or reuse of any copyrighted component of this work in other works.

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

Delay-Aware Dynamic Hypervisor Placement and
Reconfiguration in Virtualized SDN

Saquib Amjad, Amir Varasteh, Nemanja Deric, Carmen Mas-Machuca
Chair of Communication Networks, Department of Electrical and Computer Engineering,
Technical University of Munich, Germany
Email:{saquib.amjad, amir.varasteh, nemanja.deric, cmas} @tum.de

Abstract—Software defined networking (SDN) provides dif-
ferent functionality and resource sharing capabilities with the
aid of virtualization. In virtualized SDN, multiple SDN tenants
can bring their controllers and different functions in the same
physical substrate. The SDN hypervisor provides the link between
the physical network substrate and its SDN tenants. Distributed
hypervisor architecture can handle scalability, virtualization, and
reassignment better than a centralized hypervisor architecture.
However, distributed hypervisors may require synchronization
and load balancing. Due to the dynamic control plane traffic,
some network elements may suffer from increase in delay.
Controller placement problem (CPP) and hypervisor placement
problem (HPP) have tackled the static placement and mapping
strategies.

In this paper, we design a dynamic hypervisor assignment
and reconfiguration with load balancing using integer linear
programming. The proposed model focuses on optimizing mul-
tiple objectives: control plane latency, processing latency, and
load balancing for distributed hypervisors. We provide different
heuristics for the model and then perform evaluation on two
topologies- Abilene and EU-nobel. The results show the trade off
between load balancing and minimizing latency, and comparison
of the performance of heuristics and MILP model.

Index Terms—virtual network, network virtualization, hyper-
visor migration, dynamic hypervisor placement, load balancing,
network reconfiguration

I. INTRODUCTION

In the last decade, software-defined networking (SDN)
has emerged as a versatile paradigm of programmable and
configurable networks with decoupled control and data plane.
SDN, combined with Network Virtualization (NV), presents
a scalable, programmable network with advanced resource
sharing and abstraction. The tenant networks, called virtual
SDNs (vSDNs), can employ their controllers [1], respec-
tive policies, and program their resources independently [2].
Virtualization enables network planners to increase network
resource utilization by adding multiple network slices on the
same physical substrate network. Network virtualization is
achieved by using an SDN network virtualization hypervisor
layer between the SDN controller and its tenant switches.
The hypervisor provides network abstraction transparently to
its vSDN controllers. In this work, we consider distributed
hypervisor architecture. A centralized hypervisor cannot pro-
vide the same level of scalability and efficient virtualization
as distributed hypervisors. The control plane latency is an
important network performance measure, where high latency

978-1-6654-2434-9/21/$31.00 ©2021 IEEE

leads to packet losses and long flow setup times. However,
virtualization adds overhead in control plane latency due to the
introduction of the hypervisor layer. Furthermore, the current
end-user demands include resource-hungry services such as
video streaming, voice over IP, etc., which require stringent
QoS standards at low latencies. As a network operator, plan-
ning a network with low latencies is a constant challenge.

In this paper, we model and analyze a hypervisor place-
ment strategy that can adapt to the dynamic demands in
the network by vSDN to hypervisor reassignments, while
providing low latencies for all its tenant networks. With the
increasing use of distributed hypervisor architecture [3] and
hypervisor migration protocols [4], the proposed model takes
this dynamicity into account and allows network tenants to
choose hypervisor instances based on their latencies, while
also allowing hypervisor instances to allocate vSDNs dynam-
ically to prevent capacity overload. To focus on the effect
of hypervisor placement and vSDN reassignment, we fix the
controller locations for all time. This model can answer the
following issues:

« Number of hypervisors required in the network and their

locations.

« Effect of control plane traffic on the hypervisor to switch

mapping.

o Dynamic load distribution based on current hypervisor

load and remaining processing capacity.

The rest of the paper is structured as follows. Section
II motivates the topic with an example scenario. Section
III highlights the related works in controller and hypervi-
sor placement problems, specifically focusing on dynamic
placement and existing reassignment and migration models
and protocols. The system model and MILP formulation are
presented in Section IV. Section V introduces the proposed
heuristics for placement and reassignment sub-problems. The
performance evaluation is conducted in Section VI, followed
by the conclusion of the work and possible future directions
in Section VIIL.

II. MOTIVATION

The SDN network performance is dependent on the lo-
cations of its network entities, such as controllers and hy-
pervisors, and the effects of dynamic network traffic. In a
non virtualized SDN environment, the controller placement
problem (CPP) was introduced to find the optimal number

— vSDN

Shortest
path

SDN
Controller

. SDN €=
) Hypervisor &9 Swich

(color
coded)

Fig. 1: Migration concept: (a) ¢ = O initial mapping to hypervisor HI, (b)
t =1 variation in flow rate, (c) ¢ = 1 find suitable hypervisor, and (d) vSDN
migration to H2

of controllers and their locations [5]. Hypervisors in vSDN
require optimal placement in the network for efficient virtual-
ization. The hypervisor placement problem (HPP) tackles the
question of finding optimal locations for hypervisors. Several
placement strategies have been developed for CPP and HPP,
to optimize network performance. The majority of the works
focus on minimizing the worst-case latency but do not consider
the dynamic traffic flows. The control plane traffic distribution
or flows can be subjected to extreme variations over time. The
dynamic nature of traffic leads to prioritize certain flow paths
mapping to the least latency path, for the overall performance
of the network.

A sample scenario is depicted in Figure 1. The colored discs
represent each vSDN and the switches with the same colored
disc are part of the same vSDN. The controllers for each vSDN
are chosen within the VNs by selecting the node with the least
latency over all VNs. For the sake of simplicity, all vSDNs
are controlled by the same controller C1, with 2 hypervisor
instances H1 and H2. The thickness of the arrow depicts the
number of flows from the switch to the hypervisor. For the
initial vSDN to hypervisor mapping, the hypervisor closest
to the switch carrying a majority of flows for any vSDN is
chosen. Let us consider the red vSDN to show our concept.
At time t = 0, the red vSDN is mapped to H1, as switch
S1 has the majority of flows and is closer to H1 (shown in
Figure 1(a)). With dynamic traffic, this distribution changes
and at r = 1, §4 has the majority of traffic (Figure 1(b)).
Since S$4 is closer to H2, the vSDN migrates from H1 to
H2 (Figure 1(c)), while the controller does not change its
location. The increase in latency during this migration phase
is added to the overall latency of the network. Since the traffic
can suffer from huge variations over time, an optimal method

is required to dynamically change the vSDN to hypervisor
mapping, while minimizing the overall latency of the system.
This is the motivation behind our work.

To improve the network performance, the model considers
the effects of load balancing while also minimizing the latency.
The optimal dimensioning and placement of hypervisors based
on these performance parameters are formulated using novel
linear programming models (MILPs). Multiple heuristics are
also introduced to reduce the time constraint. The evaluation
is based on a quantitative analysis of the optimal solution and
comparison with the proposed heuristics. To the best of our
knowledge, this is the first work that emphasizes hypervisor
processing capacity and changes in control plane traffic. We
also consider processing latency into account with propagation
latency for latency calculation.

III. RELATED WORK

This section provides an overview of the placement problem
origin, existing research in controller and hypervisor place-
ment problem and the hypervisor migration protocol, which
forms the basis of our hypervisor placement and reassignment
model.

A. Controller Placement Problem

The placement problem is a common linear programming
model, derived from the k-center problem and facility location
problem (FLP) [6], [7]. CPP was first introduced by Heller
et al. [5]. Qin et al. [8] and Xiao et al. [9] consider the
controller placement problem for heterogeneous environments.
[9] aimed at partitioning the WAN into smaller SDN domains
using spectral clustering algorithms.

In [10], the author discusses a Pareto-based optimal place-
ment framework POCO for large SDN networks, which pro-
vides users with different placement options based on their
performance criteria, such as latency, resilience to failure, and
load balancing. [11] provides a load balancing mechanism for
already placed controllers using switch groups. Khorramizadeh
et al. in [12] developed a heuristic based on obtaining a
Pareto set of solutions for controller placement with multiple
objective functions. To confront dynamic traffic and node
failure conditions, the placement [13] and [14] solves CPP
based on controllers’ utilization, power consumption, and
cost of installation dynamically based on its traffic. Bari et
al. [15] provides a detailed description of SDN deployment in
a WAN with OpenFlow switches with switch reassignment and
dynamic switching of controllers, using a dynamic matching
algorithm.

B. Virtualized SDN: Hypervisor Placement Problem

The first work on the hypervisor placement problem is given
in [2]. It provides an extensive study of the cost of virtualiza-
tion in terms of various latency metrics: worst-case latency,
average latency, average maximum latency, and maximum av-
erage latency. It also considers the diversity of SDN networks
with multi-controller SDN switch deployment. It compares a
centralized hypervisor architecture with a distributed one, with

[Symbol | Description | [Variable | Description |
G(V,E) Physical network substrate Xj = 1, if hypervisor installed at location j € @, 0
\%4 Set of physical nodes otherwise
E Set of physical links ﬁ;.,m =1, it vSDN m € M is assigned to hypervisor at j at
M Set of vSDN requests time ¢t € T, 0 otherwise
Cj Processing capacity of hypervisor at location j Pma Pi,j,m = 1, if virtual node v € V,, is assigned to hypervisor
L} Load of hypervisor at location j at time ¢ at j attime ¢ €7, O otherwise i
vSDN,,(m,R)) | vSDN request m and message rate R!, at time ¢ AL,] = 1, if physical node p € V' is controlled by hypervisor
RL . Flow rate of VN v for vSDN m at time ¢ _ at j attime t €T, 0 otherwise _ i
Vir Set of virtual nodes of vSDN,, Bmlgj’jmm =1, 1f.vSDN m is r.easmgned from hype'rV1sor at j to
q Number of hypervisors in network hypervisor at j,, at time ¢t € T', 0 otherwise
0] Set of potential hypervisor locations
&(m,v) VNE mapping of VN v of vSDN m TABLE II: Decision variables.
d(src,dst) shortest path between src and dst
Cm Controller node for vSD N, ¢ € Vin
T set of timeslots, t € T

TABLE I: Notations definition.

a varying number of hypervisor placements. Killi et al. [1]
introduced a joint hypervisor and controller placement strat-
egy. They first propose a controller placement strategy when
the hypervisor locations are fixed, which provides the basis
of a joint hypervisor controller placement model. The model
is designed to minimize the worst-case latency for all vSDN
requests and generalizes the model for average latency. In [16],
authors considered a dynamic hypervisor placement scenario
and formulated an ILP to minimize control plane propagation
latency. In [17], the authors proposed a MILP based Joint
HPP-CPP for different network latency metrics and give the
best geographical arrangements based on user load and latency
thresholds. Further, authors in [4] introduced a hypervisor
migration protocol and virtualization layer architecture that
migrates hypervisor instances without notifying the controller.
Existing hypervisor implementations, such as FlowVisor [18],
HyperFlex [19], OpenVirteX [20] support both centralized
and distributed architecture, but provide static configurations.
Deric et al. [21] [22] modeled the hypervisor CPU utilization
and processing delays, which have been used in our work.

1V. PROBLEM FORMULATION
A. System Model

The physical network is modeled as a graph G(V, E) where
V represents the nodes and E represents the edges of the
network. We consider a fully connected distributed hypervisor
architecture. All physical nodes are considered as potential
hypervisor locations (® = V), and the processing capacity of
the hypervisor nodes is given by C;, where j is the node ID.
The processing capacity is defined by the maximum flow rate
each hypervisor can handle. A finite time horizon T is defined
with |T'| timeslots, with ¢+ = {0,1,2...|T|}. L;. represents the
sum of flow rates of the vSDNs assigned to the hypervisor at
Jj. The set of vSDN requests are represented by M, where mth
vSDN request is defined by its index m and assigned flow rate
R!,. V,, represents the set of VNs of vSDN m, where controller
node c,, is selected within V.

The function &(m, v) represents the VNE mapping for each
vSDN tenant. For simplifying the model, the VNE mapping

is chosen to be random, i.e., each vSDN request’s nodes
Vin are mapped randomly to the physical substrate nodes V.
The model is divided into two sub-models: placement and
reassignment, to make the initial placement decision realistic
for a given set of static demands. The placement model focuses
on optimizing the initial locations of hypervisors with the
given flow rates and vSDN requests at time ¢ = 0. The re-
assignment model focuses on vSDN reassignments to existing
hypervisor instances. We track variations in processing latency
and imbalances in hypervisor load to find reassignments.
Table I summarizes all the notations used in this model.

B. Optimization Model Formulation

The model is formulated as a multi-objective MILP model,
to minimize end-to-end latency and balance the load on the
assigned hypervisors. The variations in VSDN flow rate R,
leads to varying load on each hypervisor L;. over each timeslot.
The model minimizes the overall latency of the network and
triggers reassignments depending on the overhead in latency
incurred. The model also tracks the processing load on each
hypervisor and prevents hypervisor overload, determined by
C; and Lj.. Table II lists the decision variables for the MILP.
Variable x; is the only static decision variable that indicates the
placement of the hypervisor at location j. All other decision
variables of Table II vary over given timeslots .

Before presenting the MILP model constraints, let us define
the three costs considered in the problem: worst-case end-to-
end latency, migration cost, and load balancing cost which
constitutes the objective functions.

1) The worst-case end-to-end latency CostZ'z’e’ is calculated
as the maximum sum of propagation and processing latency
within its VNs.

mt _ v, j,m,t v,m,t t
Cost 5, = max {(Costp,op + Costylon),Bmapv’j,m} (1)
m

The propagation latency Costpy;,"" for a virtual node v of

vSDN m to its controller ¢, is calculated as the sum of
propagation latency from v to its assigned hypervisor j and
the propagation latency from the hypervisor to its controller
node. The propagation latency between two nodes s and d,
d(src,dst), is calculated from the latency incurred by the
shortest path between src and dst. The propagation latency of
VN v, from vSDN m, with controller at VN ¢, via hypervisor

Jj 1is given by
C()st;rJO;',” —d(f(m V), j) +d(j,§(m,cm)))

The processing latency Costprjo?f’ is defined as a function of

the flow rate of a given VN. The parametric function f(rate)
is used to calculate latency from the rate, and is given by
the values referenced from [22]. The processing latency for a
given timeslot is given by

Cost)n! = f(R},) 3)

proc
2) The Migration cost MCost', ; is defined as the maxi-
mum latency of the affected packets within all VNs V,, for
reassigning the vSDN m. To maintain homogeneity between
end-to-end latency costs and migration costs, we model the mi-
gration cost in terms of latency as well. The function g(RY,)
calculates the average latency incurred by the hypervisor
during the migration phase, based on the rate of the migrating
vSDN. It has been derived from the experimental values in
[4]. The propagation latency between the initial and target
hypervisor instances has not been included in the migration
costs. The cost for reassigning vSDN m from hypervisor j to
Jn at time ¢, is given by

MCost ; = ‘fré%}'ig(Ri’m),Bmig;’jmm 4)

3) The load balancing cost is defined as the linear imbalance
between the maximum and minimum loaded hypervisor in-
stances at a given timeslot. The rates of each vSDN assigned
to a hypervisor add to the hypervisor load. The load balancing
cost or linear load imbalance is defined as

t
Costlb = rJneg(L - r]nelgL ,6’] m (@)
The load L’ on any hypervisor j at given time is defined as
ZR,B]m,VJe(I)teT (6)
meM

Let us now introduce the problem formulation. A hierarchical
model for multi-objective optimization is used, which priori-
tizes the end-to-end latency as the primary objective function,
and the load balancing cost as the secondary objective.

objl: m1n<|T| Z [|M| Z (COSteZe)] +MC0st] in m}
VmeM,j,j,€e®,teT

(N
. .1 '
obj2 :mm{mCmtlb}VteT ®)
subjected to following constraints:

Zx.,-zq,VteT)

jed
Zﬁ;’m:I,VmeM,zeT (10)

JjED
ﬁmap’v,j’m Sﬁ;’m, VveVy,meM,jed,teT (11)
< > B VVEVmmeM, jedeT (12)

meM

Z pmap’, ; < Vmlxj, Vv EVymeM,je® reT

VEV,

(13)
A< > B YveVameM,jedreT
meM veV,
&(m,v)=p
(14)
DA <L YueV,reT (15)
Jjed
Li<CjteT (16)
B = Zﬁmig;mi’m, YVmeM,j,e®,teT (17
jed '
B = Zﬁmig;f}mm, VmeM,j,edteT (18)
jed

Constraint (9) fixes the number of installed hypervisors in the
network to g. (10) ensures each vSDN is mapped to only one
hypervisor for a given time instance. Constraint (11) forces all
VNs of every vSDN to be connected to the same hypervisor at
each timeslot. (12) forces the hypervisor installation variable
x; to be zero if no vSDN is mapped to it. All virtual nodes
of vSDNs assigned to hypervisor j need to be mapped only if
the hypervisor instance exists at location j. This is controlled
by (13). Constraints (14) and (15) ensure that a hypervisor
instance is assigned to control a physical node u if at least
one VN of any vSDN is assigned to the given hypervisor,
and the VN is mapped onto this node u. Hypervisor overload
is prevented by constraint (16). The reassignment constraints
(17) and (18) use law of conservation technique to ensure
mapping and reassignment of each vSDN for all timeslots.

Some of the above constraints overlap for placement and
reassignment submodels of the MILP. The proposed MILP
is a modified version of the facility location problem, which
is NP-hard. Thus, the dynamic hypervisor placement and
reassignment model is also an NP-hard problem [6].

The placement model can be defined as:

objl,obj2

for time ¢ = 0, subjected to constraints (9) to (16), with
decision variables referred from Table II. Smi gm !

© is not used
n
as no migrations occur at ¢t = (0. The followmg decision
variables are used:

XjG{O,l}VjG(D
ﬁ?mE{O,l}Vjetb,meM

0 .
ﬂmapv’j’me{o,l}VVEVm,JG(I),mEM
Agje{o,l}vuev,jeq>

The optimal solution for placement model is inputted into
the reassignment model. The decision constants for ¢+ = 0
include all optimal values of the decision variables. The
reassignment model can be formulated as:

objl,obj2
for time ¢ > 0, subjected to constraints (10) to (18). The

reassignment model optimizes only for ¢ > 0. Since x; is
fixed as input for the placement model, it is not included in

Algorithm 1 Initial Greedy Mapping

Algorithm 2 GGLM

Input: G(V,E), m € M, g, hypervisor locations hyp_loc
Output: vSDN-hypervisor mapping mapped|[m| V¥ m €
M
1: for all m in M do

2: for j in hyp_loc do

3: find j : min{max,cv,, (d(&(m,v),j) +d(j,cm) +
FRY)}

4: if L9+ R}, < C; then

5: mapped[m] = j

6: L9+ =R},

7: else

8: goto step 2 with hyp_loc — j

the reassignment model. The decision variables (see Table II)

for t = 0 are excluded, and are stated below.
ﬂ;’me{O,l}Vjed),meM,teT—{O}

,Bmapi’j,m €{0,1}VveV,,jedmeM,reT-{0}

A;w.e{O,l}‘v/peV,jeCD,teT—{O}

pmig; . €{0,1}Vjed, j,edmeM,teT-{0}

V. HEURISTIC ALGORITHMS

In this section, we introduce our proposed algorithms for
the dynamic HPP and reassignment model. We also present
rudimentary heuristics which are used for evaluation. In the
proposed MILP model, g hypervisors are placed among V
nodes, creating (Z) possible placement solutions. For each
hypervisor instance, |M| vSDNs are mapped, the solution
space increases by |M|?. The reassignments can occur at
any time instance, and all vSDNs can migrate to any of
q — 1 hypervisor instances (or g for simplicity). Thus, over T
timeslots, the model creates a (‘;) #|M|*4" solution space. This
solution space is large, even for small networks like Abilene.
The heuristic approach aids in reducing this complexity and
aims at finding a solution closer to the optimal solution, while
relaxing the time constraint. Similar to the MILP, the proposed
heuristics are also divided into placement and reassignment
heuristics.

A. Placement Heuristics

The placement heuristics are divided into two phases: loca-
tion selection and vSDN mapping. We present two hypervisor
location selection heuristics: Random and Centrality based.
Random selects random hypervisor locations based on a num-
ber of hypervisors g. In Centrality based selection, network
nodes are sorted with the highest betweenness centrality, and
the g highest nodes are selected as hypervisors locations. The
vSDN to hypervisor mapping heuristic is a simple greedy
algorithm, which maps each vSDN to the hypervisor with
minimum worst-case end-to-end latency, while also considers
hypervisor overload.

Algorithm 1 shows the pseudo-code for initial mapping of
vSDNSs. hyp_loc represents the set of hypervisor locations
selected using the random or centrality-based heuristics. The

Input: Initial random population Py, max iterations

Itermax

1: while i < Itermax do

2 for Set S in P; do

3 Apply algo 1

4 Calculate fitness score for S

5 Select parents from P;, add to Py

6 Crossover and create offsprings for Py

7 Mutate if enabled

Output: Converged Solution

vSDN requests are sorted with decreasing flow rates, giving
the higher priority to map the vSDN with larger rates. The
algorithm looks for the hypervisor which provides minimum
worst-case end-to-end latency cost Costé"z’e’ for given vSDN
m. The algorithm selects the hypervisor j with minimum end-
to-end latency for the vSDN m, from the set hyp_loc. If the
selected hypervisor j overloads when vSDN m is mapped, j is
removed from potential hypervisor locations and the algorithm
runs recursively until a suitable mapping is found. The initial
rate of the mapped vSDN is added to the load of selected
hypervisor. The traffic model (refer to Section VI) ensures no
vSDN remains unmapped.

We also introduce an evolutionary algorithm for combined
node selection and vSDN mapping, called Genetic Algorithm
with Greedy load mapping (GGLM). The proposed com-
bined node selection and placement heuristic are presented
in Algorithm 2. The genetic algorithm (GA) is part of a
class of stochastic evolutionary heuristic algorithm, based on
a natural selection and mutation mechanism. We discuss each
component of the GA separately below:

« Initial Population and Representation: The population is
created as a binary string of size equal to the number of nodes
in the network, and 1’ represents the node selected as the
hypervisor. The initial population consists of 4 chromosomes,
where each chromosome is created randomly, and the number
of '1’s is fixed to q.

o Fitness Function: A weighted sum of end-to-end latency
cost and load balancing cost is formulated as the fitness
function, and is given by

+ yCost?b

FitnessFunction : a Z (19)
meM
The weights @ and 7y are set to normalize each cost term and
provide equal weightage to both objectives. The fitness score
is calculated for each chromosome, and two chromosomes
with the least fitness score are selected as parents for the next
iteration, as the objective is for minimization.
» Crossover: The selected parents are crossed over for two
new offsprings, which form the population for the next
iteration. A partial crossover technique is used to ensure
each offspring also conforms to the number of hypervisors
in every iteration. Figure 2 illustrates the partial crossover
technique. The parent chromosomes have {3,5,6,10, 11} and

Parent 1 Offspring 1
(oo &l oo [o &0 [&[o o &[] [o &[]
Parent 2 Offspring 2

(3 o oo o110 il o——/[&[o[o[&[o]1]xo[o]o]

HE ENEEEE B

Genes from parent 1 to offspring 1
Genes from parent 2 to offspring 2

New genes generated randomly
- Tabu genes

Fig. 2: Partial Matching Crossover

{1,3,7,8,10} the bits turned on, representing hypervisor loca-
tions at respective indices of the network graph. The exchange
arrays for each parent are {5,6, 11} and {1, 7, 8} respectively.
Consequently, the exchange arrays give the locations for
offspring 1 and offspring 2, respectively. Since both parents
have {3, 10} locations in common, using them will lead to
repetition in population, as the heuristic will get stuck to a
local maxima/minima, instead of reaching the optimal location
matrix. The common locations are considered as fabu for both
offsprings, and the remaining locations are decided randomly,
ensuring that offspring 1 does not have any location already
installed, or any location from the tabu list.

o Mutation: A mutation is used to diversify the population
by altering one more gene in the offsprings. The mutation
probability is set to 0.05. After each mutation, a random index
is selected for a reverse mutation, for keeping the number of
hypervisor installations constant for the next iteration.

B. Reassignment Heuristics

The reassignment needs to occur at runtime, implying the
applied heuristics should be simple. To solve the dynamic
changes in control plane traffic, i.e., flow rate, a simple
heuristic can provide solutions with minimum information
and the least number of information processing steps. The
reassignment model tracks variation in rates and calculates
C ostznz’; for every timeslot. A reassignment occurs whenever
an increase in latency is detected due to flow rate distribution,
or hypervisor overload. Algorithm 3 shows the pseudo-code
for reassignment heuristic when only considering flow rate
variations.

The reassignment heuristic in the case of hypervisor over-
load is shown in Algorithm 4. In some instances, reassigning
a single vSDN does not affect hypervisor overload. The algo-
rithm lists all vSDNs mapped to the overloaded hypervisor and
recursively reassigns vSDNSs to the hypervisor with the lowest
load until its load conforms to hypervisor capacity. The target
hypervisor does not suffer overload during this reassignment
phase, as all vSDNs with lower rates are reassigned, ensuring
the target hypervisor is not overloaded. Due to sorting of
virtual networks connected by a particular hypervisor, and
remapping vSDNSs to the least loaded hypervisors, a balanced
load is achieved over time.

Algorithm 3 Reassignment Model

Input: vSDN to hypervisor mapping mapped[m] at time ¢,
hypervisor locations hyp_loc, hypervisor loads Lj., worst case e2e

latency Cost";’e[
Output: new mapped|m]
for m in M where mapped[m] = h do
if Cost™! > Cost™'~! then
Te2e ele ‘
Find j, = h: min(Cost)3))
if MCost’. . < Cost™! — Cost™'~! then
JoJn-m . e2e ele
mapped[m] = jn
Increase overall latency by MC ost;
L; and L;.

- and update

Algorithm 4 Hypervisor Overload

Input: vSDN to hypervisor mapping mapped|[m], hypervisor
locations hyp_loc, hypervisor loads LS.

Output: new vSDN to hypervisor mapping mapped|m]

1: for all j in hyp_loc do

2 Jjn =h:min(L})

3: for sorted m € M and mapped[m] = j by R, do
4: if L’,. > Cj then
5.
6

mapped|[m] = jn
Increase overall latency by MCost'. h and update
Jshn.m

L" and L.
J Jn

The algorithm 3 is referred as Balanced Migration (BM) in
performance evaluation. This heuristic is compared against a
greedy heuristic, Greedy migration (GM). GM reassigns vSDN
whenever an increase in C ostzg’; is observed, irrespective of
the migration cost MC ost;.v i Algorithm 4 is triggered in
both migration heuristics, as hypervisor overload can lead to

loss of data in the network.

VI. PERFORMANCE EVALUATION

The proposed MILP and heuristics are evaluated with input
ranges for each system variable, illustrated in Table III. Two
topologies are used: Abilene topology consists of 12 nodes and
15 bidirectional edges and EU-Nobel topology comprises 28
nodes and 41 bidirectional edges. The hypervisor processing
capacity (C;) is limited to 1000 msgs/s and the rates of
each vSDN are defined by the number of vSDNs (|M|), their
maximum rate (max(rate,,)) and the number of hypervisors
installed (g). The maximum assigned rate of each vSDN is
defined as
Ci*q

|M|
The maximum vSDN rate ensures each hypervisor has a
proportionate load, irrespective of the number of hypervisors
in the network. This also triggers hypervisor overload in the
network and triggers vVSDN reassignments. All vSDNs are
initialized with a random rate, ranging between 0.3 to 0.5
times the maximum allowed rate. The number of virtual nodes
of every vSDN request is uniformly generated between 3 and
6. The controller for each vSDN is selected with the minimum
average controller-to-VN propagation latency. The process-

max(rate,,) = (20)

—e— optimal —¥— random —e— central GGLM
_ =700 —~600
R [%600 i 225 £ 500
o] R g 500{——1—1 F20 £ 400 ‘
%20 A ? i §400 @ E @ @T i *§15 é é $ ééé@ gsoo é é ? éééo
515@0&@@ —————— éoééoé gaoo @%é@oéépgé"é ;5:’10 iéo;éOééo gzoo 660&&0%&0
W37 5 % © 200 2 3 4 5 6 S5 4 5 6 C100 G

Num hypervisors Num hypervisors

(a) Abilene (b) Abilene

Num hypervisors Num hypervisors

(c) EU-nobel (d) EU-nobel

Fig. 3: Comparison of performance of optimal solution vs placement heuristics in terms of average and overall latencies on Abilene and EU-nobel topologies.

®— optimal

2 700 % 50
~§,600 ! 740
S v
§500 - 530 &
] B Vo S
~400{ o T © 20 v °
€300 evapves¥o® Ce £10 At
()
> oVe® @ @ 4
5200 0
2 3 4 5 6 2 3 4 5 6

Num hypervisors Num hypervisors

(a) Abilene (b) Abilene

GM BM

'2600 70

=500 3 60

g g 50 v
8400 3 40 v

© v ; 4

= 300 Voo O ;30 ‘ o
= viove® 220 % o
£200{ ovoo’o 210y T .
2 I N °ée o o 9
S100t—r—— 0r-© °

2 3 4 5 6 2 3 4 5 6
Num hypervisors Num hypervisors

(c) EU-nobel (d) EU-nobel

Fig. 4: Comparison of performance of optimal solution vs migration heuristics in terms of overall latency and migration cost on Abilene and EU-Nobel

topologies.

ing latency function is a uniform linear distribution, with a
maximum of 500 ms latency for a flow rate of 600 msgs/s.
A Poisson arrival process is applied independently for each
vSDN, with interarrival times for each process defined by the
parameter A. For |[M| = 10, half of the vSDNs are randomly
selected for a more aggressive increment pattern, indicating
demanding networks. For a higher number of vSDNs, 20% are
selected as the more demanding networks, with 4 = 0.6 for
less demanding networks, and 0.8 for demanding networks.
These values were selected to find the optimal arrival rates
to achieve statistically evident results. The flow rate profile
adheres to the assigned vSDN rate: the sum of flows from
all VNs of any vSDN cannot be more than the assigned
rate of the vSDN at any given timeslot. The evaluations are
performed on a server with an 8 core Genuinelntel Common
KVM processor running at 2.5 GHz with a memory of 90
GB. The MILP and heuristics are implemented in Python
and optimized using Gurobi Optimizer. Every setup is run
for 30 iterations and 95% confidence intervals are used to
get statistically reliable results. In this paper, we present three
parameters for evaluation: i) Average latency is the average of
worst-case end-to-end latency for all vSDNSs over all timeslots;
(ii) Migration cost is the sum of the migration costs over all
timeslots to get the latencies incurred due to migration in the
given time horizon; and (iii) Overall latency is the sum of
routing and migration latencies for all timeslots. To reduce the
number of dimensions involved, results with a varying number
of hypervisors are shown.

The increase in average and overall latency with more

[Parameter [Values |

Network Topology Abilene, EU-Nobel

No. of hypervisors 2,3,4,5,6
No. of vSDNs 20, 30, 40, 50, 60

No. of virtual nodes per vSDN U(@3,6)
Initial vSDN rate 0.3 to 0.5 of max(ratey,)
Rate increase Aj;c 0.6 - 0.8
Processing latency(VN size 3 to 6) U(200,600) ms
No. of iterations 30

TABLE II: Distribution of parameters for the evaluation

hypervisors is attributed to the traffic model, as the maximum
vSDN rate is proportional to the number of hypervisors in-
stalled in the network. This leads to higher processing latency,
even when the propagation latency decreases with an increase
in hypervisors.

A. Impact of Placement Strategies

From the plots in Figure 3, the random placement strategy
incurs the highest average and overall latencies for both
topologies. The average latency increases with the number of
hypervisors with a similar slope as the optimal solution. In the
case of a varying number of vSDNs, higher latencies are ob-
served with this placement strategy. The difference in latency
parameters is higher for Abilene than EU-Nobel. The latencies
shown with the central nodes placement strategy follow closely
with our proposed algorithm GGLM for Abilene. In the case
of EU-Nobel, it can be observed that GGLM performs better,
and follows the optimal solution closely. It can be asserted that
the proposed algorithm shows better performance for larger
networks. The placement strategies have little to no effect on

% 1000 21000
= =
8 750 & 750
g 5
© 500 @ 500
E E
= | RS
5 250 5 250
©]
(] Q
— -l

GGLM optimal random central GGLM

Placement Type

optimal random central

Placement Type
(@) (b)

Fig. 5: Performance of placement strategies for load balancing at time 7 = 0
for (a) Abilene and (b) EU-Nobel topologies.

the migrations in the network. The various migration strategies
are discussed separately.

B. Impact of Migration Strategies

As shown in Figure 4, the migration cost increases with an
increase in the number of hypervisors. Due to the presence
of more hypervisors, more suitable hypervisor instances are
available to each vSDN when an increase in the end-to-end
latency is observed. This leads to an increase in the number
of migrations with the least contribution to minimizing the
average latency. A decrease in migration cost is observed
with an increase in the number of vSDNs. Due to the design
parameters of vSDN flow rates, the higher number of vSDNs
have lower rates. This causes the migration cost for any vSDN
to be lower, triggering more migrations, with a decrease in
migration cost.

The heuristic provides higher migration costs than the
optimal solution, resulting in a higher overall latency than the
optimal solution. It is observed that the number of migrations
is higher for the optimal solution, while the cost of migration
is lower. The MILP considers the vSDN for the lowest flow
rate for migration, while the heuristic considers two criteria for
vSDN migration: hypervisor overload and increase in average
latency per timeslot per vSDN. In the case of hypervisor
overload, the heuristic migrates the vSDN with the lowest
rates, assigned to the overloaded hypervisor, to the least loaded
hypervisor until the hypervisor load is below its capacity. In
the case of latency-based migration, the vSDNs with higher
rates may also migrate, contributing to higher migration costs.
For the Abilene topology, the GM heuristic shows a slightly
higher number of migrations than the BM heuristic but suffers
from higher overall latency and migration cost. In the case of
EU-Nobel, the gap between the two heuristics is increased,
concluding better performance of BM for larger networks.

C. Analysis of Heuristics- Impact of Load Balancing

The load imbalance measure for heuristics is calculated as
the average of the difference of loads between the maximum
loaded and minimum loaded hypervisor instances. It does not
depict the variations over time. The MILP tries to minimize
the load imbalance for all timeslots. The proposed heuristics
do not perform dynamic load balancing per timeslot. The main
focus is to prevent hypervisor overload, and trigger migrations
whenever a hypervisor instance is overloaded. Furthermore, all

Number of decision
variables
Number of equality
constraints
Number of inequality
constraints
Number of general
constraints

Zmem V15T X men [V * Vi | = [T |+
[VI+2 |V« |T|+|V|?*|M|*|T|
[VI+ M|+ |T|[+|V]*|M]|=*]|T|

Smemt WV 5 Vi [* [T [+ V][V [x[M]x
IT|+|V 2= T +2%|V]*|T]
2% |V |*|T|

TABLE IV: Complexity Analysis of MILP

migrations due to an increase in latency consider hypervisor
overload instead of load balancing. This results in a higher
load imbalance overall timeslots for each placement and
migration strategy. Both migration strategies perform similarly
for different parameters, with the BM strategy showing lower
load imbalance for EU-Nobel topology.

To perform a fair comparison of the heuristics and optimal
solution in terms of load balancing, we consider only the
initial load mapping. Figure 5 shows the load imbalance for
the optimal solution with different placement strategies. The
random placement displays the highest load imbalance. The
placement based on the centrality and our proposed algorithm,
GGLM, show similar performance in load balancing. The
GGLM shows better performance for EU-Nobel topology.
In GGLM, the latency and load balancing objectives are
combined in a normalized weighted sum for multi-objective
optimization. For the same weights for both objectives, a high
load imbalance was observed. To improve the performance of
the second objective, the weight of the load balancing objective
is increased to 0.65 and latency weight to 0.35. These values
do not include the normalization factors of the cost terms in
Equation (19). The altered weights showed an improvement in
load balancing with no degradation in the latency objective. All
results shown for the GGLM heuristic use the same weights.

D. Complexity Analysis

The MILP model for combined placement and reassignment
is based on capacitated facility location problem (CFLP),
which is an NP-hard problem. The Gurobi optimizer uses a
dual simplex method, which can traverse in the worst case,
all 2" nodes in the search space for an optimal solution. This
makes the order of complexity of finding the optimal solution
to be O(2") where n is the number of solution points in the
search space. The heuristic approaches reduce the complexity
of the problem significantly, by providing sub-optimal but
acceptable solutions. The complexity of the proposed MILP
is presented in Table IV in terms of the number of decision
variables and different constraints used.

E. Runtime Analysis

The average completion times of the models for the heuris-
tics and the optimal solution is given in Table V. The heuristics
perform almost 100x faster than the MILP solved with 5%
gap. The proposed algorithm includes genetic algorithm as
the placement strategy, which contributes the maximum in

[Topology | Solution type [Average runtime(s) |

MILP 248.20
. Random greedy 1.32
Abilene Central greedy 1.22
GGLM 16.9
MILP 645.45
Random greedy 1.49
EU-Nobel | —= e greedy 1.33
GGLM 19.82

TABLE V: Comparison of runtime of MILP and heuristics.

runtime. The genetic algorithm, due to its stochastic nature,
takes the longest to reach convergence. The runtime of GGLM
can be reduced by using a subset of locations for hypervi-
sor placement or reducing the number of iteration to reach
convergence. It was observed that selecting the nodes with
the highest centrality is the best measure for small networks,
while the placement using GGLM shows better performance
for both objective functions. The average runtimes for Abilene
and EU-Nobel topologies for the GGLM heuristic are 16.9s
and 19.82s, respectively. This implies the heuristic offers
scalability for large physical networks and a higher number
of virtual networks.

VII. CONCLUSION

This research aims to design a hypervisor placement scheme
in a dynamic virtualized SDN environment to minimize the
end-to-end control plane latency. The model shows that vS-
DNs can be dynamically assigned in a distributed hypervisor
architecture, taking migration costs into account. The pre-
sented model considers migration cost in terms of latency to
depict the network overhead incurred by each virtual network.
The placement scheme shows an increase in latency with
an increase in the number of hypervisors. Furthermore, the
evaluation shows that the proposed heuristics provide latency
measures close to the optimal solution. The heuristic provides
higher migration costs than the optimal solution. In conclusion,
the presented model opens a new facet of dynamic placement
and virtual network reassignment in virtualized networks.

As part of future work, heterogeneity can be introduced,
with hypervisors of different capacities, different sizes of
virtual networks, etc. Moreover, the dynamic hypervisor place-
ment model can be extended to a joint controller and hy-
pervisor placement, with increased dynamicity by enabling
hypervisor and controller migrations.

ACKNOWLEDGMENT

This work has been funded by the Germany Federal Min-
istry of Education and Research under project AI-NET AN-
TILLAS (project ID #16KIS1318).

REFERENCES

[1] B.P.R.Killi and S. V. Rao. On placement of hypervisors and controllers
in virtualized software defined network. /IEEE Transactions on Network
and Service Management, 15(2):840-853, 2018.

[2] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer. Control
Plane Latency With SDN Network Hypervisors: The Cost of Virtualiza-
tion. IEEE Commun. Surveys Tuts., 18(1):665-685, 2016.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. Survey on network
virtualization hypervisors for software defined networking. IEEE Com-
mun. Surveys Tuts., 18(1):665-685, 2016.

A. Basta, A. Blenk, H. Belhaj Hassine, and W. Kellerer. Towards a
dynamic sdn virtualization layer: Control path migration protocol. In
2015 11th International Conference on Network and Service Manage-
ment (CNSM), pages 354-359, 2015.

B. Heller, R. Sherwood, and N. McKeown. The controller placement
problem. ACM SIGCOMM Comput. Commun. Rev., 42(4):473—478,
2012.

Ling-Yun Wu, Xiang-Sun Zhang, and Ju-Liang Zhang. Capacitated
facility location problem with general setup cost. Computers and
Operations Research, 33(5):1226-1241, 2006.

A. M. C. Hérhammer. Dynamic hub location problems with single allo-
cation and multiple capacity levels. In 2014 47th Hawaii International
Conference on System Sciences, pages 994-1003, 2014.

Q. Qin, K. Poularakis, G. losifidis, and L. Tassiulas. SDN controller
placement at the edge: Optimizing delay and overheads. In [EEE
INFOCOM 2018 - IEEE Conference on Computer Communications,
pages 684-692, 2018.

P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu. The SDN controller placement
problem for WAN. In 2014 IEEE/CIC International Conference on
Communications in China (ICCC), pages 220-224, 2014.

S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and
M. Hoffmann. Heuristic approaches to the controller placement problem
in large scale sdn networks. IEEE Transactions on Network and Service
Management, 12(1):4-17, 2015.

Y. Zhou, Y. Wang, J. Yu, J. Ba, and S. Zhang. Load balancing for
multiple controllers in sdn based on switches group. In 2017 19th Asia-
Pacific Network Operations and Management Symposium (APNOMS),
pages 227-230, 2017.

Mostafa Khorramizadeh and Vahid Ahmadi. Capacity and load-aware
software-defined network controller placement in heterogeneous envi-
ronments. Computer Communications, 129:226 — 247, 2018.

M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli. Large-scale
dynamic controller placement. IEEE Transactions on Network and
Service Management, 14(1):63-76, 2017.

Y. Liu, H. Gu, X. Yu, and J. Zhou. Dynamic SDN controller placement
in elastic optical datacenter networks. In 2018 Asia Communications
and Photonics Conference (ACP), pages 1-3, 2018.

M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba. Dynamic controller provisioning in software
defined networks. In Proceedings of the 9th International Conference on
Network and Service Management (CNSM 2013), pages 18-25, 2013.
Sen Chen, Weigiang Sun, and Weisheng Hu. On dynamic hypervisor
placement in virtualized software defined networks (vsdns). In 2020
22nd International Conference on Transparent Optical Networks (IC-
TON), pages 1-5, 2020.

Deborsi Basu, Abhishek Jain, Uttam Ghosh, and Raja Datta. Flexarch:
Flexible controller placement architecture for hypervisor assisted vsdn-
enabled 5g networks. In 2020 IEEE Globecom Workshops (GC Wkshps,
pages 1-6, 2020.

R. Sherwood et al. Flowvisor: A network virtualization layer. In
OpenFlow Consortium, Palo Alto, CA, USA,, volume OPENFLOW-TR-
2009-1, pages 222-227, 2009.

A. Blenk, A. Basta, and W. Kellerer. Hyperflex: An sdn virtualization
architecture with flexible hypervisor function allocation. In 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), pages 397-405, 2015.

Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe,
William Snow, and Guru Parulkar. Openvirtex: A network hypervisor.
In Open Networking Summit 2014 (ONS 2014), Santa Clara, CA, March
2014. USENIX Association.

Nemanja Derié¢, Amir Varasteh, Arsany Basta, Andreas Blenk, and Wolf-
gang Kellerer. Sdn hypervisors: How much does topology abstraction
matter? In 2018 14th International Conference on Network and Service
Management (CNSM), pages 328-332, 2018.

N. Derié, A. Varasteh, A. Van Bemten, A. Blenk, and W. Kellerer.
Enabling SDN hypervisor provisioning through accurate CPU utilization
prediction. [EEE Transactions on Network and Service Management,
pages 1-1, 2021.

