
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

Modeling and Analyzing Dynamics of Visual
Processes With Representation Learning

Alexander Sagel

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstech-
nik der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Wolfgang Utschick

Prüfer der Dissertation:

1. Priv.-Doz. Dr. habil. Hao Shen

2. Prof. Dr.-Ing. Klaus Diepold

Die Dissertation wurde am 16.06.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
04.02.2022 angenommen.

Alexander Sagel. Modeling and Analyzing Dynamics of Visual Processes With Rep-
resentation Learning. Dissertation, Technische Universität München, Munich, Ger-
many, 2022.

c© 2022 Alexander Sagel

Chair of Data Processing, Technische Universität München, 80290 München, Ger-
many, http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Moun-
tain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Acknowledgment

I would like to take the opportunity to express my gratitude to all the people that have
made this thesis possible.

First and foremost, I thank my thesis supervisor Prof. Dr.-Ing. Klaus Diepold
for the opportunity and freedom to carry out my research at LDV, and the valuable
advice during this time. Furthermore, I am particularly thankful to PD Dr. Hao Shen
and PD Dr. Martin Kleinsteuber for all the things that I have learned about research,
mathematics and work ethic from them.

My time as a doctoral candidate would not have been as productive and fun,
if it was not for all the people I had the opportunity to work with. Most of all, I
consider myself lucky to have crossed paths with the great individuals at GOL, LDV,
and fortiss, including Matthias, Julian, Martin K., Peter, Clemens, Dominik, Wei,
Martin G., Mingpan, Stefan, Zhiwei and Tianming. Thank you for the collaborations,
discussions, proofreading, and the coffee breaks. In this regard, I should also not let
go unmentioned the wonderful people of the SIROCCO team at inria for making me
feel welcome during my year in Rennes, and rendering my time there both enjoyable
and scientifically fruitful.

On a more personal note, I will forever be thankful to my parents for always being
understanding and encouraging. I could not have wished for a better moral support.

Finally, and most importantly, I want to say merci to Anne, for two reasons. First
of all, she gave me the right idea at a critical moment that has prompted me to
investigate deep generative models for video. But more fundamentally, I am thankful
for making these last years for me simply magical, despite all the hard work and the
emotional drain it entailed.

i

Abstract

This thesis discusses the topic of visual processes, i.e., cyclic or repetitive vi-
sual phenomena that can be interpreted as multi-dimensional stochastic processes.
Such phenomena appear in different technical and natural settings. They play an
important role in visual intelligent systems, which raises the question of how to
accurately describe their statistical properties. It turns out that state space mod-
els in which the states follow a linear, multi-dimensional autoregressive transition
dynamic have considerable appeal in modeling visual processes. This appeal is
reflected in mathematical simplicity, computational tractability and versatility of ap-
plications. In this thesis, different state space models are proposed in which lin-
ear state transitions are combined with non-linear observation functions to describe
high-dimensional visual processes.

First, a model created by interpreting the visual process videos as sequences of
histograms is discussed. The state space model is learned using kernel PCA and
a distance measure is proposed that can be applied to classify dynamic textures
and dynamic scenes. Additionally, a variation of this model is proposed that uses
Scattering transforms for computing the histograms and achieves state-of-the-art
classification performance on a dynamic texture dataset.

Afterwards, a variational autoencoder is employed to jointly learn a neural net-
work based observation function and the linear state transition model for generative
modeling of visual processes. As an application, video synthesis is considered. The
resulting synthesis algorithm is simple in both the mathematical sense as well as in
terms of computational burden, once the network has been trained. Nevertheless, it
can reproduce sequences of considerable visual complexity.

To enhance the synthesis results, the subject of post-processing is discussed.
This is done by investigating the problem of increasing the resolution given a syn-
thesized video. To this end, a super-resolution mechanism is introduced that, un-
like many contemporary algorithms, does not require learning on external data.
The results compete well with other learning-free algorithms on common 2D image
datasets. On visual processes, the algorithm yields first proof-of-concept results that
pave the way for further research.

Overall, this thesis demonstrates that visual processes can be accurately and
easily described by state space models with linear latent dynamics, and proposes
ways to employ such models in a variety of real-world applications using techniques
from representation learning.

iii

Contents

List of Publications vii

List of Figures ix

List of Tables xi

List of Symbols xiii

List of Acronyms xvii

1. Introduction 1
1.1. Remarks on Notation . 3
1.2. Typical Problems in Visual Processes 3
1.3. Linear Dynamic Systems . 6
1.4. Semi-linear Dynamic Systems . 7
1.5. Research Problem Formulation . 9
1.6. Thesis Outline and Key Contributions 11

2. Mathematical Preliminaries 15
2.1. Linear Modeling . 15
2.2. Video Synthesis with Linear Dynamic Systems 21
2.3. LDS Parameters as Features . 22
2.4. Semi-linear Ambiguities . 28
2.5. Kernel Methods . 28
2.6. Deep Learning . 35

3. Kernelized Alignment Distances for Streams of Histograms 41
3.1. Systems of Bags . 44
3.2. The Alignment Distance on KLDS’s 46
3.3. Averages of KLDS Sets . 54
3.4. Experiments . 60
3.5. Discussion . 65

4. Nuclear Distances on Scattering Distributions 67
4.1. The Scattering Transform . 68
4.2. Scattering Distributions of Texture Images 72
4.3. Kernel Subspaces of Scattering Histograms 73

v

Contents

4.4. The Nuclear Distance . 75
4.5. Experiments . 77
4.6. Discussion . 78

5. Dynamic Variational Autoencoders 81
5.1. Assumptions on the Statistics . 83
5.2. Distributions of Frame Pairs . 85
5.3. The Dynamic Layer . 86
5.4. Training the DVAE . 88
5.5. Experiments . 88
5.6. Discussion . 97

6. Post-processing via Super-resolution 99
6.1. Super-resolution as an Inverse Problem 100
6.2. The Deep Image Prior . 101
6.3. Proposed Method . 102
6.4. Implementation with CNNs . 105
6.5. Experiments for Super-resolution with Ground Truth 107
6.6. Synthesized Sequences . 109
6.7. Discussion . 112

7. Conclusion 115

A. Alignment Distance Computation 119
A.1. Computation of Bi-quadratic Coefficients 119
A.2. Constructing the Quartic Polynomial 121
A.3. Derivation of Convergence Properties 122

B. Possible Extensions of the DVAE 125
B.1. Application to Frame Prediction . 125
B.2. Generalization to Higher-order Markov Processes 125
B.3. Generative Adversarial Nets . 128

C. Visual Results 129
C.1. Synthesis Results of the DVAE . 129
C.2. Super-resolution Results . 137

Bibliography 143

vi

List of Publications

This thesis is based on results from the following peer-reviewed publications.

A. Sagel, D. Meyer and H. Shen
Texture Retrieval Using Scattering Coefficients and Probability Product Ker-
nels
International Conference on Latent Variable Analysis and Signal Separation
(LVA/ICA), pp. 506-512, Aug. 2015.

A. Sagel and M. Kleinsteuber
Alignment Distances on Systems of Bags
IEEE Transactions on Circuits and Systems for Video Technology, 28(10), pp.
2551-2561, Oct. 2018.

A. Sagel and H. Shen
Dynamic Variational Autoencoders for Visual Process Modeling
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3677-3681, May 2020.

A. Sagel, A. Roumy and C. Guillemot
Sub-Dip: Optimization on a Subspace With Deep Image Prior Regularization
and Application to Superresolution
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2513-2517, May 2020.

A. Sagel, J. Wörmann and H. Shen
Dynamic Texture Recognition via Nuclear Distances on Kernelized Scattering
Histogram Spaces
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3755-3759, Jun. 2021.

vii

List of Figures

1.1. Motion captures of harmonic oscillations exhibited by spring pendu-
lums can be considered an example of visual processes 2

1.2. Examples of visual processes . 3

2.1. Training and synthesized sequence of a visual process depicting a
waterfall . 21

2.2. VAE architecture during training . 38

3.1. Bag of Systems vs. System of Bags 42
3.2. Motivation for using Fréchet means 55
3.3. Video frames from the DynTex Gamma split 61
3.4. 1-NN classification performance for different weights λA, λϕ̄ 62
3.5. Video frames from the YUPENN dataset 64

4.1. Impact of phase shift on signals of different frequency spectra 69
4.2. Scattering tree produced by successive application of Ψ3 on the input

signal z . 71
4.3. Coefficient distributions of different Scattering subbands 72

5.1. Decoder of a dynamic VAE with a dynamic layer 88
5.2. Synthesis of MNIST sequence 0123401234. 91
5.3. Rotation sequence of Small NORB images (Category 0, Instance 9) 92
5.4. Synthesis results for the Running Cows sequence 93
5.5. Sixth frame of synthesized videos for Running Cows sequence . . . 94
5.6. Synthesizing a sequence learned on data obstructed by a rectangular

mask . 94
5.7. Synthesizing a sequence learned on data obstructed by a

salt+pepper mask . 94
5.8. Synthesis of dynamic texture Fire Pot 95

6.1. Optimization procedures of Eq. (6.15) and Eq. (6.20) 104
6.2. Reconstruction results for “Baby” 109
6.3. Super-resolution results for Flowing Water 112
6.4. Super-resolution results for Spring Water 113

C.1. Synthesis of MNIST sequence 0123401234. 129

ix

LIST OF FIGURES

C.2. Synthesis of MNIST sequence 1234512345. 129
C.3. Synthesis of MNIST sequence 2345623456. 130
C.4. Synthesis of MNIST sequence 3456734567. 130
C.5. Synthesis of MNIST sequence 4567845678. 130
C.6. Synthesis of MNIST sequence 5678956789. 130
C.7. Synthesis of a rotation sequence of Small NORB images (Category

0, Instance 4) . 131
C.8. Synthesis of a rotation sequence of Small NORB images (Category

0, Instance 6) . 131
C.9. Synthesis of a rotation sequence of Small NORB images (Category

0, Instance 7) . 132
C.10.Synthesis of a rotation sequence of Small NORB images (Category

0, Instance 8) . 132
C.11.Synthesis of a rotation sequence of Small NORB images (Category

0, Instance 9) . 132
C.12.Synthesis of dynamic texture Flowing Water 133
C.13.Synthesis of dynamic texture Boiling Water 133
C.14.Synthesis of dynamic texture Sea 134
C.15.Synthesis of dynamic texture River 134
C.16.Synthesis of dynamic texture Spring water 134
C.17.Synthesis of dynamic texture Mountain Stream 135
C.18.Synthesis of dynamic texture Fountain 135
C.19.Synthesis of dynamic texture Waterfall 135
C.20.Synthesis of dynamic texture Washing Machine 136
C.21.Synthesis of dynamic texture Flashing lights 136
C.22.Super-resolution results for Boiling Water 137
C.23.Super-resolution results for Sea 138
C.24.Super-resolution results for River 138
C.25.Super-resolution results for Mountain Stream 139
C.26.Super-resolution results for Fountain 139
C.27.Super-resolution results for Waterfall 140
C.28.Super-resolution results for Washing Machine 140
C.29.Super-resolution results for Flashing Lights 141
C.30.Super-resolution results for Firepot 141

x

List of Tables

3.1. Recognition rate on DynTex subsets 63
3.2. Recognition rate on YUPENN dataset 64

4.1. Recognition rate on DynTex subsets 78

5.1. Experimental configuration . 91
5.2. FID scores (compared to training data) 96
5.3. FID scores (compared to data not in training sequence) 97

6.1. PSNR values for 4x super-resolution 108
6.2. PSNR values for dynamic textures 110
6.3. FID scores . 111

B.1. PSNR values for prediction of last frame 126

xi

List of Symbols

Numbers and Arrays
a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

1n Vector in Rn containing ones as its entries, i.e. [1, . . . , 1]>

diag(a1, . . . , an)
A square, diagonal matrix with diagonal entries given by
a1, . . . , an

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

Indexing
(a)i Element i of vector a, with indexing starting at 1

(A)i,j Element i, j of matrix A

U(n) Matrix containing the n first columns of U

Σ
(n)
(n) Matrix containing the n first rows and columns of Σ

Linear Algebra Operations
A> Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

det(A) Determinant of A

‖a‖p `p norm of vector a

‖a‖ `2 norm of vector a

‖A‖F Frobenius norm of matrix A

‖A‖2 Spectral norm of matrix A

‖A‖∗ Nuclear norm of matrix A

tr(A) Trace of matrix A

xiii

List of Symbols

Sets
A,A A set

R The set of real numbers

Z The set of integers

N The set of natural numbers

{0, 1} The set containing 0 and 1

{1, . . . , n} The set of all integers between 1 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

span{a1, . . . ,an} The vector space spanned by {a1, . . . ,an}

A\B Set subtraction, i.e., the set containing the elements of A that
are not in B

Lp The Lebesgue space of p-integrable functions

GL(n)
The general linear group of n× n-dimensional, real, invertible
matrices

O(n) The orthogonal group of n× n-dimensional, real matrices

SO(n)
The special orthogonal group of n× n-dimensional, real
matrices

St(n, d)
The Stiefel manifold of matrices in Rd×n with orthonormal
columns

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x∫
S
f(x)dx Definite integral w.r.t. x over the set S

xiv

Probability and Information Theory
p(a) A probability distribution over a variable a

a ∼ p Random variable a has distribution p

Ex∼p[x] Expectation of x w.r.t. p

Cov(x) Covariance of x, (Cov(x))i,j = Cov((x)i, (x)j)

Cov(x,y) Covariance of x and y, (Cov(x,y))i,j = Cov((x)i, (y)j)

DKL(p‖q) Kullback-Leibler divergence of p and q

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ

Functions
f : A→ B The function f with domain A and range B
f ◦ g Composition of the functions f and g

xv

List of Acronyms

BoS Bag of Systems

BoW Bag of Words

CNN Convolutional neural network

DIP Deep image prior

DVAE Dynamic variational autoencoder

FE Feature extraction

FID Fréchet inception distance

GAN Generative adversarial net

k-NN k-nearest neighbors

KDE Kernel density estimator

KLDS Kernelized linear dynamic system

LBP Local binary patterns

LDS Linear dynamic system

Max SV Maximum singular value

(N)SHKS (Normalized) Scattering Histogram Kernel Subspace

PCA Principal component analysis

PSNR Peak signal-to-noise ratio

RGB Red/green/blue

RNN Recurrent neural net

SoB System of Bags

SVD Singular value decomposition

TV Total variation

VAE Variational autoencoder

VAR Vector autoregressive

xvii

1. Introduction

Computer vision and machine learning have experienced considerable growth in in-
terest as research fields during the recent years. While progress on a large variety of
data modalities has been made, these fields owe much of their success to accurately
describing, modeling and processing still images. However, for many technical ap-
plications this is not sufficient. Still images are instantaneous snapshots of the real
world. As such, they sometimes do not provide profound insight into the real-world
phenomenon that has caused them. The world that surrounds us is constantly in
motion. When we look around us, there is rarely ever a moment in which everything
stands still. For technology that relies on building an accurate model of real-world
events, this has important implications.

For instance, let us imagine that we want to build a system that aims at detecting
abnormal crowd behavior, e.g. mass panics, from real-time surveillance footage.
Such happenings are difficult to capture from still images, but are usually distin-
guishable if we put the pictures into a temporal context. As another example, we
can think of a video retrieval system, in which we try to trawl all videos in a database
based on certain movements or dynamic patterns. Again, we cannot expect to cap-
ture the essential information just by looking at isolated video frames. Instead, we
need a way to account for what is happening as the frames evolve temporally. Many
of the visual phenomena that we encounter every day are quite repetitive and we
tend to not take note of them, considering them as “background noise” to our ev-
eryday lives. This background noise is the subject of this thesis. More specifically,
it looks into the problem of finding an appropriate dynamic model to describe visual
processes.

In the scope of this thesis, let us define visual process as a stochastic process in
which every observation is a video frame. Furthermore, let us assume that every
video frame is described by a vector in Rd. This vector can directly contain the
pixel values of the frame or some other feature representation thereof. A visual
process is thus a sequence of random variables defined over a probability space.
Visual processes, by their nature, are not just characterized by their randomness but
also by some degree of predictability. Depending on the application, it might thus
be sensible to make additional assumptions about the statistical properties of the
process, such as ergodicity or stationarity.

For the sake of understanding, let us consider a few examples. Stable physical
systems tend to oscillate around equilibrium points. This is true for a simple spring
pendulum, as depicted in Figure 1.1, as it is for complex industrial machinery. Such

1

1. Introduction

Figure 1.1.: Motion captures of harmonic oscillations exhibited by spring pendulums can be
considered an example of visual processes [45].

systems are often equipped with different types of sensors in order to monitor the
operation and detect failures before they occur. The ubiquity and low cost of cam-
eras allows for the possibility to take such measurements visually. Motion captures
of stable mechanical systems are an example of visual processes. In industrial ap-
plications, this kind of data is of interest in fault detection scenarios [29]. Since visual
data is easy and cheap to obtain, visual process models can aid in detecting when
the system is behaving in an anomalous way. Similar motion patterns also occur in
footage of human or animal movements [19] and are of interest in applications such
as human-computer interaction.

Another example of visual processes are dynamic textures [38], also known as
temporal textures [117]. We can define them as temporally evolving image textures,
or alternatively, as visual motion patterns with some form of stationarity or repeti-
tiveness in both time and space. They constitute the most classical and, arguably,
well-studied type of visual processes. Typical dynamic textures are natural phenom-
ena such as ocean waves or vegetation moving in the wind. However, dynamic
textures appear in virtually every area of our daily lives in the form of waving flags,
chimney smoke or campfire flames. Dynamic textures are employed in a variety
of applications. In the past, dynamic texture models have been applied in feature
based video recognition [87], video segmentation [39] and motion detection [35], for
instance.

Dynamic scenes are one further important example of visual processes. In the
same manner as the term “dynamic texture” denotes a moving textural pattern, “dy-
namic scene” refers to a moving real-world scene. Typically, a dynamic scene con-

2

1.1. Remarks on Notation

Figure 1.2.: Examples of visual processes. a) Flowing water b) Person doing jumping jacks
[19] c) Highway [34]

sists of several objects moving in a regular and predictable manner, such as in traffic
scenes or sport events. Similarly, wide-angle captures of industrial sites, such as
wind parks or assembly lines, can be also considered dynamic scenes. Figure 1.2
depicts examples of typical visual processes.

1.1. Remarks on Notation

The notation in this thesis is based on the book [46] for which LATEX code is publicly
available1. A detailed notation table can be found in the front matter of this thesis. It
is worth noting that random variables, e.g. A,x, c, are written using an upright font,
as opposed to regular matrix-valued, vector-valued or scalar terms, e.g. A,x, c,
that are written in italic. Furthermore, sets are generally written either using black-
board bold, e.g. M, or calligraphic typeface, e.g. M. Blackboard bold letters are
typically used for sets containing data samples or feature representations thereof.
Calligraphic letters usually indicate abstract concepts, such as function spaces or
sets of parameter tuples. Unless stated otherwise, the term SVD refers to the full
singular value decomposition with the singular values arranged in a descending or-
der.

1.2. Typical Problems in Visual Processes

The different types of visual processes, ranging from dynamic textures to video
surveillance footage are an important field of research in computer vision. To help
putting the content of this thesis into a larger context, it is sensible to bring oneself

1https://github.com/goodfeli/dlbook_notation

3

https://github.com/goodfeli/dlbook_notation

1. Introduction

to mind the considerably large application range of this research field. Common
problems in visual processes are listed in the following.

• Classification is a classical task in supervised learning and as such is also
one of the oldest problems in visual process research [105]. As we will see
later on, the stationary character of visual processes facilitates classification.
The reason is that it permits us to build upon methods employed in classical
still-image classification. This is of course not true if the task is to classify
according visual process properties that cannot be inferred from individual
frames. Compared to still-images, it is much harder to gather a sufficient
amount of training data, which poses a considerable difficulty for classification.

• Another important application is clustering [2]. Unlike the supervised learning
problem of classification, assigning data points to clusters of semantically sim-
ilar data samples is a typical example of unsupervised learning. In addition to
grouping different videos according to their visual appearance, clustering has
also been used to characterize the flow of vehicles in traffic videos [27].

• Retrieval [11] denotes the task of identifying a set of videos in a database
that match a search query. When the search query consists of keywords
that are then used to trawl the meta-data of annotated video sequences, we
refer to the problem as meta-data based retrieval. Another situation occurs in
content based retrieval. In that case, the query consists of a video sequence
that is first processed by a feature extraction algorithm to extract a signature
from it. This signature is then compared to signatures in the database, using
an appropriate similarity measure. The retrieval then returns the sequences
most similar to the query in the database. Classification and retrieval tasks
are summarized by the term recognition in this thesis.

• Frame prediction refers to the task of forecasting one or several video frames,
given a sequence of frames that has preceded them [83]. The capability to
accurately predict the future of a visual process is of interest both in semantic
problems, e.g. predicting human behavior [22] and in pixel-level tasks, e.g.
compression or restoration of a video [78].

• A purely generative problem is visual process synthesis [38] that encom-
passes generating natural-looking sequences that follow the same stochastic
properties as a real-world visual process. Synthesis should not be confused
with prediction, since the former is stochastic and the latter is deterministic
in nature. This means in particular that synthesis cannot be evaluated us-
ing common image distances. While the most obvious applications of visual
process synthesis are in the creative field, such as video game design or ani-
mation of paintings via style transfer [119], more technical applications, such

4

1.2. Typical Problems in Visual Processes

as compression [30], hole filling [76], or data augmentation for supervised
learning are also imaginable.

• Anomaly detection refers to the task of identifying patterns in a visual pro-
cess that contradict some notion of normality. While a typical application is in
industrial settings, anomaly detection goes beyond detecting failures in tech-
nical systems. For instance, identifying unexpected occurrences in road traffic
or crowd dynamics is a possible domain of application [79].

• Spatial and temporal segmentation of visual processes has also attracted
some interest [39]. Often, segmentation requires some form of clustering as
an intermediate step. Possible applications are, for instance, preprocessing
of medical or satellite data.

The aforementioned and similar problems related to visual processes often re-
quire an appropriate way to describe them. Whether or not a visual process descrip-
tor is “appropriate” might depend on which one of the vast number of applications
it is supposed to be deployed in. Roughly speaking, we can identify two types of
visual process descriptors.

Observation based approaches refer to all methods that aim to extract features
from a video with the property of capturing distinguishing characteristics of the vi-
sual process. Examples include spatio-temporal frequency transforms [41], features
based on optical flow [122] or features computed via convolutional deep neural net-
works [96]. Typically, these kinds of descriptors are used in discriminative scenarios
such as classification or segmentation of dynamic textures.

Model based approaches follow another path. They aim at uncovering the hidden
driving forces of a visual process. Such methods are generative in the sense that
they describe sequences by means of a model that could have possibly generated
them. Model based approaches are in general more difficult to design and cannot
be expected to compete as well on supervised learning problems as observation
based techniques trained for a specific task. However, they are generally less task-
specific and thus more versatile, since the model is typically not learned with one
specific application in mind. Particularly, tasks that require the knowledge of sta-
tistical properties of a visual process, such as synthesis or anomaly detection, can
benefit from a model-based approach. These advantages are the reason this thesis
revolves exclusively around model-based methods to describe visual processes.

Before proceeding to specifying the research question and outlining how model-
based approaches can be used to solve different computer vision problems related
to visual processes, it is necessary to narrow down and characterize the type of
models the discussion in this thesis concentrates on.

5

1. Introduction

1.3. Linear Dynamic Systems

Discrete, dynamic processes can be described by means of recurrence equations,
i.e., equations that indicate how an observation at a certain time relates to earlier
observations. The underlying assumption roots in our idea about the world that
is based on causality. In other words, we usually assume that any observation we
make is a result of processes that have occurred at an earlier time. When processed
digitally, visual phenomena are observed at discrete points t ∈ Z in time. We make
the assumption here that for any visual process, we can find a recurrence function φ
that, at any time t, computes the current observation yt from previous observations
yt−1,yt−2, . . . , and an input vector ut. This yields the recurrence equation

yt = φ(ut,yt−1,yt−2, . . .). (1.1)

The variable ut stands for actions applied at time t that are not a direct consequence
of previously occurred situations. It models the non-deterministic aspect of the visual
process. For instance, when we observe outdoor scenes under stormy conditions,
we can predict how certain objects like vehicles behave in the near future given the
current and recent observations, while others move in a chaotic or unpredictable
fashion, e.g. autumn leaves on the ground. In that case, ut captures the movement
trajectories of such objects.

To describe natural visual processes, the observations yt with t ∈ Z must be of
a considerably high dimension in order to account for the data demand posed by
the resolution of natural images. This means that inferring a model, i.e., finding a
recurrence function φ, requires regressing in a very high-dimensional space. This
is bound to fail due to the curse of dimensionality [15], i.e., the high number of
parameters to be estimated given a limited data corpus.

On the other hand, assuming that the video frames depict an actual physical phe-
nomenon, it is fair to imagine it as a mechanism that is driven by only a small number
n of latent variables. In that case, each observation yt ∈ Rd has a low-dimensional
representation xt ∈ Rn and there is an observation function

Γ : Rn → Rd (1.2)

that maps each latent state xt to the respective observation yt. The intrinsic dy-
namic of the latent states is governed by a function ϕ that computes the state at
t + 1 from the m preceding states and the input vector ut. We call m the order of
the system. These definitions yield the model equations

xt = ϕ(ut,xt−1,xt−2, . . . ,xt−m) (1.3a)

yt = Γ(xt). (1.3b)

The function ϕ operates on a latent space with a lower dimension than the domain
of φ and is thus also easier to learn from data. We refer to models described by
Eq. (1.3) as state space models [101].

6

1.4. Semi-linear Dynamic Systems

A simple and popular choice for the latent state process in Eq. (1.3a) is a vector
autoregressive model (VAR). It models the recurrence function ϕ as a linear combi-
nation using a set of matrices A0, . . . ,Am−1 and an input vector that is assumed
to be a sample vt ∈ Rd of i.i.d.2 zero-mean Gaussian noise. This yields the formu-
lation

xt+1 =
m−1∑
i=0

Aixt−i + vt. (1.4)

The dynamic texture model as proposed in [38] has popularized linear dynamic
systems (LDS) in the modeling of visual processes. According to the work [38], an
LDS is a state space model in which the latent state transitions are described by a
first-order VAR process and the observation function Γ is affine, i.e., described by
an observation matrix C ∈ Rd×n, and a constant offset vector y ∈ Rd. Denoting
by B ∈ Rn×n a transformation matrix that accounts for the noise covariance, the
model in Eq. (1.3) becomes

xt+1 = Axt +Bvt, (1.5a)

yt = ȳ +Cxt, (1.5b)

where A ∈ Rn×n is called the state transition matrix, and the input term vt is
modeled as i.i.d. standard3 Gaussian noise that is statistically independent of xt. To
summarize, the term LDS refers to a combination of a latent first-order VAR process
and an affine observation model. Without loss of generality, we can assume that
C has full rank. If that is not the case, we can find an equivalent model with a
latent space of a lower dimension ñ = rank(C) < n, and an observation matrix
C̃ ∈ Rd×ñ, where the column spaces of C and C̃ are identical.

1.4. Semi-linear Dynamic Systems

The model described in Eq. (1.5) has important advantages as discussed in the
following.

1. It is of a mathematically very simple form. Eq. (1.5a) is essentially a linear
transformation perturbed by zero-mean i.i.d. Gaussian noise. Both of these
operations are well understood and studied, which cannot be said of non-
linear sequential models such as architectures based on recurrent neural nets
(RNN) [116].

2. This facilitates system analysis. For instance, the authors of [53] argue in
favor of LDS’s because they simplify system identification. Furthermore, it

2Independent and identically distributed
3Zero mean and unit variance

7

1. Introduction

suffices to take a look at the spectrum of state transition matrix A, if we want
to investigate the long term behavior of an LDS. To name an example, one
important property that is often expected from a sequential model is stability.
In informal terms, a model described by Eq. (1.5a) is stable, if we can guar-
antee it not to amplify the input noise beyond any bounds. This property can
be guaranteed to hold if all singular values of A are smaller than 1, because
then, every input Bvt contributed by the noise term fades out over time. On
the other hand, many applications of the model are mathematically and nu-
merically easy to carry out. Contemporary models for video synthesis, for
example, often require a tedious optimization procedure for every sequence
to be synthesized [119, 127], while LDS sequences can be easily sampled by
generating standard Gaussian noise and feeding it to the model.

3. Another advantage of systems described by Eq. (1.5) is their versatility. Mod-
els acquired by supervised end-to-end learning are often constrained to per-
form a limited number of tasks. By contrast, an LDS not only provides a model
for the statistics of a visual process, but can also be applied as a feature for
recognition tasks, making it more capable of multi-task learning [24] scenar-
ios.

These observations are important arguments that support LDS’s as a design choice
for visual processes models. Beyond that, finding and employing LDS-like models
becomes increasingly important as LDS’s reemerge as a subject of interest in ma-
chine learning. Recent work in the field has proposed LDS’s as interpretations of
stochastic gradient descent [50] or as a baseline for reinforcement learning algo-
rithms [84]. In [64], this increase of interest has been also explained by numerical
and analytical simplicity. Furthermore, it is believed [64] that LDS’s can approximate
RNNs for sequential modeling, but without carrying their burden of mathematical
intractability. Exploiting this capability would require methods to learn, analyze and
apply such LDS based models.

That being said, the LDS model in Eq. (1.5) has an obvious drawback. Real-
istically speaking, real-world visual phenomena are not linear and randomness in
visual processes cannot be entirely captured by Gaussian noise. So while Eq. (1.5)
does have considerable appeal in terms of the mathematical formulation, we can-
not expect it to be a sufficiently complex model of the real world. However, there
is a way to enhance the model that significantly increases its capability to describe
visual phenomena, while still maintaining an effectual level of simplicity. Note that
the advantages regarding the simplicity of LDS models discussed in this chapter
are mainly due to Eq. (1.5a) since it is the part containing recurrence. On the other
hand, Eq. (1.5b) limits visibly the capabilities of the model since it constrains the
observations produced by the visual process to be contained in an affine subspace
of Rd. Thus, replacing this mapping by some other, possibly non-linear function
Γ : Rn → M with M ⊂ Rd can greatly enrich the model capacity without losing

8

1.5. Research Problem Formulation

much of its simplicity and explainability. This yields the model equations

xt+1 = Axt +Bvt, (1.6a)

yt = Γ(xz). (1.6b)

Eq. (1.6) will remain the guiding theme of this thesis.

1.5. Research Problem Formulation

This thesis follows the presumption that we are given a sequence

y1, . . . ,yN ∈ Rd (1.7)

of observed video frames generated by a visual process. Based on this sequence,
the aim is to infer a dynamic model that can plausibly explain the succession of
frames. Such a model gives us insight into the mathematical laws of a visual pro-
cess and provides a framework for solving the numerous applications discussed
previously. In the following, it will be assumed that the visual process in question
can be described by Eq. (1.6) with sufficient accuracy. Since every visual process is
described by a different state transition A, noise covariance transformation B and
observation function Γ, describing a visual process via Eq. (1.6) requires determin-
ing these parameters.

Based on these requirements, the main research question of this thesis can be
formulated as follows.

Given an observed video sequence generated by some visual process,
how can we infer the parameters A,B and Γ, such that Eq. (1.6) pro-
vides an accurate dynamic model of the underlying visual process?

It should be noted that accuracy in this context depends on the intended application.
Certain applications require the model to capture the behavior of the visual process
up to pixel level, so that one can accurately predict object movements, for instance.
Other applications might only need structural information to be retained, as is the
case in certain methods for dynamic texture segmentation, to name an example.

Inferring the semi-linear system parameters of a visual process using a history of
observations poses difficulties at different levels. The observation function Γ needs
to be chosen such that its range is an accurate model of the set containing the ob-
servations of the visual process. Beyond that, video sequences offer only few sam-
ples to train on, when seen in relation to the number of pixels in its individual video
frames. Learning the observation function Γ from data is thus prone to overfitting.

In machine learning, the problem of finding “approriate” parameterizations of data
is studied within the field of representation learning [16]. Practically, the above re-
search question entails the problem of finding a representation learning method that

9

1. Introduction

is capable of parameterizing observed sequences of real-world visual processes as
trajectories of VAR noise. Importantly, representation learning techniques that are
known to be successful for still-image samples might not work on visual processes.
Given some learned function Γ, it may be possible that for any observation of a vi-
sual process, one can find a data point in the domain of Γ which is mapped to the
respective observation, but the latent points in the domain of Γ do not follow any
temporal structure. This has also implications on the choice of the VAR parameters
A and B. The two matrices can be learned separately from Γ, which is computa-
tionally simpler, but may not accurately capture the dynamic behavior of the visual
process. Learning the VAR parameters and the observation function jointly gener-
ally leads to a more reliable estimate of the spatio-temporal properties, but requires
more intricate learning algorithms.

It is important to note that the approaches in this thesis are not the first to employ
the model in Eq. (1.6). For instance, two algorithms proposed in this thesis are
based on the kernel-based method introduced in [26] that also uses this formulation.

Once we have determined an algorithm to inferA,B and Γ from an observed se-
quence of a visual process, we can employ them to solve practical problems related
to visual processes. However, finding the right dynamic model is often insufficient
to solve particular tasks. While the model provides statistical laws that can explain
the visual process, further measures need to be usually taken in order to put the
inferred model into action. This is the case, for example, in the problem of design-
ing a video retrieval framework for visual processes. Besides computing the model,
the problem also requires deciding on the proper representation of the video frames
from which the model is inferred and on a concise descriptor of the dynamic model
that can be stored in a database. Furthermore, a similarity measure that matches
query descriptors to models in the database needs to be defined.

Such complementary problems are inherently related to model inference as they
are needed for putting the learned model into practice. So in addition to the prob-
lem of statistical modeling, this thesis also explores the following complementary
scientific challenges.

• Feature extraction: The exact content of the vectors in Eq. (1.7) depends
on the application. Often, each observation at time t is present as a simple
vectorization of the respective video frame. Other applications benefit from
first transforming the video frames into a certain feature representation. Deep
learning based methods for inferring the observation function Γ often do not
require such a transformation, because it is learned implicitly, e.g. within the
encoder of an auto-encoding architecture. For less versatile representation
learning approaches, e.g. kernel-based methods, a hand-crafted represen-
tation can aid in capturing the essential application-specific information from
each video frame. In this thesis, several known and novel feature representa-
tions based on distributions of visual characteristics are discussed and meth-

10

1.6. Thesis Outline and Key Contributions

ods for dynamic model inference are presented for the case when the visual
process video is described as a sequence of such features.

• Metric learning: Many common recognition tasks require a notion of similarity
for the entities to be recognized. If the task consists of classifying, clustering
or retrieving visual processes based on dynamic model parameters, metric
learning needs to take into account the specific mathematical structure exhib-
ited by the set that these parameters occupy. The problem of metric learning
is covered by considering previously introduced distance metrics on pairs of
LDS’s and discussing how they can be generalized to semi-linear dynamic
systems in a way such that they retain the semantic properties essential to a
particular application and visual process type.

• Post-processing: If the dynamic model is capable of synthesis, the visual qual-
ity of the synthesized sequence may be practically limited by accuracy of the
learned model, as well as by hardware resources. One possibility to over-
come this problem is by applying post-processing steps once the sequence is
generated. Such steps can include techniques for image enhancement to in-
crease the visual quality, but also style-transfer methods for artistic animation.
This thesis investigates the capability to improve the resolution of synthesized
visual processes using classical still-image superresolution techniques.

The two main applications investigated in this thesis are classification and synthe-
sis. However, a guiding principle in designing the models presented in this thesis has
been to make them as broadly applicable as possible. For instance, even though the
similarity measures introduced in the following are only evaluated on classification
problems, they can be theoretically also employed to carry out clustering or retrieval
tasks. Likewise, the synthesis algorithm presented later on can be easily adapted for
anomaly detection and prediction methods. This emphasis on task-agnostic models
is the reason that none of the presented techniques relies on learning the model on
external datasets, as is common in classical “deep” and “shallow” machine learning.

1.6. Thesis Outline and Key Contributions

This thesis is structured as follows. Following Chapter 1 that provides an introduc-
tion into visual processes and possible mathematical models for them, Chapter 2
reviews the LDS model in Eq. (1.5). It motivates and describes an algorithm based
on principal component analysis (PCA) to compute the model parameters. After
this introduction, it is demonstrated how to apply the model to video synthesis using
the computed LDS parameters by sampling from autoregressive noise and trans-
forming these noise samples by means of the observation matrix. Furthermore,

11

1. Introduction

common distance measures that are used in classification and clustering of LDS’s
are described in detail.

Afterwards, Chapter 2 provides an overview of common non-linear representation
learning techniques that are either employed in this thesis or are closely related to
it. This includes Kernel PCA [108] as well as more recent approaches from deep
learning, and, in particular, deep generative models [66, 47] that transform low-
dimensional Gaussian noise to samples of some learned data distribution.

The main scientific contribution of this thesis revolves around two realizations of
the model described by Eq. (1.6). One realization is designed for classification of
dynamic textures and dynamic scenes. To do so, the observations of Eq. (1.6b)
are represented as histogram based feature vectors living in a low-dimensional sub-
space of a kernel feature space created by Kernel PCA. This approach resembles
the human action recognition algorithm presented in [28] and is studied in Chapter 3.
It works by transforming the visual process videos to sequences of feature vectors,
where each one of the vectors is created by converting a video frame into a his-
togram describing the distribution of certain visual characteristics. This is motivated
by the fact that such distribution based features have demonstrated success in other
areas of computer vision. The resulting sequences of histograms are then used to
construct dynamic models using an inference algorithm relying on histogram ker-
nels previously introduced in literature. The classification is performed via k-nearest
neighbors (k-NN) and nearest class centers (NCC), which poses several challenges
to the framework. To begin with, these techniques require a measure of dissimilarity,
but this measure needs to account for the fact that the same dynamic system can
be described using different parameters of Eq. (1.6). The Alignment distance [3]
is proven to handle this ambiguity quite well. However, the Alignment distance is
defined for LDS’s as described by Eq. (1.5). Therefore, it is generalized to handle
kernel-based systems as defined in Eq. (1.6) and important properties of the dis-
tance are shown, including that it is a metric. Another challenge is that kernel-based
video descriptors are data-hungry and grow with the video length. To overcome this
problem, a Nyström interpolation [40] based approach is introduced that reduces
the memory usage and computational burden.

Chapter 4 develops the technique presented in Chapter 3 further. For this pur-
pose, a histogram feature based on the Scattering transform is proposed and a
kernel adapted to these features is introduced. Thereafter, it is argued that the most
distinctive property in dynamic texture recognition is captured in the appearance of
a visual process, while the dynamics can be often neglected. This supposition al-
lows for a simplification of the distance measure employed in Chapter 3 that greatly
reduces computational effort while achieving state-of-the-art classification results on
common dynamic texture datasets. Unlike Chapter 3, Chapter 4 is not evaluated on
dynamic scenes, but focuses entirely on dynamic textures.

The second realization of Eq. (1.6) is discussed in Chapter 5. It introduces a gen-
erative model for visual processes using variational autoencoders [66]. This realiza-

12

1.6. Thesis Outline and Key Contributions

tion can be used, among others, for video synthesis. Since Variational autoencoders
learn a function that maps Gaussian noise to some learned data distribution, a Vari-
ational autoencoder is employed to learn the observation function Γ in Eq. (1.6b).
More precisely, system parametersA,B and the observation function Γ are learned
using a generative architecture that models the observation function via a convolu-
tional neural net. Unlike many other approaches based on linear and semi-lnear
dynamic systems, all the parameters are learned jointly, which is important to en-
sure that sequences of the visual process actually correspond to VAR trajectories in
the latent state space. This is done by including an additional linear building block
into the neural network, the so-called dynamic layer, that is learned as part of the
neural architecture during the training process. Later, it is used to compute the pa-
rameters A and B. For this to work, assumptions on the stationarity and Markov
property of the visual process are made. These assumptions are crucial for the pro-
posed adaptation of the classical Variational autoencoder that can learn the state
transiton matrix and the process noise covariance as part of its architecture, along
with the observation function. The presented framework is experimentally evaluated
on a series of synthesis experiments.

Following the description of a synthesis algorithm based on variational autoen-
coders in Chapter 5, the problem of enhancing the synthesis quality is consid-
ered. To investigate the capability of increasing the synthesis resolution via post-
processing, a super-resolution algorithm is introduced in Chapter 6. Based on the
deep image prior [121], it leverages the advantages of deep convolutional neural
networks, but does not require training on external image databases, unlike con-
ventional deep learning algorithms. In the experimental section, it is demonstrated
that the proposed method can outperform other learning-free algorithms for super-
resolution and the applicability to post-processing of synthesized visual processes
is investigated.

Lastly, Chapter 7 closes with a conclusion that summarizes the results of this
thesis and discusses the relevance to current and prospective developments in re-
search. It is followed by an appendix that provides additional theoretical discussion
and experimental results.

13

2. Mathematical Preliminaries

The guiding research question in this thesis revolves around the problem of finding
dynamic system models for visual processes. For linear models that follow the dy-
namics described by Eq. (1.5), theoretical analysis and methods for model inference
and application are largely covered in literature [38, 39, 105, 130, 27]. The challenge
in this thesis is to find semi-linear models as described by Eq. (1.6). In order to gen-
eralize the linear formulation to the semi-linear form, this chapter provides technical
backgrounds on two important topics. First, the LDS model in Eq. (1.5) is discussed
in-depth. Inference based on PCA is presented, and the problems of distance mea-
surement and synthesis using the inferred model are introduced. This discussion
lays the groundwork for understanding both the advantages and disadvantages of
LDS’s as visual process models, and walks through important concepts that will be
generalized to non-linear interpretations later on in this thesis.

Afterwards, this chapter takes a look at different methods in data representation.
The approaches will be later employed to describe Γ in Eq. (1.6b), thus making the
generalization from linear to semi-linear models possible in the first place. To this
end, it is required to find an appropriate model for the set of observations y1,y2, . . .
produced by a visual process. In the following, we refer to this set as observation
space and denote it by M ⊂ Rd.

We assume that it is a compact subset of Rd. Not every representation learning
method is suitable for modeling the observation space of a visual process. For in-
stance, classical manifold learning methods such as ISOMAP [118] or Locally Linear
Embedding [102] may be a tempting choice, as they have a convincing geometrical
motivation. On the downside, however, they do not result in an explicit or implicit
representation of the observation function Γ. The aim of the second part of this
chapter is to provide an overview over representation learning algorithms that can
be exploited in the context of visual processes. In particular, we will consider kernel
based representation learning and generative models in deep learning.

2.1. Linear Modeling

LDS models of visual processes are traditionally computed in two steps, with the
first step constituting the inference of an appropriate subspace model for the video
frames, and the second step being a mean squared error minimization problem to
infer the latent VAR model [38]. One may assume that learning both aspects jointly

15

2. Mathematical Preliminaries

Algorithm 1 : PCA

Input : Data matrix Y ∈ Rd×N , target dimension n ∈ N
1 ȳ ← 1

NY 1N ; // Computing data mean

2 Y c ← Y − ȳ1>N ; // Centering
3 U ,Σ,V ← SVD(Y c); // Singular Value Decomposition

Output : Truncated left SVD matrix U(n), data mean ȳ

can improve the performance. However, we will see in this chapter, that for linear
models, learning the VAR model and the subspace separately should not cause a
great disadvantage. The model is thus discussed as it is introduced in [38] and
usually used in computer vision literature, i.e., by learning the observation function
and the latent state dynamics separately.

Principal Component Analysis

One of the most basic assumptions to make about data is that of linearity. Let us
imagine that we are given a finite set of observations in Rd. If the entire set is actu-
ally located on a low-dimensional affine subspace of Rd, there is an invertible affine
transformation that can map each data sample in the set to a lower-dimensional rep-
resentation. In reality, the linear subspace assumption holds only approximately and
any affine transformation that maps to a lower-dimensional space will lead to a loss
of information. The idea of PCA is to find the affine transformation that minimizes
this loss with regards to the `2 norm. It turns out that this transformation can be
computed by the SVD of the data matrix, after subtracting the arithmetic average of
the data samples from its columns.

Algorithm 1 summarizes the procedure of inferring the affine representation map-
ping from a set of data via PCA. As the input, it requires a data metrix Y ∈ Rd×N
that contains the training samples y1, . . . ,yN as its columns. First, the empirical
mean ȳ of the observations is computed and subtracted from each observation,
yielding the centered matrix Y c. Let us write the SVD of Y c as

Y c = UΣV >. (2.1)

The algorithm then returns the sub-matrix U(n) containing the first n columns of
U , i.e. the leading n left singular vectors of Y c, and the data mean ȳ. Once the
parameters U(n), ȳ have been found, they can be used to represent a new data
point y via

x = U>(n)(y − ȳ). (2.2)

Conversely, the reconstruction operation can be performed via

ỹ = U(n)x+ ȳ. (2.3)

16

2.1. Linear Modeling

Note that the representations x1, . . . ,xN of the training set itself can be obtained
directly from the right singular vectors of Y c. Let

Σ
(n)
(n) = diag (σ1, σ2, . . .) ∈ Rn×n (2.4)

denote the left upper submatrix of Σ, where σ1, σ2, . . . stand for the respective
singular values. Then, we can write[

x1 · · · xN
]

=U>(n)

[
y1 − ȳ · · · yN − ȳ

]
=U>(n)Y

c

=Σ
(n)
(n)V

>
(n).

(2.5)

PCA can be exploited for finding LDS models of visual processes, as will be dis-
cussed in the following.

Formulation as a Prediction Problem

Recall the LDS from Chapter 1 described by Eq. (1.5). Let the matrix

Y =
[
y1 · · · yN

]
∈ Rd×N (2.6)

contain N temporally ordered observations of a visual process. In the classical sce-
nario, the columns of Y are simply the vectorized RGB or grayscale video frames
of a video sequence depicting the visual process. Given a latent state space dimen-
sion n, a key question is how to infer the parameters A,B,C, ȳ of Eq. (1.5) from
Y , such that they could be used to model the visual process.

In system and control theory, such problems are solved by numerical algorithms
for system identification (N4SID) [91]. Here, we are presented with a slightly simpler
version of this problem than the one typically described in control literature. The
crucial difference is that Eq. (1.5) does not contain any control signals. The system
is autonomous in the sense that it does not account for any external input except for
the Gaussian process noise.

In order to infer the system parameters A,B,C, ȳ from Y , we may be tempted
to formulate a likelihood maximization problem, since this is a standard approach
in machine learning. However, such a problem would not be well defined, as
y1, . . . ,yN probably do not lie directly in an n-dimensional subspace of Rd. An
alternative approach is to formulate the task as a prediction problem. Then, the pa-
rameters are determined in a way such that they can be used to estimate the best
prediction ypred

t+1 of the upcoming frame from the current frame yt. For this, only the
parameters A,C, ȳ describing the deterministic part of the process are needed.
The following discussion serves to show that PCA provides a good approximation of
the optimal model according to this motivation.

17

2. Mathematical Preliminaries

Note that if the parametersA,B,C, ȳ and the current observation yt are known,
and the Moore-Penrose pseudo-inverse of C is written as C+, the expectation-
based prediction of yt+1 is given by

ypred
t+1 = CEvt∼N (0,In) [Axt +Bvt] + ȳ

= CAxt + ȳ

= CAC+(yt − ȳ) + ȳ.

(2.7)

By choosing the `2 norm as the error measure, we can then write the problem of
estimating A and C from y1, . . . ,yN as

min
A∈Rn×n,C∈Rd×n,ȳ∈Rd

N−1∑
t=1

∥∥yt+1 −CAC+(yt − ȳ)− ȳ
∥∥2
. (2.8)

The arithmetic mean of a finite set of points in Rd minimizes the sum of squared
distances to these points. As a consequence, the objective in Eq. (2.8) is minimized
for ȳ under the condition

(In −CAC+)ȳ =
1

N − 1

N−1∑
t=1

yt+1 −CAC+yt. (2.9)

This condition is approximately fulfilled for the choice

ŷ =
1

N

N∑
t=1

yt, (2.10)

where the approximation relies on the assumption

1

N − 1

N∑
t=2

yt ≈
1

N

N∑
t=1

yt ≈
1

N − 1

N−1∑
t=1

yt, (2.11)

which states that the empirical mean approximation is roughly the same, whether
one uses all N observations, or only the first or last N −1 observations, to compute
it.

Like in the previous subsection, let us identify

Y c = Y − ŷ1>N , (2.12)

and for its columns, analogously,

yc
t = yt − ŷ, (2.13)

18

2.1. Linear Modeling

for all t. Substituted into Eq. (2.8) with ȳ = ŷ, this yields

min
A∈Rn×n,C∈Rd×n

N−1∑
t=1

‖yc
t+1 −CAC+yc

t‖2. (2.14)

We can assume that C is full-rank here, as argued in Section 1.3. Furthermore,
we can also fix C to have orthonormal columns, i.e., to lie on the Stiefel manifold
St(n, d). The reason is that if C does not have orthonormal columns, it can be
written as a product of a matrix C̃ ∈ St(n, d) and a full-rank matrix P ∈ Rn×n. The
summands in Eq. (2.14) then become∥∥∥yc

t+1 − C̃PAP−1C̃>yc
t

∥∥∥2
, (2.15)

and A can be replaced by its similarity transformation Ã = PAP−1 in the opti-
mization problem of Eq. (2.14). Therefore, Eq. (2.14) can be written as

min
A∈Rn×n,C∈St(n,d)

N−1∑
t=1

∥∥∥yc
t+1 −CAC>yc

t

∥∥∥2
. (2.16)

Finally, let us denote by C⊥ ∈ St(d− n, d), a Stiefel matrix with the property

C>⊥C = 0. (2.17)

By defining

Y c
− =

[
yc

1 yc
2 · · · yc

N−1

]
∈ Rd×N−1 and

Y c
+ =

[
yc

2 · · · yc
N−1 yc

N

]
Rd×N−1,

(2.18)

we can rewrite the objective in Eq. (2.16) as

N−1∑
t=1

∥∥∥C>yc
t+1 −AC>yc

t

∥∥∥2
+
∥∥∥C>⊥yc

t+1

∥∥∥2

=
∥∥∥C>Y c

+ −AC>Y c
−

∥∥∥2

F
+
∥∥∥C>⊥Y c

+

∥∥∥2

F
,

(2.19)

where only the first term depends on A. Thus, the optimal solution for A is deter-
mined using the pseudo-inverse as

Â = C>Y c
+(C>Y c

−)+, (2.20)

so that the problem in Eq. (2.16) boils down to

min
C∈St(n,d)

‖C>Y c
+(In − (C>Y c

−)+C>Y c
−)‖2F + ‖C>⊥Y c

+‖2F . (2.21)

19

2. Mathematical Preliminaries

Algorithm 2 : LDS Modeling via PCA

Input : Video Sequence Y ∈ Rd×N , target dimension n ∈ N
1 ȳ ← 1

NY 1N ; // Computing constant offset

2 Y c ← Y − ȳ1>N ; // Centering
3 U ,Σ,V ← SVD(Y c); // Singular Value Decomposition
4 C ← U(n) ; // Observation matrix

5
[
x1 · · · xN

]
← Σ

(n)
(n)V

>
(n) ; // Latent space states

6 A← arg minÃ s.t. ‖Ã‖2<1

∑N−1
i=1 ‖xt+1 − Ãxt‖22 ; // State

transition matrix

7 B ← 1√
N−1

(
∑N−1

i=1 (xt+1 −Axt)(xt+1 −Axt)>)
1
2 ; // Noise

covariance transform
Output : LDS parameters A,B,C, ȳ

We can minimize the second term ‖C>⊥Y c
+‖2F by choosing C to be the matrix con-

taining the leading n left singular vectors of Y c
+, but that is generally not true for the

first term. However, while this would generally not be the optimal solution for C tak-
ing into account both terms, it would still bring the first term close to 0, if y1, . . . ,yN
contain video frames from a real-world motion capture. This is due to how sub-
space projections affect natural images. Typically, projecting a video sequence on
a low-dimensional principal subspace computed via PCA will create a blurred-out
version of the video that no longer contains the fast-changing features of the original
sequence and in which the succeeding video frames closely resemble each other.
Hence, the approximation

C>Y c
+ ≈ C>Y c

− (2.22)

holds, and therefore, the right-multiplication of C>Y c
+ by the projection matrix

(C>Y c
−)+C>Y c

− in Eq. (2.21) has little impact. This justifies choosing C as the
matrix that contains the first n singular vectors of the sequence.

Once the solution Ĉ of Eq. (2.21) is determined, Â can be identified via Eq. (2.20),
and the prediction error in the state space can be used to estimate the process noise
model, i.e., B̂.

Theoretically, the preceding derivations suffice to construct an algorithm that esti-
mates the LDS parameters A,B,C, ȳ from a sequence of observations. In reality,
it is often necessary to adjust the procedure in a way such that the inferred system is
stable. This can be done by constraining the spectrum of the state transition matrix
to abide

‖A‖2 < 1. (2.23)

Algorithm 2 summarizes the typically applied steps for LDS parameter estimation,
while taking care of the requirement in Eq. (2.23).

20

2.2. Video Synthesis with Linear Dynamic Systems

Algorithm 3 : Synthesis via LDS

Input : System Parameters A ∈ Rn×n,B ∈ Rn×n,C ∈ Rd×n, ȳ ∈ Rd,
initialization x0 ∈ Rn, sequence length Nsynth ∈ N

1 for i = 1, . . . , Nsynth do
2 vi ← N (0, In) ; // Sample from Gaussian Noise
3 xi ← Axi−1 +Bvi;
4 yi ← Cxi + ȳ;
5 end

Output : Synthesized sequence y1, . . .yNsynth

(a)

(b)

Figure 2.1.: Training (a) and synthesized (b) sequence of a visual process depicting a water-
fall. Since synthesis has been performed using an LDS model, projection onto the principal
subspace results in blurring of the video frames.

2.2. Video Synthesis with Linear Dynamic Systems

The learned parameters A,B,C, ȳ provide the capability to generate new, “syn-
thetic” sequences of the visual process from scratch [38]. Synthesis of dynamic
textures aims at recreating a video sequence without copying individual frames. Ide-
ally, a synthesis algorithm is capable of producing video sequences of infinite length
without introducing any visible discontinuities [130].

A synthesis algorithm employing an LDS model is described in Algorithm 3. To
generate a sequence based on the LDS parameters A,B,C, ȳ, it suffices to gen-
erate a sequence of i.i.d. standard Gaussian noise samples in Rn, and to feed them
to the recursive model as the noise input term. Typical applications of video syn-
thesis can be found in Computer Generated Imagery (CGI). However, generating
unseen sequences of a visual process can come in handy in other areas as well.
For instance, Algorithm 3 demonstrates that a video sequence can be represented
by a model parameter tuple in combination with a point sequence in Rn. Such a
compact representation can aid in restoration and compression.

Figure 2.1 shows an example result of Algorithm 3. It is clearly visible that the
synthesis procedure produces very blurred out frames, which is due to them being

21

2. Mathematical Preliminaries

constrained to a low-dimensional subspace of Rd. Nevertheless, the simplicity of Al-
gorithm 3 is a strong argument in favor of it. Unlike many other synthesis procedures
[127, 119], each frame can be generated on-line, recursively from the previous one,
so that the computational burden increases only linearly with the sequence length.
Later in this thesis, we will see how to keep this advantage while improving the visual
quality.

2.3. LDS Parameters as Features

The extracted parameters A,B,C, ȳ contain distinguishing information about the
visual process. While C and ȳ encode the appearance, the matrices A and B
represent the temporal dynamics of the process. This can be exploited in problems
such as classification or clustering of visual processes, where expressive features
are demanded. To do so, a measure of similarity is required.

One important problem that arises in formulating a similarity measure on the sys-
tem parameters is that the representation in Eq. (1.5) is not unique. In fact, a change
of basis in the state space by means of an invertible matrix P , i.e.,

x̃t = Pxt, (2.24)

yields the representation

x̃t+1 = Ãx̃t + B̃vt,

yt = ȳ + C̃x̃t,
(2.25)

with
Ã = PAP−1, B̃ = PB, C̃ = CP−1, (2.26)

that describes a visual process with the same statistical properties. More precisely,
a system with these parameters gives rise to a stochastic process with the same sta-
tistical moments. Let us denote the general linear Group of real invertible matrices
in Rn×n by GL(n). An LDS with the parameter tuple (A,B,C, ȳ) is statistically
equivalent to all systems with parameter tuples in

SLDS(A,B,C, ȳ)

={(PAP−1,PB,CP−1, ȳ) | P ∈ GL(n)}.
(2.27)

The change of basis according to Eq. (2.26) is of considerable importance for the
following chapters. For the sake of simplicity, let us introduce the notation

P • (A,B,C, ȳ) = (PAP−1,PB,CP−1, ȳ), (2.28)

to express this transformation in a more concise way.

22

2.3. LDS Parameters as Features

A (dis)similarity measure should account for the ambiguity caused by transforma-
tions as described by Eq. (2.28). This is not necessarily the case for trivial distance
measures. For instance, given the non-negative weighting parameters λA, λB, λȳ,
a distance d2

F,λA,λB ,λȳ
that measures a weighted sum of squared Frobenius norms

between two LDS’s Θ1 = (A1,B1,C1, ȳ1) and Θ2 = (A2,B2,C2, ȳ2), defined as

d2
F,λA,λB ,λȳ

(Θ1,Θ2) =‖C1 −C2‖2F + λA‖A1 −A2‖2F
+ λB‖B1 −B2‖2F + λȳ‖ȳ1 − ȳ2‖2F ,

(2.29)

is not a good a choice in general. To see this, consider the case Θ2 = P • Θ1 for
some full-rank matrix P 6= In. Then, using the parameter values λA = 0, λB =
0, λȳ = 0 yields

d2
F,0,0,0(Θ1,Θ2) = ‖C1 −C2P

−1‖2F . (2.30)

This term is strictly positive, which should not happen, as Θ1 and Θ2 describe statis-
tically equivalent systems. A good distance should at the very least treat equivalent
systems equally. This is reflected in the following definition.

Definition 1. Let d be a symmetric distance measure defined on LDS parameter
tuples, i.e.,

dbinv(Θ1,Θ2) = dbinv(Θ2,Θ1) ≥ 0 (2.31)

and
dbinv(Θ1,Θ1) = 0 (2.32)

holds for any two systems Θ1,Θ2. We call dbinv basis-invariant, if it is not altered by
changes of basis in the state space, i.e. if the condition

dbinv(Θ1,Θ2) = dbinv(Θ1,P •Θ2) ∀ P ∈ GL(n), (2.33)

is fulfilled.

Note that a basis-invariant distance dbinv vanishes if its two arguments are statis-
tically equivalent, i.e.

dbinv(Θ,P •Θ) = 0 ∀ P ∈ GL(n). (2.34)

In the following, three basis-invariant distance measures that will be required later
on are discussed. To facilitate this discussion, let us first formally define the set we
are operating on.

When we use Algorithm 2 to extract a parameter tuple from a sequence of a visual
process, we can assume the following two properties about it. First, all singular
values of A are smaller than one, and second, C has orthonormal columns. Note
that the latter assumption does not actually reduce the set of visual processes due
to the state space invariance. Furthermore, the former assumption is sensible, as

23

2. Mathematical Preliminaries

unstable systems are of little practical relevance to us. We thus define the set of
feasible LDS’s as

Ond = {(A,B,C, ȳ) ∈ Rn×n × Rn×n × St(n, d)× Rd | ‖A‖2 < 1}. (2.35)

Since C is now restricted to the Stiefel manifold, a transformation of the form in
Eq. (2.28) produces only a tuple in Ond , if P is orthogonal. With O(n) denoting the
orthogonal group in Rn×n, we define thus the relation

Qnd = {(Θ1,Θ2) ∈ Ond ×Ond | ∃Q ∈ O(n) s.t. Θ1 = Q •Θ2}. (2.36)

For the quotient space induced by this relation, we write

QOnd = Ond/Qnd = {{Q •Θ |Q ∈ O(n)} | Θ ∈ Ond} . (2.37)

Ideally, we should be able to interpret an LDS distance as a dissimilarity measure
on the elements of QOnd , since every pair of parameter tuples that are equivalent
according to Eq. (2.36) should be treated equally. In what follows, we discuss three
possible candidates that fulfill this requirement.

Martin Distance

The Martin distance [32] is derived from the principal angles between the observa-
tion ranges of two LDS’s. To better understand what is meant by this conception, let
us consider two systems

Θ1 = (A1,B1,C1, ȳ1), Θ2 = (A2,B2,C2, ȳ2) ∈ Ond . (2.38)

The Martin distance neglects the process noise and the observation offset, treating
them as non-existent. This means that the parameters B1,B2, ȳ1, ȳ2 are treated
as 0.

One way to motivate the Martin distance between Θ1 and Θ2 is to compare the
possible trajectories in the observation space. To this end, let us again consider
the VAR model in Eq. (1.5a), while substituting the parameters of Θ1 and Θ2, re-
spectively. We assume that B1 = B2 = 0 holds, and denote the respective initial
state by xa0 for a ∈ {1, 2}. Then, the VAR model produces the entirely deterministic
sequence (

Ak
ax

a
0

)
k∈N

=
(
xa0, Aax

a
0, A

2
ax

a
0, . . .

)
, a ∈ {1, 2}. (2.39)

Since ȳ1 and ȳ2 are also neglected, the corresponding observation can be obtained
by multiplying the sequence members by the respective observation matrix. This
yields what we refer to as the system trajectory sequence

TΘa(xa0) = (yak)k∈N
= (ya0 , y

a
1 , y

a
2 , . . .)

=
(
Cax

a
0, CaAax

a
0, CaA

2
ax

a
0, . . .

)
, a ∈ {1, 2}.

(2.40)

24

2.3. LDS Parameters as Features

Note that the inequality
‖Ak

ax
a
0‖ ≤ ‖Aa‖k2‖xa0‖ (2.41)

is always fulfilled, and thatOnd is defined in such a way that ‖Aa‖2 is always smaller
than one. This means that the sum of squared Euclidean norms applied to the
members of a trajectory sequence always exists, i.e.,

‖TΘa(xa0)‖2 =

∞∑
k=1

‖CaAk
ax

a
0‖2

=
∞∑
k=1

‖Ak
ax

a
0‖2

≤‖xa0‖2
∞∑
k=1

‖Aa‖2k2 <∞

(2.42)

is satisfied. In fact, if we rewrite TΘa(xa0) as a sequence of the scalar elements of its
members, the result will belong to `2, the Hilbert space of quadratically summable
sequences. Moreover, the set

T (Θa) = {TΘa(xa0) | xa0 ∈ Rn} (2.43)

can be interpreted as an n-dimensional subspace of `2. For a, b ∈ {1, 2}, let us
now define the matrix

Φa,b =

∞∑
k=0

Ak>
a C

>
a CbA

k
b . (2.44)

Analogously to Eq. (2.42), this sum always exists so that the canonical inner product
between two trajectory sequences TΘa(xa0), TΘb

(xb0) can be computed as〈
TΘa(xa0), TΘb

(xb0)
〉
`2

=
∞∑
k=0

yak
>ybk

=
∞∑
k=0

xa>0 Ak>
a C

>
a CbA

k
bx

b
0

=xa>0 Φa,bx
b
0.

(2.45)

For two systems Θ1,Θ2 ∈ Ond , the Martin distance is essentially based on a mea-
sure of similarity between the spaces T (Θ1) and T (Θ2). To this end, the normal-
ized squared scalar product

〈TΘ1
(x1

0), TΘ2
(x2

0)〉2`2
〈TΘ1(x1

0), TΘ1(x1
0)〉`2〈TΘ2(x2

0), TΘ2(x2
0)〉`2

=

(
x1>

0 Φ1,2x
2
0

)2(
x1>

0 Φ1,1x1
0

) (
x2>

0 Φ2,2x2
0

) (2.46)

is employed as a similarity measure between the two trajectories TΘ1(x1
0) and

TΘ2(x2
0).

25

2. Mathematical Preliminaries

Consider two orthogonal bases {TΘ1(x1,i
0)}i,...,n and {TΘ2(x2,i

0)}i,...,n such that
the term in Eq. (2.46) is maximized for each pair x1,i

0 ,x2,i
0 . The Martin distance

is computed by summing up the logarithm of the resulting terms. This problem is
solved iteratively. To do so, for each i ∈ {1, . . . , n}, the optimization problem

x̂1,i
0 , x̂2,i

0 = arg max
x1,i

0 ,x2,i
0

(
x1,i>

0 Φ1,2x
2,i
0

)2(
x1,i>

0 Φ1,1x
1,i
0

)(
x2,i>

0 Φ2,2x
2,i
0

) (2.47)

is solved, such that for all j < i, the condition

x1,i>
0 Φ1,1x̂

1,j
0 = 0, x2,i>

0 Φ2,2x̂
2,j
0 = 0, (2.48)

is satisfied. In each iteration i, this yields two basis vectors TΘ1(x1,i
0) and TΘ2(x2,i

0),
such that they are orthogonal to all the previously computed basis vectors of the re-
spective subspaces in `2, and the normalized squared inner product between them
is maximized.

The Martin distance is the sum

dMartin(Θ1,Θ2) = −
n∑
i=1

log

(
x̂1,i>

0 Φ1,2x̂
2,i
0

)2(
x̂1,i>

0 Φ1,1x̂
1,i
0

)(
x̂2,i>

0 Φ2,2x̂
2,i
0

) . (2.49)

In essence, determining Eq. (2.49) for two systems requires the computation of
Φ1,1,Φ1,2,Φ2,2 and solving Eq. (2.47).

The computation of Φa,b, a, b ∈ {1, 2} does not need to be carried out numeri-
cally. Rather, multiplying Φa,b as defined in Eq. (2.44) by A>a from the left and Ab

from the right yields the discrete Sylvester equation [13], i.e.,

A>a Φa,bAb +C>a Cb = Φa,b. (2.50)

Eq. (2.50) can be analytically solved by vectorizing Φa,b, i.e., writing

(Ab ⊗Aa) vec(Φa,b) + vec(C>a Cb) = vec(Φa,b) (2.51)

and reformulating as

vec(Φa,b) = (In2 −Ab ⊗Aa)
−1 vec(C>a Cb). (2.52)

As for Eq. (2.47), it can be solved by fixing za,i = Φ
1/2
a,ax0

a,i, a ∈ {1, 2}. Then, it
can be rewritten as

ẑ1,i, ẑ2,i = arg max
z1,i,z2,i

(
z1,i>Φ

−1/2
1,1 Φ1,2Φ

−1/2
2,2 z2,i

)2

‖z1,i‖2‖z2,i‖2
, (2.53)

26

2.3. LDS Parameters as Features

Algorithm 4 : Computation of the Martin Distance
Input : Systems

Θ1 = (A1,B1,C1, ȳ1) ∈ Ond , Θ2 = (A2,B2,C2, ȳ2) ∈ Ond
1 Compute matrices Φ1,1,Φ1,2,Φ2,2; // Eq. (2.52)

2 Compute singular values σi of Φ
−1/2
1,1 Φ1,2Φ

−1/2
2,2 ;

3 dMartin(Θ1,Θ2)← −2
∑n

i=1 log σi;
Output : Martin distance dMartin(Θ1,Θ2)

while the condition in Eq. (2.48) can be expressed as

z1,i>ẑ1,j = 0, z2,i>ẑ2,j = 0, ∀i > j. (2.54)

This problem is solved by the left and right singular vectors of Φ
−1/2
1,1 Φ1,2Φ

−1/2
2,2 ,

respectively. Eq. (2.49) can thus be rewritten as

dMartin(Θ1,Θ2) = −2
n∑
i=1

log σi, (2.55)

where σi denotes the ith singular value of Φ
−1/2
1,1 Φ1,2Φ

−1/2
2,2 .

While being a basis-invariant dissimilarity measure, the Martin distance has a
disadvantage. As it does not take into account the observation offset ȳ, it tends to
miss essential characteristics of the visual processes.

Maximum Singular Value

Consider again Eq. (2.50). In order to compute the maximum singular value (Max
SV) distance [28], an additional tuning parameter 0 < λ < 1 is introduced as

λA>a Φ̃a,bAb +C>a Cb = Φ̃a,b. (2.56)

Given the solutions for Φ̃1,1, Φ̃1,2, Φ̃2,2, the Max SV distance is defined as

dMaxSV,λ(Θ1,Θ2) = 2

1− ‖Φ̃1,2‖2√
‖Φ̃1,1‖2‖Φ̃2,2‖2

 . (2.57)

It has been previously employed in human action recognition [28]. Note that it has
the same drawback with regards to the observation offset as the Martin distance.

Alignment Distance

The Alignment distance was introduced in [2] and is based on the weighted Frobe-
nius distance of the parametersA,B andC. We define it here in a slightly adapted

27

2. Mathematical Preliminaries

way, by also including the parameter ȳ. For two systems Θ1 and Θ2, we write its
squared form as

d2
align,λA,λB ,λȳ

(Θ1,Θ2) = min
Q∈O(n)

d2
F,λA,λB ,λȳ

(Θ1,Q •Θ2)

= min
Q∈O(n)

‖C1 −C2Q
>‖2F

+ λA‖A1 −QA2Q
>‖2F

+ λB‖B1 −QB2‖2F + λȳ‖ȳ1 − ȳ2‖2.

(2.58)

In order to compute the Alignment distance, it is necessary to find the orthogonal
matrix Q that solves the optimization problem in Eq. (2.58) for Q. This could be
approached by a gradient descent method [1, 2], for instance.

2.4. Semi-linear Ambiguities

Previously, we have discussed ambiguities of models described by Eq. (1.5) with
regards to the latent state space basis. It is important to be aware that these types
of ambiguities carry over to the semi-linear case, when we replace Eq. (1.5b) by
Eq. (1.6b).

Given a function Γ: Rn → Rd and a full-rank matrix P ∈ Rn×n, we write Γ ◦
P−1 to denote a composition of a left-side multiplication by P−1 with Γ. Then,
given a semi-linear system described by Eq. (1.6) with the parameters A,B,Γ, all
parameter tuples in

SSLDS(A,B,Γ) = {(PAP−1,PB,Γ ◦ P−1, ȳ) | P ∈ GL(n)} (2.59)

describe systems following the same statistical laws. This property will prove impor-
tant in defining dissimilarity metrics and designing generative models for semi-linear
systems.

2.5. Kernel Methods

Often, the assumption of a low-dimensional, affine subspace necessary for PCA
to work cannot be upheld. In that case, a remedy could be to find a non-linear
transformation that maps all the data points to a representation which does fulfill
this assumption. Kernel PCA [108] is motivated by this very idea, while having
one important property: It does not require an explicit form of the transformation.
Instead, it suffices to know an explicit way to express the inner product of a pair
of points in the transformed space. Kernels allow us to implicitly map pairs of data
points to a possibly unknown Hilbert space, and to compute an inner product in this
space.

28

2.5. Kernel Methods

Much has been written about the theory of kernels and reproducing kernel Hilbert
spaces [109]. In what follows, the bulk of available theory is omitted and only the
basic insights necessary for kernel PCA and kernelized linear dynamic systems are
discussed.

Hilbert Spaces

While theoretical foundations of Hilbert spaces are not necessarily required for in-
troducing kernel PCA, they can help to establish certain concepts that will come
in handy later on. This section reviews some basic terminology and properties of
Hilbert spaces. First, the notion of separable Hilbert spaces is discussed. After-
wards, matrices in finite-dimensional Euclidean spaces are generalized to possibly
infinite dimensional Hilbert spaces. Finally, Riesz’ representation theorem [33], a
key result about Hilbert spaces is briefly described.

Recall that an inner product 〈·, ·〉V on a real-valued vector space V is a mapping

〈·, ·〉V : V× V→ R, (2.60)

that is bi-linear, symmetric and positive definite. A norm ‖ ·‖V is induced by an inner
product 〈·, ·〉V as

‖ · ‖V : V→ R,

x 7→
√
〈x,x〉V.

(2.61)

A Hilbert space H (over R) is a (real-valued) vector space, equipped with an inner
product 〈·, ·〉H, such that H is complete with regards to the norm ‖ · ‖H induced
by 〈·, ·〉H. That means that every sequence in H that is Cauchy-convergent with
regards to ‖ · ‖H converges to a point in H.

Let {b1, . . . , bN} ∈ H be an orthonormal system in H, i.e.,

〈bi, bj〉H =

{
1 if i = j,

0 otherwise,
∀i, j ∈ {1, . . . , N}. (2.62)

Then, in analogy to Rn, the operator

Πspan{b1,...,bN} : H→ H,

x 7→
N∑
i=1

〈bi,x〉Hbi,
(2.63)

describes an orthogonal projection onto span{b1, . . . , bN}. It is the operation that
maps x to a point in the subspace of H spanned by the orthonormal system
{b1, . . . , bN}, such that the norm ‖ · ‖H of the difference between the point and

29

2. Mathematical Preliminaries

x is minimized. We call a Hilbert space separable, if it possesses a countable
orthonormal basis. This is straight-forward, if the Hilbert space is finite-dimensional.
For an infinite-dimensional Hilbert space, this entails that there exists a sequence
(bi)i∈N in H, such that any finite set of members of the sequence is an orthonormal
system, and for any x ∈ H and any real positive bound ε > 0, an integer N ∈ N
can be found, such that the inequality∥∥x−Πspan{b1,...,bN′}x

∥∥
H < ε (2.64)

holds for all N ′ ≥ N . All Hilbert spaces in this thesis are assumed to be separable.
Let us fix the notation

Hm = H× · · · ×H︸ ︷︷ ︸
m times

(2.65)

for Cartesian products of a space H. To simplify notation, some parts of this thesis
require a notion of Hilbert space matrices as a generalization of matrices in Rm×n.
For this purpose, it is sensible to define a matrix F =

[
f1, . . . ,fm

]
∈ Hm as an m-

dimenstional tuple of vectors in a separable Hilbert space H. We use the notation
(·)i,j for the element in ith row and jth column of a matrix in Rm×n and define
multiplication with a matrix D ∈ Rm×n from the right as

FD =
[∑m

i=1(D)1,ifi · · ·
∑m

i=1(D)n,ifi
]
∈ Hn. (2.66)

For two matrices F ∈ Hm,G ∈ Hn we can also introduce the notion of a matrix
product

F>G =

 〈f1, g1〉H · · · 〈f1, gn〉H
...

. . .
...

〈fm, g1〉H · · · 〈fm, gn〉H

 ∈ Rm×n. (2.67)

In particular, the scalar product between to vectors h1,h2 ∈ H in a Hilbert space
will be also written as

h>1 h2 = 〈h1,h2〉H. (2.68)

Consequently, the Frobenius norm on matrices in Hn, is defined as

‖ · ‖F : Hn → R

F 7→
√

tr(F>F).
(2.69)

One important property of Hilbert spaces is Riesz’ representation theorem [33]
which states that for any linear, bounded functional γ : H→ R from a Hilbert space
H to the space of real numbers, there is a vector h ∈ H such that it can be written
as

γ(x) = h>x, ∀x ∈ H. (2.70)

This property is not of critical importance to this thesis, but it helps to recall it, in
order to understand the functionality of kernel based representation learning.

30

2.5. Kernel Methods

The Kernel Trick

Let us once again consider a matrix Y = [y1, . . . ,yN] of N data points in Rd. This
time, we do not assume that the data points are gathered around an affine sub-
space of Rd. Instead, we act on the assumption that there is a non-linear mapping
φ : Rd → H that maps the data points to a separable Hilbert space H, in which the
transformed data points φ(y1), . . . , φ(yN) do fulfill this property. Then, we could try
to find an affine subspace of H in order to obtain a low-dimensional parameteriza-
tion of the data points. Unfortunately, it is very difficult to find an appropriate function
φ that fulfills the desired properties. However, by employing the kernel trick, it is still
possible to find a low-dimensional parameterization of Y in some Hilbert space,
even when we do not have an explicit expression for φ. All it takes is a kernel. In the
scope of this thesis, we define a kernel as a continuous function

κ : Rd × Rd → R, (2.71)

such that for any N data points y1, . . . ,yN in Rd, the Gram matrix

K =

κ(y1,y1) · · · κ(y1,yN)
...

. . .
...

κ(yN ,y1) · · · κ(yN ,yN)

 (2.72)

is symmetric and positive semi-definite. It can be shown that for every kernel κ :
Rd × Rd → R, there is a mapping φ from Rd to some separable Hilbert space H,
such that it can be expressed as

κ(y1,y2) = 〈φ(y1), φ(y2)〉H (2.73)

for all y1,y2 ∈ Rd. In that case, we call H a kernel feature space and φ a feature
space mapping induced by κ.

It is difficult to say when a kernel corresponds to a feature space mapping that
exhibits the desired property of linearizing the data. However, heuristics based on
properties such as locality suggest a variety of kernels that are in use for all sorts of
applications [18].

We will come back later to the question, what kernels are suitable for problems re-
lated to visual processes. For now, let us disregard the difficulty of finding the proper
kernel, and assume that we have found a κ that meets our demands. The existence
of such a kernel entails a vast improvement for a variety of machine learning tech-
niques that we might want to apply to our data. The reason can be found in Riesz’
representation theorem. Since any linear function can be expressed by means of an
inner product, a linear machine learning algorithm can be enhanced by reformulat-
ing it in terms of inner products and then replacing all inner products by κ. Such a
substitution enables the algorithm to work on a more appropriate representation of
the data, rather than on the data itself.

31

2. Mathematical Preliminaries

Kernel PCA

With the kernel κ that we believe to be an appropriate choice for our data
y1, . . . ,yN ∈ Rd, we write

Φ =
[
φ(y1) · · · φ(yN)

]
∈ HN , (2.74)

where φ : Rd → H denotes a feature space mapping implicitly described by κ.
Remember that an explicit form of Φ usually does not exist. So what we want
is a way to find a PCA-like low-dimensional parameterization of Φ that does not
require an explicit expression for φ. Analogously to standard PCA and Eq. (2.2) and
Eq. (2.3), we are looking for an affine mapping

ϕ 7→ F>(ϕ+ b), (2.75)

with F ∈ Hn, b,ϕ ∈ H, which in combination with some complementary affine
mapping

x 7→ F̃ x+ c, (2.76)

with F̃ ∈ Hn, c ∈ H, minimizes loss

LKPCA(F , F̃ , b, c) =

N∑
i=1

∥∥∥F̃ (F>(φ(yi) + b)) + c− φ(yi)
∥∥∥2

H
. (2.77)

Eq. (2.77) describes the summed squared error between the data representations
φ(yi) and their kernel PCA reconstructions that result from applying Eq. (2.75) and
Eq. (2.76) to them. Like in a finite-dimensional Euclidean vector space, we can
determine that

F̃ F>b+ c = −F̃ F> 1

N

N∑
i=1

φ(yi) +
1

N

N∑
i=1

φ(yi) (2.78)

needs to be satisfied for minimizing Eq. (2.77), by using the arithmetic mean. This
directly yields

b = −c = − 1

N

N∑
i=1

φ(yi) = − 1

N
Φ1N (2.79)

as a solution. Substituting this result into Eq. (2.77) yields

LKPCA

(
F , F̃ ,− 1

N
Φ1N ,

1

N
Φ1N

)
=

N∑
i=1

∥∥∥∥F̃ (F>(φ(yi)−
1

N
Φ1N)) +

1

N
Φ1N − φ(yi)

∥∥∥∥2

H
.

(2.80)

32

2.5. Kernel Methods

Subsequently, let us define

Φc = Φ− 1

N
Φ1N1>N . (2.81)

The n-dimensional subspace of H that we are looking for is contained in the column
space of Φc, which means that we can write F = ΦcR and F̃ = ΦcR̃ withR, R̃ ∈
RN×n. Substituting these definitions into Eq. (2.80) yields

LKPCA

(
ΦcR,ΦcR̃,− 1

N
Φ1N ,

1

N
Φ1N

)
=

N∑
i=1

‖ΦcR̃(R>Φc>(φ(yi)−
1

N
Φ1N)) +

1

N
Φ1N − φ(yi)‖2H

=‖ΦcR̃R>Φc>Φc −Φc‖2F .

(2.82)

Defining the centered Gram matrix

Kc = Φc>Φc (2.83)

allows us to rewrite Eq. (2.82) as

‖ΦcR̃R>Kc −Φc‖2F
= tr(KcRR̃>Φc>ΦcR̃R>Kc − 2Φc>ΦcR̃R>Kc + Φc>Φc)

= tr(KcRR̃>KcR̃R>Kc − 2KcR̃R>Kc +Kc).

(2.84)

Due to symmetry of the centered Gram matrixKc, it has an SVD of the formKc =
UΛU>. Furthermore, let us define

D = U>R̃R>U . (2.85)

We substitute this definition into Eq. (2.84) and obtain finally the optimization prob-
lem

D̂ = arg min
D∈RN×N ,
rank(D)≤n

tr(ΛD>ΛDΛ− 2ΛDΛ). (2.86)

The solution D̂ must be diagonal since off-diagonal elements contribute positively
to the first term, but do not contribute at all to the second term. With this in mind, let
us write the singular values of Kc as λ1, . . . , λn, which yields

D̂ = diag (λ1, . . . , λn, 0, . . . , 0) . (2.87)

We can thus choose

R = R̃ = U(n) diag (λ1, . . . , λn)−1/2 . (2.88)

33

2. Mathematical Preliminaries

Algorithm 5 : Kernel PCA

Input : Data matrix Y ∈ Rd×N , target dimension n ∈ N
1 K ← κ(Y ,Y); // Computing Gram matrix

2 Kc ← (IN − 1
N 11>)K(IN − 1

N 11>); // Centering data
3 U ,Λ,U ← SVD(Kc);

4 R← U(n)Λ
(n)
(n)

−1/2
;

Output : Matrix R

This leads us finally to a reformulation of Eq. (2.75) for computing the kernel PCA
parameterization of an arbitrary feature space representation φ(y) of a data point
y ∈ Rd. We can write it as

F>(φ(y) + b) = R>Φc>
(
φ(y)− 1

N
Φ1N

)
= R>Φ>

(
φ(y)− 1

N
Φ1N

)
.

(2.89)

The second equality holds, because R is obtained from the singular vectors of the
centered gram matrix, and thus 1N lies in the null space of R>.

To avoid clutter, let us introduce an abuse of notation in which κ can be applied
matrix-wise. Given two matrices Y1 ∈ Rd×N1 ,Y2 ∈ Rd×N2 , the element in ith row
and jth column of κ(Y1,Y2) ∈ RN1×N2 is then given by the κ value of ith column
of Y1 and jth column of Y2. Then, we can rewrite Eq. (2.89) as

F>(φ(y) + b) = R>
(
κ(Y ,y)− 1

N
κ(Y ,Y)1N

)
. (2.90)

We eliminated any mentioning of φ or Φ in Eq. (2.90) by replacing it with κ. Thus,
all it takes to compute the KPCA parameterization of a data point y ∈ Rd are the
matrices R and Y .

The matrix R can be computed from

Kc =Φc>Φc

=

(
IN −

1

N
11>N

)
Φ>Φ

(
IN −

1

N
11>N

)
=

(
IN −

1

N
11>N

)
κ(Y ,Y)

(
IN −

1

N
11>N

)
,

(2.91)

implying that we do not need Φ or φ for computing R, either. The procedure is
summarized in Algorithm 5. Once R has been obtained by means of Algorithm 5,
the kernel PCA parameterization of a data point y can be computed by means of

34

2.6. Deep Learning

Eq. (2.90). For the training data Y itself, the kernel PCA representation can be
written as

R>
(
κ(Y ,Y)− 1

N
κ(Y ,Y)1N

)
=R>κ(Y ,Y)

(
IN −

1

N
11>N

)
=Λ

(n)
(n)

1/2
U(n)

>.

(2.92)

2.6. Deep Learning

With the increase in data and hardware resources, deep learning, i.e., the field that
studies neural networks with a considerable number of layers has become some-
what synonymous to all research involving neural nets. Meanwhile, the traditional
definition of a neural network as an alternating composition of learnable affine and
fixed element-wise functions does no longer do justice to the deep learning reality
that has come up with techniques such as pooling [106], dropout [115], batch nor-
malization [57], skip connections [54], and so forth. It would thus go way beyond the
scope to have a comprehensive discussion of how neural networks can be defined
and implemented, as other resources have done a better job on this, e.g. [46]. In-
stead, let us refrain to the following characterization of neural networks that should
be sufficient for our aims. A neural network is a function

fθ : Rd1 → Rd2 (2.93)

that is parameterized by its trainable weights and biases described by θ ∈ RD.
Neural nets are usually trained by some variation of gradient descent.

Apart from providing a strong inductive bias for visual data [82, 121] the success
of deep neural nets is to a large part due to their adaptability to large and diverse
data sets. This is made possible by two aspects of the training process. First, neural
networks are typically compositions of simple functions, such that the gradient can
be easily computed by means of the chain rule (back-propagation). Second, the
loss is defined as an expected value over the data distribution p(y). That is to say,
given a a differentiable, scalar function L : Rd2 → R, the loss can be written as

LE(θ) = Ey∼p(y) [L(fθ(y))] . (2.94)

In practice, the expectation is estimated via the sum over the samples. The loss can
be then optimized via stochastic learning [21], by computing unbiased estimators of
the gradient from a subset of the training samples.

For our task of generalizing the affine mapping described by C, ȳ in Eq. (1.5b)
to a non-linear function, it would be convenient to have a neural network that maps
from the latent representation in Rn to the observation space M. Classically, this
can be achieved using an autoencoder [68]. The term refers to a neural network

35

2. Mathematical Preliminaries

that is trained to copy its input to the output and producing a latent representation
in the process. (Deep) autoencoders can be seen as a generalization of PCA that
results from stripping PCA of the linearity assumption and replacing the affine rep-
resentation and reconstruction functions in Section 2.1 by two neural networks. Let
us denote the functions implemented by the neural networks as Γ+

ϑ : Rd → Rn
that maps high-dimensional data samples to a low-dimensional latent space, and
Γθ : Rn → Rd that serves as the respective reconstruction mapping. Autoencoders
are usually trained by minimizing some form of reconstruction loss LAE, similar to
Eq. (2.77). Given a training data set y1, . . . ,yN , this yields the optimization problem

arg min
θ∈RD,ϑ∈RD̃

N∑
i=1

LAE(Γθ(Γ+
ϑ(yi)),yi). (2.95)

Let us assume the loss LAE in Eq. (2.95) to be the squared `2 error, for simplicity.
Ideally, if M is our observation space, the autoencoder learns a function Γθ such

that its restriction to M is injective with Γ−1
θ = Γ+

ϑ . That would make Γθ an appropri-
ate choice for the observation function in Eq. (1.6b). If we follow the same approach
as in Section 2.1, i.e., framing the task as the prediction problem

min
θ,ϑ,A

N−1∑
t=1

‖yt+1 − Γθ(AΓ+
ϑ(yt))‖2, (2.96)

then we can go about solving the problem by minimizing for all three parameters by
stochastic gradient descent. Unlike to Section 2.1, however, it may not be a great
idea to learn the observation function separetely from the state transition matrix. The
reason is that in the linear case, this step was justified by Eq. (2.22) which states
that for natural images, the approximation C>(Y c)+ ≈ C>(Y c)− holds. This may
not be true for this non-linear case as M is in general not a blurred-out model for the
video frames. The difficulty of learning a visual process model using deep networks
is thus not as much about inferring the parameters Γθ,Γ

+
ϑ ,A, but rather doing so

jointly.

Deep Generative Models

An alternative to autoencoders for learning the model in Eq. (1.6) are deep gen-
erative models. Many of these models, notably the variational autoencoder (VAE)
[66, 37] and the generative adversarial net (GAN) [47], aim at learning an architec-
ture that maps samples from a standard Gaussian distribution to samples that are
distributed in the same way as the training data. This is a helpful prerequisite for
the model in Eq. (1.6), as the latent states x1, . . . ,xN are zero-mean Gaussian-
distributed.

36

2.6. Deep Learning

Larning a neural network Γθ that maps a random variable x ∼ N (x; 0, In) to
a random variable y ∼ p(y), where p(y) denotes some data distribution, is chal-
lenging. One naive approach would be a Monte Carlo based method, in which we
sample Ñ samples x1, . . . ,xÑ ∈ Rn from i.i.d. standard Gaussian noise, trans-
form them via Γθ, and build a kernel density estimator (KDE) [93] model from the
transformed samples, e.g. with isotropic gaussian windows of bandwidth σy. Then,
we could formulate the log-likelihood objective

LMC(θ) =
N∑
i=1

log

 1

Nσd
√

(2π)d
+

Ñ∑
j=1

exp

(
−‖yi − Γθ(xj)‖2

2σ2

) , (2.97)

where y1, . . . ,yN ∈ Rd is the training set. Obviously, the quality of the model will
depend on the number Ñ of Monte Carlo samples. However, it is impossible to
write the loss as a plain sum of both the training and Monte Carlo samples, which
makes it infeasible to apply stochastic learning over x1 . . .xÑ . Thus, realistically,
such a model could only be trained for a very small choice of Ñ which drastically
limits its quality. Therefore, more sophisticated approaches to this problem need to
be considered, which is the subject of the remaining sections in this chapter.

Variational Autoencoders

Consider a latent variable model, described by the real-valued and finite-dimen-
sional parameter θ, in which the observable data variable y ∼ pθ(y) is related
to the latent variable x ∼ N (x; 0, In) through the conditional probability density
pθ(y|x). We assume, that given an observation of x, we can sample from pθ(y|x)
by applying some transformation that is parameterized by θ. For a set of indepen-
dently drawn observations {y1, . . . ,yN}, the log-likelihood with respect to θ can be
written as

log pθ(y1 . . . ,yN) =

N∑
i=1

log pθ(yi). (2.98)

By applying the Bayes rule, the summands in Eq. (2.98) can be rewritten in terms of
the posterior density pθ(x|y) as follows.

log pθ(yi) = log
pθ(x,yi)

pθ(x|yi)
= log pθ(x,yi)− log pθ(x|yi).

(2.99)

Additionally, since yi is not a random variable, applying the expected value to
log pθ(yi) does not affect it, so that we can write

log pθ(yi) =Ex∼pθ(x|yi)[log pθ(yi)]

=Ex∼pθ(x|yi)[log pθ(x,yi)− log pθ(x|yi)].
(2.100)

37

2. Mathematical Preliminaries

yi

N (·; 0, In) · +

gϑ

σx µx

fθ output

Figure 2.2.: VAE architecture during training. Once θ is learned, the data distribution can
be reproduced by sampling from i.i.d. standard Gaussian noise, and transforming the noise
samples via fθ.

Finally, we can decompose pθ(x,yi) once again using the Bayes rule, and rewrite
the term as

log pθ(yi) =Ex∼pθ(x|yi)[log pθ(yi|x) + logp(x)− log pθ(x|yi)]
=Ex∼pθ(x|yi)[log pθ(yi|x)]−DKL (pθ(x|yi)‖p(x)) .

(2.101)

The advantage of Eq. (2.101) is that by sampling from pθ(x|yi), an unbiased estima-
tor of log pθ(yi) can be obtained, which is crucial to performing stochastic optimiza-
tion. Unfortunately, pθ(x|yi) is typically not known. VAEs overcome this problem
via replacing it by a parameterized approximation, denoted by qϑ(x|yi). This yields

Ex∼qϑ(x|yi)[log pθ(yi|x)]−DKL(qϑ(x|yi)‖p(x)). (2.102)

Maximizing the term in Eq. (2.102) leads to the approximate maximization of the
log-likelihood log pθ(yi), if qϑ(x|yi) is similar to pθ(x|yi). This can be enforced by
maximizing Eq. (2.102) not only with respect to θ, but also with respect to ϑ. The
reason is that Eq. (2.102) is equal to the variational lower bound, i.e.,

Ex∼qϑ(x|yi)[log pθ(yi|x)]−DKL(qϑ(x|yi)‖p(x))

= log pθ(yi)−DKL (qϑ(x|yi))‖pθ(x|yi)) ,
(2.103)

and therefore, maximizing Eq. (2.102) w.r.t. ϑ minimizes the KLD between the pos-
terior density pθ(x|yi) and its parameterized approximation qϑ(x|yi).

Fig. 2.2 depicts an overview of the VAE architecture. The VAE implements the
conditional distributions qϑ(x|yi) and pθ(yi|x) by means of the encoder and the de-
coder of an auto-encoder architecture, respectively. The specific definitions of these
conditional distributions are motivated by practical considerations. For pθ(yi|x), we
assume the model

pθ(y|x) = N (x|fθ(x), σ2
yId), (2.104)

38

2.6. Deep Learning

where fθ(x) is implemented by the decoder with the weights θ, and σ2
y is the addi-

tive noise variance to be chosen by hand. The distribution qϑ(x|yi) is modeled as
a covariance-free Gaussian distribution

qϑ(x|yi) = N (x;µx(yi,ϑ),diag(σx(yi,ϑ))2), (2.105)

where the mean µx(yi,ϑ) and the deviation vector σx(yi,ϑ) is computed by ap-
plying the encoder gϑ with weights ϑ to the training samples, i.e.

µx(yi,ϑ) =
[
In 0

]
gϑ(yi) ∈ Rn,

σx(yi,ϑ) =
[
0 In

]
gϑ(yi) ∈ Rn.

(2.106)

That way, by multiplying the variational lower bound in Eq. (2.102) by (−2) and
removing any additive terms not depending on θ,ϑ, we can formulate the VAE loss
as

LVAE(θ,ϑ) =
N∑
i=1

1

σ2
y

Ex∼qϑ(x|yi)
[
‖yi − fθ(x)‖2

]
+ ‖µx(yi,ϑ)‖2

+ 1>n (σx(yi,ϑ)− logσx(yi,ϑ)),

(2.107)

and optimize it via stochastic gradient decent. For each iteration, this is done by
drawing a sample yi from the training data to compute an estimator of the sum,
and subsequently drawing one or several samples from the conditional distribution
qϑ(x|yi) to compute an estimator of the expected value in Eq. (2.107). The latter is
carried out by generating white Gaussian noise, and reparameterizing it by means
of the encoder outputs, µx(yi,ϑ),σx(yi,ϑ).

After successful training, i.e., when the VAE succeeded in modeling the training
data distribution, samples from pθ(y) can be created by generating white Gaussian
noise, applying fθ to it, and adding zero-mean Gaussian noise with variance σy

to the decoder output. This last perturbation step is a consequence of the model
assumption in Eq. (2.104) which requires that the mapping from x to y is perturbed
by additive noise. This is necessary for the loss provided in Eq. (2.107) to be well-
defined.

Generative Adversarial Networks

A GAN consists of two neural networks, namely a discriminator network, denoted
by Dϑ in the following, and a generator network, referred to as Gθ. During training,
the generator takes samples of standard Gaussian noise in Rn and transforms them
into samples in Rd. The discriminator evaluates the resulting samples in Rd and re-
turns a score that indicates how likely the sample was taken from the training set as
opposed to being generated by Gθ. By contrast, the generator aims at producing

39

2. Mathematical Preliminaries

samples that are indistinguishable from training data for the discriminator. To for-
malize this idea as an optimization problem, the discriminator output is interpreted
as the probability

Dϑ(y) = P (y is real) = 1− P (y is generated). (2.108)

The training of θ should be thus carried out in a way such that the likelihood expres-
sion

Ey∼p(y)[logDϑ(y)] + Ex∼N(x;0,Ik)[log(1−Dϑ(Gθ(x)))] (2.109)

is maximized. Likewise, the point of the generator is to produce samples from Gaus-
sian noise that appear real to the discriminator, implying that ϑ should be trained to
minimize

Ex∼N(x;0,Ik)[log(1−Dϑ(Gθ(x)))]. (2.110)

Together, these two aims yield the objective

min
θ

max
ϑ

Ey∼p(y)[logDϑ(y)] + Ex∼N(x;0,Ik)[log(1−Dϑ(Gθ(x)))], (2.111)

as it was formulated originally [47].
The objective in Eq. (2.111) is optimized by alternating between the maximization

for ϑ and minimization for θ. To this end, samples from the training set and the
standard Gaussian distribution are drawn for estimating the respective expectations.

Traditionally, Eq. (2.111) and similar objectives are interpreted as incentives to
minimize a divergence measure between the data and the generated distribution
[47]. Let us denote these distributions by pD and pG, respectively. The output of an
ideal discriminator D̂ that, for a sample y returns the probability that it belongs to
the data distribution and not the generated distribution, can be computed as

D̂(y) =
pD(y)

pD(y) + pG(y)
. (2.112)

Substituting this into Eq. (2.111) yields

Ey∼pD(y)[log D̂(y)] + Ey∼pG(y)[log(1− D̂(y)))]

=DKL

(
pD

∥∥∥pD + pG
2

)
+DKL

(
pG

∥∥∥pD + pG
2

)
− log(4).

(2.113)

The non-constant part DKL (pD‖(pD + pG)/2) +DKL (pG‖(pD + pG)/2) is called
the Jensen-Shannon divergence and is a measure of dissimilarity between pD and
pG that the generator aims to minimize.

40

3. Kernelized Alignment Distances for
Streams of Histograms

A classical problem in visual process research is the classification of observed
video sequences. Deep learning based end-to-end approaches, e.g. [9, 5], typi-
cally achieve state-of-the art performance. Still, they are not always the method of
choice for visual processes, since it may be harder to gather sufficient amounts of
data to train these models, compared to the case of still-image classification. Also,
such approaches cannot be employed in recognition tasks other than classification,
where no prior labeling is given, such as clustering or retrieval.

Many classification frameworks for visual processes have thus refrained to a more
traditional, feature-based approach, in which the video sequences are first pro-
cessed by a feature extraction (FE) procedure that computes expressive descriptors
of the sequences. Subsequently, these features are then subjected to a dissimilarity
measure that can be applied, for instance in the context of k-NN or NCC classifi-
cation. Classically, this can be done by defining a distance measure on computed
LDS models [105, 25] or using multi-scale spatio-temporal decompositions [41, 59]
or sparse representations [98]. Furthermore, a considerable number of approaches
collects features designed for 2D images from a video, by applying them in three
orthogonal planes (TOP) of the video cuboid [133, 56, 10, 88].

A considerable share of the works focussing on dynamic scenes or high-resolution
dynamic textures, such as [86, 87], are based on distribution models of localized
or scale-dependent spatio-temporal descriptors calculated throughout the video in
question. The motivation is to recognize a video sequence as a “sum of its parts”.
A video that exhibits many features describing cars at several spatial and temporal
locations can be then easily recognized as a traffic scene, for example. The com-
puted features typically capture some appearance and dynamics properties. Many
of the aforementioned methods compute spatially and temporally localized 3D fea-
tures and a spatio-temporally global distribution thereof. A noteworthy example is
the Bag of Systems (BoS) [100] that divides the video into small spatio-temporal
cuboids and computes an LDS model from each cuboid. This permits to model the
visual process as a distribution of LDS’s. The approach discussed in the following
is also based on distributions of localized features. However, unlike the methods
mentioned above, it follows the paradigm of Eq. (1.6) that assumes a semi-linear
state space mechanism as a generating model of the visual process. Distribution
based spatial features are computed for each video frame individually, while pre-

41

3. Kernelized Alignment Distances for Streams of Histograms

Θ1,Θ2,Θ3,. . .
. . .

Θ

Figure 3.1.: Bag of Systems vs. System of Bags: While a BoS describes the video as a
global distribution of spatially and temporally localized systems Θ1,Θ2, . . . , a SoB describes
the video as a temporally localized but spatially global distribution of features, that changes
over time according to one single system Θ.

serving their temporal order. The resulting model is referred to as a System of Bags
(SoB) in the following, as it consists of a system that models the temporal evolution
of distributions (bags). Figure 3.1 illustrates the difference between BoS and SoB.

One may assume that ditching 3D spatio-temporal features in favor of purely spa-
tial ones make the descriptors less distinguishable, but this depends on the type of
visual process in question. For example, when it comes to dynamic scenes, our
everyday experience indicates that we can tell them apart by observing isolated
frames. That means that it can make sense to rely on FE methods for still images
which have become impressively efficient over the course of the last two decades,
and integrate them into a temporal model to provide complementary information that
cannot be captured from one single frame. This information should tell us some-
thing about how the image frames of a visual process evolve as a whole, e.g. due
to changing weather conditions in an outdoor scene, rather than about localized
movements that are semantically irrelevant.

The term bag refers to the Bag of Words (BoW) model that has originated in doc-
ument classification [52] and has since been generalized to the field of computer
vision [42]. Simply put, the idea is to collect localized features, e.g. via the SIFT
algorithm [77] from a set of images, construct a so-called Codebook of these fea-
tures, and build image descriptors by means of histograms that indicate how often
the Codebook features are contained in the image at hand. BoWs are not the only
type of histogram descriptors in still image processing. Textures, for instance, can

42

be well described by local binary patterns (LBP) [90]. Using these types of descrip-
tors as the observation vectors in a visual process requires to learn a model of the
temporal evolution of histograms. Since sets of histograms cannot be well modeled
by subspaces of Rd due to their norm constraints, this is done in a kernel feature
space in what follows. The dynamic model employed for it is the Kernelized LDS
[26]. Once a KLDS model has been learned for each video of a data set, the visual
processes can be classified by means of the extracted KLDS parameters. Modeling
streams of histograms by a KLDS in order to perform classification has been first
proposed in [28]. The contribution of this chapter is thus not the introduction of this
type of model itself. Rather, the following sections propose approaches to efficiently
adapt and apply this type of model to the problem of dynamic scene and dynamic
texture classification. It puts its emphasis on employing the Alignment distance for
classification purposes, once the KLDS features have been computed. More specif-
ically, the contributions of this chapter are the following.

• Since the Alignment distance has previously not been applied in the context
of KLDS’s, a kernelized version of the Alignment distance is derived. Addition-
ally, rather than using the original definition from [2], the Alignment distance
is used as it is defined in Section 2.3, allowing for better capturing the static
aspects of the visual processes.

• For NCC classification, Fréchet means of KLDS’s are computed. The method
is based on [2], but the computation is done in the kernel feature space. This
requires some adaptations. Notably, kernelization causes issues with scala-
bility which are mitigated by an approach inspired by Nyström interpolation
[40].

• Some important properties of the Alignment distance are revisited. Specifi-
cally, it is explained why the square root of the Alignment distance is a metric
on the quotient space QOnd of statistically equivalent LDS’s as well as on its
kernelized counterpart. This has interesting implications on how to theoreti-
cally justify NCC classifications using Fréchet means. This claim was made
before in [3], but, to the author’s best knowledge, never explicitly derived.

• Unlike [28] that discuses human action recognition, the work conducted in this
chapter focuses on dynamic textures and dynamic scenes in the experimental
section. The type of features collected from the videos need to be different
from the optical flow based descriptors used in [28]. Particularly, dynamic
scenes require a richer type of descriptors. For dynamic scenes, bags of
visual features extracted via the SURF algorithm [14] are employed. Dynamic
textures are described by means of LBPs. [124].

Experimentally, these contributions are validated by two observations. On the one
hand, it is shown that, given the KLDS parameters describing a set of SoBs, the

43

3. Kernelized Alignment Distances for Streams of Histograms

kernelized version of the Alignment distance yields better classification results than
the common choices for divergence measures on KLDS’s. Beyond that, it is demon-
strated that by choosing the right histogram features for the video frames of a visual
process, an SoB can outperform comparable, non-deep learning state-of-the-art
methods of k-NN and NCC classification of dynamic textures and dynamic scenes.

3.1. Systems of Bags

Often, the observations y1,y2, · · · ∈ Rd produced by a visual process are RGB or
grayscale image frames with d1 rows, d2 columns and c color channels that have
been flattened to vectors of dimension d = d1d2c. However, this does not always
have to be the case. If temporally localized dynamics are irrelevant for the recogni-
tion of a visual process, then it may be more sensible to convert the image frames to
feature representations that are known to perform well under distance based recog-
nition tasks. That may cause some loss of certain irrelevant information such as
small-scale movements of objects in the video, but emphasizes important informa-
tion such as the kinds of objects that are present in the video.

For many successful still images classification approaches, the employed FE tech-
nique results in a set of histograms [49, 31, 90, 42]. In this chapter, it will be assumed
that the matrix

Y = [y1, . . . ,yN] ∈ Rd×N (3.1)

contains N histograms obtained this way from a video sequence. Each one of
these histograms should be a good descriptor of the video frame from which it was
computed. In order to combine all these histograms individually as well as their
temporal evolution into a strong descriptor of the overall video, a model is required
that could explain how the columns of Y came to be.

Kernelized Linear Dynamic Systems

A histogram is a vector in Rd with non-negative entries that sum up to one. Let us
use the notation (·)i for ith element of a vector. The observation vectors of the visual
process at hand are thus constrained to the set

M = {y ∈ Rd | (y)i ≥ 0 ∀i ∈ {1, . . . , d}, ‖y‖1 = 1}. (3.2)

It is not promising to model trajectories in M by an LDS, simply because it looks
nothing like an affine subspace of Rd. However, kernels have come a long way in
machine learning problems involving histograms and other distribution based de-
scriptors [104, 94, 12, 60]. Some argue that kernels achieve their performance by
linearizing the data in the kernel feature space [82]. If this is the case, then we can
hope to find a proper kernel that allows us to map y1, . . . ,yN to an appropriate
feature space, where the affine subspace assumption is no longer out of question.

44

3.1. Systems of Bags

Algorithm 6 : Kernelized linear dynamic system

Input : Video Sequence Y ∈ Rd×N , target dimension n ∈ N
1 K ← κ(Y ,Y); // Computing Gram matrix

2 Kc ← (IN − 1
N 11>)K(IN − 1

N 11>); // Centering data
3 U ,Λ,U ← SVD(Kc);

4 R← U(n)Λ
(n)
(n)

−1/2
;

5
[
x1 · · · xN

]
← Λ

(n)
(n)

1/2
U>(n) ; // Latent space states

6 A← arg minÃ s.t. ‖Ã‖2<1

∑N−1
i=1 ‖xt+1 − Ãxt‖2 ; // State

transition matrix

7 B ← 1√
N−1

(
∑N−1

i=1 (xt+1 −Axt)(xt+1 −Axt)>)
1
2 ; // Noise

covariance transform
8 β ← 1

N 1N ; // Needed to express ϕ̄
Output : LDS parameters A,B,R,β,Y

Consider the semi-linear state space model of a visual process that was intro-
duced first in Eq. (1.6). Recall that Eq. (1.6a) describes a VAR noise model. Let
H be a separable Hilbert space and the function φ : Rd → H a mapping from Rd
to said space. Furthermore, let ϕ̄ ∈ H,Φ ∈ Hn be defined. Let us also make
the simplifying assumption that the restriction of φ to M is bijective. Although this
assumption does not generally hold, it is a justifiable approximation for practically
relevant observation spaces and appropriately chosen kernels [85]. By making this
assumption, we can express the observation function Γ as

Γ : Rn → Rd,
x 7→ φ−1(ϕ̄+ Φx),

(3.3)

where the matrix-vector multiplication is understood in the sense of Section 2.5. If
we do not have an explicit representation of φ, but can only describe it implicitly
by means of a kernel κ, we call the model in Eq. (3.3) a kernelized linear dynamic
system (KLDS). In other words, a KLDS follows a linear dynamic in H described by

xt+1 =Axt +Bvt, (3.4a)

ht =ϕ̄+ Φxt, (3.4b)

such that ht = φ(yt) holds for the observations y1,y2 . . . This concept was first
proposed in [26], along with an algorithm based on kernel PCA to extract the param-
eters describing a KLDS from a video Y of a visual process. Algorithm 6 summa-
rizes that procedure. Note the difference to Algorithm 2 with regards to the output.
Unlike Algorithm 6, Algorithm 2 returns C and ȳ, along with A,B. Now, the cor-
responding parameters Φ, ϕ̄ live in Hilbert spaces which we cannot describe in an

45

3. Kernelized Alignment Distances for Streams of Histograms

explicit manner. This is the reason why these parameters cannot be directly returned
by the algorithm. However, any inner product expression containing these two pa-
rameters can be represented by means of κ and the parametersR,β and Y which
are thus returned instead. This also means that we have no way to directly compute
the observation function Γ, making it impossible to carry out video synthesis in such
a straightforward manner as it is done in the linear case in Section 2.2.

KLDS features

Taking into account the state space basis invariance we have discussed in the pre-
vious chapter, we can introduce the KLDS set Knd and an equivalence relation Rnd ,
in analogy to Ond in Eq. (2.35) and Qnd (Eq. (2.36)) in Section 2.1. Let us define Knd
as

Knd = {(A,B,R,β,Y) ∈ Rn×n × Rn×n × RN×n × RN × Rd×N

| N ∈ N, ‖A‖2 < 1, R>κ(Y ,Y)R = In}.
(3.5)

The equality R>κ(Y ,Y)R = In states that Knd contains KLDS’s for which the
feature space observation matrix Φ ∈ Hn has orthonormal columns. As the next
step, let us introduce the notation

Q • (A,B,R,β,Y) = (QAQ>,QB,RQ>,β,Y), (3.6)

for Q ∈ O(n). The according equivalence relation that, in analogy to Eq. (2.36),
denotes all pairs of KLDS’s with equivalent statistical properties is given by

Rnd = {(Ξ1,Ξ2) ∈ Knd ×Knd | ∃Q ∈ O(n) s.t. Ξ1 = Q • Ξ2}. (3.7)

These definitions lead up to the quotient set

RKnd = {{Q • Ξ |Q ∈ O(n)} | Ξ ∈ Knd} , (3.8)

which generalizes QOnd from Chapter 2.

3.2. The Alignment Distance on KLDS’s

Both the Martin distance and the Max SV distance on pairs of LDS’s can be general-
ized to KLDS’s [26, 28]. However, the dissimilarity of our choice will be the Alignment
distance here. The reason is that it permits us to decide how much each system pa-
rameter should contribute to the classification process. This is an advantage in the
setting at hand, as it may be considerably more important to characterize the set
of histograms generated by the visual process than how these histograms develop
over time. That is to say, the parameters R and β may be more expressive than A

46

3.2. The Alignment Distance on KLDS’s

orB. Unlike the Alignment distance, neither Max SV nor the Martin distance allows
for such prioritization, and neglect entirely the β parameter.

After defining the Alignment distance for pairs of KLDS’s, this section shows how
to derive a closed-form expression of it, using the KLDS parameters obtained by
Algorithm 6. It proceeds then to discuss its property as a metric on RKnd . Compu-
tation using a Jacobi algorithm and the convergence behavior of this algorithm are
also covered.

Derivation

Consider two KLDS’s

Ξ1 = (A1,B1,R1,β1,Y1), Ξ2 = (A2,B2,R2,β2,Y2). (3.9)

Using the form in Eq. (3.4) and denoting the according kernel feature space terms
of Ξ1,Ξ2 by ϕ̄1,Φ1 and ϕ̄2,Φ2, respectively, we can derive the Alignment distance
for KLDS’s by simply replacing the norms in Rd by their respective H counterpart.
Eq. (2.58) then becomes

d2
align,λA,λB ,λϕ̄

(Ξ1,Ξ2) = min
Q∈O(n)

‖Φ1 −Φ2Q
>‖2F

+ λA‖A1 −QA2Q
>‖2F

+ λB‖B1 −QB2‖2F
+ λϕ̄‖ϕ̄1 − ϕ̄2‖2H.

(3.10)

Multiplying out norms yields the expression

d2
align,λA,λB ,λϕ̄

(Ξ1,Ξ2)

= min
Q∈O(n)

‖Φ1‖2F − 2 tr(Φ>1 Φ2Q
>) + ‖Φ2‖2F

+ λA

(
‖A1‖2F − 2 tr

(
A>1 QA2Q

>
)

+ ‖A2‖2F
)

+ λB

(
‖B1‖2F − 2 tr(B>1 QB2) + ‖B2‖2F

)
+ λϕ̄

(
‖ϕ̄1‖2H − 2ϕ̄>1 ϕ̄2 + ‖ϕ̄2‖2H

)
.

(3.11)

By defining the two functions

τλA,λB ,λϕ̄(Ξ1,Ξ2) = tr(Φ>1 Φ1 + Φ>2 Φ2)

+ λA(‖A1‖2F + ‖A2‖2F) + λB(‖B1‖2F + ‖B2‖2F)

+ λϕ̄(ϕ̄>1 ϕ̄1 − 2ϕ̄>1 ϕ̄2 + ϕ̄>2 ϕ̄2),

(3.12)

and

ρλA,λB(Ξ1,Ξ2) = tr(Φ>1 Φ2) + λA tr(A>1 A2) + λB tr(B>1 B2), (3.13)

47

3. Kernelized Alignment Distances for Streams of Histograms

while writing the Frobenius norms in H as trace products, Eq. (3.11) can be rewritten
as

d2
align,λA,λB ,λϕ̄

(Ξ1,Ξ2) =τλA,λB ,λϕ̄(Ξ1,Ξ2)

− 2 max
Q∈O(n)

ρλA,λB(Ξ1,Q • Ξ2).
(3.14)

Using the kernel trick, the substitutions Φ>a Φb = R>a κ(Ya,Yb)Rb and ϕ̄>a ϕ̄b =
β>a κ(Ya,Yb)βb for every a, b ∈ {1, 2} can be made. This yields

τλA,λB ,λϕ̄(Ξ1,Ξ2) =2n+ λA(‖A1‖2F + ‖A2‖2F)

+ λB(‖B1‖2F + ‖B2‖2F) + λϕ̄β
>
1 κ(Y1,Y1)β1

− 2λϕ̄β
>
1 κ(Y1,Y2)β2 + λϕ̄β

>
2 κ(Y2,Y2)β2,

(3.15)

and finally,

ρλA,λB(Ξ1,Ξ2) = tr(R>1 κ(Y1,Y2)R2) + λA tr(A>1 A2)

+ λB tr(B>1 B2).
(3.16)

Note that the unknown feature space terms Φ1,Φ2, ϕ̄1, ϕ̄2 are absent from
Eq. (3.15) and Eq. (3.16). They are replaced by the known expressions
R1,R2,β1,β2,Y1,Y2. That way, Eq. (3.14) can be expressed entirely in terms of
the KLDS parameters A,B,Y ,R,β. Eq. (3.14) will be the preferred way to write
the Alignment distance on pairs of KLDS’s in the following.

Metric Property

The Alignment distance, dalign,λA,λB ,λϕ̄ , i.e., the square root of Eq. (3.14) is a metric
on RKnd , if the weights λA, λB, λϕ̄ > 0 are all strictly positive. To verify this, its
positive definiteness, its symmetry, as well as the triangle equality need to be shown,
which is done in the following.

• The Alignment distance is positive definite, if all weights are strictly positive,
i.e.,

dalign,λA,λB ,λϕ̄(Ξ1,Ξ2) ≥ 0, (3.17)

with equality being attained, iff there is a matrix Q ∈ O(n) such that

Ξ1 = Q • Ξ2 (3.18)

holds. Eq. (3.17) is obvious, as all terms in Eq. (3.10) are squared norms.
It is also easy to see that the Alignment distance vanishes, if the two sys-
tems Ξ1 and Ξ2 belong to the same equivalence class with respect to

48

3.2. The Alignment Distance on KLDS’s

Eq. (3.7). The opposite implication is also true: If there is no Q ∈ O(n),
such that each parameter of Ξ1 and Q • Ξ2 is equal, then at least one of
the norms in the weighted sum of Eq. (3.10) is strictly positive, and so is
dalign,λA,λB ,λϕ̄(Ξ1,Ξ2).

• Symmetry, i.e., the property

dalign,λA,λB ,λϕ̄(Ξ1,Ξ2) = dalign,λA,λB ,λϕ̄(Ξ2,Ξ1) (3.19)

is easily shown by observing the form in Eq. (3.14). The first term consisting
of the function τλA,λB ,λϕ̄(Ξ1,Ξ2) as defined in Eq. (3.15) is obviously sym-
metric. Furthermore, we can derive the equality

ρλA,λB(Ξ1,Q • Ξ2) =λA tr(A>1 QA2Q
>) + λB tr(B>1 QB2)

+ tr(R>1 κ(Y1,Y2)R2Q
>)

=λA tr(A>2 Q
>A1Q) + λB tr(B>2 Q

>B1)

+ tr(R>2 κ(Y2,Y1)R1Q)

=ρλA,λB(Ξ2,Q
> • Ξ1)

(3.20)

by using invariance properties of the trace function. If Q is a matrix in O(n),
so is Q> and thus the equality

max
Q∈O(n)

ρλA,λB(Ξ2,Q
> • Ξ1) = max

Q∈O(n)
ρλA,λB(Ξ2,Q • Ξ1) (3.21)

holds, which implies the equation

max
Q∈O(n)

ρλA,λB(Ξ1,Q • Ξ2) = max
Q∈O(n)

ρλA,λB(Ξ2,Q • Ξ1). (3.22)

Hence, the second term in Eq. (3.14), is also symmetric.

• The triangle inequality can be directly inferred from the fact that

dF,λA,λB ,λϕ̄(Ξ1,Ξ2) =
√
τλA,λB ,λϕ̄(Ξ1,Ξ2)− 2ρλA,λB(Ξ1,Ξ2) (3.23)

is a metric onKnd and as such abides the triangle inequality. Let Ξ1,Ξ2 and Ξ3

be three systems andQ1,2,Q2,3 be the two orthogonal matrices that minimize
Eq. (3.10) for the pairs Ξ1,Ξ2 and Ξ2,Ξ3, respectively. Then, we can deduct

dalign,λA,λB ,λϕ̄(Ξ1,Ξ2) + dalign,λA,λB ,λϕ̄(Ξ2,Ξ3)

=dF,λA,λB ,λϕ̄(Ξ1,Q1,2 • Ξ2) + dF,λA,λB ,λϕ̄(Ξ2,Q2,3 • Ξ3).
(3.24)

From the properties of the trace function, it should become apparent that

ρλA,λB(Ξ1,Q • Ξ2) = ρλA,λB(Q> • Ξ1,Ξ2) (3.25)

49

3. Kernelized Alignment Distances for Streams of Histograms

holds for any Q ∈ O(n). Thus, we can rewrite Eq. (3.24) as

dalign,λA,λB ,λϕ̄(Ξ1,Ξ2) + dalign,λA,λB ,λϕ̄(Ξ2,Ξ3)

=dF,λA,λB ,λϕ̄(Q>1,2 • Ξ1,Ξ2) + dF,λA,λB ,λϕ̄(Ξ2,Q2,3 • Ξ3).
(3.26)

Due to the triangle inequality of dF,λA,λB ,λϕ̄ , we can also conclude

dalign,λA,λB ,λϕ̄(Ξ1,Ξ2) + dalign,λA,λB ,λϕ̄(Ξ2,Ξ3)

≥dF,λA,λB ,λϕ̄(Q>1,2 • Ξ1,Q2,3 • Ξ3)

=dF,λA,λB ,λϕ̄(Ξ1,Q1,2Q2,3 • Ξ3).

(3.27)

Since Q1,2Q2,3 is an orthogonal matrix, dalign,λA,λB ,λϕ̄(Ξ1,Ξ3) is a lower
bound for dF,λA,λB ,λϕ̄(Ξ1,Q1,2Q2,3 • Ξ3) by definition, which implies

dalign,λA,λB ,λϕ̄(Ξ1,Ξ2) + dalign,λA,λB ,λϕ̄(Ξ2,Ξ3)

≥dalign,λA,λB ,λϕ̄(Ξ1,Ξ3).
(3.28)

The LDS version of the Alignment distance in Eq. (2.58) is also a metric on QOnd ,
since the scalar product in Rd is also a kernel.

Computation

Although it is possible to calculate the Alignment distances of two LDS’s by a sim-
ple gradient descent method on O(n) as demonstrated in [2], the authors of [61]
observe empirically that a coordinate-descent algorithm yields better convergence
properties. The algorithm they propose is adapted for the case of KLDS’s and de-
scribed in the following. Additionally, one simple modification is made: In the version
described in [61], the algorithm divides the optimization problem over O(n) into sub-
problems by considering each two-dimensional sub-plane of Rn individually. The
sub-planes are chosen following an ascending order of the indexes. In the version
presented here, the coordinates are randomly permuted for each iteration. That way,
it is easier to show that the algorithm converges to a set of critical points.

An important concept the algorithm builds upon is the Givens rotation. The term
refers to a matrixGk,l(c, s) that performs a rotation in the plane spanned by the kth
and lth coordinates. The parameters c = cos(α), s = sin(α) describe the cosine

50

3.2. The Alignment Distance on KLDS’s

and sine of a rotation angle α, respectively. It has the form

Gk,l(c, s) =



. . .
1

c s
1

. . .
1

−s c
1

. . .


. (3.29)

The set O(n) of n× n-dimensional, orthogonal matrices contains two connected
components, the special orthogonal group of rotations in Rn containing orthogonal
matrices with a positive determinant, denoted by SO(n), and the remainder O(n) \
SO(n) containing orthogonal matrices with a negative determinant. In the following,
we exploit the fact that any rotation matrix Q ∈ SO(n) can be written as a product
of Givens rotations. In fact, the aforementioned sets can be written as

SO(n) =


∏

k∈{1,...,n−1},
l∈{k+1,...,n}

Gk,l(ck,l, sk,l)

∣∣∣∣∣ c2
k,l + s2

k,l = 1 ∀ k, l

 , (3.30)

and
O(n)\ SO(n) = {Q diag (−1, 1, . . . , 1) |Q ∈ SO(n)} , (3.31)

respectively. This allows us to optimize over SO(n) and O(n) \ SO(n) by factor-
izing rotation matrices into their Givens factors, and then optimizing for each factor
individually. Specifically, solving the optimization problem of Eq. (3.14),

max
Q∈O(n)

ρλA,λB (Ξ1,Q • Ξ2) , (3.32)

is more difficult than doing so after restricting the feasible set to Givens rotations for
one particular coordinate pair k, l, i.e.,

max
c,s

s.t. c2+s2

ρλA,λB (Ξ1,Gk,l(c, s) • Ξ2) , (3.33)

because Eq. (3.33) can be solved in closed form, as outlined in the following. Using
some coefficients k0, . . . , k5 ∈ R, the function in Eq. (3.33) can be rewritten as a
bi-quadratic function in c and s, i.e.,

ρλA,λB (Ξ1,Gk,l(c, s) • Ξ2) = k0c
2 + k1cs+ k2s

2 + k3c+ k4s+ k5. (3.34)

51

3. Kernelized Alignment Distances for Streams of Histograms

See Appendix A.1 for a derivation. Since s and c are constrained to be the sin and
cos of an angle, the equality

s2 + c2 = 1 (3.35)

holds. Therefore we can reformulate Eq. (3.34) as a function of c ∈ [−1, 1], i.e.,

h(c) = k0c
2 ± k1c

√
1− c2 + k2(1− c2) + k3c± k4

√
1− c2 + k5. (3.36)

The expression in Eq. (3.36) can be optimized for c by computing its derivative and
locating the zeros of the result. This can be done by solving the quartic equation

−4((k0 − k2)2 + k2
1)c4 − 4(k3(k0 − k2) + k1k4)c3

+(4(k0 − k2)2 + 4k2
1 − k2

3 − k2
4)c2 + 2(2k3(k0 − k2) + k1k4)c

+(k2
3 − k2

1) = 0.

(3.37)

Appendix A.2 provides a derivation of Eq. (3.37).
The quartic polynomial in Eq. (3.37) can have up to four roots c1, c2, c3, c4 in the

interval of interest [−1, 1] that can be determined using closed-form expressions.
This yields up to eight solution candidates for Eq. (3.33), namely

ĉ = c1, ŝ =
√

1− c2
1, ĉ = c1, ŝ = −

√
1− c2

1,

ĉ = c2, ŝ =
√

1− c2
2, ĉ = c2, ŝ = −

√
1− c2

2,

ĉ = c3, ŝ =
√

1− c2
3, ĉ = c3, ŝ = −

√
1− c2

3,

ĉ = c4, ŝ =
√

1− c2
4, ĉ = c4, ŝ = −

√
1− c2

4.

(3.38)

Additionally, there is also the possibility that the maximum of h(c) in [−1, 1] is on
one of the two boundaries of the feasible interval. It is thus also possible that it is
maximized by

ĉ = −1, ŝ = 0 (3.39)

or
ĉ = 1, ŝ = 0. (3.40)

In order to solve the optimization problem Eq. (3.33), the feasible candidate pair ĉ, ŝ
that maximizes h(c) is chosen.

Being able to optimize Eq. (3.34) enables us to formulate the procedure in Al-
gorithm 7 to solve the overall problem Eq. (3.32). In each iteration, the algorithm
sweeps through all possible coordinate pairs k, l to find a Givens factorization that
maximizes the objective function coordinate wise.

52

3.2. The Alignment Distance on KLDS’s

Algorithm 7 : Coordinate descent algorithm for solving Eq. (3.32)
Input : Systems

Ξ1 = (A1,B1,R1,β1,Y1) ∈ Knd , Ξ2 = (A2,B2,R2,β2,Y2) ∈ Knd
1 Initialize Q+ ∈ SO(n);

2 while ρλA,λB
(

Ξ1, Ξ̃2

)
not converged do

3 for random k ∈ {1, . . . , n− 1} do
4 for random l ∈ {k, . . . , n} do
5 Ξ̃2 ← Q+ • Ξ2;
6 Compute k0, . . . , k4 in Eq. (3.34) for ρλA,λB(Ξ1,Q+ • Ξ̃2);
7 Generate c, s candidates via Eq. (3.37)-Eq. (3.40);
8 ĉ, ŝ← arg max(c,s) k0c

2 + k1cs+ k2s
2 + k3c+ k4s+ k5;

9 Q+ ← Gk,l(ĉ, ŝ)Q+;

10 end
11 end
12 end
13 Initialize Q− ∈ O(n)\SO(n);
14 Repeat while loop for Q−;
15 Q̂← arg maxQ∈{Q+,Q−} ρλA,λB (Ξ1,Q • Ξ2);

Output : Q̂

Convergence

As the problem in Eq. (3.14) is non-convex, it is difficult to provide global conver-
gence guarantees. However, it is possible to show that any solution Q̂ returned by
Algorithm 7 will almost certainly be (close to a) critical point of the objective function.
This is stated in the following theorem.

Theorem 1. Let (Q(i))i∈N be the sequence of orthogonal matrices generated by
the while loop in Algorithm 7. It is bounded with respect to the Frobenius norm and
thus has at least one accumulation point. Furthermore, every accumulation point of
the sequence is almost certainly a critical point of the smooth objective function

Lalign(Q) = ρλA,λB(Ξ1,Q • Ξ2). (3.41)

Proof. See Appendix A.3.

Theorem 1 essentially states that, no matter the initialization of Algorithm 7,
(Q(i))i∈N converges (almost certainly) to a set of critical points. In other words,
if we denote the set containing the critical points of Lalign by C, the sequence

53

3. Kernelized Alignment Distances for Streams of Histograms

minQ∈C ‖Q(i) − Q‖F will tend towards 0. If this was not the case, this sequence
would have a subsequence with all elements being larger than a certain lower bound
ε > 0, which is not possible since every subsequence of Q(i) has an accumulation
point that is (almost certainly) a critical point.

Theoretically, this critical point could be a saddle point, but it is much more likely to
be a (local) maximum of the objective function, as saddle points tend to be unstable.

3.3. Averages of KLDS Sets

Fréchet Means

Certain problems, such as clustering or classification of data points rely on the com-
putation of arithmetic means from data sets. In the case of KLDS’s, this is generally
not possible since the setKnd is not a vector space. An alternative approach is to find
an appropriate generalization of arithmetic means to finite subsets of Knd . Fréchet
means generalize arithmetic means to any set S equipped with a distance function
dS(·, ·). The Fréchet mean s̄ of a finite subset {s1, . . . , sK} of S is defined as the
minimizer of the sum of squared distances to s1, . . . , sK , i.e.,

s̄ = arg min
s∈S

K∑
i=1

d2
S(s, si). (3.42)

The Fréchet mean is not only a sensible definition for sets that do not have the
additivity structure of vector spaces, but also a suitable choice for representative
points in classification scenarios. This is in particular true, if d is a metric on S. To
see why this is the case, consider the situation where we have a test point stest, and
we want to measure its proximity to the set containing s1, . . . , sK . The aim is to
assess if it belongs to the same semantic class as s1, . . . , sK . This could be done
by 1-NN, where the distance to the set is determined by the point si, i ∈ {1, . . . ,K}
closest to stest. If we want to avoid storing the entire training data set in memory, we
could refrain to NCC classification by choosing a representative point srep for each
class. This point is then stored instead of all the samples contained in the respective
class. If dS is a metric, then the triangle inequality yields

dS(stest, srep)− dS(srep, si) ≤ dS(stest, si)

≤ dS(stest, srep) + dS(srep, si),
(3.43)

such that a small value for dS(srep, si) for any possible i implies that dS(stest, srep)
is always a good approximation for dS(stest, si). This motivates choosing srep = s̄
according to Eq. (3.42), because it minimizes dS(srep, si) for all i in the sense of
the mean squared error. The motivation is visualized in Figure 3.2.

54

3.3. Averages of KLDS Sets

s5

s3

s1

s7

s6

s2

stest

srep

Figure 3.2.: Motivation for using Fréchet means: For a set of reference points (black), the
representative point (red) should be chosen such that it its distance to each one of them (dot-
ted) is small. Then, the distance of a test point (blue) to the representative point (continuous)
differs little from its distance to any of the reference points represented by the representative
point (dashed).

Computation

In [2], an alternating algorithm is presented that approximates the Fréchet means
of LDS sets with respect to the Alignment distance by averaging each parameter
in every iteration. We cannot directly apply the procedure to KLDS’s without fur-
ther adaptation, since the Fréchet means for the Y , R and β parameters cannot
be computed by simple arithmetic averaging. The following discussion is thus not
just a revision of the original algorithm in [2], but a generalization of the procedure
to KLDS’s. Remarkably, this generalization takes care of the scalability problems
caused by the fact that kernel-based machine learning techniques often require the
entire training data set for computing representations in the kernel feature space.

Consider a finite set {Ξi}i∈{1,...,K} of which the Fréchet mean Ξ̄ =
(Ā, B̄, R̄, β̄, Ȳ) can be written as

Ξ̄ = arg min
Ξ∈Kn

d

g(Ξ) (3.44)

with

g(Ξ) =
K∑
i=1

d2
align,λA,λB ,λϕ̄

(Ξ,Ξi)

=

K∑
i=1

d2
F,λA,λB ,λϕ̄

(Ξ,Qi • Ξi),

(3.45)

where Qi is the orthogonal matrix that minimizes dF,λA,λB ,λϕ̄(Ξ,Q • Ξi) for each
i ∈ {1, . . . ,K}.

55

3. Kernelized Alignment Distances for Streams of Histograms

The alternating algorithm works as follows. In each iteration, the Fréchet mean
of {Qi • Ξi}i∈{1,...,K} with respect to dF,λA,λB ,λϕ̄ is determined, and the re-
sults are used to compute the Alignment distances of the current estimation of Ξ̄
to the systems Ξ1, . . . ,ΞK , yielding new estimations for the orthogonal matrices
Q1, . . . ,QK . These two steps are repeated, until g(Ξ) is no longer significantly
decreased.

Computing the Fréchet mean with regards to dF,λA,λB ,λϕ̄ can be performed for
the parameters A and B, separately, as described in [2]. For the latter, it can be
carried out by simply computing

B̄ = arg min
B

g((A,B,R,β,Y))

= arg min
B

K∑
i=1

d2
F,λA,λB ,λϕ̄

((A,B,R,β,Y),Qi • Ξi)

= arg min
B

K∑
i=1

‖B −QiBi‖2F

=
1

K

N∑
i=1

QiBi.

(3.46)

Likewise, the arithmetic average (and thus the Fréchet mean) for A is given by

Ā = arg min
A

g((A,B,R,β,Y))

= arg min
A

K∑
i=1

d2
F,λA,λB ,λϕ̄

((A,B,R,β,Y),Qi • Ξi)

= arg min
A

K∑
i=1

‖A−QiAiQ
>
i ‖2F

=
1

K

N∑
i=1

QiAiQ
>
i .

(3.47)

By definition, any state transition matrix of a KLDS in Kdn has a spectral radius
smaller than 1. Due to the triangle inequality and the fact that orthogonal similar-
ity (congruence) transformations do not affect the spectrum of a matrix, the upper
bound

‖Ā‖2 ≤
1

N

N∑
i=1

‖QiAiQ
>
i ‖2 =

1

N

N∑
i=1

‖Ai‖2 < 1 (3.48)

holds. The stability of the resulting system is thus not affected.

56

3.3. Averages of KLDS Sets

The remaining parameters need to fulfill the condition

β̄, R̄, Ȳ = arg min
β∈RN̄ ,R∈RN̄×n,

Y ∈Rd×N̄

g((A,B,R,β,Y)). (3.49)

Equivalently, we can write

β̄, R̄, Ȳ = arg min
β∈RN̄ ,R∈RN̄×n,

Y ∈Rd×N̄

K∑
i=1

d2
F,λA,λB ,λϕ̄

((A,B,R,β,Y),Qi • Ξi)

= arg max
β∈RN̄ ,R∈RN̄×n,

Y ∈Rd×N̄

2

K∑
i=1

tr(R>κ(Y ,Yi)RiQ
>
i)

+ λϕ̄

(
2

K∑
i=1

β>κ(Y ,Yi)βi −Kβ>κ(Y ,Y)β

)
s.t. N̄ ∈ N, R>κ(Y ,Y)R = In.

(3.50)

Let us assume that we have determined the solution for Ȳ ∈ RN̄ . In that case,
we can provide closed-form solutions for the remaining parameters, as explained in
the following. Let the sequence lengths of the systems Ξ1, . . . ,ΞK be denoted by
N1, . . . , NK , respectively. First, note that there is a positive integer Nall with

N̄ ≤ Nall ≤ N1 + · · ·+NK + N̄ , (3.51)

such that there must be a matrix G ∈ RNall×N̄ and matrices H1 ∈
RNall×N1 , . . . ,HK ∈ RNall×NK for which the equations

κ(Ȳ , Ȳ) = G>G,

κ(Ȳ ,Yi) = G>Hi,

κ(Yi,Yj) = H>i Hj

(3.52)

are satisfied, for all i, j ∈ {1, . . . ,K}. This is due to the existence of an Nall-
dimensional subspace of H that contains the feature representations of all the
columns in Y1, . . . ,YK and Ȳ .

Therefore, using Eq. (3.50), we write

β̄ = arg max
β∈RN̄

2β>
K∑
i=1

κ(Ȳ ,Yi)βi −Kβ>κ(Ȳ , Ȳ)β

= arg max
β∈RN̄

2β>G>
K∑
i=1

Hiβi −Kβ>G>Gβ.

(3.53)

57

3. Kernelized Alignment Distances for Streams of Histograms

Setting the derivative of the objective in Eq. (3.53) to 0 yields

β̄ =
1

K
G+

K∑
i=1

Hiβi, (3.54)

which can be also written as

β̄ =
1

K
(G>G)+G>

K∑
i=1

Hiβi

=
1

K
κ(Ȳ , Ȳ)+

K∑
i=1

κ(Ȳ ,Yi)βi.

(3.55)

Similarly, for R̄, we have

R̄ = arg max
R∈RN̄×n

s.t. R>κ(Ȳ ,Ȳ)R=In

K∑
i=1

tr(R>κ(Ȳ ,Yi)RiQ
>
i). (3.56)

Let us denote the SVD of κ(Ȳ , Ȳ) by

κ(Ȳ , Ȳ) = UΛU>, (3.57)

and its rank by r ≤ N̄ . Due to the orthogonality requirement in Eq. (3.5), the matrix
R̄ must have the form

R̄ = U(r)Λ
(r)− 1

2

(r) W̄ , (3.58)

where W̄ ∈ St(n, r) is a matrix with orthonormal columns, such that

R̄>κ(Ȳ , Ȳ)R̄ = In (3.59)

always holds. This allows us to rewrite Eq. (3.56) yielding the alternative formulation

W̄ = arg max
W∈St(n,r)

tr

(
W>Λ

(r)− 1
2

(r) U>(r)

K∑
i=1

κ(Ȳ ,Yi)RiQ
>
i

)
, (3.60)

which is solved by choosing W such that the argument of the trace function is
symmetric. This is obtained by computing the SVD

Λ
(r)− 1

2

(r) U>(r)

K∑
i=1

κ(Ȳ ,Yi)RiQ
>
i = U ′Σ′V ′>, (3.61)

and setting
W̄ = U ′(n)V

′>. (3.62)

58

3.3. Averages of KLDS Sets

If we now substitute these results into the objective Eq. (3.50), we get

2

K∑
i=1

tr(R̄>κ(Ȳ ,Yi)RiQ
>
i)

+ λϕ̄

(
2

K∑
i=1

β̄>κ(Ȳ ,Yi)β̄i −Kβ̄>κ(Ȳ , Ȳ)β

)

=2
K∑
i=1

tr(V ′Σ′
(n)
(n)V

′>) +
λϕ̄
K

K∑
i=1,
j=1

β>i κ(Yi, Ȳ)κ(Ȳ , Ȳ)+κ(Ȳ ,Yj)βj .

(3.63)

Now that we have obtained the solutions β̄ and R̄, let us consider the choice of Ȳ .
Let us write

UG = GU(r)Λ
(r)− 1

2

(r) ∈ St(r,Nall). (3.64)

Since V ′ is orthogonal, the term tr(V ′Σ′
(n)
(n)V

′>) is equal to the sum of the singular

values of Eq. (3.61) in Σ′
(n)
(n). Rewriting the trace as a nuclear norm ‖ · ‖∗ and the

kernel matrices by means of G and Hi yields the equivalent formulation

2

∥∥∥∥∥Λ(r)− 1
2

(r) U>(r)

K∑
i=1

G>HiRiQ
>
i

∥∥∥∥∥
∗

+
λϕ̄
K

K∑
i=1,
j=1

β>i H
>
i G(G>G)+G>Hjβj

=2

∥∥∥∥∥U>G
K∑
i=1

HiRiQ
>
i

∥∥∥∥∥
∗

+
λϕ̄
K

K∑
i=1,
j=1

β>i H
>
i UGU

>
GHjβj .

(3.65)

If we want to maximize this term for UG, we can do so by choosing it in a way so
that the columns of H1, . . . ,HN are contained in its column space. This can be
done by choosing Ȳ such that it contains the columns of Y1, . . . ,YK , i.e.

Ȳ =
[
Y1 · · · YK

]
∈ Rd×N1+···+NK . (3.66)

However, this would imply that the Fréchet mean needs as much memory and com-
putational power to be processed as the entirety of sequences represented by it. If
we cannot choose the optimal solution in Eq. (3.66) for Ȳ , the optimality gap can
be kept small, by keeping the subspace spanned by the columns of G as close as
possible to the column space of [H1, . . . ,HK]. Heuristically, it has been argued
that Nyström interpolation [40] has done a good job in achieving this goal. Inspired
by the results in [132], Ȳ is chosen by employing k-means clustering to the columns
of Y1, . . . ,YK . These considerations altogether yield Algorithm 8. One should keep
in mind, that Fréchet means are not necessarily unique.

59

3. Kernelized Alignment Distances for Streams of Histograms

Algorithm 8 : Fréchet mean computation
Input : Set of KLDS descriptors {Ξi = (Ai,Bi,Ri,βi,Yi)}i∈{1,...,K} ⊂ Knd ,

sampling size N̄ ∈ N
1 Ȳ ← k −means

([
Y1 · · · YK

]
, N̄
)
;

2 β̄ ← 1
Kκ(Ȳ , Ȳ)+

∑K
i=1 κ(Ȳ ,Yi)βi; // Eq. (3.55)

3 U ,Λ, _← SVD(κ(Ȳ , Ȳ));
4 foreach i ∈ {1, . . . ,K} do
5 Qi ← In; // Initialization
6 end
7 while g(Ξ̄) not converged do
8 Ā← 1

K

∑N
i=1QiAiQ

>
i ; // Eq. (3.47)

9 B̄ ← 1
K

∑N
i=1QiBi; // Eq. (3.46)

10 U ′, _,V ′> ← SVD

(
Λ

(r)− 1
2

(r) U>(r)
∑K

i=1 κ(Ȳ ,Yi)RiQ
>
i

)
;

// Eq. (3.61), r is rank of κ(Ȳ , Ȳ)

11 R̄← U(r)Λ
(r)− 1

2

(r) U ′(n)V
′>; // Eq. (3.62)

12 Ξ̄← (Ā, B̄, R̄, β̄, Ȳ);
13 foreach i ∈ {1, . . . ,K} do
14 Qi ← arg maxQ∈O(n) ρλA,λB ,(Ξ̄,Q • Ξi); // Algorithm 7

15 end
16 end

Output : Estimated Fréchet mean Ξ̄

3.4. Experiments

Overview

Matlab simulations on datasets of dynamic textures and dynamic scenes have been
carried out to evaluate the proposed methods for 1-NN and NCC classification. The
frame-wise histogram representation was chosen based on its performance in still-
image recognition tasks. Dynamic texture frames were encoded by means of LBP
[113], while the still images of the dynamic scene videos are encoded via BoW. The
χ2 kernel [44], defined as

κχ2(y1,y2) = exp

−1

2

∑
i∈{1,...,d}

s.t. (y1)i+(y2)i>0

((y1)i − (y2)i)
2

(y1)i + (y2)i

 (3.67)

was used for all experiments.

60

3.4. Experiments

Figure 3.3.: Video frames from the DynTex Gamma split

For the KLDS parameters extracted in this way, the performance of the Alignment
distance is compared against the Max SV distance and the Martin distance on 1-NN
classification tasks. Apart from this ablation study, 1-NN and NCC results are com-
pared to competing approaches in dynamic texture and dynamic scene classification
from computer vision literature. For all experiments, process noise is neglected, i.e.,
the λB parameter of the Alignment distance was set to 0.

Dynamic Textures

The DynTex database [95] is a collection of high-resolution RGB texture videos.
Three splits have been compiled for classification benchmarking.

• DynTex Alpha is composed of 60 videos divided into the 3 classes Sea (20
videos), Grass (20), and Trees (20)

• DynTex Beta is composed of 162 videos divided into the 10 classes Sea
(20), Vegetation (20), Trees (20), Flags (20), Calm Water (20), Fountains (20),
Smoke (16), Escalator (7), Traffic (9) and Rotation (10).

• DynTex Gamma is composed of 264 videos divided into the 10 classes Flow-
ers (29), Sea (38), Naked trees (25), Foliage (35), Escalator (7), Calm water
(30), Flags (31), Grass (23), Traffic (9) and Fountains (37).

Figure 3.3 depicts one video frame from each class of the Gamma split. Some
works, like [41] or [134], report their results on a version of DynTex Gamma that
contains 275 videos, which suggests that there are two versions of this split. In
the comparisons, only results that have been reported for the 264-video version are
taken into account.

After converting the videos to grayscale, an LBP histogram was computed by
means of a third-party tool [113]. From the resulting descriptors, KLDS parameters

61

3. Kernelized Alignment Distances for Streams of Histograms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.7

0.75

0.8

0.85

0.9

0.95

λA

C
la

ss
ifi

ca
tio

n
ra

te

Alpha
Beta

Gamma

−10 0 10 20 30 40 50 60 70 80 90 100 110

0.7

0.75

0.8

0.85

0.9

0.95

1

λϕ̄

C
la

ss
ifi

ca
tio

n
ra

te

Alpha
Beta

Gamma

Figure 3.4.: 1-NN classification performance for different weights λA, λϕ̄

for n = 5 were computed by means of Algorithm 6. To investigate the impact of the
Alignment distance weighting parameters, 1-NN classification has been performed
for varying values of λA and λϕ̄. Figure 3.4 depicts the success rate plotted for
different values of λA (λϕ̄ = 0) and λϕ̄ (λA = 0.25).

In order to perform NCC classification, Alignment distance Fréchet means have
been computed by means of Algorithm 8. As Max SV and Martin distance baselines,
medoids were used. For the sake of simplicity, λϕ̄ has been set to 0 for all NCC
experiments. The value for λA has been chosen to be 0.25. The parameter λ of the
Max SV distance has been determined via grid search for each experiment.

Table 3.1 shows the 1-NN (λA = 0.25, λϕ̄ = 100.0) and NCC (λA = 0, 25, λϕ̄ =
0) classification results in comparison with LBP-TOP [133, 96], Aggregated Salient

62

3.4. Experiments

Alpha Beta Gamma
1-NN NCC 1-NN NCC 1-NN NCC

LBP-TOP 96.7 % - 85.8 % - 84.9 % -
ASF-TOP 91.7 % - 86.4 % - 89.4 % -

MBSIF-TOP 90.0 % - 90.7 % - -* -
PCANet-Top 96.7 % - 90.7 % - 89.4 % -

DFS - 83.6 % - 65.2 % - 60.8 %
2D+T Curvelet - 85.0 % - 67.0 % - -*

OTDL - 86.6 % - 69.0 % - 64.2 %
CLSP-TOP 95.0 % - 92.0 % - 91.3 % -
STRF N-jet 100.0 % - 93.8% - 91.2 % -

B3DF 96.7 % 90.0 % 90.1 % 74.1 % -* -*
SOE-NET 98.3 % 96.7 % 96.9 % 86.4 % -* -*

SoB + Martin 91.7% 83.3 % 74.7 % 51.9 % 64.4 % 41.7 %
SoB + Max SV 96.7 % 85.0 % 84.0 % 59.9 % 78.4 % 54.9 %

SoB + Align 98.3 % 88.3 % 90.1 % 75.3 % 79.9 % 67.1 %

*Reported results refer to 275-video version of DynTex Gamma.

Table 3.1.: Recognition rate on DynTex subsets

Features in three orthogonal planes (ASF-TOP) [56], Multiscale Binarized Statistical
Image Features in Three Orthogonal Planes (MBSIF-TOP) [10], PCANet-TOP [9],
Dynamic Fractal Spectrum (DFS) [128], Spatiotemporal Curvelet Transform (2D+T
Curvelet) [41], Orthogonal Tensor Dictionary Learning (OTDL) [98] Completed Local
Structure Patterns in Three Orthogonal Planes (CLSP-TOP) [88], Spatio-temporal
Receptive Fields (STRF N-jet) [59], Binarized 3D features (B3DF) [134] and Spa-
tiotemporal Oriented Energy Network (SOE-NET) [48]. Only results for grayscale
videos are included in the list.

The proposed Alignment distance on KLDS’s improves significantly the perfor-
mance for SoB classification compared to the other two common choices of distance
measures, be it for 1-NN or for NCC.

When comparing to other SOTA approaches, the 1-NN classification performance
produces competitive results on the simple Alpha split, but falls behind some of the
more recent works on the Beta and Gamma split. However, SoB+Align performs
comparably well on the NCC experiment, yielding the third-best results in the Alpha
split, the second-best results on the Beta split, and the best results on the Gamma
split.

63

3. Kernelized Alignment Distances for Streams of Histograms

Figure 3.5.: Video frames from the YUPENN dataset

Martin Max SV Align SOE TSVQ BoST st-TCoF
83.3 % 80.7 % 86.4 % 74 % 69 % 85 % 98 %

Table 3.2.: Recognition rate on YUPENN dataset

Dynamic Scenes

The YUPENN dataset [34] is comprised of the 14 dynamic scene classes Beach,
Elevator, Forest fire, Fountain, Highway, Lightning Storm, Ocean, Railway, Rushing
river, Clouds, Snowing, City street, Waterfall and Windmill farm. Each class contains
30 RGB videos of different lengths and resolutions, collected from publicly available
online resources, such as streaming services.

A BoW histogram of SURF features has been computed for each video frame via
OpenCV. The codebooks of size d = 500 have been directly computed from the
YUPENN videos themselves. To avoid any advantage from learning the codebook
on test samples, the dataset was divided into three equally sized parts. For each
sample the classification experiment was performed by learning the codebooks from
the two parts not including the sample itself.

The resulting streams of histograms were used to compute SoB KLDS’s with latent
space dimension n = 10. The Alignment distance weights were fixed to λA =
0.25, λϕ̄ = 0 without further tuning.

Table 3.2 shows the 1-NN classification results. Again, the Alignment distance
can significantly improve the success rate of SoBs, in comparison to the Martin and
Max SV distance. This confirms again the advantage of the weighting parameters
that allows for prioritizing certain aspects of the KLDS’s.

Allover, the proposed framework does not outperform st-TCoF that is based on
features extracted by means of trained Convolutional neural networks (CNN). This
may not be surprising, as CNNs have demonstrated superior recognition perfor-
mance for other types of visual data. Hence, SoBs based on features learned by
CNNs might significantly improve the performance of the presented approach.

By contrast, the proposed approach performs very well in comparison to “clas-
sical” methods not based on deep learning, including Spatiotemporal Oriented En-

64

3.5. Discussion

ergy(SOE) [34], Tree-Structured Vector Quantization (TSVQ) [89] and Bag of Sys-
tem Trees (BoST) [87]. Additionally, learning a BoW codebook can be achieved with
little amount of data compared to typical deep learning algorithms.

3.5. Discussion

This chapter discusses the problem of classifying certain types of visual processes.
To this end, the observed sequences are converted to streams of histograms and
described by KLDS’s. Such a model is referred to as a System of Bags (SoB). The
main contribution is to adapt the framework of the Alignment distance to the case
of KLDS’s and to apply it for k-NN and NCC classification of SoBs created from
dynamic textures and dynamic scenes.

By taking into account the experimental results, we can conclude that the pro-
posed framework has two strengths. Its theoretical motivation is plausible and it
performs well both in ablation studies, where the Alignment distance is replaced
by other common dissimilarity measures, as well as in comparison to other “shal-
low” techniques that do not require extensive learning on additional data, such as
methods based on sparse dictionaries or wavelet decompositions.

Unfortunately, it cannot be overlooked that more recent deep learning based
methods would likely produce significantly better results. In defense of the pro-
posed framework, one may argue that it is only as good as the features collected
from the video. For instance, replacing the SURF features that have been used
for the YUPENN experiment by descriptors generated by a pre-trained CNN could
probably improve performance. The following chapter thus builds upon the approach
discussed in the preceding sections, to develop a more effective feature extraction
and similarity measure framework for the classification of dynamic textures.

Nevertheless, since such approaches still separate the feature extraction step
from the distance-based classification, chances are they still would fail in compar-
ison to state-of-the-art end-to-end methods in classical supervised learning sce-
narios. On the other hand, with the emergence of meta-learning [7] and few-shot
learning [97] as well as the renaissance of metric learning [65], frameworks that
separate the feature extraction from the similarity measurement in the classification
procedure have experienced some sort of revival, as they make it easier to adapt
to changes of data distribution. A potential few-shot learning scenario in future re-
search, for instance, could be to generate the SoBs by means of features from a
CNN pre-trained on the meta-training data, and to compute the class centers from
the few-shot training samples.

65

4. Nuclear Distances on Scattering
Distributions

While the framework presented in the previous chapter provides a theoretically
sound and versatile method for visual process recognition, it offers some room for
improvement in terms of performance on recognition datasets, and computational
demands.

First, it is obvious that a SoB representation is only as good as the features used
to describe the video frames. For instance, the LBP representation used in the dy-
namic texture experiment may not be the most efficient way to represent textures
for recognition tasks and another feature representation may lead to a better perfor-
mance of the overall framework. Fortunately, designing texture descriptors has been
a field of interest in image processing for several decades. It is thus reasonable to
assume that it is possible to find more suitable representations.

Second, computation of the Alignment distance is a considerable bottleneck in
terms of execution time within the whole recognition process, which is of course due
to the optimization on the orthogonal group in Algorithm 7 and similar algorithms.
Certain applications, for instance distance-based clustering, require repeated mea-
surement of distance such that a computationally less demanding metric is desir-
able. Another disadvantage of the Alignment is its requirement of tuning parame-
ters. Since the choice of such parameters always entails some form of engineering,
a metric without such a requirement is generally preferable.

Finally, KLDS representations demand a lot of computational resources for stor-
age and processing. Chapter 3 discusses this issue in the context of Fréchet mean
computation and proposes to mitigate it by means of a clustering-based Nyström
interpolation step. However, the problem already arises earlier, when the KLDS
parameters are computed from a video sequence, and the whole set of extracted
histograms needs to be stored in order to apply the kernel trick. Applying a similar
interpolation technique during the computation of KLDS parameters could reduce
their demand for resources.

This chapter proposes a framework for recognition of visual processes that over-
comes these challenges. The Scattering transform [81], a hierarchical non-linear
signal representation based on a repeated application of wavelet filter banks, is
used to construct still-image features of texture images which are then used to con-
struct visual process descriptors. Therefore, the focus of this chapter is exclusively
on dynamic textures, as opposed to Chapter 3 that also discusses dynamic scenes.

67

4. Nuclear Distances on Scattering Distributions

It revises the framework presented in Chapter 3 and makes the following modifica-
tions.

• In Chapter 3, dynamic textures are first converted to sequences of LBP his-
tograms prior to subjecting the results to a KLDS parameter extraction algo-
rithm. To do so, a χ2 kernel as defined in Eq. (3.67) is used. This chapter
proposes an approach in which video frames of the dynamic textures are rep-
resented by histograms of Scattering coefficients. As opposed to Chapter 3,
a probability product kernel is employed. This approach is based on insights
from [104], where such a feature extraction method yields competitive results
in still-image texture retrieval.

• To deal with the computational burden imposed by computing the similarity
measure, a simplified version of the Alignment distance is employed. This
version neglects the dynamics of the visual process and focuses entirely on
its appearance. While such a measure may not as accurately as the Alignment
distance account for the dynamic properties of visual processes, it does not
require a tedious optimization procedure for computation.

• The Nyström interpolation technique that is employed for the Fréchet mean
computation in Chapter 3 is used for the feature extraction of every visual
process. Apart from reducing memory usage, this step also speeds up dis-
tance measure computation, as smaller matrices are required for the kernel
representation of the observation matrix. Hence, it also increases the compu-
tational efficiency of approximating Fréchet means.

These adaptations result in a framework based on what will be called Scattering his-
togram kernel subspace (SHKS), in the following. SHKS’s yield competitive results
for 1-NN classifcation and state-of-the-art results for NCC classifcation of dynamic
textures.

4.1. The Scattering Transform

The success of CNNs is often credited to their capability of training on big data sets,
which allows for highly parameterizable models. Just as important as data, however,
is their inductive bias that produces invariances to exactly the type of actions on an
image that does not alter its semantic content. For instance, CNNs are known to
learn functions that are quite robust to spatial translations. This is particularly desir-
able for recognition tasks, because changing the spatial location of an object does
not alter the object itself. A neural network trained for classifying objects should thus
be invariant with respect to the geometrical position of the object to be classified.
Similarly, depending on the settings of the camera, the object depiction may exhibit

68

4.1. The Scattering Transform

0 1 2 3 4 5 6
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
z(
t)

0 1 2 3 4 5 6
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

z(
t)

Figure 4.1.: Impact of phase shift on signals of different frequency spectra. The red curve
depicts a shift in the time domain of the blue curve by τ = π/3. While this leads to a slight
perturbation for the slow-changing sine wave with ω = 1 (left), it results in flipping the sign
of a fast-changing wave with ω = 3 (right).

different types of spatial deformations that should also not perturb a classification
architecture.

Scattering transforms are an attempt to reproduce this inductive bias without train-
ing. In essence, a Scattering transform is a CNN with fixed weights and without
channel recombination, and in which the absolute value operator is consistently
used as the activation function. We can motivate Scattering transforms by the ob-
servation that processing a signal with a low-pass filter ψ̄ makes it less sensitive
to local deformations and shift operations. This can be easily illustrated by consid-
ering the integrated squared difference between a 1D signal z(t) = sin(ωt) and a
translated version. If the frequency ω is high, the squared error∫ 2π

0
|z(t)− z(t− τ)|2 d t (4.1)

introduced due to a small shift by τ (in relation to ω) is considerably higher than for
small ω. Figure 4.1 visualizes this phenomenon.

At the same time, a lowpass filter causes a loss of information, in particular for
natural images. The lost information can be retained by not only collecting the low-
frequency bands of an image, but also the bands belonging to higher-frequencies.
This can be obtained using a set of band-pass filters, where each one of the filters
covers a different region of the spectral domain. Such filters are often created by
using a mother wavelet that is then scaled and rotated with different factors and
angles in the spacial domain resulting in a shift-equivariant wavelet frame [80]. A
wavelet frame constructed in such a way can be used as a filter bank to create
a decomposition of the input signal into several band-limited subbands. With in-
creasing frequency, these subbands become less and less invariant to translations,
deformations and similar transformations of the input image, because the effect of
these actions is retained in the higher-frequency subbands. Thus, signal represen-

69

4. Nuclear Distances on Scattering Distributions

tations based on subband decompositions require a trade-off between robustness
and descriptiveness of signal representations produced. On the one hand, the high
frequencies contained in these subbands pose considerable robustness problems
due to their deformation sensitivity. On the other hand, simply abandoning higher-
frequency subbands would lead to a loss of information, because abrupt changes
such as edges or corners that are crucial in recognition tasks [77] are mostly con-
tained in the high frequencies. Since recognition tasks typically require represen-
tations that are both robust and descriptive, it would be desirable to get rid of the
higher frequencies without losing the information contained in them. As it turns out,
this can be obtained by applying the absolute value operator to each subband co-
efficient. By eliminating changes of sign, the absolute value reduces the share of
high frequencies in a signal. Moreover, it does so without removing too much rel-
evant information from the signal representation as the sign is rarely significant for
recognition tasks and can be often retained using phase-retrieval algorithms [43].

Let ψ1, . . . , ψJ be a set of bandpass filters corresponding to different regions of
the spectral domain, and let L2 refer to the Lebesgue space of square-integrable
functions. Consider the operator

ΨJ : L2 → L2 × · · · × L2︸ ︷︷ ︸
J+1 times

,

z 7→
(
ψ̄ ∗ z, |ψ1 ∗ z|, · · · |ψJ ∗ z|

)
,

(4.2)

where the asterisk ∗ describes a convolution of two signals. In words, ΨJ creates
a subband decomposition of the input, where the absolute value operator is applied
to each non-lowpass output. The first element of the output tuple, written as ΨJ [z]0,
is a lowpass representation of the input and possesses thus the robustness prop-
erties of low-frequency signals that have been discussed above. The other signals
ΨJ [z]1, . . . ,Ψ

J [z]J contained in the tuple can be subjected to such an operator
repeatedly, yielding another J subband decompositions. This procedure can be re-
peated several times, yielding a hierarchical tree structure like in Figure 4.2, where
the black circles denote the absolute values of bandpass signals and the white cir-
cles denote lowpass signals. With each new layer, information from the input image
finds its way into the lowpass outputs of ΨJ , due to the elimination of sign changes.
After a few layers, a robust, yet descriptive representation of the input is generated.

The M -depth Scattering transform of a signal z is the collection of the lowpass
signals created by constructing such a tree with M layers, and collecting all the
white circles from it. We refer to these lowpass signals as the Scattering subbands.
Each Scattering subband of z in a layer m ∈ {1, . . . ,M − 1} is identified by the
filter indexes jm ∈ {1, . . . , Jm} and can be written as

Sj1,...,jm [z] =ΨJm+1 [ΨJm [· · · [ΨJ1 [z]j1] · · ·]jm]0

=ψ̄ ∗ |ψjm ∗ | · · · ∗ |ψj1 ∗ |z|| · · · ||,
(4.3)

70

4.1. The Scattering Transform

z
S[z]

Ψ3

Sj1 [z]

Ψ3

Sj1,j1 [z]

Ψ3

Sj1,j2 [z]

Ψ3

Sj1,j3 [z]

Ψ3

Sj2 [z]

Ψ3

Sj2,j1 [z]

Ψ3

Sj2,j2 [z]

Ψ3

Sj2,j3 [z]

Ψ3

Sj3 [z]

Ψ3

Sj3,j1 [z]

Ψ3

Sj3,j2 [z]

Ψ3

Sj3,j3 [z]

Ψ3

Figure 4.2.: Scattering tree produced by successive application of Ψ3 on the input signal z.
Lowpass signals are depicted as white nodes. The absolute values of bandpass signals are
depicted as black nodes. Once the tree is computed, only the white nodes are kept as a
representation of the input signal.

Therefore, the Scattering transform of z is a tuple containing all

NBands = 1 +

M−1∑
m=1

m∏
i=1

Ji (4.4)

subbands. For the subband at input input layer (m = 0), let us fix the notation

S[z] = ψ̄ ∗ z. (4.5)

As an optional step, the Scattering subbands can be normalized in order to decor-
relate them. The procedure to do so has been originally proposed in [4]. Let us
define the normalized Scattering transform following the proposal in [4], namely as
a collection of subbands S̃j1,...,jm that can be computed from the regular Scattering
subbands Sj1,...,jm of a signal z. In the normalized Scattering transform, the input
layer (m = 0) is identical to the regular Scattering transform, i.e.,

S̃[z] = S[z], (4.6)

the first layer (m = 1) is normalized by the signal average of the input, denoted by
avg, i.e.,

S̃j1 [z] =
Sj1 [z]

avg(z)
, (4.7)

and all remaining layers (m > 1) are normalized using the parent node, i.e.,

S̃j1,...,jm [z] =
Sj1,...,jm [z]

Sj1,...,jm−1 [z]
. (4.8)

It has been observed that normalizing the Scattering coefficients using this scheme
can improve recognition for texture images and voice recordnings [4, 104].

71

4. Nuclear Distances on Scattering Distributions

Figure 4.3.: Coefficient distributions (blue: histograms, red: Weibull fittings) of different
Scattering subbands

4.2. Scattering Distributions of Texture Images

Statistical moments of multi-scale subband representations are known to be an ex-
pressive descriptor of texture images in recognition and retrieval tasks [36, 67, 70].
In [104], a texture retrieval method based on Scattering subband distributions has
been proposed. Texture images are first subjected to a Scattering transform and
a parameterized model for the coefficient distribution in each Scattering subband
is computed. Specifically, a two-parameters Weibull distribution [92] is used as a
statistical model. The two Weibull parameters are approximated using maximum
likelihood estimation [114] on each Scattering subband individually.

A visualization of this idea is given in Fig. 4.3, where Scattering subband his-
tograms are compared to the estimated Weibull curve. Since each of these curves
is described by two parameters, the resulting feature vectors describing the texture
images contain 2NBands elements. To define a distance measure, an approximation
of the Bhattacharyya kernel, defined in [60] for two probability distributions p1, p2

over a space Ω as

κBht(p1, p2) =

∫
Ω

√
p1(ξ)p2(ξ) d ξ, (4.9)

is used. This approximation is directly computed from the Weibull parameter based

72

4.3. Kernel Subspaces of Scattering Histograms

feature vectors. Note that for independent multivariate distributions, the Bhat-
tacharyya kernel can be computed as the product over all marginal distributions.

The framework presented in the following is based on the same feature extrac-
tion mechanism, but instead of fitting a continuous parameterized distribution to the
subband coefficients, the distributions are directly modeled as histograms. This im-
proves accuracy of the distribution approximations and reduces the time used for
extracting the features since computing a histogram is typically faster than estimat-
ing Weibull parameters using maximum likelihood. The downside is that computing
the Bhattacharryya kernel takes longer. However, it can be computed exactly rather
than using an approximated version as it is done in [104].

4.3. Kernel Subspaces of Scattering Histograms

The feature extraction algorithm employed in this chapter works as follows. First, a
dynamic texture video

Z =
[
z1 · · · zN

]
(4.10)

is converted to a sequence of feature vectors by applying the Scattering transform,
written as ST, to each frame. Every subband is then used to compute a histogram
from its coefficients. This results in a matrix Y ∈ RNBandsNbins×N , where N is
the sequence length, NBands is the number of Scattering subbands and Nbins the
number of histogram bins.

Let us assume that the resulting feature vectors, i.e., the columns of Y , are or-
dered in a way such that the jth bin of the histogram belonging to the ith Scattering
subband is given by i ·NBins + jth element of the vector. Note that we start count-
ing the subbands from 0. The Bhattacharyya kernel between the histograms of ith
subband of two feature vectors y1,y2 ∈ RNBandsNbins is given by the sum of the
element-wise products, after the square root was applied to them, i.e.,

Nbins∑
j=1

√
(y1)i·Nbins+j · (y2)i·Nbins+j . (4.11)

By assuming that the subbands are independent, we can define the Bhattacharyya
kernel on a pair of two feature vectors y1,y2 as the product over all subbands, i.e.,

κBht : R2·NBandsNbins → R,

y1,y2 7→
NBands−1∏

i=0

Nbins∑
j=1

√
(y1)i·Nbins+j · (y2)i·Nbins+j .

(4.12)

Given the representation Y and kernel κBht, we could proceed to compute a
KLDS using these defintions, as it was done in Chapter 3. however, we aim for a

73

4. Nuclear Distances on Scattering Distributions

Algorithm 9 : Scattering histogram kernel subspace computation

Input : Video Sequence Z =
[
z1 · · · zN

]
, Histogram size NBins ∈ N,

Sampling size Ñ ≥ n, latent dimension n ∈ N
1 S ← ST(Z); // Frame-wise Scattering transform
2 Y ← hist(S, NBins) ; // Subband-wise histogram computation

3 Ỹ ← SMPLÑ (Y) ; // Subsampling
4 U ,Λ,U ← SVD(κBht(Y ,Y));

5 R← UnΛ
(n)
(n)

−1/2
;

6 Ũ , Λ̃, Ũ ← SVD(κBht(Ỹ , Ỹ));
7 U ′, _,V ′ ← SVD(R>κBht(Y , Ỹ)ŨΛ̃−1/2);
8 R̃← ŨΛ̃−1/2V ′U ′>; // Nyström interpolation

Output : Kernel Subspace parameters R̃, Ỹ

slightly simpler approach here. The first adaptation we make is to set ϕ̄ = 0 in
Eq. (3.3). That way, the model becomes less accurate, but we avoid modeling the
affine subspace offset as a separate parameter β. Next, recall Figure 3.4. It can
be observed, that the weighting parameter λA has little to no impact on the recog-
nition performance. More generally, it is safe to say that the dynamic parameters
A and B are hardly of any relevance for the recognition of dynamic textures mod-
eled as KLDS’s of histograms, because recognition can be carried out based on the
appearance of individual frames. Neglecting the parameters A,B and β reduces
Algorithm 6 to only computing R.

An additional adaptation to Algorithm 6 that can help reduce computational de-
mands is the Nyström interpolation of the input sequences. Specifically, we can
compress the extracted features using a Nyström-type interpolation technique re-
sembling the one in Chapter 3, by subsampling the feature sequence Y . Let us
denote this sampling operation by

SMPLÑ : Rd×N → Rd×Ñ[
y1 · · · yN

]
7→
[
y1 y1+bN/Ñc · · · y1+(Ñ−1)bN/Ñc

]
.

(4.13)

The operator SMPLÑ is applied to gather a representative submatrix Ỹ of Y . This
submatrix contains significantly fewer columns than the original feature matrix Y
and is later used to construct a subspace of the kernel feature space. This resem-
bles line 1 of Algorithm 8, but instead of using a clustering algorithm, the columns of
Y are directly gathered using equidistant sampling of the video sequence.

Altogether, we end up with Algorithm 9. The returned parameters Ỹ , R̃ describe
a subspace that approximates the space described by the full matrices Y ,R. More
precisely, parameter R̃ is chosen such that the basis of said subspace is orthonor-

74

4.4. The Nuclear Distance

mal, i.e., the equality
R̃>κBht(Ỹ , Ỹ)R̃ = In (4.14)

holds, and an appropriate distance measure to the parameter pair Y ,R is mini-
mized. The most obvious choice for such a distance is the sum of squared metric
distances between the respective basis vectors in the kernel feature space. We can
write this distance for two subspace parameter pairs (R1,Y1) and (R2,Y2) as

d2
se((R1,Y1), (R2,Y2)) = tr(R1

>κBht(Y1,Y1)R1)− 2 tr(R1
>κBht(Y1,Y2)R2)

+ tr(R2
>κBht(Y2,Y2)R2).

(4.15)

The solution for R̃ can be thus written as

R̃ = arg min
R′ s.t. R′>κBht(Ỹ ,Ỹ)R′=In

d2
se((R

′, Ỹ), (R,Y))

= arg max
R′ s.t. R′>κBht(Ỹ ,Ỹ)R′=In

tr(R′
>
κBht(Ỹ ,Y)R).

(4.16)

Analogously to Chapter 3, this problem can be solved using the SVD of κ(Ỹ , Ỹ)
and an additional factor matrix with orthogonal columns that maximizes the trace
product. In Algorithm 9, this step is carried out in lines 6-8.

4.4. The Nuclear Distance

Like the LDS and KLDS parameter tuples introduced in Chapter 2 and Chapter 3,
respectively, the parameter pairs returned by Algorithm 9 are not unique with re-
gards to the kernel feature subspace they represent. Specifically, an orthogonal
transformation of the matrix R̃ yields a new parameter pair that describes the same
subspace using a different basis. In defining a distance measure, it is thus again
sensible to demand that the distance is invariant to such changes of basis in the
kernel feature space. Given two parameter pairs (R1,Y1) and (R2,Y2), a natural
choice of such a distance can be obtained by computing Eq. (4.15) for the orthogo-
nal basis transformation that minimizes d2

se, i.e.,

d2
ncl((R1,Y1), (R2,Y2)) = min

Q∈O(n)
d2

se((R1,Y1), (R2Q
>,Y2)). (4.17)

Recall that we generally assume that the bases of the kernel feature subspaces
described by (R1,Y1) and (R2,Y2) are orthonormal. Thus, due to the condition

tr(R>1 κBht(Y1,Y1)R1) = tr(R>2 κBht(Y2,Y2)R2) = In, (4.18)

75

4. Nuclear Distances on Scattering Distributions

Algorithm 10 : Fréchet mean computation

Input : Set of parameter pairs {(Ri,Yi)}i∈{1,...,K}, sampling size N̄ ∈ N
1 Ȳ ← k −means

([
Y1 · · · YK

]
, N̄
)
;

2 U ,Λ, _← SVD(κ(Ȳ , Ȳ));
3 foreach i ∈ {1, . . . ,K} do
4 Qi ← In; // Initialization
5 end
6 while g(Ξ̄) not converged do

7 U ′, _,V ′> ← SVD

(
Λ

(r)− 1
2

(r) U>(r)
∑K

i=1 κ(Ȳ ,Yi)RiQ
>
i

)
;

// Eq. (3.61), r is rank of κ(Ȳ , Ȳ)

8 R̄← U(r)Λ
(r)− 1

2

(r) U ′(n)V
′>; // Eq. (3.62)

9 foreach i ∈ {1, . . . ,K} do
10 Ui, _,Vi ← SVD(R̄>κBht(Ȳ ,Yi)Ri);
11 Qi ← ViU

>
i ;

12 end
13 end

Output : Estimated Fréchet mean R̄, Ȳ

we can rewrite Eq. (4.17) as

d2
ncl((R1,Y1), (R2,Y2)) = 2n− 2 max

Q∈O(n)
tr(R>1 κBht(Y1,Y2)R2Q

>)

= 2n− 2‖R>1 κBht(Y1,Y2)R2‖∗.
(4.19)

We call Eq. (4.19) the Nuclear distance due to the nuclear norm applied to
R>1 κBht(Y1,Y2)R2. It can be alternatively defined as the Alignment distance
dalign,λA,λB ,λϕ̄ with λA = λB = λϕ = 0. However, computation of Eq. (4.19)
is much less time-costly than optimizing over O(n) in order to compute the Align-
ment distance, as it suffices to retrieve the singular values ofR>1 κBht(Y1,Y2)R2 to
compute the nuclear norm.

Likewise, computing the Fréchet mean with respect to dncl is simpler than com-
puting it with respect to the Alignment distance, since the parameters A,B and β
are neglected, and minimizing for Qi can be performed via the SVD. With

gncl(R,Y) =
K∑
i=1

d2
ncl((R,Y), (Ri,Yi)), (4.20)

the Fréchet mean is given by

R̄, Ȳ = arg min
R,Y

gncl(R,Y),

s.t.R>κBht(Y ,Y)R = In.
(4.21)

76

4.5. Experiments

The procedure to solve the optimization problem in Eq. (4.21) is described in Algo-
rithm 10. Like Algorithm 8, it is based on an alternating approach, in which every
iteration contains a foreach loop to find a set of matricesQ1, . . .QK ∈ O(n), such
that

d2
ncl((R,Y), (Ri,Yi)) = d2

se((R,Y), (RiQ
>
i ,Yi)) (4.22)

is satisfied for all i ∈ {1, . . . ,K}. This allows us to use d2
se instead of d2

ncl in
Eq. (4.20). By writing Eq. (4.20) as

gncl(R,Y) =
K∑
i=1

d2
se((R,Y), (RiQ

>
i ,Yi)), (4.23)

an approximation of R̄ can be computed that minimizes Eq. (4.23) for R. This is
done using the SVD at the beginning of each iteration. The parameter Ȳ is esti-
mated by performing a Nyström interpolation of Y1, . . . ,YK , which has also been
already done in Algorithm 8..

4.5. Experiments

The following experiment repeats the DynTex evaluation from Chapter 3 with the
proposed Scattering histogram kernel subspaces (SHKS) and normalized KSHS
(NKSHS), where normalization refers to the operations on the Scattering subbands
described in Section 4.1. The experiments were implemented in Python. Each video
was converted to grayscale, and transformed via Kymatio [6] with the parameters
J=4, L=4 to compute the Scattering coefficients. For each Scattering subband,
a histogram with NBins = 20 bins has been computed. (N)KSHS parameters have
been computed via Algorithm 9 with Ñ = 15 and n = 5.

Table 4.1 shows the results in comparison to the baseline methods in Chapter 3.
In accordance with the results in [104], normalizing the Scattering subbands im-
proves the recognition performance. While the reason for this is not entirely clear,
one can speculate that this has to do with the decorrelating effect of normalizing the
Scattering coefficients [4]. The coefficients of different Scattering subbands without
normalization tend to be strongly correlated. Normalizing the coefficients according
to the scheme discussed in Section 4.1 mitigates this phenomenon such that it be-
comes harder to predict coefficients in one subband from the coefficients in another
one. The assumption of independent distributions becomes therefore more realistic,
which justifies the computation of Bhattacharyya kernel using the product formula
stated in Eq. (4.12).

Overall, the results compete quite well with other state-of-the-art approaches in
terms of classification rate. While SOE-NET [48] and STRF N-jet [59] yield slightly
better results for 1-NN, NCC classification via Fréchet means computed with the
iterative averaging procedure in Algorithm 10 consistently produces the best results
out of all listed methods.

77

4. Nuclear Distances on Scattering Distributions

Alpha Beta Gamma
1-NN NCC 1-NN NCC 1-NN NCC

LBP-TOP 96.7 % - 85.8 % - 84.9 % -
ASF-TOP 91.7 % - 86.4 % - 89.4 % -

MBSIF-TOP 90.0 % - 90.7 % - -* -
PCANet-Top 96.7 % - 90.7 % - 89.4 % -

DFS - 83.6 % - 65.2 % - 60.8 %
2D+T Curvelet - 85.0 % - 67.0 % - -*

OTDL - 86.6 % - 69.0 % - 64.2 %
CLSP-TOP 95.0 % - 92.0 % - 91.3 % -
STRF N-jet 100.0 % - 93.8% - 91.2 % -

B3DF 96.7 % 90.0 % 90.1 % 74.1 % -* -*
SOE-NET 98.3 % 96.7 % 96.9 % 86.4 % -* -*

SoB + Align 98.3 % 88.3 % 90.1 % 75.3 % 79.9 % 67.1 %

KSHS+Ncl. 98.3 % 96.7 % 88.9 % 88.3 % 88.6 % 86.7 %
KNSHS+Ncl. 98.3 % 96.7 % 93.2 % 90.1 % 91.3 % 89.8 %

*Reported results refer to 275-video version of DynTex Gamma.

Table 4.1.: Recognition rate on DynTex subsets

4.6. Discussion

This chapter combines theoretical and experimental insights from Chapter 3 with
results on content-based still-image texture retrieval to develop a dynamic texture
recognition framework. It employs the Scattering transform to convert video frames
to robust and expressive representations which are then converted into vectors of
concatenated histograms. These vectors are then subjected to a Bhattacharyya
kernel that is used to compute kernelized subspace representations of the dynamic
texture sequences. For recognition purposes, a distance measure is employed that
can be inferred from the Alignment distance by neglecting the state space dynamics
of the visual processes. This yields a metric called the Nuclear distance which re-
quires less time for computation than the original Alignment distance. Furthermore,
it eliminates the risk of local minima during distance computation, since the distance
does not need to be computed via optimization over the orthogonal group, e.g. by
using Algorithm 7. Instead, it can be obtained analytically by means of basic matrix
algebra.

The evaluation on the DynTex dataset shows a significant improvement over
SoB+Align, based on LBP features, as well as over many other state-of-the-art al-
gorithms. This is particularly true for NCC classification, for which the proposed
approach outperforms a large number of techniques discussed in literature. The

78

4.6. Discussion

NCC performance also indicates applicability to unsupervised learning tasks that
are based on averaging operations, such as clustering.

Like the framework presented in Chapter 3, this chapter discusses a technique
based on kernel PCA. One issue with kernel PCA-based techniques is the lack
of any straight-forward way to reconstruct samples in Rd from their representation
vectors in Rn. In principle, such reconstructions can be computed iteratively by
minimizing a kernel based error expression [85]. Practically, this is computationally
too demanding to perform in real-time. As a consequence, KLDS’s (and KSHS’s)
cannot be easily incorporated into applications such as synthesis or anomaly detec-
tion, because it is very difficult to infer statistical implications on trajectories in the
observation space from them. Applications that require the possibility to reconstruct
observations from latent state space variables are thus a strong argument against
kernel-based methods.

Hence, the remainder of this thesis focuses on the “generative” aspect of visual
process modeling. That is to say that the question of how to practically generate
video frames from latent space representations becomes of integral relevance for
the ongoing discussion. This is most conveniently achieved using deep learning,
as it has been demonstrated before that CNNs are capable of generating photo-
realistic, yet synthetic, images [99]. In the following chapter, a CNN based approach
that is capable of generative modeling of visual processes is presented.

79

5. Dynamic Variational Autoencoders

Chapter 3 and Chapter 4 discuss ways to represent video sequences by trajectories
in a lower-dimensional latent state space using kernels. Since there is no simple way
to reconstruct high-dimensional data points from their kernel PCA representations,
the framework is ill-suited for converse tasks that require to infer insights about the
behaviour in the observation space from corresponding latent space trajectories.
For feature-based tasks such as classification or clustering, this is not necessary.
If, however, the aim is not to just represent visual processes, but to predict future
frames from previous ones, compute marginal frame distributions for one or several
time steps, or generate new sequences, it is of great help to have an explicit repre-
sentation of the observation function Γ. Such a representation turns Eq. (1.6) into a
simple and yet powerful model for the visual process at hand. Consider for instance
the problem of observing a sequence of T frames and evaluating if, according to the
learned model, such a sequence is likely to occur, i.e., if the probability according
to the mode of such a sequence of frames is high or not. This could be done by
sampling a large number of VAR sequences with length T , transforming them to the
observational space via Γ, and estimating the likelihood of the observed sequence
based on a distribution model inferred from the generated sequences. Likewise, the
problem of frame prediction becomes also considerably simple. Given an observed
frame yt, predicting the follow-up frame yt+1 could be done by first estimating the
according latent state xt and projecting it one step into the future by means of the
state transition matrix A, prior to transforming the result to the observation space
by means of Γ as ỹt+1 = Γ(Axt).

For a function Γ to be an appropriate choice for the observer in Eq. (1.6), the set

M = {Γ(x) | x ∈ Rn} ⊂ Rd (5.1)

should be an appropriate model for the observation space of image frames created
by the respective visual process. It has been widely observed that CNNs are capable
of implementing functions that parameterize sets of real-world images, e.g. in the
context of deep generative learning [20, 99] or inverse problem solving [121].

Employing an appropriate CNN as the observation function transforms Eq. (1.6)
into

xt+1 = Axt +Bvt, (5.2a)

yt = Γζ(xt), (5.2b)

81

5. Dynamic Variational Autoencoders

where Γζ is a CNN with learnable weights ζ ∈ RD with D representing the number
of learnable parameters.

Let us denote by

F =
{
fν : Rn → Rd

∣∣ ν ∈ RD
}
, (5.3)

the set of functions that can be realized using a neural network of some architecture
withD fixed parameters, e.g. weights and biases. In the following, it will be assumed
that the architecture, i.e., the number and breadth of the individual neural network
layers, and the choice of additional components such as skip connections or batch
normalization layers is fixed, as the choice of architecture of the neural network
implementing the observation function Γζ is not the focus of this chapter. It will be
thus assumed from now on that Γζ belongs to the set F .

The choice of an appropriate neural architecture for Γζ , i.e., the definition ofF can
be driven by previous results on image generation. However, the problem of training
Γζ , that is to say, the optimization on F , such that Γζ maps VAR noise to plausible
visual process trajectories is not always easily solvable. As discussed in Section 2.6,
separately learning the latent state space model in Eq. (5.2a) and the observation
function of Eq. (5.2b) may not bring the desired results, because it is hard to justify
that the optimality gap caused by learning these two aspects separately does not
have considerable impact. This chapter develops a method to learn the parameters
A and B of Eq. (5.2a) jointly, alongside the observation function Γζ of Eq. (5.2b).
Specifically, the contributions are as follows.

• A deep generative framework is introduced with the capability to learn models
described by Eq. (5.2) from video sequences of visual processes. To this
end, a modified VAE is employed, in which the function Γζ is realized by
its decoder. The matrices A and B are implemented using an additional
linear (dense) neural layer that can be trained alongside the VAE. That way,
A and B can be treated as weights of the neural network and thus trained
simultaneously with Γζ .

• A regularization is proposed which ensures that the marginal distribution of
the latent space does not change over time. This accounts for stationarity
assumptions and allows for stochastic optimization algorithms that make it
possible to train the neural architecture by providing only one pair of video
frames at a time.

• In order to evaluate the proposed framework, synthesis experiments on syn-
thetic sequences and on dynamic textures are carried out. To this end, the
framework is first trained using frame pairs of a training video, and then a
synthesized sequence is generated by sampling from autoregressive noise
described by A and B, before mapping the noise to M using Γζ .

82

5.1. Assumptions on the Statistics

It is worth noting that this chapter is not the first approach to combine VAR-like
state transitions with VAEs. For instance, one of the works in literature that has
done so is the graphical model presented in [62]. It relies on conditional random
fields [71], in order to factorize the sequential likelihood term, incorporate it into the
variational lower bound, and optimize it via stochastic gradient descent. Further-
more, the work [125] proposes a VAE-based locally linear dynamic model, that is
inferred from simulated images of a mechanic system with the aim to control said
system. Behavior of the latent spaces is modeled by the equation

xt+1 = A(x̄t)xt +B(x̄t)ut + o(x̄t) + vt. (5.4)

The parametersA (state transition),B (control signal transformation) and o (offset)
are functions of points x̄t on the desired state trajectory that are computed from x̄t
using a neural network. This network is trained, along with the rest of the architec-
ture by optimizing an adapted version of the variational lower bound. Similar model
assumptions are made in [63], where VAEs are used for state space model identi-
fication of dynamic systems. Similarly, the authors of [69] propose an algorithm to
employ VAEs as Kalman filters. To do so, they substitute the inference based on the
linear parameters of a classical Kalman filter by the variational inference, in which
the VAE encoder is used to compute the prospective state distribution.

Subject of an ongoing controversy in building generative models is the question
of evaluation. Specifically, it is necessary to assess whether the learned statistics
accurately describe the underlying process that has produced the training data. Due
to the lack of an objective quantitative measure, it is common to refrain to simple
visual inspection of the generated data samples [46]. This approach is therefore also
pursued in this chapter. Nevertheless, this chapter aims to provide results that are
both transparent and reproducible by evaluating the approach first on sequences for
which the behavior is easily predictable, before moving on to more realistic examples
that offer more room for disagreement on the synthesis quality.

5.1. Assumptions on the Statistics

The existence of GANs and VAEs has shown that photo-realistic deep generative
models for video data can be learned even with limited computational resources and
in finite time. This success is not directly applicable when, along with the spatial vi-
sual properties, some temporal behavior needs to be learned. One reason for this
is the limitation in available data. It is reasonable to assume that we can gather a
sufficiently large amount of pictures to train a still-image generation model, but it is
difficult to collect a large number of sequences of one particular visual process. An-
other reason is that observations at one moment can have impact onto the distant
future of the visual process behavior. That could potentially imply that the frame-

83

5. Dynamic Variational Autoencoders

work needs to process an entire video sequence at once to infer its spatio-temporal
statistics, which could quickly become computationally infeasible.

To make the problem of learning the model tractable, this section introduces some
assumptions about the visual process at hand. The first assumption will allow us
to treat every training sequence as a collection of small sub-sequences, which in
turn leads to a decrease in computational demand. Furthermore, it leads to an
increase in the amount of training samples, as every sub-sequence can be treated
as a training sample. The assumption requires the following two definitions.

Definition 2. Let the sequence of random variables (yt)t∈Z be governed by a
stochastic process. It is said that the process has the Markov property of order T ,
if for any t ∈ Z the conditional distribution of yt given the τ preceding observations
is the same for any τ ≥ T . Formally, given a sequence of observations y1, . . . ,yT ,
and any additional set of observations {yt1 ,yt2 , . . . } with T < t1 < t2 < . . . , the
equation

p(yt|yt−1 = yt−1, . . . ,yt−T = yt−T)

=p(yt|yt−1 = yt−1, . . . ,yt−T = yt−T ,yt−t1 = yt−t1 ,yt−t2 = yt−t2 , . . .)
(5.5)

holds for any t ∈ Z.

Definition 3. Let the sequence of random variables (yt)t∈Z be governed by a
stochastic process. It is said that the process is stationary with order T , if the joint
distribution of any T members does not change over time. In more formal terms,
consider the index sequence t1, . . . , tT ∈ Z. Then, the respective joint probabilities
satisfy

p(yt1 , . . . ,ytT) = p(yt1+τ , . . . ,ytT +τ) (5.6)

for any τ ∈ Z.

Equipped with these two concepts, we can formulate the following assumption.

Assumption 1. The visual processes of interest are second-order stationary first-
order Markov processes.

The stationarity property accounts for the observation that the spatio-temporal
behavior of typical visual processes does not change over time. It is thus a realis-
tic assumption to make. More importantly, the stability property discussed in Sec-
tion 2.1 that is typically assumed in the context of visual processes is also implied
by Assumption 1. The Markov assumption may not be quite accurate in reality, but
it greatly facilitates statistical inference. Theoretically, the method presented in this
chapter can be generalized to Markov processes of higher orders. This is shown
conceptually in Appendix B.2.

The second assumption is related to the technical setup of deep generative mod-
els that typically model the latent variables as standard Gaussian noise. To this end,

84

5.2. Distributions of Frame Pairs

it exploits the ambiguity of the model in Eq. (5.2) with respect to linear transforma-
tions of the latent state space. Since Γζ is implemented via a neural network, we
can ensure that it accounts for a possible change of basis. The following assumption
can thus be made without loss of generality.

Assumption 2. The latent samples xt abide a standard Gaussian distribution, i.e.,
xt ∼ N (xt; 0, In).

If the state transition matrixA is given, and the process is stationary, i.e., p(xt) =
p(xt+1) for all t, then Assumption 2 essentially identifies the process noise model.
Recall that the latent VAR model in Eq. (5.2a) is given by xt+1 = Axt +Bvt. By
taking into account that vt is i.i.d. zero-mean standard Gaussian noise, this yields

Ext

[
xtx
>
t

]
= Ext+1

[
xt+1x

>
t+1

]
, (5.7)

which is equivalent to

In = Ext,vt

[
(Axt +Bvt) (Axt +Bvt)

>
]

= Ext

[
Axtx

>
t A
>
]

+ Evt

[
Bvtv

>
t B

>
]

= AA> +BB>.

(5.8)

This means that in order to make sure that the latent states xt remain standard
Gaussian in sequential synthesis scenarios, i.e.,

Ext

[
xtx
>
t

]
= In, ∀t, (5.9)

it suffices to ensure the equality In = AA> + BB>. Note that this implies the
stability condition

‖A‖2 ≤ 1, (5.10)

which was discussed in Section 2.1.

5.2. Distributions of Frame Pairs

After introducing Assumption 1 and Assumption 2, let us once again return to the
case where the matrix

Y =
[
y1 · · · yN

]
∈ Rd×N (5.11)

contains an observed sequence of a visual process. It can be seen as an observa-
tion of the matrix-valued random variable

YN =
[
y1 · · · yN

]
. (5.12)

85

5. Dynamic Variational Autoencoders

Furthermore, let the random variable

XN =
[
x1 · · · xN

]
(5.13)

follow the statistics of latent state sequences described by Eq. (5.2a). Consider now
a third random variable

ỸN =
[
ỹ1 · · · ỹN

]
:=
[
Γζ(x1) · · · Γζ(xN)

]
. (5.14)

In order to model the visual process by Eq. (5.2), we need to make sure that the
joint probability distributions of YN and ỸN coincide for any N ∈ N. Due to As-
sumption 1, this is equivalent to demanding that the joint probability distributions for
two succeeding frames coincide, i.e.,

p (Y2) = p
(
Ỹ2

)
. (5.15)

The random variable
Ỹ2 =

[
Γζ(x1) Γζ(x2)

]
(5.16)

is determined by the according latent variable X2 for which the joint probability is
zero-mean Gaussian. More specifically, we can deduce

Ext,xt+1 [xtx
>
t+1] = Ext,vt [xt(Axt +Bvt)

>] = A> (5.17)

due to Assumption 2. For all t, this yields[
xt

xt+1

]
∼ N

([
xt

xt+1

]
; 0,

[
In A>

A In

])
. (5.18)

If A and ζ are given, samples from p(Ỹ2) can be generated by creating observa-
tions of the random variable in Eq. (5.18) and transforming both parts, xt and xt+1

via Γζ . To do so, A and ζ need thus to be learned first. This could be done by
means of a VAE. However, VAEs expect standard Gaussian noise at the input and
do not provide a natural way to learn a parameterized latent distribution. Therefore,
in order to use a VAE to learn these parameters, additional changes to the VAE
algorithm are required.

5.3. The Dynamic Layer

The previous section rephrases the problem of learning joint probabilities for se-
quences of random variables with length N ∈ N as learning the probabilities for
sequences of length 2. Given Y ∈ Rd×N , we can collect N − 1 such sequences by
merging each pair of succeeding frames together as

Ypairs =
[
y2

1 · · · y2
N−1

]
=

[
y1 · · · yN−1

y2 · · · yN

]
∈ R2d×N−1.

(5.19)

86

5.3. The Dynamic Layer

Next, we want to use these sequences to learn a CNN Γζ and a matrix A such
that observations [x>1 ,x

>
2]> of the random variable [x>1 ,x

>
2]> with a distribution as

described in Eq. (5.18) are mapped to samples

ỹ2 =

[
Γζ(x1)
Γζ(x2)

]
, (5.20)

that abide the same statistics as the columns of Ypairs. Consider now the block
matrix

F =

[
In 0
A B

]
, (5.21)

and yet another random variable

h =

[
h1

h2

]
∼ N (h; 0, I2n). (5.22)

Multiplying h by F from the left results in a random variable Fh which is zero-mean
Gaussian with the covariance matrix

FF> =

[
In A>

A AA> +BB>

]
. (5.23)

Now, if A and B fulfill the stationarity condition

AA> +BB> = In, (5.24)

then Fh abides the distribution assumption in Eq. (5.18).
By denoting the tuple of parameters that describe Eq. (5.2) by

θ = (ζ,A,B), (5.25)

let us define the function

fθ : R2n → R2d,[
h1

h1

]
7→
[

Γζ (h1)
Γζ (Ah1 +Bh2)

]
.

(5.26)

If the function fθ can be learned to map standard Gaussian noise to samples abid-
ing the same distribution as the columns of Ypairs, then Eq. (5.2) with the learned
parameters ζ,A,B accurately describe the visual process at hand, given Assump-
tion 1. The learning can be carried out by employing fθ as the decoder of a VAE
and learning θ by stochastic gradient descent using the columns of Ypairs as train-
ing data. Figure 5.1 depicts the VAE decoder architecture implementing fθ. The
multiplication by F is realized via an upstream dense linear layer. Let us denote
this building block the dynamic layer and the overall resulting VAE architecture a
Dynamic VAE (DVAE).

87

5. Dynamic Variational Autoencoders

[
In 0
A B

]
·

(dynamic layer)

Γζ(·)

Γζ(·)

[
h1

h2

] x1

x2

y1

y2

split join ỹ2

Figure 5.1.: Decoder of a dynamic VAE with a dynamic layer. The input [h>1 ,h
>
2]> is first

linearly transformed by a left-multiplication with the matrix F as defined in Eq. (5.23). This
results in a new vector x that is split into two subvectors of the the same size that are both
subjected to the neural network implementing the observation function Γζ . The two outputs
are finally concatenated to yield ỹ2. During training, the loss with respect to the input image
pair is backpropagated to learn A,B and ζ.

5.4. Training the DVAE

As for the procedure and the loss function to be optimized, we need to keep in mind
that the stationarity property in Eq. (5.24) needs to remain fulfilled. This can be
enforced by means of a simple regularization term added to the variational lower
bound. This results in the overall loss

LDVAE(A,B, ζ,ϑ)

=LVAE((ζ,A,B),ϑ) + λ‖AA> +BB> − In‖F

=

N−1∑
t=1

1

σ2
y

Eh∼qϑ(h|y2=y2
t)

[
‖yt − Γζ(h1)‖2 + ‖yt+1 − Γζ(Ah1 +Bh2)‖2

]
+ 1>(σh(y2

t ,ϑ)− logσh(y2
t ,ϑ)) + ‖µh(y2

t ,ϑ)‖2

+ λ‖AA> +BB> − In‖F ,

(5.27)

which can be optimized via all common stochastic gradient-based algorithms, by
randomly sampling from the training pairs y2

1, . . . ,y
2
N−1 and the posterior model

distribution qθ(h|y2).

5.5. Experiments

The following experiments evaluate the proposed model by generating artificial se-
quences of previously observed visual processes. Synthesis is performed by sam-
pling from the VAR model described by

ht+1 = Aht +Bvt,

vt ∼ i.i.d. N (vt, 0, In),
(5.28)

88

5.5. Experiments

and mapping the latent states to the observation space by means of Γζ . The initial
latent state h0 is estimated by applying the encoder to a frame pair from the training
sequence and obtaining the expected value of the approximate posterior.

Evaluating generative models is always challenging. Goodfellow et al. emphasize
this problem in Chapter 20.14 of their introductory book on Deep Learning [46].
Most importantly, they note that any generative model can easily mimic a training
distribution by simply reproducing the exact same samples that have been used
for training. A good evaluation metric would thus need to ensure that it does not
reward models which produce data resembling the training samples too much. On
the other hand, such a constraint could easily undermine the very purpose of an
evaluation metric, since similarity to the training data typically does indicate that the
right distribution has been learned.

In the case of video synthesis, the problem is even more difficult, since an evalua-
tion metric would need to reward the visual quality, the temporal consistency and the
diversity of the generated video frames, while not favoring models that are too pre-
dictable. For instance, to measure the quality of a synthesized frame, one may be
tempted to quantitatively evaluate a distance measure, e.g. peak signal-to-noise-
ratio (PSNR), between a synthesized and a ground truth frame from the training
sequence. For two signals y1,y2 ∈ Rd, the PSNR is defined as the logarithm of
the ratio between the maximal possible pixel value and the mean squared error.
Assuming normalized images, this amounts to

PSNR(y1,y2) = −10 log10

1

d

d∑
i=1

((y1)i − (y2)i)
2 . (5.29)

However, such a quality metric would yield the best results for entirely predictable
models, which is generally the exact opposite of what video synthesis tries to
achieve.

To the author’s best knowledge, automated evaluation techniques for video syn-
thesis are still lacking, so research in this field is often performed by visual inspec-
tion with the help of human test subjects, as was suggested for instance in [123] and
[119]. This was not done in the scope of this work due to lack of resources. Instead,
evaluation of the presented approach is focused on visually contrasting the video
synthesis results to those produced by baseline methods and to discuss observed
shortcomings and advantages. In settings where it is appropriate, these discussions
are complemented by some quantitative results. Specifically, the Fréchet inception
distance (FID) [55] is used to evaluate the visual quality of the synthesis results.
The FID score is essentially a distance measure between two Gaussian distribu-
tions computed from CNN features of two different sets of images and has become
a widely used measure to evaluate the visual quality of GAN generated images.

The remainder of the experimental section is divided into two subsections. The
first subsection evaluates the Dynamic VAE on sequences of spatial transformations

89

5. Dynamic Variational Autoencoders

with little randomness. Artificial sequences are employed for this purpose. In order
to create these sequences, simple image data sets are used. The first type of
sequences is created using the famous MNIST data set [73] containing 28 × 28
pixel depictions of handwritten digits. These images are used to create videos of
repeating number cycles such as 1234512345 . . . The other employed data set is
the Small NORB database [74] that contains pictures of miniature figures at different
poses and under varying illumination settings. These images are used to create
sequences of azimuthal rotations.

The aim of the first subsection is to show that the Dynamic VAE actually learns a
proper dynamic model and not just the appearance of individual frames. Primarily,
the results are compared to the LDS model in Eq. (1.5) from [38] in order to show
the advantage of a non-linear observation space assumption. Besides, a separate
model created by learning the VAE before learning the latent VAR parameters by
MSE minimization in the latent space is employed, to demonstrate the advantage of
learning the observation space and the dynamics jointly. Subsection 5.5 thus also
serves as an ablation study that evaluates the advantage of the dynamic layer.

The second subsection evaluates the Dynamic VAE on the problem of dynamic
texture synthesis. The results are compared against the LDS model in Eq. (1.5).
In order to demonstrate that the model is not only a simple way to describe the
stochastics of visual processes, but also competes with state-of-the-art techniques,
the results are additionally compared against those produced by the recent Spatial-
Temporal Generative Convnet (STGCONV) method [127] and the follow-up work on
the Dynamic Generator Model (DGM) [126], in cases where the baseline results
were made available. For the sake of quantitative comparability, the FID score is
employed for this series of experiments. Its computation is performed via publicly
available third-party code [110].

A Deep Convolutional GAN (DCGAN, [99]) generator has been employed as the
foundation for implementing the observation function Γζ , used in combination with
an affine layer at the input. This layer accounts for changes of bases in the latent
space in order to conform with Assumption 2 and reduces the latent dimension to
make the search for the transition matrix A feasible. All batch normalization layers
have been removed from the network implementing the observation function. The
reason for this adaptation is that batch normalization layers remove the mean and
normalize the variance of layer outputs, which contradicts the VAE principle that re-
lies on sampling from Gaussian distributions of different first and second-order mo-
ments. Specifically, the posterior distribution of the latent variables conditioned over
the observations are modeled as Gaussians with different first and second-order
statistical parameters. Batch normalization would standardize these parameters,
which in turn would make the decoder neglect the observations provided to the en-
coder during training. As the encoder of the VAE, the discriminator of the DCGAN
has been used. Furthermore, the number of encoder output channels have been
adapted to be 2n, where n is the latent dimension of the model.

90

5.5. Experiments

Experiment Resolution Conv. layers Kernel size σ2
y λ

MNIST 32× 32 4 4 8.0 100.0
Small NORB 96× 96 5 6 16.0 100.0

Running Cows 64× 64 5 4 10.0 100.0
Salt+Pepper mask 64× 64 5 4 4.5 100.0
Rectangular mask 128× 128 5 8 8.0 100.0

Dyn. Textures 128× 128 5 8 16.0 100.0
Dyn. Textures (Table 5.3) 64× 64 5 4 8.0 100.0

Table 5.1.: Experimental configuration

Training

LDS

VAE

DVAE

Figure 5.2.: Synthesis of MNIST sequence 0123401234. . . The numbers of the sequence
synthesized by the DVAE correspond to the training sequence, while the writing style is
random.

The latent dimension was set to n = 10 for all experiments. The number of
convolutional layers and the size of the convolutional kernel of the decoder output
layer (encoder input layer) were varied to match the resolution of the input data. The
exact configuration is listed in Table 5.1.

Transformation Sequences

The first experiment investigates DVAE behavior on sequences of handwritten
MNIST numbers. Even though this experiment is quite artificial, it provides con-
siderable insight into how well the spatial and temporal statistics of the visual pro-
cess are captured. Fig. 5.2 depict the synthesis result for the number sequences
0123401234. . . . Additional results can be found in Appendix C.1. The proposed
model captures the two essential features of this visual process. On the one hand,
the particular number in a frame is entirely deterministic and can be inferred from
the previous frame. On the other hand, the way the number is drawn is random and
unpredictable. By contrast, the separate VAE+VAR model is only able to capture the

91

5. Dynamic Variational Autoencoders

Training

LDS

VAE

DVAE

Figure 5.3.: Rotation sequence of Small NORB images (Category 0, Instance 9)

appearance of the numbers and cannot reproduce the number ordering, while the
linear model generates hardly recognizable frames.

To investigate the behavior on deterministic sequences of rigid transformations,
Category 0 of the Small NORB dataset that contains pictures of miniature animals
under six different lighting conditions, nine elevational and 18 azimuthal poses is
employed. The aim is to synthesize sequences of azimuthal rotations of 20◦ per
frame. Fig. 5.3 depicts the synthesis for instance 9 (Horse). More results can be
found in Appendix C.1. Overall, the DVAE manages to learn correct frame-to-frame
transitions, apart from occasional jumps of 180◦. It is interesting that while the
separate VAE+VAR model again appears to learn the proper observation space, the
linear model does a better job at capturing the rotation of the object, even though it
is also learned separately. This contradicts the widely accepted assumption [99, 8]
that convolutional deep generative models naturally produce parametrizations that
map spatial manipulations of natural images, such as translations and deformations,
to linear displacements in the latent space.

Fig. 5.4 depicts synthesis results for the artificially rendered Running Cows se-
quences [127]. The results are compared against STGCONV and classical LDS.
It can be observed that although occasional discontinuities occur in the sequence
synthesized by the DVAE, as can be seen in the third and forth frame depicted
in Fig. 5.4, the overall running movement is accurately reproduced. Unlike LDS
or STGCONV, this is done without major visible perturbations. Figure 5.5 visualizes
how the different algorithms behave with respect to finer details in the visual process.
In the magnified region, it can be observed that LDS tends to blur out fast-moving
details, while STGCONV introduces artifacts. Even though it can be also seen that
the sequence synthesized by DVAE does not follow the exact pace of the training
sequence, the produced results still follow the trained motion pattern without losing
too many details or introducing defects.

The DVAE is also capable to learn from incomplete data, i.e., from videos where

92

5.5. Experiments

Training 1

Training 2

Training 3

Training 4

Training 5

LDS

STGCONV

DVAE

Figure 5.4.: Synthesis results for the Running Cows sequence

93

5. Dynamic Variational Autoencoders

Training sequence LDS STGCONV DVAE

Figure 5.5.: Sixth frame of synthesized videos for Running Cows sequence

Training

Mask

Synthesis

Figure 5.6.: Synthesizing a sequence learned on data obstructed by a rectangular mask

Training

Mask

Synthesis

Figure 5.7.: Synthesizing a sequence learned on data obstructed by a salt+pepper mask

94

5.5. Experiments

Training

LDS

STGCONV

DGM

DVAE

Figure 5.8.: Synthesis of dynamic texture Fire Pot

only a subset of pixels are visible while the rest is obstructed. For this purpose,
the obstruction mask must be available. In such a scenario, the training objective
is only applied to the available pixels. To demonstrate this capability, the DVAE was
trained with a partially obstructed sequence and the obstruction mask was provided
as an additional input to the DVAE encoder. Fig. 5.6 and Fig. 5.7 depict two syn-
thesis results for this experimental setting. In the former case, a video sequence
was obstructed by a square mask that keeps its shape but changes its location over
time. The training sequence, the mask and the synthesis result can be observed in
Fig. 5.6. Likewise, Fig. 5.7 depicts the synthesis result for 50% salt+pepper obstruc-
tion, i.e., masking of pixels that are selected independently with 50% probability in
each frame.

Dynamic Textures

Sequences of eleven dynamic textures that were provided in the supplementary
material of the texture synthesis work [127] were used for this experiment. The
DVAE is capable to capture both the dynamics as well as the appearance of the
training videos. Fig. 5.8 depicts synthesis results for an example visual process.
Appendix C.1 contains results for ten other dynamic textures. The DVAE results
appear slightly blurrier than the sequences produced by STGCONV. However, un-
like DVAE, the STGCONV framework has the tendency to reproduce the training
sequence frame by frame. Fig. 5.8 illustrates this phenomenon. While, at each time
step, the frame synthesized by STGCONV appears to be a perturbed version of the

95

5. Dynamic Variational Autoencoders

Sequence LDS STGCONV DGM DVAE

Flowing Water 233.2 - - 163.9
Boiling Water 146.6 - - 175.8

Sea 113.4 - - 64.1
River 222.8 103.3 - 109.8

Mountain Stream 186.4 - - 209.9
Spring Water 329.8 231.7 - 235.8

Fountain 243.9 273.9 - 133.3
Waterfall 347.0 236.7 - 336.1

Washing Machine 87.8 - - 134.8
Flashing Lights 157.8 166.5 265.3 125.9

Fire Pot 187.4 188.8 145.4 115.4

Table 5.2.: FID scores (compared to training data)

according training frame, DVAE leads to an evolution completely different from the
training sequence. DGM does not have this problem, but the frame-to-frame transi-
tion can appear slightly unnatural at times, resembling a fading of one frame into the
next.

For quantitative comparision, FID scores between synthesized frames and frames
from the training sequences have been computed. Two series of experiments have
been carried out with this aim. First, 50 frames from each synthesized sequence in
the results described above were compared to the frames in the respective training
sequence. Table 5.2 summarizes these results. Since the comparison is carried out
directly with respect to the frames that were used for training, the results are prone
to favor simplistic models that reproduce the ground truth sequence by copying its
frames. Despite this flaw of evaluation strategy, the results have been included in
this section, as they still provide a visual quality metric and ensure comparability to
publicly available results of baseline models.

For the second FID score comparison, the ground truth sequences were split such
that the last ten frames of each sequence were not used for training. Rather, the 50
synthesized frames were compared to these remaining ten frames, achieving that
the synthesis result is not compared to the training data. Since no baseline data for
STGCONV and DGM is available for this configuration, the DVAE is only compared
to LDS as synthesis via LDS based models can be easily implemented. Table 5.3
contains the resulting FID scores. To speed up the evaluation, this experiment was
carried out using a smaller resolution than in Table 5.2. See Table 5.1 for details.

One should keep in mind that FID, just like any other quantitative measure, pro-
vides only limited insight into the quality of a generative model. Beyond that, it
considers still-image frame individually rather than in a temporal context. Visual in-
spection thus remains an important tool for assessing the quality of visual process

96

5.6. Discussion

Sequence LDS DVAE

Flowing Water 227.2 179.0
Boiling Water 244.8 229.2

Sea 140.5 149.1
River 227.8 160.8

Mountain Stream 343.1 305.1
Spring Water 445.4 382.3

Fountain 263.5 179.4
Washing Machine 415.8 412.0

Flashing Lights 229.1 273.8
Fire Pot 239.9 253.3

Table 5.3.: FID scores (compared to data not in training sequence)

synthesis. Hence, Appendix C.1 provides an extensive overview of visual synthesis
results.

5.6. Discussion

In this chapter, a method to learn generative models of visual processes by adding a
dynamic layer to deep generative architectures such as VAEs is presented. Despite
having the quite simple mathematical form described by Eq. (5.2), it is capable of
reproducing realistic-looking sequences of visual processes.

It is evaluated in experiments on video synthesis and achieves results comparable
to state-of-the-art methods for dynamic texture generation. Unlike many common
approaches in video synthesis, such as [127] or [119], it does not require optimiza-
tion over the sequence to be synthesized. Instead, synthesis is performed by sam-
pling from the latent VAR noise, which means that the numerical complexity does
not increase supralinearly with the sequence length.

While the chapter has put emphasis on synthesis as an application example, it
could also be interesting to investigate other problems in visual processes. Possible
applications are for instance the following ones.

• Since the model makes it possible to sample from the distribution of N -length
sequences of a visual process, determining the plausibility of an observed
sequence for anomaly detection could be carried out by evaluating a similarity
measure between the observed sequence and a set of Monte Carlo samples
created via the model.

• Dynamic texture synthesis has been previously successfully applied in com-
bination with style transfer to alter the appearance of generated sequence or

97

5. Dynamic Variational Autoencoders

to animate paintings or photographs. Doing so for the present model could be
for instance by applying still-image style transfer to synthesized sequences or
by altering the observation error model in the variational lower bound from a
pixel-based model to one over style-defining moments.

• Since the model is capable of learning from incomplete data, it could be the-
oretically possible to also apply it to inverse problems, such as hole filling or
temporal interpolation.

Appendix B discusses potential extensions of the proposed framework.
One shortcoming of the presented model is the low resolution of the synthesized

sequences. In principal, increasing the number of layers, or the sizes and strides of
the convolutional layers can increase the resulting resolution, but again, this is lim-
ited by computational resources. An alternative is to apply superresolution methods
to the synthesized frames, for instance, approaches that have been successfully ap-
plied to still images. The following chapter presents a superresolution method and
investigates experimentally, if it can also be applied to synthesized visual process
sequences.

98

6. Post-processing via Super-resolution

One of the most difficult challenges in visual process synthesis is to produce natural-
looking sequences of a sufficiently high resolution. With increasing number of pix-
els, synthesis becomes more prone to failure due to computational demand. The
resolution of the sequences produced by the DVAE algorithm in Chapter 5 can be
increased by adding more trainable convolutional or fixed upsampling layers. Specif-
ically, increasing the depth of the neural network implementing the observation func-
tion Γζ in the previous chapter can increase the number of pixels, since every layer
typically performs implicit upsampling of its input. Nevertheless, such adaptations
reach their limits sooner or later. This is not just due to hardware constraints such as
GPU memory, but also because increasing the number of parameters make models
more likely to overfit or get stuck in local minima during optimization.

A potential alternative approach is to increase the resolution by post-processing.
In that case, first a low-resolution video sequence would be generated by a video
synthesis algorithm. Next, it would be upscaled by a super-resolution algorithm.
While such an approach also has its limitations, it could theoretically increase the
maximal resolution of a video generated by a visual process synthesis method, as
the two steps are carried out subsequently.

Super-resolution is a classical inverse problem in computer vision and image pro-
cessing and can be interpreted as an under-determined system of linear equations
[58]. Generally, solving such problems requires additional constraining of the solu-
tion set. This is done by incorporating additional model assumptions, so-called pri-
ors. In their simplest form, priors are handcrafted regularizers that promote certain
properties assumed about the data at hand. A prominent example is total variation
(TV) regularization [103] that favors piecewise smooth solutions. More sophisticated
priors require some form of learning procedure applied to the input image in order
to infer additional structural information. For instance, it is common to assume that
localized patches of a natural image have a sparse representation with respect to
some dictionary [129].

Nowadays, deep learning based approaches are considered the state of the art
at solving inverse computer vision problems, including super-resolution [72, 51, 75].
However, unlike the traditional “shallow” algorithms mentioned above, they rely on
external image data sets to be trained on.

In any case, super-resolution increases the resolution of a given image by adding
pixels to it based on certain assumptions about the properties these pixels should
fulfill. These assumptions can be explicit, as in the case of TV that is designed fol-

99

6. Post-processing via Super-resolution

lowing the observation that natural images rarely exhibit any abrupt changes in color.
They can also be gathered from example data, as is the case for many deep learn-
ing based approaches. Since these assumptions are not necessarily considered in
the design of the visual process model, they can be exploited to further enhance its
visual quality.

While methods for the solution of inverse problems in deep learning often involve
large training sets, it was mentioned before that training is only one of several factors
that explain the success of deep learning. Notably, the deep image prior (DIP) [121]
has recently demonstrated that a deep CNN can still provide superior performance
on different kinds of inverse problems, even though it is trained exclusively on the
input image itself, thus leveraging the advantages of traditional and deep learning
algorithms.

The aim of this chapter is to develop a super-resolution technique and to inves-
tigate to what extent it is applicable to improve the visual quality of video synthesis
results. This super-resolution algorithm is based on an alternative training objective
of DIP. When evaluated on still images, it outperforms the classical DIP formulation
in terms of the PSNR score on common super-resolution benchmarks. It also yields
superior results when compared against other super-resolution approaches that do
not rely on additional data. Solely deep learning methods that have been trained on
large image datasets are shown to significantly outperform the approach described
in this chapter.

In the theoretical descriptions of this chapter, the proposed algorithm is not dis-
cussed with regard to visual processes, since it does not conceptually differ from
any common still-image super-resolution technique. The experimental section then
provides an assessment of applicability to visual processes. Since the targeted
application scenario revolves around video synthesis, objective assessment is chal-
lenging due to the lack of ground truth data. As in Chapter 5, the evaluation thus
refrains to a combination of FID score comparison and visual inspection.

6.1. Super-resolution as an Inverse Problem

Super-resolution describes the process of reconstructing a high-resolution signal
z ∈ Rτd from a low-resolution version y ∈ Rd with τ ∈ N being the sampling
rate. For the sake of simplicity, let us treat y and z as one-dimensional signals,
since generalization to 2D images is straightforward. It is assumed that the signal
y results from filtering of z ∈ Rτd with a filter h ∈ Rkτ with k ≤ d, followed
by a downsampling operation with the factor τ . To formalize this relationship, the
downsampling operation is defined as

DSτ : Rτd → Rd,[
y1 y2 · · · ydτ−1 ydτ

]> 7→ [
yτ y2τ · · · y(d−1)τ ydτ

]>
.

(6.1)

100

6.2. The Deep Image Prior

Additionally, let the star operator ? denote discrete cross-correlation. The two sig-
nals z and y are then related via the equation

y = DSτ [h ? z]. (6.2)

Eq. (6.2) is a linear operation and can thus be written as a matrix-vector multipli-
cation. If we split up the filter h into subfilters h1, . . . ,hk ∈ Rτ of the same size,
i.e., if we write it as

h> =
[
h>1 h>2 · · · h>k−1 h>k

]
, (6.3)

then we can define the matrix

H =



h>1 h>2 · · · h>k−1 h>k
h>1 h>2 · · · h>k−1 h>k

.
h>1 h>2 · · · h>k−1 h>k

h>1 h>2 · · · h>k−1
.

...
h>1 h>2

h>1


. (6.4)

Note thatH ∈ Rd×τd can be generated by first creating a Toeplitz matrix in Rτd×τd
from the the row vector h and sampling every τ th row from it. Using this definition,
Eq. (6.2) can be rewritten as the matrix-vector product

y = Hz. (6.5)

Clearly, Eq. (6.5) is an under-determined system of equations. Uniquely recovering
z exclusively from the observation y is thus generally not possible, unless we can
make additional assumptions about z. Like many other inverse problems, super-
resolution can be phrased as the problem of choosing, formalizing and implementing
appropriate assumptions with regards to z.

6.2. The Deep Image Prior

As the proposed super-resolution algorithm is based on DIP, this section reviews
how DIP is used to solve inverse problems.

Linear inverse problems are typically characterized by a (full-rank) degradation
operator AIP ∈ Rd×nIP , d < nIP and an optional noise term η ∈ Rd. The observa-
tion y is thus related to the original signal z via

y = AIPz + η. (6.6)

101

6. Post-processing via Super-resolution

DIP is a framework for solving inverse problems described by Eq. (6.6). To this
end, it employs a CNN which generates the reconstruction from a fixed noise vector
r ∈ Rd̃. Let us write the function described by the CNN as

Tν : Rd̃ → Rd, (6.7)

where ν denotes its trainable parameters and the set containing all realizable func-
tions using the same architecture as

T =
{
Tν : Rd̃ → Rd

∣∣ ν ∈ RD
}
. (6.8)

Given some randomly chosen input r, DIP optimizes the objective function

LDIP(ν) = ‖AIPTν(r)− y‖2, (6.9)

and returns
ẑDIP = Tν̂(r) (6.10)

with
ν̂ = arg min

ν∈RD

LDIP(ν) (6.11)

as the approximated solution of Eq. (6.6). That is to say, the inverse problem is
solved by choosing z = Tν(r) such that Tν is the element of T that minimizes the
squared error in Eq. (6.9). Surprisingly, this approach produces impressively good
results for a large set of inverse problems, including super-resolution [121].

6.3. Proposed Method

To understand the proposed algorithm, it can be helpful to interpret Eq. (6.9) in
terms of the involved sets. If the problem is noiseless, such as is often the case for
super-resolution, then the solution set of Eq. (6.6) is an affine space of the form

V = {A+
IPy + z̃ | z̃ ∈ RnIP s.t.AIPz̃ = 0}. (6.12)

Conversely, the DIP set, i.e., the set to which a solution computed by DIP given an
input noise vector r is constrained, can be written as

Tr = {Tν(r) | Tν ∈ T }. (6.13)

Given a matrix W ∈ Rm×nIP , let us now define the W -weighted distance dW of a
point z ∈ RnIP to a setM⊂ RnIP as

dW (z,M) = min
z̃∈M

‖W (z − z̃)‖2. (6.14)

102

6.3. Proposed Method

The solution computed by DIP is thus essentially the point ẑDIP ∈ Tr that minimizes
the AIP-weighted distance to V. It can be expressed as

ẑDIP = arg min
z∈Tr

dAIP
(z,V). (6.15)

Unfortunately, constraining the solution to lie on Tr has some drawbacks. Note
that V and Tr are two sets that are typically disjoint in practice. This means that a
solution ẑDIP recovered via DIP from an observation y would not fulfill the property

AIPẑDIP = y. (6.16)

This may be desirable, when the noise perturbation by η is significant, but does not
make much sense in inverse problems where η ≈ 0, such as in noiseless super-
resolution. This problem could be overcome by projecting ẑDIP onto V, once it
is determined. However, there is another problem with formulation Eq. (6.15) that
occurs when the objective is employed in combination with a regularizerR : RnIP →
R. Such a term can be added to the loss function in order to enforce solutions that
fulfill certain complementary properties. Adjusting Eq. (6.15) (and thus Eq. (6.9)) in
such a way yields

ẑDIP,reg = arg min
z∈Tr

dAIP
(z,V) + λregR(z), (6.17)

where λreg > 0 is a tuning parameter. Consider now the extreme case where

R(z) = const. ∀z ∈ Tr (6.18)

holds. Then, adding R to the loss has no impact on the outcome no matter the
weight λreg assigned to it. Practically, this problem occurs with regularizers that
enforce certain properties on the high frequencies contained the image. Since DIP
tends to return smooth images, this additional guidance gets lost.

An alternative formulation to Eq. (6.9) is

Lbtwn(ν, z) = ‖Tν(r)− z‖2 + λreg‖AIPz − y‖2, (6.19)

where λreg > 0 is a tuning parameter. Eq. (6.19) searches for a solution somewhere
between V and Tr. However, this formulation does not account for the important
case η = 0.

Instead, let us consider an inversion of the perspective in Eq. (6.15), where in-
stead of searching for a solution on Tr that minimizes a distance to V, we search
for a solution on V that minimizes a distance to Tr. Given some weight matrix
BIP ∈ Rm×nIP ,m ≤ nIP, we can formulate the optimization problem as

ẑ = arg min
z∈V

dBIP
(z,Tr). (6.20)

103

6. Post-processing via Super-resolution

Tr

V

dBIP
(z,Tr)

ẑ

ẑDIP

dAIP
(z,V)

Figure 6.1.: Optimization procedures of Eq. (6.15) and Eq. (6.20). While classical DIP (blue)
searches on the CNN set Tr for a point that minimizes the distance to V (blue dashed line),
the proposed formulation (red) searches for a point on V that minimizes the distance to Tr
(red dashed line).

Now, the solution is guaranteed to fulfill exactly the conditions posed by the inverse
problem in Eq. (6.6). Additionally we can add a regularizer R(z) to Eq. (6.20) via

ẑ = arg min
z∈V

dBIP
(z,Tr) + λregR(z). (6.21)

The case
R(z) = const. ∀z ∈ V, (6.22)

would once again render the regularizer ineffective. However, in that case, R does
not provide any additional knowledge about the inverse problem anyway, since any
possible property enforced by R is already described by the inverse problem itself.
One further advantage is that Tν(r) is not regularized directly. That means the
optimization problem can be written in such a way that the gradient of R does not
need to be backpropagated through ν. This can avoid numerical complications that
tend to happen in neural network optimization when computing the gradient of exotic
loss functions for parameters of deep neural nets. Fig. 6.1 visualizes the difference
between Eq. (6.15) and Eq. (6.20).

104

6.4. Implementation with CNNs

6.4. Implementation with CNNs

Returning to the super-resolution problem in Eq. (6.5), letG ∈ R(τ−1)d×τd be a full-
rank matrix with columns that span the kernel ker(H) of H . Then, we can rewrite
the solution set V as

V = {H+y +G>s|s ∈ R(τ−1)d}. (6.23)

Rewriting the super-resolution problem following the paradigm in Eq. (6.20) while
constraining z to V, yields the weighted set distance

dBIP
(H+y +G>s,Tr) = min

ν∈RD
‖BIP(H+y +G>s− Tν(r))‖2. (6.24)

We can thus define a new loss function by

LDIP2(s,ν) = ‖BIP(H+y +G>s− Tν(r))‖2. (6.25)

Theoretically, the matrix BIP can be simply chosen to be the identity matrix. How-
ever, this may not be a working choice in practice. To illustrate the problem of such
a choice, let us consider the case where the filter h is simply a dirac-delta impulse,
i.e., a standard basis vector. Then, H consists of every τ -th row of the identity
matrix Iτd and G contains all the remaining rows that are not contained in H . In
that case, both y and s correspond to pixel values of the image to be reconstructed.
Practically, the vector s needs to be initialized with some meaningless values. These
values may have significant impact on the overall loss so that ν is adapted in a way
such that Tν(r) approximates s for the respective values. This leads to a situation,
in which s does no longer contribute sufficiently to the loss function and thus re-
mains close to its initialization. As a consequence, the computed solution is filled
in using meaningless initialization pixels. This problem can be mitigated by using a
weight matrix BIP that makes sure that s does not have a significant impact on the
loss during early phases of the optimization, so that the optimization is not heavily
affected by the error with respect to s during early iterations.

The matricesBIP,G,H are typically very large for real-world images. Backprop-
agating through such large matrices is computationally not feasible, unless they
can be implemented as (transpose-)convolutional layers or similar sparse struc-
tures. This is definitely possible for H , since it essentially describes a filtering
operation. Luckily, G can be also constructed in an according manner. Note that
G ∈ R(τ−1)d×τd can be any full-rank matrix that fulfills the condition

HG> = 0. (6.26)

105

6. Post-processing via Super-resolution

Now, consider a set of filters g1, . . . , gτ−1 ∈ Rkτ that fulfill the properties

h>k
h>k−1 h>k

...
.

h>2 · · · h>k−1 h>k
h>1 h>2 · · · h>k−1 h>k

h>1 h>2 · · · h>k−1
.

...
h>1 h>2

h>1


gi = 0, ∀i (6.27)

and
g>i gj = 0, g>i gi = 1, ∀i, j, i 6= j. (6.28)

Such a set can be created, for instance, using the SVD of the matrix in Eq. (6.27).
From g1, . . . , gτ−1, a set of matricesG1, . . . ,Gτ−1 can be generated, according

to the same principle as in Eq. (6.4). Then, the block matrix

G =
[
G1 · · · Gτ−1

]
∈ R(τ−1)d×τd (6.29)

is full-rank and fulfills the property in Eq. (6.26). Thus, multiplications involving G
can be implemented using convolutional or transpose-convolutional layers, because
the block components of G essentially realize the cross-correlation with the filters
g1, . . . , gτ−1.

Finally, let us fix
BIP =

[
H>

√
λGG

>]> , (6.30)

where λG > 0 is a parameter that controls the impact of obscured or perturbed
pixels that need to be interpolated by Tν .

That way, we can rewrite the objective in Eq. (6.25) as

LDIP2(s,ν) =‖H(H+y − Tν(r))‖2 + λG‖G(G>s− Tν(r))‖2. (6.31)

Empirical observations indicate that the tuning parameter λG should be chosen one
or a few orders of magnitude smaller than 1. As outlined in the previous section, the
optimization then does not get stuck at early estimates of s, thus avoiding early and
meaningless local minima.

Minimizing Eq. (6.31) yields the optimum ν̂DIP2, ŝDIP2. The superresolved image
is then obtained via

ẑDIP2 = H+y +G>ŝDIP2. (6.32)

106

6.5. Experiments for Super-resolution with Ground Truth

6.5. Experiments for Super-resolution with Ground Truth

Before examining the proposed method on synthesized visual processes, this sec-
tion establishes that the described algorithm is an effective method when it comes to
classical super-resolution. For this purpose, the method is compared to other com-
mon super-resolution techniques on widespread still-image datasets and dynamic
texture sequences.

Still-image Super-resolution

The proposed algorithm was evaluated on the widely employed super-resolution
benchmarks Set5 [17] and Set14 [131] using magnification factor τ = 4 and
λG = 0.1. Code from the official project website [120] has been reused for the
DIP implementation to make sure any improvement over classical DIP is not due to
a different choice of hyperparameters. A Lanczos filter was used as h, even though
the actual filter that was used to perform the downsampling is unknown. Since many
super-resolution algorithms operate on gray-scale images only, it is common to cal-
culate the PSNR exclusively on the luminance channel of an image. Here, the PSNR
is computed on all three RGB channels. This explains why values for the DIP result
reported in [121] are slightly higher.

Both DIP and the proposed method are evaluated once without any regularization,
as well as using a TV prior as a regularizer. For a 2D image z with row and column
indexes i, j, this regularizer is defined as

RTV(z) =
∑
i,j

√
(z(i, j)− z(i, j − 1))2 + (z(i, j)− z(i− 1, j))2. (6.33)

For the classical DIP formulation and using a weight parameter λTV, the loss results
in

LDIP,TV(ν) = LDIP(ν) + λTVRTV(Tν(r)). (6.34)

The loss of the proposed method amounts to

LDIP2,TV(s,ν) = LDIP2(s,ν) + λTVRTV(s). (6.35)

In the following experiments, the value λTV = 10−3/(τd) was used. Note how in
Eq. (6.35), the regularizer is not a function of ν, as opposed to Eq. (6.34). This
means that the gradient of the numerically intricate square root does not need to be
backpropagated through the neural network weights, which reduces the chance of
numerical failure.

Table 6.1 presents the PSNR results of the proposed method in comparison to
the learning-free DIP and bicubic interpolation, as well as the deep learning based
LapSRN [72]. The proposed approach almost consistently leads to an improve-
ment in performance over classical DIP. Additionally, using a TV regularizer is less

107

6. Post-processing via Super-resolution

Bicubic DIP DIP+TV Proposed
Pro-

posed+TV
Lap-
SRN

Set 5

Baby 30.43 29.48 nan 31.29 31.35 32.02
Bird 28.09 28.91 29.11 29.68 29.83 30.42

Butterfly 20.90 24.46 24.65 24.71 24.83 25.52
Head 28.72 28.23 28.53 28.62 28.78 29.62

Woman 25.39 26.72 26.85 27.23 27.25 29.24
Avg. 26.71 27.56 - 28.30 28.41 29.36

Set 14

Baboon 20.26 20.16 20.19 20.47 20.46 20.60
Barbara 23.53 23.70 23.67 24.02 23.98 24.11
Bridge 23.07 23.01 23.01 23.39 23.46 23.93

Coastguard 24.00 24.19 24.31 24.34 24.32 24.81
Comic 20.16 20.80 20.88 20.93 20.94 21.35
Face 28.72 28.26 28.46 28.68 28.72 29.62

Flowers 23.64 24.20 24.17 24.73 24.80 25.23
Foreman 26.02 27.25 27.56 27.50 27.04 28.98

Lenna 28.36 28.53 nan 29.46 29.48 29.88
Man 24.42 24.61 24.66 25.19 25.25 25.99

Monarch 26.25 28.09 nan 29.22 29.30 30.13
Pepper 27.24 27.53 27.61 28.29 28.26 28.79

Ppt3 20.31 22.51 nan 22.80 nan 23.58
Zebra 22.79 24.17 24.02 24.87 24.60 25.65
Avg. 24.20 24.79 - 25.28 - 25.90

Table 6.1.: PSNR values for 4x super-resolution. Best and second-best results are written
in bold, and italic, respectively.

prone to numerical failures when employed with the proposed method as opposed
to the original DIP formulation. Figure 6.2 illustrates why the proposed formulation
tends to outperform classical DIP. The set Tr tends to not capture certain direc-
tional structures at very high frequencies, which can be also empirically observed
in experimental results presented in earlier works, e.g. [121], and is exploited in de-
noising problems. Restricting the solution to Tr thus causes a blurring out of such
structures. This is why, for instance, the DIP struggles to reproduce fine details such
as eyelashes, while the proposed method does not have this problem to that extent.

Application to Visual Processes

The preceding discussion indicates that the proposed method outperforms standard
learning-free interpolation methods such as bicubic interpolation but also the ba-
sic DIP algorithm as described in [121] when evaluated on still-image datasets. A
similar observation can be made with regards to video sequences.

108

6.6. Synthesized Sequences

Ground truth Bicubic DIP Proposed

Figure 6.2.: Reconstruction results for “Baby”. The proposed method manages to recon-
struct high-frequency details such as eyelashes that tend to be blurred out by the classical
DIP framework.

To demonstrate this, a super-resolution experiment has been carried out using the
dynamic texture sequences from [127] that were already investigated in Chapter 5.
The video sequences were first downsized to the resolution 256 × 256. Then, the
first nine frames were extracted to create ground-truth subsequences. These se-
quences were then further downscaled with the magnification factor τ = 2 to create
sequences with resolution 128 × 128 which were then fed to the respective super-
resolution algorithm. The classical DIP and the proposed method were employed
assuming a box filter for h, and the weighting parameter λG = 0.1 was chosen for
the proposed algorithm. Table 6.2 depicts the resulting PSNR values. Evidentially,
the proposed algorithm appears to perform better than bicubic interpolation and the
classical DIP formulation.

6.6. Synthesized Sequences

Let us now investigate if the proposed algorithm can be used as a post-processing
technique to enhance the dynamic texture synthesis results produced by the DVAE
framework presented in Chapter 5.

As with the synthesis experiments in Chapter 5, it is not possible to evaluate pixel-
by-pixel error measures, since no high-resolution ground truth exists for synthetic
video sequences. Therefore, the FID metric using the implementation in [110] once
again was employed due to the lack of a better metric.

109

6. Post-processing via Super-resolution

Bicubic DIP Proposed

Flowing Water 32.17 33.51 33.10
Boiling Water 42.03 41.71 43.03

Sea 44.4 44.51 45.14
River 32.83 32.85 32.73

Mountain Stream 36.45 35.29 36.5
Spring Water 37.7 36.1 37.5

Fountain 37.56 36.5 37.25
Waterfall 38.17 36.76 38.11

Washing Machine 44.34 42.94 45.31
Flashing Lights 45.13 42.94 45.59

Fire Pot 47.6 43.53 47.98
Avg. 40.23 39.32 40.57

Table 6.2.: PSNR values for dynamic textures

For each dynamic texture, the FID score was computed between the frames from
the training sequence to the first 9 frames of the according synthesized sequences
that have then been subjected to one of the following three post-processing steps:

• No super-resolution,

• DIP-based super-resolution,

• Proposed super-resolution.

The employed FID implementation [110] automatically resizes images to fit the res-
olution 299 × 299, using bilinear interpolation. Such methods are often used for
zooming in common media player software.

Same parameters as for the dynamic texture experiment in the previous section
were chosen. In particular, the magnification factor 2 and a box filter were used.
The resulting FID scores are listed in Table 6.3. In most of the tested sequences (7
out of 11), the proposed method produces the best FID scores. This is an indicator
that the proposed super-resolution technique can help enhancing the visual quality
of visual process synthesis, using the DVAE.

One should note that given the small number of sequences and the limited capa-
bility of the FID score to evaluate visual quality, the results may be not conclusive
enough to recommend the described approach for super-resolution of synthesized
visual process sequences. Particularly the fact that optimizing a neural network is
a considerable drawback in comparison to quick and simple interpolation raises the
demand for a significant advantage with respect to the visual quality of the resulted
sequences. Whether or not the favorable results in Table 6.3 are significant is up for
interpretation. For instance, one might ask, if using the proposed method actually

110

6.6. Synthesized Sequences

w/o SR DIP Proposed

Flowing Water 143.4 130.6 116.7
Boiling Water 201.4 188.0 185.3

Sea 96.7 144.1 92.0
River 124.8 138.5 125.7

Mountain Stream 231.1 227.2 190.1
Spring Water 264.7 268.8 247.5

Fountain 151.8 162.5 152.8
Waterfall 351.8 357.6 363.8

Washing Machine 152.5 299.5 147.5
Flashing Lights 128.6 140.9 123.8

Fire Pot 93.7 91.2 103.7

Table 6.3.: FID scores

is advantageous in terms of the FID score, or if the limited set of sequences in Ta-
ble 6.3 just happens to contain examples that make it perform better. A simple χ2

test with the null hypothesis

H0 : Each one of the three tested approaches is equally likely to
produce the best FID score.

would reject H0 for α = 10%, but not for α = 5%. This means, that we cannot
rule out the possibility that every algorithm is equally likely to perform best among
the three with a confidence of higher than or equal to 95%. While the results in
Table 6.3 are an indication that using the proposed algorithm for super-resolution
of synthesized sequences can make sense, it may thus be sensible to decide on a
case-by-case basis, using visual inspection. Figure 6.3 depicts the visual results of
a frame from one of the evaluated sequences. While differences between the three
algorithms are not particularly striking, the proposed method appears to produce
results with more variation in color and luminosity which can be seen as an indication
that more details are restored. In Figure 6.4 on the other hand, the difference in
definition is less visible. At the same time, it becomes apparent that the proposed
algorithm tends to introduce block artifacts. This can be explained by the fact that
the underlying assumption of Eq. (6.5) does not hold here, because the frames have
not been produced by downsizing a high-resolution image.

It appears thus that while the proposed algorithm can improve the quality of tex-
ture synthesis results for some sequences, it is less effective for others and simple
interpolation methods may be preferable.

Appendix C.2 provides more visual results of the described experiments.

111

6. Post-processing via Super-resolution

Bilinear DIP Proposed

Figure 6.3.: Super-resolution results for Flowing Water

6.7. Discussion

DIP was originally introduced as a method that exploits the power of CNNs without
relying on external datasets for training. By doing so, it has demonstrated a remark-
able performance gain over classical methods that do not rely on learning. In this
chapter, a super-resolution method based on DIP has been introduced that retains
these advantages, but is capable to further improve the performance on common
still-image super-resolution benchmarks. Likewise, it shows convincing results for
the super-resolution of visual process videos.

Experimentally, this chapter looks into the question, if such algorithms are of any
help to enhance the visual quality of video synthesis results, for instance the ones
produced by the DVAE model introduced in Chapter 5. The motivation is grounded
in the observation that video synthesis algorithms are rarely capable of producing
visually appealing results in a high resolution by themselves.

Experimental evaluation in Section 6.6 indicates that such post-processing can
indeed help to enhance the visual quality of synthesized video sequences. The
FID score between the video frames processed by the proposed algorithms and
the frames of the training sequence tends to be lower than, for instance, the FID
score between interpolated video frames and the training sequence. Furthermore,
some example sequences appear to contain more details when using the proposed
method.

On the other hand, the visual improvement is not always striking and for some
images, super-resolution results exhibit block artifacts. This chapter should thus
not be interpreted as a unequivocal recommendation of the described algorithm for
the post-processing of video synthesis results, although post-processing in itself still

112

6.7. Discussion

Bilinear DIP Proposed

Figure 6.4.: Super-resolution results for Spring Water

might be of some use for enhancing the visual quality of video synthesis algorithms.
One may recall LapSRN, for instance, which according to Table 6.1 yields impres-
sive results for still-image super-resolution. Such performance gains are possible
because it is trained on external datasets, unlike the proposed method. In the con-
text of video synthesis, this could be used to our advantage, e.g. by training the
model on the original high-resolution ground truth sequence. However, this would
introduce additional computational load to the already demanding problem of syn-
thesizing and post-processing visual processes. In the context of this thesis, such
learning-based models have not been studied and it would go beyond the scope to
evaluate the performance of such models in post-processing of synthesized video
sequences.

113

7. Conclusion

This thesis discusses state space models for visual processes, in which the latent
states follow a dynamic described by linear state transitions with Gaussian noise,
and the observation results from a non-linear mapping of the latent space to the
high-dimensional observation space. At the core of the research questions are
methods to infer such models from finite, observed video sequences produced by
some visual process. This entails the challenge of finding the right representation
for the visual process observations such that they can be interpreted as latent space
states produced by an autoregressive process. In addition to that, complementary
tasks are also investigated, such as feature extraction from video frames, definition
of distance measures, or post-processing via super-resolution.

First, the application of dynamic scene and dynamic texture recognition via ker-
nels is investigated. To do so, the video sequences are subjected to a frame-wise
feature extraction algorithm that computes histogram representations from each
frame. These representations are then subsequently used to compute semi-linear
dynamic models of the visual processes in question. The choice of an appropri-
ate histogram representation, the right kernel and the distance measure on the
computed model parameters is investigated and state-of-the-art performance on dy-
namic texture classification is demonstrated. The proposed features and distance
measure have emphasized appearance over dynamics, which is also why the meth-
ods were evaluated on visual processes where appearance is the most distinctive
aspect. While the proposed models are also theoretically applicable to videos of
human actions to name an example, they would require some adaptation in order to
shift the emphasis towards dynamics.

Second, a method to compute a generative model of visual processes, using a
VAE, and a linear building block, the dynamic layer is introduced. The proposed
architecture can be used to learn simultaneously the autoregressive state transition
parameters, as well as the non-linear observation function that can be then used for
synthesis purposes. Assessments based on visual observation and the Fréchet In-
ception Distance indicate that the proposed model can compete with state-of-the-art
synthesis methods for visual processes, while maintaining a mathematically simple
form. However, the resulting video sequences are of low resolution.

This poses the question if anything can be done about the visual quality once
the sequence is synthesized. To investigate this possibility, a method for super-
resolution of images is introduced and its performance on synthesized video se-
quences is evaluated. While the results do not prove that the proposed method

115

7. Conclusion

generally improves the quality of a synthesized visual process sequence, they do
suggest that post-processing can be used to improve the visual quality of video syn-
thesis.

To summarize, the research in this thesis has demonstrated that semi-linear state
space models inferred using methods from representation learning are a power-
ful method to describe visual processes. It has shown how to apply such models
to recognition and synthesis tasks while emphasizing that such applications entail
complementary problems that go beyond model inference, like feature extraction or
post-processing.

One major obstacle in developing dynamic models that has become apparent in
the course of the research in this thesis is the lack of benchmarks and evaluation
metrics. In fact, this is a major limiting factor in studying visual process models. Even
though this is less true for classification or segmentation tasks than it is for purely
generative problems, such as synthesis, the development of widely accepted ways
to measure the quality of a generative visual process model should not be underes-
timated in research during the years to come. So far, research in this area heavily
relies on crowdsourcing platforms such as Amazon Mechanical Turk1 to evaluate
the quality of generated video sequences [123]. In the future, we can expect the
demand for cheaper and more reproducible evaluation protocols to grow as a con-
sequence of increased interest in deep generative modeling. Partially, this is due
to applications such as data augmentation or simulation. Additionally, new trends
in machine learning research, such as causal machine learning [107], require pos-
sibilities to model entire distributions of high-dimensional data. For visual process
research to continue producing impactful results, it is inevitable to develop objective
and widely applicable evaluation metrics for generative models.

The lack of training data is also an important limiting factor, although this has
started to change. Typical visual process datasets such as YUPENN [34] are lim-
ited to only a handful of videos categorized into a few classes. This restricts the
range of application for visual process models and is an obstacle for several vi-
sual process problems that requires domain specific data. For instance, identifying
anomalous events in road traffic requires training sequences from the same or sim-
ilar road scenes. Shortage in data is therefore a considerable bottleneck in visual
process research and future advances will depend on how well this bottleneck will
be overcome. Generative models, such as the proposed Dynamic VAE can help
mitigating this obstacle, though further research is required to make such models
capable of producing realistic and sufficiently diverse video data. Recent datasets
such as the Kinetics-700 Human Action Dataset [23] show significant progress in
gathering data for solving visual process related problems. However, visual process
sequences require even higher dimensions than still images to be represented, im-
plying that the curse of dimensionality cannot be entirely mitigated by using larger

1https://www.mturk.com

116

https://www.mturk.com

datasets. Instead, additional assumptions about data co-dependencies need to be
introduced, which reduces data redundancies. In the context of this thesis, this has
been done by making the assumption of a semi-linear process model. Using such a
model, video sequences of arbitrary length can be stored using a compact parame-
ter representation.

Overall, one can expect visual processes to stay relevant for research and devel-
opment of visual intelligent systems. The results presented in this thesis lay out the
foundation to tackle visual process problems in an interpretable, robust and versatile
manner. Beyond that, the presented approaches to model stochastic processes as
a semi-linear state space model using representation learning could also be useful
for other kinds of temporal data such as in medical records or non-visual sensor
data in settings. On a more theoretical level, it can be also worth investigating to
what extent semi-linear dynamic systems can function as a mathematically simple
and explainable approximation of more complex temporal models based on neural
networks. In this context, the results in Chapter 5 can be potentially useful as they
demonstrate how to employ neural networks for complex temporal behavior, without
relying on computationally intractable architectures such as RNNs.

117

A. Alignment Distance Computation

Some aspects of the Alignment distance computation have been omitted in Chap-
ter 3, since they constitute results that have been previously discussed [61, 111] in
some form or another, and are thus not considered scientific contributions of their
own. They are discussed in the following sections, as they still might be helpful in
understanding the technical details of the framework in Chapter 3.

A.1. Computation of Bi-quadratic Coefficients

Let us consider the loss function to compute the Alignment distance in Section 3.2.
When we assume that its argument is a Givens rotation rather than any orthogonal
matrix, we get

ρλA,λB (Ξ1,Gk,l(c, s) • Ξ2)

= tr(R>1 κ(Y1,Y2)R2Gk,l(c, s)
>) + λA tr(A>1 Gk,l(c, s)A2Gk,l(c, s)

>)

+ λB tr(B>1 Gk,l(c, s)B2).

(A.1)

By defining
D = λBB2B

>
1 +R>2 κ(Y2,Y1)R1, (A.2)

we can rewrite the loss function as

ρλA,λB (Ξ1,Gk,l(c, s) • Ξ2)

=λA tr(A>1 Gk,l(c, s)A2Gk,l(c, s)
>) + tr(Gk,l(c, s)D).

(A.3)

This is a quadratic function in c and s. To compute its coefficients, observe that the
two equations

tr(Gk,l(c, s)D) = c(D)k,k + s(D)l,k − s(D)k,l + c(D)l,l +
∑

i=1...,n
i 6=k,l

(D)i,i, (A.4)

119

A. Alignment Distance Computation

and

tr(A>1 Gk,l(c, s)A2Gk,l(c, s)
>)

=
∑

i=1...,n
i 6=k,l

(c(A1)k,i − s(A1)l,i)(A2)k,i + (c(A1)l,i + s(A1)k,i)(A2)l,i

+
∑

i=1...,n
i 6=k,l

(A1)i,k(c(A2)i,k + s(A2)i,l) + (A1)i,l(c(A2)i,l − s(A2)i,k)

+ (c(A1)k,k − s(A1)l,k)(c(A2)k,k + s(A2)k,l)

+ (c(A1)k,l − s(A1)l,l)(c(A2)k,l − s(A2)k,k)

+ (c(A1)l,k + s(A1)k,k)(c(A2)l,k + s(A2)l,l)

+ (c(A1)l,l + s(A1)k,l)(c(A2)l,l − s(A2)l,k)

+
∑

i=1...,n
i 6=k,l

∑
j=1...,n
j 6=k,l

(A1)k,l(A2)k,l.

(A.5)

hold. Assuming the form

ρλA,λB (Ξ1,Gk,l(c, s) • Ξ2) = k0c
2 + k1cs+ k2s

2 + k3c+ k4s+ k5, (A.6)

The first three coefficients k0, k1, k2 corresponding to second-order terms can be
obtained by multiplying out the fourth to seventh line of Eq. (A.5), which yields

k0 =λA((A1)k,k(A2)k,k + (A1)k,l(A2)k,l

+ (A1)l,k(A2)l,k + (A1)l,l(A2)l,l),

k1 =λA((A1)k,k(A2)k,l − (A1)l,k(A2)k,k

− (A1)k,l(A2)k,k − (A1)l,l(A2)k,l

+ (A1)l,k(A2)l,l + (A1)k,k(A2)l,k

− (A1)l,l(A2)l,k + (A1)k,l(A2)l,l),

k2 =− λA((A1)l,k(A2)k,l − (A1)l,l(A2)k,k

− (A1)k,k(A2)l,l + (A1)k,l(A2)l,k).

(A.7)

Likewise, multiplying out the second and third line of Eq. (A.5) and adding the re-
spective first-order coefficients from Eq. (A.4) yields

k3 =(D)k,k + (D)l,l + λA
∑

i=1...,n
i 6=k,l

((A1)k,i(A2)k,i) + (A1)l,i(A2)l,i)

+ λA
∑

i=1...,n
i 6=k,l

((A1)i,k(A2)i,k) + (A1)i,l(A2)i,l),
(A.8)

120

A.2. Constructing the Quartic Polynomial

k4 =− (D)k,l + (D)l,k + λA
∑

i=1...,n
i 6=k,l

(−(A1)l,i(A2)k,i) + (A1)k,i(A2)l,i)

+ λA
∑

i=1...,n
i 6=k,l

((A1)i,k(A2)i,l)− (A1)i,l(A2)i,k).
(A.9)

Finally adding together the constant terms from Eq. (A.4) and Eq. (A.5) yields

k5 =
∑

i=1...,n
i 6=k,l

(D)i,i +
∑

i=1...,n
i 6=k,l

∑
j=1...,n
j 6=k,l

(A1)k,l(A2)k,l.
(A.10)

A.2. Constructing the Quartic Polynomial

The aim is to find the parameter that optimizes the function

h(c) = k0c
2 ± k1c

√
1− c2 + k2(1− c2) + k3c± k4

√
1− c2 + k5. (A.11)

By taking the derivative, we obtain

h′(c) =
dh

dc
= 2(k0 − k2)c± k1

−2c2 + 1√
1− c2

+ k3 ± k4
−c√
1− c2

= 2(k0 − k2)c+ k3 ∓
1√

1− c2

(
k1(2c2 − 1) + k4c

)
.

(A.12)

As the next step, we want to find candidates for the solution ĉ by observing the zeros
of the derivative. Since any zero of h′(c) is also a zero of any product containing
h′(c), we obtain

h′(c)

(
2(k0 − k2)c+ k3 ±

1√
1− c2

(
k1(2c2 − 1) + k4c

))
= 0. (A.13)

Applying the third binomial formula yields

(2(k0 − k2)c+ k3)2 − 1

1− c2
(k1(2c2 − 1) + k4c)

2 = 0. (A.14)

Multiplying by (1− c2) leads to

(1− c2)(2(k0 − k2)c+ k3)2 − (k1(2c2 − 1) + k4c)
2 = 0, (A.15)

which can be multiplied out to obtain

(1− c2)(4(k0 − k2)2c2 + 4k3(k0 − k2)c+ k2
3)

−(k2
1(2c2 − 1)2 + 2k1k4(2c3 − c) + k2

4c
2) = 0,

(A.16)

121

A. Alignment Distance Computation

and finally

−4((k0 − k2)2 + k2
1)c4 − 4(k3(k0 − k2) + k1k4)c3

+(4(k0 − k2)2 + 4k2
1 − k2

3 − k2
4)c2 + 2(2k3(k0 − k2) + k1k4)c

+(k2
3 − k2

1) = 0.

(A.17)

Eq. (A.17) is a quartic equation for which closed form solutions exist [112].

A.3. Derivation of Convergence Properties

The proof of convergence properties of Algorithm 7 in Theorem 1 presented in
the following builds upon the assumption that the value of a smooth function
Lalign : O(n)→ R can always be increased (decreased) at a non-critical pointQ by
multiplyingQ with a Givens rotation. Since this claim may not be self-explanatory, it
is first proven in the following lemma, before revisiting Theorem 1.

Lemma 1. Let
Lalign : O(n)→ R (A.18)

be a smooth, real-valued function on the orthogonal group. Let Q be a non-critical
point of Lalign. Then we can find a Givens rotation Gk,l(c, s), such that

Lalign(Gk,l(c, s)Q) > Lalign(Q) (A.19)

holds.

Proof. According to [1], the tangent space of O(n) at Q can be written as

TQ(O(n)) = {ΩQ | Ω = −Ω>}. (A.20)

Let T1, . . . ,Tn(n−1)/2 be a basis for this space, i.e. span{T1, . . . ,Tn(n−1)/2} =
TQ(O(n)) and

γi : R→ O(n), i ∈ {1, . . . , n(n− 1)/2} (A.21)

be a smooth curve such that
γi(0) = Q (A.22)

and
d

dα
γi(α)|α=0 = Ti (A.23)

holds for any i ∈ {1, . . . , n(n − 1)/2}. Then there is an i′ ∈ {1, . . . , n(n − 1)/2}
and an α′ ∈ R such that Lalign(γi′(α

′)) > Lalign(Q) holds.

122

A.3. Derivation of Convergence Properties

It will now be shown that by fixing

i = n(k − 1)− k(k + 1)/2 + l, (A.24)

with k ∈ {1, . . . , n− 1}, l ∈ {k + 1 . . . , n}, the curve

γi(α) = Gk,l(cos(α), sin(α))Q (A.25)

fulfills the aforementioned properties Eq. (A.22) and Eq. (A.23) for any i ∈
{1, . . . , n(n − 1)/2}. It is easy to see that such a curve satisfies Eq. (A.22). Fur-
thermore, we have

d

dα
Gk,l(cos(α), sin(α))Q|α=0 = Ωk,lQ, (A.26)

where Ωk,l is a skew-symmetric matrix with

(Ωk,l)k̃,l̃ =


1 if k̃ = k, l̃ = l,

−1 if k̃ = l, l̃ = k,

0 otherwise.

(A.27)

As such, {
d

dα
Gk,l(cos(α), sin(α))Q|α=0

}
k∈{1,...,n−1},l∈{k+1...,n}

(A.28)

is a basis of TQ(O(n)). This means that we can find a k′ ∈ {1, . . . , n − 1}, an
l′ ∈ {k + 1 . . . , n} and an α′ ∈ R such that

Lalign(Gk′,l′(cos(α′), sin(α′)Q)) > Lalign(Q) (A.29)

holds.

Lemma 1 states that at any point Q, the tangent space of Lalign can be spanned
by a set of basis vectors, such that each one of these vectors can be written as

d

dα
Gk,l(cos(α), sin(α))Q|α=0 (A.30)

for some coordinate pair k, l.
This enables us to proof Theorem 1. Recall that it is stated as follows.

Theorem 1. Let (Q(i))i∈N be the sequence of orthogonal matrices generated by
the while loop in Algorithm 7. It is bounded with respect to the Frobenius norm and
thus has at least one accumulation point. Furthermore, every accumulation point of
the sequence is almost certainly a critical point of the smooth objective function

Lalign(Q) = ρλA,λB(Ξ1,Q · Ξ2). (A.31)

123

A. Alignment Distance Computation

This statement can be proven as follows.

Proof. Since O(n) is bounded with regards to the Frobenius norm, so is any se-
quence of matrices in O(n). Thus (Q(i))i∈N has at least one accumulation point.

The sequence (Lalign(Q(i)))i∈N ∈ R is non-decreasing and bounded from above.
Therefore it converges to a point L̂ ∈ R with Lalign(Q(i)) ≤ L̂ ∀i ∈ N. Let Q̂ be an
accumulation point of (Q(i))i∈N. Then, the equality Lalign(Q̂) = L̂ holds, and there
is a monotonously increasing mapping

η : N→ N, (A.32)

such that the sequence (Q(η(i)))i∈N converges to Q̂. Assume that Q̂ is not criti-
cal. According to Lemma 1, we can then find a Givens rotation Gk,l(c, s) with the
property

Lalign(Gk,l(c, s)Q̂) > L̂. (A.33)

However, since the sequence (‖Q(η(i)) − Q̂‖F)i∈N converges to zero, so does the
sequence (‖Gk,l(c, s)Q

(η(i))−Gk,l(c, s)Q̂‖F)i.∈N, because the Frobenius norm is
invariant with respect to orthogonal transformations. Therefore, due to the smooth-
ness of Lalign, there is an index i′ ∈ N, such that the following inequality holds for
every i ≥ i′.

Lalign(Gk,l(c, s)Q
(η(i))) > L̂. (A.34)

Recall that at the beginning of each while iteration in Algorithm 7, the coordinates
k, l are chosen randomly, which means that with a probability approaching 1, at an
iteration η′ ≥ η(i′), k and l will be chosen such that there is a c and s that fulfill
the inequality in Eq. (A.34). But that implies the inequality Lalign(Q(η′+1)) > L̂,
because the objective function cannot be decreased by a for iteration of Algorithm 7.
This is not possible, as L̂ is an upper bound for the sequence Lalign(Q(i))i∈N.

In [111], a different proof for Theorem 1 is provided.

124

B. Possible Extensions of the DVAE

Generative models are often widely adaptable and applicable to a variety of use
cases. This is also true for the proposed DVAE framework. Such adaptations usually
require significant effort that involves deciding on appropriate architectural choices
and hyperparameters, implementing them as software packages and evaluating on
suitable datasets. Hence, Chapter 5 has focused on one particular application,
namely video synthesis. To establish that the scientific contribution of Chapter 5
goes beyond the specific application scenario described there, this appendix dis-
cusses potential extensions of the proposed framework.

B.1. Application to Frame Prediction

A widely discussed application of generative dynamic process models is frame pre-
diction. At each time t, Eq. (5.2a) yields an expected value of the latent state in
the step t + 1 as Evt [xt+1] = Axt. Using the learned observer function Γζ , the
predicted frame at time t+ 1 can be then estimated as Γζ(Axt), if xt is known.

As a proof-of-concept result, Table B.1 depicts PSNR values for predicting the last
frame for (the low-resolution version of) the respective dynamic texture sequence.
The latent variable of the preceding frame is estimated using the VAE encoder.
Modern frame prediction algorithms incorporate several heuristics with regards to
the video at hand so that a prediction algorithm based on the Dynamic VAE might
require additional pre- and post-processing in order to compete with contemporary
approaches.

B.2. Generalization to Higher-order Markov Processes

Assumption 1 restricts the scope of Chapter 5 to first-order Markov processes with
second order stationarity. This is in line with Eq. (5.2a) as the latent VAR model
is obviously first-order Markov. For many applications this is sufficient, since As-
sumption 1 is an accurate characterization for typical publicly available benchmark
datasets. However, this assumption does not mean that DVAEs cannot be applied
to Markov processes of higher order. To show this, a procedure is described in the
following that can be used to generalize DVAEs to processes with Markov order m
and m + 1-th order stationarity, where m > 1. The discussion serves to establish
theoretical feasibility. Data from publicly available datasets are rarely suitable for

125

B. Possible Extensions of the DVAE

Sequence LDS DVAE

Flowing Water 14.28 14.08
Boiling Water 25.54 27.67

Sea 23.77 26.86
River 18.09 17.81

Mountain Stream 21.89 24.16
Spring Water 21.25 22.06

Fountain 20.04 21.61
Waterfall 18.50 18.34

Washing Machine 29.59 33.23
Flashing Lights 22.57 39.36

Fire Pot 18.66 16.72

Table B.1.: PSNR values for prediction of last frame

such complex modeling due to limited sequence length. Therefore, experimental
evaluation is not carried out.

The general procedure is as follows.

1. First, an appropriate model for the joint probability of m + 1 succeeding ob-
servations needs to be set up. This requires generalizing Eq. (5.18) to longer
Markov chains. Since the distribution in question is always zero-mean Gaus-
sian, it is entirely defined by its covariance matrix.

2. Next, a dynamic layer that performs a multiplication with a lower-triangular
(m + 1) × (m + 1) block matrix F needs to be designed. The elements of
this matrix are learned along with the VAE weights. The product FF> must
be (approximately) equal to the covariance matrix.

3. To make sure that the visual process model fulfills the imposed assumptions,
regularizers need to be introduced. They ensure the Toeplitz structure of the
covariance matrix.

4. Once the model including the elements of F is learned, a VAR model for the
according Markov order can be computed.

To illustrate this procedure, the steps are described for m + 1- stationary visual
processes with the Markov order m = 2, in the following.

1. Due to the stationarity assumption, the covariance matrix for three succeeding
latent states ht,ht+1,ht+2 has the form

Σ2 =

 In Cov(ht,ht+1) Cov(ht,ht+2)
Cov(ht,ht+1)> In Cov(ht,ht+1)
Cov(ht,ht+2)> Cov(ht,ht+1)> In

 . (B.1)

126

B.2. Generalization to Higher-order Markov Processes

2. The matrix describing the dynamic layer has the form

F =

InF1 F2

F3 F4 F5

 . (B.2)

The outputs of the dynamic layer will thus have the distribution

p
([

h>1 h>2 h>3
]>)

= N (
[
h>1 h>2 h>3

]>
; 0,FF>). (B.3)

We thus need to achieve

Σ2 =

In F>1 F>3
F1 F1F

>
1 + F2F

>
2 F1F

>
3 + F2F

>
4

F3 F3F
>
1 + F4F

>
2 F3F

>
3 + F4F

>
4 + F5F

>
5

 . (B.4)

3. This can be enforced by using the regularizer

R(F) =λ1‖F1F
>
1 + F2F

>
2 − In‖2F

+ λ2‖F3F
>
3 + F4F

>
4 + F5F

>
5 − In‖2F

+ λ3‖F3F
>
1 + F4F

>
2 − F1‖2F ,

(B.5)

with λ1, λ2, λ3 > 0.

4. A second-order VAR model has the form

ht+2 = A0ht +A1ht+1 +Bvt, vt ∼ N (vt, 0, In). (B.6)

By our assumptions on the process, this yields the system of equations,

Cov(ht,ht) = A0A
>
0 +A1A

>
1 +A0Cov(ht,ht+1)A>1

+A1Cov(ht,ht+1)>A>0 +BB>

Cov(ht,ht+1) = Cov(ht,ht+1)>A>0 +A>1 ,

Cov(ht,ht+2) = A>0 + Cov(ht,ht+1)A>1 .

(B.7)

Thus, by using Eq. (B.4), we can replace the covariance terms by F1, F2 and
In, respectively, which yields

F>1 = F1A
>
0 +A>1 ,

F3 = A0 +A1F1,

In = A0A
>
0 +A1A

>
1 +A0F

>
1 A

>
1 +A1F1A

>
0 +BB>.

(B.8)

This system of equations can be solved either numerically or analytically to
obtain the VAR parameters A0,A1,B.

127

B. Possible Extensions of the DVAE

B.3. Generative Adversarial Nets

The VAE is not the only generative framework that can be equipped with a dynamic
layer. Since GANs can also be trained to map standard Gaussian noise to real-world
images, they present a natural environment for learning models of visual processes
by means of a dynamic layer. To this end, the architecture in Figure 5.1 is employed
as the generator of the GAN.

Like the dynamic VAE, a “dynamic” GAN is trained with frame pairs generated
from the observed sequence(s) and the discriminator evaluates if the frame pair at
its input originated from the generator or the training set.

128

C. Visual Results

Visual results of the frameworks in Chapter 5 and Chapter 6 are presented in the
following.

C.1. Synthesis Results of the DVAE

MNIST Results

Fig. C.1 - Fig. C.6 depict additional synthesis results of the MNIST experiment.

Training

LDS

VAE

DVAE

Figure C.1.: Synthesis of MNIST sequence 0123401234. . .

Training

LDS

VAE

DVAE

Figure C.2.: Synthesis of MNIST sequence 1234512345. . .

129

C. Visual Results

Training

LDS

VAE

DVAE

Figure C.3.: Synthesis of MNIST sequence 2345623456. . .

Training

LDS

VAE

DVAE

Figure C.4.: Synthesis of MNIST sequence 3456734567. . .

Training

LDS

VAE

DVAE

Figure C.5.: Synthesis of MNIST sequence 4567845678. . .

Training

LDS

VAE

DVAE

Figure C.6.: Synthesis of MNIST sequence 5678956789. . .

130

C.1. Synthesis Results of the DVAE

Small NORB Results

Fig. C.7 - Fig. C.11 depict additional synthesis results of the Small NORB experi-
ment.

Training

LDS

VAE

DVAE

Figure C.7.: Synthesis of a rotation sequence of Small NORB images (Category 0, Instance
4)

Training

LDS

VAE

DVAE

Figure C.8.: Synthesis of a rotation sequence of Small NORB images (Category 0, Instance
6)

131

C. Visual Results

Training

LDS

VAE

DVAE

Figure C.9.: Synthesis of a rotation sequence of Small NORB images (Category 0, Instance
7)

Training

LDS

VAE

DVAE

Figure C.10.: Synthesis of a rotation sequence of Small NORB images (Category 0, In-
stance 8)

Training

LDS

VAE

DVAE

Figure C.11.: Synthesis of a rotation sequence of Small NORB images (Category 0, In-
stance 9)

132

C.1. Synthesis Results of the DVAE

Dynamic Textures

Fig. C.12 - Fig. C.21 depict additional synthesis results of dynamic textures. Note
that the STGCONV and DGM frames were synthesized in a slightly higher resolu-
tion, 224× 224.

Training

LDS

DVAE

Figure C.12.: Synthesis of dynamic texture Flowing Water

Training

LDS

DVAE

Figure C.13.: Synthesis of dynamic texture Boiling Water

133

C. Visual Results

Training

LDS

DVAE

Figure C.14.: Synthesis of dynamic texture Sea

Training

LDS

STGCONV

DVAE

Figure C.15.: Synthesis of dynamic texture River

Training

LDS

STGCONV

DVAE

Figure C.16.: Synthesis of dynamic texture Spring water

134

C.1. Synthesis Results of the DVAE

Training

LDS

DVAE

Figure C.17.: Synthesis of dynamic texture Mountain Stream

Training

LDS

STGCONV

DVAE

Figure C.18.: Synthesis of dynamic texture Fountain

Training

LDS

STGCONV

DVAE

Figure C.19.: Synthesis of dynamic texture Waterfall

135

C. Visual Results

Training

LDS

DVAE

Figure C.20.: Synthesis of dynamic texture Washing Machine

Training

LDS

STGCONV

DGM

DVAE

Figure C.21.: Synthesis of dynamic texture Flashing lights

136

C.2. Super-resolution Results

C.2. Super-resolution Results

Figure C.22-Figure C.30 depict super-resolution results of the first synthesized frame
for different visual processes. The proposed method is compared against the deep
image prior and bilinear interpolation. For many dynamic textures the differences
between the methods are hardly noticeable, e.g. Washing Machine and Firepot.
Other dynamic textures, e.g. Flashing Lights, clearly benefit from the proposed
approach. Yet some other sequences, e.g. Fountain, exhibit block artifacts for the
proposed approach.

Bilinear DIP Proposed

Figure C.22.: Super-resolution results for Boiling Water

137

C. Visual Results

Bilinear DIP Proposed

Figure C.23.: Super-resolution results for Sea

Bilinear DIP Proposed

Figure C.24.: Super-resolution results for River

138

C.2. Super-resolution Results

Bilinear DIP Proposed

Figure C.25.: Super-resolution results for Mountain Stream

Bilinear DIP Proposed

Figure C.26.: Super-resolution results for Fountain

139

C. Visual Results

Bilinear DIP Proposed

Figure C.27.: Super-resolution results for Waterfall

Bilinear DIP Proposed

Figure C.28.: Super-resolution results for Washing Machine

140

C.2. Super-resolution Results

Bilinear DIP Proposed

Figure C.29.: Super-resolution results for Flashing Lights

Bilinear DIP Proposed

Figure C.30.: Super-resolution results for Firepot

141

Bibliography

[1] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization
algorithms on matrix manifolds. Princeton University Press, 2009.

[2] Bijan Afsari, Rizwan Chaudhry, Avinash Ravichandran, and René Vidal.
Group action induced distances for averaging and clustering linear dynamical
systems with applications to the analysis of dynamic scenes. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 2208–
2215, 2012.

[3] Bijan Afsari and René Vidal. The alignment distance on spaces of linear
dynamical systems. In IEEE Annual Conference on Decision and Control
(CDC), pages 1162–1167, 2013.

[4] Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Trans-
actions on Signal Processing, 62(16):4114–4128, 2014.

[5] Vincent Andrearczyk and Paul F. Whelan. Convolutional neural network on
three orthogonal planes for dynamic texture classification. Pattern Recogni-
tion, 76:36–49, 2018.

[6] Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonar-
duzzi, Gaspar Rochette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim
Andén, Eugene Belilovsky, Joan Bruna, Vincent Lostanlen, Muawiz Chaud-
hary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine Cella, and
Michael Eickenberg. Kymatio: Scattering transforms in python. Journal of
Machine Learning Research, 21(60):1–6, 2020.

[7] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman,
David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learn-
ing to learn by gradient descent by gradient descent. In Advances in Neural
Information Processing Systems (NIPS), pages 3981–3989, 2016.

[8] Tomás Angles and Stéphane Mallat. Generative networks as inverse prob-
lems with scattering transforms. In International Conference on Learning Rep-
resentations (ICLR), 2018.

[9] Shervin R. Arashloo, Mehdi C. Amirani, and Ardeshir Noroozi. Dynamic tex-
ture representation using a deep multi-scale convolutional network. Journal
of Visual Communication and Image Representation, 43:89–97, 2017.

143

Bibliography

[10] Shervin R. Arashloo and Josef Kittler. Dynamic texture recognition using mul-
tiscale binarized statistical image features. IEEE Transactions on Multimedia,
16:2099–2109, 2014.

[11] Yuksel A. Aslandogan and Clement T. Yu. Techniques and systems for image
and video retrieval. IEEE Transactions on Knowledge and Data Engineering,
11(1):56–63, 1999.

[12] Annalisa Barla, Francesca Odone, and Alessandro Verri. Histogram inter-
section kernel for image classification. In IEEE International Conference on
Image Processing (ICIP), pages III–513, 2003.

[13] Richard H. Bartels and George W. Stewart. Solution of the matrix equation ax
+ xb = c [f4]. Communications of the ACM, 15(9):820–826, 1972.

[14] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European Conference on Computer Vision (ECCV), pages 404–
417. Springer, 2006.

[15] Richard Bellman. Adaptive Control Processes: A Guided Tour. Princeton
Legacy Library. Princeton University Press, 1961.

[16] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1798–1828, 2013.

[17] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-
Morel. Low-complexity single-image super-resolution based on nonnegative
neighbor embedding. In British Machine Vision Conference (BMVC). BMVA
press, 2012.

[18] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[19] Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen Basri.
Actions as space-time shapes. In IEEE International Conference on Computer
Vision (ICCV), pages 1395–1402, 2005.

[20] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Opti-
mizing the latent space of generative networks. In International Conference
on Machine Learning, pages 600–609, 2018.

[21] Léon Bottou. Stochastic learning. In Summer School on Machine Learning,
pages 146–168. Springer, 2003.

144

[22] Haoye Cai, Chunyan Bai, Yu-Wing Tai, and Chi-Keung Tang. Deep video gen-
eration, prediction and completion of human action sequences. In European
Conference on Computer Vision (ECCV), pages 366–382. Springer, 2018.

[23] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note
on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987,
2019.

[24] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[25] Antoni B. Chan and Nuno Vasconcelos. Probabilistic kernels for the classifi-
cation of auto-regressive visual processes. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 846–851, 2005.

[26] Antoni B. Chan and Nuno Vasconcelos. Classifying video with kernel dynamic
textures. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–6. IEEE, 2007.

[27] Antoni B. Chan and Nuno Vasconcelos. Modeling, clustering, and segment-
ing video with mixtures of dynamic textures. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(5):909–926, 2008.

[28] Rizwan Chaudhry, Avinash Ravichandran, Gregory Hager, and René Vidal.
Histograms of oriented optical flow and Binet-cauchy kernels on nonlinear dy-
namical systems for the recognition of human actions. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1932–1939, 2009.

[29] Vedang Chauhan and Brian Surgenor. A comparative study of machine vi-
sion based methods for fault detection in an automated assembly machine.
Procedia Manufacturing, 1:416–428, 2015.

[30] Hao Chen, Ruimin Hu, Dan Mao, Rui Zhong, and Zhongyuan Wang. Video
coding using dynamic texture synthesis. In IEEE International Conference on
Multimedia and Expo (ICME), pages 203–208, 2010.

[31] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 886–893, 2005.

[32] Katrien De Cock and Bart De Moor. Subspace angles between arma models.
Systems & Control Letters, 46(4):265–270, 2002.

[33] Lokenath Debnath and Piotr Mikusinski. Introduction to Hilbert spaces with
applications. Academic press, 2005.

145

Bibliography

[34] Konstantinos G. Derpanis, Matthieu Lecce, Kostas Daniilidis, and Richard P.
Wildes. Dynamic scene understanding: The role of orientation features in
space and time in scene classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1306–1313, 2012.

[35] Kosmas Dimitropoulos, Panagiotis Barmpoutis, and Nikos Grammalidis.
Spatio-temporal flame modeling and dynamic texture analysis for automatic
video-based fire detection. IEEE Transactions on Circuits and Systems for
Video Technology, 25(2):339–351, 2015.

[36] Minh N. Do and Martin Vetterli. Wavelet-based texture retrieval using gener-
alized Gaussian density and Kullback-Leibler distance. IEEE Transactions on
Image Processing, 11(2):146–158, 2002.

[37] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[38] Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto.
Dynamic textures. International Journal of Computer Vision, 51(2):91–109,
2003.

[39] Gianfranco Doretto, Daniel Cremers, Paolo Favaro, and Stefano Soatto. Dy-
namic texture segmentation. In IEEE International Conference on Computer
Vision (ICCV), pages 1236–1236, 2003.

[40] Petros Drineas and Michael W. Mahoney. On the Nyström method for approx-
imating a gram matrix for improved kernel-based learning. journal of machine
learning research, 6(12):2153–2175, 2005.

[41] Sloven Dubois, Renaud Péteri, and Michel Ménard. Characterization and
recognition of dynamic textures based on the 2d+ t curvelet transform. Signal,
Image and Video Processing, 9(4):819–830, 2015.

[42] Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning nat-
ural scene categories. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 524–531, 2005.

[43] Fajwel Fogel, Irène Waldspurger, and Alexandre d’Aspremont. Phase retrieval
for imaging problems. Mathematical programming computation, 8(3):311–
335, 2016.

[44] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral
grouping using the Nyström method. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2):214–225, 2004.

146

[45] Andel Früh. Spring-pendulum. https://commons.wikimedia.org/
wiki/File:Spring-pendulum.jpg, License: https://creative
commons.org/licenses/by-sa/3.0/legalcode.

[46] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning. MIT press Cambridge, 2016.

[47] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems (NIPS),
pages 2672–2680, 2014.

[48] Isma Hadji and Richard P. Wildes. A spatiotemporal oriented energy network
for dynamic texture recognition. In IEEE International Conference on Com-
puter Vision (ICCV), pages 3066–3074, 2017.

[49] Robert M. Haralick and G.L. Kelly. Pattern recognition with measurement
space and spatial clustering for multiple image. Proceedings of the IEEE,
57:654 – 665, 05 1969.

[50] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear
dynamical systems. The Journal of Machine Learning Research, 19(1):1025–
1068, 2018.

[51] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Deep back-
projection networks for super-resolution. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1664–1673, 2018.

[52] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

[53] Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical sys-
tems via spectral filtering. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 6702–6712, 2017.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.

[55] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. In Advances in Neural Information Processing
Systems (NIPS), volume 30, page 6629–6640. Curran Associates, Inc., 2017.

[56] Sungeun Hong, Jongbin Ryu, and Hyun S. Yang. Not all frames are equal: ag-
gregating salient features for dynamic texture classification. Multidimensional
Systems and Signal Processing, (29):279–298, 2018.

147

https://commons.wikimedia.org/wiki/File:Spring-pendulum.jpg
https://commons.wikimedia.org/wiki/File:Spring-pendulum.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode

Bibliography

[57] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Confer-
ence on Machine Learning (ICML), pages 448–456, 2015.

[58] Michal Irani and Shmuel Peleg. Improving resolution by image registration.
Graphical Models and Image Processing, 53(3):231–239, 1991.

[59] Ylva Jansson and Tony Lindeberg. Dynamic texture recognition using time-
causal and time-recursive spatio-temporal receptive fields. Journal of Mathe-
matical Imaging and Vision, 60(9):1369–1398, 2018.

[60] Tony Jebara and Risi Kondor. Bhattacharyya and expected likelihood kernels.
In Learning theory and kernel machines, volume 2777 of Lecture Notes in
Computer Science, pages 57–71. Springer, 2003.

[61] Nicolas D. Jimenez, Bijan Afsari, and René Vidal. Fast Jacobi-type algorithm
for computing distances between linear dynamical systems. In IEEE Euro-
pean Control Conference (ECC), pages 3682–3687, 2013.

[62] Matthew Johnson, David K. Duvenaud, Alex Wiltschko, Ryan P. Adams, and
Sandeep R. Datta. Composing graphical models with neural networks for
structured representations and fast inference. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 2946–2954, 2016.

[63] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt.
Deep variational bayes filters: Unsupervised learning of state space mod-
els from raw data. In International Conference on Learning Representations
(ICLR), 2017.

[64] Shiva Kaul. Linear dynamical systems as a core computational primitive. Ad-
vances in Neural Information Processing Systems (NeurIPS), 33, 2020.

[65] Mahmut Kaya and Hasan Sakir Bilge. Deep metric learning: A survey. Sym-
metry, 11(9), 2019.

[66] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In
International Conference on Learning Representations (ICLR), 2014.

[67] Manesh Kokare, Prabir K. Biswas, and Biswanath N. Chatterji. Rotation-
invariant texture image retrieval using rotated complex wavelet filters. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
36(6):1273–1282, 2006.

[68] Mark A. Kramer. Nonlinear principal component analysis using autoassocia-
tive neural networks. AIChE journal, 37(2):233–243, 1991.

148

[69] Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv
preprint arXiv:1511.05121, 2015.

[70] Roland Kwitt and Andreas Uhl. Image similarity measurement by Kullback-
Leibler divergences between complex wavelet subband statistics for texture
retrieval. In IEEE International Conference on Image Processing (ICIP),
pages 933–936. IEEE, 2008.

[71] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Condi-
tional random fields: Probabilistic models for segmenting and labeling se-
quence data. In International Conference on Machine Learning (ICML), page
282–289, 2001.

[72] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep
Laplacian pyramid networks for fast and accurate super-resolution. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
624–632, 2017.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[74] Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic
object recognition with invariance to pose and lighting. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages II–104, 2004.

[75] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-
ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang, and Wenzhe Shi. Photo-realistic single image super-resolution
using a generative adversarial network. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4681–4690, 2017.

[76] Chia-Wen Lin and Nai-Chia Cheng. Video background inpainting using dy-
namic texture synthesis. In IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1559–1562, 2010.

[77] David G. Lowe. Object recognition from local scale-invariant features. In IEEE
International Conference on Computer Vision (ICCV), volume 2, pages 1150–
1157, 1999.

[78] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Zhiyong Gao, and Ming-
Ting Sun. Deep kalman filtering network for video compression artifact reduc-
tion. In European Conference on Computer Vision (ECCV), pages 568–584.
Springer, 2018.

149

Bibliography

[79] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly
detection in crowded scenes. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1975–1981, 2010.

[80] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, Inc., USA, 3rd edition, 2008.

[81] Stéphane Mallat. Group invariant scattering. Communications on Pure and
Applied Mathematics, 65(10):1331–1398, 2012.

[82] Stéphane Mallat. Understanding deep convolutional networks. Philosophical
Transactions of the Royal Society, 374(2065):20150203, 2016.

[83] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video
prediction beyond mean square error. In International Conference on Learning
Representations (ICLR), 2016.

[84] Nikolai Matni, Alexandre Proutiere, Anders Rantzer, and Stephen Tu. From
self-tuning regulators to reinforcement learning and back again. In IEEE Con-
ference on Decision and Control (CDC), pages 3724–3740, 2019.

[85] Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller,
Matthias Scholz, and Gunnar Rätsch. Kernel PCA and de-noising in fea-
ture spaces. In Advances in Neural Information Processing Systems (NIPS),
pages 536–542, 1999.

[86] Adeel Mumtaz, Emanuele Coviello, Gert R. G. Lanckriet, and Antoni B. Chan.
Clustering dynamic textures with the hierarchical em algorithm for model-
ing video. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(7):1606–1621, 2012.

[87] Adeel Mumtaz, Emanuele Coviello, Gert R. G. Lanckriet, and Antoni B. Chan.
A scalable and accurate descriptor for dynamic textures using bag of sys-
tem trees. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(4):697–712, 2015.

[88] Thanh Tuan Nguyen, Thanh Phuong Nguyen, and Frédéric Bouchara. Com-
pleted local structure patterns on three orthogonal planes for dynamic texture
recognition. In IEEE International Conference on Image Processing Theory,
Tools and Applications (IPTA), pages 1–6, 2017.

[89] David Nister and Henrik Stewenius. Scalable recognition with a vocabu-
lary tree. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2161–2168, 2006.

150

[90] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of
texture measures with classification based on featured distributions. Pattern
Recognition, 29(1):51–59, 1996.

[91] Peter Van Overschee and Bart De Moor. N4SID: Subspace algorithms for
the identification of combined deterministic-stochastic systems. Automatica,
30(1):75–93, 1994.

[92] Athanasios Papoulis and S.U. Pillai. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill series in electrical engineering: Com-
munications and signal processing. McGraw-Hill, 2002.

[93] Emanuel Parzen. On estimation of a probability density function and mode.
The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[94] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher
kernel for large-scale image classification. In European Conference on Com-
puter Vision (ECCV), pages 143–156. Springer, 2010.

[95] Renaud Péteri, Sándor Fazekas, and Mark J. Huiskes. DynTex : a Compre-
hensive Database of Dynamic Textures. Pattern Recognition Letters, 2010.
http://projects.cwi.nl/dyntex/.

[96] Xianbiao Qi, Chun-Guang Li, Guoying Zhao, Xiaopeng Hong, and Matti
Pietikäinen. Dynamic texture and scene classification by transferring deep
image features. Neurocomputing, 171:1230–1241, 2016.

[97] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recog-
nition by predicting parameters from activations. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7229–7238, 2018.

[98] Yuhui Quan, Yan Huang, and Hui Ji. Dynamic texture recognition via orthogo-
nal tensor dictionary learning. In IEEE International Conference on Computer
Vision (ICCV), pages 73–81, 2015.

[99] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[100] Avinash Ravichandran, Rizwan Chaudhry, and René Vidal. Categorizing dy-
namic textures using a bag of dynamical systems. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(2):342–353, 2012.

[101] Robert P. Roesser. A discrete state-space model for linear image processing.
IEEE Transactions on Automatic Control, 20(1):1–10, 1975.

151

http://projects.cwi.nl/dyntex/

Bibliography

[102] Sam T. Roweis, Lawrence K. Saul, and Geoffrey E. Hinton. Global coordi-
nation of local linear models. In Advances in neural information processing
systems, pages 889–896, 2002.

[103] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total vari-
ation based noise removal algorithms. Physica D: Nonlinear Phenomena,
60(1):259–268, 1992.

[104] Alexander Sagel, Dominik Meyer, and Hao Shen. Texture retrieval using scat-
tering coefficients and probability product kernels. In International Conference
on Latent Variable Analysis and Signal Separation (LVA/ICA), pages 506–513.
Springer, 2015.

[105] Payam Saisan, Gianfranco Doretto, Ying Nian Wu, and Stefano Soatto. Dy-
namic texture recognition. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages II–II, 2001.

[106] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling op-
erations in convolutional architectures for object recognition. In International
Conference on Artificial Neural Networks (ICANN), pages 92–101. Springer,
2010.

[107] Bernhard Schölkopf. Causality for machine learning. arXiv preprint
arXiv:1911.10500, 2019.

[108] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation,
10(5):1299–1319, 1998.

[109] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001.

[110] Maximilian Seitzer. Fréchet inception distance (fid score) in pytorch. https:
//github.com/mseitzer/pytorch-fid, 2019.

[111] Uri Shalit and Gal Chechik. Coordinate-descent for learning orthogonal matri-
ces through givens rotations. In International Conference on Machine Learn-
ing (ICML), pages 548–556, 2014.

[112] Sergei L Shmakov. A universal method of solving quartic equations. Interna-
tional Journal of Pure and Applied Mathematics, 71(2):251–259, 2011.

[113] Nikolay Skarbnik. Local binary patterns. MATLAB Package, 2015.

152

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

[114] Didier Sornette. Critical phenomena in natural sciences: chaos, fractals, self-
organization and disorder: concepts and tools. Springer Science & Business
Media, 2006.

[115] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(56):1929–1958,
2014.

[116] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised
learning of video representations using lstms. In International Conference on
Machine Learning (ICML), pages 843–852, 2015.

[117] Martin Szummer and Rosalind W. Picard. Temporal texture modeling. In
IEEE International Conference on Image Processing (ICIP), volume 3, pages
823–826, 1996.

[118] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[119] Matthew Tesfaldet, Marcus A. Brubaker, and Konstantinos G. Derpanis. Two-
stream convolutional networks for dynamic texture synthesis. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 6703–
6712, 2018.

[120] Dmitry Ulyanov. Deep image prior: Project website. https://dmitryul
yanov.github.io/deep_image_prior, 2008.

[121] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9446–9454, 2018.

[122] René Vidal and Avinash Ravichandran. Optical flow estimation & segmenta-
tion of multiple moving dynamic textures. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages 516–521. IEEE,
2005.

[123] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos
with scene dynamics. In Advances In Neural Information Processing Systems
(NIPS), pages 613–621, 2016.

[124] Li Wang and Dong-Chen He. Texture classification using texture spectrum.
Pattern recognition, 23(8):905–910, 1990.

153

https://dmitryulyanov.github.io/deep_image_prior
https://dmitryulyanov.github.io/deep_image_prior

Bibliography

[125] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Ried-
miller. Embed to control: A locally linear latent dynamics model for control
from raw images. In Advances in Neural Information Processing Systems
(NIPS), pages 2746–2754, 2015.

[126] Jianwen Xie, Ruiqi Gao, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu.
Learning dynamic generator model by alternating back-propagation through
time. In AAAI Conference on Artificial Intelligence, pages 5498–5507, 2019.

[127] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing dynamic pat-
terns by spatial-temporal generative convnet. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7093–7101, 2017.

[128] Yong Xu, Yuhui Quan, Haibin Ling, and Hui Ji. Dynamic texture classification
using dynamic fractal analysis. In IEEE International Conference on Computer
Vision (ICCV), pages 1219–1226, 2011.

[129] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-
resolution as sparse representation of raw image patches. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[130] Lu Yuan, Fang Wen, Ce Liu, and Heung-Yeung Shum. Synthesizing dynamic
texture with closed-loop linear dynamic system. In European Conference on
Computer Vision (ECCV), pages 603–616. Springer, 2004.

[131] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-
up using sparse-representations. In International Conference on Curves and
Surfaces, pages 711–730. Springer, 2010.

[132] Kai Zhang, Ivor W Tsang, and James T Kwok. Improved Nyström low-rank
approximation and error analysis. In International Conference on Machine
Learning (ICML), pages 1232–1239, 2008.

[133] Guoying Zhao and Matti Pietikainen. Dynamic texture recognition using local
binary patterns with an application to facial expressions. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(6):915–928, 2007.

[134] Xiaochao Zhao, Yaping Lin, Li Liu, Janne Heikkilä, and Wenming Zheng. Dy-
namic texture classification using unsupervised 3d filter learning and local
binary encoding. IEEE Transactions on Multimedia, 21(7):1694–1708, 2019.

154

	List of Publications
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Remarks on Notation
	Typical Problems in Visual Processes
	Linear Dynamic Systems
	Semi-linear Dynamic Systems
	Research Problem Formulation
	Thesis Outline and Key Contributions

	Mathematical Preliminaries
	Linear Modeling
	Video Synthesis with Linear Dynamic Systems
	LDS Parameters as Features
	Semi-linear Ambiguities
	Kernel Methods
	Deep Learning

	Kernelized Alignment Distances for Streams of Histograms
	Systems of Bags
	The Alignment Distance on KLDS's
	Averages of KLDS Sets
	Experiments
	Discussion

	Nuclear Distances on Scattering Distributions
	The Scattering Transform
	Scattering Distributions of Texture Images
	Kernel Subspaces of Scattering Histograms
	The Nuclear Distance
	Experiments
	Discussion

	Dynamic Variational Autoencoders
	Assumptions on the Statistics
	Distributions of Frame Pairs
	The Dynamic Layer
	Training the DVAE
	Experiments
	Discussion

	Post-processing via Super-resolution
	Super-resolution as an Inverse Problem
	The Deep Image Prior
	Proposed Method
	Implementation with CNNs
	Experiments for Super-resolution with Ground Truth
	Synthesized Sequences
	Discussion

	Conclusion
	Alignment Distance Computation
	Computation of Bi-quadratic Coefficients
	Constructing the Quartic Polynomial
	Derivation of Convergence Properties

	Possible Extensions of the DVAE
	Application to Frame Prediction
	Generalization to Higher-order Markov Processes
	Generative Adversarial Nets

	Visual Results
	Synthesis Results of the DVAE
	Super-resolution Results

	Bibliography

