seven clones (lane 
1-7) obtained after PCR using the primer pairs (A) TolC-285F & TolC-133R or (B) TolC+137F & TolC+1391R. Genomic DNA of 
E. coli LF82 (lane 9) and pure vector DNA of pKNG101-TolC (lane 10) were used as an internal control. Only clone 7 was confirmed
to lack the tolC gene as indicated by the absence of 1,900 and 1,374 bp bands in A and B, respectively. 
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3.1.2.3 Cut-off specification for genome wide TISs analysis 

The strain E. coli LF82ΔtolC was cultivated for approximately 300 min until reaching an OD600nm of 1.4 (Figure 9) 

and incubated with the 100× MIC of RET to stall initiating ribosomes. After sequencing, reads were processed and 

aligned to the E. coli LF82 genome resulting in 23.8 and 65.8 mio mRNA reads for the Ribo-RET and the ND control 

Ribo-seq experiment. With values of 13.5% and 28.5%, the overall percentage of reads mapping to mRNA regions 

within the E. coli LF82 genome was substantially lower than those of the first experiments (see Table 12). One 

possible explanation for this observation may be the lack of rRNA depletion due to the discontinuation of the Ribo-

Zero rRNA Depletion Kit by Illumina. In order to compensate for the missing rRNA depletion, the sequencing depth 

was increased (Supplementary Table 2). All reads mapping to mRNA regions were analysed regarding their read 

length to confirm proper size selection. Obtained read lengths were on average larger (30 – 40 nt, Supplementary 

Figure 4E) compared to those from the first experiment (20-26 nt, Supplementary Figure 4AB), which was 

consistent with the different selection ranges after PAA gel electrophoresis. 

In order to evaluate the efficiency of RET in stalling ribosomes at the start codon of translated genes, the first 

nucleotide located at the P site of all reads was determined by subtracting 15 nucleotides from the 3’ end as described 

by Meydan et al. (2019). All P site positions were normalized to sequencing depth resulting in RPM values, followed 

by visual inspection using a genome browser. Treatment with RET resulted in a pronounced redistribution of ribosomes 

as exemplary as shown for the genes rpsJ, rplC, rplD, rplW and rplB of the S10 ribosomal protein operon (Zurawski 

& Zurawski, 1985), known to encode for highly expressed proteins (Roymondal et al., 2009, Karlin et al., 2001). Those 

genes were among the 10% of the highest expressed anORFs in the ND dataset with RPKM values >400 (Table 14).  

Table 14. Translation metrics of highly expressed proteins of the S10 ribosomal protein operon in E. coli LF82. RPM values at the 
start peak positions of the genes rplB, rplW, rplD, rplC and rpsJ were calculated in the retapamulin (RET) and no drug (ND) 
dataset and fold changes were determined. For the ND dataset, reads were additionally normalized to gene length yielding RPKM 
values.  

gene encoded protein ND [RPKM] 
RET peak at 
start position 

[RPM] 

ND peak at 
start position 

[RPM] 

Fold 
change 
peak 

rplB  50S ribosomal protein L2 1,698.6  643.8  4.2  154.1  
rplW  50S ribosomal protein L23 3,261.6  2,1682.0  660.6  32.8  
rplD  50S ribosomal protein L4 1,836.8  1897.0  25.8  73.4  
rplC  50S ribosomal protein L3 1,373.6  722.4  14.8  48.9  
rpsJ  30S ribosomal protein S10 438.4  123.1  1.0  126.6  

In the RET data, an accumulation of ribosomes at start codons was observable, whereas in the ND dataset ribosomes 

were distributed over the entire coding region (Figure 14). The factor by which the RET start peak was higher than 

the respective ND signals at the start position ranged from 32.8 for rplW to 154.1 for gene rplB (Table 14). 

Comparison of RET peak height with their respective expression strength as specifies by RPKM values in the ND 

dataset indicated a weak correlation between both metrics. This observation was confirmed by a low Pearson 

correlation coefficient r of 0.15, when analysing PRKM and RPM values of all anORFs. However, when determining 

the correlation according to Spearman, which ranks absolute values, and thus, is less sensitive towards outliers (de 

Winter et al., 2016), a moderate correlation of 0.64 was obtained.  
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Preciseness of the ribosome accumulation at start codons was evaluated by metagene analysis. For this analysis, all 

anORFs separated more than 50 nt from adjacent genes, and exhibiting RPM values >100 in the ND as well as in the 

RET dataset were chosen. RPM values at each position of the selected anORFs were normalized by dividing them by 

the entire RPM value of the respective gene including 30 nt flanking regions. As seen in Figure 15A, metagene 

analysis confirmed the inhibitory effect of RET on initiating ribosomes at start codons of 224 highly expressed genes. 

Compared to the ND control, the normalized read count was approximately six-fold increased at the start position +1 

(i.e., 0 nt distance from start; see Figure 15) after RET treatment. The majority of reads was mapping in a distance 

window of -2 to +8 nt around the first nucleotide of the start codon resulting in a broader peak than observed for the 

data by Meydan et al. (2019) upon reanalysis (Supplementary Figure 5). In addition, the maximum RPM counts 

were obtained two nucleotides downstream of the first start codon nucleotide indicating suboptimal P site mapping. 

To compensate for P site imprecision, mapping was repeated with a corrected offset of 17 nt. This correction resulted 

in a sharp peak at the distance from start codon position 0 nt (Figure 15B). 

The prediction algorithm provided by Meydan et al. (2019) was applied to the Ribo-RET dataset for the identification 

of translated genes. This algorithm globally identifies RET peaks exceeding a certain threshold and searches for a 

suitable start codon within a ±3 nt window around the identified peak. Increasing the offset to 17 nt optimized the 

location of the search area (Figure 15B) and resulted in slightly more predictions compared to the data mapped with 

a 15 nt offset (Supplementary Figure 6). However, the optimal threshold for the peak height had to be defined 

prior to subsequent analyses. Therefore, the algorithm was applied using thresholds ranging from 0.2 to 5, and the 

final number of predictions was determined. As expected, both variables correlated inversely; a higher threshold 

resulted in fewer predictions (Supplementary Figure 6). To determine the optimal threshold value, fold changes 

between the numbers of hits obtained for two consecutive values were calculated. Above a threshold of 1, a further 

increase of the value did not lead to a substantial reduction of predicted hits (Supplementary Figure 6) indicating 

that this threshold may be suitable for whole genome analysis. By applying this threshold, 88% of all anORFs with a 

RPKM value larger than 100 in the ND dataset were successfully predicted. This result is in concordance with those 

reported by Meydan et al. (2019), who also defined a threshold of 1 for ORF prediction in two E. coli strains, thereby 

obtaining an anORF prediction rate of 86%.  

 

Figure 14. Translation signals of highly expressed proteins of the S10 ribosomal protein operon. Logarithmic RPM values are shown
at each position of the genes rplB, rplW, rplD, rplC and rpsJ in the no drug (ND; top panel) and the retapamulin (RET; bottom 
panel) dataset.  
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3.1.3 RelE-enhanced Ribo-seq to visualize triplet periodicity  

3.1.3.1 Expression and downstream processing of RelE  

To utilize RelE´s unique cleavage preciseness in Ribo-seq experiments, the endogenous enzyme had to be expressed in 

sufficient amounts using a suitable expression system. For this purpose, the sequence of the PCR-amplified relE gene 

originating from E. coli MG1655 was fused to an N-terminal His6-tag and cloned into the expression vector 

pBAD/HisC. After transformation in E. coli Top10, relE expression was induced at OD600nm = 0.5 by the addition of 

different amounts of arabinose. However, this experiment was aborted due to the cytotoxic effect of RelE, leading to 

a massive reduction of cell growth upon overexpression (data not shown). The lethal or inhibitory effect of 

overexpressed RelE is well known, and therefore, several groups tried to co-express RelE together with its respective 

antitoxin RelB with successful outcomes (e.g., Cherny et al., 2007, Pedersen et al., 2002, Gotfredsen & Gerdes, 1998). 

In a second experiment, the co-expression approach was implemented using the plasmid pET-22b(+)His6:relBΔ9-relEWT 

received from Dr. Scott Strobel (Dunican et al., 2015, Griffin et al., 2013). Sequencing verified that the obtained 

plasmid contained a mutant His6-tagged relB sequence and a relE sequence with an overlapping stop/start codon as 

found in the native system under T7 RNA polymerase control. The plasmid pET-22b(+)His6:relBΔ9-relEWT was 

transformed into E. coli BL21 (DE3) pLysS cells, and protein expression was induced by the addition of IPTG. SDS-

PAGE analysis of samples taken throughout the entire cultivation process confirmed the induction of a ~10 kDa 

protein (Figure 16A, highlighted by a box) compared to E. coli BL21 (DE3) pLysS without overexpression plasmid. 

A clear visual assignment of the observed band to either RelE or RelB was hampered by their similar molecular weight 

of 11.2 kDa and 9 kDa (Gotfredsen & Gerdes, 1998), respectively. The fusion to a 6× His-tag theoretically increased 

the molecular weight of RelB by 0.8 kDa (Young et al., 2012), suggesting that the 10 kDa band might have originated 

from the His-tagged RelB. Western blot analysis using an anti-His-antibody for detection of RelB confirmed this 

assumption (Figure 16B). To validate the presence of the untagged RelE, semi-quantitative whole proteome analysis 

via MS was performed of a sample taken 3 h after induction. Both proteins were present in this sample 

(Supplementary Figure 7A). With an iBAQ value of 7.8×1010, RelB represented the most abundant protein in the 

sample, followed by RelE (iBAQ = 4.1×1010).  

 

Figure 15. Metagene analysis of highly expressed genes in E. coli LF82. Shown are normalized RPM values of each position in a 
-10 to 30 nt window around the start codon (dashed line, distance 0 nt) after determining the P site position by subtracting 
(A) 15 nt or (B) 17 nt of all genes with RPM values >100 in the ND and RET datasets (n = 224 or n = 196, respectively). 
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After verifying successful overexpression, RelE should be selectively purified using IMAC. The underlying principle 

was to enrich the RelE/His-tagged RelB-complex by direct interaction between the His residues and matrix-

immobilized Ni2+ ions. In the next step, the conformation-dependent interaction between both proteins should be 

abolished by denaturing conditions enabling selective elution of RelE. In a first attempt, RelE was purified using the 

Ni-NTA Fast Start Kit (Qiagen) under native as well as denaturing conditions. When applying denaturing buffer to 

the provided Ni-NTA columns and taking samples of the flow through, two bands were observed, a moderate band of 

10 kDa representing RelB and a very diffuse band of approximately 13-14 kDa (Figure 17A, Lane 5 & 6), most likely 

caused by RelE. MS analysis again confirmed the presence of both proteins in the flow through after washing with 

denaturing buffer and confirmed a slight change in the ratio of RelE to RelB compared to initial overexpression sample 

(Figure 17B). However, SDS-PAGE analysis demonstrated several limitations of this purification method. Firstly, 

the large amount of unbound RelB present in the flow through after loading of the lysate indicated insufficient 

interaction with the resin (Figure 17A, Lane 2). Secondly, selective elution of RelE using denaturing conditions failed 

due to the co-elution of RelB (Figure 17A, Lane 5 & 6), which constituted the most abundant protein according to 

the MS analysis (Figure 17B). Thirdly, the denaturing strength was not sufficient to abolish the toxin´s strong 

interaction with the antitoxin because large amounts of RelE were still present after eluting RelB by adding a high-

imidazole-containing buffer (Figure 17A, Lane 7 & 8). Consequently, the maximum yield of pure RelE was reduced.  

The use of chromatography columns coupled to FPLC systems is a more sophisticated way of protein purification and 

allows the application of customized buffers as well as the optimization of flow speeds and interval lengths. By using 

a FPLC system with a pre-packed His-column, RelE was eluted more efficiently over RelB (Supplementary Figure 

7B). However, a high protein background in the eluate indicated a high proportion of non-specifically bound proteins. 

To further optimize the purification process, a semi-batch procedure including sample binding at 4 °C was combined 

with an automated procedure including RelE and RelB elution at room temperature. As a first step, a Ni-NTA resin 

was incubated with the lysate for 1 h at 4 °C. Afterwards, the resin was washed several times with washing buffer at 

4 °C before the column was packed and connected to the ÄKTA FPLC system. Finally, RelE was eluted with 

denaturing buffer at room temperature. In contrast to the completely automated procedure described above, the bed 

volume of the column and the length of the washing interval were increased in this approach. Those modifications 

resulted in two characteristic increases in the UV280nm signals indicating successful protein elution (Figure 18A). 

Subsequent SDS-PAGE analysis confirmed the successful binding of RelB to the resin (presence of the 10 kDa protein 

in the lysate, Figure 18B, lane 1; and absence in the flow through, Figure 18B, lane 2) and the highly-selective 

Figure 16. Results of (A) SDS-PAGE and (B) Western blot analysis of relE and relB overexpression samples. E. coli BL21 (DE3) 
pLysS cells with and without expression plasmid pET-22b(+)His6:relBΔ9-relEWT were cultivated and samples were taken immediately 
(t0), 1 h (t1h), 2h (t2h) and 3h (t3h) after induction with IPTG. 
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separation of non-specifically bound proteins (Figure 18, peak 1 & lane 3) from eluted RelE (Figure 18, peak 2 & 

lane 4). A RelB band was observable after elution with 500 mM imidazole buffer (Figure 18B, lane 5). The fractions 

of the second peak were pooled, and RelE was subsequently refolded by dialysis, concentrated, again dialysed and 

stored at –80 °C. 

After downstream processing, a final concentration of 387 µg/mL in a total volume of 1.35 mL was measured via 

Bradford assay (Supplementary Figure 8). The SDS-PAGE analysis of the final sample showed an identical band 

pattern to that which was obtained directly after the purification process (see Figure 18B, lane 4). A total of 159 

different E. coli proteins with a minimum of 2 unique peptide matches were identified in the final sample via MS. The 

protein with the highest abundance was RelE (top3 = 8.9), followed by the chaperone DnaK (top3 = 7.7) and the 

outer membrane protein OmpF (top3 = 7.2). According to the top3 values, the final protein solution contained 84.1% 

RelE, 15.6% other E. coli proteins and only 0.3% RelB, indicating the high purity of the RelE solution.  

Figure 17. Results of (A) SDS-PAGE and (B) mass spectrometry analysis of RelE and RellB purification samples. The whole cell 
lysate before purification (A, lane 1), the flow through after applying the cell lysate on top of a Ni-NTA column (A, lane 2), the 
flow through after two rounds of washing with native wash buffer (A, lane 3 & 4), the flow through after two rounds of washing 
with denaturing wash buffer (A, lane 5 & 6), and the final flow through after elution with elution buffer (A, lane 7 & 8) are shown. 
The sample obtained after washing with denaturing wash buffer (A, lane 5) was subjected to (B) mass spectrometry analysis to 
validate the presence of the target proteins. The logarithmic iBAQ value of each detected protein (y-axis) was plotted against the 
detected proteins sorted by their iBAQ values (x-axis). Each dot represents one detected protein. 
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Figure 18. (A) Chromatogram and (B) SDS-PAGE analysis of the final ÄKTA purification process. The column was washed with 
35 mM imidazole washing buffer (A, first peak); afterwards RelE was eluted by adding denaturing buffer (A, second peak). The 
dark line indicates the UV signal at 280 nm; the light line represents the conductivity, and thus, indicates the time point of buffer 
exchange. Samples were taken throughout the entire purification process and subjected to (B) SDS-PAGE analysis. Shown are the 
whole cell lysate before purification (lane 1), the flow through after resin incubation (lane 2), the flow through after washing with 
35 mM imidazole buffer (lane 3), the elution of RelE using denaturing buffer (lane 4) and the final elution of RelB with 500 mM 
imidazole elution buffer (lane 5).
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3.1.3.2 Evaluation of reading frame information 

Purified RelE was added to the cell lysate during the Ribo-seq procedure in order to improve resolution of the 

experiment and to obtain RFPs with precise 3`ends. Nuclease digestion was performed in the presence of 450 U MNase 

for additional cleavage at the 5´end of the RFPs. Afterwards, RFPs with a size of 10-40 nt were subjected to library 

preparation and sequencing. Due to RelE´s cleavage within the A site of the ribosomes, expected RFPs were on 

average shorter than those of the other datasets, and thus, required different processing and mapping parameters (for 

details see section 2.2.5.1.3). After mapping, 23.4 mio and 0.4 mio mRNA reads were obtained for the Ribo-seq and 

RNA-seq experiment, respectively (Supplementary Table 2). Regarding read length, the predominant number of 

RFPs in the Ribo-seq experiment had a size of 26 to 31 nt (Figure 19). Additionally, a smaller proportion of shorter 

reads (14 to 18 nt) was observable. A similar result was reported by Hwang & Buskirk (2017), who noticed a high 

read proportion with sizes of ~25 nt as well as a substantial number of short RFPs (13-16 nt) after RelE cleavage. In 

contrast, nuclease footprinting with MNase solely resulted in a read distribution centred at 25 nt. Reanalysis of the 

data published by Hwang & Buskirk (2017) confirmed these results (Figure 19).  

To obtain reading frame information, all 3´ends of RFPs were mapped to the genome and their sub-codon positions 

(1, 2 or 3) were ascertained within the coding region. Reads within the first and the last 30 nt of each coding region 

were excluded to avoid distortion by reads mapping to adjacent coding region. RelE cleaves specifically after the 

second nucleotide of the codon which is located in the A site of the ribosome. However, RelE has a strong sequence 

bias: If the codon in the A site is ending with a C, RelE preferentially cleaves after the third nucleotide instead of the 

second (Hwang & Buskirk, 2017). To compensate for this cleavage bias, 3´ends of RPFs mapping to sub-codon position 

3 and ending with a C were shifted from position 3 to position 2. This analysis was firstly performed for the gene 

ompA, which was the highest-expressed gene in the Ribo-seq RelE dataset with an RPKM value of 120,369. Based on 

visual inspection of read number and coverage, the region between 600 nt and 632 nt was selected for reading frame 

analysis. As expected, most reads mapped to position 2, whereas reads mapping to the other positions were clearly 

underrepresented (Figure 20). 

 

Figure 19. Read length distribution of RelE-supported Ribo-seq in E. coli LF82. The total proportion of reads mapping to mRNA 
regions of the Exp3_RelE dataset generated in this study (“Ribo-seq +RelE”) as well as of the datasets with (“Ribo-seq +RelE 
(published)”) and without RelE (“Ribo-seq -RelE (published)”) published by Hwang & Buskirk (2017) are shown. 

0.00

0.02

0.04

0.06

0.08

10 20 30 40

fra
ct

io
n 

of
 r

ea
ds

read length [nt]

Ribo-seq +RelE (own)
Ribo-seq +RelE (published)
Ribo-seq -RelE (published)



71 

 

The ribosomal reading frame was even more pronounced when calculating the sum signal of all anORFs, even without 

shifting for the NNC cleavage bias of RelE. 48% of all RFPs mapped to sub-codon position 2, 32% to sub-codon 

position 3 and 20% to sub-codon position 1 (Figure 21A). A NNC shift resulted in an improved reading frame signal 

of 57%, 24% and 20% for sub-codon positions 2, 3 and 1, respectively (Figure 21B).  

 

Figure 20. Reading frame analysis of gene ompA in E. coli LF82. Sub-codon positions of the 3´ ends of all reads obtained in the 
Ribo-seq experiment prepared with RelE mapping to a region between 600 and 632 nt of ompA were determined. A shift of reads 
ending in C was performed. Absolute number of reads are specified in a logarithmic scale. 
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A similar trend was observable for the published data yielding the highest read density at position 1 (69%), followed 

by position 3 (19%) and 1 (12%) after NNC shift (Figure 21B). Deviating proportions of reads mapping to sub-codon 

position 1 mainly caused the discrepancy in the sum signal resolution between the published data and the data of this 

study. To exclude that the observed signals are solely originating from the nucleotide bias in the coding regions, a 

previously generated Ribo-seq dataset (Exp1_aerobic_RepI, section 3.1.1), showing similar mRNA read numbers as 

well as a comparable experimental treatment, was reanalysed using the RelE-optimized processing and mapping 

parameters. Reading frame analysis of this dataset revealed the complete absence of a periodicity signal in the unshifted 

data (Figure 21A, “own II -RelE”) and only a modest preference of sub-codon position 2 caused by NNC read shifting 

(Figure 21B, “own II -RelE”). Analysis of the corresponding RNA-seq datasets confirmed a reproducible lack of 

periodicity without read shift (Figure 21C) and a slight reading frame signal of ~41% for position 2 after NNC shift 

(Figure 21D), suggesting that the signal observed for Ribo-seq without RelE was of artificial nature. An identical 

result was obtained after reanalysis of a Ribo-seq dataset generated with MNase only by Hwang & Buskirk (2017) 

(Supplementary Figure 9).  

3.1.4 Detection and analyses of novel intergenic and overlapping genes 

For identification of novel, translated ORFs, DeepRibo (Clauwaert et al., 2019), REPARATION (Ndah et al., 2017) 

and the scripts by Giess et al. (2017) were applied to each of the Ribo-seq datasets. In addition, the Ribo-RET dataset 

was evaluated analogous to the method described by Meydan et al. (2019). After evaluation of the results of the single 

predictions, all results were combined to aid reliable OLG delineation. The identified ORFs were further characterized 

regarding expression strength, location, type of overlap, differential expression, reading frame periodicity, presence of 

homologues, length, and choice of start codon. 

3.1.4.1 Application of prediction algorithms for individual and collective datasets 

When applying the three prediction tools to each of the six Ribo-seq datasets (4× Exp1, 1× Exp2_ND & 1× 

Exp3_RelE), a marked discrepancy in the number of predictions was observed. DeepRibo predicted on average 2,863 

translated ORFs, followed by REPARATION with 8,609 hits. The by far highest number of predictions was obtained 

for the scripts by Giess et al. (2017) with a mean value of 74,902. For the tools DeepRibo and REPARATION, the 

largest number of predictions was obtained for the Exp2_ND datasets and the lowest number of predictions for the 

Exp3_RelE dataset (Supplementary Table 4). Interestingly, the exact inverse effect was seen for the number of 

predictions obtained by the scripts published by Giess et al. (2017). For the Ribo-RET dataset, ORFs with a TIS 

peak larger than 1 RPM were predicted to be translated by the algorithm provided by Meydan et al. (2019). This 

analysis resulted in 18,587 predicted candidates. 

For prediction performance evaluation, all hits obtained by one prediction tool were compared for all Ribo-seq datasets 

and the percentage of the overlapping fraction was calculated. As shown for the results by DeepRibo (Figure 22A), 

the reproducibility of the predicted hits in multiple datasets was limited and ranged from 14.0% (Exp2_ND vs. 

Exp3_RelE) to 60.3% (Exp1_aerobic_RepII vs. Exp1_anaerobic_RepII). When comparing the results of the two 

biological replicates, medium identity percentages of 42.7% (Exp1_aerobic) and 44.3% (Exp1_anaerobic) were 

observed. Comparable results were obtained for REPARATION predictions (Supplementary Figure 10A), whereas 

hits predicted by the scripts by Giess et al. (2017) showed on average higher identity percentages across different 

datasets (Supplementary Figure 10B), probably due to the higher number of total predictions.  
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Limited congruence values were also received when estimating the prediction overlap of the three prediction tools on 

a single Ribo-seq dataset. For Exp2_ND, which showed the highest number of predictions in terms of DeepRibo and 

REPARATION, for instance, only 2,522 out of in total 69,635 predictions were forecasted by all three tools 

(Figure 22B). 

Since the reproducibility and comparability of the results obtained were limited, all hits predicted by of all tools were 

combined in order to facilitate reliable identification of novel ORFs. In total, the results of six Ribo-seq datasets 

(Exp1_aerobic_RepI+II, Exp1_anaerobic_RepI+II, Exp2_ND & Exp3_RelE) were separately analysed with 

DeepRibo, REPARATION, and the scripts by Giess et al. (2017) and afterwards merged with the results obtained for 

the Ribo-RET dataset (Exp2_RET), which was evaluated according to the method described by Meydan et al. (2019). 

Merging of the results of the 19 different prediction possibilities resulted in 64,877 translated ORF candidates. All 

predicted ORFs were scored according to how often they have been predicted, resulting in a scoring scale ranging from 

1 (ORF predicted by one tool in one dataset) to 19 (ORF predicted by all tools in all datasets). Only hits found in 

more than a half of all prediction combinations (score > 9) were considered to be valid gene candidates. Hits were 

classified according to the RefSeq annotation, and ORFs matching to annotated genes were removed. The remaining 

hits were visually inspected in a genome browser and false positive hits, e.g., due to read cross talk caused by adjacent 

anORFs, were excluded. One hundred and sixteen high confident hits with scores ranging from 10 to 17 passed the 

individual inspection. Among them were also the three novel gene candidates whose signals are shown exemplarily in 

Figure 23. Finally, all novel gene candidates were further characterized as described in the following section. 

 

 

 

Figure 22. Reproducibility of Ribo-seq prediction results in E. coli LF82. Shown are (A) the percentages of identical predictions 
obtained by the tool DeepRibo for all possible dataset combinations as well as (B) the overlap and absolute number of predictions 
obtained by all three prediction tools (DeepRibo, REPARATION, scripts by Giess et al. (2017)) for the dataset Exp2_ND.  
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Figure 23. Ribo-seq signals of three novel gene examples identified in E. coli LF82. Strand-specific Ribo-seq signals of the RET 
dataset (Exp2_RET, top row) and the ND dataset (Exp2_ND, middle row) were visualized using the Artemis genome browser 
(Rutherford et al., 2000). Translatome reads mapping to the forward strand are displayed above the centre line and reads mapping
to the antisense strand are plotted below the centre line. The bottom row represent a six-frame translation of the genomic loci coding 
for the novel overlapping gene candidates (A) LF82_71 and (B) LF82_14 as well as for the novel intergenic gene candidate (C) 
LF82_18. All ORFs are displayed in their respective frame and anORFs are highlighted in grey. Black bars indicate stop codon
positions. The genomic regions coding for the novel ORFs are shaded in blue.  
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3.1.4.2 Bioinformatic characterization of the selected ORFs 

The novel ORFs were distributed across the entire genome of E. coli LF82 (Figure 24A). Interestingly, the ORFs 

encoded on the antisense strand (n = 106) were almost evenly spread, whereas ORF occurring on the sense strand 

(n = 10) were accumulated in a region from ~1 Mbp to 1.2 Mbp. However, this observation might be due to the 

smaller number of predicted ORFs on the sense strand. Four gene candidates were located within regions predicted to 

be of phage origin, one encoded on the sense strand, the others on the antisense strand (Figure 24A). The ORF 

length ranged from 93 bp to 669 bp (median value = 129 bp), and thus, the novel ORFs were on average shorter than 

the annotated, protein-coding genes with a median value of 807 bp (Figure 24B). 60.4% of all novel ORFs had an 

ATG start codon, 22.4% a TTG and 17.2% a GTG start codon. In contrast, the ORFs of annotated genes start 

predominately with ATG codons (87.7%), followed by GTG and TTG codons (8.5 and 3%, respectively). For 0.7% of 

all anORFs, a rare start codon (i.e., ATA, ATC, ATT & CTG) was detected.  

All novel ORFs were categorised according to their type of overlap, if present (Table 15). Twelve ORFs showed no 

(iORF) or only a trivial overlap (<30 nt, OLG_TL), whereas the remaining ORFs (n = 104) overlapped non-trivially 

with anORFs. For the latter, the overlap region covered 34.9% to 98.2% of the entire ORF length. In 103 out of 104 

cases, the overlapping mother gene was functionally annotated, implying that the novel ORF encoded in another 

reading frame can be considered as a “real” gene overlap. Unless otherwise stated, all novel ORFs were treated as one 

group for the subsequent analyses independently of their classification status. 

Table 15. Number of novel gene candidates identified in E. coli LF82. All hits exceeding a prediction score of 9 are divided into the 
categories intergenic ORF (iORF), trivial OLG (OLG_TL), antisense embedded OLG (OLG_EA), sense embedded OLG (OLG_ES), 
partial antisense OLG with overlap at the 3´ (OLG_PA3) or at the 5´ end (OLG_PA5 as well as partial sense OLG with overlap 
at the 3´ (OLG_PS3) or at the 5´ end (OLG_PS5), respectively. Hits matching to more than one non-trivial overlap type were 
classified as “multiple types”. 

ORF_type iORF OLG_TL OLG_EA OLG_ES OLG_PA3 OLG_PA5 OLG_PS3 OLG_PS3 
Multiple 

types 
Number 7 5 33 50 4 4 5 5 3 

Figure 24. (A) Distribution and (B) length of novel gene candidates in the E. coli LF82 genome. (A) The circles show the annotated 
genes (grey, n = 4,586) located at the sense and the antisense strand, the novel gene candidates (black, n = 116) located at the sense 
and the antisense strand as well as phage regions as indicated by grey arrows (from outside to inside). (B) The length distribution 
of all novel gene candidates and all annotated genes with their respective median values (dashed line) are indicates by grey (anORFs) 
or black (novel ORFs) dots.  
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All novel ORFs were analysed regarding the presence of structural features necessary for gene expression. Three 

hundred base pairs of the upstream sequence of all candidates were subjected to promoter analysis using BPROM 

(Solovyev & Salamov, 2011). For all ORF except one, a σ70-dependent promoter was predicted in an average distance 

of 131 bp (Supplementary Figure 11A). The LDF value, which is a measure for the prediction accuracy and 

specificity, ranged from 0.34 to 9.13 (median = 2.42), and thus, clearly exceeded the minimum threshold value of 0.2. 

Termination of transcription at ρ-independent terminator structures was analysed in a 300 bp region downstream of 

the stop codon using FindTerm (Solovyev & Salamov, 2011). Forty-four of all novel gene candidates harboured a 

putative terminator in a distance ranging from 2 to 272 bp (Supplementary Figure 11B). A SD sequence was 

predicted for 59.5% of all novel ORFs according to the method described by Hyatt et al. (2010). However, a clear SD 

consensus pattern as obtained for protein-coding anORFs was not observed (Supplementary Figure 12) since the 

SD sequence motif and the distance from the start codon were highly variable (Supplementary File S1). 

Expression of the novel gene candidates was evaluated based on the results obtained for RNA-seq and Ribo-seq in two 

biological replicates (Exp1_aerobic_RepI+II). RPKM values were used to estimate transcriptional and translation 

strength. As seen in Figure 25A, RPKM values of the translatome (median = 19.5) of the novel ORFs were 

comparable to those of all protein-coding anORFs (median = 21.7) indicating transcriptional activity. RPKM values 

of the translatome ranged from 0.38 to 134,149 for the novel ORFs (median = 19.2) and were on average slightly larger 

than those of the anORFs (median = 14.8; Figure 25B). Read coverage values of the novel ORFs (median = 0.53) 

were also in a similar scale as the median coverage values of anORFs (0.50; Figure 25C). Translatability of the novel 

gene candidates as indicated by the RCV was marginally lower for the novel gene candidates (median = 0.68) compared 

to those of the anORFs (median = 0.8; Figure 25D). No significant differences were obtained when dividing the novel 

candidates in intergenic and overlapping ORFs for expression analysis (results not shown). The expression values 

obtained for the anaerobic condition essentially confirmed similar transcriptional and translational signals for both the 

novel ORFs and the anORFs (results not shown). 

Figure 25. Expression metrics of the novel gene candidates (n = 116) in comparison to protein-coding, annotated genes (n = 4,586) 
in E. coli LF82. Violin plots displaying the mean reads per million mapped reads (RPKM) values of (A) RNA-seq and (B) Ribo-
seq, the (C) mean read coverage of ORFs in Ribo-seq and (D) the mean ribosome coverage value (RCV) of two biological replicates 
(Exp1_aerobic_RepI+II) are shown. 

    10,000

    100

    1

anORFs             novel ORFs                              anORFs               novel ORFs        

     100 

     1 

   
  c

ov
er

ag
e 

R
ib

o-
se

q 

     1.00 

     0.75 

     0.50 

     0.25 

     0.00 

   
  R

N
A

-s
eq

 lo
g 2

(R
PK

M
) 

   

   
  R

C
V

 
   

  R
C

V
 

    10.00

    1.00

    0.10

    0.01

anORFs            novel ORFs                              anORFs               novel ORFs        

     10,000 

A B 

C D 

   
  R

ib
o-

se
q 

lo
g 2

(R
PK

M
) 

   



77 

 

83.6% of all novel gene candidates, including the candidates LF82_14 and LF82_71 (Figure 23, top row), showed 

an accumulation of reads equivalent to more than 1 RPM at the start codon in the Ribo-RET experiment, and thus, 

were successfully predicted by the applied algorithm. Metagene analysis (Figure 26A) confirmed the redistribution 

of the ribosomes at the putative start position by a factor of five compared to the ND experiment. However, in 

comparison to the metagene plot derived from highly expressed anORFs (Figure 15B), the peak was slightly less 

pronounced and shifted by one nucleotide at the start codon region. Nevertheless, the median height of the RET peak 

of the novel ORFs was even slightly higher than those of all anORFs (Figure 26B). 

RF analysis of the novel ORFs revealed a clear periodicity signal at the third sub-codon position. With a percentage 

of 59%, the read density at this position was similar to the RF signal obtained for anORFs (57%; Figure 21B) after 

NNC shifting. However, instead of an accumulation of reads at the second sub-codon position as expected based on 

RelE´s cleavage characteristics, the highest reads density was obtained for sub-codon position 3 (Figure 27A). This 

observation suggested the occurrence of translation of an additional overlapping frame located in -1 relative to the 

novel ORFs, e.g., those of a sense overlapping mother gene. Indeed, the majority of all novel gene candidates showed 

such a sense overlap with annotated genes. Considering sense overlaps may result in a shift in the periodicity signal. 

To test for this hypothesis, sense overlapping ORFs were separated from the remaining ORFs, and both groups were 

analysed individually. For the first, a distribution of 23%, 12% and 65% was obtained (Figure 27B), which was quite 

similar to the signal obtained for all novel ORFs regardless of their overlapping status (Figure 27A). Since the RF 

analysis is based on absolute read numbers and not on normalized read numbers, ORFs with low read counts contribute 

less to the sum signal than ones with high read counts. Some of the novel candidates indeed overlapped with highly 

expressed mother genes e.g., ribosomal proteins or flagellar proteins (Supplementary File S1), thereby offering an 

explanation for the high resolution of the periodicity signal obtained. As a result, the reading frame signal of a weakly 

expressed novel ORF located in frame +2 might be completely concealed by the signal of a sense overlapping anORF 

(e.g., encoded in frame +3; Figure 27B) due to higher read counts mapping to frame +3 instead of to frame +2. In 

contrast, intergenic ORFs as well as antisense overlapping ORFs showed a clear preference for sub-codon position 2 

(67%; Figure 27C), which provided evidence for their genuine translation. RNA-seq control analyses confirmed either 

an entire lack or a reduction of the periodicity signal of the novel ORFs in the absence of translation (Figure 27). 

Figure 26. Translation initiation site analysis of novel gene candidates in E. coli LF82. (A) The metagene plot shows the normalized 
RPM values of each position in a -10 to 30 nt window around the start codon (dashed line, distance 0 nt) after determining the P
site position of reads mapping to the novel gene candidates (n = 116) in the no drug (ND) and retapamulin (RET) Ribo-seq 
experiment. (B) Violin plots display the RET peak height measured in RPM for the novel gene candidates in comparison to protein-
coding, annotated genes (n = 4,586). 
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Evidence for the functionality of some of the novel ORF candidates was provided by differential gene expression 

analysis. In total, six of the novel ORFs were differentially regulated in the presence (Exp1_aerobic_RepI+II) and 

absence of oxygen (Exp1_anaerobic_RepI+II); two at the transcriptional level and four at the translational level. 

Both genes regulated at the transcriptional level showed increased expression under anaerobic conditions, whereas two 

of the ORFs found to be regulated at the translatome level were upregulated and the remaining two were 

downregulated depending on the cultivation conditions (Supplementary File S1). Further hints for a potential 

functionality of the novel ORFs was delivered by blastp analysis. For 70 out of 116 ORFs, homologous proteins with 

a minimum identity percentage of 70% and an e-value ≤1×10-3 were detected when searching in the non-redundant 

protein database nr. Application of a more stringent e-value of ≤1×10-10 aided in the detection of homologous proteins 

for 62 novel gene candidates. Approximately half of the detected homologues were either classified as “hypothetical”, 

“uncharacterized” or “putative”; for the remaining a functional description was available. When searching against the 

RefSeq Select proteins database, high confident hits were obtained for two intergenic ORFs. All relevant details on 

the novel gene candidates including their blastp results are listed in Supplementary File S1. 

3.2 Identification of protein-coding genes in P. aeruginosa PAO1 

In addition to E. coli LF82, P. aeruginosa PAO1 was also subjected to novel ORF analysis. P. aeruginosa PAO1 has 

a high GC genome with a size of 6,264,404 bp and encodes for 5,572 anORFs according to RefSeq (GCF_000006765.1). 

Remarkably, 40.5% of all anORFs are annotated as hypothetical and lack functional characterization. Besides the 

mentioned anORFs, the genome of P. aeruginosa PAO1 also harbours 57,752 additional ORFs exceeding a size of 

93 bp. Among these, 45,068 overlap either trivially (<30 nt; 1,657) or non-trivially (≥30 nt; 43,411) while showing 

different types of overlaps (Table 16). Further 8,785 ORFs lack a clear allocation and belong to multiple categories; 

the remaining 3,899 ORFs are located in intergenic regions. 

Table 16. Number and classification of non-trivial overlapping genes (OLGs) predicted for the P. aeruginosa PAO1 genome. All 
ORFs exceeding 93 nt and overlapping more than 30 nt with an annotated gene were determined and classified according to the type 
of overlap and their strand location. 

strand overlap type designation number 

sense 
embedded OLG_ES 12,977 

partially at 5`end OLG_PS5 2,014 
partially at 3`end OLG_PS3 1,846 

antisense 
embedded OLG_EA 19,904 

partially at 5`end OLG_PA5 3,561 
partially at 3`end OLG_PA3 3,109 

Figure 27. Reading frame sum signal of all novel gene candidates in E. coli LF82. Shown are the results obtained for (A) all novel 
candidates (n = 116), (B) for all ORFs overlapping sense with anORFs (n = 62) and (C) all ORFs without the sense overlapping 
ORFs (n = 54) of all reads in the Ribo-seq and RNA-seq datasets of Exp3 after shifting of NNC reads.  
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For the analysis of the protein-coding capacity of these alternative ORFs, eleven NGS datasets and one MS dataset 

were generated, which were: 

- Experiment 1 (Exp1) – four datasets: Ribo-seq and RNA-seq at optimal growth conditions (37 °C, LB, 

aerobic) in two biological replicates (section 3.2.1). Optimal experimental conditions were evaluated in 

pretests prior to implementation of the main experiments. 

- Mass spectrometry experiment (Exp1_MS) – one dataset: Proteomic analysis using DDA-MS with 

ultra-deep sample fractionation to gain a global snapshot of the translated ORF products (section 3.2.2). The 

analysed sample matched the sample of Exp1. 

- Experiment 2 (Exp2) – two datasets: Ribo-RET and the respective Ribo-ND dataset were implemented 

in a P. aeruginosa sextuple mutant to aid TIS identification (section 3.2.3). 

- Experiment 3 (Exp3) – two datasets: E. coli-originating RelE was used for reading frame analysis in 

RelE-supported Ribo-seq using RelE and MNase for nuclease footprinting. A Ribo-seq experiment with 

MNase only served as an internal control for RelE functionality in P. aeruginosa (section 3.2.4). 

- Experiment 4 (Exp4) – three datasets: Transcriptome samples matching to Exp1 were analysed using 

Cappable-seq in order to capture 5´ ends of primary transcripts thereby facilitating the global identification 

of TSS (section 3.2.5). This experiment was performed in three biological replicates. 
 

Analogous to E. coli LF82, all experiments conducted in P. aeruginosa were analysed separately with regard to both 

annotated as well as unannotated ORFs and evaluated using different prediction tools. Finally, all prediction results 

were combined and high confident OLGs and iORFs were selected for further bioinformatical characterization. Two 

exceptionally long ORFs and their respective mother genes identified in P. aeruginosa PAO1 were analysed 

experimentally and bioinformatically in more detail. 

3.2.1 Conventional RNA-seq & Ribo-seq 

The aim of this part was to analyse the transcriptional and translation landscape of P. aeruginosa using conventional 

RNA-seq and Ribo-seq. For this purpose, the Ribo-seq procedure had to be adapted and optimized for this organism. 

After determining the optimal procedure, RNA-seq and Ribo-seq were conducted in two biological replicates and 

sequencing results were evaluated with respect to data quality, read length and reproducibility.    

3.2.1.1 Adaptation and optimization of the Ribo-seq protocol 

A temperature of 37 °C and LB broth were chosen for P. aeruginosa PAO1 in order to ensure optimal growth for 

Ribo-seq experiments. Samples were harvested after 180 min of cultivation at the transition from exponential to 

stationary phase (OD600nm = 1) and after 15 h of cultivation in late stationary phase (OD600nm = 6). In a first approach, 

Ribo-seq of these samples was conducted following the protocol described for E. coli LF82 (Exp1) using five nucleases 

for footprinting. However, sequencing resulted in mRNA yields of 5.8% and 1.9% and rRNA yields of 71.3% and 78% 

for the sample harvested at OD600nm = 1 and OD600nm = 6, respectively. The reduced mRNA content in the late stationary 

sample can most likely be traced back to the impairment of the RNA integrity, which was already visible after RNA 

extraction (Supplementary Figure 13A). For this reason, late stationary phase samples were deemed not 

appropriate for Ribo-seq experiments. Although RNA quality of the OD600nm = 1 sample was by far higher than those 

of the OD600nm = 6 sample (Supplementary Figure 13A), the low mRNA percentage also indicates sub-optimal 

reaction conditions. In order to increase mRNA yield by decreasing rRNA reads, all nucleases used in the experiment 
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were evaluated regarding their effect on rRNA integrity. Pretests suggested that RNase I -even when present in small 

amounts- leads to massive RNA degradation, and thus, is unsuitable for Ribo-seq in P. aeruginosa PAO1 

(Supplementary Figure 13B). By omitting RNase I from the nuclease mixture as well as by reducing the 

concentration of all other nucleases by 30%, higher yields of mRNA (i.e., effective reads) were obtained (Table 17). 

3.2.1.2 Sequencing output and data reproducibility 

Two biological-independent RNA-seq and Ribo-seq experiments were conducted according to the optimized Ribo-seq 

protocol for P. aeruginosa PAO1. After sequencing, read numbers of 61.4 to 220.3 mio were obtained. Although the 

percentage of reads which mapped to genome was higher for P. aeruginosa PAO1 compared to E. coli LF82 

(Table 12), the yield of mRNA-mapping reads was clearly reduced. Nevertheless, 14.9 to 35.2 mio and 3.5 to 11.0 mio 

effective reads were obtained for both Ribo-seq and RNA-seq experiments, respectively (Table 17). Analogous to 

E. coli LF82, the percentage of mRNA reads was significantly higher for Ribo-seq than for RNA-seq experiments. The 

vast majority of all read mapping to mRNA regions in the Ribo-seq datasets had a length of 21 to 26 nt suggesting 

that this size corresponds to the ribosomal footprint in P. aeruginosa (Figure 28). 

Table 17. Overview of Ribo-seq and RNA-seq reads obtained for Exp1 in P. aeruginosa PAO1 after sequencing. Shown are the 
total number of sequenced reads as well as the number of reads mapping to the P. aeruginosa PAO1 genome in millions for two 
biological replicates. Percentages in brackets indicate the proportion of reads mapping to rRNA and tRNA as well as mRNA regions 
of the P. aeruginosa PAO1 genome. 

Experiment Replicate Total Mapped rRNA & tRNA mRNA 

Ribo-seq 
I 133.6 112.2 97.3 (86.7%) 14.9 (13.3%)

II 191.8 163.5 128.3 (78.5%) 35.2 (21.5%)

RNA-seq  
I 61.4 46.0 42.5 (92.4%) 3.5 (7.6%)

II 220.3 179.9 168.8 (93.9%) 11.0 (6.1%)

When calculating RPKM values of all anORFs for the two biological replicates, Pearson correlation coefficients r of 

0.99 and 0.81 were obtained for RNA-seq and Ribo-seq (see Figure 29), respectively. This observation points to a 

very strong linear relationship between the biological replicates suggesting excellent reproducibility. Experimental 

reproducibility was even better than observed for E. coli LF82.  

Figure 28. Read length distributions of all mRNA reads of conventional Ribo-seq in P. aeruginosa PAO1. The proportion of reads 
mapping to mRNA regions is displayed for the first (RepI) and second (RepII) replicate of the experiment Exp1. 
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3.2.2 Proteomic verification of anORF translation by mass spectrometry 

In addition to Ribo-seq, a sample harvested at OD600nm = 1 was subjected to DDA-MS to identify the global proteome 

at this time point. In order to increase sensitivity of detection, the sample was separated into 48 fractions prior to MS 

measurement. Proteins encoded by anORFs were identified by searching the measured spectra against all entries of a 

RefSeq-derived database. After deleting all peptides, which were of low quality or were assigned to be contaminants 

or reverse hits, 54,947 peptides mapping to anORF-encoded proteins remained. Proteins with more than two unique 

mapping peptides were considered to be successfully detected. Overall, 3,992 out of 5,572 proteins (71.6%) were 

detected using MS with a total number 54,884 peptides. 1,463 of all identified proteins were annotated as ‘hypothetical’ 

or ‘uncharacterized’ constituting 64.9% of all known ‘hypothetical’ anORFs. This result confirms the genuine protein-

coding nature of this type of anORFs.  

When comparing translatome and proteome data, a correlation between the expression strength as indicated by RPKM 

values and the success of MS detection was observable. Genes encoding for proteins which were detected by MS showed 

on average higher RPKM values than genes without MS signal (Figure 29). Significance of this observation was 

confirmed by a Wilcoxon test with a p-value of 2.2×10-16. A moderate linear relationship of 0.45 according to Pearson 

was obatined when correlating RPKM values with MS intensity. Correlation strength was increased to 0.69 when 

calculating the Spearman's rank correlation coefficient.  

In addition to the RefSeq reference protein sequence file, MS2 spectra were additionally searched against a six-frame 

translation of the P. aeruginosa PAO1 genome to enable the identification of novel protein-coding regions. All peptides 

obtained for this analysis were combined with the results of the Ribo-seq predictions as described in section 3.2.6. 

3.2.3 Ribo-RET for translation initiation site detection 

Ribo-RET (i.e., using retapamulin) was applied to P. aeruginosa in order to detect TISs in this species. For a proper 

RET effect, the gene oprM encoding the homologue to the TolC outer membrane factor of the AcrAMFP-AcrBRND-

TolCOMF efflux pump had to be deleted. Due to the high number of intrinsic efflux systems, a deletion mutant strain, 

P. aeruginosa PAO397, which lacks multiple genes involved in antibiotic efflux was used for this experiment. The 

MIC of both strains was determined and RET was added in 100-fold excess during the Ribo-seq cultivation. 

Figure 29. Comparison of translatome and proteome data in P. aeruginosa PAO1. Shown are the RPKM values obtained for all 
annotated genes (n = 5,572) of two biological Ribo-seq experiments with their Pearson correlation coefficient r. Genes encoding for 
proteins which were detected by MS are displayed in black; genes lacking MS detection of their protein products are shaded according 
to their density (yellow ≙ high density; dark red ≙ low density). 
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3.2.3.1 Determination of the minimum inhibitory concentration of retapamulin 

The wild type strain PAO1 and its deletion mutant strain PAO397 were cultivated in LB as described for E. coli 

LF82 (section 3.1.2.2). One hundred microliters of a cell suspension with 1.35×106 CFU/mL (±standard deviation 

0.9×104) or 5.1×106 CFU/mL (±standard deviation 3.7×106) of strain PAO1 and PAO397 were 1:2 diluted with LB 

containing varying concentrations of RET, respectively. The final inoculum concentration was approximately 

6.8×105 CFU/mL for the wild type and 2.6×106 CFU/mL for the deletion mutant strain. 

Analogous to E. coli LF82, the wild type P. aeruginosa strain showed a MIC ≥32 µg/mL, which was the highest RET 

concentration used in this experiment. In contrast, strain PAO397 showed a reduced MIC value of 0.5 µg/mL after 

24 h of cultivation (Figure 30). This value was twice as high as the respective MIC value obtained for E. coli 

LF82ΔtolC. Again, slight fluctuation were observable throughout the cultivation process (results not shown), but all 

three independent replicates confirmed the final MIC values.  

3.2.3.2 Cut-off specification for genome wide TISs analysis 

Ribo-seq of strain PAO397 after treatment with 100× MIC of RET when reaching an OD600nm = 1 resulted in 

17.3 mio (13.8%) and 29.2 mio (18.1%) mRNA reads for Ribo-RET and the ND control. Yields were in a similar order 

of magnitude as those obtained for the first experiment, whereby reads were on average larger (33-36 nt; 

Supplementary Figure 14A) than reads of the conventional Ribo-seq.  

For RET data evaluation, P site mapping with an offset of 15 nt was performed and RPM and RPKM values were 

calculated. In contrast to E. coli LF82, subtraction of 15 nt from the 3´end was sufficient for P site mapping, resulting 

in a peak of normalized reads at the expected position (i.e., 0 nt distance from start) in the metagene analysis of 

184 highly expressed anORFs (Figure 31A). Unexpectedly, a second, distinct peak was observable at position +2 

suggesting slight inaccuracies of P site mapping. However, since this peak was located within the ±3 nt window, which 

is used for ORF prediction, an adjustment was not performed. Overall, RET treatment resulted in clear accumulation 

of reads at start codons (distance to start codon 0 nt) as observed by the eightfold higher normalized reads counts in 

the RET dataset compared to the ND experiment. This effect was even more pronounced in P. aeruginosa PAO397 

than in E. coli LF82 (see Figure 15B). Ribosome redistribution caused by RET in P. aeruginosa PAO397 was also 

Figure 30. Results of minimum inhibitory concentration (MIC) testing of retapamulin (RET) for P. aeruginosa PAO1 and 
P. aeruginosa PAO397. The overall growth of both strains in the presence of different RET concentrations ranging from 0.125 to 
32 µg/mL was calculated after 24 h by dividing the measured optical density by the respective value of bacterial cultures without 
RET (positive control). Plain broth without cell inoculum was used as a negative control (NC). 
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confirmed on single gene level, for instance, when analysing genes encoded by the S10 ribosomal protein operon 

(Supplementary Figure 15). These results suggest successful implementation of Ribo-RET in P. aeruginosa 

PAO397. Although the overall correlation between normalized read counts at start codons in the RET dataset and 

the RPKM values in the ND dataset was limited (Pearson´s r: 0.61), highly significant results were obtained when 

comparing RET peak heights of highly expressed anORFs (RPKM ≥ 100) with those of medium to low expressed 

anORFs (RPKM < 100; Figure 31B).  

In order to determine an appropriate value for the detection of translated ORFs, the algorithm published by 

Meydan et al. (2019) was applied using variable threshold ranging from 0.2 to 5. Pairwise fold change calculations 

suggested an optimal value of about 0.8 (Supplementary Figure 16). A further rise of the threshold did not result 

in a severe drop in the number of predictions. However, application of this threshold yielded the detection of 73% of 

all highly expressed anORFs with RPKM values larger than 100. The observed number was substantially lower than 

the number of predictions obtained for E. coli LF82 (88%) after applying a threshold value of 1. To increase the 

number of detectable ORFs in P. aeruginosa, a threshold of 0.63 was used for the final prediction, thereby enabling 

the identification of 33% of all anORFs as well as 76% of all highly expressed anORFs (RPKM ≥ 100). 

3.2.4 RelE-enhanced Ribo-seq to visualize triplet periodicity  

E. coli-originating RelE was also used for RelE-supported Ribo-seq in P. aeruginosa. To ensure sufficient cleavage 

activity in this strain, the amount of RelE was increased by factor two and a half compared to the experiment in 

E. coli LF82. Footprint lengths of 10-40 nt were isolated after nuclease digestion and subjected to Illumina sequencing. 

However, low similarity and identity percentages of 17.2% and 9.7% between the E. coli-derived RelE and the 

corresponding homologue of P. aeruginosa necessitated a careful evaluation of the potential functionality of the foreign 

toxin in the target species as discussed in section 3.2.4.1. For this purpose, an additional Ribo-seq experiment without 

RelE was conducted as a negative control. 

 

Figure 31. (A) Metagene and (B) threshold analysis of all anORFs (n = 5,572) in P. aeruginosa PAO397. (A) Shown are normalized 
RPM values of each position in a -10 to 30 nt window around the start codon (dashed line, distance 0 nt) after determining the P 
site position by subtracting 15 nt of all genes with RPM values ≥100 in the ND and RET datasets (n = 184). (B) RET peak heights 
at start codons are displayed as a function of expression strength in the no drug (ND) control Ribo-seq dataset. A significant difference 
(Wilcoxon test; p-value < 0.001) was obtained for anORFs with RPKM values below 100 (n = 4,715) and equal or larger than 100 
(n = 857). The threshold used for ORF prediction (≥0.63) is indicated by the dotted line. 
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3.2.4.1 Evaluation of RelE functionality in PAO1 

Sequencing reads were processed and mapped as described for E. coli LF82 resulting in 40.7 and 52.1 mio mRNA reads 

in the Ribo-seq experiment with and without RelE, respectively. Regarding read length, both experiments showed 

similar results with most reads having a size of 26 to 27 nt (Supplementary Figure 14B). However, a slight increase 

in the number of short reads (15 to 21 nt) in the RelE-supported dataset could point towards cleavage by RelE. In 

order to gain further information about RelE activity in P. aeruginosa PAO1, the sequence bias at the 3´ ends of all 

RFPs was analysed. For the dataset generated with MNase only, a clear sequence preference was observable (Figure 

32A). The majority of reads ended with the nucleobase C or G at position -1, whereas downstream of the cleavage 

site (position +1) nucleobases A and T were enriched. This observation is in concordance with the well-known sequence 

specificity of MNase, cleaving predominantly before A and T nucleobases (Dingwall et al., 1981). Hwang & Buskirk 

(2017) also obtained a similar result upon analysis of a MNase-only Ribo-seq experiment. Reads of the RelE-supported 

Ribo-seq dataset, in contrast, showed a completely different sequence composition (Figure 32B) indicating a 

substantial difference to the negative control thereby suggesting that the 3´end cleavage was affected by RelE. 

However, a clear bias for nucleobase C at position -1 and nucleobase G at position +1 as observed by Hwang & 

Buskirk (2017) was neither apparent for P. aeruginosa PAO1 (Figure 32B) nor for E. coli LF82 (Supplementary 

Figure 17). Separation of reads according to their length and repetition of this analysis did not unravel a sequence-

specific effect as a function of length (results not shown).  

Figure 32. Results of (A, B) RelE sequence bias and (C, D) periodicity analysis in P. aeruginosa PAO1. Figure A and B pictures 
the sequence bias at the 3´ end of all mRNA reads obtained in the Ribo-seq experiment after digestion (A) with MNase only or (B) 
with a combination of MNase and RelE. Reading frame sum signal of all annotated genes (n = 5,572) are shown for the Ribo-seq 
experiment with (+RelE) and without RelE (-RelE) as well as for an independent RNA-seq dataset (Exp1_RepII). Subtraction of 
30 nt from start and stop positions was performed. Figure C displays the results of the raw data; Figure D shows the reading frame 
signal after shifting of reads arising from codons ending in C. 
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For reading frame analysis, 3´ends of mRNA reads were mapped to the first, second or third sub-codon position of all 

anORFs after subtraction of 30 nt at the gene boundaries. After counting all reads at each position, 46% of all read 

end mapped to the second sub-codon position, 38% to the third and 16% to the first position (Figure 32C). When 

performing an NNC shift, a pronounced reading frame signal of 62% to 23% to 16% was obtained (Figure 32D). In 

contrast, the control experiment without RelE did not show an accumulation of reads at the second sub-codon position, 

neither in the raw data nor in the shifted data. This result suggests that the difference observed in the periodicity 

signals were caused by RelE and that the toxin is able to cleavage mRNA in P. aeruginosa. A second control analysis 

using an independent RNA-seq dataset of Exp1_RepII exhibited a uniform read distribution in the raw data, and 

shifting of NNC reads did not lead to a substantial improvement of the reading frame signal. 

3.2.5 Cappable-seq for transcription start site (TSS) identification 

Cappable-seq was performed in biological triplicates to facilitate the detection of transcription start site. In a first 

step, the data quality and reproducibility of the sequencing output of three replicates was compared. Afterwards, 

optimal parameters for global TSS identification including threshold values as well as the length of the region to be 

analysed were determined based on the results obtained for all protein-coding anORFs in P. aeruginosa PAO1.  

3.2.5.1 Sequencing output and reproducibility of biological replicates  

RNA of samples harvested at OD600nm = 1 was isolated and handed over to vertis Biotechnology AG which performed 

the experimental Cappable-seq procedure. Sequencing resulted in at least 9.8 mio reads per sample (Table 18). The 

proportion of reads mapping to rRNA and tRNA regions was up to a maximum of 7.5% of all mappable reads, 

indicating successful depletion of rRNA and tRNA reads due to their monophosphorylated 5`ends. In return, more 

than 92.5% of all reads mapped to mRNA regions thereby confirming efficient enrichment of 5` triphosphorylated 

mRNA reads without requiring further rRNA depletion. 

Table 18. Overview of Cappable-seq reads after sequencing. The total number of sequenced reads as well as the number of reads 
mapping to the P. aeruginosa PAO1 genome in millions are shown for three biological replicates. Percentages in brackets indicate 
the proportion of reads mapping to rRNA and tRNA as well as mRNA regions of the P. aeruginosa PAO1 genome. 

Replicate Total Mapped rRNA & tRNA mRNA 

I 10.8 10.6 0.8   (7.5%) 9.8   (92.5%) 

II 9.8 9.6 0.7   (7.3%) 8.9   (92.7%) 

III 10.4 10.2 0.6   (5.9%) 9.6   (94.1%) 

The reproducibility of the sequencing data of biological replicates was investigated by calculating relative read scores 

(RRS) per genome position. For this purpose, the script provided by Ettwiller et al. (2016) was applied to trim reads 

to their 5´ ends, thereby yielding the outermost base of each sequencing read. All genome positions covered by at least 

one read (RRS > 0) in all biological replicates were used for calculation of pairwise Pearson correlation coefficients r. 

For all combination, very strong linear relationships with r ≥0.998 were obtained (Table 19). This result confirmed 

excellent biological reproducibility although cultivation, RNA isolation and further processing of the RNA for 

Cappable-seq were conducted independently. 

Table 19. Calculation of Pearson correlation coefficients r for Cappable-seq experiments in P. aeruginosa PAO1. Genomic positions 
with a relative read score exceeding zero in three biological replicates (I-III) were used for the calculation of Pearson´s r. 

Replicates I + II I + III II + III 

Pearson´s r 0.998 0.998 1.000 
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3.2.5.2 Cut-off analysis for global detection of TSS 

The script for RRS calculation determines all possible TSS at each position of the genome which exceed a certain 

minimum RRS. This value is a variable, user-defined threshold and should be adjusted to the respective dataset. In 

order to determine the optimal threshold for global TSS prediction, multiple values ranging from 0 to 20 were specified 

and the number of predicted TSS of all three replicates was evaluated (Figure 33A). An inverse relationship between 

the RRS and the number of predictions was observable: the higher the minimum RRS, the lower the number of 

obtained TSS. When calculating fold changes between the number of TSS predicted by using two consecutive threshold 

values, a flattening with increasing RRS was observable. While thresholds of 0 and 0.5 amounted, for instance, to a 

2.6-fold difference in the number of predictions, a further increase of the RRS from 0.5 to 1 or from 1 to 1.5 resulted 

only in a 1.5-fold and 1.3-fold reduction of predicted TSS. A RRS value of 1.5 was chosen for the subsequent analyses 

because above this threshold no significant reduction in the number of predictions was obtained. The same RRS value 

was also chosen by Ettwiller et al. (2016) and Zehentner (2020) for global TSS analysis in E. coli K-12 MG1655 and 

E. coli O157:H7 EDL933, respectively. Application of this threshold in P. aeruginosa PAO1 Cappable-seq data resulted 

in 11,101 TSS for replicate 1, 11,739 TSS for replicate 2 and 12,230 TSS for replicate 3; 9,205 reliable TSS exceeding 

a RRS of 1.5 were found in all three replicates. 

Since the TSS marks the start of the 5´UTR and is located upstream of a gene´s coding region, a further analysis of 

the distance between the TSS and start codon was necessary for a reliable assignment. For this purpose, all anORFs 

were analysed regarding the presence of a TSS with an RRS ≥1.5 in a 500 bp region upstream of the coding region. 

This distance was previously defined to be the maximum 5´UTR length in P. aeruginosa PA14 (Wurtzel et al., 2012). 

As reproducibility was shown to be excellent (section 3.2.5.1), only values found in all three replicates were considered 

for 5´UTR length analysis. In total, 2,369 out of 5,572 anORFs showed a reproducible TSS matching the applied 

criteria. Among these, 1,207 were also reported for the homologues present in PA14 by Wurtzel et al. (2012), whereby 

55.5% of them were located at the exact same position in both strains. In strain PAO1, the TSS was on average 

located 131 bp (median = 69 bp) upstream of the start codon (Figure 33B). However, a variety of shorter as well as 

larger 5´UTRs were obtained (1st quartile = 30 bp; 3rd quartile = 193 bp). Based on this analysis, a conservative 

distance of 200 bp upstream of novel gene candidates, which corresponds to detection of 75% of all reproducible 

anORF-associated TSS, was searched for the presence of a TSS as described in section 3.2.6.2. 

Figure 33. Results of the (A) cut-off and (B) 5`UTR length analysis of transcription start sites (TSS) in P. aeruginosa PAO1.
(A) Number of predicted TSS after applying relative read scores (RRS) of 0 to 20. Numbers above bars represent fold changes for
TSS counts obtained with a certain threshold in comparison to the respective value of the previous applied threshold. (B) Distance 
of TSS from the start codon of all anORFs for which a reliable TSS exceeding a RRS of 1.5 was detected in three biological replicates. 
The boxplot indicates first, second and third quartile values; the dot represents the mean value.
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3.2.6 Detection and analyses of novel intergenic and overlapping genes 

Analogous to E. coli LF82, all six Ribo-seq datasets generated for P. aeruginosa PAO1 were evaluated with regard to 

novel, translated ORFs by using different prediction tools. Individual results as well as the reproducibility of the 

predictions across biological replicates are discussed in section 3.2.6.1. The most reliable gene candidates with high 

prediction probability scores were subsequently characterized in more detail (section 3.2.6.2). Finally, two examples 

of exceptional long OLGs were further investigated experimentally and bioinformatically (section 3.2.6.3). 

3.2.6.1 Application of prediction algorithms for individual and collective datasets 

Retapamulin-supported Ribo-seq resulted in 22,517 novel gene candidates after applying the scripts by Meydan et al. 

(2019) using a threshold value of 0.63. This number was slightly higher than the number predicted for E. coli LF82, 

probably due to the reduced threshold value. The remaining Ribo-seq datasets of Exp1_RepI+II, Exp2_ND and both 

datasets of Exp3 were analysed using DeepRibo, REPARATION, and the scripts by Giess et al. (2017) yielding on 

average 6,389, 4,033 and 79,086 predictions per dataset, respectively. DeepRibo predicted a 2.2-fold higher and 

REPARATION a 2.1 lower number of translated ORFs in P. aeruginosa PAO1 compared to E. coli LF82. In contrast, 

scripts by Giess et al. (2017) predicted similar numbers for both organisms. DeepRibo as well as the scripts by 

Giess et al. (2017) showed the highest number of predictions for the dataset Exp1_RepII, whereas REPARATION 

predicted the most hits for the datasets of Exp3. 

When calculating the percentage of ORFs predicted by one tool in multiple datasets (Table 20), the by far highest 

prediction percentages ranging from 56.8% to 76.8% were again obtained for the scripts by Giess et al. (2017). 

DeepRibo and REPRATION, in contrast, had lower prediction overlaps. However, compared to E. coli LF82, the 

percentage of identically predicted ORFs was on average higher for P. aeruginosa PAO1. The largest overlap of hits 

predicted by DeepRibo and REPRATION was obtained for biological replicates, thereby suggesting a better prediction 

reproducibility for P. aeruginosa PAO1 compared to E. coli LF82. 

Table 20. Reproducibility of Ribo-seq prediction results for P. aeruginosa PAO1. Shown are the percentages of identical predictions 
obtained by the tool DeepRibo, REPARATION and the scripts by Giess et al. (2017) for pairwise comparisons of all experiments 
performed in P. aeruginosa PAO1. 

 DeepRibo REPARATION Scripts by Giess 
et al. (2017) 

Exp1_RepI  — Exp1_RepII 67.81 51.91 61.41 
Exp1_RepI  — Exp2_ND 40.20 37.71 56.78 
Exp1_RepI  — Exp3_MNase 60.74 37.93 60.60 
Exp1_RepI  — Exp3_RelE 59.30 40.51 62.50 
Exp1_RepII  — Exp2_ND 36.90 40.01 74.23 
Exp1_RepII  — Exp3_MNase 62.32 40.11 74.00 
Exp1_RepII  — Exp3_RelE 58.59 42.04 72.05 
Exp2_ND  — Exp3_MNase 38.78 41.94 76.24 
Exp2_ND  — Exp3_RelE 44.87 41.31 76.78 
Exp3_MNase  — Exp3_RelE 67.11 45.25 75.14 

Analogous to the results obtained for E. coli LF82, the prediction overlap of all three tools on one Ribo-seq dataset in 

P. aeruginosa PAO1 was only marginal and ranged from 1.4 to 2.5% of the entire number of hits (Supplementary 

Figure 18). For most reliable ORF identification, all prediction results obtained for the Ribo-seq datasets 

(Exp1_RepI+II, Exp2_ND and Exp3 with and without RelE) were merged with the results obtained for the Ribo-

Ret dataset (Exp2_RET) evaluated according to Meydan et al. (2019).  
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In addition, all peptides detected in the DDA-MS experiment after searching MS2 spectra against a six-frame 

translation were added. After merging of the 16 different prediction results, 81,222 ORFs predicted in at least one 

dataset by one of the mentioned possibilities were obtained. A score between 1 and 16 was assigned to each hit which 

represents the absolute number of positive predictions (score 1 ≙ ORF predicted by one tool in one dataset; score 16 ≙ 

ORF predicted by all tools in all datasets). Predictions found in more than a half of all possibilities (score > 8) as well 

as all hits with a lower score but with MS evidence by minimum two peptides were further analysed. After classification 

and visual inspection, 124 novel gene candidates with scores between 2 and 15 remained (Supplementary Table 5). 

Three examples of the identified OLG candidates with their respective Ribo-seq signals of Exp2 are displayed in 

Figure 34. 
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Figure 34. Ribo-seq signals of three novel gene examples identified in P. aeruginosa PAO1. Strand-specific Ribo-seq signals of the 
RET dataset (Exp2_RET, top row) and the ND dataset (Exp2_ND, middle row) were visualized using the Artemis genome browser 
(Rutherford et al., 2000). Translatome reads mapping to the forward strand are displayed above the centre line and reads mapping 
to the antisense strand are plotted below the centre line. The bottom row represent a six-frame translation of the genomic loci coding 
for the novel overlapping gene candidates (A) PAO1_109 (antisense overlap with two anORFs), (B) PAO1_108 (sense overlap) as 
well as (C) PAO1_1 (trivial overlap). All ORFs are displayed in their respective frame and anORFs are highlighted in grey. Black 
bars indicate stop codon positions. The genomic regions coding for the novel ORFs are shaded in blue. 
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3.2.6.2 Bioinformatic characterization of the selected ORFs 

Seventy-three of the identified gene candidates were encoded on the antisense strand and fifty-one candidates on the 

sense strand. Both groups were widely disseminated across the genome and six gene candidates were located in putative 

phage regions (Figure 35A). With a median size of 339 bp, the novel ORFs were shorter than annotated, protein-

coding genes in P. aeruginosa PAO1 (median = 873 bp) but substantially larger than the novel gene candidates 

identified in E. coli LF82. The largest novel gene candidate was a 2,037 bp long ORF overlapping non-trivially with 

three anORFs. Overlaps with three anORFs were also detected for two further ORFs spanning 1,221 and 1,533 bp. 

ATG was the most used start codon (82.3%), followed by GTG (13.7%) and TTG (4.0%). The anORFs showed a 

comparable start codon usage, with 89.1% of all anORFs starting with ATG, 9.4% with GTG, 1.4% with TTG and 

0.02% with rare start codons (i.e., ATC). Many of the ORFs detected were located in intergenic regions (n = 41) or 

overlapped only trivially with anORFs (n = 20), while the remaining candidates showed substantial overlaps (n = 63; 

Supplementary Table 5) covering minimum 8.8% of the entire ORF length. In 51 cases, the mother ORFs, which 

overlapped either trivially or non-trivially with a novel ORF, were annotated as “hypothetical”. 

For 49.2% of the novel gene candidates, a reproducible TSS with a RRS score ≥1.5 was detectable within a 200 bp 

region upstream of the putative start position in two of three biological replicates. This percentage decreased only 

marginally to 45.2% when the TSS had to be present in all three replicates. With a mean length of 58 bp, the novel 

ORF candidates had similar 5`UTR lengths as reported for the encoded anORFs (Supplementary Figure 19A). 

The RRS of the novel TSS found in two of three replicates ranged from 1.5 to 1,157.2. However, a correlation between 

the RRS of the TSS and the PRKM values of the transcriptome was not detectable, neither for the novel ORFs 

(Pearson´s r = 0.02) nor for the anORFs (Pearson´s r = 0.19). In order to detect conserved promoter motifs, a 20 bp 

region upstream of the TSS was extracted and sequence logos were created using WebLogo (Crooks et al., 2004). Both 

the novel ORFs (Figure 36A) as well as the anORFs (Figure 36B) with reproducible TSS showed a highly conserved   

-10 promoter region with A and T being the most prevalent nucleobases. In addition to TSS, 83.9% of all novel gene 

Figure 35. (A) Distribution and (B) length of novel gene candidates in the P. aeruginosa PAO1 genome. (A) The circles show the 
annotated genes (grey, n = 5,572) located at the sense strand and the antisense strand, the novel gene candidates (black, n = 124) 
located at the sense and the antisense strand as well as phage regions as indicated by grey arrows (from outside to inside). (B) The 
length distribution of all novel gene candidates and all annotated genes with their respective median values (dashed line) are indicates 
by grey (anORFs) or black (novel ORFs) dots.  
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candidates exhibited a SD sequence in an average distance of 8 bp upstream of the start codon. When analysing a 

region 20 bp around of each start codon, a clear SD consensus pattern was observable which resembled the SD pattern 

obtained for all anORFs (Figure 36CD). Furthermore, ρ-independent terminator structures were detected in a 

median distance of 103 bp (Supplementary Figure 19B) downstream of the stop codon for 22.6% of all novel gene 

candidates.  

Despite having structural features associated with protein coding, the novel ORF also showed profound transcription 

and translation signals (Figure 37). Their values of RPKM, RCV and read coverage used for evaluation of expression 

capability and strength were similar to those of protein-coding anORFs. When comparing RPKM values of the 

transcriptome (Figure 37A), the novel ORF candidates showed substantial higher values (median = 71.7) compared 

to all anORFs (median = 37.5). A similar observation was also made for the RPKM values of the translatome (median 

novel ORF = 61.7; median anORF = 27.4; Figure 37B). Both the novel ORFs as well as the anORFs exhibited on 

average an excellent read coverage (Figure 37C). In addition, the novel ORFs exhibited on average higher RCV 

values (median = 0.96; Figure 37D), and thus, showed a better translatability compared to the anORFs (median = 

0.74). Analogous to E. coli LF82, separating overlapping from intergenic gene candidates did not lead to deviating 

results (results not shown).  

 

 

 

 

 

 

Figure 36. Sequence logos of (A, B) promoter regions and (C, D) putative Shine-Dalgarno sequences in P. aeruginosa PAO1. 
A region of 20 bp upstream of reproducible TSS with RRS ≥1.5 are shown for (A) novel ORFs (n = 61) and (B) anORFs (n = 2,369). 
The Shine Dalgarno sequence motif is displayed within a 20 bp sequence region around the start codon of (C) all novel ORFs 
(n = 124) and (D) all anORFs (n = 5,572).  
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Ribo-RET analysis revealed translation initiation sites with a RET peak value larger than 0.63 RPM for 33.9% of all 

novel gene candidates. This number was 2.4-fold lower than the respective value of the novel ORFs identified in E. coli 

LF82 after applying a threshold of 1 RPM. The peak heights obtained for the novel gene candidates (median = 0.06) 

were slightly lower than those of all anORFs (median = 0.11) and substantially lower compared to those obtained in 

E. coli LF82 Ribo-RET suggesting reduced RET efficacy in P. aeruginosa PAO397. Nevertheless, metagene analysis 

confirmed the selective accumulation of ribosomes at start codons of the novel gene candidates in comparison to the 

ND control (Supplementary Figure 20). 

A clear RF signal was not obtained when analysing all novel ORFs in sum, neither in the Ribo-seq experiment with 

RelE nor in the experiment prepared without RelE (Figure 38A). For the first, 44% of all reads mapped to the 

expected sub-codon position 2, whereas this percentage was slightly lower (37%) for the latter. A similar observation 

was made when analysing all sense overlapping ORFs separately (Figure 38B). However, after omission of all sense 

overlapping ORFs from the novel ORFs, a pronounced periodicity signal of 55.5%, 26.4% and 18.1% for positions 2,1 

and 3 were observed in the RelE-supported Ribo-seq dataset (Figure 38C). The resolution of this signal was greatly 

enhanced compared to the control dataset prepared without RelE suggesting effectiveness of RelE in P. aeruginosa 

PAO1. The latter also showed a slight periodicity signal (36% to 44% to 20%); however, this signal arises from the 

NNC shift and was not present in the unshifted raw data (25% of all read mapping to position 2). In contrast, unshifted 

reads of the dataset prepared with RelE already showed a preference of position 2 (41%). In sum, these results were 

similar to those obtained for novel ORFs in E. coli LF82. In this organism, a RF signal was only detectable when 

leaving sense overlapping ORFs aside because their mother genes encoded at the same strand caused a distortion of 

the RF signal. 
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Figure 37. Expression metrics of the novel gene candidates (n = 124) in comparison to protein-coding, annotated genes (n = 5,572) 
in P. aeruginosa PAO1. Violin plots display the mean reads per million mapped reads (RPKM) values of (A) RNA-seq and (B) 
Ribo-seq, the (C) mean read coverage of ORFs in Ribo-seq and (D) the mean ribosome coverage value (RCV) of two biological 
replicates (Exp1_RepI+II). The values of olg1 and olg2 are indicated by a black rectangle and triangle; those of their mother genes 
tle3 and PA1383 by the respective grey-filled symbol. 
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The proteinaceous nature of 47 out of 124 novel gene candidates was verified by the detection of up to 13 peptides by 

DDA-MS. The majority of these ORFs (n = 31) was located either in intergenic regions or overlapped only trivially 

with anORFs. However, proteomic evidence was also obtained for 16 overlapping ORFs, often even by multiple 

peptides (for details see Supplementary File S2). Among the latter were also the candidates exemplarily shown in 

Figure 34 as well as all candidates exhibiting an overlap with three anORFs each, whereby their encoded proteins 

were detected by minimum two peptides. In addition, MS confirmed that in 54 of 63 cases at least one of the annotated 

mother genes overlapping non-trivially with novel ORFs were protein coding. Of all overlapping ORFs with peptide 

evidence, 87.5% of the protein products encoded by their respective mother genes were also detected via MS. 

Blastp analysis using the non-redundant protein database revealed protein homologues of 84 novel gene candidates 

with an e-value ≤1×10-3 and a minimum identity percentage of 70%. The homologues were primarily found within the 

genus Pseudomonas. 55 of them were either assigned as “hypothetical”, “putative” or “uncharacterized”, for the 

remaining a function, but often only the presence of a certain functional domain or the affiliation to a specific protein 

family was specified. Searching against the RefSeq Select proteins database resulted in the detection of 23 homologous 

proteins with high confidence, seven of them were classified as non-trivial overlapping ORFs in this study. However, 

four of them were homologous to unknown proteins or proteins containing domains of unknown functions. One of the 

remaining candidates had a significant hit with a virulence-associated protein of the RhuM family. According to the 

Pfam database (Mistry et al., 2021), proteins belonging to that family have not been experimentally validated so far, 

but are considered to be involved in pathogenicity due to the location of homologues within the Salmonella 

pathogenicity island 3 (Amavisit et al., 2003, Blanc-Potard et al., 1999). However, the homologous region between the 

protein encoded by the overlapping ORF found in P. aeruginosa and the blastp hit was only 58% and was exclusively 

restricted to the non-overlapping region. A second hit was obtained for a protein encoded by an ORF fully embedded 

within the gene mexT. This protein showed an alignment with a multispecies LysR-family transcriptional regulator 

protein. Interestingly, mexT also encodes for a transcriptional regulator belonging to the LysR family and is known to 

have a high mutational rate (LoVullo & Schweizer, 2020, Chandler et al., 2019, Maseda et al., 2000) due to its 

regulatory function of diverse processes including multidrug resistance (Köhler et al., 1999). The protein product of 

the last overlapping ORF showed 75.5% similarity to a multispecies class I SAM-dependent methyltransferase with 

an e-value of 2×10-104. This gene overlapped with two anORFs in P. aeruginosa, whereby the overlapping ORF as well 

as one of the hypothetical mother ORFs were confirmed to be protein coding by DDA-MS. All results of the novel 

ORF candidates described in this chapter are detailly listed in Supplementary File S2. 

Figure 38. Reading frame sum signal of all novel gene candidates in P. aeruginosa PAO1. All reads obtained for Exp3 generated 
with (+RelE) or without RelE (-RelE) were mapped to each sub-codon position and a NNC shift was performed. The results obtained 
(A) for all novel candidates (n = 124), (B) for all ORFs overlapping sense with anORFs (n = 47) and (C) all ORFs minus sense 
overlapping ORFs (n = 77) are shown.  
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3.2.6.3 Characteristics of two exceptionally long OLGs 

Two overlapping gene candidates, later designated as olg1 and olg2, showed profound transcriptional and translational 

signals as well as multiple peptides detected via DDA-MS. In addition, their exceptional sizes made them promising 

candidates for further experimental and bioinformatic characterization. All results in this section are published as a 

joint preprint of Michaela Kreitmeier, Zachary Ardern, Miriam Abele, Christina Ludwig, Siegfried Scherer, and Klaus 

Neuhaus (Kreitmeier et al., 2021). Michaela Kreitmeier conducted ribosome profiling and analysis, Zachary Ardern 

performed evolutionary analyses, Miriam Abele provided MS data, Christina Ludwig, Siegfried Scherer, and Klaus 

Neuhaus provided resources for the experiments conducted, supervised the publication and helped with writing.  

3.2.6.3.1 Genomic localization 

The 957 nt long OLG olg1 is encoded at the genome coordinates 291556-292512(+) with ATG291556 as the putative 

start codon (Figure 39A). A N-terminal extension of the coding region by up to 261 nt would be conceivable due to 

the existence of five alternative start codons (CTG291295, TTG291370, CTG291436, ATG291508 & GTG291535), which were 

located in-frame upstream of ATG291556. However, several aspects emphasize that ATG291556 is the correct start codon 

of the ORF under the condition tested. These aspects will be detailly explained in the following sections and include 

correct spacing to gene-like elements and corresponding Ribo-seq signals. Regardless of the correct start position, olg1 

overlaps entirely in frame -1 with the annotated mother gene tle3 (PA0260). Tle3 is part of the vgrG2b-tli3-tle3-tla3 

operon and encodes for an antibacterial type VI lipase effector 3, which is delivered to prey bacteria via a T6SS 

(Berni et al., 2019). The remaining genes encoded in the operon are functional related and are necessary for the 

secretion of Tle3 or confer Tle3 immunity. Remarkably, olg1 overlaps with two structural domains of tle3, sharing 

39 nt with a N-terminal α/β hydrolase fold domain as well as 594 nt with an C-terminal domain of unknown function 

(DUF3274; Berni et al., 2019).  

The novel gene olg2 has a length of 1,728 nt and is located at the genomic position 1501875-1503602(-). Its coding 

region most likely starts at the ATG1503602, and it overlaps partially with two annotated genes (Figure 39B). Olg2 is 

encoded in frame -1 and shares 1,536 nt with the mother gene PA1383, a hypothetical gene putatively associated with 

exopolysaccharide synthesis (Matsukawa & Greenberg, 2004) and predicted to harbour a N-terminal type I signal 

sequence (Lewenza et al., 2005). A second overlap of 34 nt is shared with the UDP-glucose 4-epimerase encoding gene 

galE (PA1384) in frame +2. 
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3.2.6.3.2 Gene-like structural features of olg1 and olg2 

In silico analysis using BROM (Solovyev & Salamov, 2011) predicted σ70 promoter sequences in a distance of 37 nt 

and 94 nt for olg1 and olg2, respectively (Figure 39). Obtained LDF values of 1.94 (olg1) and 1.37 (olg2) were 

significantly larger than the threshold value of 0.2, and thus, indicated high accuracy and specificity of the predicted 

promoters. Similar results were obtained by Cappable-seq when analysing an optimal region of 200 bp upstream of the 

OLGs´ coding regions. For olg1, a maximum TSS with a mean RRS of 3.0 was detected in a distance of 149 bp in 

three biological replicates. In addition, a second reproducible TSS with a slightly reduced RRS of 2.0 was located 36 nt 

upstream of olg1´s start codon (Supplementary Figure 21A), which endorsed the results predicted by BROM.  

Figure 39. Genomic location of (A) olg1 and (B) olg2. Olg1 is fully embedded in the annotated gene tle3, which has two functional 
domains (α/β hydrolase fold domain and DUF3274 domain) and is encoded within the vgrG2b-tli3-tle3-tla3 operon. Olg2 overlaps 
partially with the annotated gene PA1383 as well as trivially by 34 nt with an UDP-glucose 4-epimerase encoding gene (galE). Both 
OLGs have structural features associated with protein-coding including -35 and -10 consensus elements of a σ70 promoter, a SD 
sequence (only olg1) and a rho-independent terminator (only olg2) as indicated. In addition, RT-PCR using the primer pairs PF+PR1

and PF+PR2 identified cessation of mRNA synthesis between 219 and 349 nt downstream of olg1´s stop codon. Structural features of 
the annotated mother genes are displayed. Figure adapted from Kreitmeier et al. (2021). 
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A TSS with a mean RRS of 2.2 located 94 nt upstream of the start codon as well as an additional TSS 129 nt upstream 

of the start codon (RRS = 4.93) were also identified for olg2 in at least two biological replicates (Supplementary 

Figure 21B).  

Terminator regions within a 300 bp region downstream of the OLGs´ stop codon were identified using FindTerm 

(Solovyev & Salamov, 2011). This program predicted a ρ-independent terminator 218 to 247 nt downstream of olg2, 

whereas no terminator could be detected for olg1. However, termination of transcription was experimentally verified 

by RT-PCR to take place in a region between 219 and 349 nt downstream of the stop codon (Figure 39A). In 

addition, the upstream vicinity of both OLGs was subjected to SD analysis. The optimal aSD sequence in P. aeruginosa 

is located 7-9 nt upstream of the start codon, has the sequence pattern CCUCC and a ΔGSD of −6.5 kcal/mol (Ma et al., 

2002). Olg1 exhibited a SD sequence with the motif AGG and a ΔGSD of −3.6 kcal/mol in an optimal spacing of 8 nt 

to the start codon ATG291556. In contrast, olg2 did not harbour a SD sequence. The mother genes tle3, PA1383 and 

galE also shown profound structural elements indicating their genuine protein-coding nature. Both mother genes of 

olg2, for instance, had a SD sequence with a ΔGSD of −6.1 (PA1383) and −4 kcal/mol (galE) 8 nt upstream of their 

start codon (Figure 39B). Furthermore, TSSs were predicted by BROM to be localized 203 nt (PA1383) and 72 nt 

(galE) upstream of their start codon, respectively. For the former, a TSS with a mean RRS of 9.2 was also confirmed 

in a similar distance (197 bp) by Cappable-seq. As a member of the vgrG2b operon (Berni et al., 2019), tle3 neither 

possesses a σ70 promoter nor a ρ-independent terminator. However, a strong SD sequence (ΔGSD −5.1 kcal/mol) with 

the sequence pattern AGGAG was detected 5 nt upstream of the start codon.  

Programs used for gene delineation, e.g., Prodigal, often rely on diverse sequence features including start codon and 

SD motif usage, gene size, GC bias, hexamer coding statistics etc. for gene prediction (Hyatt et al., 2010). However, 

dynamic programming prohibits prediction of large overlapping genes and chooses the overlapping ORF with the 

highest score for annotation. In total, 5,681 protein-coding genes were predicted by Prodigal to be encoded in the 

P. aeruginosa PAO1 genome with scores ranging from 0.1 (PA2732 encoding for a hypothetical protein) to 3,037.7 

(PA2424 encoding for a peptide synthase). The mother genes tle3 and PA1383 were also classified as protein-coding 

genes with high scores of 132.6 and 225.9, respectively (Supplementary Figure 22, Supplementary File S3). To 

test whether Prodigal classifies the two overlapping ORFs as protein-coding genes, all start codon nucleotides within 

the coding region as well as in the upstream vicinity of the annotated genes tle3 and PA1383 were replaced by Ns, 

thus concealing the mother genes. As a result, both overlapping ORFs were predicted to be protein-coding genes with 

scores of 4.63 (olg1) and 23.63 (olg2). Although their overall scores were rather low in comparison to those of the other 

predicted genes, both OLGs display values comparable to anORFs for some features, for instance the GC content 

score (gc_cont) and the start sequence region score (uscore; Supplementary Figure 22, Supplementary File S3). 

Clearly both overlapping ORFs, despite having sequence features associated with protein-coding, missed annotation 

due to their long antisense overlaps. 

3.2.6.3.3 Transcriptome and translatome analysis  

Both OLGs were covered with a substantial number of reads when analysing the RNA-seq datasets of Exp1. The reads 

mainly mapped to the region between the predicted TSS and the putative transcription termination site (Figure 40, 

first track) resulting in RPKMRNA-seq values of 35.9 and 22.1 for olg1 and olg2, and values of 29.7 and 20.2 for the 

mother genes tle3 and PA1383 (Supplementary Table 6). These values were in a medium range compared to all 

protein-coding anORFs (Figure 37A) suggesting that all four ORFs are genuinely transcribed.  
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Figure 40. Results of RNA-seq, Ribo-seq and proteome analysis at the (A) olg1/tle3 and (B) olg2/PA1383 locus. Strand-specific 
RPM values of RNA-seq (first track) and Ribo-seq reads (second track) averaged over the biological replicates of Exp1 are displayed 
for olg1 and olg2 as well as their mother genes tle3 and PA1383. Arrows indicate the position of transcription start (TSS) and stop 
sites (termination) and question marks highlight regions with unexpected signals. The position and intensity of all peptides measured 
by DDA-MS are displayed in track 3 and 4. Peptides marked with an asterisk were chosen for targeted mass spectrometry; and those 
verified by the latter are illustrated by a filled asterisk. Figure adapted from Kreitmeier et al. (2021). 
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In addition to RNA-seq signals, RT-PCR using primers binding at the beginning and at the end of both ORFs also 

confirmed transcription of the entire coding region of olg1 and olg2 (Supplementary Figure 23). Furthermore, both 

OLGs showed profound translational signals which were reproducibly detected in both biological replicates. The reads 

mainly covered the region between the start and stop codon (Figure 40, second track). However, for olg1 an 

accumulation of RNA-seq as well as Ribo-seq reads upstream of the start codon indicated either that olg1 is N-

terminally enlarged or that an additional ORF located in a different reading frame is transcribed and translated. With 

an RPKMRibo-seq value of 40.3, the expression of olg1 was even higher than those of many anORFs (Figure 37B). Olg2, 

in contrast, had a lower, but nevertheless indubitable RPKMRibo-seq value of 14.2. The RPKMRibo-seq values of the mother 

ORFs (tle3: 23.2; PA1383: 22.8) were in a similar range as the medium value obtained for all anORFs (Figure 37B). 

The Ribo-seq signals observed at both gene loci did not seem to originate from pervasive translation, as for instance 

observed in Mycobacterium tuberculosis (Smith et al., 2019), as the genes encoded upstream of tle3 in the vgrG2b 

operon did not shown any antisense signals (Supplementary Figure 24). In addition, all four target ORFs exhibited 

a high read coverage (Figure 37C) and a medium to high translatability compared to all anORFs as indicated by 

their RCV values (Figure 37D). Based on the observed Ribo-seq signals, olg1 and olg2 were predicted to be protein-

coding genes with translation starting from ATG291556 and ATG1503602, respectively. Olg1 was predicted by multiple 

tools in multiple datasets in 10 out of 16 possible combination (score = 10), whereas olg2 had a slightly lower prediction 

score of 9. Prediction tools also confirmed the protein-coding nature of the mother genes tle3 and PA1383 with overall 

scores of 13 and 9, respectively.  

For olg2 and tle3, the exact position of the start codon was also supported by the result of Ribo-RET. The first showed 

a TIS with a peak height of 2.3 RPM at position 1503601 nt, and the latter an even more pronounced peak (4.6 RPM) 

at position 293302 nt (Supplementary Figure 21, first track). No RET peak was detected for olg1 and PA1383. A 

clear RF signal of 31% to 63% to 5% was obtained for all read mapping to olg1 after performing an NNC shift 

(Supplementary Figure 25A). In contrast, the absence of such a signal in the dataset prepared without RelE (43% 

to 41% to 16%) confirmed the authenticity of the translational signals. Even in the absence of a NNC shift, a read 

accumulation at the second sub-codon position, which amounted to 45%, was observable for all reads of the RelE-

prepared dataset, whereas reads of the control experiment without RelE did not preferentially map to sub-codon 

position 2 (Supplementary Figure 25B). Conversely, olg2 showed no preference for reads mapping to sub-position 2, 

neither in the shifted nor in the unshifted data (Supplementary Figure 25CD). In this case, the majority of reads 

mapped to the first sub-codon position regardless of the presence or absence of RelE during nuclease footprinting. 

Further transcriptional and translational signals were obtained when analysing sequencing datasets published by 

Grady et al. (2017) who performed RNA-seq and Ribo-seq in P. aeruginosa PAO1 and P. aeruginosa ATCC33988 

after cultivation in M9 both supplemented with different carbon sources (Supplementary Figure 26). Reanalysis 

of these datasets suggested expression of olg1 in P. aeruginosa PAO1 as well as in P. aeruginosa ATCC33988. 

Altogether, the expression strength as indicated by RPKM values was higher when cultivating with glycerol as carbon 

source compared to n-alkanes, but nevertheless lower than after cultivation in LB broth (Supplementary File S4). 

Olg2, which is absent in strain ATCC33988, also showed slight transcriptional and translational signals in the data 

published for P. aeruginosa PAO1 (Supplementary Figure 26B). Comparison of the RPKMRNA-seq values revealed 

a similar transcription strength after cultivation in LB and M9+glycerol, whereas the RPKMRNA-seq values obtained 

after cultivation in the presence of n-alkanes were clearly lower (Supplementary Figure 27). This observation points 

to a potential regulation of olg1 and olg2 at the transcriptional level as a function of the carbon source present in the 

cultivation broth.  
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Further hits for a regulated expression of both OLGs were provided by differential expression analysis of the Ribo-seq 

datasets. Significant differences were obtained for olg1 and olg2 when calculating log fold changes between the M9+n-

alkane and M9+glycerol datasets at a FDR of 0.05 (log_FColg1 = 1.15; log_FColg2 = -0.55). These results point towards 

a possible regulation, and thus, functionality of both OLGs.  

3.2.6.3.4 Detection of translated peptides by mass spectrometry 

For the initial discovery of translated peptides, a sample taken at OD600nm = 1 was fractionated into 48 fractions and 

analysed by DDA-MS. Obtained MS spectra were searched against an organism-specific database of all protein-coding 

anORFs complemented by the AA sequences of olg1 and olg2. In total, twelve and five different peptides were detected 

for olg1 and olg2, respectively, which covered a wide area of the encoded proteins (Figure 40, track 3 and 4). 

Additionally, the expression of 4,076 anORFs was confirmed by this experiment. Among the proteins detected were 

also the proteins encoded by the mother genes tle3 and PA1383. For the first, 10 peptides were identified, for the 

latter translation was proven by 21 peptides (Figure 40, track 3 and 4). 46 of the 48 detected target peptides had 

high dot product scored when comparing the observed fragment ion spectra with the spectra predicted by the algorithm 

Prosit (Gessulat et al., 2019) indicating their high-confident identification (Supplementary File S5). The normalized 

iBAQ intensities of Olg1 and PA1383 were in a medium range compared the values measured for anORF-encoded 

proteins, whereas Olg2 and Tle3 were of rather low abundance (Figure 41). 

In order to validate and quantify the detected proteins, targeted proteomic using PRM-MS was performed on several 

samples harvested throughout different growth phases (Supplementary Figure 28A). For this purpose, these 

samples were supplemented with four to five isotopically labelled reference peptides per gene. The selection of the 

peptides to be targeted was made based the results of the DDA-MS experiment (Figure 40, peptides highlighted by 

an asterisk). One peptide for Olg2, four peptides for each Olg1 and Tle3 as well as five peptides for PA1383 were 

successfully verified by this approach (Figure 40, peptides highlighted by a filled asterisk). 

 

 

 

 

 

 

 

 

 

Figure 41. Normalized protein intensities measured by DDA-MS. Intensity Based Absolute Quantification (iBAQ) values of all 
proteins (n = 4,080) detected in a 48-fold fractionated sample harvested at OD600nm = 1 are shown. Values of Olg1 and Olg2 are 
highlighted by a black rectangle and triangle, respectively. The proteins encoded by the mother genes tle3 and PA1383 are illustrated 
by the respective grey-filled symbol. Figure adapted from Kreitmeier et al. (2021). 

10

15

20

25

30

35

40

0 2,000 4,000

lo
g 2

(iB
A

Q
in

te
ns

ity
)

ORFs sorted

Olg1 Tle3 Olg2 PA1383



100 

 

Quantification of the detected peptides revealed differences in protein abundance of all four targeted proteins as a 

function of growth (Figure 42). Olg1, for instance, was highly abundant in exponential phase (1 h and 2 h) as well 

as at the transition from exponential to stationary phase, whereas the abundance decreased sharply in stationary phase 

(6 h to 24 h). The by far highest intensity of Olg2 was measured at OD600nm = 1. In late stationary phase, however, 

this protein was either not expressed or only in marginal amounts, which were below the detection limit. In contrast, 

the respective protein encoded by the gene PA1383 was stably expressed during the entire cultivation process. 

Increasing amount of the Tle3 protein were quantified from the beginning of cultivation until early stationary phase 

(4 h), but not in mid (6 h, 8 h) and late stationary phase (24 h). In sum, both OLGs showed a different time course 

of protein abundance compared to the proteins encoded by the mother genes located at the antisense strand. This 

result suggests that expression of the OLGs was regulated autonomously. A loading control of the summarized 

intensities of all peptides measured for the each of the samples confirmed that the observed differences in protein 

abundance were not merely caused by deviating amounts of input sample (Supplementary Figure 28B). In addition, 

qPCR analysis of olg1 mRNA essentially confirmed the time course of protein abundance as seen in PRM-MS on the 

transcriptome level (Supplementary Figure 29).  

3.2.6.3.5 Evolutionary analyses of olg1 and olg2 

Blastp analysis of olg1 and olg2 revealed homologues which were mainly restricted to the genus Pseudomonas. A 

similar observation was made for PA1383, the mother gene of olg2. In contrast, homologues of tle3 were detected in 

diverse phyla including Proteobacteria. The presence within the genus Pseudomonas and the absence in other genera 

of the order Pseudomonadales suggests that the tle3 gene was horizontally transferred from a different order. The full-

length ORFs of olg1 and olg2 as found in strain P. aeruginosa PAO1 were predominantly limited to the species with 

few exceptions (Supplementary Figure 30) suggesting that both OLGs are of comparatively young age and evolved 

rather recently. 

Figure 42. Intensities of all peptides measured for (A) Tle3, (B) Olg1, (C) PA1383 and (D) Olg2 using targeted proteomics. 
Summarized intensities of all peptides validated by PRM-MS in P. aeruginosa PAO1 samples harvested after 1 h, 2 h, 4 h, 6 h, 8 h 
and 24 h of cultivation as well as at OD600nm = 1 are shown. 
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Olg1 and olg2 were longer than expected by random chance, according to the results of codon permutation and 

synonymous mutation tests following the methods of Schlub et al. (2018). For the first, the codons of the mother gene 

are randomly shuffled across the gene and the resulting ORF lengths in alternative frames were determined. The 

synonymous mutation test, in contrast, is based on the exchange of synonymous mutations at each site in the mother 

gene, thereby altering the sequence and length of the alternative frame ORFs when new stops are introduced in 

alternative reading frames. When applying both tests to the mother genes tle3 and PA1383, considerably shorter ORF 

lengths for alternative frames were obtained than expected based on the AA composition of the mother gene. With      

p-values less than 10-10, the ORFs of olg1 and olg2 were significantly larger than expected according to the synonymous 

mutation test (Figure 43A). The codon permutation test confirmed these results (Figure 43B), however, p-values 

of 0.163 (olg1) and 0.0635 (olg2) indicated that the obtained differences were not significant. Altogether, these findings 

suggest that the observed ORF lengths of olg1 and olg2 are the result of purifying selection acting on stop codons 

rather than being a sole side effect of the mother ORFs sequence.  

Another indication of selection against stop codons at the olg1/tle3 and olg2/PA1383 loci was provided by simulations 

of the mother genes` evolution while disregarding any evolutionary forces acting on the overlapping ORFs. This 

provides a negative control, showing the result of the absence of selection. This method was originally applied by 

Cassan et al. (2016) in order to confirm a selection pressure to maintain an ORF overlapping the env gene in HIV-1. 

When applying this method to the mother genes tle3 and PA1383 and simulate evolution along phylogenetic trees 

(Supplementary Figure 30), stop codons emerged more often in sequences with simulated evolution compared to 

those with natural evolution. As a result, the overlapping ORFs olg1 and olg2 were more frequently interrupted by 

Figure 43. Stop codon depletion as indicator for purifying selection acting on olg1 and olg2. Lengths obtained for the -1 frame after 
introduction of synonymous mutation into the mother genes (A) tle3 or (B) PA1383 are indicated by grey bars; those of the 
permutation test after shuffling of mother gene codons are highlighted in black, respectively. The dotted line represents the length 
of the overlapping ORFs of (A) olg1 and (B) olg2 as observed in the P. aeruginosa PAO1 genome measured from stop codon to stop 
codon. Length of alternative frames after simulation of evolution of the mother genes tle3 and PA1383 using an empirical codon 
model are seen for (C) olg1 and (D) olg2 . Evolution was simulated along the phylogenetic tree for the OLG clade, which was rooted 
on an outgroup harbouring a full-length ORF. Simulated sequences (unfilled bars) were on average shorter than the naturally 
observed sequences (black-filled bars) indicating evolutionary conservation of the overlapping ORFs. Figure adapted from 
Kreitmeier et al. (2021). 
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stop codons, and thus, a lower number of simulated sequences showed the full-length ORFs than observed in the 

natural sequences of P. aeruginosa PAO1 (Figure 43CD). 

In addition to stop codon depletion, synonymous variability within the mother genes tle3 and PA1383 was analysed 

using the framework FRESCo (Sealfon et al., 2015). Reduced synonymous variation was detected within those regions 

of the mother genes which overlapped with olg1 (Figure 44A) and olg2 (Figure 44B). In contrast, genomes 

containing the mother genes but lacking the intact OLGs exhibited a synonymous rate of approximately 1 indicating 

the absence of a synonymous constraint. A paired two tailed t-test confirmed that the difference between the results 

obtained for genomes harbouring the full-length ORF and genomes lacking the intact ORF was statistically significant 

for the olg1 region (p-value = 0.086). For olg2, a significantly increased constraint was observed within a 350 codon 

region at the 3` end of the ORF (p-value = 0.03), but not in the upstream region. The tool OLGenie (Nelson et al., 

2020) also suggested purifying selection at the OLG loci by calculating an OLG-adapted ratio of non-synonymous and 

synonymous variants, referred to as dNN/dNS ratio. This ratio specifies the number of nucleotide changes with non-

synonymous effect on both the mother and the overlapping gene (dNN) divided by the number of substitutions with 

a non-synonymous effect on the mother and a synonymous effect on overlapping gene (dNS), with both measures 

normalized by the number of sites of the respective class. OLGenie analysis resulted in dNN/dNS ratios below 1 over 

large parts of the intact OLG region within the mother genes tle3 (Figure 44C) and PA1383 (Figure 44D) implying 

that synonymous mutations were favoured. In contrast, genomes without intact olg1 and olg2 were shown to have 

higher dNN/dNS ratios of around 1 (olg1: 1.02; olg2: 0.92), and thus, were not under purifying selection. Pairwise 

sequence comparisons of the olg1/tle3 as well as of the olg2/PA1383 loci between different genomes showed that the 

strongest evidence for purifying selection was within the P. aeruginosa clade (Supplementary Figure 31). In sum, 

all results combined indicate an evolutionary sequence constraint and purifying selection on olg1 and olg2. 

Figure 44. Sequence constraint analysis of olg1 and olg2 using (A, B) FRESCo and (C, D) OLGenie. The synonymous rates of 
the mother genes (A) tle3 and (B) PA1383 highlighted by the grey lines were reduced within the OLG region (indicated by dark 
grey boxes and arrows) implying that these regions are under synonymous constraint. In contrast, genomes lacking full-length olg1
and olg2 exhibited synonymous rates (white line) equivalent to the expected value of 1 indicative of neutral evolution (dotted line).
The dNN/dNS ratio (grey line) as measured by OLGenie was reduced within the OLG region (dark grey boxes) of genomes harbouring 
an intact (C) olg1 and (D) olg2, whereas non-OLG genomes exhibited a ratio (white line) similar to neutral evolution (dotted line). 
Synonymous rates as well as dNN/dNS ratios were calculated in regions of 50 codons, each. Figure adapted from Kreitmeier et al.
(2021). 
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4. Discussion  

4.1 High-throughput discovery of novel genes – strengths and limitations 

Knowledge about the entire coding capacity of bacterial genomes is crucial to improve our understanding of genome 

complexity and the ongoing biological processes including evolution. However, the detection and characterization of 

novel genes and their encoded protein products can be challenging, especially when genes are short (Warren et al., 

2010) and encode for low abundant proteins (Hemm et al., 2020). Overlapping genes in prokaryotes are often associated 

with low gene expression (e.g., Fellner et al., 2015) and short length (e.g., Zehentner et al., 2020a). The latter was 

also confirmed by the results of this study since the detected gene candidates were on average shorter than annotated 

genes of E. coli LF82 (Figure 24) and P. aeruginosa PAO1 (Figure 35). As such, it is not surprising that many 

overlapping genes have escaped annotation. In addition to their small size, limited evolvability of two or more ORFs 

encoded at the same locus further contributed to the general disregard of overlapping genes. NGS-based methods offer 

the possibility for a highly sensitive and size-independent detection of gene expression, and thus, work well for the 

identification of such genes. In contrast to many low-throughput methods, NGS techniques do not rely on prior 

knowledge about the sequence to be detected and are less labour-intensive while enabling a genome-wide analysis of 

gene expression. In the following, the assets and drawbacks of all high-throughput methods used in this study are 

detailly discussed regarding their success in novel gene delineation as described in this thesis. 

4.1.1 Transcriptome sequencing & Cappable-seq  

Sequencing experiments using NGS platforms have revolutionized the field of molecular biotechnology by enabling 

cost-effective access to a variety of possible application including whole genome-analysis, detection of phenotypic 

variation, epigenetic analysis and so on (for review see Lee et al., 2013). Especially RNA-seq has become particularly 

important in whole transcriptome studies to discover RNA transcripts and quantify their abundance. One major aspect 

to consider in RNA-seq experiments is the sequencing depth necessary for meaningful data analysis. A moderate read 

coverage is usually sufficient for the analysis of highly expressed genes, whereas sequencing depth has to be increased 

for accurate identification and quantification genes with low expression (Sims et al., 2014, Mortazavi et al., 2008). 

Haas et al. (2012) proposed a sequencing depth of 5 to 10 mio mRNA reads to optimally capture genes of variable 

expression strength; a further increase in sequencing coverage up to 50 mio mRNA reads did not result in a significant 

improvement in the detection of novel transcripts. In this study, we followed the recommendations by Haas et al. 

(2012) and obtained RNA-seq sequencing depths of 5.9 to 29.2 mio mRNA reads for E. coli LF82 (Table 12) and 

3.5 to 11 mio mRNA reads for P. aeruginosa PAO1 (Table 17). Despite enhancing sequencing depth, high mRNA 

coverage values can also be achieved by the efficient depletion of rRNA prior to sequencing. For the experiments of 

this study, rRNA depletion was either carried out using the Ribo-Zero Kit by Illumina or the Pseudomonas-specific 

riboPOOL probes by siTOOLs Biotech. Depletion was successful since reads mapping to rRNA regions were reduced 

compared to the theoretically expected range of 80-95% which was previously reported for transcriptome sequencing 

in bacteria (Haas et al., 2012, Giannoukos et al., 2012, He et al., 2010). However, substantial numbers of reads mapped 

to regions opposite to rRNA genes (Supplementary Figure 1), thereby suggesting a carryover of rRNA removal 

probes during depletion. Despite negatively affecting mRNA read coverage, rRNA depletion had no major effect on 

data quality as indicated by a high reproducibility of RPKM values measured for all anORFs. With Pearson’s r 

ranging from 0.84 to 0.99, reproducibility between biological replicates was excellent. 
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As mentioned earlier, the global discovery of novel transcripts is a major application of RNA-seq and has already been 

applied to a variety of different bacteria, e.g., P. aeruginosa (Gómez-Lozano et al., 2012), Salmonella typhi 

(Perkins et al., 2009) and Mycoplasma pneumoniae (Güell et al., 2009). Several possibilities have been used to delineate 

functional transcriptional events including the application of pre-defined threshold. Beaume et al. (2010), for instance, 

used a certain coverage threshold to detect actively transcribed regions within the genome of S. aureus, whereas others 

defined a minimum RPKM cut-off to differentiate genuine signals from background noise (Landstorfer et al., 2014, 

Mortazavi et al., 2008). Applying a certain threshold, though, has the disadvantage of a limited detection of transcripts 

which do not comply with this threshold, e.g., transcripts of low abundance. Alternatively, bioinformatic tools like 

Rockhopper (McClure et al., 2013) or READemption (Förstner et al., 2014) were specifically developed for bacterial 

RNA-seq analysis and they often combine multiple functionalities including read processing, mapping, differential 

expression analysis, etc. in one program. With increasing number of conducted RNA-seq experiments in bacteria, the 

phenomenon of pervasive transcription became of special interest. Pervasive transcription, designated as transcription 

from non-coding regions, was initially thought to be non-functional noise arising either from spurious promoters or 

from a transcriptional read through at terminators (Wade & Grainger, 2014). As pervasive transcription is frequently – but not exclusively – detected antisense to annotated genes in bacteria, the term pervasive transcription is often 

synonymously used with the term antisense transcription (for review see Lybecker et al., 2014). Nowadays, though, 

several examples of antisense, yet functional transcripts have been reported in diverse organisms (reviewed in 

Lejars et al., 2019, Thomason & Storz, 2010) and contribute to the complexity of bacterial transcriptomes. The 

widespread occurrence of pervasive transcription raises the question how many of the RNA-seq signals detected outside 

of annotated regions are indeed non-functional. A regulated expression of a novel transcript, either coding or not, 

provides a first clue for a potential functionality and helps to discriminate between functional and non-functional 

transcripts. Differential expression analysis has the power to identify genes, which differ significantly in their expression 

across different conditions based on RNA-seq raw data. The typical workflow for the elucidation of differential 

expressed transcripts usually starts with mapping of the raw data, quantification of read counts and sample 

normalization followed by a statistic test to identify genes with varying abundance (Oshlack et al., 2010). In this 

study, statistical testing was performed using edgeR (Robinson et al., 2010) in order to detect annotated gens in 

E. coli, which were differentially regulated as a function of oxygen availability. Some of the genes shown to be of 

changing abundance under the conditions tested in this study were also identified in a similar study by 

Bayramoglu et al. (2017), confirming the reliability of the observed results and the suitability of the generated datasets 

for the expression analysis of novel transcripts. 

Further developments in the field of transcriptome sequencing also contributed to precise transcript mapping, and 

thus, helped to differentiate between genuine transcriptional signals and non-functional signals. Developed by 

Sharma et al. in 2010, the method of differential RNA-seq (dRNA-seq), for instance, facilitated nucleotide-precise 

mapping of 5´ transcript boundaries, thereby supporting the identification of novel transcripts in a variety of different 

organisms including archaea (e.g., Laass et al., 2019) and bacteria (e.g., Thomason et al., 2015, Albrecht et al., 2011, 

Filiatrault et al., 2011). Of central importance in the dRNA-seq procedure is the terminator 5′-phosphate-dependent 

exonuclease (TEX). This enzyme degrades processed transcripts with monophosphorylated 5`ends like rRNAs and 

tRNAs while preserving primary transcripts including mRNAs or small RNAs carrying a tri-phosphate group at the 

5´end. After sequencing, mapping of the primary transcripts, indirectly enriched by the TEX treatment, should aid 

the selective mapping of TSS in a global manner. However, as RNA secondary structures are known to resist the 

exonuclease treatment (Jäger et al., 2014, Zhelyazkova et al., 2012), TEX libraries require an undigested control 
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library to evaluate signal specificity. The recently established method Cappable-seq was shown to accurately determine 

TSS without the need for a control library (Ettwiller et al., 2016). In contrast to dRNA-seq, the Cappable-seq procedure 

directly enriches primary transcripts by enzymatic biotinylation and subsequent streptavidin bead capture, resulting 

in an increased specificity for primary transcripts compared to other TSS methods (Ettwiller et al., 2016). As a side 

effect of primary transcript enrichment, rRNA and tRNA species are specifically depleted. Ettwiller et al. (2016) 

observed rRNA and tRNA percentages as low as 4% for E. coli, whereas rRNA and tRNA reads accounted for 86% in 

an untreated control library. Analysis of the Cappable-seq data in this study also revealed a pronounced depletion of 

rRNA and tRNA transcripts as indicated by low mapping percentages of 5.9 to 7.5% for all three biological Cappable-

seq replicates of P. aeruginosa PAO1. The small fraction of residual rRNA and tRNA reads could possibly tracked 

back to a limited specificity of the enzymes used for capping as proposed for Cappable-seq in EHEC (unpublished 

data; personal communication with Dr. Barbara Zehentner). The slightly higher rRNA and tRNA read percentages 

could also originate from organism-specific differences. This assumption, though, could not be confirmed with 

experimental data since Cappable-seq has not been implemented for Pseudomonas strains so far. However, since 

differences in the rRNA and tRNA percentages between the original data published by Ettwiller et al. (2016) and the 

data of this study were only marginal and Cappable-seq libraries were subjected to ultra-deep sequencing (Table 18), 

the amount of mRNA reads sufficiently aided the detection of even weak TSS. With pairwise Pearson´s r values of at 

least 0.99, reproducibility of genome-wide RRS values for all three biological replicates was excellent and even higher 

than the technical reproducibility observed in the original publication (Ettwiller et al., 2016). After determining an 

optimal RRS score of 1.5 for the reliable identification of TSS, 9,205 TSS were detected in all three replicates. This 

number was substantial lower than the number described by Ettwiller et al. (2016) for E. coli (16,539). However, 

comparability of the datasets might be limited due to the use of different organisms and the absence of TSS validation 

in E. coli by biological replicates. Filiatrault et al. (2011), in contrast, identified a substantial lower number of 2,510 

TSS in a TEX-supported RNA-seq experiment in Pseudomonas syringae. However, since 2,117 TSS were already 

associated with transcription units solely spanning anORFs in P. aeruginosa PA14 (Wurtzel et al., 2012), it seems 

likely that the actual number of TSS in P. aeruginosa PAO1 is somewhat higher. In this study, 2,369 TSS were 

reproducibly predicted in the upstream proximity of anORFs in all three biological replicates after applying a minimum 

RRS threshold of 1.5. This number was only marginally increased by 7.5% when TSS detection in two out of three 

biological replicates was sufficient for reliable TSS determination, which again confirmed the high robustness of the 

Cappable-seq datasets. A subset of 1,207 anORF-associated TSS identified in this study were also detected by 

Wurtzel et al. (2012) for homologous genes in P. aeruginosa PA14. About 55% of the TSS shared by both 

P. aeruginosa strains were located at the exact same distance to the start codon, and further 14% showed no more 

than 10 nt deviation from the position of the TSS obtained for the respective homologue in the other strain. The high 

correspondence between the results of this study and the results by Wurtzel et al. (2012) suggests conservation of TSS 

across different P. aeruginosa strains, and thus, confirms that a substantial percentage of TSS have been identified 

correctly by Cappable-seq. In addition, when analysing the nucleotide sequence upstream of anORF-associated TSS, 

a clear TA-rich sequence motif was observed indicating the presence of -10 elements of σ70 promoters. Due to the high 

precision and reproducibility of the Cappable-seq results obtained for the anORFs of P. aeruginosa PAO1, these 

datasets seem to be highly suitable for TSS detection of novel transcripts as well. 
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4.1.2 Classical ribosome profiling  

Ultra-deep RNA-seq in combination with accurate TSS mapping give a precise insight into the transcriptional 

landscape of an organism but is not necessarily suggestive of whether a transcribed genomic region is translated or 

not. The detection of thousands of TSS located within or antisense to annotated regions across diverse bacteria genomes 

(e.g., Thomason et al., 2015, Sharma et al., 2010) called the biological relevance and specificity of pervasive 

transcription into question (Lloréns-Rico et al., 2016, Raghavan et al., 2012). Although antisense transcription has 

frequently been associated with regulatory non-coding RNAs (Eckweiler & Häussler, 2018, Dornenburg et al., 2010), 

recent studies demonstrated translation of some antisense transcripts. (de Almeida et al., 2019, Weaver et al., 2019, 

Friedman et al., 2017). Ribosome profiling (Ingolia et al., 2009) made a substantial contribution to the deciphering of 

translated RNA species by selective sequencing of ribosome-covered mRNAs. Using this method, a multitude of 

antisense transcripts have been reported to be ribosome-associated implying their translation (e.g., Zehentner et al., 

2020a, Ardern et al., 2020). This study also focused on Ribo-seq data for the identification of novel, translated genes. 

Multiple Ribo-seq experiments were carried out under varying conditions followed by deep sequencing. As Glaub et al. 

(2020) observed a saturation in the number of detectable genes when read counts exceeded 20 mio after rRNA and 

tRNA removal, we strived for a sequencing depth of approximately 20 mio mRNA reads in our Ribo-seq experiments. 

For this purpose, we increased sequencing depth compared to the RNA-seq experiments and yielded 6.9 to 21.2 mio 

and 14.9 to 35.2 mio mRNA reads for E. coli LF82 and P. aeruginosa PAO1 Ribo-seq experiments, respectively. The 

reproducibility between biological replicates of the Ribo-seq experiments was on average lower than those observed 

for RNA-seq replicates. A similar finding was reported by Hücker (2018) upon analysis of RNA-seq and Ribo-seq data 

in EHEC. Despite biological variance, differences in sequencing depth (Diament & Tuller, 2016) and biases arising 

from multiple experimental steps including translational inhibition and monosome fractionation (Aeschimann et al., 

2015, Hussmann et al., 2015) were reported to affect data quality, and thus, may be accounted for the overall lower 

reproducibility of Ribo-seq data. Of central importance in Ribo-seq is also the choice and quantity of the nuclease 

used for the generation of RFPs (Aeschimann et al., 2015). RNase I, the most common nuclease in eukaryotic ribosome 

profiling, delivers precise cleavage without sequence specificity (delCardayré & Raines, 1995). Although this nuclease 

has been successfully used in Ribo-seq experiments in EHEC EDL933 (Neuhaus et al., 2016, Neuhaus et al., 2017), it 

was claimed to be inactive in E. coli (Kitahara & Miyazaki, 2011, Datta & Burma, 1972), resulting in a need for 

alternative nucleases in this bacterial species. MNase isolated from Staphylococcus aureus is commonly used for 

nuclease footprinting in bacterial Ribo-seq (e.g., Grady et al., 2017, Li et al., 2012, Oh et al., 2011), but also other 

nucleases or nuclease mixtures have been applied in the past (Hücker et al., 2018a, Neuhaus et al., 2017, Gerashchenko 

& Gladyshev, 2017). A careful choice of the nuclease to be used in Ribo-seq as suggested by Gerashchenko & Gladyshev 

(2017) as well as an adjustment of the enzyme concentration and the digestion period is advisable to yield robust data 

while preserving the structural integrity of the ribosome. The importance of nuclease selection was also emphasized in 

this study: The five-nuclease mixture including RNase I, which was previously used for Ribo-seq in EHEC 

(Hücker et al., 2018a) and successfully implemented for E. coli LF82 in this study, led to a massive degradation of 

rRNA in preliminary Ribo-seq experiments in P. aeruginosa. As a result, the number of reads mapping to mRNA was 

substantially reduced although rRNA removal was performed (see section 3.2.1.1). Incubation of Pseudomonas RNA 

with each of the nucleases separately revealed that even small concentrations of the endoribonuclease RNase I severely 

affected rRNA integrity (Supplementary Figure 13B) indicating incompatibility of this nuclease with P. aeruginosa 

ribosomes. Gerashchenko & Gladyshev (2017) also observed varying tolerance of ribosomal populations originating 

from different organisms as a function of nuclease selection; however, they mainly focused on different eukaryotic 
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species in their analysis. By removing RNase I from the nuclease mixture and reducing the concentration of the other 

nucleases by 30%, we increased the mRNA yield of P. aeruginosa Ribo-seq experiments by a factor of 2 to 3. In 

addition, as rRNA quality worsened during stationary cultivation, samples harvested at late exponential/early 

stationary phase were used for Ribo-seq, which again resulted in an increase in mRNA yields by factor 3. Despite these 

improvements, overall mRNA percentages of mapped read were lower for P. aeruginosa PAO1 than E. coli LF82, even 

when cultivated under optimal conditions. However, this could have been influenced by many factors, e.g., deviating 

rRNA depletion efficiencies, which were not subject of this study.  

Data evaluation is another key step in the Ribo-seq procedure. Up to now, numerous eukaryotes have been subjected 

to Ribo-seq (Bazzini et al., 2014, Dunn et al., 2013, Ingolia et al., 2011, Ingolia et al., 2009) and methods for the 

delineation of translated ORFs based on the resulting data have been developed (e.g., Erhard et al., 2018, Xiao et al., 

2018, Crappé et al., 2015, Fields et al., 2015, Chew et al., 2013, Lee et al., 2012). Many of the developed tools rely on 

certain Ribo-seq signatures which are characteristic for eukaryotic Ribo-seq data, for instance, triplet periodicity (e.g., 

Calviello et al., 2016, Michel et al., 2012). Since these signatures are often less pronounced in prokaryotes, those 

programs are unsuitable for translated ORF delineation in prokaryotes. In addition to deviating Ribo-seq-based 

characteristics, variation in the experimental procedure (Mohammad et al., 2016) as well as differences in gene 

architecture between pro- and eukaryotes limit the applicability of these tools on bacterial Ribo-seq data (Ndah et al., 

2017). As Ribo-seq more and more became a powerful tool to study translational events in bacteria, the programs 

REPARATION (Ndah et al., 2017) and DeepRibo (Clauwaert et al., 2019) as well as the algorithm described by 

Giess et al. (2017) were developed in order to identify protein-coding genes within prokaryotes. These tools take 

advantage of different metrics inherent to bacterial Ribo-seq data. REPARATION, for instance, utilizes start and stop 

RPKM values, coverage values of the entire ORF and of the start region, the proportion of read accumulation as well 

as the ribosome binding site energy for translated ORF prediction (Ndah et al., 2017). DeepRibo, in contrast, uses a 

recurrent neural network to process Ribo-seq data of candidate ORFs and combines the results with information 

derived from a 30 nt long DNA stretch around the SD sequence processed by a convolutional neural network 

(Clauwaert et al., 2019). The method described by Giess et al. (2017) relies on multiple features for TIS prediction 

including calculation of normalized 5`read counts, the proportion of 5´reads in the up- and downstream vicinity as 

well as the ratio thereof (Giess et al., 2017). All tools predict translated ORFs without a priori knowledge about the 

genome annotation, and thus, are not biased towards non-canonical signals, e.g., the translation of overlapping ORFs. 

REPARATION (Ndah et al., 2017), DeepRibo (Clauwaert et al., 2019) as well as the scripts by Giess et al. (2017) 

were also applied to the Ribo-seq datasets of this study. As the three tools cover different functions and exhibited 

limited reproducibility and coherence of the predicted results (see sections 3.1.4.1 and 3.2.6.1), all outputs were 

combined in order to achieve a maximum identification of novel genes.  

Numerous novel ORFs were predicted to be translated based on Ribo-seq data in bacteria (Smith et al., 2019, 

Weaver et al., 2019, Jeong et al., 2016). However, the ubiquity of translational signals outside annotated regions across 

many bacterial species as well as the surprising finding of ribosome-covered RNAs, which were formerly thought to be 

non-coding (Friedman et al., 2017, Neuhaus et al., 2017), led to a controversial debate about the specificity of the 

translational signals observed. Structured RNAs (Fremin & Bhatt, 2020) as well as RNA associated with non-ribosomal 

proteins (Ji et al., 2016, Ingolia et al., 2014) were discussed to be the source of artificial Ribo-seq reads, probably 

protected from RNase cleavage due to a reduced nuclease accessibility. Alternatively, Smith et al. (2019) suggested 

that bacterial transcripts are subjected to pervasive translation, a process equivalent to pervasive transcription 

assumed to be noise rather than bearing an function. The absence of clear ribosome signatures e.g., start and stop 
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codon peaks or a triplet periodicity (Fields et al., 2015, Bazzini et al., 2014) as reported for translated ORFs in 

eukaryotes further hampers differentiation between functional and non-functional translational signals in prokaryotes. 

However, recent modifications of classical Ribo-seq like Ribo-RET (Meydan et al., 2019) or RelE-supported Ribo-seq 

(Hwang & Buskirk, 2017) enhance resolution and validity of bacterial Ribo-seq experiments, and thus, are an asset 

for the detection of true cellular translational events. 

4.1.3 Modified variants of ribosome profiling  

4.1.3.1 RelE-assisted Ribo-seq for reading frame analysis 

As mentioned earlier, detection of a triplet periodicity in the mapping of Ribo-seq reads is a hallmark for genuine 

translation in eukaryotes and facilitates distinction between RFPs originating from translating ribosomes and signals 

arising from nonspecific artefacts. The detection of a trinucleotide periodicity in eukaryotes can mainly be traced back 

to the use of RNase I for RFP generation. This nuclease offers precise cleavage without sequence specificity 

(delCardayré & Raines, 1995). In prokaryotes, though, the reading frame signal seems to be blurred by multiple factors 

including the cutting preference of the nuclease used for digestion. MNase, the most frequently used nuclease in 

bacterial Ribo-seq, exhibits significantly higher cleavage rates before A and T nucleobases (Dingwall et al., 1981), and 

thus, does not trim accurately to the 5´ and 3´ ends of the ribosome-covered footprints. Consequently, a sequence bias 

at both ends of the RFPs is introduced limiting the resolution and power of such experiments. Other nucleases like 

RNase A (Gerashchenko & Gladyshev, 2017) or RNase I, as observed in this study, did not preserve structural integrity 

of the bacterial ribosome or showed an even more pronounced sequence preference. The attempt to use multiple 

nucleases in order to get precise RFP ends was also only partly successful in the detection of a periodicity signal in 

EHEC (Hücker et al., 2017). A further factor which hampers reading frame determination in bacteria is the 

heterogeneous length of RFPs. RNase I yields a robust 28 nt long RFP population in eukaryotic ribosome profiling 

(Hsu et al., 2016, Ingolia, 2010), whereas bacterial RFPs are less uniform in size (Mohammad et al., 2019). Up to now, 

no consensus about the actual size of the bacterial RFP has been reached in literature. Some studies included shorter 

RPFs starting from ~18 nt (Andreev et al., 2017), other studies isolated RFPs with a length of 21 nt for 

Mycobacterium bovis (Ngan et al., 2021), 20-30 nt (Balakrishnan et al., 2014) or even longer (Li et al., 2012, Oh et al., 

2011). On the one hand, the heterogeneity in bacterial RFP length might be attributed to the impreciseness of the 

nuclease used for mRNA digestion. Cleavage with MNase, for instance, does not only introduce a sequence bias at the 

5´ and 3´ ends of RPFs but also results in broad distribution of RPFs which further restricts reading frame analysis 

(Hwang & Buskirk, 2017). On the other hand, deviating read lengths may arise from the bacterial ribosome itself due 

to its distinct conformational flexibility. O'Connor et al. (2013), for example, showed that the interaction between 

rRNA and mRNA alters the length of RFPs. In addition, Mohammad et al. (2016) confirmed that longer RFPs 

originate from initiating ribosomes through the interaction between SD and aSD motifs. Due to their variable lengths, 

it was suggested to select a broader range of fragments between 10 and 40 nt in order to capture the whole variety of 

RFPs (Mohammad et al., 2019, Mohammad et al., 2016).  

The usage the nuclease RelE was recommended by Hwang & Buskirk (2017) to get more precise information about 

the reading frame in bacteria. In an in vitro Ribo-seq experiment with MNase and RelE, a highly resolved reading 

frame signal in the sum of all anORFs in E. coli K-12 was achieved by exploiting RelE´s unique feature of cleaving 

translating mRNA within the ribosomal A site codon (Pedersen et al., 2003). In order to implement RelE-assisted 

Ribo-seq in E. coli LF82 and P. aeruginosa PAO1, the RelE toxin had to be overexpressed and purified. However, 
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preparation of this toxin turned out to be challenging due to the intrinsic properties of RelE. Sole overexpression of 

RelE, for instance, failed in a first approach due to the inhibitory effect of RelE on cell growth (Gotfredsen & Gerdes, 

1998) and necessitated the co-expression of RelE with its cognate antitoxin RelB. Furthermore, as both RelE as well 

as RelB constitute small proteins of 11.2 (Gotfredsen & Gerdes, 1998) and 9 kDa (Bech et al., 1985), respectively, 

several methodological adaptions were necessary to detected these proteins via SDS-PAGE and Western blot (see 

section 2.2.4). In addition, the blurred band pattern and the discrepancy between the expected and the observed size 

of RelE on SDS gels (Figure 16 & 17) impeded the examination of the expression and purification success. However, 

discrepancies between the theoretical molecular mass and the protein size as determined by SDS gels are frequently 

described in literature. One prominent example for such a discrepancy is the tumour suppressor protein p53, which 

was given this name because SDS-PAGE analysis indicated a molecular mass of 53 kDa, whereby the real mass of the 

p53 protein is 43.7 kDa. A possible explanation for this observation is that a proline-rich region within p53 decreased 

gel mobility and therefore the molecular mass was overestimated (Levine & Oren, 2009). In general, the amino acid 

composition of the protein.to be analysed seems to have a great impact on the gel mobility. Guan et al. (2015), for 

example, were able to show that a high content of acidic amino acids, e.g., glutamate and aspartate, is linked to a 

retarded mobility of the protein in SDS gels. Other possible explanation regarding discrepancies between SDS-displayed 

and predicted masses are differences in the amount of SDS bound by the protein or conformational differences, e.g., 

aggregation of proteins due to overloading (Rath et al., 2009, Reynolds & Tanford, 1970). Despite these difficulties, 

the presence of RelE in cell lysates and purification samples was successfully confirmed by MS analysis (e.g., Figure 

17B). Another drawback of the co-expression procedure of RelE and RelB was the tight protein-protein interaction 

between both (Overgaard et al., 2009) which necessitated multiple attempts and harsh denaturing conditions to 

adequately separate both proteins.  

After successful preparation of RelE following the procedure described by Dunican et al. (2015) and Griffin et al. 

(2013), RelE was used for nuclease footprinting in E. coli LF82 alongside MNase. Reading frame analysis of the 

sequencing data (Figure 21) revealed a similar periodicity signal for the sum of all anORFs as shown by (Hwang & 

Buskirk, 2017). This result in combination with the observed accumulation of short reads (Figure 19) as previously 

reported for RelE (Hwang & Buskirk, 2017) indicated effective cleavage of mRNA, and thus, functionality of RelE. 

However, the resolution of the periodicity signal was reduced compared to the results described in the original 

publication. Possible reasons for a lower resolution of the reading frame signal in the datasets of this study could 

include experimental artefacts, e.g., arising from biases during library preparation. Adapter ligation (Fuchs et al., 

2015, Zhuang et al., 2012, Hafner et al., 2011), reverse transcription (Hansen et al., 2010) and PCR amplification 

(Fu et al., 2018) can favour the unspecific enrichment of reads depending on read sequence and structure, and thus, 

introduce biases during library preparation. Several studies showed that the Illumina TruSeq Small RNA Kit, which 

was used for library preparation in this study, is prone to such biases (Wright et al., 2019b, Dard-Dascot et al., 2018, 

Baran-Gale et al., 2015). For example, T4 RNA Ligase 2 was shown to ligate adapter in a sequence-dependent manner 

(Jayaprakash et al., 2011) and PCR amplification is also heavily influenced by the efficiency of the Phusion Polymerase 

(Quail et al., 2012). In addition, multiple rounds of PCR amplification were carried out in order to increase the amount 

of material needed for sequencing, which might also have led to a disproportional increase of PCR duplicates. However, 

Fu et al. (2018) showed that the frequency of PCR duplicates strongly depends on the amount of input material used 

rather than on the number of PCR cycles. In future, indexing reads with additional barcodes as proposed by 

Shiroguchi et al. (2012) and Mir et al. (2014) might improve differentiation between reads duplicated during PCR and 

read arising from physiological events. Reanalysis of the data provided by Hwang & Buskirk (2017) also resulted in a 
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reading frame signal which was less pronounced compared to the signal described in the original publication, suggesting 

that data processing (e.g., mapping or trimming parameters) or data analysis (e.g., reading frame analysis) must have 

been divergent. Despite lower resolution, the summarized reading frame signal for all annotated genes was distinct 

and significantly better than those previously reported for E. coli O157:H7 Sakai by Hücker et al. (2017). However, 

in this publication periodicity analysis was based on 5´ends which are known to deliver less precise information about 

the bacterial reading frame than the 3´ ends (Mohammad et al., 2019, Woolstenhulme et al., 2015). Evidence of RelE 

functionality in E. coli LF82 was provided by several control experiments as well. For instance, a comparable dataset 

prepared with a mixture of five nucleases showed no reading frame signal at all, neither when analysing NNC-shifted 

reads nor upon raw read analysis (Figure 21). The absence of a periodicity signal was also confirmed by RNA-seq 

data analysis. In this case, illegitimate read shifting resulted in a negligibly small accumulation of reads at the sub-

codon position two, whereby the resolution was comparable to the results obtained for other RNA-seq datasets of this 

study and the study by Hwang & Buskirk (2017). The pronounced difference in the resolution of the signal obtained 

for Ribo-seq and RNA-seq confirmed that biases introduced during library preparation cannot solely explain the 

observed results. On those grounds, we have no doubt that the signal differences observed for our dataset prepared 

with RelE are due to mRNA cleavage by RelE. Hwang & Buskirk (2017) also performed periodicity analysis for the 

gene prfB and were able to visualize the well-reported +1 frame shift in this gene (Craigen & Caskey, 1986). To test 

whether the datasets of this study are also suitable for reading frame determination of single genes, we analysed the 

distribution of reads covering ompA, which was the gene with the highest expression in the Ribo-seq dataset. Indeed, 

a clear reading frame signal was observable when analysing the entire ORF as well as individual sections (Figure 20). 

However, a magnitude of reads mapping to position 1 or 3 indicated either an absent or an insufficient cleavage by 

RelE. The source of these reads could not be clarified unequivocally but could include the accumulation of non-specific 

reads or a skewed cleavage inherent to the sequence composition of the ORF. Contradictory to the results by Hwang 

& Buskirk (2017), Hurley et al. (2011) reported the highest frequency for RelE cleavage after the third position instead 

of after the second, which could further contribute to a distortion of the periodicity signal. Another aspect to consider 

in this context is the usage of not normalized raw reads for reading frame analysis. On the one hand, transcript-specific 

properties may have a greater impact on the resolution of single gene reading frames and less influence when analysing 

the reading frame in the sum signal of multiple genes. On the other hand, sum signals of multiple genes are always 

biased towards genes with high read counts and, therefore, with high expression, whereas the effects of low expressed 

genes covered by a small read number only are highly undervalued.  

The gene encoding RelE is widely distributed across bacteria and archaea (Gerdes, 2000) and is also present in 

P. aeruginosa (Williams et al., 2011). Although similarity and identity of RelE homologues in E. coli and 

P. aeruginosa as identified by pairwise sequence alignment using EMBOSS Needle (Needleman & Wunsch, 1970) was 

shown to be low (see section 3.2.4), Goeders et al. (2013) observed that overexpression of RelE originating from diverse 

bacterial phyla led to an inhibition of growth in E. coli due to the cleavage of translation-associated mRNA. In 

addition, the RelE-characteristic cleavage pattern including preferential cleavage before purine bases and after the 

second or the third nucleotide of the A site codon (Pedersen et al., 2003, Christensen et al., 2001) further suggested 

that RelE-like toxins, despite having low similarity and identity with the E. coli-originating RelE, exhibit a relaxed 

specificity and can exert their function even in distantly related bacterial species (Goeders et al., 2013). Based on these 

observations, the E. coli-originating RelE protein prepared in this study was also applied to Ribo-seq in P. aeruginosa 

PAO1 and the resulting data was evaluated regarding RelE´s suitability for reading frame determination in this strain. 

Analogous to the results of E. coli LF82, analysis of raw reads in the dataset prepared with RelE delivered a 
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predominant reading frame signal at sub-codon position 2 for the sum of all anORFs, which was even more pronounced 

upon NNC read shifting (Figure 32). In contrast, a control experiment prepared with MNase only showed a deviating 

pattern with sub-codon position 3 being the most prevalent read position. Hwang & Buskirk (2017) reported that 

minor periodicity signals obtained by using MNase only are exclusively caused by the sequence specificity of MNase 

in combination with the nucleotide bias of the ORF and consequently do not resemble the genuine reading frame 

signal obtained by translating ribosomes. In addition, NNC shifting of the control datasets completely erased any 

positional differences. Although these results are suggestive of RelE functionality in P. aeruginosa, it must be noted 

that the clear cleavage specificity of RelE described by Hwang & Buskirk (2017) was not detectable as indicated by 

the absence of an accumulation of nucleobase C before and nucleobase G after cleavage at the 3´end of RFPs 

(Figure 32). Consequently, the lawfulness of NNC read shifting severely affecting resolution of the periodicity signal 

can be challenged. However, no cleavage bias was seen in the E. coli datasets of this study either. In contrast, digestion 

with MNase in the control experiment confirmed preferential cleavage before the nucleobases A and T as expected 

(Figure 32; Hwang & Buskirk, 2017, Dingwall et al., 1981). Further experiments like overexpression of the E. coli-

derived relE gene in combination with Northern blot analysis of mRNA transcripts before and after relE induction 

would be conceivable to unequivocally confirm RelE activity in P. aeruginosa. 

4.1.3.2 Retapamulin-supported Ribo-seq for TIS detection 

Accurate mapping of TISs by exploiting ribosome-stalling antibiotics like tetracycline (Nakahigashi et al., 2016), 

Onc112 (Weaver et al., 2019) or retapamulin (Meydan et al., 2019) enhances sensitivity and specificity of classical 

Ribo-seq, especially when methods are combined. As tetracycline was shown to arrest elongating ribosomes 

(Nagalakshmi et al., 2008) and Onc112 was reported to create more variable read peaks in deviating distances to the 

start codons (Weaver et al., 2019), retapamulin was used for TIS detection in this study. After constructing an E. coli 

LF82ΔtolC deletion mutant as well as receiving the strain P. aeruginosa PAO397, both strains were subjected to MIC 

testing alongside their wild type strains LF82 and PAO1. For both wild type strains, the MIC of RET exceeded the 

value of 32 µg/mL. Corbett et al. (2017) observed a lower MIC value of 8 µg/mL for the RET-treated E. coli K-12 

derivate strain BW25113. However, MIC results were reported to be highly variable as the preciseness of the 

measurement is affected by several factors including strain and laboratory variability (Mouton et al., 2018). As 

expected, E. coli LF82ΔtolC was more suspensible to RET treatment with an MIC value of 0.25 µg/mL, which was 

in a similar range as the values reported by Meydan et al. (2019) for two E. coli tolC deletion mutants (0.0125 µg/mL 

and 0.05 µg/mL). The MIC of P. aeruginosa PAO397 was twice as high as those of E. coli, which is in concordance 

with the finding that P. aeruginosa has in general a higher resistance against the pleuromutilin basic substance indicted 

by higher MIC values as measured by Kavanagh et al. (1951). After MIC determination, cultures of E. coli LF82ΔtolC 

and P. aeruginosa PAO397 were incubated with the 100-fold MIC for effective stalling of ribosomes. Metagene analysis 

of highly expressed genes revealed a pronounced redistribution of ribosomes upon RET treatment in both strains 

(Figure 15 & 31). An slight accumulation of ribosomes at start codons was also observed in the ND datasets which 

was hypothesized to be the result of either a reduced translational efficiency at the beginning of an coding sequence 

(Tuller et al., 2010) or of a higher ribosome occupancy caused by increased ribosomal initiation rates (Shah et al., 

2013). Remarkably, the peak height and sharpness was reduced in the datasets of this study compared to the results 

published by Meydan et al. (2019). This observation was not only limited to the RET-treated sample but occurred in 

the ND datasets of both organisms as well, suggesting that experimental factors rather than biological aspects were 

causative for the less specific ribosome accumulation. Ongoing translation in the bacterial lysate, for instance, seems 
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to be a possible source of reduced resolution. Thawing of the lysate for already 15 min was shown to result in a 

measurable translational activity in the absence of any drug-based inhibitor (Mohammad et al., 2019). In addition, 

ribosomes are known to have varying conformations during different stages of translation resulting in variable RFP 

lengths (Lareau et al., 2014). The entering of the elongation phase by stalled ribosomes could result in an additional 

population of reads with alternative length, which may impair with the correct positioning of the ribosomal P site 

after subtraction of a fixed offset from the 3´end. Consequently, imprecisely positioned reads could have led to a peak 

broadening at start positions. In future experiments, the application of elongation inhibitors like cycloheximide or high 

salt concentrations in the lysis buffer are recommended to efficiently arrest translation in the lysate (Mohammad et al., 

2019). Another aspect known to heavily influence translational dynamics, and thus, may lead to a blurred resolution 

of bacterial Ribo-seq data is the type of cell harvest. Commonly, cultures are either harvested by centrifugation after 

introduction of a translational arrest, e.g., by chloramphenicol or by dry ice, or are subjected to rapid filtration (for 

review see Glaub et al., 2020). However, both methods are associated with sequence-specific stalling of ribosomes 

(Mohammad et al., 2019). Bacterial cultures of this study were harvested by dry ice-treatment followed by 

centrifugation. This procedure could have influenced data quality by affecting translation initiation rates characteristic 

of severe bacterial stress (Gerashchenko & Gladyshev, 2014). Direct freezing of bacterial cultures in liquid nitrogen 

seems to be a promising alternative to obtain an optimal resolution in future Ribo-seq experiments (Mohammad et al., 

2019). 

Possible caveats associated with the RET approach became clear when analysing RET and ND signals of the genes 

encoded by the S10 ribosomal protein operon. Only a limited correlation between the overall expression strength of 

the genes in the ND datasets and the normalized peak heights at the start codons in the RET datasets was observable, 

not only for the aforementioned genes but also for the entirety of anORFs in E. coli LF82 and P. aeruginosa PAO1. 

However, as the use of translational inhibitors constitutes stress for the cells, such inhibitors were frequently reported 

to alter ribosome coverage profiles (Gerashchenko & Gladyshev, 2014), and thus, interfere with expression strength 

measurements. In addition, further RET peaks located within the coding regions of annotated genes, e.g., in gene rpIC 

(Figure 14), questioned the specificity of the signals observed after RET treatment. Meydan et al. (2019) were able 

to assign a biological function to some of the internal TIS detected by Ribo-RET, suggesting that translation of ORFs 

starting at internal TISs may result in real proteins with varying functionalities. However, the authors did not rule 

out the possibility that cryptic TIS located both in inter- as well as intragenic regions represent unspecific noise due 

to an imprecise recognition of start codons by ribosomes. Alternatively, spurious TIS peaks could also be the results 

of an increased number of free ribosomes binding unspecifically to untranslated start codons, or of a ribosomal run-off 

upon RET treatment, which reveals mRNA regions typically covered by elongating ribosomes in the absence of RET. 

Therefore, careful evaluation of the Ribo-RET data is necessary for differentiating between biological relevant RET 

signals and artificial signals without function.  

4.1.4 Mass spectrometry  

Ribo-seq experiments provide a good insight into which transcripts are translated but cannot answer the question 

whether these transcripts encode stable peptides. MS is a widely used technique for whole proteome analysis and aided 

the detection of numerous novel genes in diverse organism (e.g., Zhang et al., 2019, Brosch et al., 2011, Bitton et al., 

2010, Gupta et al., 2007, Kruft et al., 2001) while showing better correlation with Ribo-seq than with RNA-seq data 

(Blevins et al., 2019, Ingolia et al., 2009). However, MS reaches its limits when analysing proteins without or 

insufficient proteolytic cleavage sites. In this context, small proteins are difficult to detect due to their limited number 
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or the entire absence of tryptic cleavage sites (Petruschke et al., 2020, Müller et al., 2010). Despite methodical 

accessibility, abundance also plays a critical role in successful protein detection (Baldwin, 2004). Standard shotgun 

proteomics, for instance, is restricted to the detection of the most abundant proteins in a sample and often fails to 

capture less abundant proteins. Several technical as well as experimental approaches were implemented in the past in 

order to improve the identification of low abundance proteins, e.g., enhanced detection of MS1 precursor ions 

(Meier et al., 2018), prolonged LC gradients (Hsieh et al., 2013) and increased sample fractionation (Faca et al., 2007). 

In this study, we also performed ultra-deep sample fractionation in order to increase the sensitivity of protein detection 

in P. aeruginosa PAO1. In total, 48 fractions were measured using DDA-MS and yielded the confident identification 

of 3,772 protein products encoded by known anORFs. This number was comparable to other P. aeruginosa proteome 

studies, which yielded detection of maximum 4,000 proteins (Wright et al., 2019a, Erdmann et al., 2019, Kamath et al., 

2017, Kumari et al., 2014, Hare et al., 2012). However, it must be noted that most of the studies mentioned analysed 

the P. aeruginosa proteome under deviating cultivation conditions, used different MS techniques or reported the 

summarized number of proteins detected for multiple P. aeruginosa strains, thereby restricting comparability with the 

results obtained in this study. Remarkably, ultra-deep proteomics also verified the proteinaceous nature of about 65% 

of all hypothetical ORFs in P. aeruginosa PAO1 suggesting that the majority of these ORFs are indeed functional 

and are not only the result of genome over-prediction as proposed for bacterial genomes (Yu et al., 2011). The 

increasing number of hypothetical genes experimentally confirmed to be expressed and functional in various bacteria 

(Tian et al., 2019, Yang et al., 2019, Prava et al., 2018, Landstorfer et al., 2014) further supports this assumption. 

Nevertheless, even deep fractionation could not solve the problem of selection against low abundant proteins entirely 

as indicated by the significant increased proportion of MS detected proteins which were encoded by highly expressed 

genes (Figure 29). Alternative MS data acquisition strategies offer higher sensitivity at the expense of limited 

throughput. Targeted proteomics, for example, performs better in detecting low abundant proteins and is able to 

precisely quantify pre-specified proteins as shown in this study for selected overlapping gene pairs (discussed in section 

4.3). However, targeted MS cannot measure the whole proteome in a global fashion (reviewed by Shi et al., 2016). 

Several strategies including immunoaffinity enrichment, depletion of high abundant proteins, and others were 

successfully implemented to further enhance the detection of low abundant proteins (Shi et al., 2012). In the last few 

years, specialized MS techniques addressing the issue of detecting low abundant and small proteins were successful in 

detecting such proteins, including overlapping ones, encoded by bacterial genes (D'Lima et al., 2017, Impens et al., 

2017).  

4.2 Cumulative evidence for protein-coding capacity of identified gene candidates  

Integration of “omics” datasets contributes decisively to the deep understanding of biological systems and the 

underlying processes. By combining multiple datasets picturing different molecular layers, possible limitations of single 

“omic” techniques, like background noise in transcript- and translatomics or biased detection of low-abundant proteins 

in proteomics, are compensated, allowing to draw clearer and more comprehensive conclusions (for review see 

Kumar et al., 2016). One of the various possible applications of multi-“omics” dataset analysis is genome annotation, 

which aided the detections of novel genes in eukaryotic (Koch et al., 2014, Wu et al., 2014) as well as bacterial cells 

(Miravet-Verde et al., 2019, Neuhaus et al., 2016, Schrimpe-Rutledge et al., 2012). In this study, multiple “omic” 

technologies including transcriptomics, translatomics and proteomics were used for most reliable delineation of novel 

intergenic and overlapping genes. In a first step, all datasets arising from conventional and modified Ribo-seq 

experiments were evaluated using three independent ORF prediction tools and the results were subsequently merged 
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and scored to minimize the effect of experimental, biological, and methodological fluctuations. The obtained results 

were then combined with the results of transcriptomics, Cappable-seq and proteomics to identify high confident gene 

candidates. This procedure aided the detection of 116 and 124 promising novel gene candidates for E. coli LF82 and 

P. aeruginosa PAO1, respectively.  

The number of 116 novel intergenic and overlapping ORFs identified in E. coli LF82 was substantially lower than the 

number of novel ORFs reported for E. coli strains in literature after applying conventional RNA-seq and Ribo-seq. 

Hücker et al. (2017), for instance, claimed the detection of 465 putative novel genes in intergenic regions of E. coli 

O157:H7 strain Sakai, 72 intergenic novel genes were proposed by Neuhaus et al. (2016) for E. coli O157:H7 strain 

EDL933, and a recent preprint identified between 84 and 190 ORFs solely embedded in antisense to annotated genes 

in four different E. coli strains (Zehentner et al., 2020a). It seems likely that the decreased number of ORFs observed 

in this study resulted from more conservative delineation criteria, e.g., the usage of multiple tools for ORF prediction 

combined with subsequent scoring, and the higher number of Ribo-seq experiments including modified variants like 

Ribo-RET and RelE-supported Ribo-seq. With a median length of 129 bp (mean = 162.7 bp; Figure 24), the ORFs 

detected were rather short compared to the known anORFs. This observation was consistent with the findings by 

Hücker et al. (2017) and Zehentner et al. (2020a) who reported mean lengths of 127 to 172 bp (depending on the 

absence or presence of annotated homologues) and 250 bp for the novel ORFs, respectively. As the detection of small 

proteins is technically challenging (discussed in 4.1), the short length of some of the identified ORFs might be one 

explanation why they have escaped discovery for a long time. The novel ORFs detected in P. aeruginosa PAO1 were 

also on average shorter than the encoded annotated genes (Figure 35); however, a lack of Ribo-seq-based studies 

addressing the topic of novel ORF annotation in P. aeruginosa prohibited comparison with published results. On 

average, the novel ORFs of P. aeruginosa were larger than those of E. coli LF82, which was expected based on the 

increased GC content of the P. aeruginosa genome resulting in the occurrence of statically larger ORFs (Mir et al., 

2012).  

Despite size, properties considered to be “anomalous” for protein-coding genes, e.g., an aberrant start codon usage, 

may also hamper the detection of novel translated ORFs. In both E. coli as well as P. aeruginosa, ATG is the mostly 

common used codon for translational initiation, distantly followed by GTG and TTG (Villegas & Kropinski, 2008, 

West & Iglewski, 1988). In this study, 87.7% and 89.1% of all annotated genes in E. coli LF82 and P. aeruginosa 

PAO1 possessed an ATG start codon, and thus, confirmed the high utilization percentages of this start codon described 

in literature. Although the majority of the novel ORFs also started translation from a putative ATG codon, the overall 

percentage of the alterative start codons was clearly higher (39.6% and 17.7% for E. coli LF82 and P. aeruginosa 

PAO1, respectively). However, an altered start codon usage was frequently reported for small as well as overlapping 

ORFs. Meydan et al. (2019), for instance, observed conserved RET peaks for 74 ORFs overlapping out-of-frame with 

annotated genes, whereby more than 40% of them started with a non-ATG codon. Recently characterized overlapping 

genes in bacteria as well as mammals, e.g., pop in E. coli (Zehentner et al., 2020b) or POLGARF in human cells 

(Loughran et al., 2020) were also shown to utilize the alternative start codon CTG to guide translation. Although not 

subject of this study, even rare start codons with suboptimal translational efficiency (Nie et al., 2006) like TTG were 

reported for short translated ORFs (Neuhaus et al., 2016, Hücker et al., 2017). Ribo-RET analysis provided further 

evidence for translation initiation at the selected start codons of 97 and 42 novel ORFs identified in E. coli LF82 and 

P. aeruginosa PAO1, among them also many non-ATG start codons (Supplementary Table 1 & 2).  



115 

 

In addition to the choice of start codon, the presence and type of SD sequence can also influence translational initiation 

and efficiency (Vimberg et al., 2007, Shine & Dalgarno, 1974). For approximately 60% of all novel ORFs in E. coli 

LF82, a SD sequence was detected in an optimal spacing of 9 bp. The percentage of novel ORFs harbouring a SD 

sequences was even higher for P. aeruginosa PAO1 (~84%) which is in concordance with its increased percentage of 

annotated genes possessing a SD sequence (69% versus 57% for P. aeruginosa and E. coli; Ma et al., 2002). 

Furthermore, a clear conservation pattern of the SD sequence was observed for P. aeruginosa PAO1 (Figure 36). A 

lack of a SD sequence, though, does not necessarily exclude the occurrence of translation of the remaining novel gene 

candidates, since a SD sequence is not obligatory for start codon selection (Saito et al., 2020) and even transcripts 

lacking any leader have been reported (Dötsch et al., 2012, Zheng et al., 2011). For the vast majority of ORFs in 

E. coli LF82, a σ70 promoter was predicted to be localized in a median distance of 131 bp upstream of the start codon 

(Supplementary Figure 11). This distance was far longer than the 5´UTR lengths experimentally validated for 

E. coli mRNAs in literature (25 - 35 bp; Kim et al., 2012) suggesting that some of the promoters identified in this 

study were false positive predictions. Experimental evidence, e.g., by Cappable-seq (Ettwiller et al., 2016), could 

contribute to precise TSSs mapping and determination of 5´UTR lengths in E. coli LF82. By exploiting this technique, 

reproducible TSS were detected for 61 of the 124 novel gene candidates in P. aeruginosa PAO1 in a median distance 

of 58 bp upstream of the respective start codon. The 5`UTRs of the novel candidates showed a similar length as the 

5´UTRs of all anORFs in strain PAO1 (median = 69 bp) and were also comparable to the results described in literature 

for P. aeruginosa PA14 (median = 47 nt; Wurtzel et al., 2012) and P. syringae pv. tomato str. DC3000 (mean = 78 nt; 

Filiatrault et al., 2011). In addition, sequence conservation of the -10 promoter element as observed for both the novel 

ORFs as well as the anORFs in P. aeruginosa PAO1 (Figure 36) further suggested specificity of TSS detection. ρ-independent terminator structures were predicted for 44 (E. coli LF82) and 28 (P. aeruginosa PAO1) of the novel 

gene candidates using FindTerm (Solovyev & Salamov, 2011). Analogous to promoter and SD elements, the presence 

of a ρ-independent terminator provides evidence for the protein-coding capacity of an ORF, whereas the absence of 

such elements is not indicative of an absence of protein coding. Possible reasons for a lack of ρ-independent terminator 

include the involvement of other termination mechanisms like ρ-dependent termination or the location of an ORF 

within an operon. Term-seq, recently developed to map 3′-termini of RNA transcripts (Dar et al., 2016), seems to be 

a promising experimental approach to unravel transcriptional events in a global fashion, and thus, also to determine 

the exact terminator location of the novel gene candidates.  

Since several of the novel ORFs fulfilled the structural qualifications associated with protein coding, their genuine 

transcription and translation was assumed. Indeed, the novel ORFs exhibited gene expression metrics including RCV, 

RPKM and coverage values which were in a similar range as those of the respective protein-coding anORFs (Figure 25 

& 37) and largely consistent across biological replicates. Furthermore, when applying the threshold Hücker et al. 

(2017) used for the Ribo-seq-based delineation of novel ORFs (RPKM ≥ 1, coverage ≥ 0.5 & RCV ≥ 0.25) in E. coli 

O157:H7 Sakai, 87% of all ORFs identified in E. coli LF82 complied with this criteria in at least one of the Ribo-seq 

experiments performed. Although transferability of these thresholds might be limited, more than 97% of all ORFs 

identified in P. aeruginosa PAO1 also exhibited expression metrics, which were above those suggested by 

Hücker et al. (2017). However, in this context it must be noted that the expression metrics of translated ORFs 

overlapping in sense with anORFs must be interpreted with caution as a differentiation between reads belonging to 

the novel ORFs and reads arising from translation of the mother ORFs cannot be distinguished. For this purpose, a 

distortion of the aforementioned values might be possible, especially when the mother ORF shows a high expression. 

In this study, the programs REPARATION (Ndah et al., 2017), DeepRibo (Clauwaert et al., 2019) and the scripts by 
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Giess et al. (2017) were used for most objective translated ORF delineation. Although those programs are not devoid 

of false positives (Clauwaert et al., 2019, Giess et al., 2017, Ndah et al., 2017), it seems highly unlikely that the 

selected ORFs were predicted erroneously considering the fact that they had high overall prediction scores of at least 

9 (P. aeruginosa PAO1) or 10 (E. coli LF82), implying that they were identified in multiple different Ribo-seq datasets 

by independent tools. However, since those programs delineate ORFs de novo without prior knowledge about the 

existing annotation, signals of anORFs might be interpreted mistakenly as novel ORFs in other frames. Therefore, the 

prediction of sense embedded ORFs might be particularly prone to errors. In addition, reading frame analysis of the 

novel ORF candidates was also mainly restricted to intergenic as well as antisense overlapping ORFs because ORFs 

overlapping in sense often overlapped with highly expressed genes. As a result, the reading frames of the novel sense 

overlapping ORFs were often concealed by the periodicity signal of their mother genes` frame. For the remaining 

ORFs without sense overlap, RelE-supported Ribo-seq confirmed genuine translation as indicates by a pronounced 

reading frame sum signal at sub-codon position 2 (Figure 27 & 38) which portrayed the codon-wise movement of 

the ribosomes on the respective mRNAs.  

Regulation of gene expression is an indicator for functionality of an ORF (Ardern et al., 2020) and an argument 

against non-functional pervasive transcription and translation as discussed previously. For E. coli LF82, some novel 

ORFs, among them four sense overlapping ORFs, were shown to be differentially regulated depending on the presence 

or the absence of oxygen during cultivation, either at the transcriptional or at the translational level. The percentage 

of novel ORFs shown to be regulated (5.2%) was comparable to the percentage of regulated anORFs (4.6%) in the 

same datasets. The large percentage of detectable homologues after blastp search further indicates evolutionary 

conservation, and thus, functionality of the detected ORFs. In many cases, though, the type of functionality could not 

be inferred from blastp analysis as the majority of hits were characterized as hypothetical genes. Nevertheless, the 

status “hypothetical” does not equate to a lack of functionality in many instances as shortly mentioned in section 

4.1.4.  

For more than a third of the novel ORFs detected in P. aeruginosa PAO1, the proteinaceous nature was verified by 

MS. Among the detected ones were also 16 proteins encoded by non-trivially overlapping ORFs; eight of them were 

overlapping in antisense, seven of them in sense and one showed multiple overlaps both in sense as well as in antisense 

to anORFs. All protein products except one were identified by two or more peptides confirming their confident 

detection. This is an extraordinary result considering that the native proof of OLG-encoded proteins has rarely been 

achieved, presumably due to their intrinsic properties like short size or weak expression limiting MS detection (see 

section 4.1.4). Notwithstanding, a few studies successfully detected OLG-encoded proteins, but often by serendipity. 

In a large-scale study, Venter et al. (2011), for instance, identified 245 loci conflicts in 37 different bacterial genera 

with overlaps of more than 40 bp between novel and annotated regions with proteomic support. However, the authors 

noted that conflicting peptides could point to a high false positive rate. Proteomic studies in other bacterial genera 

like Helicobacter (Friedman et al., 2017), Salmonella (Willems et al., 2020) or Pseudomonas (Kim et al., 2009) further 

provided evidence for the proteinaceous character of OLGs. In the latter, Yang et al. (2016) also detected peptides for 

44 small antisense sequences in the species P. putida, whereby the recording of one peptide was sufficient for 

identification.  

DDA-MS also confirmed that in more than 85% of all cases, at least one of the mother genes overlapping non-trivially 

with a novel ORFs in this study was protein coding. This result indicates that the novel overlapping ORFs were 

designated to be overlapping with justification as they share an overlap with genuine protein-coding anORFs.  
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As summarized in Figure 45, we believe that the novel ORFs identified in E. coli LF82 and P. aeruginosa PAO1 are 

protein coding, and thus, can be considered as “real” genes due to 

- the existence of structural features associated with protein coding as validated experimentally or 

predicted in silico 

- their expression patterns which were comparable to those of protein-coding anORFs resulting in their 

successful prediction my multiple tools in multiple Ribo-seq datasets 

- a pronounced triplet periodicity signal reflecting those obtained for anORFs 

- the presence of RET peaks at many start codons  

- evidence for functionality provided by differential gene expression as well as blastp analysis 

- & the confident detection of many protein products encoded by the novel ORFs.  

4.3 olg1 and olg2 as prime examples for overlooked OLGs in Pseudomonas  

Upon reviewing the overlapping gene candidates identified in P. aeruginosa PAO1, two ORFs attracted our attention 

due to their convincing experimental results and their striking lengths. These two OLGs, named olg1 and olg2, spanned 

957 and 1,728 nt and exhibited large antisense overlaps, covering at least 100% and 88.8% of their entire sequence, 

with the mother genes tle3 and PA1383. Interestingly, both OLGs were located in frame -1 relative to their mother 

genes. An overlap in frame -1 is considered to be highly conserved, thus limiting the flexibility for mutational changes 

(Wichmann & Ardern, 2019). However, some bacterial OLGs with this type of overlap have been reported in literature 

(e.g., Zehentner et al., 2020b, Rogozin et al., 2002b).  
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Figure 45. Overview of all novel gene candidates identified in (A) E. coli LF82 and (B) P. aeruginosa PAO1. The Venn diagrams
show the absolute number of ORFs delineated based on Ribo-seq data with absolute prediction scores (A; LF82) ≥10 or (B; PAO1)≥9 supported by different kinds of experimental or computational evidence for protein-coding. These include analysis of structural 
gene features like presence of a promoter, a transcription start site (TSS), a terminator and a Shine-Dalgarno (SD) sequence, the 
detection of homologous hits using a blastp search, analysis of differential gene expression (DE), proteomic evidence by mass 
spectrometry (MS) as well as the detection of a retapamulin (RET) start peak or a reading frame (RF) signal in Ribo-RET or RelE-
assisted Ribo-seq datasets, respectively. Results which lack experimental evidence and were solely predicted bioinformatically are 
highlighted by an asterisk. 
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Several aspects emphasized that olg1 and olg2 are protein coding and give rise to the synthesis of functional protein 

products. Firstly, both OLGs exhibited multiple structural features necessary for gene expression. σ70 promoters were 

predicted computationally in the upstream vicinity of olg1 and olg2 and were also confirmed experimentally by the 

results of Cappable-seq. However, additional Cappable-seq peaks indicated that transcription could be also initiated 

at a different position, probably also guided by one of the other 23 sigma factors known for P. aeruginosa (Potvin et al., 

2008). Transcription was shown to cease at a ρ-independent terminator in case of olg2, and via a different mechanism, 

e.g., by exploiting protein Rho (Mitra et al., 2017), in case of olg1. Furthermore, olg1 possessed a strong SD sequence 

in an optimal aligned spacing to the ATG start codon. The ORF of olg2 also started with an ATG codon, which was 

additionally verified by a Ribo-RET peak. The gene annotation program Prodigal confirmed the protein-coding 

potential of both OLGs, but only upon hiding of the mother genes since dynamic programming restricts prediction of 

large overlapping genes and chooses the overlapping ORF with the highest score for annotation (Hyatt et al., 2010). 

Secondly, both OLGs were covered with a substantial number of RNA-seq as well as Ribo-seq reads implying that 

they were transcribed and translated under the conditions tested. However, an accumulation of reads upstream of 

olg1´s start codon raised the possibility of an N-terminal extension of the coding region. Alternatively, the expression 

of two isoform might be possible, whereby various functions of such isoform have been discovered and discussed for 

bacteria (Fijalkowska et al., 2020, Meydan et al., 2019, Meydan et al., 2018). Due to the absence of a RET peak as 

well as further contradictory results, the exact start position of olg1´s coding region could not be proven, and therefore 

the most conservative assumption is that translation starts at ATG291556, which was also suggested by Prodigal. Further 

experiments like reporter gene fusions, usage of alternative initiation inhibitors like Onc112 in Ribo-seq (Weaver et al., 

2019) or N-terminomics (Impens et al., 2017) could be implemented to shed light on the correct translation initiation 

site. Despite some uncertainties about the correct start position, both OLGs showed high overall prediction scores of 

10 (olg1) and 9 (olg2) providing strong evidence for their genuine translation. Further evidence for translation was 

provided by regulated transcriptional and translational signals obtained after reanalysis of data published by 

Grady et al. (2017) and by the reading frame signal of olg1 in this study. For olg2, the lack of a periodicity signal at 

sub-codon position 2 was unexpected due to olg2´s clear transcriptional and translational signals. However, absolute 

read counts of olg2 were substantially lower than those of olg1. Furthermore, a biased distribution of the nucleobases 

present in this ORF or an accumulation of ribosomes at certain positions, e.g., pause sites, could also have led to 

anomalies in the reading frame signal as proposed by Hwang & Buskirk (2017). The fact that multiple peptides were 

confidently discovered for olg2 using DDA-MS leaves no doubt about its coding potential. For olg1, an even higher 

number of twelve translated peptides were detected. As translation of even short genes is associated with high 

bioenergetic costs (Lynch & Marinov, 2015), and expression of random sequences was shown to have an inhibitory 

effect on bacterial growth (Neme et al., 2017), a tight regulation of translation is essential. With respect to these 

aspects, it seems highly unlikely that proteins of 318 and 575 AAs in length represent non-functional products arising 

from pervasive translation (Smith et al., 2019). An extensive regulation of the expression of both OLGs throughout 

the exponential and stationary growth of P. aeruginosa PAO1 was also confirmed by PRM-MS, which is considered 

as the gold standard for protein quantification (Peterson et al., 2012) and further supported validity and functionality 

of the encoded proteins. Compared to all anORFs, the absolute abundance of Olg1 and Olg2 was in a medium to low 

range, which is in concordance with published results as some of the hitherto experimentally characterized OLGs were 

confirmed to have a weak expression (e.g., Hücker et al., 2018a, Fellner et al., 2015). Due to their low expression and 

small size, OLGs were often hypothesized to be evolutionary young genes and in an initial stage of adaptation 

(Fellner et al., 2015, Fellner et al., 2014, Donoghue et al., 2011). Based on the results of evolutionary analyses, we also 
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suggest that olg1 and olg2 are of rather young age. The AA sequence of both OLGs is evolving more rapidly than 

those of their mother genes (slower by factor 2 and 12 for tle3 and PA1383, respectively) indicating a lower conservation 

of the OLG sequence, a property highly associated with a recent emergence (Carvunis et al., 2012). Furthermore, both 

OLGs showed signs of purifying selection as the sequence constraint in the mother gene was reduced in the OLG 

region and stop codons were depleted. Both OLGs were predominately found within the species whereas their mother 

genes were more broadly distributed, suggesting that olg1 and olg2 constitute taxonomically restricted genes, which 

probably arose by overprinting (Grassé, 1977, Ohno, 1970) within their older mother genes. Such genes, also called 

orphans, are hypothesized to be involved in the development of taxon-specific morphology and in adaptation processes 

in response to changing conditions (Colbourne et al., 2011, Khalturin et al., 2009). In addition, they usually have low 

expression levels (Prabh & Rödelsperger, 2016), are shorter as well as less conserved compared to older genes (Palmieri 

et al., 2014) and often encode for disordered proteins (Heames et al., 2020). Assuming taxonomic restriction and an 

evolutionary young age, it comes as no surprise to find many OLG candidates (described in section 4.2) which lack 

protein features like mature promoter, terminator, etc. elements or have suboptimal and less efficient start codons. 

However, the exact evolutionary origin of orphans remains a mystery and requires further efforts for clarification. In 

this context, OLGs offer some interesting approaches to study the underlying processes as their mother genes fix their 

genomic region. Therby, OLGs could help to solve some common issues associated with homology inference, e.g., 

detection failures (Weisman et al., 2020, Vakirlis et al., 2020). 

In sum, these results provide compelling evidence that both OLGs are protein coding and translated into bioactive 

proteins with cellular function. As shortly discussed in a recent preprint (Zehentner et al., 2020a), the designation of 

a gene as “overlapping” is highly dependent on the annotation status of the mother gene. If a mother gene would be 

the result of a mis-annotation and lacks protein-coding capacity, the translated ORF located in another frame cannot 

be rightly termed “overlapping”. However, in case of tle3 and PA1383, the mother genes of olg1 and olg2, its beyond 

doubt that they encode for proteins due to multiple reasons: Firstly, the functionality of Tle3 was confirmed by 

Berni et al. (2019) who characterized the antibacterial effect and the secretion of Tle3 via a T6SS by performing intra-

species bacterial competition assays. In contrast, PA1383 has an “hypothetical” annotation status and lacks 

experimental characterization, but functionality is implied by the presence of an N-terminal type I signal sequence for 

cellular export (Lewenza et al., 2005), purifying selection acting on PA1383 as well as a broad distribution of PA1383 

homologues across the genus Pseudomonas. Furthermore, PA1383 but also tle3 were confirmed to be transcribed and 

translated as suggested by the RNA-seq, Ribo-seq and MS experiments of this study. As such, in light of the data 

regarding expression and evolutionary sequence analysis it is clear that both ORFs are correctly annotated and 

represent translated genes with functionality. Consequently, olg1 and olg2 can be considered genuinely as overlapping 

genes, which have most likely been overlooked due to the striking gene-like characteristics of their mother genes. 

Although NGS-based methods facilitated the increasing identification of translated overlapping, the vast majority of 

the ORFs detected were typically short end encoded for small proteins, e.g., as shown for different E. coli strains 

(Zehentner et al., 2020a, Weaver et al., 2019, Meydan et al., 2019). A similar observation was made by Smith et al. 

(2019) who detected 274 novel ORFs in Mycobacterium tuberculosis, many of them being short. Ribo-seq in 

Salmonella enterica Typhimurium also resulted in the detection of translated ORFs, some of them overlapping and 

encoding for protein with a maximum length of 144 AAs (Baek et al., 2017). Congruently, the length of OLG candidates 

with experimental characterization seldomly exceeded 200 codons (e.g., Vanderhaeghen et al., 2018, Hücker et al., 

2018a, Hücker et al., 2018b, Fellner et al., 2015, Fellner et al., 2014, Behrens et al., 2002). Rare exceptions of larger 

OLGs with experimental evidence constitute the genes pop recently detected in EHEC (Zehentner et al., 2020b), the 
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gene adm putatively involved in the secondary metabolism of Streptomyces coelicolor (Tunca et al., 2009) and cosA 

identified in P. fluorescens Pf0-1 (Silby & Levy, 2008), which encode for proteins with a length of 200, 233 and 

338 AAs, respectively. However, public available Ribo-seq data raise doubts about the authenticity of adm as a genuine 

overlapping gene (personal communication with Dr. Klaus Neuhaus). For the OLG cosA, a proteomic proof of the 

encoded protein in a follow up study was unfeasible presumably due to its weak expression under the conditions tested 

(Kim et al., 2009). However, in the same study the authors succeeded in finding peptides of in total nine protein-

coding ORFs, which were located antisense to annotated genes in P. fluorescens. The by far largest ORF reported in 

this study encoded for a 530 AA large protein; the proteins encoded by the other antisense OLGs had a length less or 

equal 195 AAs. A 1,644 nt long ORF encoding for a theoretical protein of 548 AAs was identified in the genome of 

Deinococcus radiodurans and constitutes the hitherto largest OLG with proteomic evidence which has been described 

in literature so far (Willems et al., 2020). However, the utmost number of OLGs identified via mass spectrometry lack 

further targeted studies to confirm the validity of the peptides detected. For olg1 and olg2, targeted proteomics 

confirmed their protein-coding capacity with high confidence, and therefore these OLGs are currently the best attested 

ones in terms of proteomic evidence while simultaneously constituting two of the largest -if not the largest- OLGs 

detected in prokaryotes. Olg1 and olg2 represent unusually large OLGs even when compared with OLGs reported for 

other non-prokaryotic genomes. In the model archaeon Haloferax volcanii, Gelsinger et al. (2020) for instance detected 

160 novel TSS, whereby 75% of them encoded for proteins shorter than 129 AAs. Schlub & Holmes (2020) analysed 

in total 5,976 viral genomes and predicted 83,722 instances of overlapping regions, of which 84% were shorter than 

50 nt. Although a large proportion of overlaps were located on the same strand, antisense overlaps up to 2,351 nt 

(median = 212 nt) were detected in all viral groups except +ssRNA viruses. An exception to this constitutes a recently 

discovered ~1,000 AA long antisense ORF encompassing almost the entire genome length of some “ambigrammatic” 

+ssRNA viruses belonging to the family Narnaviridae (DeRisi et al., 2019). Although initially suggested to be a 

protein-coding sequence (Dinan et al., 2020), the author of a recent preprint reported contradictory results and claimed 

that reverse open reading frames encoded by “ambigrammatic” viruses are not translated into proteins (Dudas et al., 

2021). To conclude, the exceptional sizes of olg1 and olg2 in combination with their profound experimental and 

evolutionary evidence leave no doubt about their protein-coding nature and functionality. However, the type and scope 

of their function has to await further studies. 

4.4 Concluding remarks and outlook 

This study provided cumulative evidence for the existence and proteinaceous nature of OLGs, gene constructs which 

are a matter of controversy that still lack full acceptance in the scientific community (e.g., Wade & Grainger, 2014, 

Pallejà et al., 2008). However, the increasing detection of transcriptional and translational events in non-canonical 

regions associated with non-coding RNAs, micropeptides, small proteins or OLGs (Orr et al., 2019, Storz et al., 2014) 

raised the question whether these signals represent non-functional background noise as formerly proposed (Smith et al., 

2019, Lloréns-Rico et al., 2016). Multiple research groups made a substantial effort to unveil the “dark proteome” of 

prokaryotes by using Ribo-seq and recent modifications of it, thereby detecting a variety of such “alternative”, yet 

functional ORFs (e.g., Weaver et al., 2019, Meydan et al., 2019). In this study, classical Ribo-seq was combined with 

Ribo-RET, RelE-assisted Ribo-seq, RNA-seq, Cappable-seq and mass spectrometry to aid maximum confident 

delineation of novel OLGs in a high-throughput fashion. The candidates identified in this study expand the short, but 

growing list of experimentally validated OLGs and provide a solid basis for their further study. Of special interest 

might be the functional characterization of olg1 and olg2, which represent the longest yet known OLGs in prokaryotes. 
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Experiments like competitive growth experiments at various conditions, phenotypic analysis using genomic knockout 

mutants, or co-immunoprecipitation with OLG-associated proteins could shed light on the physiological roles of Olg1 

and Olg2 in P. aeruginosa. Follow-up studies are also advisable for all sense overlapping genes as they are 

experimentally difficult to access, leading to a void of studies addressing such constructs, as well as all OLG candidates 

with proteomic evidence as the detection and validation of a native protein should leave no doubt about the 

proteinaceous nature, and thus, also about the functionality of an OLG. Despite biological reproduction of the existing 

datasets, additional experiments like Term-seq (Dar et al., 2016) or apidaecin-supported Ribo-seq (Mangano et al., 

2020) could further contribute not only to the precise mapping of ORF and transcript boundaries of the OLGs 

identified in this study, but also facilitate the detection of unknown genes which are still hiding in bacterial genomes. 

In this context, it must be noted that this study solely focused on the most reliable ORF candidates, which showed 

multiple lines of evidence for being protein coding. However, as the entirety of novel ORFs was not analysed due their 

decreased confidence as indicates by lower prediction scores, it might be possible that many more promising OLG and 

intergenic gene candidates could be derived from this data. In conclusion, the results of this study give a first impression 

of how many “unexpected” functional elements still await discovery and how much work has to be done in order to 

unravel the entire complexity of bacterial genomes (Kirchberger et al., 2020, Grainger, 2016).  
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6. Supplement  

6.1 Supplementary Files 

Supplementary Files S1 – S5 can be found on the attached CD-ROM. 

Supplementary File S1. Details about all OLG and iORF candidates identified in E. coli LF82 in this study. Listed 

are all relevant information about the novel gene candidates including their genomic position, ORF characteristics 

(length, start codon, type of overlap, etc.), details about their mother genes, results of blastp, differential expression 

and structural gene-like element (promoter, terminator, RBS) analyses, their expression metrics (RCV, RPKM and 

coverage values) of all RNA-seq and Ribo-seq experiment, the individual probabilities obtained by the three prediction 

tools (REPARATION, DeepRibo, scripts by Giess) as well as the overall prediction score as determined in this study.  

Supplementary File S2. Details about all OLG and iORF candidates identified in P. aeruginosa PAO1 in this 

study. Listed are all relevant information about the novel gene candidates including their genomic position, ORF 

characteristics (length, start codon, type of overlap, etc.), details about their mother genes, results of blastp, differential 

expression, structural gene-like element (terminator, RBS), Cappable-seq and mass spectrometry (MS) analyses, their 

expression metrics (RCV, RPKM and coverage values) of all RNA-seq and Ribo-seq experiment, the individual 

probabilities obtained by the three prediction tools (REPARATION, DeepRibo, scripts by Giess) as well as the overall 

prediction score as determined in this study.  

Supplementary File S3. Results of gene prediction in the genome of P. aeruginosa PAO1 after application of 

Prodigal (Hyatt et al., 2010). Detailed values of the individual categories including GC content (gc_cont), confidence 

score (conf), overall score (score), hexamer coding proportion score (cscore), TIS score (sscore), ribosome binding site 

score (rscore), region score flanking the start codon (uscore) and the start codon sequence score (tscore) are listed for 

all predicted genes (n = 5,681) as well as for olg1 and olg2 after hiding of their mother genes tle3 and PA1383.  

Supplementary File S4. Expression metrics (RCV, RPKM, coverage values) obtained for olg1 and olg2 as well as 

their mother genes tle3 and PA1383 obtained for RNA-seq and Ribo-seq data published by Grady et al. (2017) after 

cultivation of P. aeruginosa PAO1 and P. aeruginosa ATCC 33988 in M9 broth supplemented with either glycerol or 

n-alkanes as sole carbon source.  

Supplementary File S5. Details about all peptides of Olg1, OLG2, Tle3 and PA1383 detected in the DDA-MS 

experiment. For each of the peptides, the sequence, the number of missed cleavage sites, the charge, the MaxQuant 

score (Cox & Mann, 2008), the intensity as well as the dotp values are listed.  
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6.2 Supplementary Figures 
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Supplementary Figure 1. Reads mapping antisense to rRNA genes indicate probe carryover during rRNA depletion. (A) Ribo-
seq reads of Exp1_anaerobic_RepI visualized in the genome browser Artemis. Grey regions indicate the 16S, 23S and 5S rRNA genes 
of the E. coli LF82 genome with reads mapping primarily to the opposite strand (-). (B) Averaged RPKM values obtained for rRNA
genes were higher for the antisense region (-) indicating probe contamination.  
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Supplementary Figure 2. Results of differential expression analysis of all anORFs and novel gene candidates using edgeR. Shown 
are the obatined log2 fold changes (log2FC, x-axis) and p-values (y-axis) of all genes with significant (A) RNA-seq and (B) Ribo-seq 
signals. At the trancriptome level, 55 anORFs were down- and 38 anORFs were upregulated in the anaerobic condition compared to 
the aerobic condition. In contrast, 63 and 80 anORFs exhibited down- or upregulation at the translational level, respectively.
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Supplementary Figure 3. Growth of (A) E. coli LF82 and (B) E. coli LF82ΔtolC in the presence of different RET concentrations 
indicated in µg/mL. At various time point during growth the optical density was measured in technical as well as biological triplicates. 
Bacterial cultures without RET served as a positive control (PC) and plain broth without cell inoculum was used as a negative
control (NC). 
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Supplementary Figure 4. Read length distributions of all E. coli LF82 sequencing datasets. The proportion of all reads mapping 
to mRNA regions is displayed for (A) Exp1_Ribo-seq_aerobic RepI+II, (B) Exp1_Ribo-seq_anaerobic RepI+II, (C) Exp1_RNA-
seq_aerobic RepI+II, (D) Exp1_RNA-seq_anaerobic RepI+II, (E) Exp2_Ribo-seq ND & RET and (F) Exp3_RNA-seq (“own”) 
as well as the respective control RNA-seq dataset published by Hwang & Buskirk (2017). 
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Supplementary Figure 6. Number of predictions after applying RET peak thresholds of 0.2 to 5 RPM after subtraction of a 15 nt 
offset (dark bars) or a 17 nt offset (light bars). Numbers above bars represent fold changes for the predictions obtained with a certain 
threshold in comparison to the respective value of the previous applied threshold.  

RelB
RelE

17

22

27

32

37

-100 400 900 1,400

lo
g 2

(iB
A

Q
)

iBAQ-sorted proteins
0 

RelB

RelE

13

18

23

28

33

38

-50 50 150 250 350 450

lo
g 2

(iB
A

Q
)

iBAQ-sorted proteins
0

A B

Supplementary Figure 7. Results of the mass spectrometry analysis of cells harvested (A) 3 h after induction of relE and relB 
expression and (B) purification using a FPLC system with a pre-packed column. The logarithmic iBAQ value of each detected 
protein (y-axis) was plotted against the detected proteins sorted by their iBAQ values (x-axis). Each dot represents one detected 
protein. 

Supplementary Figure 5. Metagene analysis of highly expressed genes in the datasets published by Meydan et al. (2019). Shown 
are normalized RPM values of each position in a -10 to 30 nt window around the start codon (dashed line, distance 0 nt) after 
determining the P site position by subtracting 15 nt of all genes with RPM values ≥100 in the ND and RET datasets of E. coli strain 
BL21 (strain B) or E. coli strain BW25113 (strain K). 
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Supplementary Figure 9. Reading frame sum signal of all annotated genes for the Ribo-seq datasets published by Hwang & 
Buskirk (2017) using MNase only. Subtraction of 30 nt from start and stop positions was performed. The grey bars display the results 
of the raw data; the black bars show the reading frame signal after shifting of reads arising from codons ending in C. 
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Supplementary Figure 10. Reproducibility of Ribo-seq prediction results. Shown are the percentages of identical predictions 
obtained by the tool (A) REPARATION and (B) the scripts by Giess et al. (B; 2017). 
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Supplementary Figure 8. Bovine serum albumin (BSA) calibration curve for RelE protein quantification using Bradford reagent. 
Absorbance was measured at 600 nm. 
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Supplementary Figure 11. Distance of (A) promoter and (B) terminator structures of the novel ORFs in E. coli LF82 as predicted 
by BROM (n = 115) and FindTerm (n = 44). The boxplot indicates first, second and third quartile values; the dot represents the
mean value.  
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Supplementary Figure 12. Sequence logos of putative Shine-Dalgarno sequences in the region upstream of the start codon of (A) 
all novel gene candidates (n = 116) and (B) all protein-coding, annotated genes (n = 4,587). 
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Supplementary Figure 13. Integrity of P. aeruginosa PAO1 RNA samples. RNA extraction and agarose gel electrophoresis of 
samples harvested at (A; lane 1) OD600nm = 1 and (A; lane 2) OD600nm = 6 for RNA-seq indicate a decrease in RNA quality with 
increasing optical density. (B) Analysis of RNA integrity after incubation with RNase I in different time-concentration combinations 
(B; lane 1: 3.75 U/AU RNase I for 45 min; lane 2: 3.75 U/AU RNase I for 60 min; lane 3: 2.5 U/AU RNase I for 45 min; lane 4: 2.5 
U/AU RNase I for 60 min) suggests ineptitude of RNase I in P. aeruginosa Ribo-seq. Incubation with RNase A (lane 5) as well as 
without any nuclease (lane 6) served as positive and negative control, respectively. 
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Supplementary Figure 15. Translation signals of highly expressed proteins of the S10 ribosomal protein operon in P. aeruginosa
PAO397. Shown are the log2RPM values at each position of the genes rplB, rplW, rplD, rplC and rpsJ in the ND (top panel) and 
the RET (bottom panel) datasets. 

Supplementary Figure 14. mRNA read length distributions of the Ribo-seq datasets (A) Exp2 and (B) Exp3 for both main (RET 
or +RelE) and control experiment (ND or -RelE) in P. aeruginosa PAO1.  
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Supplementary Figure 16. Number of predictions after applying RET peak thresholds of 0.2 to 5 RPM after subtraction of a 
15 nt offset in P. aeruginosa PAO397. Numbers above bars represent fold changes for the predictions obtained with a certain 
threshold in comparison to the respective value of the previous applied threshold.  
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Supplementary Figure 18. Reproducibility of Ribo-seq prediction results in P. aeruginosa PAO1. The overlap and absolute 
number of predictions obtained by all three prediction tools (DeepRibo, REPARATION, scripts by Giess) for the dataset
(A) Exp1_RepI, (B) Exp1_RepII, (C) Exp2_ND, (D) Exp3_MNase and (E) Exp3_RelE are shown. 
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Supplementary Figure 17. Results of sequence bias at the 3´end of all mRNA reads obtained in the (A) Ribo-seq or (B) RNA-
seq experiment in E. coli LF82. 
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Supplementary Figure 19. Distance of (A) TSS and (B) terminator structures of the novel ORFs in P. aeruginosa PAO1 as 
indicated by Cappable-seq (n = 61) or predicted by FindTerm (n = 28). The boxplots indicate first, second and third quartile values; 
the dots represent the mean values. 
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Supplementary Figure 20. Metagene analysis of novel gene candidates in P. aeruginosa PAO1. Normalized RPM values of each 
position in a -10 to 30 nt window around the start codon (dashed line, distance 0 nt) after determining the P site position of reads 
mapping to the novel gene candidates (n = 68) in the no drug (ND) and retapamulin (RET) Ribo-seq experiment are shown.  
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Supplementary Figure 21. Results of Ribo-RET and Cappable-seq for the (A) olg1/tle3 and the (B) olg2/PA1383 locus in 
P. aeruginosa PAO1. Mean RPM and RRS values of all Ribo-RET (first track) and Cappable-seq reads (second track) of this study 
(n = 1 and n = 3, respectively) are shown for (A) olg1 and the mother gene tle3 (sense and antisense, respectively) as well as for 
(B) olg2 and the mother genes PA1383 and galE (antisense and sense, respectively). Translation initiation (TIS) and transcription 
initiation sites (TSS) are indicated by asterisks.  
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Supplementary Figure 22. Prodigal prediction results of the P. aeruginosa PAO1 genome with and without hiding of the mother 
genes tle3 and PA1383 by replacing all possible start codons by Ns. Violin plots with included boxplots display the values of all 
predicted protein-coding genes (n = 5,681) for the following categories (from top left to bottom right): GC content (gc_cont), 
confidence score (conf), overall score (score), hexamer coding proportion score (cscore), TIS score (sscore), ribosome binding site 
score (rscore), region score flanking the start codon (uscore) and the start codon sequence score (tscore). All values obtained for olg1
and olg2 are indicated by a black rectangle and triangle, respectively. Values of their mother genes are represented by the respective 
grey-shaded symbol. Figure adapted from Kreitmeier et al. (2021). 
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Supplementary Figure 23. Results of the RT-PCR analysis of olg1 and olg2. Full-length transcription of olg1 (lane 1, target 
length = 917 nt) and olg2 (lane 2, target length = 1,696 nt) was verified by RT-PCR with primers binding at the N-terminal and 
C-terminal region of both OLGs. Transcription of olg1 starts considerably upstream of the coding region as indicated by the detection 
of a RNA transcript using primers binding 45 nt (lane 3, target length = 995 nt), 110 nt (lane 4, target length = 1,060 nt), 161 nt 
(lane 5, target length = 1,111 nt) and 240 nt (lane 6, target length = 1,190 nt) upstream of the start codon. Figure adapted from 
Kreitmeier et al. (2021) 
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Supplementary Figure 24. Results of RNA-seq and Ribo-seq analysis of the genes tli3 and vgrG2b encoded upstream of the mother 
gene tle3 in P. aeruginosa PAO1. Strand-specific RPM values of RNA-seq (first track) and Ribo-seq reads (second track) averaged 
over the biological replicates of Exp1 are displayed. A lack of signals antisense to these genes indicate the absence of pervasive 
transcription and translation at this locus. Figure adapted from Kreitmeier et al. (2021). 
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Supplementary Figure 25. Reading frame signal of novel (A, B) olg1 and (C, D) olg2 in P. aeruginosa PAO1. All reads obtained 
for Exp3 generated with (+RelE) or without RelE (-RelE) were mapped to each sub-codon position. Figure A and D display the 
distribution of all reads after NNC shift; in Figure B and D the signals arising from unshifted reads are illustrated. 
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Supplementary Figure 26. Transcriptome and translatome signals at the (A) olg1/tle3 and (B) olg2/PA1383 locus obtained for 
the datasets provided by Grady et al. (2017). Strand-specific RPM values of RNA-seq (first & third track) and Ribo-seq reads (second 
& fourth track) averaged over the biological triplicates of the datasets “M9+glycerol” and “M9+n-alkane” (n = 3, each) were shown.
Arrows indicate the position of transcription start (TSS) and stop sites (termination) of olg1 and olg2. Figure adapted from 
Kreitmeier et al. (2021). 
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Supplementary Figure 28. (A) Sampling points and (B) loading control for PRM-MS analysis. (A) The growth curve of 
P. aeruginosa PAO1 in LB broth of three biological replicates is shown. Samples were taken at 1 h, 2 h, 4 h, 6 h, 8 h and 24 h as 
well as at OD600nm = 1 (~160 min) and measured via PRM-MS. (B) The measured intensities of all peptides detected in each sample. 
Figure adapted from Kreitmeier et al. (2021).  

Supplementary Figure 27. Mean RNA-seq and Ribo-seq reads per reads per kilobase per million mapped reads (RPKM) for olg1
and olg2 of the datasets generated in this study (“LB”, n = 2, each) and the datasets provided by Grady et al. (2017), who performed 
RNA-seq and Ribo-seq experiments with P. aeruginosa PAO1 after cultivation in M9 broth with glycerol (“M9+glycerol”, n = 3) or 
n-alkanes (“M9+alkane”, n = 3) as sole carbon source. Figure adapted from Kreitmeier et al. (2021). 
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Supplementary Figure 29. qPCR analysis of olg1 mRNA in P. aeruginosa PAO1. Ct values were measured for samples taken 
1 h, 2 h, 4 h, 6 h, 8 h and 24 h after cultivation as well as at OD600nm = 1 (~160 min). All values were normalized to the values 
obtained for the housekeeping gene gyrA and compared to the expression level measured for the 1 h sample. Statistical significance 
was evaluated based on pairwise comparison of the log2 fold changes obtained for the 1 h sample with those of all other samples using
a two-tailed Welch two sample t-test (*p ≤ 0.05). Figure adapted from Kreitmeier et al. (2021). 
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Supplementary Figure 30. Phylogenetic analysis indicates taxonomic restriction of (A) olg1 and (B) olg2. The amino acid 
sequence of the mother genes (A) tle3 and (B) PA1383 was used to calculate a maximum likelihood tree which was down sampled 
to 20 genomes for graphic representation of homologous olg1 and olg2 sequences. Genomes which harbour homologous ORFs sharing 
either (A) the same start and stop codon or (B) only the same stop codon as the reference genome of P. aeruginosa PAO1 (highlighted 
by an arrow) are indicated by a dotted box. The outgroup used for evolutionary analyses is underlined. Figure adapted from
Kreitmeier et al. (2021). 
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Supplementary Figure 31. dNN/dNS analysis of the (A) olg1 and (B) olg2 region using OLGenie. Pairwise comparisons of 
dNN/dNS ratios indicate the strongest evidence for purifying selection within the P. aeruginosa clade. However, purifying selection 
on olg2 can be also found in other species of the genus Pseudomonas. Figure adapted from Kreitmeier et al. (2021). 
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6.3 Supplementary Tables 

Supplementary Table 1. All chemicals and reagents used in this study listed according to their manufacturer. If necessary, sub-brands and abbreviations are stated.  

Manufacturer (including associated brands) Chemicals or reagents (abbreviation) 
BioVectra isopropyl β-d-1-thiogalactopyranoside (IPTG) 
Carl Roth acetic acid, agarose, ammonium chloride (NH4Cl), ammonium persulfate (APS), arabinose, boric acid, bovine serum albumin (BSA), calcium 

chloride (CaCl2), cetrimonium bromide (CTAB), chloroform, diethyl pyrocarbonate (DEPC), disodium phosphate (Na2HPO4), ethylene glycol-
bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), ethylenediaminetetraacetic acid (EDTA), glutaraldehyde, glycine, hydrogen chloride 
(HCl), iron(II) sulfate (FeSO4), isopropyl, magnesium chloride (MgCl2), magnesium sulfate (MgSO4), methanol, milk powder, monopotassium 
phosphate (KH2PO4), monosodium phosphate (NaH2PO4), Ponceau S, potassium chloride (KCl), RotiPhenol, 
RotiPhenol/chloroform/isoamylalcohol, Rotiphorese NF-Acrylamide/Bis-solution 30 (29:1), Rotiphorese Sequencing gel buffer concentrate, 
Rotiphorese Sequencing gel concentrate, Rotiphorese Sequencing gel diluent, Roti-Quant 5X-staining solution, Schaedler bouillon, sodium acetate 
(NaOAc), sodium chloride (NaCl), sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), tetramethylethylendiamine (TEMED), tricine, tris-
(hydroxymethyl)-aminomethan (Tris), Triton X-100, Tween 20, urea 

iNtRON biotechnology RedSafe Nucleic Acid Staining Solution 
J.T.Baker  
(including Avantor) 

ethanol (EtOH) 

Merck 2-mercaptoethanol, bromphenolblue, chloroacetamide (CAA), glycerol, nuclease-free H2O 
Roche Trypsin recombinant, Proteomics Grade 
Sigma-Aldrich  
(including Fluka) 

ammonium acetate, ammonium bicarbonate, ammonium formate, bicine, Bradford-Reagent B6916, CDP-Star AP substrate, Coomassie Brilliant 
Blue G-250, dimethyl sulfoxide (DMSO), dithiothreitol (DTT), formic acid (FA), glucose, guanosine 5′-(β-γ-imido)-triphosphate (GMP-PNP), 
imidazole, NP-40, sucrose, trifluoroacetic acid (TFA), Tris(2-carboxyethyl)phosphine (TCEP) 

Thermo Fisher Scientific  
(including Invitrogen & Oxoid) 

agar, dNTPs, ethylenediaminetetraacetic acid (EDTA), glycogen, sodium acetate (NaOAc), SYBR Gold Nucleic Acid Gel Stain, TRIzol Reagent, 
tryptone, yeast extract 

VWR International acetonitrile (ACN) 
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Supplementary Table 2. Overview of Ribo-seq and RNA-seq reads after sequencing of all E. coli LF82 experiments. Shown are the total number of reads in millions for all categories.  

Experiment 
Sequenced 

reads 

Too short and 
low-quality 

reads 

Processed 
reads 

Reads not 
mapping to  

target genome 

Reads 
mapping to  

target genome
tRNA reads rRNA reads mRNA reads 

Exp1_Ribo-seq_aerobic_RepI 65.1 37.9 27.2 11.9 15.4 2.3 3.3 9.8 
Exp1_Ribo-seq_anaerobic_RepI 60.6 29.3 31.3 14.2 17.2 0.4 9.9 6.9 
Exp1_RNA-seq_aerobic_RepI 64.5 20.3 44.3 26.0 18.2 7.5 4.8 5.9 
Exp1_RNA-seq_anaerobic_RepI 70.2 16.3 53.9 20.0 34.0 13.4 5.0 15.5 
Exp1_Ribo-seq_aerobic_RepII 79.6 37.2 42.4 19.8 22.6 0.3 1.1 21.2 
Exp1_Ribo-seq_anaerobic_RepII 82.8 38.7 44.1 19.4 24.7 1.0 2.7 21.0 
Exp1_RNA-seq_aerobic_RepII 81.2 13.1 68.1 24.1 44.1 12.6 9.9 21.6 
Exp1_RNA-seq_anaerobic_RepII 98.6 17.4 81.2 29.5 51.6 19.7 2.7 29.2 
Exp2_Ribo-seq_RET 199.0 13.6 185.4 8.7 176.8 1.6 151.5 23.8 
Exp2_Ribo-seq_ND 271.1 23.8 247.3 16.6 230.7 3.4 161.5 65.8 
Exp3_Ribo-seq_RelE 254.1 133.1 121.0 95.6 25.3 1.9 0.0 23.4 
Exp3_RNA-seq 3.1 0.1 2.9 2.2 0.7 0.3 0.0 0.4 
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Supplementary Table 3. Differential expressed anORFs (n = 210) showing logFC ≥|1| and a p-value ≤0.05 in transcriptome sequencing and/or ribosome profiling (Exp1_RepI+II) in E. coli LF82. 

Locus_Tag Gene 
RNA-seq

logFC 
RNA-seq 
logCPM 

RNA-seq
p-value 

Ribo-seq
logFC 

Ribo-seq
logCPM 

Ribo-seq
p-value 

Locus_Tag Gene 
RNA-seq

logFC 
RNA-seq
logCPM 

RNA-seq
p-value 

Ribo-seq
logFC 

Ribo-seq
logCPM 

Ribo-seq 
p-value 

LF82_RS05430 flgB -5.34 5.38 0.00 -5.28 6.02 0.00  LF82_RS21925 cadB -0.79 6.81 0.27 -1.40 6.14 0.05 
LF82_RS05445 flgE -4.97 6.19 0.00 -3.57 5.50 0.00  LF82_RS10340  -0.78 10.10 0.28 3.07 11.01 0.00 
LF82_RS05435 flgC -4.72 5.05 0.00 -4.64 5.69 0.00  LF82_RS02550  -0.77 7.85 0.35 1.97 5.36 0.02 
LF82_RS05440 flgD -4.68 5.84 0.00 -2.42 4.87 0.01  LF82_RS14685 tssJ -0.75 2.91 0.18 1.74 3.63 0.03 
LF82_RS05450 flgF -4.40 4.81 0.00 -2.97 3.82 0.00 LF82_RS02590 cysS -0.73 8.31 0.27 1.96 9.27 0.03 
LF82_RS05455 flgG -4.08 5.78 0.00 -3.53 7.86 0.00  LF82_RS16145 rpoD -0.71 11.51 0.29 2.21 12.05 0.03 
LF82_RS10070 fliG -3.46 4.81 0.00 -1.96 4.07 0.01 LF82_RS10850 wcaE -0.70 2.21 0.35 1.59 2.16 0.03 
LF82_RS10080 fliI -3.38 4.70 0.00 -1.84 4.72 0.04  LF82_RS17030  -0.69 1.16 0.23 1.56 2.15 0.02 
LF82_RS05460 flgH -2.97 3.25 0.01 -2.64 3.08 0.01  LF82_RS16180  -0.67 3.77 0.23 2.46 4.97 0.00 
LF82_RS05425 flgA -2.92 4.18 0.00 -2.86 3.65 0.00 LF82_RS06620 oppB -0.66 2.22 0.32 -1.62 3.46 0.03 
LF82_RS05465 flgI -2.91 3.71 0.00 -2.80 3.93 0.00  LF82_RS22800 pyrB -0.66 3.51 0.23 -1.47 4.66 0.04 
LF82_RS10115 fliP -2.37 2.73 0.01 -1.79 3.56 0.04 LF82_RS19620 atpF -0.65 8.30 0.38 -1.79 7.44 0.04 
LF82_RS20800 metF -2.10 5.53 0.00 -2.54 5.36 0.00  LF82_RS04475 ompF -0.63 7.29 0.47 -2.32 6.22 0.01 
LF82_RS25490  -2.01 8.38 0.01 -2.77 8.26 0.00  LF82_RS09505  -0.61 4.27 0.27 2.71 5.62 0.00 
LF82_RS10105 fliN -1.74 4.63 0.02 -1.64 3.04 0.02 LF82_RS10445  -0.60 5.64 0.26 -1.91 7.21 0.03 
LF82_RS10100 fliM -1.71 5.20 0.02 -1.36 4.08 0.03  LF82_RS01705 prpR -0.57 3.16 0.35 1.77 4.97 0.02 
LF82_RS20080 metE -1.70 10.73 0.01 -2.35 11.12 0.01 LF82_RS08615  -0.56 5.08 0.33 2.19 5.93 0.01 
LF82_RS21865 fumB -1.69 6.07 0.01 -1.31 5.44 0.05  LF82_RS00080  -0.55 0.92 0.31 1.35 2.68 0.05 
LF82_RS01040 metN -1.61 5.63 0.00 -1.49 4.68 0.02  LF82_RS00670 gcd -0.55 7.61 0.41 1.67 5.89 0.05 
LF82_RS20075 metR -1.61 5.33 0.00 -2.27 5.04 0.00 LF82_RS10735 wzzB -0.55 7.32 0.46 3.71 8.70 0.00 
LF82_RS21190 metA -1.57 6.34 0.01 -1.60 5.86 0.03  LF82_RS14595 tssB -0.54 2.00 0.28 1.36 3.03 0.02 
LF82_RS02915 citD -1.24 5.46 0.03 -2.88 7.31 0.00 LF82_RS15985  -0.54 4.33 0.28 1.62 4.97 0.02 
LF82_RS07590 fdnH -1.18 3.57 0.05 -1.56 4.31 0.02  LF82_RS19350  -0.54 6.35 0.46 1.42 4.71 0.02 
LF82_RS07445 ansP -1.12 3.87 0.04 1.96 5.43 0.01  LF82_RS03395 sdhA -0.53 4.54 0.32 1.42 5.32 0.05 
LF82_RS02800 entC 1.08 4.86 0.05 1.37 5.77 0.04 LF82_RS00365 sgrR -0.51 7.35 0.48 2.51 7.38 0.01 
LF82_RS02820 entH 1.26 4.22 0.02 1.61 3.66 0.01  LF82_RS17865 malT -0.51 5.34 0.38 1.87 5.91 0.02 
LF82_RS20035  -1.78 7.66 0.08 4.82 6.05 0.00 LF82_RS09840 flhD -0.49 4.95 0.35 -1.37 4.54 0.02 
LF82_RS16440 agaV -1.68 4.22 0.12 1.70 2.84 0.01  LF82_RS04960  -0.47 7.61 0.51 -1.82 7.04 0.05 
LF82_RS19615 atpH -1.34 7.39 0.08 -2.34 6.96 0.01  LF82_RS05190 pgaB -0.46 3.72 0.39 1.54 3.65 0.03 
LF82_RS14280 cysN -1.20 4.12 0.10 -1.68 4.35 0.02 LF82_RS19270 adeD -0.44 3.68 0.41 1.53 4.28 0.02 
LF82_RS10095 fliL -1.13 4.45 0.09 -1.59 3.54 0.03  LF82_RS12130 hisQ -0.43 3.32 0.38 2.23 3.60 0.01 
LF82_RS15280 metK -1.11 11.28 0.11 -1.96 9.86 0.03 LF82_RS04760  -0.42 4.91 0.44 -2.12 6.79 0.02 
LF82_RS19195  -1.11 2.81 0.07 2.28 3.69 0.00  LF82_RS09700  -0.36 4.44 0.59 3.35 5.88 0.00 
LF82_RS19185  -1.08 5.39 0.07 2.38 6.56 0.01  LF82_RS22500 ulaR -0.35 8.34 0.60 3.11 9.44 0.01 
LF82_RS17150 rrf -1.06 1.21 0.06 2.17 2.69 0.04 LF82_RS12350 emrK -0.35 2.42 0.48 1.22 2.82 0.04 
LF82_RS14725 amiC -1.05 7.24 0.11 -1.90 7.30 0.02  LF82_RS17700 rpe -0.35 6.18 0.51 -1.93 8.47 0.03 
LF82_RS12960 guaB -0.99 5.98 0.24 -1.90 6.29 0.04 LF82_RS11305 preA -0.32 4.56 0.52 2.25 5.11 0.00 
LF82_RS09460 mntP -0.98 2.42 0.08 1.86 3.99 0.01  LF82_RS00450 murF -0.30 7.39 0.60 -1.67 7.53 0.04 
LF82_RS15440  -0.97 7.26 0.09 3.16 8.22 0.00  LF82_RS19935 aslA -0.29 3.46 0.60 2.16 4.46 0.01 
LF82_RS17990 gntU -0.93 5.81 0.23 1.61 6.21 0.02 LF82_RS06625 oppC -0.29 2.76 0.62 -1.62 4.70 0.04 
LF82_RS02560  -0.93 5.54 0.23 1.49 5.26 0.03  LF82_RS06230  -0.24 2.71 0.69 -1.83 4.97 0.03 
LF82_RS03845 glnQ -0.93 7.61 0.20 -2.11 7.64 0.02 LF82_RS19550 bglF -0.21 5.18 0.72 2.97 6.12 0.00 
LF82_RS26000  -0.91 5.82 0.14 3.05 6.62 0.00  LF82_RS03680 bioD -0.19 4.04 0.72 1.65 4.15 0.03 
LF82_RS15230 cmtB -0.89 1.00 0.20 1.71 1.58 0.03  LF82_RS14920  -0.16 3.34 0.75 1.41 4.21 0.03 
LF82_RS18800  -0.88 2.85 0.31 1.41 2.54 0.03 LF82_RS04440 mukE -0.14 4.30 0.80 -1.61 4.94 0.04 
LF82_RS20465  -0.88 5.24 0.31 1.38 4.63 0.05  LF82_RS17365 rplV -0.14 8.85 0.85 -2.67 10.98 0.03 
LF82_RS05250 csgD -0.87 4.92 0.10 3.09 6.13 0.00 LF82_RS15635  -0.10 2.12 0.86 2.07 3.30 0.01 
LF82_RS18095 livH -0.80 3.75 0.15 1.54 5.78 0.05  LF82_RS08980 hxpB -0.10 3.67 0.84 1.80 5.85 0.01 
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LF82_RS17380 rplW -0.10 7.95 0.90 -2.26 9.69 0.05  LF82_RS05470 flgJ -2.46 3.82 0.01 -0.77 3.66 0.32 
LF82_RS25245 yoaJ -0.08 1.70 0.88 -1.57 3.47 0.02  LF82_RS10110 fliO -2.38 3.02 0.01 -1.52 2.34 0.06 
LF82_RS00315 araD -0.05 3.80 0.91 1.51 2.83 0.04  LF82_RS05275  -2.20 2.36 0.01 -1.06 2.33 0.13 
LF82_RS21455 sucC -0.05 3.50 0.92 1.51 4.43 0.02 LF82_RS02225 amtB -1.64 4.97 0.02 -0.81 4.67 0.20 
LF82_RS19375  -0.01 4.13 0.99 -1.52 6.19 0.04  LF82_RS01460 ecpC -1.60 6.11 0.01 0.58 5.13 0.40 
LF82_RS12355 evgA 0.00 4.07 0.99 -1.90 4.85 0.02  LF82_RS06685 ompW -1.60 6.96 0.00 -1.23 8.48 0.12 
LF82_RS04890  0.00 5.17 1.00 -2.15 7.70 0.03  LF82_RS21870 dcuB -1.59 4.32 0.02 -0.26 3.24 0.69 
LF82_RS09770 argS 0.01 6.93 0.99 2.62 7.19 0.01  LF82_RS19165  -1.55 2.77 0.03 0.22 2.74 0.74 
LF82_RS08115  0.02 3.83 0.99 1.43 5.04 0.03 LF82_RS20135  -1.53 1.26 0.01 0.16 3.52 0.84 
LF82_RS18230  0.02 2.24 1.00 1.44 1.75 0.03  LF82_RS06985  -1.52 1.65 0.00 -0.65 2.19 0.39 
LF82_RS20185  0.03 1.75 0.97 1.44 2.62 0.02  LF82_RS01580  -1.51 3.05 0.02 0.12 2.33 0.86 
LF82_RS13505  0.04 4.10 0.96 -1.99 4.66 0.02  LF82_RS15520 gspG -1.43 0.94 0.01 0.28 2.87 0.68 
LF82_RS02580 lpxH 0.04 5.30 0.95 2.11 5.24 0.00  LF82_RS02890 citT -1.42 4.55 0.02 -0.74 3.55 0.23 
LF82_RS22640 qorB 0.06 4.94 0.92 -1.43 6.08 0.04 LF82_RS09785 flhB -1.42 3.84 0.02 -0.76 3.29 0.23 
LF82_RS04735  0.06 4.92 0.94 2.79 5.86 0.00  LF82_RS02835 hcxA -1.42 3.11 0.00 -0.90 3.57 0.14 
LF82_RS07145 zntB 0.06 6.43 0.92 -1.87 8.18 0.05  LF82_RS11705 atoD -1.40 2.99 0.03 0.61 2.34 0.34 
LF82_RS10930 pphC 0.08 1.45 0.93 1.69 2.64 0.01  LF82_RS15495 gspL -1.39 1.75 0.01 1.19 2.56 0.07 
LF82_RS04370 ycaL 0.08 3.75 0.88 1.65 3.57 0.02  LF82_RS09490 mgrB -1.36 1.77 0.02 -1.12 6.15 0.13 
LF82_RS05970  0.11 2.21 0.83 1.48 3.18 0.02 LF82_RS21680 alsE -1.30 4.78 0.01 -0.22 4.06 0.72 
LF82_RS16795 npr 0.12 5.74 0.83 -1.90 6.51 0.03  LF82_RS01270  -1.25 1.04 0.03 0.01 2.21 1.00 
LF82_RS17370 rpsS 0.15 7.60 0.84 -2.84 10.48 0.03  LF82_RS15650  -1.25 3.76 0.03 1.19 3.17 0.08 
LF82_RS17300 rpmD 0.21 7.79 0.74 -2.56 10.01 0.02  LF82_RS14910 ygeW -1.22 4.71 0.05 0.63 3.22 0.29 
LF82_RS05655 lolE 0.22 4.87 0.66 1.38 4.93 0.03  LF82_RS13690  -1.21 0.74 0.04 0.50 1.48 0.49 
LF82_RS13055 iscX 0.23 4.81 0.65 -2.38 6.81 0.01 LF82_RS10555 pduB -1.20 2.46 0.04 -0.14 1.83 0.88 
LF82_RS04885  0.38 4.55 0.59 -2.35 7.62 0.02  LF82_RS16170 aer -1.19 6.05 0.03 -1.25 5.86 0.06 
LF82_RS02760 ybdZ 0.65 2.99 0.32 1.67 3.89 0.01 LF82_RS00545 gspE -1.15 3.13 0.04 0.03 2.75 0.97 
LF82_RS07930 ydfK 0.66 0.70 0.30 1.37 1.91 0.04  LF82_RS02220 glnK -1.15 4.25 0.04 -0.19 5.52 0.78 
LF82_RS04785  0.70 3.85 0.45 -1.79 5.36 0.03  LF82_RS12760 eutQ -1.07 1.21 0.05 0.83 2.44 0.21 
LF82_RS21415 pspG 0.79 1.79 0.29 2.05 4.63 0.04 LF82_RS09215  -1.04 2.21 0.05 -0.68 4.55 0.30 
LF82_RS23910  0.80 3.23 0.31 1.24 3.32 0.04  LF82_RS08015  -1.01 3.69 0.04 -1.43 4.85 0.07 
LF82_RS02815 entA 0.97 5.11 0.12 1.50 4.82 0.02 LF82_RS18365 chuT 1.05 3.19 0.05 0.03 3.23 0.97 
LF82_RS05100  1.09 6.08 0.32 2.13 6.99 0.03  LF82_RS02740 entD 1.11 2.73 0.03 0.19 2.66 0.75 
LF82_RS06210  1.18 1.05 0.13 2.52 2.01 0.00  LF82_RS06670 yciA 1.13 3.80 0.03 0.01 3.42 0.99 
LF82_RS10060 fliE NA NA NA -2.44 2.18 0.00 LF82_RS25330 ypdK 1.16 3.75 0.04 0.52 5.34 0.52 
LF82_RS10085 fliJ NA NA NA -2.35 3.31 0.01  LF82_RS12585 cysZ 1.16 4.82 0.03 0.42 3.34 0.50 
LF82_RS05940 iss NA NA NA -1.94 1.83 0.02 LF82_RS13870 nrdI 1.16 3.93 0.03 1.21 4.09 0.05 
LF82_RS10120 fliQ NA NA NA -1.59 1.76 0.05  LF82_RS14295  1.18 4.89 0.03 0.36 5.50 0.57 
LF82_RS10985  NA NA NA 1.43 1.78 0.04  LF82_RS08080 cspI 1.19 1.71 0.05 -0.76 2.38 0.23 
LF82_RS15515 gspH NA NA NA 1.45 2.03 0.05 LF82_RS00025  1.19 3.13 0.04 0.41 2.51 0.50 
LF82_RS20025  NA NA NA 1.47 1.19 0.05  LF82_RS00655  1.20 3.32 0.01 -0.07 3.10 0.93 
LF82_RS23260  NA NA NA 1.47 2.05 0.05 LF82_RS03750  1.23 2.88 0.01 0.16 2.33 0.80 
LF82_RS22825 arcC NA NA NA 1.51 2.36 0.05  LF82_RS08760  1.23 6.62 0.05 0.35 7.78 0.67 
LF82_RS10865 wcaB NA NA NA 1.53 1.73 0.03  LF82_RS02755 fes 1.24 6.32 0.05 0.35 5.39 0.64 
LF82_RS21260  NA NA NA 1.57 3.00 0.02 LF82_RS09560  1.26 3.21 0.04 0.86 3.44 0.21 
LF82_RS25615  NA NA NA 1.63 0.65 0.04  LF82_RS09290  1.27 2.68 0.03 0.38 1.78 0.57 
LF82_RS13910 ygaH NA NA NA 1.87 1.70 0.03 LF82_RS01985 acpH 1.29 3.82 0.01 0.07 3.16 0.92 
LF82_RS17105 acrE NA NA NA 2.38 2.70 0.00  LF82_RS23150  1.30 1.94 0.04 1.09 3.01 0.10 
LF82_RS10065 fliF -3.24 5.10 0.00 -1.36 4.23 0.06  LF82_RS06205  1.33 1.77 0.05 -0.44 2.51 0.47 
LF82_RS06205  1.33 1.77 0.05 -0.44 2.51 0.47 LF82_RS18305 rsmJ 1.60 5.01 0.02 0.23 4.12 0.70 
LF82_RS16125 ttdT 1.35 4.94 0.02 0.75 4.32 0.21  LF82_RS01490  1.70 4.00 0.05 0.46 4.27 0.52 
LF82_RS10455  1.35 1.22 0.02 0.68 1.50 0.37 LF82_RS25900 mgtL 1.77 8.06 0.01 0.06 8.53 0.94 
LF82_RS25875  1.39 1.48 0.05 NA NA NA  LF82_RS01695  1.78 1.54 0.01 0.80 1.43 0.25 
LF82_RS07840 marB 1.39 3.95 0.01 0.95 3.91 0.11  LF82_RS02805 entE 1.84 6.21 0.01 1.00 6.47 0.15 
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LF82_RS25800 pheL 1.39 6.03 0.02 1.38 6.72 0.10  LF82_RS18325  1.88 1.53 0.02 -0.01 0.81 1.00 
LF82_RS25670  1.41 1.84 0.01 0.07 4.34 0.92  LF82_RS02810 entB 1.95 5.88 0.00 0.69 6.93 0.33 
LF82_RS08105 cspB 1.44 4.04 0.01 1.29 5.06 0.09  LF82_RS25265 azuC 1.96 5.40 0.00 0.73 6.96 0.36 
LF82_RS08620 ynhF 1.46 7.83 0.03 0.58 9.32 0.48 LF82_RS24050 yncL 2.52 6.84 0.00 0.25 7.52 0.75 
LF82_RS08450 ydgT 1.47 6.55 0.01 0.16 4.73 0.82         

 

 

Supplementary Table 4. Number of predictions obtained by DeepRibo (Clauwaert et al., 2019), REPARATION (Ndah et al., 2017) and the scripts by Giess et al. (2017) for the Ribo-seq experiments 

in E. coli LF82 .  

DeepRibo REPARATION Giess 

Exp1_aerobic_RepI 1,777 8,060  79,245 

Exp1_anaerobic_RepI 2,045 7,994  74,929 

Exp1_aerobic_RepII 2,830 8,760  72,402 

Exp1_anaerobic_RepII 3,453 10,687  76,261 

Exp2_ND 5,749 11,160  60,253 

Exp3_RelE 1,324 4,990  86,322 

Mean 2,863  8,608.5 74,902 
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Supplementary Table 5. Number and score of novel gene candidates identified in P. aeruginosa PAO1. All hits exceeding a prediction score of 8 or showing proteomic evidence with at least two mapping 
peptides are divided into the categories intergenic ORF (iORF), trivial OLG (OLG_TL), antisense embedded OLG (OLG_EA), sense embedded OLG (OLG_ES), partial antisense OLG with overlap at 
the 3´ (OLG_PA3) or at the or 5´ end (OLG_PA5) as well as partial sense OLG with overlap at the 3´ (OLG_PS3) or at the 5´ end (OLG_PS5), respectively. Hits matching to more than one non-
trivial overlap type were classified as “multiple types”. 

Prediction score 15 14 13 12 11 10 9 8 7 6 5 3 2 
iORF    1 12 9 13  1 3 2   
OLG_TL 1 1 1  3 5 5 1 2  1   
OLG_EA      2 1       
OLG_ES    2   5       
OLG_PA3      1        
OLG_PA5       2    1   
OLG_PS3      2 3 1      
OLG_PS5  1   1 3 3       
multiple  1 1 1 2 8 16 1  2 1 1 1 
sum 1 3 2 4 18 30 48 3 3 5 5 1 1 

 

 

Supplementary Table 6. Expression metrics obtained for the overlapping genes olg1 and olg2, their mother genes as well as adjacent genes in P. aeruginosa PAO1. Reads per million mapped reads 
(RPKM) and read coverage values were calculated for RNA-seq and Ribo-seq of Exp1 and averaged over biological replicates. Ribosome coverage values (RCVs) indicating translatability were calculated 
by dividing the RPKM values of the translatome by the RPKM values of the transcriptome. 

Locus tag gene name genome_start genome_stop strand RPKMRNA-seq coverageRNA-seq RPKMRibo-seq coverageRibo-seq RCV 
PA0260 tle3 291154 293304 - 29.69 0.84 23.17 0.88 0.79 
- olg1 291556 292512 + 35.91 0.88 40.31 0.94 1.13 
PA1383 NA 1501611 1503416 + 20.22 0.70 22.76 0.87 1.13 
- olg2 1501875 1503602 - 22.06 0.75 14.17 0.87 0.64 
PA0261 til3 293301 293798 - 27.38 0.82 28.59 0.89 1.05 
PA0262 vgrG2b 293802 296861 - 18.39 0.70 16.72 0.84 0.91 
PA1384 galE 1503568 1504581 + 5.82 0.47 5.48 0.73 0.96 
PA0259 tla3 289562 291004 - 67.22 0.94 46.72 0.98 0.69 
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