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Abstract

Predictive high-fidelity finite element simulations of human cardiac mechanics

commonly require a large number of structural degrees of freedom. Addition-

ally, these models are often coupled with lumped-parameter models of hemo-

dynamics. High computational demands, however, slow down model

calibration and therefore limit the use of cardiac simulations in clinical prac-

tice. As cardiac models rely on several patient-specific parameters, just one

solution corresponding to one specific parameter set does not at all meet clini-

cal demands. Moreover, while solving the nonlinear problem, 90% of the com-

putation time is spent solving linear systems of equations. We propose to

reduce the structural dimension of a monolithically coupled structure-

Windkessel system by projection onto a lower-dimensional subspace. We

obtain a good approximation of the displacement field as well as of key scalar

cardiac outputs even with very few reduced degrees of freedom, while achiev-

ing considerable speedups. For subspace generation, we use proper orthogonal

decomposition of displacement snapshots. Following a brief comparison of

subspace interpolation methods, we demonstrate how projection-based model

order reduction can be easily integrated into a gradient-based optimization.

We demonstrate the performance of our method in a real-world multivariate

inverse analysis scenario. Using the presented projection-based model order

reduction approach can significantly speed up model personalization and

could be used for many-query tasks in a clinical setting.
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1 | INTRODUCTION

Cardiac solid mechanics simulations consist of solving large-deformation, materially nonlinear, elastodynamic coupled
boundary-value problems. There exist different approaches to incorporate blood flow into the computational model.
Three-dimensional fluid-structure interaction is resolved for example in References 1 and 2. As the exact fluid dynamics
of blood within the heart are, however, usually not needed, the structural model is commonly coupled to
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lumped-parameter fluid models which provide the pressure to the endocardial wall.3 These so-called 0D Windkessel
models are then coupled to cardiac solid mechanics. For a comprehensive review of models currently utilized in cardiac
mechanics the reader is referred to Reference 4. Different 3D-0D structure-Windkessel coupling approaches are avail-
able in literature. A partitioned scheme was used for example in Reference 5. Due to its superior robustness, we use a
monolithically coupled model in this work, as for example also used previously in References 6-9.

1.1 | Model order reduction

The needed huge number of degrees of freedom (DOFs) and other challenges of solving nonlinear problems make the
solution of cardiac models computationally expensive and limit the models' use in clinical practice. For example, using
a single node with 24 cores, a simulation of one heartbeat, which takes about 1 s in reality, takes about 1 d to compute
with our high-fidelity four chamber model.9 The potential to reduce computation time motivates the use of reduced
order models (ROMs). In this work, we solely consider model order reduction (MOR) of time-dependent parametric
problems. In the following, different strategies in reduced order modeling are reviewed.

An important category of cardiac ROMs is made up by simplified modeling. For these models, the same system of differ-
ential equations as for the full order model (FOM) is solved, but on a simplified analytical geometry. The displacements are
commonly parameterized by only one scalar DOF. These models are thus referred to as 0D models. Examples in this cate-
gory include monoventricular cylindrical,10 spherical,11 or prolate spheroid12 or biventricular13 geometries. These models
allow extremely fast evaluation, with computation times less than 1 s. Their results are, however, only lumped quantities
which usually need an extra correction step in order to predict the solution of a corresponding patient-specific 3D model.

Another approach of MOR in biomechanics is the use of coarsely discretized geometries; see, for example, Refer-
ences 8 and 14. Coarsely discretized models are easy to implement, since the computational framework is identical to
the one of the FOM. The disadvantage of using coarsely discretized geometries is that there is no exact control over the
approximation quality and important features of the FOM might not be preserved by the ROM.

A third category of cardiac ROMs makes a model computationally less expensive by reducing the dimension of the
problem, starting from the FOM. These ROMs are utilized in this work. For example in cardiac electrophysiology,
approximated lax pairs for propagating wave fronts were proposed in References 15 and 16. A local reduced basis
method for parameterized cardiac electrophysiology was recently introduced in Reference 17. Reduced basis methods
were proposed for general large deformation, material nonlinear finite element simulations.18,19 A framework for linear
coupled multiphysics problems was introduced in Reference 20.

Using our code,21 for a large-scale cardiac finite element simulation, about 90% of the time is spent iteratively solv-
ing linear systems of equations. This proportion motivates the use of model order reduction by projection, where the
full linear system is projected onto a much smaller dimensional subspace while preserving the model's most relevant
features. The solution of the FOM is then approximated by a solution in the reduced space with a ROM. A popular
method to generate such subspaces is proper orthogonal decomposition (POD), which is purely observation-based and
independent of the underlying physics of the model. The snapshots, in our case transient observations of displacements,
can be obtained from a FOM simulation of one heartbeat.

There are only few examples where POD has been applied to cardiac problems. A quasi-static cardiac model was
reduced using POD and combined with hyper-reduction techniques in Reference 22. However, analysis was only carried
out using an idealized ellipsoidal left ventricular geometry with few DOFs. While this is very instructive, results for
speedup and accuracy of the ROM are not conclusive for real-world cardiac problems. The reduction of a patient-specific
biventricular cardiac model using POD is described in Reference 23. In their work, a general approach is presented and
analyzed mathematically, before being applied to the example of a patient-specific beating heart model. Parameter estima-
tion is performed based on medical images. A ROM of blood dynamics in coronary arteries is used in Reference 24.

Cardiac models rely on a large set of patient-specific parameters, describing constitutive behavior, hemodynamics,
boundary conditions, or local fiber orientation. In order not to rely on a FOM simulation for each new ROM simulation,
which would render the ROM simulation useless, the reduced subspace must be able to adapt to a changing parameter
set. This adaption requires parametric model order reduction (pMOR) of the time-dependent problem. Among many
global and local pMOR techniques, various subspace interpolation methods have been proposed in the past.25 Specifi-
cally, a popular method using a Grassmann manifold was proposed in Reference 26 and illustrated with a large coupled
aeroelastic model of a fighter jet. The method proposed in Reference 23 uses a so-called “multi-POD” approach.
A parameter-weighted variant of this approach is also used in this work and described in section 3.3.2 as weighted
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concatenation of snapshots method. Furthermore, a global pMOR approach using a global basis over the whole parame-
ter range is employed in Reference 22.

The performance of POD in realistic simulations of cardiac contraction is yet unknown. We demonstrate in this
work the performance of POD applied to a patient-specific cardiac geometry with about 850 000 structural DOFs. In
this work, we consider for the first time the case of a POD-reduced 3D structural model that is monolithically coupled
to a 0D Windkessel model, where we only reduce the structural dimension of the problem. Additionally, we compare
several subspace interpolation methods for cardiac contraction. In these parametric simulations, we vary the contractil-
ity parameter controlling maximum active tension of the myofibers in our model, as it is the most influential parameter
for cardiac function and commonly calibrated to experiments.

1.2 | Inverse analysis

Many of the cardiac model parameters depend on a patient's physiology and are a priori unknown, as invasive experi-
ments cannot be carried out on living human subjects. A predictive patient-specific cardiac model is thus subject to an
iterative process termed inverse analysis. In this context, the simulation of one heartbeat with given parameters can be
regarded as the forward problem. The reverted task of matching the parameters to given observations from the patient-
specific heartbeat is then the inverse problem. Common clinical measurements of cardiac kinematics are displacement
data extracted from cine or tagged magnetic resonance imaging (MRI), representing an Eulerian and Lagrangian
description of motion, respectively. Other measurements include blood pressure or electrocardiograms. As cardiac
mechanics simulations pose an expensive forward problem, repeated evaluation during inverse analysis has incredible
computational demands. Furthermore, algorithms for inverse analysis commonly scale linearly with the number of
parameters. Inverse analysis is thus a promising application of reduced order modeling.

During gradient-based optimization, the adjoint method offers computationally inexpensive gradient calculation
when combining it with advanced methods such as automatic differentiation and checkpointing.27 For example in Ref-
erence 28, regional contractility was estimated from short axis cine MRI. Using the adjoint method, ischemic regions in
cardiac electrophysiology were identified in Reference 29. Most recently in Reference 30, passive material parameters
and active fiber shortening was estimated for a biventricular geometry from ventricular volume and regional strain.

Gradient-free inverse analysis for cardiac problems was demonstrated in Reference 31, where regional cardiac con-
tractility was estimated from cine MRI using the unscented Kalman filter (UKF). The reduced order UKF was further
applied in References 32 and 33 to estimate boundary condition parameters of the aorta for a fluid-structure interaction
problem. Other examples of gradient-free inverse analysis include,34 where left-ventricular active and passive material
parameters were estimated from 3D tagged MRI using a parameter sweep.

A good overview of using pMOR for inverse analysis is given in References 25 and 35. One example is to optimize over
the ROM within a regularly updated trust region around the FOM; see, for example, Reference 36. There are some exam-
ples, where reduced order modeling has been combined with inverse analysis in biomechanics. For arterial hemodynamic
fluid-structure interaction problems, an inverse analysis with uncertainty quantification was performed in Reference 37
using a reduced basis method. There are however few references for cardiac solid models. In Reference 23, the reduced
order UKF was applied to estimate cardiac contractility in a healthy and an infarcted region. The forward simulations were
carried out using POD. In Reference 8 a multifidelity approach was proposed to calibrate hemodynamical and structural
parameters of a cardiac model to ventricular pressure measurements. Here, a Levenberg-Marquardt-based optimization uses
evaluations switching between a 3D FOM, a coarsely discretized version of the 3D FOM, and a 2D surrogate model. Another
multifidelity approach was used in Reference 38 between a 3D FOM and a 0D surrogate model. An evolutionary algorithm
was used in Reference 39 using a ROM with a pre-computed POD-basis from a single FOM to identify four parameters of
an electrophysiological cardiac model from a synthetic electrocardiogram. As in Reference 23, a reduced order UKF was
used in Reference 40 to estimate parameters of a one-way coupled electromechanical cardiac model from synthetic data.
Here, as well, a POD basis was constructed a priori from, in this case, four pre-computed parameter sample sets.

Using coarsely discretized or surrogate models does however not guarantee that the most important features of the
FOM are preserved. These surrogate models further lack the ability of pMOR to inherently “learn” from evaluations of the
FOM to become more precise throughout the optimization. Instead, they require an additional mapping between FOM
and surrogate model solutions. Most importantly, using 2D or 0D surrogate models during inverse analysis, the heart can
only be tuned to scalar measurements. However, a calibration to spatial measurements from cine or tagged MRI might be
desired in many applications, for example, when detecting infarcted regions.31 Furthermore, an a priori generation of the
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ROM might not be suitable for non-convex approximation problems with several parameters as it is computationally
expensive and the parameter range might not be known a priori. In this work, we thus propose a novel method how an
automatically updated ROM can be integrated into any optimization-based inverse analysis leading to considerable sav-
ings in CPU time, and demonstrate its performance in a real-world multivariate inverse analysis scenario.

The remainder of this work is structured as follows. In section 2, we introduce the full order elastodynamic and
hemodynamic models. We derive a reduced formulation for the monolithically coupled system in section 3 and review
several pROM subspace interpolation methods. In numerical experiments in section 4, we demonstrate the accuracy
and speedup of our ROM and show its response to parametric variations. Furthermore, we propose in section 5 a
pMOR-based method for inverse analysis and analyze its performance with our four-chamber heart model. We close
with a conclusion and future perspectives in section 6.

2 | 3D-0D COUPLED CARDIOVASCULAR MODELING

In this section we give a brief overview of our full order model (FOM) which is composed of a 3D elastodynamical
model (see section 2.1) coupled to a 0D hemodynamical model (see section 2.2). We further provide insights into the
numerical solution of the model in section 2.3. For a more detailed description, the reader is referred to Reference 9.

2.1 | 3D elastodynamical model

We follow the classic approach of nonlinear large deformation continuum mechanics to model the elastodynamic prob-
lem of 3D cardiac contraction. We define the reference configuration X and the current configuration x, which are con-
nected by the displacements u= x−X . We calculate the deformation gradient F , the right Cauchy-Green tensor C, and
the Green-Lagrange strain tensor E,

F =
∂x
∂X

, C=FTF, E=
1
2
C−Ið Þ: ð1Þ

Balance of momentum, a Neumann Windkessel coupling condition with left ventricular pressure pv, omni-
directional spring-dashpot boundary conditions, and pericardial boundary conditions yield the weak form of the 3D
elastodynamic boundary value problem in the reference configuration

ð
Ω0

ρ0 u
€ �δu+ S : δE

h i
dV +

ð
Γendo
0

pvJF
−T �N � δudA+

ð
Γvess
0

kvu+ cv u
:� �
� δudA+

ð
Γepi
0

N keu �N + ce u
: �N

� �
�δudA=0, ð2Þ

with density ρ0, accelerations u
::
, virtual displacements and strains δu and δE, respectively, the Jacobian J =det F of the

deformation gradient, the second Piola-Kirchhoff stress tensor S , the reference surface normal N , and spring stiffness
kv, ke and viscosity cv, ce for vessel and epicardial surface, respectively. We define three surfaces for the imposition of
boundary conditions Γendo

0 , Γvess
0 , and Γepi

0 at the left endocardium, the outside of the great vessels, and the epicardium
respectively. At the cut-offs of the great vessels we apply homogeneous Dirichlet boundary conditions. We define differ-
ent nonlinear materials

Adipose tissue : S=
∂

∂E
ψNH +ψvolð Þ+ ∂

∂ E
: ψvisco, ð3Þ

Aorta,pulmonary,atrial myocardium : S=
∂

∂E
ψMR +ψvolð Þ+ ∂

∂ E
: ψvisco, ð4Þ

Ventricular myocardium : S=
∂

∂E
ψMR +ψvolð Þ+ ∂

∂E
: ψvisco + Sact, ð5Þ

depending on the (pseudo-)potentials
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ψNH =
μ

2
�I1−3ð Þ, ψMR =C1 �I1−3ð Þ+C2 �I2−3ð Þ, ψvol = κ J +

1
J
−2

� �
, ψvisco =

η

8
tr C

:

2
� �

,

�C= J −2=3C, �I1 = tr �Cð Þ, �I2 =
1
2

tr2 �Cð Þ− tr �C2
� �h i

,

ð6Þ

with isochoric invariants �I1,�I2, material parameters μ, C1, C2, η, and penalty parameter κ. The geometry and the differ-
ent materials are shown in Figure 1. Each is composed of a hyperelastic potential ψNH or ψMR and a viscous contribu-
tion ψvisco, depending on the rate of the right Cauchy-Green tensor C

:

. Quasi-incompressibility is enforced by the
penalty potential ψvol. The passive material behavior of myocardial tissue is known to be orthotropic; see, for example,
References 41 and 42 and was also modeled via an orthotropic model in our previous work.9 In this paper, however,
the passive myocardium is simply modeled as isotropic, as it was also done for example in References 6 and 31. How-
ever, this should only have a minor influence on MOR results presented in this work.

The ventricular myocardium has an additive active stress component Sact modeling the contraction of myofiber bun-
dles in reference fiber direction f 0

Sact = τ tð Þ � f 0�f 0, with _τ tð Þ= − j u tð Þ j τ tð Þ+ σ u tð Þj j+ , τ 0ð Þ=0, ð7Þ

with active stress τ ∈ [0, σ[ and the function |u(t)|+ = max(u(t); 0). The contractility parameter σ controls the upper
limit of the active stress component. The prescribed activation function u(t) is

u tð Þ= αmax � f tð Þ+ αmin � 1− f tð Þ½ �, f tð Þ= S+ t− tsys
� 	

�S− t− tdiasð Þ, S� Δtð Þ= 1
2

1� tanh
Δt
γ

� �
 �
, ð8Þ

with steepness γ = 0.005 s and descending and ascending sigmoid functions S+ and S−, respectively. The indicator func-
tion f ∈ ]0, 1[ indicates ventricular systole. The times tsys and tdias model the onset of systole and diastole, respectively.
The times tsys and tdias, and maximum and minimum myocyte activation rates αmax and αmin, respectively, are calibrated
to match the timing of ventricular systole as observed in cine MRI, as demonstrated in section 5.

We discretize displacements u and virtual displacements δu arising in the weak form 2 using quadratic basis func-
tions on each tetrahedral finite element. Assembly of the discretized problem leads to the matrix notation of the spa-
tially semi-discrete residual of the full order structural model

RS
semi =Md

€

+F d
:

,d,pv
� �

=
!
0, ð9Þ

with mass matrix M, nonlinear force vector F, and nodal displacements, velocities, and accelerations d, d
:

, and d
€

,
respectively. We discretize the boundary value problem implicitly in time using a combination of Newmark's method43

FIGURE 1 Computational mesh

with quadratic tetrahedral elements cut

in four-chamber view, colored by

different materials: adipose tissue

(cyan), atrial myocardium (yellow),

ventricular myocardium (red), aorta and

pulmonary artery (green), valve planes

(blue). (a) Posterior view.

(b) Anterior view
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and the generalized-α scheme44 to obtain the time and space discrete structural residual RS(dj+1, pv, j+1) at time step
j+1. All considerations in this work are based on an implicit time integration scheme, as is it the default choice in
cardiac mechanics for its improved time-stability properties.

2.2 | 0D hemodynamical model

We couple the left ventricular 3D structural model to a 0D lumped-parameter Windkessel model of the circulatory sys-
tem. We utilize in this work a four element Windkessel, using resistances R, compliances C, and an inertance Lp. Pres-
sures at different parts of the model are denoted by pi. We distinguish between a proximal part p and a distal part d of
the aorta. The atrial pressure pat(t) is prescribed to simulate atrial systole. The venous pressure pref is kept constant. We
model the atrioventricular and semilunar valves with a smooth diode-like behavior by nonlinear resistances Rav ≔ R
(pat, pv) and Rsl ≔ R(pv, pp), respectively, depending on a sigmoid function R. This yields the set of differential equations

pv−pat
Rav

+
pv−pp
Rsl

+ _V uð Þ=0, qp−
pv−pp
Rsl

+Cp _pp =0, qp +
pd−pp
Rp

+
Lp
Rp

_qp =0,
pd−pref

Rd
−qp +Cd _pd =0, ð10Þ

which are coupled to the 3D structural model by the ventricular pressure pv and the change in ventricular volume _V ,
depending on the structural displacements u. The vector of primary variables yields p = [pv, pp, pd, qp]

T, including the
flux qp through the inertance Lp. We discretize the set of Windkessel Equations 10 in time with the one-step-θ
scheme.45 This yields the discrete Windkessel residual R0D(dj+1,pj+1) at time step j+1.

2.3 | Solving the coupled problem

We solve the coupled 3D-0D model with the structural and Windkessel residuals RS and R0D, respectively, for the dis-
placements d and Windkessel variables p at time step j + 1 with the Newton-Raphson method

∂RS

∂d
∂RS

∂p

∂R0D

∂d
∂R0D

∂p

2
6664

3
7775
i

j+1

�
Δd
Δp


 �i+1

j+1

= −
RS

R0D

" #i

j+1

, withd,Δd,RS∈R846864 andp,Δp,R0D∈R4, ð11Þ

linearizing the residuals in iteration i. The solution is converged if

RS
�� ��

∞ < tolSres, Δdk k∞ < tolSinc, R0D
�� ��

2 < tol0Dres, Δpk k2 < tol0Dinc, ð12Þ

with the structural and Windkessel residual and increment tolerances tolSres, tol
0D
res, tol

S
inc , and tol0Dinc , respectively. Note

that the coupled model in Equation 11 is independent of the concrete formulation of the structural and Windkessel
models from sections 2.1 and 2.2, respectively. It is valid for any arbitrary residuals RS and R0D. For details of the model
used here, again see Reference 9.

3 | NONLINEAR PARAMETRIC MODEL ORDER REDUCTION

The 3D-0D cardiovascular model described above represents a large-scale, nonlinear, parametrized, and monolithically
coupled model, featuring multiple sources of nonlinear system behavior and depending on several model parameters.
First, our model contains geometric nonlinearities, due to the use of the Green-Lagrange strain tensor E uð Þ. Second, the
utilized material laws for myocardial tissue induce material nonlinearity. The third and last source of nonlinearity is
given by the nonlinear coupling between the structural and the hemodynamical model due to the Neumann
Windkessel boundary condition, acting in direction of the current normal vector of the endocardium. Furthermore, our
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model depends on many parameters μ= μ1,…,μnp
h iT

∈Ω�Rnp , classified in different categories. For instance, there exist

parameters describing the constitutive behavior of the used materials (stiffness, viscosity, and incompressibility parameters),
the additive active stress component Sact (eg, the contractility σ, αmax, αmin, tsys, tdias), the hemodynamics (eg, resis-
tances R, compliances C, inertance Lp), as well as the boundary conditions for the outside of the great vessels and the
epicardium (spring stiffnesses kv, ke and dashpot viscosities cv, ce). Thus, our discrete nonlinear parametrized FOM
reads

R d,p,μð Þ= RS d,pv,μð Þ
R0D d,p,μð Þ

" #
j+1

=
!
0: ð13Þ

The use of a 0D lumped-parameter Windkessel model, instead of, for example, a 3D fluid dynamics model of the
heart chambers and arteries, already simplifies the computational complexity of the coupled system. However, the
numerical analysis of the present model still demands a high computational effort due to the large number of structural
DOFs. While this is no problem for a few standard forward simulations, it is extremely challenging—and might even
prohibit—fast model calibration, inverse analysis and clinical applications. Therefore, our aim is to employ projection-
based model order reduction to obtain a cardiovascular reduced order model (ROM) that accurately approximates the
original model with substantially less DOFs and, consequently, less numerical effort. To this end, in section 3.1 we first
apply the classical projection-based model order reduction framework to the structural component of our cardiovascu-
lar problem and further describe the numerical solution of the coupled ROM. A suitable strategy to compute the
required projection matrix V for a fixed parameter set is then explained in section 3.2. Afterwards, different subspace
interpolation techniques are presented in section 3.3, in order to compute a parametric reduced order model (pROM)
for any new parameter set. Finally, some implementation details are given in section 3.4.

3.1 | Cardiovascular reduced order model

As mentioned before, the high dimension of the FOM comes from the discretization of the 3D elastodynamical model,
whereas the 0D model only contributes few, in our case four, Windkessel DOFs in p. Consequently, we only apply
model order reduction to the structural component while the 0D hemodynamical model remains unchanged. The pro-
cess of reducing the FOM within the computational framework is outlined in Algorithm 1.

Algorithm 1 Projection-based model order reduction.

1. generate projection matrix V offline with methods from sections 3.2 (constant) or 3.3 (parametric)
2. for time step j = 0, …, ns do
3. Newton iteration i = 0
4. while convergence criterion from (18) not fulfilled do
5. evaluate and assemble full Jacobian and residual (11)
6. reduce structural dimensions in Jacobian and residual (16)
7. solve reduced linear system (16)
8. approximate full displacements (14)
9. update solution (17)
10. i i + 1
11. end while
12. return solution dj and pj
13. end for

Our aim is to approximate the high dimensional structural solution d ∈ Rn using a linear combination of q� n basis
vectors, with n being the number of DOFs of the full elastodynamical model. With the set of basis vectors vi ∈ Rn contained
in a projection matrix V = [v1…vq] ∈ Rn × q and the vector of the reduced model's DOFs dr ∈ Rq, the approximation is
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d≈Vdr: ð14Þ

To obtain a square system, we project the structural residual onto the space spanned by VT yielding the spatially
semi-discrete reduced residual RS

semi,r ∈Rq
,

RS
semi,r =VTRS

semi Vd
€

r
,Vd

:

r
,Vdr,pv,μ

� �
: ð15Þ

This represents the Galerkin projection of the full structural residual RS
semi onto the subspace V spanned by the vec-

tors in V. After discretization in time, we obtain the Newton-Raphson update i+1 at time step j+1 of the coupled
reduced order model,

VT ∂R
S

∂d
V VT ∂R

S

∂p

∂R0D

∂d
V

∂R0D

∂p

2
6664

3
7775
i

j+1

�
Δdr

Δp


 �i+1

j+1

= −
VTRS

R0D

" #i

j+1

, ð16Þ

by linearizing the spatially and time discrete form of the residual. Through the chain rule of differentiation, the left column
entries of the block Jacobian matrix are right-multiplied by V. The structural block VT∂RS/∂dV is now of reduced dimension
Rq × q. Note that the Windkessel Jacobian ∂R0D/∂p and Windkessel degrees of freedom p remain unchanged. For the off-
diagonal coupling blocks ∂R0D/∂d and ∂RS/∂p only the structural dimension is right and left multiplied with the projection
matrix V or its transpose, respectively. The original 11 and reduced 16 block-Jacobian are visualized in Figure 2.

The update step of a Newton iteration is carried out by extrapolating the reduced DOFs dr to the full order displace-
ment vector d with the projection matrix V by

d

p


 �i+1

j+1

=
d

p


 �i
j+1

+
VΔdr

Δp


 �i+1

j+1

: ð17Þ

Note that the full order structural residual RS and the full order block-Jacobian are always evaluated using the full
order displacements d. It is only after their full evaluation and assembly that their dimensions are reduced by projec-
tion. The convergence check is carried out with the reduced residual and reduced displacement increment

FIGURE 2 Visualization of the Jacobian during projection-based model order reduction of the structural dimension of the block matrix

system in Equations 11 to 16. The diagonal structural and Windkessel blocks are colored yellow and green, respectively. Off-diagonal

coupling blocks are shaded. Note that the dimension of the diagonal Windkessel block remains unchanged
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VTRS
�� ��

∞ < tolSres, Δdrk k∞ < tolSinc: ð18Þ

The convergence criteria for the 0D Windkessel model remain unchanged. As the coupled full order model 11 in
section 2.3, the coupled ROM in Equation 16 is valid for any full order structural and Windkessel residual RS and R0D,
respectively.

3.2 | Subspace computation via POD

In this work, we use the method of Proper Orthogonal Decomposition (POD) to compute the reduced basis V required
for the projection-based reduction of our full problem. POD46,47 is a straightforward and very well-known nonlinear
model reduction approach, which relies on so-called snapshots, that is, discrete-time observations of the solution of our
FOM for a fixed parameter set μ, to construct the basis V. Given ns� n snapshots di gained from a numerical simula-
tion of the FOM sample point, we obtain the snapshot matrix

D= d1,…,dns½ �∈Rn×ns : ð19Þ

Typically, the number of snapshots ns corresponds to the number of time steps in the FOM simulation. The goal of
POD is to construct a basis for an optimal approximation of the solution manifold spanned by the snapshot matrix. In
other words, the aim is to generate a basis that optimally approximates the information gathered in the snapshots.
Therefore, we perform a singular value decomposition (SVD) of the snapshot matrix

D=UΣTT, ð20Þ

with the orthogonal matrices U ∈ Rn × n and T∈Rns ×ns containing the left and right singular vectors, respectively,
stored column-wise. The diagonal matrix

Σ=diag σ1,…,σnsð Þ∈Rn×ns , where σ1≥…≥σns≥0, ð21Þ

features all ns singular values σi sorted in descending order on its main diagonal. We now select the first q singular vec-
tors ui from the columns of the left singular matrix U corresponding to the q largest singular values σi in Σ to obtain
the basis vectors

vi =ui, 8i∈ 1,…,qf g ð22Þ

of the projection matrix V. The singular values σi are frequently used to define the Relative Information Content (RIC),

RIC qð Þ=

Pq
i=1

σ2iPns
i=1

σ2i

∈ 0,1½ �: ð23Þ

This measure allows to select an appropriate basis dimension q such that RIC(q) ≥ 1 − εPOD for a given small toler-
ance εPOD.

22 The approximation error made by selecting q < ns basis vectors can be quantified by the sum of the
squared truncated singular values

e qð Þ=
Xns

i= q+1

σ2i : ð24Þ

Note that this technique provides an optimal basis for the approximation of the snapshot matrix in a least-squares
sense.48-50 Thus, the efficiency of POD and the basis quality crucially depends on the selection of snapshots, which is

PFALLER ET AL. 9 of 27



required to represent the model's dynamics behavior sufficiently. Further note that POD requires the expensive numeri-
cal simulation of the full forward model, in general for many parameter sets, to collect representative snapshots. Never-
theless, this data-driven approach is very well applicable for the reduction of any nonlinear system.

3.3 | Interpolation of subspaces

The cardiac model described in section 2 relies on many patient-specific parameters, describing, for example, constitu-
tive behavior, hemodynamics, boundary conditions, or local fiber orientation. Consequently, a repeated model evalua-
tion and simulation for many different values of the parameters is indispensable to personalize the model. The aim of
parametric model order reduction (pMOR) is to find a reduced cardiovascular model that preserves the parameter-
dependency, thus allowing a variation of any of the parameters directly in the reduced model without having to repeat
the whole reduction process each time. The parametric reduced model can be then used, for example, for patient-
specific parameter estimation or uncertainty quantification purposes. Note that a parametric solution of the ROM still
follows the process as outlined in Algorithm 1, since pMOR subspace interpolation only influences the (offline) genera-
tion of the projection matrix.

To efficiently reduce the parametric cardiovascular model, we decompose the pMOR procedure into an offline and

online stage. In the offline phase, the parametrized full order model with np parameters μ= μ1,…,μnp
h iT

∈Rnp is first

simulated for several parameter sample points μk, k = 1, …, K, and then corresponding local projection bases V(μk) are
computed via POD from the data obtained. In the online phase, the projection matrix V(μ*) for a new parameter value
μ* is generated by interpolating between the precomputed subspaces. Note that the selection of suitable parameter sam-
ples is highly problem-specific, depending mainly on desired accuracy and the parameter set, and can be challenging
especially for high dimensional parameter spaces. In Appendix A, we sample the (one-dimensional) parameter space
uniformly. For a given interval, a uniform distribution maximizes information entropy. It is thus the least-biased distri-
bution and should always be selected if there is no prior information about the system to be reduced. Further note that
the inverse analysis method proposed in section 5 does not require a pre-sampling of the parameter space. It rather col-
lects a minimal amount of samples automatically, scaling only linearly with the number of iterations of the optimiza-
tion algorithm and not the dimension of the parameter space.

In this paper, different subspace interpolation techniques are examined, which will be explained in the following. To
do so, we suppose that local basis matrices V1 = V(μ1), …, VK = V(μK) ∈ Rn × q spanning the subspaces V μ1ð Þ,…,V μKð Þ
have been computed in the offline phase from the snapshot matrices D μ1ð Þ,…,D μKð Þ∈Rn×ns at the sample points μ1, …,
μK. Each basis matrix V(μk) is composed of the vectors vi μkð Þf gqi=1. For the interpolation, appropriate weighting func-
tions wk(μ*) should be selected to compute the interpolated basis V(μ*) in the online phase. Basically, any multivariate
interpolation method could be used for this purpose: e.g. polynomial interpolation (Lagrange polynomials), piecewise
polynomial interpolation (splines), radial basis functions (RBF), Kriging interpolation (Gaussian regression), inverse
distance weighting (IDW) based on nearest-neighbor interpolation or even sparse grid interpolation.25 For simplicity, in
this paper we consider the special case of piecewise linear interpolation. We compare in this work four interpolation
methods: weighted concatenation of bases (CoB), weighted concatenation of snapshots (CoS), adjusted direct basis
interpolation, and basis interpolation on a Grassman manifold. These methods were chosen as they already have been
used previously in similar interpolation settings; see Reference 26 (Grassmann manifold) and Reference 23 (CoS). The
other methods, CoB and adjusted direct basis interpolation, can be seen as straight-forward adaptions thereof.

3.3.1 | Weighted concatenation of bases

A common and straightforward approach to obtain a global basis matrix V from the precomputed local bases V(μ1), …,
V(μK) is given by the method “concatenation of bases.” With this technique, the local bases are at first concatenated
side-by-side, followed by a SVD of the resulting matrix to compute the global basis V. This technique can be extended
by introducing the weighting functions wk(μ*) in the concatenation of bases, in order to compute a parameter-depen-
dent interpolated basis V(μ*) which takes the distance of the new query point μ* with respect to the sample points μ1,
…, μK into account. To this end, the matrices V(μ1), …, V(μK) are first weighted with weights wk(μ*) and concatenated
afterwards. Then, the SVD of the concatenated matrix ~V μ*ð Þ,
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~V μ*� 	
= w1 μ*� 	

V μ1ð Þ,…,wK μ*� 	
V μKð Þ

� �
= ~U μ*� 	

~Σ μ*� 	
~T μ*� 	T∈Rn×K�q, ð25Þ

is performed. The interpolated basis V(μ*) is finally constructed by considering the first q left singular vectors
~ui μ*ð Þ


 �q
i=1 that best represent the weighted and concatenated matrix ~V μ*ð Þ:

V μ*� 	
= ~u1 μ*� 	

,…, ~uq μ*� 	� �
∈Rn× q: ð26Þ

Please note that the described weighting procedure is purely optional. The advantage of the weighted approach is
that subspaces near the interpolation point μ* are favored and stronger considered than subspaces describing the
dynamics for far-distant sample points. However, this extended technique requires more computational effort than the
classical concatenation approach, since a SVD has to be performed for every new μ* to compute the parameter-
dependent interpolated basis V(μ*).

3.3.2 | Weighted concatenation of snapshots

The concatenation of bases approach explained in the previous section provides a basis V(μ*) comprising the most
important directions among the (weighted) basis vectors from all local bases. Note, however, that the bases V(μk) = U
(μk)(:, 1 : q) for k = 1, …, K are calculated in our case by means of the SVD-based technique of POD and they, therefore,
essentially approximate the snapshot matrices D(μk),

D μkð Þ=U μkð ÞΣ μkð ÞT μkð ÞT: ð27Þ

Since we are actually most interested in finding a basis that optimally approximates the system dynamics over a
range of parameters, in our concrete POD-case it seems very reasonable to construct the interpolated basis V(μ*) from a
(weighted) concatenation of snapshots rather than from a (weighted) concatenation of bases. With the former tech-
nique, the matrix V(μ*) is therefore constructed by considering the first q left singular vectors of the (weighted and)
concatenated snapshot matrix ~D μ*ð Þ:

~D μ*� 	
= w1 μ*� 	

D μ1ð Þ,…,wK μ*� 	
D μKð Þ

� �
= ~U~D μ*� 	

~Σ~D μ*� 	
~T~D μ*� 	T∈Rn×K�ns : ð28Þ

Remark: Connection between the concatenation methods
It can be shown that the just described (weighted) concatenation of snapshots approach corresponds to a modified

(weighted) concatenation of bases, where each vector vi(μk) is (further) weighted with the corresponding singular value
σi(μk) for all non-zero singular values. Thus, the first q left singular vectors of the—towards Equation 25—modified
matrix ~V μ*ð Þ

~V μ*� 	
= w1 μ*� 	

V μ1ð ÞΣq μ1ð Þ,…,wK μ*� 	
V μKð ÞΣq μKð Þ

� �
= ~U μ*� 	

~Σ μ*� 	
~T μ*� 	T

, ð29Þ

where Σq(μk) = Σ(μk)(1 : q, 1 : q) ∈ Rq × q, span the same interpolated subspace V μ*ð Þ than the q leading vectors in
~U~D μ*ð Þ.

3.3.3 | Adjusted direct basis interpolation

It is well-known that a straightforward interpolation of the basis vectors comprised in the local projection matrices V
(μ1), …, V(μK) does generally not yield a basis. This is due to the fact that the basis vectors vi μkð Þf gqi=1 for different sam-
ple points span diverse subspaces, thus having a distinct physical interpretation and possibly pointing even in opposite
directions in space. Therefore, the basis vectors should be first arranged to point in similar directions, thus spanning
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similar subspaces, before their entries are interpolated. This adjustment is performed using the Modal Assurance Crite-
rion (MAC).51,52

MAC vi,vj
� 	

=
vTi �vj
�� ��2
vik k22 � vj

�� ��2
2

∈ 0,1½ �, ð30Þ

which provides a measure for the similarity or linear dependence between the vectors vi and vj. Using the symmetry of
the MAC, Equation 30 needs to be evaluated q(q + 1)/2 times. The maximum value of the MAC is 1, which corresponds
to linear dependent vectors, whereas orthogonal vectors take the minimal value 0. Hence, the idea is to only interpolate
vectors which are strongly correlated to each other and maximize the MAC. To do so, we first have to select a reference
subspace with respect to which the adjustment of the bases should be performed. The reference subspace, spanned by
the columns of RV ∈ Rn × q, should ideally comprise the most important dynamics among all parameter sample points
and be representative for all local bases. The simplest way to select RV is to take one particularly important local basis
RV =Vk0 with k0∈ {1,…,K}. Another possibility is to construct the reference subspace similarly as described in
section 3.3.1, that is, using the (weighted) concatenation of bases approach, yielding RV = ~U : ,1 : qð Þ or
RV μ*ð Þ= ~U μ*ð Þ : ,1 : qð Þ. Once the reference subspace has been selected, the vectors vi* j,kð Þ μkð Þ that fulfill

i* j,kð Þ=argmaxiMAC vi μkð Þ,RV : , jð Þð Þ for j=1,…,q and k=1,…,K ð31Þ

are taken to be interpolated. Furthermore, the orientation of the vectors vi* j,kð Þ μkð Þ and RV(:, j) is equalized by adapting
the sign, in order to avoid that an interpolation between vectors pointing in (almost) opposite directions results in a
mutual cancellation. Finally, the interpolation of the vectors is given by

�vj μ*� 	
=
XK
k=1

wk μ*� 	
� �vi* j,kð Þ μkð Þ
h i

with
XK
k=1

wk μ*� 	
=1: ð32Þ

The interpolation of orthonormal vectors does not necessarily yield a set of orthonormal vectors. Therefore, the
interpolated vectors �vj μ*ð Þ


 �q
j=1 are subsequently orthonormalized by employing the SVD of �V μ*ð Þ,

�V μ*� 	
= �v1 μ*� 	

,…,�vq μ*� 	� �
= �U μ*� 	

�Σ μ*� 	
�T μ*� 	T

, ð33Þ

and considering the first q left singular vectors �uj μ*ð Þ

 �q

j=1 for the interpolated basis V(μ*)∈Rn× q.

Special case of two precomputed bases and one parameter
In order to make the afore explained method more clear, we now briefly present the special case of two

precomputed bases (K = 2) and one single parameter (np = 1). Let us assume that bases V(μ1) and V(μ2) have been com-
puted at the parameter sample points μ1 and μ2, and that the new parameter value μ* lies between these two samples.
Suppose that we choose the reference basis, for example, as RV = V(μ2). Then, the vectors vi* jð Þ μ1ð Þ that fulfill

i* jð Þ=argmaxiMAC vi μ1ð Þ,vj μ2ð Þ
� 	

for j=1,…,q, ð34Þ

are selected to be combined with the vectors vj(μ2). The interpolation reads

�vj μ*
� 	

=w μ*
� 	
� �vi* jð Þ μ1ð Þ
h i

+ 1−w μ*
� 	� 	

�vj μ2ð Þ, ð35Þ
with the weight

w μ*
� 	

=
μ*−μ2
μ1−μ2

∈ 0,1½ � for μ*∈ μ1,μ2½ �, ð36Þ

providing that a linear interpolation is employed.
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3.3.4 | Basis interpolation on a Grassmannian manifold

As discussed before, a direct interpolation of the local bases is not meaningful, since they span different subspaces. In
addition to the afore explained adjustment of the bases before interpolation, one may also interpolate the underlying
subspaces on a tangent space of a manifold. The method proposed by Amsallem and Farhat26 constructs a basis matrix
V(μ*) for a new parameter point μ* by interpolating the subspaces corresponding to the bases V μkð Þf gKk=1 on the tan-
gent space to the Grassmannian manifold Gq Rnð Þ.

The first step of the approach consists in choosing a local basis matrix Vk0 for the reference point Vk0∈Gq Rnð Þ, at which
the tangent space T Vk0 to the manifold Gq Rnð Þ is constructed. Afterwards, all subspaces V μkð Þ spanned by the local
bases V(μk) are mapped onto this tangent space by the so-called logarithmic mapping: span Γkð Þ=LogVk0 Vkð Þ∈T Vk0 :
This is done basically by computing K thin SVDs

I−Vk0V
T
k0

� �
V μkð Þ VT

k0V μkð Þ
� �−1

=U μkð ÞΣ μkð ÞT μkð ÞT for k=1,…,K, ð37Þ

and then calculating

Γ μkð Þ=U μkð Þarctan Σ μkð Þð ÞT μkð ÞT: ð38Þ

In order to compute the orthonormal basis V(μ*) for a new parameter point μ*, the matrices Γ μkð Þf gKk=1 are first
interpolated using the weights wk(μ*) to obtain

Γ* =Γ μ*� 	
=
XK
k=1

wk μ*� 	
Γ μkð Þ: ð39Þ

The interpolated subspace span Γ*
� 	

∈T Vk0 is then mapped back to the original manifold Gq Rnð Þ by the so-called
exponential mapping: V μ*ð Þ=ExpVk0 span Γ*

� 	� 	
∈Gq Rnð Þ. The back-mapping step is numerically achieved by comput-

ing a thin SVD

Γ μ*� 	
=U μ*� 	

Σ μ*� 	
T μ*� 	T

, ð40Þ

followed by

V μ*� 	
=Vk0T μ*� 	

cos Σ μ*� 	� 	
+U μ*� 	

sin Σ μ*� 	� 	
: ð41Þ

The special case of two precomputed bases (K = 2) and one single parameter (np = 1) is extensively described in Ref-
erence 26.

3.4 | Implementation details

The coupled FOM and ROM in Equations 11 and 16, respectively, are solved using our in-house parallel high-
performance finite element software package BACI.21 The code is implemented in C++ making use of the Trilinos
library.53 To solve the FOM's large linear system in Equation 11 we use a parallel iterative GMRES solver with 2 × 2
block SIMPLE-like preconditioning. For the ROM's small linear system in Equation 16 we use a serial direct solver. All
preliminary calculations, that is, singular value decompositions and the interpolation of subspaces, are performed in
MATLAB (Release 2017b, The MathWorks, Inc., Natick, MA).

PFALLER ET AL. 13 of 27



4 | RESULTS MODEL ORDER REDUCTION

In this section we present results for the approximation of the FOM simulation with ROM simulations. We distin-
guish here between model order reduction and parametric model order reduction. For a fixed parameter set, using
the contractility σ = 280 kPa, we explore the approximation qualities of POD. Following analysis of the heart's
eigenmodes in section 4.1, we investigate the approximation quality of POD using a varying number of modes q ∈
{10, 50, 100, 200, 300, 400, 500} in section 4.2. The model ROM10 was the model with the smallest mode number,
where the cardiac simulation converged to a result in all time steps. The highest mode number for ROM500 was
chosen, since there is a plateau around q = 500 in the decay of singular values in Figure 4a. We further demon-
strate the computational speedup achieved by using POD in section 4.3 using again varying mode numbers. To
explore accuracy in a single-parametric case, we analyze the approximation quality with respect to a changing con-
tractility in Appendix A.

We employ a four chamber geometry obtained in vivo from a 33 year old healthy female volunteer. The imaging
data was acquired at King's College London, UK using a Philips Achieva 1.5T magnetic resonance imaging (MRI) scan-
ner. The geometry was meshed using Gmsh54 with a resolution of 2 mm, yielding 282 288 nodes and 167 232 quadratic
tetrahedral elements, totaling n = 846 864 structural degrees of freedom (DOFs). As snapshots, we use all time steps of
the simulation of a single heartbeat with ns = 874. Additionally, we have four Windkessel DOFs. The cut geometry is
displayed in Figure 3a. Note that evaluation of FOM and ROM with identical parameters would not yield any computa-
tional advantage in practice, as the solution of the FOM is already known and there is no need for a ROM solution.
Nevertheless, approximation accuracy in the nonparametric case provides an upper bound for the parametric case. Fur-
thermore, computational speedup is independent of the choice of parametric vs nonparametric MOR. The parameters
enter the system solely via the projection matrix V, which is generated offline. Online ROM evaluation is identical in
both cases.

4.1 | POD-modes of the heart

To study the reducibility of our cardiac model, we analyze the decay of the singular values compared to the first one. This
gives a measure of relative importance of the modes selected by POD. In Figure 4a we show the normalized singular value
σi/σ1 of mode i. For modes i < 50 there is a fast decay in relative importance, indicating good reducibility. There is a pla-
teau for 250 < i < 700, indicating that not much new information is gained by including those modes in the ROM.

The first modes of the heart are visualized in Figure 3, where the heart is cut in four-chamber-view. The simulation
in reference configuration and at end-systole are shown in Figure 3a,b, respectively. Mode i = 1 in Figure 3c exhibits
great similarity to the solution at end-systole and is characterized by a movement of the atrioventricular plane towards
the apex with negligible change in outer shape of the heart. Mode i = 2 in Figure 3d consists of a more radial displace-
ment of the outer walls of the ventricles and a pendulum motion of the intraventricular septum. Mode i = 3 in
Figure 3e displays a rotating motion of the ventricles together with a large left-to-right movement of the intraventricular
septum.

FIGURE 3 Visualized displacements in four-chamber-view. Displacements increase from blue to red regions. Reference configuration.

(b) FOM at end-systole. (c) Mode i = 1. (d) Mode i = 2. (e) Mode i = 3
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4.2 | Approximation quality

To quantify the overall approximation quality of ROM simulations of a full heartbeat, we calculate a spatial error com-
pared to the FOM solution. We define here the spatial ϵ∞, ∞ error

ϵ∞,∞ =maxtj maxk dk
ROM tj

� 	
−dk

FOM tj
� 	�� ��� �

, ð42Þ

with dk
ROM tj

� 	
and dk

FOM tj
� 	

as nodal displacements at node k at time step tj of ROM and FOM, respectively. The spatial
ϵ∞, ∞-error thus gives the highest displacement error at any node at any time step and is an upper bound for all spatial
approximation errors. The ϵ∞, ∞-error is shown in Figure 4b depending on the number of reduced modes q. It is clearly
evident that the approximation error strongly decreases, when more modes are used for the approximation. Remark-
ably, even for the very low number of 10 modes we obtain a solution whose largest approximation error at any node at
any time step is below 1mm, which is the order of magnitude of our MRI resolution from which the geometry was
obtained. Furthermore, using ROM simulations with a reduced order of q>300 does not yield significant improvements
in terms of accuracy. This is in agreement with the decay of the normalized singular values in Figure 4a, where modes
q>300 contain little more information than the preceding ones.

For many medical applications, it is not necessary to calculate an accurate spatial displacement field. There are
rather a couple of scalar quantities which are used in clinical practice, for example, as a cardiac performance indicator
or for the prediction of disease progression. Such a quantity is the ejection fraction

EF=
max V −min V

max V
, ð43Þ

which is calculated from left or right ventricular volume. To evaluate the approximation of the EF by a ROM simula-
tion, we compare in Figure 5a the left ventricular (LV) volume curves of the FOM simulation with ROM simulations of
various reduced orders q. It shows that minimum and maximum volume are approximated well and the time curves
are almost indistinguishable. We further compare left ventricular pressure over time for all simulations in
Figure 5b. Again, key features such as maximum pressure are approximated well. Minor oscillations occur for ROM10
and ROM50 after the closure of the mitral valve at t ≈ 0.2. Furthermore, the closure of the aortic valve at t ≈ 0.5 is del-
ayed slightly for simulation ROM10.

4.3 | Speedup

For performance measurements, we ran all FOM and ROM simulations on a single node of our Linux cluster. One node
features 64 GB of RAM and two Intel Xeon E5-2680 “Haswell” processors, each equipped with 12 cores operating at a
frequency of 2.5 GHz. In Figure 6 we give a brief overview of the numerical performance of the FOM simulation. We
show in Figure 6A the number of Newton iterations in each time step. The number of Newton iterations is between
three and nine. It is elevated to five during ventricular systole and rises to nine at end-systole, where the aortic valve

(a) (b)

FIGURE 4 Accuracy of ROM. (a) Decay of normalized singular values. (b) Spatial ε∞,∞-error compared to FOM depending on reduced

order q
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closes. The number of linear solver iterations of each Newton iteration at a given time step is shown in Figure 6B. The
number of linear iterations is between 20 and 60 and shows similar trends as the number of Newton iterations. This
performance is reasonable and assures a good basis to which ROM simulations can be compared to. In the following,
we compare exclusively simulation time and exclude time for creating the projection matrix V. It is calculated once in a
preliminary step using the same hardware and requires only about 1 min. Due to the repeated evaluation of the MAC,
the direct interpolation method is in this example about three times as expensive as the other interpolation methods,
which perform equally.

The computation time of ROM simulations with various reduced orders q is compared to the total FOM simulation
time in Figure 7. Firstly, we show in Figure 7a the speedup factor α of ROM over FOM simulations. The effect of POD
is evident for ROM simulations between q = 500 and q = 10, where we achieve a speedup of α ≈ 5 and α ≈ 13 over the
FOM simulation, respectively. Note that while we achieve high speedups we did not lower hardware demands. The
RAM consumption has actually increased slightly for ROM simulations, since we need to additionally store the projec-
tion matrix V. Hyper-reduction might be used in future studies to lower RAM consumption as here the residual and
Jacobian are only assembled partially.

We distinguish in Figure 7b between three components of total computation time. Component “Linear system”
includes the time required for the multiplications of the projection matrix V with the blocks of the Jacobian matrix in
Equation 16 as well as the time to solve the reduced linear system. This component strongly depends on the reduced
order q as it scales with the complexity of the matrix-matrix multiplications, which is the main time contributor. The
solution time of the reduced linear system itself is negligible. Component “Evaluate elements” contains time spent dur-
ing element evaluation to assemble the block Jacobian matrix and the right-hand side. As expected, this component is
independent of q, since we still build the full system before projecting it to the q-dimensional subspace. Component
“Other” sums up all other time spent during the simulation, for example, file input and output or general overhead,
and is also independent of q.

(a) (b)

FIGURE 5 Scalar outputs of FOM and various ROMs over time. (a) Left ventricular volume. (b) Left ventricular pressure

(a) (b)

FIGURE 6 Solver performance of FOM in each time step. (a) Number of Newton iterations. (b) Number of linear solver iterations per

Newton iteration
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In Figure 7c we show the relative distribution of simulation time for FOM, ROM500, and ROM10. For the 21 h
spent during a FOM simulation, 92% of simulation time are spent solving the linear system. This large proportion shows
the potential for savings using MOR with POD and is in part a consequence of the efficient parallelization of our finite
element code.21 Reducing and solving the linear system in ROM10 only makes up 4% of the simulation time. However,
the new bottleneck is now the element evaluation at 63% of the simulation time. This, again, motivates the use of
hyper-reduction methods for ROMs with very few degrees of freedom.

5 | PARAMETRIC MODEL ORDER REDUCTION FOR INVERSE ANALYSIS

Models of cardiac elasto-hemodynamics commonly depend on a large set of parameters which need to be calibrated to
patient-specific measurements using inverse analysis. This procedure is however computationally very expensive, as it
requires many evaluations of the model 11, which will be denoted forward model in the following. We propose in this
section a novel approach for gradient-based inverse analysis utilizing the parametric reduced order model (pROM)
developed in section 3.3. We replace the FOM forward evaluations typically required for the finite differences to obtain
the gradient by pMOR forward evaluations (Equation 16). We illustrate this method using a simple Levenberg-
Marquardt (LM) algorithm55,56 in section 5.1. The method however is applicable to any gradient-based optimization. In
section 5.2 we demonstrate its performance on a typical inverse analysis scenario using the cardiac forward problem
introduced in section 2.

5.1 | Parameter identification based on reduced models

Given m normalized model outputs f(μ) ∈ Rm of a FOM depending on np normalized parameters μ∈Rnp and m≥np
normalized measurements y, we aim to minimize the squared sum S of residuals r

μ̂=argminμ S μð Þ, with S μð Þ= 1
2

r μð Þk k22, r μð Þ= y-FOM f μð Þ, J μð Þ= ∂r μð Þ
∂μ

, ð44Þ

to obtain the optimal set of parameters μ̂ . The Jacobian of the residual vector with respect to the parameter vector is
J∈Rm× np . At the optimum μ̂, the gradient rS = JTr = 0 vanishes and the Hessian r2S> 0 is positive definite. Using
the LM algorithm, we obtain the iterative procedure

update μi + 1 =μi +Δμi + 1, ð45Þ

with JTJ+ λdiag JTJ
� 	� �i �Δμi + 1 = − JTr

� �i
, λi = λi-1 � JTr

� �i��� ���
2
= JTr

� �i-1��� ���
2
, ð46Þ

(a) (b) (c)

FIGURE 7 Simulation times of FOM and ROM. (a) Speedup factor. (b) Absolute components of computation time. (c) Relative

components of computation time
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until JTr
� �i��� ���

2
< tolμgrad and Δμi + 1

�� ��
2 < tolμinc, ð47Þ

at iteration i + 1 with damping parameter λ. The LM algorithm approximates the Hessian as r2S ≈ JTJ. The
damping parameter λ should tend to zero as the parameter set μ approaches the optimal solution μ̂. For λ!∞ we
approach the steepest descent method, for λ = 0 we obtain the Gauss-Newton method. In general, for a nonlinear model
the analytical derivatives of the model evaluations f with respect to the parameters μ required for the Jacobian matrix
are not easily available. The np columns Jip of the Jacobian matrix Ji are thus typically approximated by finite
differences

Jip≈ �
pROM f μi

Δp

� �
-pROM f μi

� 	
ϵp

, withμi
Δp =μi� ϵpep, 8p∈ 1,…,np

� �
: ð48Þ

The gradient evaluation vector μi
Δp is built from the pth component ϵp of a finite distance vector ϵ∈Rp and the pth

unit vector ep∈Rp in the direction of each parameter. The sign in Equation 48 is chosen for each parameter p so that
the evaluation with parameter set μi

Δp is within the range of all previously evaluated parameter sets.
Calculating the approximated Jacobian matrix requires np + 1 evaluations of our forward model which is computa-

tionally expensive in case of a large number of parameters np. The pROM introduced in section 3.3 is very accurate for
parameters in the proximity of the sampled parameter sets, as was shown in section A1 for the cardiac contractility
parameter σ. As demonstrated in section A2, using pMOR with two FOM sample points greatly improves the approxi-
mation of the tangent with respect to a changing contractility over using a single sample point. We therefore propose to
use pROM evaluations of f in Equation 48 instead of FOM evaluations. The iterative procedure for the inverse analysis
is sketched in Algorithm 2. Note that while using this approach, we still find a local minimum of the objective function
S in Equation 44 with respect to the FOM.

Algorithm 2 Inverse analysis with pMOR-gradient

1. initialize μ0, λ0

2. i = 0
3. while convergence criterion from (47) not fulfilled do
4. evaluate FOM f(μi) and calculate residual ri from (44)
5. store snapshots D(μi)
6. for p = 0, …, np do
7. build reduced basis V μi

Δp

� �
from (49)

8. evaluate pROM f μi
Δp

� �
9. end for
10. calculate Jacobian Ji from (48)
11. update parameter vector μi + 1 from (46)
12. i i + 1
13. end while
14. return μ̂=μi

Further note that the strategy introduced in Algorithm 2 requires in each iteration of the optimization that the
FOM simulation is evaluated before the np gradients can be evaluated in parallel using the pROM simulations. Thus,
considering a scenario of infinite available computing resources, this strategy would actually slightly increase computa-
tion time over the standard approach of using the FOM for all evaluations. Here, all np + 1 model evaluations can be
run in parallel. However, considering the more likely scenario where computing resources are just sufficient to calcu-
late one or few FOM simulations at a time, the strategy outline in Algorithm 2 leads to considerable time savings espe-
cially for a large number of parameters np.

Algorithm 2 can be combined with any subspace interpolation method in step 7. We use here the weighted concate-
nation of snapshots method (CoS) introduced in section 3.3.2, as it performed best in the experiments in Appendix A
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and is easily applicable to high dimensions of np. For the weights of the snapshot matrix for gradient evaluation p, we
use a simple inverse distance weighting between two evaluation points

~D μi
Δp

� �
= w1D μi

� 	
,w2D μk

� 	� �
, w1 =

1=d1
1=d1 + 1=d2

, w2 = 1−w1,

d1 = μi
Δp−μi

��� ���
2
, d2 = μi

Δp−μk
��� ���

2
, k=argmin j∈½0,…,i−1½ μi

Δp−μj
��� ���

2
,

ð49Þ

with normalized distances d1, d2 and weights w1, w2 for the current evaluation i and the next closest evaluation k,
respectively. Since at the beginning of the iteration ϵp�j μip−μkp j, the weight w1 of the current snapshot matrix D(μi) is
always close to one, whereas the weight w2 is close to zero. This can be interpreted that we “enrich” the snapshots of
the current iteration with snapshots from a previous iteration to represent parametric dependence. As the optimization
converges and the changes in parameters are close to the step size of the finite differences, the weights w1 and w2 equal-
ize. For the first iteration of the optimization we rely on standard MOR evaluations using the constant projection matrix
from the first FOM evaluation.

In the following, we give an equation for the speedup of gradient-based inverse analysis achieved by using pROM
evaluations for the calculation of the Jacobian with respect to CPU time. Note that actual computation time depends on
parallelization of model evaluations. We compare CPU time required to achieve convergence after ni iterations for a
model with gradients calculated from pROM and FOM forward model evaluations, denoted by superscript pROM and
FOM, respectively. We do not include the time spent during subspace generation, as it is negligibly small compared to
pROM and FOM evaluation time. The total CPU times T are

TFOM =nFOMi np +1
� 	

tFOM, ð50Þ

TpROM =npROM
i tFOM + np +1

� 	
tpROM

� �
, ð51Þ

where t is the time required for a single forward evaluation. It can be observed from Equation 51 that the number of parame-
ters only scales the pROM evaluation time but not the FOM evaluation time. Using the speedup α of a single pROM evalua-
tion over a FOM evaluation, we obtain the total speedup β for the inverse problem with respect to CPU time as

β=
TFOM

TpROM =
nFOMi

npROMi|fflffl{zfflffl}
≈1

� 1
1
α +

1
1+np|fflfflfflffl{zfflfflfflffl}

!α for np!∞

, with α=
tFOM

tpROM
: ð52Þ

As will be shown in section 5.2, the first factor is close to one as the number of iterations is comparable for both
approaches when using a reasonably large number of reduced modes q. The second factor approaches α in the case of
many parameters. Note that in practice there is a trade-off between the two factors. Choosing a very low-dimensional
reduced model with few degrees of freedom q results in a high single call speedup α but may increase the number of
iterations for the inverse analysis, as the tangents are now approximated worse than with a higher q. Further note that,
after their respective number of iterations, both approximations achieve the same convergence criterion, which is
always evaluated using the FOM.

Other variants of Algorithm 2 are feasible, for example, replacing all FOM evaluations by pROM approximations as
the inverse analysis algorithm converges closer to the optimum. Such algorithms however require more advanced strat-
egies to switch between both model evaluations. The algorithm presented here demonstrates the most simple and
straightforward approach of including a pROM within a finite difference gradient-based inverse analysis.

5.2 | Numerical results

We demonstrate the ability of the inverse analysis method proposed in section 5.1 to accurately and efficiently estimate
parameters for a real-world cardiac identification problem. We consider the case of a cardiac simulation which we want
to calibrate to a given volume curve, that is, measurements of left ventricular volume over time during one cardiac
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cycle. We have no prior solutions of our FOM and thus need to build our projection matrices from scratch starting at
the first iteration of Algorithm 2.

We choose the solution displayed in Figure 5a of a forward FOM simulation as our ground truth. As parameters we
choose contractility σ from Equation 7 and myofiber activation rate αmax, myofiber deactivation rate αmin, onset of ven-
tricular systole tsys, and onset ventricular diastole tdias from Equation 8. We thus estimate all parameters necessary to
determine the shape of the input function of our model, that is, the active stress over time τ(t). The parameters σ, αmax,
and αmin control cardiac output. However, due to their large variation they are commonly calibrated to a given
patient.31 These parameters are interconnected with the timing parameters tsys and tdias. The non-normalized parame-
ters at the start of the inverse analysis and of the ground truth are listed in Table 1. We initialize the damping parame-
ter λ0 = 0.1. We further choose the number of reduced modes q = 300 as it offers a good trade-off between accuracy and
speedup.

In Figure 8 we display the performance of the pROM inverse analysis using Algorithm 2 compared to the standard
approach where the gradients are evaluated using the FOM only. Figure 8a shows the decay of the objective function
S from Equation 44. We define a convergence criterion Si/S0 < 10−5, which is achieved at nFOMi =npROMi =7 . In
Figure 8b we compare the development of the gradient of the objective function with respect to the parameters. As we
consider a synthetic case in the absence of noise, both objective function and gradient should approach zero as i!∞.

TABLE 1 Initial values and

ground trouth of estimated parameters

during inverse analysis (np = 5)

σ [kPa] αmax
1
s

� �
αmin

1
s

� �
tsys [s] tdias [s]

Initial 200 15 −15 0.35 0.60

Ground truth 280 10 −30 0.25 0.50

(a) (b)

FIGURE 8 Convergence behavior during gradient-based inverse analysis with finite differences for gradient calculation. Shown are

objective function and gradient for each iteration, comparing the use of FOM and pROM for gradient calculation. (a) Objective function.

(b) Gradient

FIGURE 9 Initial state, converged solution, and ground truth of inverse analysis for model input (active stress) and model output

(volume) over time. (a) Active stress (model input). (b) Volume (model output)
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As both measures are non-monotonically decreasing, this indicates a non-convex optimization problem. However, the
pROM300-gradient optimization is in excellent agreement with the FOM-gradient optimization.

The start, ground truth, and the converged solutions of both methods after seven iterations are shown in Figure 9.
Here, the activation function, that is, the input of our model, and the volume, that is, the output of our model, are
shown in Figure 9a,b, respectively. It can be observed that both optimization methods match well with ground truth
data for the given convergence criterion. The convergence of the five parameters relative to their initial values is shown
in Figure 10 for both methods. Additionally, the iteration where the convergence criterion is achieved is indicated. Both
methods show a similar trend towards the optimal parameters. With a single evaluation speedup of α ≈ 7.1, we obtain
an overall speedup in CPU time of the pROM300 method over the FOM method of β ≈ 3.3, since nFOM

i =nROM
i =1 and

np = 5 in our case.

6 | CONCLUSION AND OUTLOOK

6.1 | Model order reduction

In this work we proposed a new projection-based reduced order model for coupled structure-Windkessel cardiac
models, where we solely reduced the large structural dimension. Specifically, we used a nonlinear large deformation
cardiac finite element model with pericardial boundary conditions. For subspace generation, we employed proper
orthogonal decomposition (POD) applied to displacement snapshots of the full order model (FOM). We demonstrated
the accuracy and speedup of the reduced order model (ROM) for a range of reduced dimensions q ∈ {10, …, 500}. In that
range, the approximation error was found to be between 2 � 10−1 mm and 1 � 10−4 mm, which is well below the resolu-
tion of state of the art cardiac imaging employed in current clinical practice. For these simulations, we achieved
speedups between 13 and 5 over our FOM. For highly reduced models, it was shown that the new bottleneck in simula-
tion time is element evaluation. This motivates the inclusion of hyper-reduction methods, such as the discrete empirical
interpolation method (DEIM)57 or the energy conserving mesh sampling and weighting method (ECSW),58 in future
research. Due to the nonlinear structural finite element nature, we expect ECSW to perform better than DEIM for the
cardiac problem. As the kinematics of a patient-specific heart can already be observed in motion MRI, it might be con-
ceivable to incorporate this displacement information in the reduced space.

There exist many potential applications of MOR in cardiac many-query settings. One example is the task of
obtaining a physiological periodic state, that is, where left and right ventricular output per cardiac cycle match. In these
scenarios, a cardiac simulation with constant parameters is run for multiple cycles, until the change from one cycle to
the next is below a given tolerance. In Reference 8 it was reported that in some cases more than ten cycles were neces-
sary until converge to a periodic state was achieved. After simulating one FOM cycle and calculating the projection
matrix, all preceding cycles could be run using a ROM since the shape of the cardiac contraction will be similar to the
first cycle. In this use case, MOR can lead to drastic time savings, especially as the individual cardiac cycles cannot be
run in parallel.

FIGURE 10 Convergence of parameters in inverse analysis. Dotted lines indicate ground truth of parameter. (a) FOM parameters.

(b) pROM300 parameters
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6.2 | Parametric model order reduction

We further compared four different methods of parametric model order reduction (pMOR) to allow ROM evaluations
at parameter sets without prior FOM knowledge. The pMOR methods were evaluated by varying cardiac contractility,
an important determinant of cardiac performance. The weighted concatenation of snapshots method was found to
approximate the displacements of the FOM best for this example. Additionally, we showed that the clinically important
scalar cardiac quantities ejection fraction, maximum left ventricular pressure, and left atrioventricular plane displace-
ment are also well approximated using pMOR. Next to model calibration and design exploration, a possible application
of cardiac pMOR could be multifidelity uncertainty quantification.14

6.3 | Inverse analysis

Finally, we introduced a novel method to include pMOR into a finite difference gradient-based inverse analysis. Using
the Levenberg-Marquardt algorithm as an example, we proposed to use the FOM for all objective function evaluations
and pMOR for all gradient evaluations, based on snapshots from the current and previous iterations. Using synthetic
data in a real-world inverse analysis scenario, we demonstrated that pMOR-gradient-based optimization shows the
same convergence properties as FOM-gradient-based optimization while achieving considerable CPU time savings. This
method can be incorporated easily into existing optimization frameworks and could even be combined with commercial
solvers for the structural problem. Using the inverse analysis approach proposed here has the advantage that we still
calculate a full displacement field in each evaluation of the forward model. We can thus evaluate any spatial quantity,
which is not possible when using 2D, 1D, or 0D surrogate models for the 3D structural model. In future research, this
will allow us to compute a spatial approximation error with respect to cine or tagged MRI to estimate patient-specific
parameters from clinical observations.

To the best of our knowledge, there is only one previous report about the application of parametric POD in the con-
text of inverse problems in cardiac biomechanics. In Reference 23, the parameter space was sampled with four paramet-
ric FOM solutions. These snapshots were concatenated to form a global POD basis. These modes were used to build a
ROM of a cardiac binventricular model, where two contractility values were estimated using a Kalman filter approach.
As the authors state themselves, the main issue with such an approach is that the number of (offline) FOM evaluations
grows exponentially with the number of parameters. Although these evaluations can be run in parallel, this still might
cause problems in practice since in real world problems the FOMs are already very large, that is, one FOM already uses
a large part of the available computational resources. Moreover, it is assumed that the parameter to be estimated is
within the sampled parameter space.

We believe that our approach has the following advantages: (a) the number of FOM evaluations does not depend
directly on the number of parameters but on the number of iterations in the optimization, which is usually independent
on the number of parameters, and (b) there is no need to constrain the parameter space. It is noteworthy that at each
optimization step higher order information of the least-squares functional (e.g. the Hessian) can be approximated using
the POD modes at the same parameter, as it was done for the gradient. This should reduce the number of FOM evalua-
tions to achieve a minimum. Furthermore, it is conceivable to replace some of the FOM evaluations of the objective
function with pROM evaluations, depending on an error measure depicting the current quality of the pROM
approximation.
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APPENDIX A.

Results single-parametric model order reduction
In this Appendix we provide a quantitative comparison of several subspace interpolation methods introduced in
section 3.3 for parametric model order reduction (pMOR) to demonstrate the ability to evaluate the ROM simulations
at parameter sets without prior FOM knowledge. We vary the contractility σ in Equation 7, controlling the upper limit
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of the myocardium's active stress in fiber direction. It is a key parameter of cardiac contraction and has a major influ-
ence on elastodynamics as well as on several scalar cardiac measures. It is commonly calibrated to match the end-
systolic volume of the left ventricle as measured in cine MRI. In this work, we vary the contractility
σ ∈ [280 kPa, 430 kPa], as this range produces FOM simulation results that are in agreement with cine MRI. We use
q = 300 for all ROM simulations in this section, since it was shown in Figure 4B that no further improvements are
made in approximation quality for q > 300. In section A1 we demonstrate the approximation quality with respect to the
spatial displacement field. However, in many clinical applications a full solution of the displacements is not needed.
We therefore show the approximation quality of pMOR with respect to scalar cardiac quantities of clinical significance
in section A2.

Approximation of displacements
In Figure 1 we compare the spatial ϵ∞, ∞-error for a varying contractility. We compare pMOR simulations using snap-
shots of FOM simulations from one, two, and four σ-sample points in Figure 11A-C, respectively. For comparison, we
additionally compute a non-parametric ROM, denoted as direct ROM simulations in the following. Here, for every σ we
evaluate the FOM to generate the corresponding projection matrix V(σ). This information is however not used in the

FIGURE 11 Spatial ϵ∞, ∞-error

for direct ROM300, constant

ROM300, and pROM300 with

different interpolation techniques for

a varying number of sample points.

(a) 669-EQN-335INEQ-END [kPa]

increment Δσ = 15 kPa.

(b) 673-EQN-337INEQ-END [kPa]

increment Δσ = 15 kPa. (c) 677-EQN-

339INEQ-END [kPa]

increment Δσ = 5 kPa
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pMOR solutions displayed here and would not be available in a typical MOR scenario, as it would render MOR useless.
The direct ROM approximation error is mostly independent of the choice for parameter σ.

We show in Figure 1A the MOR approximation with varying σ and a constant projection matrix V(σ1) which was
obtained from a single FOM simulation with sample point σ1 = 355 kPa. Technically, this would not be considered in
pMOR, since the projection matrix is not adapted to the parameter set. It can be observed that MOR simulations with
σ 6¼ σ1 provide reasonable results with a spatial error below 1 mm using V(σ1). However, with an increasing range of
the parameter interval, the additional effort of subspace interpolation becomes advantageous. The approximation error
of MOR simulations using two and four sample points are displayed in Figure 11B,C, respectively. Both studies show
similar results. The error is highest between sample points and approaches the error of the direct ROM simulations
close to the sample points. The pMOR approximation errors are reduced when using a finer resolution of sample points.
The subspace interpolation with the largest spatial error is obtained by the Grassmannian manifold and concatenation
of bases (CoB) methods, coinciding in the middle between two sample points. An error of one order of magnitude
smaller is achieved by using the concatenation of snapshots (CoS) and the adjusted direct interpolation methods,
staying well below a spatial ϵ∞, ∞-error of 1 mm.

The adjusted direct interpolation method performs reasonably well in this example due to the POD of both snapshot
matrices of the left and right sample point yielding modes that allow for a distinctive pairing according to the Modal
Assurance Criterion. However, the same subspace can be spanned by two sets of orthogonal basis vectors which are not
necessarily linearly dependent on each other. If the information of a mode related to the left sample point is scattered
among various modes corresponding to the right sample point, the direct interpolation method will most probably yield
considerably worse results.

FIGURE 12 Scalar cardiac quantities ejection fraction (top), maximal left ventricular pressure (middle), and maximal left

atrioventricular plane displacement (bottom) for varying contractility σ in FOM and ROM300. (a) One sample point. (b) Two sample points.

(c) Four sample points
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The CoS method is in our case far superior to the CoB method. As outlined in section 3.3, the CoS method allows
for a direct usage of the snapshots at the sample points, while the CoB method uses the projection matrices computed
at the sample points. The projection matrices, as compared to the snapshots, contain no information about the relative
importance of the modes. The snapshots thus contain more information about the dynamics of the system, enabling the
CoS method to select a more suitably interpolated subspace than the CoB method. Note, however, that the CoS method
can only be applied when using it in combination with an observation-based reduction technique like POD.

Approximation of scalar cardiac quantities
In Figure 2 we show scalar output quantities of our cardiac model, evaluated for the same MOR simulations as in
Figure 1 using one, two, and four sample points in Figure 12A-C, respectively. For each study we evaluate ejection frac-
tion (EF), maximum left ventricular pressure (LVP), and maximum left atrioventricular plane displacement (LAVPD)
and compare them to the FOM results. All three output quantities are important determinants of cardiac viability. They
are also chosen because they allow us to study the approximation of different outputs of our coupled 3D-0D elasto-
hemodynamical model with pMOR. EF, as defined in Equation (43), is an integral value of the spatial displacement
field, LVP is an output of the 0D Windkessel model, and LAVPD is the average of a small subset of nodal directional
displacements.

For one sample point we again compare the FOM solution in Figure 2A to the solution of a ROM using a constant
projection matrix. The parameter dependence of the three cardiac quantities on σ is reproduced well by the constant
ROM simulations. As expected, the deviations from the FOM solution are largest at evaluations furthest away from the
sample point. However, the accuracy might still be sufficient for many applications. The cardiac quantities using two
and four sample points are shown in Figure 2B,C, respectively. For clarity, we show here only the results of the sub-
space interpolation methods which performed best and worst in Figure 1, that is, the CoS and Grassmann method,
respectively. The outputs oscillate visibly between sample points when using the Grassmann interpolation method,
improving as the resolution of sample points is refined. As in Figure 1, the CoS method performs well, leading to a good
approximation of the scalar cardiac quantities between sample points. Furthermore, comparing Figure 2B,C to
Figure 2A, it is visible that using pROM with CoS interpolation yields not only a good approximation of the function
values but also improves the tangent with respect to the contractility, compared to using constant ROM with a single
sample point.
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