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Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Ulrich Bauer
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Introduction

Many problems in mathematics are concern with the classification of objects of a fixed

kind. In order to carry out such a classification, one first has to agree on a notion of equivalence

among this objects, that is, one has to decide when two of these objects will be considered

as being essentially the same. The solution of the classification problem will then of course

depend on the chosen notion of equivalence. After doing that, one ends up with a set of

equivalence classes of objects, but just that: a set. This is just a partial solution to the

classification problem: while it gives us some information about the objects we are trying to

classify (e.g., how many different equivalent classes there are), it does not tell us anything

about how different objects are related to each other. In other words, the set of equivalence

classes does not give us any information about how the objects are allowed to vary.

To remedy this, one usually wants to endow this set with some extra geometric structure

in order to use techniques form geometry to study the way in which the objects vary. This

way of proceeding has lead mathematicians to the notion of moduli space. At first sight, a

moduli space is just a parameter space, i.e., the points of the space parameterize (equivalence

classes of) objects of a certain kind, and the geometry of the space should reflect the way

in which the objects vary. However, depending on the additional properties one requires the

moduli space to have, one comes to the different notions of coarse moduli space, fine moduli

space and the more modern notion of moduli stack.

The objects we are interested in are a special type of surfaces called (quasi-)bielliptic sur-

faces. According to the Kodaira-Enriques classification of surfaces, which was extended by

Bombieri and Mumford to positive characteristic, bielliptic and quasi-bielliptic surfaces form

one of the four classes of minimal smooth projective algebraic surfaces of Kodaira dimension

zero. More precisely, these four classes consist of K3 surfaces, Enriques surfaces, Abelian

surfaces and (quasi-)bielliptic surfaces.

Moduli spaces of Abelian surfaces has been extensively studied as part of the more gen-

eral study of moduli spaces of Abelian varieties and are well understood (see, for example,

[HKW93, MFK94, FC90a, Ols08]). For K3 and Enriques surfaces moduli spaces have also

been well studied and modern accounts can be found in [Riz06] and [Lie15a], respectively.

On the other hand, moduli spaces of (quasi-)bielliptic surfaces have not yet been studied from
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2 INTRODUCTION

a modern point of view. It is therefore natural to consider the problem of constructing and

describing the moduli space of these surfaces from the point of view of stacks.

After defining and giving some background information on (quasi-)bielliptic surfaces, we

will first give a short summary of preliminary work concerning the moduli spaces of bielliptic

surfaces and then present our main results.

1. State of the Art and Previous Work

1.1. Bielliptic and Quasi-bielliptic Surfaces. To have a picture in mind, let us first

introduce bielliptic surfaces in an informal way.

While studying surfaces, a very useful approach is to try to describe a given surface as a

family of curves parameterized by another base curve. This way, the surface can be seen as

a collection of fibers, each one corresponding to a given point of the base curve. If a surface

admits such a description, it is said to be fibered. With this picture in mind, bielliptic sur-

faces can be roughly described as surfaces which are fibered by elliptic curves in two different

(transversal) ways. Thus, the name bi-elliptic. Quasi-bielliptic surfaces can be described

similarly.

1.1.1. Definition and Properties of (Quasi-)Bielliptic Surfaces.

According to the Kodaira-Enriques classification, smooth projective algebraic surfaces

over the complex numbers can be divided into four classes, depending on their Kodaira di-

mension κ ∈ {−∞, 0, 1, 2} (see, for example, [Bea96]). Bielliptic surfaces (also known as

hyperelliptic surfaces in a more classical terminology) belong to the class of surfaces of Ko-

daira dimension zero. They were classified over the complex numbers into seven different

types by G. Bagnera and M. de Franchis in [Bd08] (see also [ES09, ES10]).

The extension of the Kodaira-Enriques classification to arbitrary characteristic p ≥ 0 was

carried out by E. Bombieri and D. Mumford in a series of articles ([Mum69, BM77, BM76]).

Over fields of characteristic p ≥ 5, the classification of bielliptic surfaces remains the same

as over the complex numbers. However, in positive small characteristic, that is, over fields of

characteristic p ∈ {2, 3}, a new class of surfaces appears, the so-called quasi-bielliptic surfaces

(also known as quasi-hyperelliptic surfaces). Moreover, in characteristic p = 2 there is a new

type of bielliptic surfaces and some types of bielliptic surfaces do not exist in small charac-

teristic (see Table 1.1 below).

Let us now give a precise definition of (quasi-)bielliptic surfaces.
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Definition 1.1. A (quasi-)bielliptic surface is a smooth, projective, minimal surface X

of Kodaira dimension 0 satisfying b2 = 2, where bi denotes the i-th étale or crystalline Betti

number.

(Quasi-)bielliptic surfaces have nice properties and can be described very explicitly. We

refer to Badescu’s book [Băd01] on algebraic surfaces and to the original articles of Bombieri

and Mumford [BM77, BM76] for this properties. We recall some of them now.

First of all, it follows from the definition above that the Albanese variety Alb(X) of X

is an elliptic curve and that the Albanese map α : X → Alb(X) gives X the structure of a

genus one fibration. This roughly means that there is a surjective map from X to a smooth

curve, in this case to Alb(X), such that the general fiber is an integral curve of arithmetic

genus one. A genus one fibration is called elliptic or quasi-elliptic, depending on whether the

general fiber is smooth or not. This allows us to distinguish between bielliptic surfaces, for

which the Albanese fibration is elliptic, and quasi-bielliptic surfaces, for which the Albanese

fibration is quasi-elliptic. As said before, quasi-bielliptic surfaces only exist in characteristic

2 and 3. Moreover, (quasi-)bielliptic surfaces always admit a second elliptic fibration to a

projective line P1.

Using this two fibrations, it is possible to describe the structure of (quasi-)bielliptic sur-

faces very explicitly. We consider here only the case of bielliptic surfaces. For the case of

quasi-bielliptic surfaces see [BM76, Theorem 1].

Theorem 1.2 ([BM77], Theorem 4, § 3). Every bielliptic surface X is of the form

X = (E × F )/G,

where E and F are elliptic curves, G is a finite subgroup scheme of E, and G acts on the

product E × F by

g.(x, y) = (x+ g, α(g)(y))

for some suitable injective homomorphism α : G→ Aut(F ). Moreover, the two elliptic fibra-

tion of X are given by:

f : X → E/G (elliptic curve) and g : X → F/α(G) ∼= P1.

This theorem can be used to classify all possible bielliptic surfaces and leads to the (ex-

tended) Bagnera-DeFranchis list in Table 1.1. The last column of the table indicates the

characteristic of the fields over which a given type of bielliptic surface exists. For instance,

bielliptic surfaces of type (a3), where µ2 denotes the group scheme of square roots of unity,

only exist in characteristic two.
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Type G char(k)

(a1) Z/2Z
(a2) (Z/2Z)2 6= 2

(a3) µ2 × (Z/2Z) 2

(b1) Z/3Z
(b2) (Z/3Z)2 6= 3

(c1) Z/4Z
(c2) (Z/2Z)× (Z/4Z) 6= 2

(d) Z/6Z
Table 1.1. Possible types of bielliptic surfaces.

1.1.2. (Quasi-)Bielliptic Surfaces in Small Characteristic.

From the above discussion, it is clear that the study of (quasi-)bielliptic surfaces can be

divided into two parts according to the characteristic of the ground field k. The first part

consist of the study of (just) bielliptic surfaces over fields of characteristic p /∈ {2, 3}. The

second part deals with the study of bielliptic and quasi-bielliptic surfaces over fields of char-

acteristic p ∈ {2, 3}.

It turns out that the second part is considerably harder than the first one. First of all, the

quasi-bielliptic surfaces come into play increasing the number of different types of surfaces to

be considered, as the following table shows 1 :

p = 2 p = 3 p /∈ {2, 3}
Bielliptic 6 6 7

Quasi-bielliptic 8 5 0

Table 1.2. Number of types of (quasi-)bielliptic surfaces according to the
characteristic of the ground field.

Secondly, quasi-bielliptic surfaces are less familiar than the bielliptic ones. Indeed, the

Albanese fibration of quasi-bielliptic surfaces has cuspidal curves as fibers, instead of elliptic

curves, for which there is a well established theory. Finally, some (quasi-)bielliptic surfaces

in positive small characteristic may have a non-reduced Picard scheme, what makes the de-

formation theory of these surfaces more complicated.

1According to Bombieri and Mumford [BM76], in characteristic p = 3 there are 6 different types of quasi-
bielliptic surfaces. However, in [Lan79, p. 489] Lang argues that one of these types does not exist.
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For these reasons, we will restrict ourselves to the study of moduli spaces of bielliptic

surfaces in characteristic different from 2 and 3.

1.2. Moduli Spaces of Bielliptic Surfaces. As a motivation and to show where our

work on moduli spaces of bielliptic surfaces shall begin, we give here a short description of

previous work on the subject. A more detailed description will be given in Section 1.1 of

Chapter 2.

1.2.1. Moduli Spaces of Complex Bielliptic Surfaces.

Moduli spaces of complex bielliptic surfaces were studied by H. Tsuchihashi in [Tsu79]

building on previous work of T. Suwa [Suw69].

Classically, it was already known that over the complex numbers C there are seven different

types of bielliptic surfaces. In [Suw69] Suwa describes the seven types of bielliptic surfaces as

quotient spaces of Abelian surfaces. He recovers this way the classification of complex bielliptic

surfaces established earlier by Bagnera-DeFrancis [Bd08] and Enriques-Severi [ES09, ES10].

Moreover, he shows that the surfaces of each type form a complex analytic family, which

can be parameterized by the upper half-plane H = {z ∈ C| Im z > 0}. For two types of

bielliptic surfaces, the ones corresponding to the types (a1) and (a2) in the notation of Table

1.1, each family is parameterized by two parameters τ, ω ∈ H. For the remaining types only

one parameter τ ∈ H is needed.

An important result obtained by Suwa is the fact that the seven types of bielliptic surfaces

are completely classified topologically: different types of bielliptic surfaces are topologically

different. Thus, a complex analytic family of bielliptic surfaces (over a connected base) can

only contain bielliptic surfaces of the same type as fibers, since all the fibers of such a family

are diffeomorphic. Therefore, a moduli space for complex bielliptic surfaces has to split into

a disjoint union of seven moduli spaces, each one parameterizing bielliptic surfaces of a given

type.

With Suwa’s explicit description of the seven types of complex bielliptic surfaces at hand,

Tsuchihashi [Tsu79] construct coarse moduli spaces for each type of bielliptic surfaces as

product of modular curves. Moreover, to construct fine moduli spaces, Tsuchihashi rigidify

the moduli problem by considering bielliptic surfaces together with suitable base points sat-

isfying certain conditions.

1.2.2. Moduli Spaces of Bielliptic Surfaces in Positive Characteristic.
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Moduli spaces of bielliptic surfaces in positive characteristic were studied by W. Seiler in

[Sei87a, Sei87b] as part of his study of global moduli spaces for elliptic surfaces. There,

however, surfaces in characteristic 2 and 3 are excluded and the moduli spaces he obtains are

all coarse moduli spaces.

In [Sei87a] Seiler shows the existence of coarse moduli spaces for elliptic surfaces with a

section. In particular, he proves the existence of coarse moduli spaces for bielliptic surfaces

with a section of the Albanese fibration (which we shall call Jacobian bielliptic surfaces). Fur-

thermore, the author shows that the corresponding moduli functor splits in a natural way into

a disjoint union of subfunctors parameterizing Jacobian bielliptic surfaces f : X → Alb(X) for

which the canonical bundle ωX has order n ∈ {2, 3, 4, 6} in the Picard group Pic(X), respec-

tively. Thus, the coarse moduli space of Jacobian bielliptic surfaces splits into four disjoint

components. This generalizes and agrees with Suwa’s work over the complex numbers.

In [Sei87b] the existence of coarse moduli spaces for (numerically) polarized elliptic sur-

faces not necessarily admitting a section is shown. In particular, Seiler proves the existence

of a Hilbert scheme for polarized bielliptic surfaces and shows that it splits into connected

components parameterizing bielliptic surfaces a each type, respectively. Furthermore, he ob-

tains the existence of coarse moduli spaces of polarized and numerically polarized bielliptic

surfaces.

2. Objective and Results

2.1. Objective and Guiding Questions. As we have seen, much work has been done

to construct moduli spaces of bielliptic surfaces, both over the complex numbers and in posi-

tive characteristic, if not in small characteristic. However, all the resulting moduli spaces are

either coarse moduli spaces or fine moduli spaces obtained by rigidifying the original moduli

problem. We want to give a solution of the classification (moduli) problem of bielliptic sur-

faces in terms of stacks.

The main goal of this Ph.D. thesis is to construct and study the moduli stack Mbiell of

bielliptic surfaces over SpecZ[1
6 ], whose geometric points correspond to bielliptic surfaces over

algebraically closed fields of characteristic different from 2 and 3.

As a byproduct of the study needed to construct such a moduli stack, the thesis aims

to bring together the otherwise scattered literature on bielliptic surfaces. It should present

the theory of bielliptic surfaces in a modern language and in a new generality without the

sometimes limiting assumptions placed on it in past. This way, it should serve as a general
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and modern reference for the topic.

The following questions will serve as a guide to our study of the moduli stack Mbiell of

bielliptic surfaces over Spec Z[1
6 ]:

(a) Is it possible to separate the different types of bielliptic surfaces over fields of positive

characteristic different from 2 and 3 in a similar way as they are separated over the

complex numbers? This is a question in deformation theory which can be formulated

more precisely as follows:

(a’) Given a family π : X → S of bielliptic surfaces over a connected Noetherian

scheme S over Z[1
6 ], can this family have bielliptic surfaces of different types as

geometric fibers?

We will show that the answer to question (a’) is negative: the geometric fibers

of such a family must all be bielliptic surfaces of the same type. Consequently, the

moduli stack Mbiell splits into seven disjoint components

Mbiell =
⊔
M(i)

biell,

each of which is a substackM(i)
biell ofMbiell parameterizing bielliptic surfaces of type

(i), where (i) is one of the types in the list of Bagnera-DeFranchis (cf. Table 1.1).

In particular, the moduli stacks M(i)
biell can be studied individually.

(b) Which nice (geometric) properties do the stacks M(i)
biell have? For instance,

– are they algebraic or even Deligne-Mumford stacks?

– are they (quasi-)separated, finite?

– are they irreducible, smooth, of which dimension?

We will center our attention on the study of the moduli stack M(a1)
biell param-

eterizing families of bielliptic surfaces of type (a1) as a guiding example for the

further study of the remaining types. To investigate the moduli stack M(a1)
biell we

follow Tsuchihashi’s work [Tsu79] mentioned before and relate the moduli stack in

question to a product of modular stacks, that is, stacks parameterizing elliptic curves

with some additional torsion data.

2.2. Results. Let us shortly summarize our main results.

2.2.1. Separation of Families. Our first main result is the negative answer to question

(a’). We proceed by generalizing ideas used by Suwa [Suw69] in his topological classification

of complex bielliptic surfaces. His classification can be seen, from a modern perspective, as

relying on two facts: the invariance of the plurigenera under deformation and the knowledge



8 INTRODUCTION

of the first homology groups of complex bielliptic surfaces, which are as well invariant under

deformation. The first fact is equivalent to the invariance of the order of the canonical bundle.

Moreover, the first homology group of a complex bielliptic surface is isomorphic to its Néron-

Severi group. Thus, we proceed by showing that for a bielliptic surface X over an algebraically

closed fields k of characteristic different from 2 and 3, the following two facts hold (see Lemma

1.9 in Chapter 2):

(a) The order of the canonical bundle ωX is invariant under deformation.

(b) The Néron-Severi group NS(X) is invariant under deformation.

Since the values of these invariants taken together are different for different types of bielliptic

surfaces, the desired result follows. More precisely, we obtain the following result (see Theorem

1.8 in Chapter 2).

Theorem 2.1. Let π : X → S be a family of bielliptic surfaces over a connected Noetherian

base scheme S over Z[1
6 ]. If a geometric fiber of π is a bielliptic surface of type (i), then every

geometric fiber of π is a bielliptic surface of type (i).

Form this theorem, it follows that the moduli stackMbiell splits as described by the next

result (see Proposition 2.2 in Chapter 2).

Proposition 2.2. The stack of bielliptic surfaces Mbiell splits into a disjoint union

Mbiell =
⊔
M(i)

biell,

where M(i)
biell denotes the substack whose objects are families of bielliptic surfaces of type (i).

This proposition, in turn, allow us to study the moduli stacks M(i)
biell individually. Ac-

cordingly, we turn our attention to the study of the moduli stack M(a1)
biell.

2.2.2. Morphism from Modular Stacks. Following Tsuchihashi [Tsu79], our strategy for

studying the moduli stackM(a1)
biell consist in relating this moduli stack to products of modular

stacks parameterizing elliptic curves with extra torsion data.

In Section 2.2 of Chapter 2, we show that, by choosing a pair of relative elliptic curves

with some extra torsion data on one of them, it is possible to construct a family of bielliptic

surfaces whose fibers are bielliptic surfaces of type (a1). In this manner, we obtain a morphism

of stacks

ϕ : Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]→M(a1),

where Y1(2)[1/6] denotes the algebraic stack over SpecZ[1
6 ] parameterizing elliptic curves E/S

together with a Γ1(2)-structure and M1,1[1/6] the Deligne-Mumford stack over Spec Z[1
6 ] of

elliptic curves (see Corollary 2.6 in Chapter 2).
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The moduli stacks on the left-hand side have been well studied (see for example [KM85],

[DR73]) and are known to have nice properties (e.g., both are algebraic stacks). If the

morphism ϕ turns out to be an isomorphism of stacks, then the moduli stack M(a1)
biell will

share some of this nice properties.

We take a first step in the study of the morphism ϕ and show that it is in fact an epi-

morphism of stacks. This is Theorem 2.15 in Chapter 2. Unfortunately, we were not able to

answer the question whether the morphism ϕ is fully faithful, from which it would follow that

ϕ is an isomorphism of stacks.

2.2.3. Marked and Numerically Polarized Bielliptic Surfaces. In section 3 of Chapter 2,

we present some results on marked and numerically polarized bielliptic surfaces, respectively.

We considered marked and numerically polarized bielliptic surfaces for two reasons.

Firstly, we wanted to obtain a better behaved moduli stack than Mbiell. Since automor-

phism groups of bielliptic surfaces are not finite (see, for example, [Mar20]) the moduli stack

Mbiell of bielliptic surfaces can not be a Deligne-Mumford stack. Our original aim in studying

families of bielliptic surfaces with extra structure was to obtained a moduli stack which could,

in principle, be a Deligne-Mumford stack. However, as it turns out, every automorphism of

a bielliptic surface fixes the Néron-Severi lattice (see Proposition 3.3 in Chapter 2). Conse-

quently, a marking or a numerical polarization on a bielliptic surface does not ridigify the

moduli problem.

Secondly, every bielliptic surfaces X comes naturally equipped with a marking, that is, an

isometry φ : U → Num(X), where Num(X) denotes the Néron-Severi lattice of X and U the

hyperbolic lattice. Furthermore, from such a marking one can construct a unique numerical

polarization of degree 2 on X. Thus, the question whether this extra structure should be

taken into account when defining moduli spaces of bielliptic surfaces arises naturally.

Accordingly, we define the moduli stacks M(a1)
U and M(a1)

d,Num of marked and of numer-

ically d-polarized bielliptic surfaces of type (a1), respectively. Moreover, our results show

that certain morphisms between the different moduli spaces can be defined, as given by the

following commutative diagram:

Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]

ϕ

##

ϕU //

ϕ2,Num

))

M(a1)
U

ψ2,Num

��

M(a1)
2,Num

forget

��

M(a1).
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BothM(a1)
U andM(a1)

d,Num are good candidates for being the ”right” moduli space of bielliptic

surfaces of type (a1), since the extra structure required on them is naturally found in bielliptic

surfaces. Moreover, we believe that the extra structure on these moduli stacks could be used

to obtain more information about the morphisms ϕU and ϕ2,Num, respectively. We, however,

do not investigate this question further.

Although our study of marked bielliptic surfaces did not lead to the desired goal, we de-

cided to include our results, as we think they still are of some interest for the study of moduli

spaces of bielliptic surfaces.

2.2.4. Further Results. Finally, let us mention some further results.

• In Section 2.5 of Chapter 1 we compute the Hodge-Witt cohomology groups for

bielliptic surfaces in characteristic different from 2 and 3. We use these groups to

calculate the Brauer group of these surfaces in Section 1.5 of Chapter 2. As it turns

out, the Brauer group coincides with the torsion subgroup of the Néron-Severi group.

This was already known for complex bielliptic surfaces.

• In Section 3 of Chapter 1 we prove that the Neron-Severi lattice of a bielliptic

surface in arbitrary characteristic is a unimodular lattice, which is isomorphic to the

hyperbolic lattice. This allows us to generalize some result of Serrano [Ser90] on

divisors of complex bielliptic surfaces.

• Every bielliptic surfaces admit a canonical cover, which is an Abelian surfaces. In

Section 1.4.3 of Chapter 2 we show an analogous result for families of bielliptic

surfaces in characteristic different from 2 and 3: under some mild assumptions,

every such family admits, étale locally, a cover which is an Abelian scheme.
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CHAPTER 1

Bielliptic Surfaces

1. (Quasi-)Bielliptic Surfaces

In this section we introduce bielliptic and quasi-bielliptic surfaces and recall some general

facts about them. The main focus, however, is on bielliptic surfaces.

After recalling the definition of (quasi-)bielliptic surfaces and the canonical bundle for-

mula, we present the structure theorem of bielliptic surfaces. Finally, we introduce the canon-

ical cover of a bielliptic surface and its associated Jacobian fibration.

1.1. Preliminaries. Let X be a smooth projective surface over an algebraically closed

field k of characteristic p ≥ 0. According to the Kodaira-Enriques classification of surfaces,

X belongs to one of four classes depending on the value of its Kodaira dimension

κ(X) := tr.degk

∞⊕
n=0

H0(X,ω⊗nX )− 1 ∈ {−1, 0, 1, 2}.

The surfaces of Kodaira dimension zero can be further classified into four classes:

• K3 surfaces.

• Enriques surfaces.

• Abelian surfaces.

• (Quasi-)Bielliptic surfaces.

We are interested in the last class of surfaces of Kodaira dimension zero.

Definition 1.1. A (quasi-)bielliptic surface is a smooth and projective surface X of finite

type over an algebraically closed field k of characteristic p ≥ 0 such that

ωX ≡ OX and b2(X) = 2,

where ≡ denotes numerical equivalence, and bi denotes the i-th étale or crystalline Betti

number.

Recall that for a surface X one has Noether’s formula

χ(OX) =
1

12
((K2) + c2,

13
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where K denotes the canonical divisor of X and c2 the second Chern class of the tangent

sheaf of X. Moreover, if

q(X) := dimH1(X,OX) and

pg(X) := dimH2(X,OX) = dimH0(X,ωX)

denote the irregularity and the geometric genus of X, respectively, Noether’s formula can be

rewritten as follows (see, for example, [Băd01, Chapter 5]):

10− 8q + 12pg = (K2) + b2 + 2∆, (1.1)

where ∆ := 2q − b1 is the ”non-classical” term which measures the non-reducedness of the

identity component Pic0
X/k of the Picard scheme PicX/k of X, as explained in the remark

below.

If X is a (quasi-)bielliptic surface, the solutions of equation (1.1) show that X has the

following invariants:

b1(X) = 2, χ(OX) = 0 and

 q(X) = 1, pg(X) = 0, ∆ = 0 or

q(X) = 2, pg(X) = 1, ∆ = 2.

Remark 1.2. Over a field of characteristic zero the identity component of the Picard

scheme Pic0
X/k is always reduced. Over a field of positive characteristic this does not hold

in general. The dimension of the (classical) Picard variety (Pic0
X/k)red is given by s(X) :=

dim(Pic0
X/k)red = b1(X)/2 and the dimension of the tangent space at the identity of the

Picard scheme Pic0
X/k is given by dimTPic0X/k,0

= dimH1(X,OX) = q(X). Thus, we have

q(X)− s(X) = dimTPic0X/k,0
− dimT(Pic0X/k)red,0

≥ 0.

Moreover, by [Mum66, Lecture 27] the inequality 0 ≤ q(X) − s(X) ≤ pg(X) always holds.

Thus, setting

∆ = 2q − b1 = 2(q − s),

we see that 0 ≤ ∆ ≤ 2pg(X) and that ∆ = 0 if and only if Pic0
X/k is reduced.

In particular, if X is a (quasi-)bielliptic surface, then Pic0
X/k is reduced if and only if

pg(X) = 0. The latter is always the case, if the characteristic of the ground field k is different

from 2 and 3. However, there are some (quasi-)bielliptic surfaces in characteristic 2 and 3 for

which pg(X) = 1 holds.

As mentioned in the introduction, one important property of (quasi-)bielliptic surfaces

is the fact that they are fibered surfaces, that is, they carry the structure of a genus one

fibration, as defined below. In fact, these surfaces can be fibered in two different ways, which

are transversal to each other.

Definition 1.3. Let X be a smooth projective surface.
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(1) A surjective morphism f : X → B from X to a smooth projective curve B is called

a genus one fibration if f∗OX ∼= OB and all but finitely many fibers of f are integral

curves of arithmetic genus one. If, moreover, the fibers of f do not contain any

(−1)-curves, then f is called a relatively minimal genus one fibration.

(2) A relatively minimal genus one fibration is called elliptic if its general fiber is smooth

and quasi-elliptic otherwise.

(3) A genus one fibration f : X → B is said to be Jacobian if it admits a section, that

is, a morphism σ : B → S such that f ◦ σ = idB.

Before stating the next theorem let us recall the definition of the Albanese variety.

Definition 1.4. Let X be a smooth projective variety and let x ∈ X be a fixed closed

point. The Albanese variety Alb(X) of X is an Abelian variety together with a morphism

α : X → Alb(X) with α(x) = 0Alb(X), where 0Alb(X) denotes the identity element of Alb(X),

such that the following universal property holds: for every morphism f : X → B from X to

an Abelian variety B with f(x) = 0B, there exist a unique homomorphism g : Alb(X) → B

of Abelian varieties such that g ◦ α = f . The morphism α : Alb(X) → X will be called the

Albanese map.

Being characterized by a universal property, it is clear that the Albanese variety (Alb(X), α)

is unique up to unique isomorphism. Moreover, it can be shown that it is isomorphic to the

dual of the Picard variety (Pic0
X/k)red, that is, Alb(X) ∼= (Pic0

X/k)red
∨

(see, for example,

[Băd01, Theorem 5.3]). In particular, we have

dim Alb(X) = dim(Pic0
X/k)red = b1(X)/2.

The first structure of a genus one fibration on a (quasi-)bielliptic surface X is given by

the Albanese map. More precisely, we have the following result.

Theorem 1.5 ([BM77], Proposition p. 26, Proposition 5). Let X be a (quasi-)bielliptic

surface. Then b1(X) = 2, hence Alb(X) is an elliptic curve and the Albanese map

f : X → Alb(X)

is a genus one fibration. Moreover, the fibers of f are either all smooth or all singular rational

curves, each having exactly one singular point that is an ordinary cusp.

This allows us to distinguish between bielliptic surfaces, for which the Albanese fibration

is elliptic, and quasi-bielliptic surfaces, for which the Albanese fibration is quasi-elliptic.

Definition 1.6. Let X be a (quasi-)bielliptic surface. We call X bielliptic (resp. quasi-

bielliptic), if the Albanese fibration f : X → Alb(X) is elliptic (resp. quasi-elliptic).

Remark 1.7. By [Băd01, Theorem 7.18] quasi-elliptic fibrations only exist in character-

istic 2 or 3 and the general fiber of a quasi-elliptic fibration is a singular rational curve with

exactly one ordinary cusp.



16 1. BIELLIPTIC SURFACES

Theorem 1.8 ([BM77], Theorem 3, § 2). Let f : X → Alb(X) be a bielliptic or quasi-

bielliptic surface. Then there is an elliptic fibration g : X → P1, which is transversal to f

(i.e., every fiber of g intersect every fiber of f positively).

Since the Albanese fibration f : X → Alb(X) of a bielliptic or quasi-bielliptic surface X

is given by the Albanese map, it is canonically defined, that is, it is unique up to unique

isomorphism. It is then natural to ask how unique is the second elliptic fibration g : X → P1

of X. This is answered by the following result.

Proposition 1.9. The fibration g : X → P1 transversal to f is unique in the sense that

any other such fibration differs from g by an automorphism of P1.

To prove Proposition 1.9 we will used a result about the Picard number ρ(X) := rankNS(X)

of X. We state this result as a separated lemma due to its importance and for later use.

Lemma 1.10. Let X be a bielliptic or quasi-bielliptic surface and let ρ(X) := rankNS(X)

be the Picard number of X. Then, ρ(X) = b2(X) = 2.

Proof. Let f : X → Alb(X) be the Albanese fibration of X. Then, a closed fiber F of

f and a hyperplane section H on X are linearly independent in NS(X)Q := NS(X) ⊗Z Q,

since (F 2) = 0 and (H2) > 0. This together with the Igusa-Severi inequality (cf. [Igu60])

ρ(X) ≤ b2(X) = 2 implies the claim. �

Proof of Proposition 1.9. Let f : X → B := Alb(X) be the Albanese fibration of X.

Denote by F0 a fiber of f over some closed point t0 ∈ B and let G be a non-multiple fiber of

g. Then, the classes of F0 and G in NS(X)Q := NS(X)⊗Z Q are linearly independent, since

(F 2
0 ) = 0 and (G · F0) > 0. Since ρ(X) = 2 by Lemma 1.10, the classes of F0 and G form a

basis of NS(X)Q.

Now let g′ : X → P1 be a second elliptic fibration transversal to f . Take a non-multiple

fiber G′ of g′. It follows that

(G′ · Ft) > 0 for all t ∈ B and (G′2) = 0. (1.2)

Now write [G′] = α[F0] + β[G] with α, β ∈ Q. From (1.2) it follows that α = 0 and β > 0.

Thus, [G′] = β[G]. It follows that (G · G′) = 0 and thus G′ must be contained in one of the

fibers of g, since G′ is connected. Moreover, since g has only finitely many multiple fibers, we

may assume that G′ ⊆ G0, where G0 is a irreducible and reduced fiber of g. Since both G′

and G0 are irreducible and reduced, we get G′ = G0. Now, since g is a fibration over P1, all

fibers of g are linearly equivalent and the same is true for g′. From G′ = G0 it follows that

all fibers of g are linearly equivalent to all fibers of g′. Thus, g and g′ are the same fibration.

�

Finally, let us state the following result for later use.
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Proposition 1.11. Let X be a bielliptic or quasi-bielliptic surface. Then on X there are

no (−2)-curves, i.e., irreducible rational curves C with (C2) = −2.

Proof. Let f : X → Alb(X) be the Albanese fibration and C an irreducible curve on X

with (C2) = −2. Then C can not be contained in any fiber of f , since all the fibers of f

are irreducible by Theorem 1.5. It follows that the rational curve C would have to dominate

the elliptic curve Alb(X). But this can not be the case, by Hurwitz’s formula (cf. [Har77],

Corollary 2.4 and Example 2.5.4). �

1.2. The Canonical Bundle Formula. The canonical sheaf of a bielliptic or quasi-

bielliptic surface plays a central role in their classification. As it turns out, to determine the

canonical sheaf of a bielliptic or quasi-bielliptic surface one can use the fact that these surfaces

have the structure of a genus one fibration. In general, the canonical sheaf of a relatively

minimal genus one fibrations is determined by the so called canonical bundle formula. To state

this formula we will now introduce some notation and refer to the original work of Bombieri

and Mumford [BM77, §1] or to Badescu’s Book [Băd01, Chapter 7] for the details.

Definition 1.12. Let X be a minimal surface and K = OX(ωX) be a canonical divisor.

An effective divisor D =
∑r

i=1 niEi > 0 on X is called a curve of canonical type if (K ·Ei) =

(D ·Ei) = 0 holds for all i = 1, . . . r. If D is also connected and the greatest common divisor

of the integers n1, . . . nr is equal to 1, then D is called an indecomposable curve of canonical

type.

It is not difficult to show that every fiber of an elliptic or quasi-elliptic fibration f : X → B

is a curve of canonical type (cf. [Băd01, p. 91]). Furthermore, among the fibers of f , one

can distinguish between multiple and non-multiple fibers. Notice first that all but finitely

many fibers of f are integral curves. These are the non-multiple fibers of f . Indeed, since B

is a smooth curve, the condition f∗OX ∼= OB is equivalent to the rational function field k(B)

of B being algebraically closed in the rational function field k(X) of X. Then, the assertion

follows from [Băd01, Corollary 7.3]. Thus, at finitely many closed points b1, . . . , br ∈ B the

fibers Fbi = f−1(bi) are multiple fibers, that is, they are of the form

Fbi = f−1(bi) = miPi,

with mi ≥ 2 and Pi is an idecomposable curve of canonical type.

Moreover, we have a decomposition of the first direct image R1f∗OX of OX as follows:

R1f∗OX ∼= L⊕ T,

where L is a locally free sheaf of finite rank and T = Tors(R1f∗OX) is an OB-module sup-

ported at the points b ∈ B at which dimH0(Fb,OFb) ≤ 2. Moreover, Supp(T ) ⊆ {b1, . . . , br}.
In particular, T is an OB-module of finite length.

Definition 1.13. The fibers of f over Supp(T ) are called wild fibers.
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We are now ready to state the canonical bundle formula.

Theorem 1.14 ([BM77], Theorem 2, § 1). Let f : X → B be an elliptic or quasi-elliptic

fibration and let R1f∗OX = L⊕ T be the decomposition introduced above. Then,

ωX ∼= f∗(L−1 ⊗ ωB)⊗OX

(
r∑
i=1

aiPi

)
,

where

(a) miPi = Fbi (i = 1, . . . r) are all the multiple fibers of f ,

(b) 0 ≤ ai < mi,

(c) ai = mi − 1 if Fbi is not a wild fiber, and

(d) deg(L−1 ⊗ ωB) = 2pa(B)− 2 + χ(OX) + l(T ), where l(T ) is the length of T .

If we now apply the canonical bundle formula to a bielliptic or quasi-bielliptic surface, we

obtain the following Corollary.

Corollary 1.15. Let f : X → B = Alb(X) be a bielliptic or a quasi-bielliptic surface.

Then

(i) ωX ∼= f∗(L−1 ⊗ ωB) ∼= f∗(L−1).

(ii) L = R1f∗OX and deg(L) = 0.

(iii) The order of L in Pic(B) is the same as the order of ωX in Pic(X).

(iv) ωX ∈ Pic0(X), that is, ωX is algebraically trivial.

Proof. Statements (i) and (ii) follow from the canonical bundle formula and the proof

of Theorem 1.5, which can be found in [BM77, Proposition 5]. We recall the argument

here. We have χ(OX) = 0 and ωX ≡ 0, since X is a bielliptic or a quasi-bielliptic surface.

Moreover, since B = Alb(X) is an elliptic curve, we have pa(B) = 1 and ωB ∼= OB. By

applying Theorem 1.14, we see that

deg(L−1 ⊗ ωB) = 2pa(B)− 2 + χ(OX) + l(T ) = l(T ) ≥ 0

and

ωX ∼= f∗(L−1 ⊗ ωB)⊗OX

(
r∑
i=1

aiPi

)
≡ 0.

Then, for any closed point b ∈ B one has

l(T ) · f−1(b) +
r∑
i=1

aiPi ≡ 0.

Since the left-hand side is an effective divisor which is numerically equivalent to zero, it has

to be the zero divisor. Hence, l(T ) = ai = 0. In particular, the fibration f does not have any

multiple fibers. This shows (i) and (ii).
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Since f∗OX ∼= OB, the projection formula (cf. [Har77, Exercise 5.1(d)]) implies that the

induced map

f∗ : Pic(B)→ Pic(X)

is injective. Therefore, the order of ωX ∼= f∗(L−1) in Pic(X) equals the order of L−1 in

Pic(B), which is equal to the order of L in Pic(B). This proves (iii).

From (ii) we have L ∈ Pic0(B). Hence, L−1 ∈ Pic0(B). Since f is flat and by [Ful84,

Proposition 10.3(b)] flat pullback preserves algebraic equivalence, we get that ωX ∼= f∗(L−1)

is algebraically equivalent to zero, i.e., ωX ∈ Pic0(X). �

1.3. Structure Theorem for Bielliptic Surfaces. As we have seen, bielliptic sur-

faces admit two different transversal elliptic fibrations: the Albanese fibration, given by the

Albanese map, and a second fibration over P1. These two fibrations can be used to described

bielliptic surfaces in a very explicit manner. As it turns out, every bielliptic surface can be

written as a quotient of the product of two elliptic curves by a finite Abelian group scheme.

More precisely, we have the following structure theorem.

Theorem 1.16 ([BM77], Theorem 4, § 3). Every bielliptic surface X is of the form

X = (E × F )/G,

where E and F are elliptic curves, G is a finite subgroup scheme of E, and G acts on the

product E × F by

g.(x, y) = (x+ g, α(g)(y))

for some suitable injective homomorphism α : G→ Aut(F ). Moreover, the two elliptic fibra-

tion of X are given by

f : X → E/G (elliptic curve) and g : X → F/α(G) ∼= P1.

This theorem can be used to classify all possible bielliptic surfaces and leads to the

Bagnera-DeFranchis list.

In order to fix notation, we give here a rough sketch of the idea that leads to the list of

Bagnera-DeFrancis and refer to [BM77, p. 36] for details:

• By choosing a base point 0F ∈ F one gets an isomorphism Aut(F ) ∼= FoAut(F, 0F ),

where F is seen as the subgroup of translations of F and Aut(F, 0F ) denotes the

subgroup of automorphism fixing the identity element 0F on F .

• Since E0/α(G) ∼= P1, the image α(G) of G in Aut(F ) is not entirely contained in

the group of translations F . Moreover, α(G) is commutative, as the group G is

commutative.
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• Recall that the maximal Abelian subgroups of Aut(F, 0F ) are cyclic of order 2, 4

or 6 (see, for example, [Sil09, Theorem III.10.1 and Theorem A.1.2]). Then, since

α(G) 6⊂ F , there is a element g ∈ G such that α(g) generates the image of the

subgroup α(G) in the quotient group Aut(F )/F ∼= Aut(F, 0F ).

• Thus, after replacing 0F by a fixed point of α(g), it follows that α(G) is a direct

product

α(G) ∼= G0 × Z/nZ, n ∈ {2, 3, 4, 6},

where G0 is a finite subgroup scheme of translations of F and Z/nZ ∼= 〈φ〉 is gener-

ated by an automorphism φ of the elliptic curve F of order n.

• Finally, since G0 must commute with φ, we have that G0 has to be contained in the

fixed subgroup F φ ⊂ F of F , that is,

G0 ⊂ F φ := {x ∈ F | φ(x) = x}.

This fixed subgroup can be calculated explicitly (cf. [Lan87, Appendix 1 by J. Tate])

and leads to the Bagnera-DeFranchis list classifying all possible bielliptic surfaces.

In the Table 1.1 below we present the Bagnera-DeFranchis list. It present the possible

types of bielliptic surfaces according to the isomorphism class of the group G. For every type,

we include the group of translation G0, the characteristic of the ground field k for which the

given type of bielliptic surface exist as well as the j-invariant of the elliptic curve F . Moreover,

after the table, we give an explicit description of the action of G on the product E × F for

every type of bielliptic surfaces (cf. [BM77, p.37] and [Băd01, List 10.27]).

List 1.17 (Bagnera-DeFranchis).

Type G G0 n char(k) j(F )

(a1) Z/2Z {0} 2

(a2) (Z/2Z)2 Z/2Z 2 6= 2

(a3) µ2 × (Z/2Z) µ2 2 2

(b1) Z/3Z {0} 3 0

(b2) (Z/3Z)2 Z/3Z 3 6= 3 0

(c1) Z/4Z {0} 4 1728

(c2) (Z/2Z)× (Z/4Z) Z/2Z 4 6= 2 1728

(d) Z/6Z {0} 6 0

Table 1.1. Possible types of bielliptic surfaces.

Remark 1.18. There is a similar structure theorem and a similar list for quasi-bielliptic

surfaces (cf. [BM76, Theorem 1 and the list on p. 214]).
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The action of the group G on the product E × F in every case is given as follows:

(a1) (E × F )/(Z/2Z): where Z/2Z ∼= 〈a〉 for a nontrivial 2-torsion point a ∈ E[2] of E

and α(a) = − idF ∈ Aut(F, 0F ). The action on the product is then given by

a.(x, y) = (x+ a,−y).

(a2) (E × F )/(Z/2Z)2: where (Z/2Z)2 ∼= 〈b〉 × 〈a〉 for two different nontrivial 2-torsion

point a, b ∈ E[2], α(a) = − idF ∈ Aut(F, 0F ) and α(b) corresponds to a translation

tc on F by a nontrivial 2-torsion point c ∈ F [2]. In this case the action is given by

a.(x, y) = (x+ a,−y) and

b.(x, y) = (x+ b, y + c).

(a3) (E × F )/µ2 × (Z/2Z): where µ2 × Z/2Z ∼= µ2 × 〈a〉 for a nontrivial 2-torsion point

a ∈ E[2] and α(a) = − idF ∈ Aut(F, 0F ). The action in this case is given by

a.(x, y) = (x+ a,−y)

and µ2 acts by translation on both factors. This case occurs only when char(k) = 2.

(b1) (E × F )/(Z/3Z): where Z/3Z ∼= 〈a〉 for a nontrivial 3-torsion point a ∈ E and

α(a) = ω ∈ Aut(F, 0F ) is an automorphism of order 3. This case is only possible

when j(F ) = 0. The action is given by

a.(x, y) = (x+ a, ω(y)).

(b2) (E × F )/(Z/3Z)2: where (Z/3Z)2 ∼= 〈b〉 × 〈a〉 for two different nontrivial 3-torsion

point a, b ∈ E[3], α(a) = ω ∈ Aut(F, 0F ) is an automorphism of order 3 and α(b)

corresponds to a translation tc on F by a nontrivial 3-torsion point c ∈ F [3] with

ω(c) = c. This case is only possible when j(F ) = 0. The action is given by

a.(x, y) = (x+ a, ω(y)) and

b.(x, y) = (x+ b, y + c).

(c1) (E × F )/(Z/4Z): where Z/4Z ∼= 〈a〉 for a nontrivial 4-torsion point a ∈ E[4] and

α(a) = i ∈ Aut(F, 0F ) is an automorphism of order 4. This case is only possible

when j(F ) = 1728. The action is given by

a.(x, y) = (x+ a, i(y)).
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(c2) (E×F )/(Z/2Z×Z/4Z): where (Z/2Z×Z/4Z) ∼= 〈b〉× 〈a〉 for a nontrivial 4-torsion

point a ∈ E[4] and a nontrivial 2-torsion point b ∈ E[2], α(a) = i ∈ Aut(E0, 0)

an automorphism of order 4 and α(b) corresponds to a translation tc on F by a

nontrivial 2-torsion point c ∈ F [2] with i(c) = c. This case is only possible when

j(F ) = 1728. The action is given by

a.(x, y) = (x+ a, i(y)) and

b.(x, y) = (x+ b, y + c).

(d) (E × F )/(Z/6Z): where Z/6Z ∼= 〈a〉 for a nontrivial 6-torsion point a ∈ E[6] and

α(a) = −ω ∈ Aut(F, 0F ) with ω an automorphism of order 3. This case is only

possible when j(F ) = 0. The action is given by

a.(x, y) = (x+ a,−ω(y)).

Theorem 1.16 can also be used to determine the order of the canonical sheaf ωX in the

Picard group Pic(X) of X, as explained in [BM77, §3, p. 37].

Proposition 1.19. Let X be a bielliptic surface. Then the order of the canonical sheaf

ωX of X is given by the following table.

Type char(k) 6= 2, 3 char(k) = 2 char(k) = 3

(a) 2 1 2

(b) 3 3 1

(c) 4 1 4

(d) 6 3 2

Table 1.2. Order of ωX in Pic(X).

In the following sections we will see that bielliptic surfaces with trivial canonical sheaf

ωX ∼= OX are the most pathological ones. As a first evidence for that we have the following

easy result.

Corollary 1.20. Let X be a bielliptic surface. Then the following are equivalent:

(1) The identity component of the Picard scheme Pic0
X/k is non-reduced.

(2) pg(X) = 1.

(3) ωX ∼= OX , that is, ord(ωX) = 1.

Proof. The equivalence of (1) and (2) was already discuss in Remark 1.2. If pg(X) = 1,

then H0(X,ωX) 6= 0. This together with ωX ≡ 0 imply that ωX ∼= OX . This proves that

(2) implies (3). Finally, if ωX ∼= OX , then pg(X) = dimH0(X,ωX) = dimH0(X,OX) = 1.

Hence, (3) implies (2). �
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1.4. The Canonical Cover of a Bielliptic Surface in Characteristic p /∈ {2, 3}.
Let X be a bielliptic surface over an algebraically closed field k of characteristic char(k) = p

with p /∈ {2, 3}. If n denotes the order of the canonical sheaf ωX of X in Pic(X), then p - n.

We can then construct the canonical cyclic cover X̃ of X defined by ωX .

Indeed, if µn denotes the group scheme of n-roots of the unity over X, then by Kummer

theory (cf. [Mil80, Chapter III,§4, p. 125]) there is a canonical identification between the

étale cohomology group H1
ét(X,µn) and the group of isomorphism classes of pairs (L, φ),

where L is an invertible sheaf on X and φ : L⊗n
∼−→ OX is a trivialization of the n-th power

of L. The group H1
ét(X,µn) can in turn be identified with the group of isomorphism classes

of µn-torsors over X by [Mil80, Chapter III, Corollary 4.7]. Thus, from the isomorphism

ω⊗nX
∼−→ OX by means of these identifications, we obtain up to isomorphism a µn-torsor

π : X̃ → X

over X. Since k is algebraically closed with char(k) = p - n and X is a scheme over Spec (k),

the group scheme µn is isomorphic (non-canonically) to the constant group scheme Z/nZ over

X. In particular, µn is a finite and étale group scheme of length n over X. Hence, π : X̃ → X

is a finite étale cover of X of degree n. In fact, π is a Galois cover of X with Galois group

Z/nZ.

More explicitly, the cover π : X̃ → X can be described as follows: let ωX
⊗n ∼−→ OX be a

trivialization. Then A := ⊕n−1
i=0 ωX

⊗i has a natural structure of an OX -algebra and defines a

finite étale cover of degree n

π : X̃ := Spec
X
A → X,

such that π∗(OX̃) ∼= A = ⊕n−1
i=0 ωX

⊗i. Note that X̃ is uniquely defined up to isomorphism.

Moreover, ω
X̃
∼= π∗ωX ∼= OX̃ is trivial and there is a free action of the group Z/nZ on X̃,

defined by twisting by ωX on A, such that the quotient X̃/(Z/nZ) is naturally isomorphic to

X.

By the Kodaira-Enriques classification of surfaces, X̃ is an Abelian surface. Indeed, since

ω
X̃
∼= OX̃ , we have κ(X̃) = 0 and pg(X̃) = 1. Moreover, since π is étale of degree n, we

have χ(O
X̃

) = n · χ(OX) = 0. Thus q(X̃) = 2. Therefore, X̃ is an Abelian surface, since the

characteristic of the ground field is different from 2 and 3.

Definition 1.21. Let X be a bielliptic surface over an algebraically closed field k of

characteristic p /∈ {2, 3}. By the canonical Abelian cover of X we shall mean the unique

Abelian surface X̃ defined above together with the quotient morphism π : X̃ → X.

Remark 1.22. In small characteristic, i.e., when char(k) ∈ {2, 3}, even if the characteristic

of the ground field does not divide the order of the canonical sheaf, it is not clear if the

canonical cover of a bielliptic surface is an Abelian surface, since a surface with invariants

κ = 0, pg = 1 and q = 2 need not be an Abelian surface. Indeed, in characteristic 2 and 3

there exist bielliptic and quasi-bielliptic surfaces having those invariants.
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1.5. The Associated Jacobian Fibration of a Bielliptic Surface. In general, to

every genus one fibration, one can associate a Jacobian genus one fibration, see, for example

[CD89, Proposition 5.2.5]. For bielliptic surfaces, this can be done using the theory of the

relative Picard scheme. For the results on the relative Picard scheme we refer the reader to

[Kle05] and [BLR90, Chapter 8].

First, note that a bielliptic surface f : X → B = Alb(X) over k is a projective and smooth

elliptic fibration with (geometric) connected fibers, since f is flat and its fibers are all smooth

genus one curves by Theorem 1.5. It follows from the theory of the relative Picard functor

(see, for example, [BLR90, §9.4, Proposition 4]) that the identity component Pic0
X/B of the

relative Picard scheme PicX/B of a bielliptic surface f : X → B is a projective Abelian B-

scheme of relative dimension 1. In particular, Pic0
X/B → B is a Jacobian genus one fibration.

Definition 1.23. Let f : X → B = Alb(X) be a bielliptic surface over k. Then the Jaco-

bian genus one fibration Pic0
X/B → B is called the Jacobian fibration associated to f : X → B

and we will denote it by

j : JX/B := Pic0
X/B → B.

Remark 1.24. Our definition coincide in the case of smooth elliptic fibrations with the

more general definition of the Jacobian fibration of a genus one fibration f : X → C as given

in [CD89, Proposition 5.2.5]. Indeed, if f : X → C is a smooth elliptic fibration, then its

generic fiber Xη is a smooth genus 1 curve and its Jacobian J(Xη) := PicXη/k(C) is a smooth

elliptic curve over the function field k(C) of C. Thus, the Jacobian fibration j : J → C of

f as defined in [CD89, Proposition 5.2.5] is smooth and coincide therefore with the Néron

model of the Jacobian J(Xη) of Xη. By [BLR90, Theorem 9.5.1] Pic0
X/C is a Néron model

of its generic fiber, i.e., of the Jacobian J(Xη) of Xη. Hence, both definitions coincide in the

case of smooth elliptic fibrations.

Proposition 1.25. Let f : X → B = Alb(X) be a bielliptic surface over k. Then the

associated Jacobian fibration j : JX/B → B of f is a bielliptic surface. Moreover, the order of

the canonical sheaves ωX and ωJX/B coincide.

Proof. To simplify notation we set J = JX/B. We first show that R1f∗OX ∼= R1j∗OJ .

This follows from Definition 1.23 and the isomorphism R1f∗OX ∼= Lie(Pic0
X/B), where

Lie(Pic0
X/B) denotes the Lie algebra of Pic0

X/B (cf. [LLR04, Proposition 1.3] and [LLR04,

Proposition 1.1(d)]). The same is true for j, i.e., R1j∗OJ ∼= Lie(Pic0
J/B). Moreover, there is

a canonical isomorphism J ∼= Pic0
J/B by [MFK94, Proposition 6.9]. Thus, we get

R1f∗OX ∼= Lie(Pic0
X/B) ∼= Lie(J) ∼= Lie(Pic0

J/B) ∼= R1j∗OJ .
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From the Leray spectral sequence for f and j we get

χ(OX) = χ(f∗OX)− χ(R1f∗OX) = χ(OB)− χ(R1f∗OX)

= χ(j∗OX)− χ(R1j∗OX) = χ(OJ).

Thus, χ(OX) = χ(OJ).

Now note that f and j are both smooth elliptic fibrations over the elliptic curve B.

In particular, they don’t have multiple fibers. Then, from the canonical bundle formula

(Theorem 1.14) we get

ωJ ∼= j∗(L−1
j ⊗ ωB) ∼= j∗(L−1

j ),

where Lj = R1j∗OJ is an invertible sheaf of degree χ(OJ) = χ(OX) = 0. Hence, ωJ ∈ Pic0(J).

In particular, we have ωJ ≡ 0, from which it follows that J is a minimal surface of Kodaria

dimension 0. Moreover, by [CD89, Corollary 5.3.5], the Betti numbers of X and J coincide,

i.e., bi(X) = bi(J), i ≥ 0. So J is a bielliptic surface, since ωJ ≡ 0, b2(J) = b2(X) = 2 and

the fibers of j : J → B are smooth.

The claim about the order of the canonical sheaves follows from R1f∗OX ∼= R1j∗OJ and

the fact that the order of the canonical sheaf ωX of a bielliptic surface X coincides with the

order of the invertible sheaf R1f∗OX , as stated in Corollary 1.15.

�

2. Cohomology of Bielliptic Surfaces

Given a smooth and projective variety X, one can define several different cohomology

theories on it, depending on the nature of the ground field over which the variety is defined

and the view point from which one decides to consider the variety. In this section we study

different cohomology theories for bielliptic surfaces and present the corresponding cohomology

groups. Most of the result we present are due to others and we will refer to the original works

accordingly.

We refer to [Lie16, Section 1] for a short introduction to the different cohomology theories

we will consider and to [CDL20, Section 0.10] for a more detailed discussion.

Note first that from the definition of a bielliptic surface and Poincaré duality in l-adic

cohomology, where l is a prime number, we have the following result.

Proposition 2.1. The l-adic Betti numbers of a bielliptic surface X are as follows
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i 0 1 2 3 4

bi(X) 1 2 2 2 1

2.1. Singular Cohomology and the Néron-Severi Group. We first consider com-

plex bielliptic surfaces.

Lemma 2.2. Let X be a bielliptic surface over C. Then the first singular homology group

H1(X,Z) and the Néron-Severi group NS(X) are isomorphic.

Proof. According to the universal coefficient theorem for (singular) cohomology (see, for

example, [Hat02, Theorem 3.2, Corollary 3.3]), the torsion of the second cohomology group

and the torsion of the first homology group coincide, H2(X,Z)tors ∼= H1(X,Z)tors. Since

b1(X) = b2(X), we get H2(X,Z) ∼= H1(X,Z).

From the exact exponential sequence

0→ Z→ OX → O∗X → 1

one obtains the exact sequence

Pic(X) ∼= H1(X,O∗X)
δ−→ H2(X,Z)→ H2(X,OX).

Since pg(X) = dimH2(X,OX) = 0, we have H2(X,OX) = 0. It follows that the map

δ : Pic(X)→ H2(X,Z) is surjective. Therefore,

NS(X) = Pic(X)/Pic0(X) ∼= Pic(X)/ ker(δ) ∼= H2(X,Z).

Thus, H1(X,Z) ∼= NS(X). �

The torsion of the first homology groups of the different types of complex bielliptic sur-

faces has been computed by Serrano in [Ser91, Theorem 4.3] and are given in Table 2.1.

Case Torsion of H1(X,Z)

(a1) (Z/2Z)2

(a2) Z/2Z
(b1) Z/3Z
(b2) 0

(c1) Z/2Z
(c2) 0

(d) 0

Table 2.1. Torsion of H1(X,Z).

From Lemma 2.2 together with the results from Serrano, we can determine the Néron-

Severi groups of complex bielliptic surfaces. These are given in Table 2.2.
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Type NS(X)

(a1) Z2 ⊕ (Z/2Z)2

(a2) Z2 ⊕ Z/2Z
(b1) Z2 ⊕ Z/3Z
(b2) Z2

(c1) Z2 ⊕ Z/2Z
(c2) Z2

(d) Z2

Table 2.2. Néron-Severi group of complex bielliptic surfaces.

It is now easy to calculate the singular (co-)homology groups of X in terms of the Néron-

Severi group.

Theorem 2.3. Let X be a bielliptic surface over C with Néron-Severi group NS(X).

Then, X has the following singular homology and cohomology groups.

H0(X,Z) = Z H0(X,Z) = Z
H1(X,Z) = NS(X) H1(X,Z) = Z2

H2(X,Z) = NS(X) H2(X,Z) = NS(X)

H3(X,Z) = Z2 H3(X,Z) = NS(X)

H4(X,Z) = Z H4(X,Z) = Z.

Proof. Since X is an orientable topological 4-manifold, we get the assertion about the

(co-)homology groups for i = 0, 4. From Lemma 2.2 we have

H2(X,Z) ∼= H1(X,Z) ∼= NS(X).

Using Poincaré duality and the universal coefficient theorems for cohomology one can compute

the remaining (co-)homology groups. �

2.2. l-adic Cohomology. Let l be a prime number. In what follows we describe the

l-adic cohomology groups of a bielliptic surface over an algebraically closed field k.

2.2.1. Characteristic zero. Assume first that the characteristic of the ground field k is

zero. By the Lefschetz principle, we may assume k = C. From the comparison theorem

between singular and étale cohomology [Mil80, Ch. III, §3, Thm. 3.12] and the universal

coefficient theorem for cohomology [Hat02, Theorem 3.2], we have

H i
ét(X,Zl) ∼= H i(X,Zl) ∼= HomZ(Hi(X,Z),Zl)⊕ Ext1

Z(Hi−1(X,Z),Zl).

From this together with our knowledge of the singular cohomology groups we can compute

the l-adic cohomology groups.
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Theorem 2.4. Let X be a bielliptic surface over an algebraically closed field k of charac-

teristic zero with Néron-Severi group NS(X). Then, X has the following l-adic cohomology

groups.

H0
ét(X,Zl) = Zl

H1
ét(X,Zl) = Z2

l

H2
ét(X,Zl) = NS(X)⊗ Zl

H3
ét(X,Zl) = NS(X)⊗ Zl

H4
ét(X,Zl) = Zl.

2.2.2. Characteristic p ≥ 5. To calculate the l-adic cohomology groups of a bielliptic sur-

face X over a field k of characteristic p ≥ 5 one may argue as follows: as we will see in Section

5, bielliptic surfaces lift to characteristic zero, by Theorem 5.12. Moreover, in Section 1.3 of

Chapter 2, we will show that the type of a bielliptic surface over k is preserved under lifting

(see Theorem 1.8). Then, the smooth base change theorem for étale cohomology ([Mil80,

Ch. VI, 4, Cor. 4.2]) allows us to deduce the l-adic cohomology groups from the characteristic

zero case.

2.2.3. The second l-adic cohomology group in arbitrary characteristic. For bielliptic sur-

faces over fields of characteristic 2 or 3, we can not use the argument above, since in that case

we don’t know if the surfaces lift to surfaces of the same type.

Nevertheless, the above result for the second l-adic cohomology group holds for every

bielliptic surface in any characteristic, as the following theorem shows.

Theorem 2.5. Let X be a bielliptic surface over an algebraically closed field k of charac-

teristic p ≥ 0. Then, for every prime number l 6= p we have

H2
ét(X,Zl) ∼= H2

ét(X,Zl(1)) ∼= NS(X)⊗ Zl.

If l = p, the statement remains true after replacing the étale topology with the flat topology.

Proof. First, assume that k is a field of characteristic zero. By the Lefschetz principle,

we may assume k = C. From the proof of Theorem 2.2 we know that NS(X) ∼= H2(X,Z).

By the comparison theorem between l-adic cohomology and singular cohomology we have

H2
ét(X,Zl) ∼= H2(X,Zl).

Moreover, from the universal coefficient theorem we get

H2(X,Zl) ∼= H2(X,Z)⊗ Zl.

Thus, H2
ét(X,Zl) ∼= NS(X)⊗ Zl.
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Now let us assume that k is a field of positive characteristic char(k) = p > 0. Here the

result will follow from the fact that ρ(X) = b2(X). We have two cases:

(1) l 6= p: The Kummer sequence gives an exact sequence

0→ NS(X)⊗ Zl → H2
ét(X,Zl(1))→ TlBr(X)→ 0,

where TlBr(X) denote the l-adic Tate module of the Brauer group of X. Moreover,

TlBr(X) is a finitely generated Zl-module of rank tl(X) := b2(X) − ρ(X) (see, for

example, [Mil80, Chapter V, Remark 3.29(d)]). Since ρ(X) = b2(X) = 2, we

have TlBr(X) = 0 and thus, NS(X) ⊗ Zl ∼= H2
ét(X,Zl(1)) ∼= H2

ét(X,Zl), since k is

algebraically closed.

(2) l = p: Here we have to work instead with the flat topology. From the Kummer exact

sequence, we obtain the short exact sequence

0→ NS(X)⊗ Zp → H2
fl(X,Zp(1))→ TpH

2
fl(X,Gm)→ 0.

By [Ill79, Proposition II.5.12] TpH
2
fl(X,Gm) is a free Zp-module. Let tp(X) denote

its rank and set h(x) := dimK(H2(X,WOX)⊗W K). Then we have the Igusa-Artin-

Mazur formula (see [Ill79, Proposition II.5.12]):

ρ(X) = b2(X)− 2h(X)− tp(X).

Since ρ(X) = b2(X) = 2, we have h(X) = tp(X) = 0. Thus, TpH
2
fl(X,Gm) = 0 and

NS(X)⊗ Zp ∼= H2
fl(X,Zp(1)) ∼= H2

fl(X,Zp).

�

It turns out that Theorem 2.5 is enough to determine the l-adic cohomology groups of

bielliptic surfaces in positive characteristic without lifting them to characteristic zero.

Theorem 2.6. Let X be a bielliptic surface over an algebraically closed field k of charac-

teristic p ≥ 0 with Néron-Severi group NS(X). Let l 6= p be a prime number. Then, X has

the following l-adic cohomology groups.

H0
ét(X,Zl) = Zl

H1
ét(X,Zl) = Z2

l

H2
ét(X,Zl) = NS(X)⊗ Zl

H3
ét(X,Zl) = Z2

l ⊕ Ext1
Zl(H

2
ét(X,Zl),Zl)

H4
ét(X,Zl) = Zl.

Proof. By [Mil80, Theorem V.3.23] we have H0
ét(X,Zl) = Zl = H4

ét(X,Zl). Moreover,

the Albanese map f : X → Alb(X) induces an isomorphism H1
ét(Alb(X),Zl) ∼= H1

ét(X,Zl)
(see, for example, [CDL20, page 160]). Since the Albanese variety Alb(X) of X is an elliptic
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curve, we obtain H1
ét(X,Zl) = Z2

l . Finally, by Poincaré duality for l-adic cohomology [Mil80,

Theorem VI.11.1], we have H3
ét(X,Zl)tors ∼= Ext1

Zl(H
2
ét(X,Zl),Zl). Since b3 = 2, we obtain

the result for the third cohomology group. �

Remark 2.7. Unfortunately, we were not able to simplify the expression for the third

cohomology group further, but we expect it to simplifies to H3
ét(X,Zl) = NS(X)⊗ Zl.

2.3. Hodge and de Rham Cohomology. Let X be a bielliptic surface over an alge-

braically closed field k of characteristic p ≥ 0 and let TX = TX/k := Ω∨X/k denote the tangent

sheaf of X. Moreover, set hi(TX) := dimkH
i(X,TX) and let hi,j := dimkH

j(X,Ωi
X/k) denote

the Hodge numbers of X.

The Hodge and the de Rham cohomology groups of bielliptic surfaces were computed by

Lang [Lan79] and later by Suwa [Suw83]. In what follows we present their results.

Theorem 2.8 ([Lan79], Theorem 4.9). The cohomology of the tangent and cotangent

bundles of a bielliptic surface X over a field of characteristic 6= 2 is given by the following

table.

ord ωX h0(TX) h1(TX) h2(TX) h0,1 h0,2 h1,0 h1,1 h1,2

1 2 4 2 2 1 2 4 2

2 1 2 1 1 0 1 2 1

3 1 1 0 1 0 1 2 1

4 1 1 0 1 0 1 2 1

6 1 1 0 1 0 1 2 1

Table 2.3. Cohomology of the tangent and cotangent bundles.

Let hidR := H i
dR(X/k) denote the dimension of the i-th de Rham cohomology group.

Theorem 2.9 ([Lan79], Theorem 4.10). The de Rham cohomology of a bielliptic surface

X over a field of characteristic 6= 2 is given by the following table.

ord ωX h0
dR(X) h1

dR(X) h2
dR(X) h3

dR(X) h4
dR(X)

1 1 3 4 3 1

2 1 2 2 2 1

3 1 2 2 2 1

4 1 2 2 2 1

6 1 2 2 2 1

Table 2.4. Dimensions of the de Rham cohomology groups.

In characteristic 2 we have the following result.
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Theorem 2.10 ([Lan79], Theorem 4.11, p. 497). The cohomology of the tangent and

cotangent bundles and the de Rham cohomology of a bielliptic surface X over a field of char-

acteristic 2 is given by the following tables.

Type h0(TX) h1(TX) h2(TX) h0,1 h0,2 h1,0 h1,1 h1,2

(a1) 2 4 2 2 1 2 4 2

(a3) 1 2 1 2 1 1 2 1

(b1) 1 1 0 1 0 1 2 1

(b2) 1 1 0 1 0 1 2 1

(c1) 2 4 2 2 1 2 4 2

(d) 1 1 0 1 0 1 2 1

Table 2.5. Cohomology of the tangent and cotangent bundles.

Type h0
dR(X) h1

dR(X) h2
dR(X) h3

dR(X) h4
dR(X)

(a1) 1 4 6 4 1

(a3) 1 3 4 3 1

(b1) 1 2 2 2 1

(b2) 1 2 2 2 1

(c1) 1 3 4 3 1

(d) 1 2 2 2 1

Table 2.6. Dimensions of the de Rham cohomology groups.

Remark 2.11. Note that if ωX ∼= OX , then

TX = Ω∨X/k
∼= ΩX/k ⊗ det(ΩX/k) ∼= ΩX/k ⊗ ωX ∼= ΩX/k,

since ΩX/k is a locally free sheaf of rank 2 (cf. [Har77, Exercise II.5.16]). Thus, one get the

equality hi(TX) = hi(ΩX/k) = h1,i.

2.4. Crystalline Cohomology. We now turn to the crystalline cohomology groups of

bielliptic surfaces. For a detailed introduction to crystalline cohomology we refer to [CL98]

and to [Lie16, Section 1] for a shorter basic introduction.

Let k be an algebraically closed field of positive characteristic p > 0. And let W = W (k)

denote the ring of Witt vectors with coefficients in k. The crystalline cohomology groups

H i
cris(X/W ), 0 ≤ i ≤ 4, of a bielliptic surface X over k were computed by Lang [Lan79].

Here we present his results.
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Theorem 2.12 ([Lan79], Theorem 4.11, p. 499). Let X be a bielliptic surface over a

field k of characteristic p 6= 2. Then H2
cris(X/W )tors is killed by p, and its rank as a vector

space over k is h1
dR(X)− 2.

Corollary 2.13. Let X be a bielliptic surface over a field k of characteristic p /∈ {2, 3}.
Then the crystalline cohomology groups of X are as follows

H0
cris(X/W ) = W,

H1
cris(X/W ) = W 2,

H2
cris(X/W ) = W 2,

H3
cris(X/W ) = W 2,

H4
cris(X/W ) = W.

2.5. Hodge-Witt Cohomology in Characteristic p /∈ {2, 3}. In this section we com-

pute the Hodge-Witt cohomology groups

H i,j
W (X) := Hj(X,WΩi

X/k)

of a bielliptic surface X over an algebraically closed field k of characteristic different from 2

and 3. In order to do so, we adapt the arguments of the proof of [Ill79, Section II, Proposition

7.3.6] to the case of bielliptic surfaces.

First let us recall a result by Lang inspired as well by Illusie’s analysis in [Ill79, Section

II, Proposition 7.3.2].

Proposition 2.14 ([Lan79], Proposition 4.3). Let X be an algebraic surface, and suppose

the first Bockstein operation of Witt vector cohomology β1 : H1(X,OX) → H2(X,OX) is

surjective. Then H2(X,WOX) ∼= kpg .

Corollary 2.15. Let X be a bielliptic surface over an algebraically closed field k of

characteristic p /∈ {2, 3}. Then, H2(X,WOX) ∼= 0.

Remark 2.16. In particular, H2(X,WOX) is torsion free and finitely generated. This is

even true for any bielliptic surface X in any characteristic. Thus, by a result of Nygaard (cf.

[Ill79, Section II, Corollaire 3.14], the slope spectral sequence degenerate and X is Hodge-

Witt, i.e., all the cohomology groups Hj(X,WΩi
X/k) are finitely generated W -modules (cf.

[Ill79, Section II 2]).

Now, for Hodge-Witt varieties, one has a ”Hodge decomposition” of the crystalline coho-

mology groups in terms of the Hodge-Witt cohomology groups. Indeed, according to [Ill83,

Theorem 3.4.1], for any Hodge-Witt variety there is a canonical decomposition

Hn
cris(X/W ) ∼=

⊕
i+j=n

Hj(X,WΩi
X/k). (2.1)
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Finally, we need one lemma about the action of the absolute Frobenius on H1(X,OX) for

a bielliptic surfaces X.

Lemma 2.17. Let X be a bielliptic surfaces over an algebraically closed field k of charac-

teristic p /∈ {2, 3} and f : X → Alb(X) the Albanese fibration. Consider the map

F ∗ : H1(X,OX)→ H1(X,OX)

induced by the absolute Frobenius F on X. Then F ∗ is bijective (resp. zero) on H1(X,OX)

if and only if Alb(X) is an ordinary (resp. a supersingular) elliptic curve.

Proof. Since H1(X,OX) ∼= k and k is algebraically closed and therefore perfect, the

induce map F ∗ is either zero or bijective on H1(X,OX). Consider now the Albanese fibration

f : X → B = Alb(X). Since f∗OX ∼= OB, the Leray spectral sequence associated with the

morphism f induces an exact sequence

0→ H1(B,OB)
f∗−→ H1(X,OX)→ H0(B,R1f∗OX)→ H2(B,OB) = 0.

Moreover, since B = Alb(X) is an elliptic curve, we have pg(B) = dimkH
1(B,OB) = 1. Thus,

f∗ : H1(B,OB)→ H1(X,OX) is an isomorphism. Therefore, by considering the commutative

diagram

X

f

��

F // X

f

��
B

F // B

and taking cohomology, we see that F ∗ : H1(X,OX) → H1(X,OX) is bijective (resp. zero)

if and only if the same holds for F ∗ : H1(B,OB) → H1(B,OB), that is, if and only if the

elliptic curve B is ordinary (resp. supersingular). �

Remark 2.18. The previous lemma states that the bielliptic surface X is ordinary in the

sense of Bloch-Kato [BK86, Definition 7.2] if and only if its Albanese variety B = Alb(X) is

an ordinary elliptic curve. Here one uses H2(X,OX) = 0.

Theorem 2.19. Let X be a bielliptic surfaces over an algebraically closed field k of char-

acteristic p /∈ {2, 3}. Then the Hodge-Witt cohomology groups H i,j
W (X) of X are given by the

following table.

Type of X H0,0
W H1,0

W H0,1
W H2,0

W H1,1
W H0,2

W H2,1
W H1,2

W H2,2
W

ordinary W W W 0 W 2 0 W W W

not ordinary W W W 0 W 2 0 0 W 2 W

Table 2.7. Hodge-Witt cohomology groups of X.
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Proof. We have H0,0
W
∼= H2,2

W
∼= W , since X is a smooth and proper surface.

According to [Ill79, II 3.11.2], the Albanese map f : X → B = Alb(X) induces an

isomorphism

f∗ : H1(Alb(X)/W )
∼−→ H1(X/W ).

Moreover, there are isomorphisms

H0(X,WΩ1
X/k)

∼= H0(Alb(X),WΩ1
Alb(X)/k)

∼= W and

H1(X,WOX) ∼= H1(Alb(X),WOAlb(X)) ∼= W,

since Alb(X) is an elliptic curve (cf. [CDL20, page 160]).

Since ρ(X) = b2(X), the F -isocrystal H2
cris(X/W ) ⊗ K is of slope 1. This implies

that H0(X,WΩ2
X/k) ⊗ K is zero, since the latter is isomorphic to the sub-F -isocrystal of

H2
cris(X/W )⊗K of slope 2. Since all H i,0

W are free W -modules of finite rank by [Ill79, Section

II, Corollaire 2.17], it follows that H2,0
W = 0. From Proposition 2.14, we know that H0,2

W = 0.

Since X is Hodge-Witt, we have a canonical decomposition (for n = 2)

H2
cris(X/W ) ∼=

⊕
i+j=2

Hj(X,WΩi
X/k).

Thus, H1(X,WΩ1
X/k)

∼= H2
cris(X/W ) ∼= W 2, by Theorem 2.12.

Now for n = 3 we have the canonical decomposition

H3
cris(X/W ) ∼= H1(X,WΩ2

X/k)⊕H
2(X,WΩ1

X/k).

We now compute H1(X,WΩ2
X/k) by following the proof of [Ill79, Section II, Proposition

7.3.6]: the Verschiebung V induces a short exact sequence

0→WΩ2
X/k

V−→WΩ2
X/k →WΩ2

X/k/VWΩ2
X/k → 0.

Taking cohomology and using H2(X,WΩ2
X/k)

∼= W and the Cartier operator C in Hodge-Witt

cohomology, we get an isomorphism

H1(X,WΩ2
X/k)/V H

1(X,WΩ2
X/k)

∼= lim←−
C

H1(X,ωX),

where ωX = Ω2
X is the canonical sheaf of X. Since X is a surface, by [Ill79, Section II,

Corollaire 2.18] the Frobenius F is an automorphism on H1(X,WΩ2
X/k) and we have

H1(X,WΩ2
X/k)/V H

1(X,WΩ2
X/k)

∼= H1(X,WΩ2
X/k)/pH

1(X,WΩ2
X/k),

since V = pF−1.
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Now lim←−C H
1(X,ωX) is dual two lim−→F

H1(X,OX). Thus, if F is bijective (resp. zero) on

H1(X,OX) ∼= k, then lim−→F
H1(X,OX) equals k (resp. 0). Therefore,

H1(X,WΩ2
X/k)/pH

1(X,WΩ2
X/k)

∼= k (resp. =0),

if F is bijective (resp. zero) on H1(X,OX). Since H3
cris(X/W ) is torsion free, we get

H1(X,WΩ2
X/k)

∼= W (resp. = 0),

if F is bijective (resp. zero) on H1(X,OX). �

3. Divisors of Bielliptic Surfaces and the Néron-Severi Lattice

Divisors of complex bielliptic surfaces were studied by Serrano in [Ser90]. One of his main

results is an explicit description of the Néron-Sever lattice Num(X) of a complex bielliptic

surface X (cf. [Ser90, Theorem 1.4]). In this section we will show that this result still holds

true for bielliptic surfaces over fields of characteristic different from 2 and 3.

More precisely, for a bielliptic surfaceX over an algebraically closed field k of characteristic

char(k) = p /∈ {2, 3} we will prove the following:

(1) The Néron-Severi lattice Num(X) of X is an even and unimodular lattice of rank 2

and signature (1, 1). In particular, Num(X) is isomorphic to the hyperbolic lattice

U (see Proposition 3.1).

(2) A basis of Num(X) is given by (rational) multiples of the numerical classes of fibers

of the two elliptic fibrations on X (see Theorem 3.3).

Proposition 3.1. Let X be a bielliptic surface over an algebraically closed field k. Then

Num(X) ∼= U,

which is an even and unimodular lattice of rank 2 and signature (1, 1). Here U denotes the

hyperbolic lattice with intersection matrix(
0 1

1 0

)
.

Proof. Assume first that Num(X) is a unimodular lattice. Then we can argue as follows.

First, recall that ρ(X) = rankNS(X) = b2(X) = 2, by Lemma 1.10. Hence, Num(X) has

rank 2. From the Hodge Index Theorem, we get that Num(X) has signature (1, 1). Moreover,

from the Riemann-Roch theorem it follows that Num(X) is an even lattice. Indeed, given an

invertible OX -module L on X, since χ(OX) = 0 and ωX ≡ OX , the Riemann-Roch theorem

yields

χ(L) = χ(OX) +
1

2
· ((L,L)− (L, ωX)) =

1

2
· (L,L).
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Thus, L2 = (L,L) = 2 · χ(L). So Num(X) is an even lattice. Now from the structure the-

ory of unimodular lattices (see for example [Ser73, Chapter V, Theorem 5]) it follows that

Num(X) ∼= U .

We proceed now to prove that Num(X) is indeed unimodular. We will give two different

proofs of this fact. The first one is based on the proof of the corresponding statement for

Enriques Surfaces in [CDL20, Proposition 1.5.1]. The second proof uses the fact that biel-

liptic surfaces lift to characteristic zero (cf. Theorem 5.12 in Chapter 2) together with the

existence of the (injective) specialization map of the Néron-Severi lattice.

First proof of unimodularity:

Consider first the case where k is a field of characteristic zero. By the Lefschetz principle

we may assume k = C. Since pg(X) = 0, the first Chern class map c1 : Pic(X) → H2(X,Z)

is surjective and induces an isomorphism NS(X) ∼= H2(X,Z) which is compatible with the

intersection pairing on NS(X) and the cup-product on H2(X,Z), thus

Num(X) ∼= H2(X,Z)/Tors ∼= Z2.

From Poincaré duality for H2(X,Z) it follows that Num(X) is a unimodular lattice.

Now consider the case where k has positive characteristic p > 0. For all prime l 6= p the

Kummer exact sequence gives an exact sequence

0→ NS(X)⊗ Zl → H2(X,Zl(1))→ TlBr(X)→ 0,

where TlBr(X) denotes the Tate module of the Brauer group, which is a finitely generated

Zl-module of rank t(x) = b2(X) − ρ(X) (see [Mil80, Chapter V, Remark 3.29]). Since

ρ(X) = b2(X), we have that TlBr(X) = 0 and thus there is an isomorphism

Num(X)⊗ Zl ∼= H2(X,Zl(1))/Tors,

that is compatible with intersection pairings on both sides. By Poincaré duality for l-adic

cohomology it follows that Num(X)⊗ Zl is a unimodular lattice over Zl for all l 6= p.

Now, if l = p, we saw in the proof of Theorem 2.5 that the Igusa-Artin-Mazur formula

implies tp(X) = 0 and thus there is an isomorphism NS(X) ⊗ Zp ∼= H2
fl(X,Zp(1)). Now

consider the crystalline first Chern class map

c1 : NS(X)⊗ Zp ↪→ H2
cris(X/W ),

which is the composition of the following injective maps (see [Ill79, Remarque II.5.21.4]):

c1 : NS(X)⊗ Zp ↪→ H2
fl(X,Zp(1)) ↪→ H2(X,WΩ≥1

X ) = P 1H2
cris(X/W ) ↪→ H2

cris(X/W ).
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Recall that c1 is compatible with the intersection pairings. By Theorem 2.12, we know that

the second crystalline cohomology groups of bielliptic surfaces are of the form

H2
cris(X/W ) ∼= W 2 ⊕ kh1dR(x)−2.

From this it follows that the crystalline first Chern class map induces isomorphisms

Num(X)⊗Z W ∼= (H2
fl(X,Zp(1))⊗Zp W )/Tors ∼= H2

cris(X/W )/Tors,

which are compatible with intersection pairings. By Poincar Duality in crystalline cohomol-

ogy, the pairing on the right-hand side is perfect. This implies that the pairing on Num(X)⊗Zp
is perfect.

We have shown that Num(X)⊗Zl is a unimodular lattice over Zl for all primes l, including

l = p. Thus, Num(X) is a unimodular lattice over Z.

Second proof of unimodularity:

Let X be a bielliptic surface over an algebraically closed field k of characteristic p > 0.

Since X lift to characteristic zero by Theorem 5.12, there exist a integral ring (R,m) of char-

acteristic zero and residue field R/m ∼= k and a scheme X flat over R, such that X ∼= X0 :=

X ×Spec(R) Spec(k). Let K be the fraction field of R and denote Xη := X ×Spec(R) Spec(K) the

generic fiber. After choosing a discrete valuation ring dominating (R,m) and after passing

to the m-adic completion, we may assume that (R,m) is a local and m-adically complete

discrete valuation ring.

Consider the specialization morphism

spPic : Pic(Xη)→ Pic(X0),

where Xη := Xη ×Spec (K) Spec (K) denotes the geometric generic fiber (cf. [MP12, Proof of

Proposition 3.3] or the original reference [SGA71, Expose X, Appendice 7.13.3]). Note that

Xη is a bielliptic surface over K.

Now, the specialization map on the Picard groups induces a specialization map at the

level of the Néron-Severi lattices

spNum : Num(Xη)→ Num(X0),

which is compatible with the intersection product. Indeed, by [SGA71, Expose X, Appendice

7.9] this is the case if spPic is an epimorphism modulo torsion. By the proof of Lemma 1.9

of Chapter 2, the relative Picard scheme PicX/R is smooth. Then, by Hensel’s lemma (cf.

[Gro67, Théorème 18.5.17 ]), the specialization map spPic is surjective.
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Since the intersection product on Num is non-degenerate, the last map is injective. Thus,

Num(Xη) ⊆ Num(X0) is a sublattice of finite index, say N ∈ N, since both lattices have rank

2. For the discriminants we get

disc(Num(Xη)) = N2 · disc(Num(X0)).

By Poincaré duality we have that Num(Xη) is a unimodular lattice, since K is a field of

characteristic zero. Hence, disc(Num(Xη) = 1. But then it follows disc(Num(X0)) = 1.

Thus, Num(X0) is an unimodular lattice. �

3.1. Bases for the Neŕon-Severi Lattices.

Let X = E×F/G be a bielliptic surface over an algebraically closed field k of characteristic

char(k) = p /∈ {2, 3} and let

f : X → E/G (elliptic curve) and g : X → F/α(G) ∼= P1,

be the two elliptic fibrations given by the natural projections of the product E ×F (cf. The-

orem 1.16). The following facts are easy to check:

(1) The fibration f is smooth and isotrivial with all fibers being isomorphic to the elliptic

curve F .

(2) The fibers of g are all irreducible. The general fiber is a smooth elliptic curve

isomorphic to E and over a point p ∈ F/α(G) that is the image of a point x ∈ F with

stabilizer subgroup Gx, the fiber of g over p is isomorphic to E/Gx with multiplicity

|Gx|. The multiplicity is the one of p under the map F → F/α(G).

(3) The multiple fibers of g occur as multiple-sections of f .

(4) In particular, all the fiber of f are isomorphic to F and all smooth fibers of g are

isomorphic to E.

The last point suggest the following notation (following Serrano): since the fibers of a

fibration are all numerically equivalent, we will denote by [F ] and [E] ∈ Num(X) the numer-

ical class of a fiber of f and of g, respectively.

The classes [F ] and [E] intersect as follows:

[F ]2 = [E]2 = 0 and [F ] · [E] = |G|.

From this, it is easy to see that the classes {[F ], [E]} form a basis of the 2-dimensional

vector spaces

N1(X)Q = Num(X)⊗Z Q ∼= NS(X)⊗Z Q and N1(X)R = Num(X)⊗Z R ∼= NS(X)⊗Z R.
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For a complex bielliptic surface X a basis of Num(X) was described by Serrano in [Ser90].

As we will see, his result also holds for bielliptic surfaces in characteristic different from 2 and

3.

Lemma 3.2 ([Ser90], Lemma 1.3). Let X ∼= E × F/G be a bielliptic surface over an

algebraically closed field k of characteristic char(k) = p ≥ 0 and let D be a divisor of numerical

class α[E] + β[F ] ∈ Num(X)⊗Z Q with α, β ∈ Q. Then:

(i) χ(OX(D)) = αβ · |G|.
(ii) D is ample if and only if α > 0, β > 0.

(iii) If H0(OX(D)) 6= 0, then α ≥ 0, β ≥ 0

(iv) Assume p /∈ {2, 3}. If D is ample, then h0(OX(D)) = χ(OX(D)).

Proof. The only result used in Serrano’s proof which is not true in (arbitrary) positive

characteristic is Kodaira vanishing, which is used to prove statement (iv). As we will see

in Section 5, bielliptic surfaces over fields of characteristic different from 2 and 3 lift to

characteristic 0 over the Witt ring (see Proposition 5.6). In particular, they lift to the second

Witt vectors W2(k). Hence, they satisfy Kodaira vanishing (see, for example, [Ray78] and

[EV92, Lecture 11]). �

Theorem 3.3 ([Ser90], Theorem 1.4). Let X ∼= E × F/G be a bielliptic surface over an

algebraically closed field k of characteristic different from 2 and 3. The following table shows

the multiplicities of the multiple fibers of the second fibration g : X → E0/α(G) ∼= P1, their

degree over the Albanese fibration f and a basis of Num(X) for the seven types of bielliptic

surfaces.

Type Multiplicities of fibers Degree over E/G via f Basis of Num(X)

(a1) {2, 2, 2, 2} {1, 1, 1, 1} {1
2 [E], [F ]}

(a2) {2, 2, 2, 2} {2, 2, 2, 2} {1
2 [E], 1

2 [F ]}
(b1) {3, 3, 3} {1, 1, 1} {1

3 [E], [F ]}
(b2) {3, 3, 3} {3, 3, 3} {1

3 [E], 1
3 [F ]}

(c1) {2, 4, 4} {2, 1, 1} {1
4 [E], [F ]}

(c2) {2, 4, 4} {4, 2, 2} {1
4 [E], 1

2 [F ]}
(d) {2, 3, 6} {3, 2, 1} {1

6 [E], [F ]}
Table 3.1. Multiple fibers and basis of Num(X).

Proof. For the possible multiplicities of the fibers, see [BM77]. For the basis of Num(X),

the proof in Serrano’s papers works in this general setting. The only change that has to be

made is that, instead of using Poincaré duality, one uses the fact that Num(X) is a unimodular

lattice, which is given by Proposition 3.1. �
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Remark 3.4. It is important to notice that while the divisibility of [E] in Num(X) is

justified by the existence of multiple fibers of g, this is not the case for [F ], since the fibration

f is smooth. For complex bielliptic surfaces Serrano relates the divisibility of a fiber with the

torsion of the first homology group H1(X,Z) (see [Ser90] and [Ser91]). As we have seem,

for complex bielliptic surfaces we have NS(X) ∼= H1(X,Z). Thus, it would be interesting

to determine if there is any relation between the torsion of the Néron-Severi group and the

divisibility of smooth fibers for bielliptic surfaces over fields of arbitrary characteristic.

From the information about the multiple fiber of the second fibration g : X → P1 and its

degree over Alb(X), one obtains the following corollary.

Corollary 3.5. Let X be a bielliptic surface over a field of characteristic p 6= 2, 3. Then,

the Albanese fibration f : X → Alb(X) has a section if and only if X is of type (a1), (b1), (c1)

or (d).

3.2. Ample and Nef Cones of Bielliptic Surfaces. With the results we have ob-

tained so far, we can give a description of the ample and nef cones in the vector space of

numerical classes of R-divisors N1(X)R = NS(X)⊗Z R. For definitions and notation we refer

the reader to Lazarsfeld’s book [Laz04].

First of all, the real vector space N1(X)R has dimension 2 and is generated by the two

classes [F ] and [E]. Taking this classes as basis of the real vector space N1(X)R and repre-

senting this vector space as the [F ]− [E]-plane, Lemma 3.2 (ii) implies that the ample cone

Amp(X) ⊆ N1(X)R lies within the first quadrant, i.e.,

Amp(X) = {[D] ∈ N1(X)R|[D] = α[E] + β[F ], α, β > 0}.

Moreover, since F and E are irreducible curves with F 2 = E2 = 0, [F ] and [E] are nef

classes. Thus, the nonnegative multiples of this classes form the two boundaries of the nef

cone Nef(X), i.e.,

Nef(X) = {[D] ∈ N1(X)R|[D] = α[E] + β[F ], α, β ≥ 0}.

Now let NE(X) denote the closed cone of curves of X, that is, the closure in N1(X)R of the

cone of curves

NE(X) = {
∑

ai[Ci]|Ci ⊂ X an irreducible curve, ai ∈ R, ai ≥ 0}.

For a smooth projective surface X, one always have the inclusion Nef(X) ⊂ NE(X). If X is

a bielliptic surface, then one even have Nef(X) = NE(X), since on a bielliptic surface there is

no irreducible curves C ⊂ X with negative self-intersection, as shown by the following result.

Lemma 3.6. Let X be a bielliptic surfaces over an algebraically closed field k. Then, for

every irreducible curve C ⊂ X we have (C2) ≥ 0.
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Proof. Suppose C ⊂ X is an irreducible curve with (C2) < 0. Then, since KX ≡ 0,

from the genus formula we get

2pa(C)− 2 = (C2) + (C ·KX) = (C2) < 0.

Thus, pa(C) = 0 and (C2) = −2. But this is impossible, since on a bielliptic surface X there

are no (−2)-curves by Proposition 1.11. Hence, (C2) ≥ 0. �

Corollary 3.7. Let X be a bielliptic surfaces over an algebraically closed field k. Then,

the closed cone of curves and the nef cone coincide, i.e., Nef(X) = NE(X).

[F ]

[E]

Nef(X) = NE(X)

Figure 3.1. The effective cone of a bielliptic surface X.

Corollary 3.8. If D and D′ are two effective divisors on a bielliptic surface X, then

(D ·D′) ≥ 0. In particular, for every effective divisor D on X we have (D2) ≥ 0.

Corollary 3.9. If D is an (R−)divisor on a bielliptic surface X such that (D2) > 0

(resp. (D2) ≥ 0), then either D or −D is ample (resp. nef). Equivalently, if a numerical

class η ∈ N1(X)R is such that η2 > 0 (resp. η2 ≥ 0), then either η or −η is ample (resp.

nef).

Lemma 3.10. Let X be a bielliptic surface and D a divisor on X. If D2 > 0, then either

D or −D is linear equivalent to an effective divisor.

Proof. Take H an ample divisor on X. Then, from the Hodge Index Theorem it follows

that D ·H 6= 0.

If D ·H > 0, then (KX −D) ·H = −D ·H < 0, since KX is numerically trivial. Thus,

KX −D cannot be linear equivalent to an effective divisor. It follows that h0(KX −D) = 0

and by Serre Duality we get h2(D) = 0.

Then by Riemann-Roch we have

h0(D)− h1(D) =
1

2
D2 > 0.
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Since h1(D) ≥ 0, we get h0(D) ≥ 1
2D

2 > 0. Therefore, D is linear equivalent to an effective

divisor.

If D ·H < 0, then setting D′ := −D, we have (D′)2 = (−D)2 > 0 and D′ ·H > 0. Then,

the same argument as above shows that h0(D′) > 0. Thus, −D is linear equivalent to an

effective divisor. �

Remark 3.11. The statement of the previous lemma holds in general for every surface

X with KX ≡ 0, if one requires that D2 > −2χ(OX).

4. Automorphism Schemes of Bielliptic Surfaces

The automorphism groups of complex bielliptic surfaces were determined by Bennett and

Miranda in [BM90a]. For a complex bielliptic surface X of the form (E×F )/G (cf. Theorem

1.16) the authors prove that the automorphism group Aut(X) of X is given by

Aut(X) = CAut(E)×Aut(F )(G)/G, (4.1)

where CAut(E)×Aut(F )(G) denotes the centralizer of G in Aut(E)×Aut(F ).

They explicitly compute the group CAut(E)×Aut(F )(G) for every type of complex bielliptic

surfaces and present its generators in [BM90a, Table 3.1]. In particular, their analysis shows

that the elliptic curve E, seen as a subgroup of Aut(E)×Aut(F ), centralizes G and since the

intersection E∩G is trivial, the elliptic curve E embeds in the quotient CAut(E)×Aut(F )(G)/G

as a normal subgroup. Thus,

E ⊆ Aut(X).

Consequently, the group Aut(X) is not finite. However, it turns out that the quotient group

Aut(X)/E is finite. Bennett and Miranda compute this quotient group explicitly for every

complex bielliptic surface and give its generators (see [BM90a, Table 3.1]).

Recently, the work of Bennett and Miranda on the automorphism groups of complex biel-

liptic surfaces was generalized by G. Martin [Mar20]. Martin determines the automorphism

schemes of bielliptic and quasi-bielliptic surfaces over algebraically closed fields of arbitrary

characteristic. His work not only solves the problem of the classification of automorphisms

of (quasi-)bielliptic surfaces in full generality, but it also shows that some subtle cases in

characteristic 0 were missed in the work of Bennett and Miranda (see Remark 4.7 below).

We now present Martin’s results on the automorphism schemes of bielliptic surfaces, as

these are the surfaces we are interested in. Note however that his work, as already mentioned,

also includes results on the automorphism schemes of quasi-bielliptic surfaces. For those re-

sults, as well as for the proofs and further details of the results we present, we refer to the
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article [Mar20].

Let us first recall some definitions.

Definition 4.1. Let X and Y be two schemes over a base scheme S and let π : X → Y

be a morphism of S-schemes.

(i) The functor AutX : (Sch/S)op → (Groups) whose T -value points are given by

AutX(T ) := {T -automorphisms of X ×S T → T},

is called the automorphism functor of X.

(ii) The functor Autπ : (Sch/S)op → (Groups) whose T -value points are

Autπ(T ) := {(h, h′) ∈ AutX(T )×AutY (T ) | πT ◦ h = h′ ◦ πT },

where πT denotes the pullback of π along T → S, is called the automorphism functor

of (the morphism) π.

(iii) The subfunctor AutX/Y of Autπ whose T -value points are given by

AutX/Y (T ) := {(h, id) ∈ AutX(T )×AutY (T ) | πT ◦ h = id ◦πT }

is called the automorphism functor of X over Y .

Recall that for a proper variety X over an algebraically closed field k the automorphism

functor AutX is representable by a reduced group scheme locally of finite type over k, by

[MO67, Theorem 3.6]. In particular, if π : X → Y is a morphism of proper varieties over an

algebraically closed field k, then the functors AutY , Autπ and AutX/Y are all group schemes

as well.

Next, let us recall the notions of centralizer and the normalizer in the context of group

schemes.

Definition 4.2. Let G be a group scheme and H ⊆ G a subgroup scheme of G.

(i) The functor NG(H) : (Sch)op → (Set) which sends a scheme S to the set

NG(H)(S) := {g ∈ G(S) | gT ◦ h ◦ g−1
T ∈ H(T ) for all T → S and h ∈ H(T )}

is called the normalizer of H in G.

(ii) Similarly, the functor CG(H) : (Sch)op → (Set) sending a scheme S to the set

CG(H)(S) := {g ∈ G(S) | gT ◦ h = h ◦ gT for all T → S and h ∈ H(T )}

is called the centralizer of H in G.

By [ABD+66, Expos VIB, Proposition 6.2] both the normalizer NG(H) and the central-

izer CG(H) of H in G are representable by closed subgroup schemes of G.



44 1. BIELLIPTIC SURFACES

We are now ready to state Martin’s results.

Let X be a bielliptic surface over an algebraically closed field k of characteristic p ≥ 0.

Recall that by the structure theorem of bielliptic surfaces (see Theorem 1.16) X is of the form

X = E × F/G

where, E and F are elliptic curves and G ⊆ E is a finite subgroup scheme of E which acts

on F via an injective homomorphism α : G→ AutF . Moreover, let

f : X → E/G and g : X → F/α(G) ∼= P1.

denote the two elliptic fibrations of X.

Theorem 4.3 ([Mar20], Theorem 1.1). Let X = (E×F )/G be a bielliptic surface. Then,

the following hold:

(1) AutX/(F/α(G)) = CAutE (G).

(2) AutX/(E/G) = CAutF (α(G)).

(3) There is a short exact sequence of group schemes

0→ (CAutE (G)× CAutF (α(G)))/G→ AutX →M → 0,

where G is embedded via id×α and M is a finite and étale subquotient of the groups

AutE/G/(f∗CAutE (G)) and NAut(F )(α(G)(k))/(CAutF (α(G))(k)).

The group scheme M is interesting as it represents a small characteristic phenomenon,

that is, it appears only if p ∈ {2, 3}. Indeed, Bennett and Miranda proved that M is trivial

in characteristic zero (cf. [BM90a, Section 2]) and the more general statement that M is

trivial if p /∈ {2, 3} was proved by Martin (cf. [Mar20, Proposition 4.4]). As we will see,

Martin calculates the group M in the cases where it is not trivial. His analysis shows that

M also comes from automorphism of E × F and obtains the following corollary:

Corollary 4.4 ([Mar20], Corollary 1.2). Let X = (E × F )/G be a bielliptic surface.

Then,

AutX = NAutE×AutF (G)/G.

Remarks 4.5. (1) Theorem 4.3 and Corollary 4.4 are also true for quasi-bielliptic

surfaces and they are stated accordingly in [Mar20].

(2) In characteristic zero it was shown by Bennett and Miranda that every element of

Aut(E) × Aut(F ) which normalizes G in fact centralizes G (see [BM90b, Lemma

2.6]). Hence, CAut(E)×Aut(F )(G) = NAut(E)×Aut(F )(G). The equation (4.1) can be

therefore be rewritten as

Aut(X) = NAut(E)×Aut(F )(G)/G.
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Written this way, it is evident how Martin’s result generalizes the one of Bennett

and Miranda.

As in the characteristic zero case, the elliptic curve E always centralizes G ⊆ E and E

is normal in AutX (cf. [Mar20, Lemma 3.2]). In particular, E ⊂ AutX and AutX is not a

finite group scheme. Moreover, the quotient AutX/E can be written as an extension of M

by (CAutE (G)/E) × (CAutF (α(G))/α(G)), that is, there is a short exact sequence of group

schemes

0→ (CAutE (G)/E)× (CAutF (α(G))/α(G))→ AutX/E →M → 0.

Thus, in order to determine AutX/E, it is enough to calculate the group schemes CAutE (G)/E,

CAutF (α(G))/α(G) andM . This was carried out by Martin and its computations lead to Table

4.1 below, where the groups Sn, An, and D2n denote the symmetric, alternating, and dihedral

group (of order 2n), respectively, and M2 is the p-torsion subscheme of a supersingular elliptic

curve.

Some of the notation used in Table 4.1 is explained by Martin in a fundamental remark

[Mar20, Remark 1.4], where he refers to some missing cases in the work of Bennett and

Miranda. Due to its importance, we include that remark as Remark 4.7 below.

Corollary 4.6 ([Mar20], Corollary 1.3). Let X = (E × F )/G be a bielliptic surface.

Then, depending on the group scheme G and the j-invariants j(E) and j(F ), the group

schemes CAutE (G)/E, CAutF (α(G))/α(G) and M are as in Table 4.1.

Remark 4.7 ([Mar20], Remark 4.1). If p 6= 2, 3 and j(E) = 1728 (resp. j(E) = 0),

then every automorphism g of (E,O) of order 4 (resp. 3) fixes a unique cyclic subgroup

of E of order 2 (resp. 3). The stars∗ after some j-invariants in Table 4.1 denote that the

translation subgroup of G or α(G) coincides with this cyclic subgroup. By [Mar20, Lemma

4.1], this implies that g is in the corresponding centralizer. These cases seem to be missing

from [BM90a], since they were not listed in [BM90a, Table 1.1], which is why [BM90a,

Table 3.2] differs from Table 4.1. If p ∈ {2, 3} and j(E) = 0, then every cyclic subgroup of

order 2 (resp. 3) is fixed by some automorphism of order 4 (resp. 3), so there are no stars in

these characteristics.

Remark 4.8. Note that, since E ⊆ AutX , the automorphism scheme AutX is not a finite

group scheme. From Corollary 4.6 and Table 4.1 it follows however, that the quotient AutX/E

is finite.

Finally, recall that for a bielliptic surface X the (identity component of the) Picard scheme

Pic0
X/k is reduced and thus smooth if and only if pg(X) = 0 (cf. Remark 1.2). Since ωX ≡ OX ,

the last condition is equivalent to the condition ωX 6∼= OX . Thus, Pic0
X/k is smooth if and

only if ωX 6∼= OX . It turns out that the same holds for the automorphism scheme AutX of X:

the smoothness of AutX for a bielliptic surface is related to the order of the canonical sheaf

ωX , as the following result shows.
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G j(E) CAutE (G)/E j(F ) CAutF (α(G))/α(G) M p

Z/2Z
a) any

b) 1728∗
a) Z/2Z
b) Z/4Z

i) 6= 0, 1728

ii) 1728

iii) 0

i) (Z/2Z)2

ii) D8

iii) A4

{1} 6= 2, 3

(Z/2Z)2 any Z/2Z
i) any

ii) 1728∗
i) Z/2Z
ii) (Z/2Z)2

{1} 6= 2, 3

Z/3Z
a) any

b) 0∗
a) {1}
b) Z/3Z

0 S3 {1} 6= 2, 3

(Z/3Z)2 any {1} 0 {1} {1} 6= 3

Z/4Z any {1} 1728 Z/2Z {1} 6= 2

Z/4Z× Z/2Z any {1} 1728 {1} {1} 6= 2

Z/6Z any {1} 0 {1} {1} 6= 2, 3

Z/2Z
a) 6= 0

b) 0

a) Z/2Z
b) Z/4Z

i) 6= 0

ii) 0

i) (Z/2Z)2

ii) (Z/2Z)2 o S3
{1} 3

(Z/2Z)2 any Z/2Z
i) 6= 0

ii) 0

i) Z/2Z
ii) (Z/2Z)2

{1} 3

Z/3Z 6= 0 {1} 0 α3 o Z/2Z Z/2Z 3

Z/6Z 6= 0 {1} 0 {1} Z/2Z 3

Z/2Z 6= 0 Z/2Z
i) 6= 0

ii) 0

i) µ2 × Z/2Z
ii) M2 oA4

{1} 2

µ2 × Z/2Z 6= 0 Z/2Z 6= 0 Z/2Z {1} 2

Z/3Z
a) 6= 0

b) 0

a) {1}
b) Z/3Z

0 S3 {1} 2

Z/4Z 6= 0 {1} 0 α2 Z/2Z 2

Z/6Z 6= 0 {1} 0 {1} {1} 2

Table 4.1. Automorphism group schemes of bielliptic surfaces

Corollary 4.9 ([Mar20], Corollary 1.6). Let X be a (quasi-)bielliptic surface. Then,

the following hold:

(1) h0(X,TX) ≤ 3.

(2) If X is bielliptic or p 6= 2, then h0(X,TX) ≤ 2.

(3) h0(X,TX) = 1 if and only if ωX 6∼= OX if and only if AutX is smooth.

5. Deformation Theory and Liftability of Bielliptic Surfaces

In [Par13] H. Partsch studied deformations of elliptic fiber bundles and classified de-

formations of bielliptic surfaces. It is not difficult to see that bielliptic surfaces are elliptic

fiber bundles over elliptic curves, which are not Abelian surfaces. In what follows we present

some of Partsch’s main results concerning deformations of bielliptic surfaces and refer to the
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original article for proofs and details.

Definition 5.1. Let S be a scheme over some ring R. An R-morphism X → S is called

elliptic fiber bundle if there exist a surjective étale morphism S′ → S and an elliptic curve E

over SpecR such that

X ×S S′ ∼= E ×R S′.

An elliptic fiber bundle X → S is called Jacobian, if there exists a section σ of X → S.

Note that an elliptic fiber bundle is a proper and smooth morphism.

A deformation of an elliptic fiber bundle X → C over a field k can be understood in two

different senses. First, as a deformation of X as a scheme, and secondly, as a deformation

of the fibration X → C. Moreover, if the elliptic fiber bundle X/C is Jacobian, we can

consider the deformations of X/C which admit a lift of the section. To define this notions

more precisely, let AlgW denote the category of local Artinian W -algebras with residue field

k, where W = W (k) denotes the ring of Witt vectors of k.

Definition 5.2. Let k be a perfect field and let A ∈ AlgW be a local Artinian W -algebra

with residue field k.

(1) Let X be a scheme over k. A deformation of X over A is a Cartesian diagram

X

��

i // X

π

��
Spec k // SpecA

where X is a flat scheme over A. Note that i is then necessarily a closed im-

mersion and that by the definition of Cartesian diagram the induced morphism

X → X ×SpecA Spec k is an isomorphism. Two deformations (X , i) and (X ′, i′) of X

over A are isomorphic, if there exists a morphism f : X → X ′ over A that induces

the identity on the closed fiber X, i.e., such that i′ = f ◦ i. Note that by flatness, f

has to be an isomorphism.

Let

DefX : AlgW −→ (Sets)

denote the functor of Artin rings given by

DefX(A) = {isomorphism classes of deformations of X over A},
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for every A ∈ AlgW.

(2) A deformation of a fibration f : X → C over A is a Cartesian diagram

X

f

��

i // X

F

��
C

��

j
// C

π

��
Spec k // SpecA

where π and π ◦ F are flat. Thus, a deformation of a fibration f : X → C is a

morphism F : X → C between deformations of X and Y together with an identifi-

cation of the restriction of F to the closed fiber with f , i.e., such that F |X = f (cf.

[Ser06, Definition 3.4.1]). Two deformations (X/C, F ) and (X ′/C′, F ′) of a fibration

X/C over A are called isomorphic if there exist two isomorphisms of deformations

g : X → X ′ and h : C → C′ over A of X and C respectively making the following

diagram commutative:

X

F

��

g
// X ′

F ′

��
C h // C′

Let

FibX/C : AlgW → (Sets)

denote the functor of Artin rings given by

FibX/C(A) =

 isomorphism classes of deformations

of the fibration X/C over A

 ,

for every A ∈ AlgW.

(3) Let (X/C, σ) be a Jacobian elliptic fiber bundle with section σ. A Jacobian defor-

mation of (X/C, σ) over A is a deformation (X/C, F ) of the fibration X/C over A

together with a morphism Σ: C → X , which is a lift of σ.
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Let

J acX/C : AlgW → (Sets)

denote the functor of Artin rings given by

J acX/C(A) =

 isomorphism classes of Jacobian deformations

of the Jacobian fibration X/C over A

 ,

for every A ∈ AlgW.

Note that, for a Jacobian elliptic fiber bundle X/C, the functor J acX/C can be considered

as the subfunctor of FibX/C of deformations admitting a section, since different choices of a

lift of σ yield isomorphic Jacobian deformations.

5.1. The Associated Jacobian Fibration of an Elliptic Fiber Bundle. Given an

elliptic fiber bundle f : X → C over k, we can associate to it a Jacobian elliptic fiber bundle

in the same way as we did for bielliptic surfaces (cf. Definition 1.23). First, note that f is

a proper and smooth morphism and its geometric fibers are connected curves. By [BLR90,

§9.4, Proposition 4] the identity component Pic0
X/C of the Picard scheme PicX/C is an Abelian

C-scheme. In particular, Pic0
X/C → C is a Jacobian elliptic fiber bundle over k. We called it

the associated Jacobian of the fiber bundle X/C and denote it by JX/C := Pic0
X/C .

Now let X/C be a deformation of X/C as a fibration. We can again consider the relative

Picard functor PicX/C , which is again representable by an scheme PicX/C whose identity

component Pic0
X/C is an Abelian C-scheme of relative dimension 1. Moreover, it is a Jacobian

deformation of the associated Jacobian J := JX/C of X/C. Thus, one get a natural morphism

of functors

FibX/C → J acJ/C , X/C 7→ Pic0
X/C .

Moreover, X/C is in a natural way a torsor under Pic0
X/C .

Theorem 5.3 ([Par13], Theorem 4.4). The morphism of functors FibX/C → J acJ/C is

formally smooth.

Remark 5.4. Note that by the above theorem, an arbitrary bielliptic surfaces X/C over

k has a formal deformation as a fibration if and only if its associated Jacobian J/C has a

formal deformation as a Jacobian fibration. In others words: FibX/C is unobstructed (or

equivalently, smooth) if and only if the same is true for J acJ/C (see, for example, [Ser06,

Proposition 2.2.5.(iii)] and [Ser06, Proposition 2.2.10.(i)]).

Thus, we can restricted ourselves to the study of deformation of Jacobian bielliptic sur-

faces. Since a Jacobian bielliptic surface J/C can be consider as an elliptic curve over C, to

study the deformation functor J acJ/C one first has to describe the deformations of elliptic

curves over some scheme S.
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For a local Artinian algebra A ∈ AlgW, let S be a proper flat A-scheme such that the

special fiber S := S ×Spec (A) Spec (k) is regular. Let J /S be an elliptic curve over S. By

[Par13, Proposition 3.2] there exist a finite étale cover S ′ → S with group G such that

J ∼= (E ×A S ′)/G,

where E is an elliptic curve over Spec (A) and the action is the diagonal action given by the

Galois action on S ′ and by a homomorphism G→ Aut(E) on the left factor. Then, we have

the following necessary and sufficient criterion for the existence of Jacobian deformations.

Proposition 5.5 ([Par13], Corollary 3.3). Let J/S be an elliptic curve over S, given by

(E ×Spec(k) S
′)/G for some finite étale Galois cover S′ → S with group G. Denote the action

of G on E by ρ0. Then, a Jacobian deformation J /S of J/S exists if and only if there exist

a deformation E of E over A together with an extension of the action of ρ0.

Now let X = (E × F )/G be a Jacobian elliptic surface over k, where the action of G on

the product E×F is given by (x, y) 7→ (ω(x), y+c), where ω ∈ Aut(E, 0) is an automorphism

of E of order d ∈ {2, 3, 4, 6}, which fixes the identity, and c is a d-torsion point of F . By the

previous proposition, the Jacobian deformations of X are of the form

(E × F)/Γ,

where E is a deformation of E extending the automorphism ω and F is a deformation of F

with a torsion point lifting the point c on F . Denote by (E,ω) the functor of deformations

of E lifting the automorphism ω and by (F, c) the functor of deformations of F lifting the

torsion point c on F . Then we have

J acX/C ∼= (E,ω)× (F, c).

To write down a versal family for J acX/C Partsch treats the problem separately for each

factor. He obtains the following result.

Proposition 5.6 ([Par13], Proposition 6.2). The versal hull R of the functor J acX/C
is given as follows.

p = 2 p = 3 p > 3

d = 2 W [[tE ]]⊗W [[q − 1]][ 2
√
q] W [[tE ]]⊗W [[tF ]] W [[tE ]]⊗W [[tF ]]

d = 3 W [[tE ]]⊗W W [π]⊗W [[q − 1]][ 3
√
q] W ⊗W [[tF ]]

d = 4 W [i]⊗W [[q − 1]][ 4
√
q] W ⊗W [[tF ]] W ⊗W [[tF ]]

d = 6 W ⊗W [[q − 1]][ 2
√
q] W [π]⊗W [[q − 1]][ 3

√
q] W ⊗W [[tF ]]

Table 5.1. Versal hull of the functor J acX/C .

where i is a primitive fourth root of unity, π2 = 3 and q is the Serre-Tate parameter of F

from the Serre-Tate theory of local moduli (cf. [KM85, Section 8.9]).



5. DEFORMATION THEORY AND LIFTABILITY OF BIELLIPTIC SURFACES 51

This explicit description of the deformation ring gives us the following result.

Corollary 5.7. Formal Jacobian deformations of Jacobian bielliptic surfaces are unob-

structed, i.e., J acX/C is smooth for every Jacobian bielliptic surface X/C over k.

Proof. Recall that a deformation functor is unobstructed if and only if the versal defor-

mation R is a regular local ring (see, for example, [Har10, Ex. 15.6]). �

Corollary 5.8. Formal deformations of bielliptic surfaces as fibrations are unobstructed,

i.e., the deformation functor FibX/C is smooth.

Proof. By the previous corollary, the functor J acJ/C , where J/C is the associated

Jacobian bielliptic surfaces of X/C is smooth. By Theorem 5.3, the morphism of functors

FibX/C → J acJ/C is formally smooth. Thus, FibX/C is smooth by [Ser06, Proposition

2.2.5.(iii)]. �

For every bielliptic surface X/C over k there is a natural morphism of functors

FibX/C → DefX , X/C 7→ X ,

given by forgetting the map X → C. In his classification of deformations of bielliptic surfaces

Partsch shows that this two deformation functors are actually isomorphic.

Theorem 5.9 ([Par13], Theorem 6.7). Every deformation X of a bielliptic surface X

induces a lifting of the elliptic fibration X → Alb(X), i.e.,

FibX/C ∼= DefX .

Moreover, a versal deformation of a bielliptic surface is algebraizable.

Proposition 5.10 ([Par13], Proposition 6.8). Let X be a bielliptic surface over k. Let

X → Spf (R) be a formal versal deformation of DefX . Then there exist a projective scheme

Y over R such that X is the formal completion of Y along the special fiber.

As we have seen, the Albanese fibration of a bielliptic surface extends to any deformation.

Since bielliptic surfaces has two elliptic fibration, it is natural to ask if the second fibration

also extends to any deformation. This is indeed the case.

Proposition 5.11 ([Par13], Proposition 6.9). Let X be a bielliptic surface. Then every

deformation X of X extends both fibrations.

Theorem 5.12. Every bielliptic surface over k lifts projectively to characteristic zero.

Proof. Corollary 5.8 and Theorem 5.9 imply that for every bielliptic surface X, the

deformation functor DefX is smooth. By Proposition 5.10, every formal lifting is algebraiz-

able. �
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Remark 5.13. It is important to clarify here, that although every bielliptic surface lifts to

characteristic zero, it is not true, that every bielliptic surface lift over the Witt ring. This was

already observed by Lang in [Lan95], who give examples of bielliptic surfaces in characteristic

2 and 3 which does not lift over the Witt ring W (k) but only over a ramified extension.



CHAPTER 2

Moduli of Bielliptic Surfaces

1. Families of Bielliptic Surfaces in Characteristic p /∈ {2, 3}

1.1. Previous Work on Moduli of Bielliptic Surfaces.

1.1.1. Moduli Spaces of Complex Bielliptic Surfaces.

Over the complex numbers C, moduli spaces of bielliptic surfaces were studied by H.

Tsuchihashi in [Tsu79] building on previous work of T. Suwa [Suw69]. In what follows, we

describe the main results of their work and refer to the original papers for the details.

T. Suwa: On Hyperelliptic Surfaces

Classically, it was already known that over the complex numbers C there are seven different

types of bielliptic surfaces. Viewing bielliptic surfaces as elliptic bundles over an elliptic curve

whose total spaces have first Betti number b1 = 2, Suwa describes the seven types of bielliptic

surfaces as quotient spaces of Abelian surfaces.

More precisely, for a bielliptic surface X of a given type, he gives an Abelian surface A

(described by a period matrix) and an automorphism g of A such that X ∼= A/〈g〉, where 〈g〉
denotes the group generated by the automorphism g. He recovers this way the classification

of bielliptic surfaces established earlier by Bagnera-DeFrancis [Bd08] and Enriques-Severi

[ES09, ES10].

Theorem 1.1 ([Suw69], Theorem, p. 473). Any complex bielliptic surface can be ex-

pressed as the quotient space of an Abelian variety A by the group generated by an automor-

phism g of A. The period matrix of A and the automorphism g are given in Table 1.1, with

ρ = exp(2πi/3) and τ, ω ∈ H = {z ∈ C| Im z > 0}.

Moreover, the surfaces of each type form an everywhere effectively parameterized and

complete1 complex analytic family (see [Tsu79, Remark 1] for a proof of this fact). For the

first two types of bielliptic surfaces, i.e., the ones corresponding to the types (a1) and (a2),

1Here ”effectively parameterize” means that the Kodaira-Spencer map is injective and ”complete” means that
the family contains all sufficiently small deformations of each of its fibers. The family is complete, for example,
if the infinitesimal Kodaira-Spence map is surjective (Theorem of completeness).

53
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Type Period matrix of A Automorphism g

(a1)

(
1 0 τ 0

0 1 0 ω

)
[x, y] 7→ [x+ 1

2 ,−y]

(a2)

(
1 0 τ 0

0 1 1
2 ω

)

(b1)

(
1 0 τ 0

0 1 0 ρ

)
[x, y] 7→ [x+ 1

3 , ρy]

(b2)

(
1 0 τ 0

0 1 1−ρ
3 ρ

)

(c1)

(
1 0 τ 0

0 1 0 i

)
[x, y] 7→ [x+ 1

4 , iy]

(c2)

(
1 0 τ 0

0 1 1+i
2 i

)

(d)

(
1 0 τ 0

0 1 0 ρ

)
[x, y] 7→ [x+ 1

6 ,−ρy]

Table 1.1. Possible types of complex bielliptic surfaces.

each family is parameterized by two parameters τ, ω ∈ H = {z ∈ C| Im z > 0}. For the

remaining types only one parameter τ ∈ H is needed.

Although not explicitly mentioned by Suwa, this already suggest that H2 and H provide

good candidates of parameter spaces for the different types of bielliptic surfaces. They can

not be moduli spaces though, since two different points can correspond to isomorphic surfaces.

This will be worked out further by Tsuchihashi.

An important point showed by Suwa is that the different types of bielliptic surfaces are

topologically different (cf. [Suw69, Remark 3]). Indeed, by considering the first homology

groups and using results of S. Itaka [Iit69] on the fundamental group of these surfaces, it is

shown that the seven types of complex bielliptic surfaces are completely classified topolog-

ically. From this, Suwa concludes that the plurigenera of bielliptic surfaces are topological

invariants.

Remark 1.2. Nowadays, the invariance of plurigenera under smooth projective defor-

mations is known to be true by results of Siu [Siu98, Siu02] (see also [Tsu02]). Moreover,

already in 1970 Itaka [Iit70] proved the invariance of plurigenera for deformations of compact

complex surfaces.

From Suwa’s topological classification of complex bielliptic surfaces it follows that a com-

plex analytic family of bielliptic surfaces (over a connected base) can only contain bielliptic
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surfaces of the same type as fibers, since all the fibers of such a family are diffeomorphic.

Therefore, a moduli space for complex bielliptic surfaces has to split into a disjoint union of

seven moduli spaces, each one parameterizing one type of bielliptic surfaces.

H. Tsuchihashi: Compactifications of the Moduli Spaces of Hyperelliptic Sur-

faces

Building up on the work of Suwa and his explicit description of the seven types of com-

plex bielliptic surfaces, Tsuchihashi constructs coarse moduli spaces for each type of bielliptic

surfaces as product of modular curves.

Let us shortly recall the definition of modular curves. Consider the modular group

Γ := PSL2(Z) = SL2(Z)/{±I}

and the congruence subgroup

Γ0(N) :=

{(
a b

c d

)
| c ≡ 0 mod N

}/
{±I}.

Then Γ acts on the upper half plane H from the left by(
a b

c d

)
(τ) =

aτ + b

cτ + d
, τ ∈ H.

The quotient space Γ\H can then be identified with the coarse moduli space of complex el-

liptic curves M1,1. Moreover, we define the modular curve Y0(N) to be the quotient space

Γ0(N)\H corresponding to the congruence subgroup Γ0(N). Note that M1,1 and Y0(N) are

both Riemann surfaces (cf. [DS05, Chapter 2]).

Tsuchihashi’s result on the coarse moduli spaces of complex bielliptic surfaces is the

following.

Theorem 1.3 ([Tsu79], Proposition 2). Let M1,1 := Γ\H denote the coarse moduli space

of complex elliptic curves and Y0(N) := Γ0(N)\H the modular curve corresponding to the

congruence subgroup Γ0(N). Then, the coarse moduli spaces for complex bielliptic surfaces of

each type are given in Table 1.2.

In order to construct fine moduli spaces, Tsuchihashi rigidify the moduli problem by

considering complex bielliptic surfaces together with suitable base points satisfying certain

conditions (cf. [Tsu79, Proposition 3 and Theorem 2]). Moreover, a universal family is given

for each one of these fine moduli spaces.

Finally, the author consider natural compactifications of these fine moduli spaces and us-

ing the theory of torus embeddings (today known as toric varieties), he shows that the points



56 2. MODULI OF BIELLIPTIC SURFACES

Type Coarse moduli space

(a1) M (a1) := Y0(2)×M1,1

(a2) M (a2) := Y0(2)2

(b1) M (b1) := Y0(3)

(b2) M (b2) := Y0(3)

(c1) M (c1) := Y0(4)

(c2) M (c2) := Y0(4)

(d) M (d) := Y0(6)

Table 1.2. Coarse moduli spaces of complex bielliptic surfaces.

of the compactified moduli spaces correspond naturally to possibly degenerate bielliptic sur-

faces with base points.

1.1.2. Moduli Spaces of Bielliptic Surfaces in Positive Characteristic.

Moduli spaces of bielliptic surfaces in positive characteristic were studied by W. Seiler in

[Sei87a, Sei87b] as part of his study of global moduli spaces for elliptic surfaces. There,

however, surfaces in characteristic 2 and 3 are excluded and the moduli spaces he obtains are

all coarse moduli spaces.

W. Seiler: Global Moduli for Elliptic Surfaces with a Section

In [Sei87a] Seiler shows the existence of coarse moduli spaces for elliptic surfaces with

a section (cf. [Sei87a, Theorem 7]). In particular, he proves the existence of coarse moduli

spaces for bielliptic surfaces with a section of the Albanese fibration (which we have called

Jacobian bielliptic surfaces). Furthermore, the author shows (cf. [Sei87a, Lemma 9]) that

the corresponding moduli functor splits in a natural way into a disjoint union of subfunctors

parameterizing Jacobian bielliptic surfaces f : X → Alb(X) for which the canonical bundle

ωX has order n ∈ {2, 3, 4, 6} in the Picard group Pic(X), respectively. Thus, the coarse mod-

uli space of Jacobian bielliptic surfaces splits into four disjoint components. This generalizes

and agrees with Suwa’s work over the complex numbers.

W. Seiler: Global Moduli for Polarized Elliptic Surfaces
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In [Sei87b] the existence of coarse moduli spaces for (numerically) polarized elliptic sur-

faces not necessarily admitting a section is shown (cf. [Sei87b, Theorem 2.15]). In particular,

Seiler proves the existence of a Hilbert scheme for polarized bielliptic surfaces and shows that

it splits into connected components parameterizing bielliptic surfaces a each type, respectively

(cf. [Sei87b, Lemma 2.3]). Furthermore, he obtains the existence of coarse moduli spaces of

polarized and numerically polarized bielliptic surfaces.

1.2. Separation of Families. As we have seen, for all moduli spaces of bielliptic surfaces

consider by Suwa, Tsuchihashi and Seiler, there is a result about the splitting of the moduli

space into disjoint components.

Suwa’s work, for instance, shows that a family of bielliptic surfaces over a connected base

can only have bielliptic surfaces of the same type as fibers. Hence, it is possible to separate

families of bielliptic surfaces of different types. This result is what we refer to as separation

of families. The splitting of the moduli spaces in disjoint components is an important conse-

quence of the separation of families.

In the following sections we will prove that the separation of families also holds in charac-

teristic different from 2 and 3. This generalizes Suwa’s result for complex bielliptic surfaces.

Moreover, it also generalizes Seiler’s results, as we do not impose any extra condition in the

families of bielliptic surfaces we consider, i.e., our families not necessarily come with a (global)

section or a polarization.

The separation of families of bielliptic surfaces over the complex numbers relies on the

following two results, where X is a bielliptic surface over C.

(1) Invariance of the plurigenera. For every positive integer n the nth-plurigenus of X,

denoted by pn(X) := dimH0(X,ωX
⊗n), is invariant under (holomorphic) deforma-

tion (see, for example, [Siu98], [Siu02] and [Tsu02]). Since bielliptic surfaces have

torsion canonical sheaf, this is equivalent to the invariance of the order of ωX in

Pic(X) under deformation.

(2) Invariance of the torsion of the first homology group: The first homology group

H1(X,Z) is invariant under deformation, as it is a topological invariant, and so is its

torsion subgroup H1(X,Z)tors. Since X have geometric genus pg(X) = 0, the first

homology group of X is isomorphic to the Néron-Severi group NS(X) by Lemma 2.2

of Chapter 1. Thus, the invariance of the torsion of H1(X,Z)tors is equivalent to the

invariance of the torsion of the Néron-Severi group NSτ (X) := NS(X)tors.
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The first result allow us to separate bielliptic surfaces into four classes according to the

order of the canonical sheaf ωX in Pic(X) (cf. Table 1.2 in Chapter 1). However, it could still

be the case that two surfaces, whose canonical sheaves have the same order, deform into each

other. For instance a surface of type (a1) could, in principle, deform into a surface of type

(a2). The second result excludes such possibility, as surface of different types whose canoni-

cal sheaf have the same order have different first homology groups (see Table 2.1 in Chapter 1).

The previous discussion suggests the following strategy to generalize the result on the

separation of families to bielliptic surfaces over field of characteristic p /∈ {2, 3}. First, we

will prove that for a bielliptic surface X over an algebraically closed field k of characteristic

different from 2 and 3, the following two facts hold:

(a) The order of the canonical sheaf ωX in Pic(X) is invariant under deformation.

(b) The torsion of the Néron-Severi group NSτ (X) is invariance under deformation.

This is Proposition 1.11. Second, we will calculate the Néron-Severi group for bielliptic

surfaces in characteristic different from 2 and 3. This is done in Proposition 1.14.

1.3. Families of Bielliptic Surfaces in Characteristic p /∈ {2, 3}. When dealing with

moduli problems, it is usual to consider proper and flat families. The following proposition

shows that in our case it is enough to consider families where all fibers are smooth.

Proposition 1.4. Let X be a proper and normal surface over an algebraically closed field

k with at most rational double points as singularities. Consider the minimal resolution

π : X̃ → X

of X. If X̃ is a bielliptic surface over k, then π is an isomorphism and X is smooth.

Proof. This is a consequence of the fact that on a bielliptic surface there are no (−2)-

curves, i.e., irreducible rational curves C with C2 = −2. (cf. Proposition 1.11 in Chapter

1).

�

Remark 1.5. Note that Proposition 1.4 is also true for quasi-bielliptic surfaces.

Definition 1.6. By a family of bielliptic surfaces over a (Noetherian) base scheme S we

will mean an algebraic space X together with a proper and smooth morphism of algebraic

spaces π : X → S, whose geometric fibers are bielliptic surfaces.

We will need some results on the relative Picard functor of a family of bielliptic surfaces.

Since one of this results holds for families of bielliptic surfaces over an arbitrary base scheme

S, we state them now, before we start considering families in characteristic different from 2

and 3.
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Proposition 1.7. Let S be a scheme and π : X → S a family of bielliptic surfaces over

S. Then,

(a) The relative Picard functor PicX/S is representable by an algebraic space PicX/S
over S, which is separated and locally of finite type.

(b) Moreover, if S is a scheme over Spec Z[1
6 ], then PicX/S is smooth over S.

Proof. The geometric fibers of the proper and smooth morphism π : X → S are by

definition bielliptic surfaces and hence reduced and irreducible. Thus, π is cohomologically

flat in dimension zero (cf. [Gro63, Proposition 7.8.6]). Then, the representability of the

relative Picard functor by an algebraic space PicX/S follows from [BLR90, §8.3, Theorem 1].

Moreover, PicX/S is separable by [BLR90, §8.4, Theorem 3] and locally of finite presentation

by [Sta19, Tag 0DNI]. In particular, PicX/S is of finite type over S. This proves (a).

Now we prove (b). For every point s ∈ S, we have H2(Xs,OXs) = 0, since the geometric

fibers of π : X → S are bielliptic surfaces over fields of characteristic different from 2 and

3. Then, PicX/S is formally smooth over S by [BLR90, §8.4, Proposition 2]. Moreover,

since PicX/S is of finite presentation over S, it is smooth over S by the Infinitesimal Lifting

Criterion [Sta19, Tag 04AM]. �

From now on, we will consider only bielliptic surfaces over fields of characteristic different

from 2 and 3.

We are ready to state the main result of this section. By a bielliptic surface of type (i)

we will mean a bielliptic surface of one of the types in the Bagnera-DeFranchis list.

Theorem 1.8. Let π : X → S be a family of bielliptic surfaces over a connected Noetherian

base scheme S over Z[1
6 ]. If a geometric fiber of π is a bielliptic surface of type (i), then every

geometric fiber of π is a bielliptic surface of the same type (i).

In order to prove this theorem, we will first introduce some notation and prove some

partial result, which will then be used in the proof of the theorem.

Notation: Consider a smooth and proper family of bielliptic surfaces π : X → S = SpecR,

where R is a complete discrete valuation ring with residue field k of characteristic p /∈ {2, 3}
and fraction field K. Let Xk = X ×R k and XK = X ×R K denote the special fiber and the

generic fiber of π, respectively. Fix an algebraic closure k of k and let Xk = X0 ×k k denotes

the geometric special fiber. Similarly, by fixing an algebraic closure K of K, we denote the

geometric generic fiber by XK = XK ×K K. We thus have the following diagram:

https://stacks.math.columbia.edu/tag/0DNI
https://stacks.math.columbia.edu/tag/04AM
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Xk

��

// Xk

��

// X

π

��

XK
oo

��

XK
oo

��

Spec k // Spec k // S = SpecR SpecKoo SpecKoo

Lemma 1.9. With the notation above we have:

(a) The identity component Pic0
X/S of the relative Picard scheme PicX/S is an elliptic

curve over S.

(b) The torsion Néron-Severi scheme NSτX/S represents the quotient fpqc-sheaf

PicτX/S/Pic0
X/S(fpqc)

and is a finite and étale S-group scheme.

Proof. We first show that the family π : X → S is projective and that X is in fact a

scheme. Indeed, the geometric special fiber Xk is projective. By [Gro61, Corollaire 6.6.5]

projectiveness descends along field extensions. Therefore, the special fiber Xk is projective as

well. In particular, Xk admits an ample line bundle L. Now, from Proposition 1.7, we know

that PicX/S is smooth. Moreover, since S = Spec R with R a complete discrete valuation

ring, the reduction map

PicX/S(R)→ PicXk/k(k)

is surjective by Hensel’s Lemma (cf. [Gro67, Théorème 18.5.17 ]). Thus, the line bundle L

on Xk extends to a line bundle L on X . Since ampleness is an open condition by [Laz04,

Theorem 1.2.17], we see that the line bundle L on X is relatively ample. Hence, π : X → S is

projective. Finally, since S is a scheme and π : X → S is projective (actually, quasi-projective

is enough), X is a scheme by [Knu71, II.7.6].

Note finally that, since π : X → S is projective and flat with integral geometric fibers, by

[Kle05, Theorem 9.4.8] PicX/S is in fact a scheme over S.

We now prove the claims of the lemma.

(a) For every s ∈ S let k(s) denote an algebraic closure of the residue field k(s) of s ∈ S.

The geometric fiber Xs of π over s is a bielliptic surface over a field of characteristic different

from 2 and 3. Thus, the Picard scheme Pic0
Xs/k(s)

is an elliptic curve, since it is reduced and

of dimension 1. By faithfully flat descent, it follows that for every s ∈ S all the Pic0
Xs/k(s)

are complete, smooth and of dimension one, since

Pic0
Xs/k(s)

∼= Pic0
Xs/k(s) ×k(s) k(s).
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Then, by [Kle05, Theorem 9.5.20], Pic0
X/S exist and is an open and closed subgroup scheme

of PicX/S , which is smooth and proper over S. Since the geometric fibers of Pic0
X/S are given

by the Picard schemes Pic0
Xs/k(s)

and these are all elliptic curves, Pic0
X/S is an elliptic curve

over S.

(b) The following proof is taken from [Ant11, Section 2]. We reproduce it here for the

reader’s convenience.

Since π : X → S is projective and smooth with irreducible geometric fibers, by [Kle05,

Theorem 9.6.16] and [Kle05, Exercise 9.6.18] PicτX/S is an open and closed group subscheme

of PicX/S , projective (in particular proper) over S. Since PicX/S is smooth over S, so is

PicτX/S . Now, the existence of NSτX/S as a scheme over S follows from [Gab63, Théorème

7.1].

According to [Ber63, Proposition 9.2] NSτX/S is separated, flat and of finite type over S,

and the canonical projection p : PicτX/S → NSτX/S is faithfully flat.

Now, since the canonical projection p : PicτX/S → NSτX/S is surjective, PicτX/S is proper

over S and NSτX/S is separated and of finite type over S. Then NSτX/S is proper over S by

[GW10, Proposition 12.59].

For every s ∈ S the fiber of NSτX/S over s is given by NSτXs/k(s), which is the étale finite

k(s)-group scheme of connected components π0(PicτXs/k(s)) (see [DG80, Chapter II, 5, no

1]). Since NSτX/S is proper and quasi-finite (as the fibers NSτXs/k(s) are finite k(s)-group

schemes), it is finite. Since NSτX/S is flat over S with smooth fibers, it is smooth over S.

Moreover, NSτX/S is even étale over S by [Sta19, Tag 02GM], since its fibers are étale.

�

Remark 1.10. The claim of Lemma 1.9 (a) still holds under the more general assumption

that π : X → S is a family of bielliptic surfaces over a reduced Noetherian scheme S. However,

to proof requires one to work with algebraic spaces rather than schemes. We will prove the

claim in this more general setting in the next section (see Proposition 1.17) in order to define

the Albanese scheme of the family π : X → S.

Proposition 1.11. With the notation above we have:

(a) ord(ωXK ) = ord(ωXk), that is, the order of the canonical bundle is invariant under defor-

mation.

(b) NSτ (XK) ∼= NSτ (Xk), that is, the torsion of the Néron-Severi group is invariant under

deformation.

Proof. (a) First, recall that by Corollary 1.15 the canonical sheaf ωX of a bielliptic

surface X is algebraically trivial, that is, ωX ∈ Pic0(X). Moreover, note that the order of ωX

always divide 12, hence ωX is always a 12-torsion point of Pic0(X), that is, ωX ∈ Pic0(X)[12].

https://stacks.math.columbia.edu/tag/02GM
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From Lemma 1.9, we know that Pic0
X/S is an elliptic curve over S. Since 12 is invertible

on S, it follows that the kernel Pic0
X/S [12] of the multiplication by 12 map on Pic0

X/S is

a finite and étale S-group scheme (see, for example, [KM85, Theorem 2.3.1]). Then, by

Hensel’s lemma, the reduction map

Pic0(XK)[12] ∼= Pic0
X/S [12](K)→ Pic0

X/S [12](k) ∼= Pic0(Xk)[12]

sending ωXK to ωXk is bijective.

(b) Similar as in (a), since NSτX/S is finite and étale over S by the previous lemma, the

reduction map

NSτ (XK) ∼= NSτX/S(K)→ NSτX/S(k) ∼= NSτ (Xk)

is bijective.

�

Remarks 1.12. (1) Since the Betti numbers are constant in smooth families, it fol-

lows from part (b) of the previous proposition that the Néron-Severi group of biel-

liptic surfaces in characteristic different from 2 and 3 is constant under deformation.

(2) Part (b) of Proposition 1.11 can be related to the following result by D. Maulik and

B. Poonen.

Proposition 1.13 (Proposition 3.6, [MP12]). Let S be a Noetherian scheme.

Let s, t ∈ S be such that s is a specialization of t. Let p = char(k(s)). Let π : X → S

be a smooth proper morphism. Then it is possible to choose a homomorphism

spt,s : NS(Xt)→ NS(Xs)

with the following properties:

(a) If p = 0, then spt,s is injective and its cokernel is torsion-free.

(b) If p > 0, then (a) holds after tensoring with Z[1/p].

If π : X → S is a family of bielliptic surfaces, then the cokernel of the special-

ization map spt,s vanishes. Indeed, in their proof, Maulik and Poonen show the

torsion-freeness in (a) and (b) by using the following fact (cf [SGA71, Expose X,

Appendice 7.13.10]): for any prime l 6= p there is a commutative diagram

NS(Xt)⊗ Zl

��

� � // H2
ét(Xt,Zl(1))

NS(Xs)⊗ Zl �
� // H2

ét(Xs,Zl(1)).
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From this diagram one obtains the following inclusion

coker(spt,s)⊗ Zl ⊆ coker(NS(Xt)⊗ Zl → H2
ét(Xt,Zl(1))) = TlBr(Xt),

where TlBr(Xt) denotes the Tate module of the Brauer group of Xt. The last equality

can be shown using the Kummer sequence as in [Mil80, V.3.29(d)].

Now, if Xt is a bielliptic surface, then ρ(Xt) = b2(Xt). As explained in the proof

of Theorem 2.5 in Chapter 1, this implies TlBr(Xt) = 0. Hence, spt,s is bijective, i.e.,

NS(Xt) ∼= NS(Xs).

So far we have prove the invariance under deformation of the order of the canonical sheaf

and of the Néron-Severi group. We still have to calculate the Néron-Severi group of bielliptic

surfaces in characteristic different from 2 and 3. In order to do so, we will use the fact that,

according to Theorem 5.12 in Chapter 1, bielliptic surfaces lift to characteristic zero.

Proposition 1.14. The torsion of the Néron-Severi group of a bielliptic surface X in

characteristic p ≥ 5 coincide with the torsion of the Néron-Severi group of a bielliptic surface

of the same type in characteristic zero.

Proof. Let X be a bielliptic surface over a field of characteristic p ≥ 5 and denote by

B = Alb(X) the Albanese of X. We consider two cases:

Case 1: X is of type (a1), (b1), (c1) or (d). In this case X is of the form (E × F )/G with

G finite and cyclic. Then, by [Lan79, Proposition 4.1], there is a split exact sequence

0→ Pic0(B)→ Picτ (X)→ FG → 0.

After choosing a base point on B, we have

Pic0(B) ∼= B = Alb(X) ∼= Pic0(X),

since pg(X) = 0. Thus, NSτ (X) = Picτ/Pic0(X) ∼= FG. This group can be calculate directly

(cf. [Băd01, pp. 159-160]) and coincide with the results in characteristic zero.

Case 2: X is of type (a2), (b2) or (c2). Then f : X → Alb(X) has no section. By Theorem

5.12 in Chapter 1, we can lift X to characteristic zero. Since X has no section, the lift cannot

have a section. This together with the invariance of the order of the canonical sheaf under

deformation implies that X lifts to a bielliptic surfaces of the same type. Since the torsion

of the Néron-Severi is invariant under deformation and it is known in characteristic zero, we

get the result. �

Corollary 1.15. Let X be a bielliptic surface over a field of characteristic p /∈ {2, 3}.
Then the Néron-Severi group NS(X) of X is given by the following table.
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Type NS(X)

(a1) Z2 ⊕ (Z/2Z)2

(a2) Z2 ⊕ Z/2Z
(b1) Z2 ⊕ Z/3Z
(b2) Z2

(c1) Z2 ⊕ Z/2Z
(c2) Z2

(d) Z2

Table 1.3. Néron-Severi group of X.

We are now ready to prove Theorem 1.8.

Proof of theorem 1.8. Since S is a connected Noetherian scheme, it is sufficient to

show that for two points s0, s1 ∈ S, such that s1 specializes to s0, the two geometric fibers Xs0

and Xs1 are bielliptic surfaces of the same type. Indeed, since S is connected, we may assume

that S is irreducible and we can then compare the geometric fibers over any two points with

the geometric fiber over the generic point of S.

Since S is Noetherian, by [GW10, Proposition 15.7], we can always find a morphism

SpecR→ S from a discrete valuation ring R to S such that the generic point η of SpecR maps

to s1 ∈ S and the special point maps to s0. Thus, after making a base change Spec R → S,

it is sufficient to consider the case S = SpecR, with R a discrete valuation ring.

Moreover, we may assume that R is complete. Indeed, since R is a discrete valuation

ring, the completion R̂ of R is also a discrete valuation ring. Then, the base change X
R̂

of X
to the completion R̂ preserves the (geometric) special fiber and the geometric generic fiber

of π : X → Spec R in the following sense: let k denote the residue field of R, K its field of

fractions and K an algebraic closure of K. Since the residue fields of R and R̂ are isomorphic,

the special fiber of X
R̂
→ R̂ is isomorphic to the special fiber Xk of X → R. On the other

hand, after choosing an algebraic closure K̂ of the fraction field K̂ of R̂ containing K, the

geometric generic fiber of X
R̂

coincide we the pullback of the geometric generic fiber XK along

the field extension K → K̂, that is, there is an isomorphism

X
R̂
×
R̂
K̂ ∼= (XK)×K K̂.

But both, the order of the canonical bundle and the Néron-Severi group of a smooth proper

variety are preserved by algebraically closed field extensions, by [Sta19, Tag 0CC5] and

[MP12, Proposition 3.1], respectively. Thus, after a base change to the completion of R, we

may assume that R is complete.

In this manner, we can reduce to the case where π : X → S = SpecR is a family of bielliptic

surfaces over a complete discrete valuation ring R. Then, the result follows from Proposition

https://stacks.math.columbia.edu/tag/0CC5
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1.11 and Corollary 1.15. Indeed, according to Proposition 1.11, the order of the canonical

bundle and the Néron-Severi group are invariant. Moreover, the order of the canonical bundle

of bielliptic surfaces is given in Table 1.2 in Chapter 1 and Corollary 1.15 gives the values of

the Néron-Severi groups. Since the values of these invariants taken together are different for

different types of bielliptic surfaces, the desired result follows.

�

Corollary 1.16. Let S be a Noetherian scheme over Z[1
6 ] and π : X → S be a family of

bielliptic surfaces over S. Let S(i) ⊆ S denote the set of point of S such that Xs is a bielliptic

surface of type (i), that is,

S(i) := {s ∈ S | Xs is a bielliptic of type (i)} ⊆ S.

Then, S(i) is a finite union of connected components of S and is therefore a closed subset of

S. Moreover, S splits into a disjoint union of schemes S(i) for every type (i), that is,

S =
⊔
(i)

S(i).

Proof. By Theorem 1.8, the fibers over a connected component of S are all bielliptic

surfaces of the same type. Thus, S(i) is a union of connected components of S. Since S

is Noetherian, it has finitely many connected components. Thus, S(i) is a finite union of

connected components and thus closed. By endowing S(i) with the reduced induced scheme

structure we obtain a reduced closed subscheme of S. From Theorem 1.8 it also follows that

two different connected component having fibers of different type must be disjoint. Thus, S

is the disjoint union of the closed subschemes S(i). �

1.4. The Albanese Scheme and the Canonical Cover of a Family.

1.4.1. The Albanese of a Family and the Albanese Morphism.

For a bielliptic surface X over an algebraically closed field k we have seen that one of its

elliptic fibrations is given by the Albanese map

f : X → Alb(X).

Recall that the Albanese variety Alb(X) of X coincides with the dual of the Picard variety

(Pic0
X/k)red. Moreover, the Albanese map in this case is projective (as a morphism between

projective schemes over a field) and smooth by Theorem 1.5 of Chapter 1.

In this section we want to define in an analogous way for a family of bielliptic surfaces

the Albanese scheme of the family together with the Albanese morphism.

Let S be a Noetherian scheme over SpecZ[1
6 ] and consider a family π : X → S of bielliptic

surfaces over S. We will define the Albanese scheme AlbX/S as the dual Abelian scheme of
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the Abelian scheme Pic0
X/S . Thus, the first step for defining the Albanese scheme is to show

that Pic0
X/S is indeed an Abelian scheme over S.

If R is a discrete valuation ring and S = SpecR, then Pic0
X/S is an elliptic curve over S by

Lemma 1.9). In the proof of that lemma we used the fact that the family π : X → S = SpecR

is projective to prove the existence of the relative Picard scheme PicX/S . For an arbitrary

(Noetherian) scheme S however the family π : X → S is only proper. Nevertheless, one

can still prove that the relative Picard functor PicX/S is representable by an algebraic space

PicX/S . This, however, turns out to be sufficient to prove that the identity component Pic0
X/S

of PicX/S is an Abelian scheme. The only technical condition one has to impose on the base

scheme S is that it has to be reduced.

Proposition 1.17. Let S be a Noetherian scheme over SpecZ[1
6 ] and π : X → S a family

of bielliptic surfaces over S. If S is reduced, then the identity component Pic0
X/S of PicX/S

is an Abelian S-scheme.

Proof. To prove the claim we used [Kle05, Proposition 9.5.20]. A careful study of

Kleiman’s proof of [Kle05, Proposition 9.5.20] reveals that the same result also holds in the

category of algebraic spaces. Thus, we may argue as in the proof of part (a) of Lemma 1.9,

to show that Pic0
X/S is a smooth and proper group algebraic space over S. Note that the

reduceness hypothesis on S is used to prove the smoothness. Furthermore, for every geometric

point s ∈ S the geometric fiber Pic0
Xs/k(s)

of Pic0
X/S → S is an elliptic curves (remember: Xs

is a bielliptic surface over a field k(s) of characteristic different from 2 and 3). In particular,

Pic0
Xs/k(s)

is connected. Thus, Pic0
X/S is an Abelian algebraic space S. Finally, by a result

of Raynaud (cf. [FC90b, Theorem 1.9]), any Abelian algebraic space over a scheme is an

Abelian scheme. Hence, Pic0
X/S is an Abelian scheme over S. �

Definition 1.18. Let S be a reduced Noetherian scheme over Spec Z[1
6 ] and π : X → S

a family of bielliptic surfaces over S. The Albanese scheme AlbX/S of the family π : X → S

is the dual Abelian scheme of Pic0
X/S , i.e.,

AlbX/S := (Pic0
X/S)∨ := Pic0

(Pic0X/S)/S
.

Since PicX/S is representable by an algebraic space, Yoneda’s lemma yields the existence

of a universal sheaf P on X × PicX/S called the Poincaré sheaf (see for example [Kle05,

Exercise 9.4.3]).

Assume now that the family π : X → S admits a section σ : S → X . Similarly as in

[Ant11, Proposition 2.6], using the Poincaré sheaf and the section σ : S → X we can construct

an S-morphism

f : X → AlbX/S

which send the section σ to the identity section of AlbX/S and which induces the Albanese

fibration on each surface in the family.
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Definition 1.19. Let S be a reduced Noetherian scheme over Spec Z[1
6 ] and π : X → S

a family of bielliptic surfaces over S together with a section σ : S → X . Then, we call

f : X → AlbX/S

the Albanese morphism of the family π : X → S with respect to σ.

As it turns out, the Albanese morphism have similar nice properties to the Albanese map

of a bielliptic surface, as shown by the next result.

Lemma 1.20. The Albanese morphism f : X → AlbX/S is proper and smooth.

Proof. Since both X and AlbX/S are proper over S the Albanese morphism f is proper

by [Sta19, Tag 04NX]. Now note that f is a morphism of relative dimension 1. Thus, the

fibers of f have all dimension 1. Moreover, both X and AlbX/S are smooth over S and

therefore regular over S. Then f is flat by miracle flatness [Mat86, Theorem 23.1]. Since f

is flat and have smooth geometric fibers, it is smooth. �

1.4.2. Two Results of Seiler: The Second Fibration and Multiple Fibers of a Family.

The Albanese scheme AlbX/S and the Albanese morphism f : X → AlbX/S of a family

π : X → S of bielliptic surfaces are the generalizations to families of the Albanese variety

and the Albanese fibration of a bielliptic surface. Recall that a bielliptic surface always has a

second fibration transversal to the Albanese fibration. It turns out that, for a polarized family

of bielliptic surfaces, i.e., a family π : X → S together with a relatively ample line bundle L
on X , one can also globalize the second fibration of the bielliptic surfaces in the family to

obtain a second fibration of the family. Moreover, the multiple fibers of the second fibration

of the bielliptic surfaces of the family can also be put together in a flat family. Hence, one

obtains multiple fibers of the second fibration of the family.

The following results are due to W. Seiler [Sei87b].

Let us start with the globalization of the second fibration of a family. For a bielliptic

surface X over an algebraically closed field k, the construction of the second elliptic fibration

boils down to the following fact (see the proof of [BM77, Theorem 3]): taking the fiber F0

of the Albanese fibration f : X → Alb(X) over the identity element of Alb(X) and an ample

divisor L on X (recall that X is projective), one can construct an idecomposable curve of

canonical type C, which is transversal to the Albanese fibration, i.e., such that C2 = 0 and

(C · F0) > 0. Then, by [Mum69, §2, Step (II) and Step (III)] there is an integer n > 0 such

that nC yields the existence of the second elliptic fibration g : X → P1.

Consider now a family π : X → S of bielliptic surfaces over a Noetherian scheme S together

with a polarization L on X . Then, Seiler’s argues as follows to obtain the second elliptic

https://stacks.math.columbia.edu/tag/04NX
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fibration of the family (cf. see proof of [Sei87b, Lemma 1.6]): using the polarization L
and the fiber F0 := X ×AlbX/S S of the Albanese morphism over the zero section, one can

construct a line bundle D := L⊗a ⊗ F⊗b0 on X with self-intersection zero on every geometric

fiber of π : X → S. Then, for every geometric fiber of π, some multiple of the restriction of D
to that fibers yields the second fibration on that geometric fiber. Since S is Noetherian, it is

possible to choose a global n such that the restrictions of D⊗n to the geometric fibers induce

the second elliptic fibration on every bielliptic surface of the family.

Proposition 1.21 ([Sei87b], Lemma 1.6). Let S be a Noetherian scheme over SpecZ[1
6 ]

and let π : X → S be a family of bielliptic surfaces over S together with a polarization L on

X . Then there exist a smooth family γ : C → S and an S-morphism g : X → C that induces

the second elliptic fibration on each bielliptic surface in the family.

Using the fact that the normal sheaf of a multiple fiber of the second elliptic fibration

of a bielliptic surface in characteristic different from 2 and 3 is nontrivial, since the second

fibration has no wild fibers, Seiler further shows the following result.

Proposition 1.22 ([Sei87b], Lemma 1.8). Let S be an irreducible Noetherian scheme

over Spec Z[1
6 ] and let π : X → S be a family of bielliptic surfaces over S together with a

polarization L on X . Let γ : C → S and g : X → C be as above. Suppose that for a geometric

point s ∈ S, the bielliptic surface Xs has a multiple fiber mGs of the second elliptic fibration

gs : Xs → P1
k(s)

. Then, there exist a unique flat family G → S of curves, a closed S-immersion

G → X , and a section σ : S → C, such that Gs is the fiber of G → S over s ∈ S, and for every

t ∈ S, Xt has a multiple fiber mGt with base point σ(t).

1.4.3. The Canonical Cover of a Family.

Let S be a Noetherian connected scheme over Spec Z[1
6 ] and consider a family π : X → S

of bielliptic surfaces over S. Since π is a smooth morphism, the relative dualizing sheaf

ωX/S exist and it is a flat invertible sheaf equal to the determinant det Ω1
X/S of the sheaf of

differentials Ω1
X/S of X over S (see, for example, [Kle80, Proposition (22)]). Moreover, since

the geometric fibers are bielliptic surfaces, we have the following

Proposition 1.23. Let π : X → S be a family of bielliptic surfaces and ωX/S its relative

canonical sheaf. Then,

ω⊗nX/S
∼= OX ⊗ π∗N ,

for an invertible sheaf N on S, and an integer n ∈ {2, 3, 4, 6}, depending on the type of the

bielliptic surfaces in the family. In particular, the element ξ ∈ PicX/S(S) induced by ω⊗nX/S is

trivial.
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Proof. We follow the proof of [Vak, Proposition 28.1.11] and use the general version of

Cohomology and Base Change Theorem for algebraic spaces [Sta19, Tag 08JR].

Recall that, according to Theorem 1.8, the geometric fibers of the family π : X → S are

all bielliptic surfaces of the same type and let n denotes the order of the canonical sheaf ωXs
of the bielliptic surface Xs for every geometric point s ∈ S. Thus, for every geometric point

s ∈ S, one has

ω⊗nXs
∼= OXs . (1.1)

By [Kle05, Exercise 9.3.11] it follows that π∗OX ∼= OS holds universally, since π is proper and

flat with reduced and connected geometric fibers. Hence, for every invertible sheaf M on S,

the natural morphismM→ π∗π
∗M is an isomorphism. Set F := ω⊗nX/S . By the Cohomology

and Base Change theorem [Sta19, Tag 08JR], π∗F is locally free of rank 1 and for every

s ∈ S the natural map

π∗F ⊗OS k(s)→ H0(Xs,Fs)

is an isomorphism. Setting N := π∗F , there is a natural map of invertible sheaves

π∗N = π∗π∗F → F . (1.2)

To prove that this map is an isomorphism, it is enough to show that it is surjective (cf.

[Har77, Exercise II.7.1]). The last claim can then be proven by showing that the map in

(1.2) is surjective on the geometric fibers of π. But this is clearly the case by (1.1). Indeed,

if the cokernel of the map in (1.2) is not 0, then it is not 0 above some geometric point of S,

but this contradicts (1.1).

Finally, recall that an element ξ ∈ PicX/S(S) is trivial if it is induced by the pullback to

X of a line bundle on S (see, for example, [BLR90, §8.1]).

�

We want to construct a finite étale cover of X which will play the role of the canonical

cover of the family π : X → S. In order to do so, we will use the proposition just proved and

we need some further results. The first one is due to Raynaud [Ray70, Proposition (6.2.1)]

and can be found in Milne’s Étale Cohomology book stated as follows.

Theorem 1.24 ([Mil80], Proposition III, 4.16). Let π : X → S be a proper, flat and such

that π∗OX ∼= OS. For any finite flat commutative group scheme G over S

R1 π∗(GX )
∼−→ HomS(GD,PicX/S),

where PicX/S is the relative Picard functor of X over S, GX = G×S X and GD is the Cartier

dual of G.

Recall that in the present situation, the relative Picard functor PicX/S is representable

by an algebraic space PicX/S over S (cf. Lemma 1.17 (a)). From the last theorem by taking

https://stacks.math.columbia.edu/tag/08JR
https://stacks.math.columbia.edu/tag/08JR
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global sections, we get

H0(S,R1 π∗(GX )) = R1 π∗(GX )(S) = HomS(GD,PicX/S)(S) = HomS(GD,PicX/S).

Moreover, if π : X → S has a section σ : S → X , we have the following proposition.

Proposition 1.25. Let π : X → S be a proper, flat morphism together with a section

σ : S → X and such that π∗OX ∼= OS holds universally. Let G be a finite, flat commutative

group scheme over S. Then,

H0(S,R1 π∗(GX )) ∼= H1(X,GX )/H1(S,G).

Proof. Consider the Leray spectral sequence

Ep,q2 := Hp(S,Rqπ∗(GX ))⇒ Hp+q(X , GX ).

We can form its exact sequence of low-degree terms

0→ H1(S, π∗(GX ))→ H1(X,GX )→ H0(S,R1π∗(GX ))→ H2(S, π∗(GX ))→ H2(X , GX ).

Now the section σ : S → X of π induces a left inverse of the map

H2(S, π∗(GX ))→ H2(X , GX )

induced by π. Thus, that map is injective. From the exactness of the sequence of low-degree

terms it follows that the map

H1(X , GX )→ H0(S,R1π∗(GX ))

is surjective. Hence,

H0(S,R1 π∗(GX )) ∼= H1(X , GX )/H1(S, π∗GX ).

Finally, note that π∗GX ∼= π∗π
∗G ∼= G, since π∗OX ∼= OS holds universally. �

Recall that the group H1(X , GX ) classifies isomorphism classes of GX -torsors over X . It

turns out that the quotient group

H1(X , GX )/H1(S,G)

can be interpreted as the group of isomorphism classes of pointed GX -torsor over X in the

following sense. Let

H1
•(X , GX ) ⊆ H1(X , GX )

denotes the subgroup of H1(X , GX ) of isomorphism classes of GX -torsors Y → X over X
together with an S-valued point y ∈ Yσ(S), where Yσ = Y ×S X is the pullback of Y along

the section σ : S → X . Then, by [Ant11, Lemma 3.3], there is an isomorphism

H1
•(X , GX ) ∼= H1(X , GX )/H1(S,G).

Hence, we have proved the following (cf. [Ant11, Proposition 3.2])):
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Proposition 1.26. Let π : X → S be a proper, flat morphism together with a section

σ : S → X and such that π∗OX ∼= OS holds universally. Let G be a finite, flat commutative

group scheme over S. Then, there is an isomorphism

H1
•(X , GX )

∼−→ HomS(GD,PicX/S).

We are interested in the case when the S-group scheme G is the group scheme of n-th

roots of the unity over S, i.e., G = µn,S for an integer n ∈ {2, 3, 4, 6}. Recall that the Cartier

dual of G = µn,S is the constant group scheme (Z/nZ)S . Then Proposition 1.26 yields an

isomorphism

H1
•(X , µn,X )

∼−→ HomS((Z/nZ)S ,PicX/S).

Using Proposition 1.23 and the relative canonical sheaf ωX/S we can now define a homo-

morphism

φ : (Z/nZ)S → PicX/S

as follows: for every S-scheme T , set

φ(T ) : (Z/nZ)S(T )→ PicX/S(T ), 1 7→ ωXT /T .

By Proposition 1.26, the homomorphism φ ∈ HomS((Z/nZ)S ,PicX/S) defined by ωX/S de-

termines (uniquely, up to isomorphism) a µn-torsor

τ : X̃ → X .

together with a section S → X̃σ := X̃ ×X S. Now, if n ∈ {2, 3, 4, 6}, then n is invertible on

S and µn,S is a finite étale S-group scheme. Therefore, µn,X is also a finite étale S-group

scheme and the map τ : X̃ → X is finite and étale (cf. [Mil80, Proposition III 4.2]).

On the other hand, since the construction above is functorial, the restriction of τ to the

geometric fibers coincide with the cyclic canonical cover of Xs defined by ωXs (see Definition

1.21 in Chapter 1) for every geometric point s ∈ S. In other words: for every geometric point

s ∈ S, the µn-torsor

τs : X̃s → Xs
is the canonical Abelian cover of the bielliptic surface Xs. In particular, X̃s is an Abelian

surface.

Finally, we are ready to defined the canonical cover of a family of bielliptic surfaces with

a section:

Definition 1.27. Let S be a Noetherian connected scheme over SpecZ[1
6 ] and π : X → S

a family of bielliptic surfaces together with a section σ : S → X of π, such that ωX/S has order

n ∈ {2, 3, 4, 6} in PicX/S(S). By the the canonical cover of the family π : X → S we mean
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the finite and étale µn-torsor τ : X̃ → X obtained from the relative canonical sheaf ωX/S , as

constructed above.

Note that the composition π ◦ τ : X̃ → X → S is smooth and proper (since τ is étale and

finite) and that its geometric fibers are Abelian surfaces, since they are the canonical covers

of the bielliptic surfaces in the family. However, X̃/S need not be an Abelian scheme. For

that a section is needed and in fact that condition is sufficient, as the following deformation

result shows.

Theorem 1.28 ([MFK94], Theorem 6.14). Let S be a connected, locally Noetherian

scheme. Let π : X → S be a smooth projective morphism, and let ε : S → X be a section of

π. Assume that for one geometric point s ∈ S, the fiber Xs of π is an Abelian variety with

identity ε(s). Then X is an Abelian scheme over S with identity ε.

Remark 1.29. The projectivity hypothesis in the above theorem is needed for the ex-

istence of the Hilbert and Hom schemes used in the proof of the theorem. Working with

algebraic spaces one can relax the projectivity hypothesis to properness, since then those

functors are representable without the need of the hypothesis of projectivity (cf. [Sta19, Tag

0D01] and [Sta19, Tag 0D1C]). Thus, the above theorem is true in the category of algebraic

spaces if we consider smooth and proper morphisms instead of smooth projective ones. More-

over, Raynaud has proved that any Abelian algebraic space over a scheme is automatically

an Abelian scheme (cf. [FC90b, Theorem 1.9]).

Corollary 1.30. Let S be a Noetherian connected scheme over SpecZ[1
6 ] and π : X → S

a family of bielliptic surfaces. Then, étale locally, the family π : X → S admits a canonical

cover which is an Abelian scheme. More precisely, there exist an affine scheme S′ and a

surjective étale morphism g : S′ → S of S such that the base change τ ′ : X̃ ′ → X ′ of the

canonical cover X̃ of X along g is an Abelian scheme.

Proof. Since π : X → S is surjective and smooth, by [Gro67, Corollaire 17.16.3 (ii)]

there exist an affine scheme S′ and a surjective étale morphism g : S′ → S of S such that the

base change π′ : X ′ → S′ of X along g has a section. Thus, after an étale base change, we may

assume thatS is affine and that π : X → S has a section σ : S → X . Let τ : X̃ → X denote the

canonical cover of π : X → S with respect to σ. Then, the composition π ◦ τ : X̃ → X → S is

surjective and smooth. Hence, it admits a section étale locally, again by [Gro67, Corollaire

17.16.3 (ii)]. Then, the result follows from Theorem 1.28 and Remark 1.29.

�

1.5. The Brauer Group of Bielliptic Surfaces in Characteristic p /∈ {2, 3}.

In what follows we calculate the Brauer group of bielliptic surfaces over fields of charac-

teristic different from 2 and 3 as an application of our knowledge of the Néron-Severi group

https://stacks.math.columbia.edu/tag/0D01
https://stacks.math.columbia.edu/tag/0D01
https://stacks.math.columbia.edu/tag/0D1C
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of these surfaces (cf. Corollary 1.15). As it turns out, the Brauer group of such surfaces co-

incide with the torsion part of the Néron-Severi group. For a discussion of the Brauer group

of complex bielliptic surfaces and their relation to the Brauer group of their canonical covers

we refer to the article [BFTV19].

For a scheme X the cohomological Brauer group Br′(X) is defined as the torsion part of

the étale cohomology group H2
ét(X,Gm), i.e.,

Br′(X) = H2
ét(X,Gm)tors.

Some authors define the cohomological Brauer group of X as the whole group H2
ét(X,Gm).

Note, however, that for a regular integral Noetherian scheme X, the cohomology group

H2
ét(X,Gm) is torsion (cf. [Poo17, Proposition 6.6.7]). Thus, for regular integral Noetherian

schemes both definitions of the cohomological Brauer group coincide.

On the other hand, the Brauer group Br(X) of a scheme X is defined to be the group of

similarity classes of Azumaya algebras on X (cf. [Mil80, Chapter IV, §2]). By an unpublished

result of Gabber (see [dJ05] for a proof) the two Brauer groups are isomorphic for any

quasi-compact and separated scheme X with an ample line bundle. In particular, if X is a

quasi-projective scheme over SpecR for some Noetherian ring R, then Br(X) ∼= Br′(X).

Thus, for a bielliptic surface X we have

Br(X) ∼= Br′(X) ∼= H2
ét(X,Gm)tors.

The main result of this section is the following.

Theorem 1.31. Let X be a bielliptic surface over an algebraically closed field of charac-

teristic p /∈ {2, 3}. Then the Brauer group Br(X) of X is a finite Abelian group isomorphic

to the torsion subgroup of the Néron-Severi group of X, i.e.,

Br(X) ∼= NS(X)tors.

Thus, the Brauer group Br(X) of X is given by Table 1.4.

Type Br(X)

(a1) Z/2Z⊕ Z/2Z
(a2) Z/2Z
(b1) Z/3Z
(b2) 0

(c1) Z/2Z
(c2) 0

(d) 0

Table 1.4. Brauer group of X.
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Before proving the theorem let us introduce and recall some notation. Let p be a prime

number and A an Abelian group. For an integer n ∈ Z let [n] : A→ A denote the multiplica-

tion by n map on A. Then, we set

nA := ker([n] : A→ A),

A(n) := coker([n] : A→ A),

p∞A := lim−→ ker([pn] : A→ A) and

Tp(A) := lim←− ker([pn] : A→ A).

We call p∞A the p-torsion subgroup of A and Tp(A) the p-adic Tate module of A.

Proof of Theorem 1.31. The following proof is an adaptation of the proof of the anal-

ogous result for Enriques surfaces in [CDL20, Theorem 1.2.17].

We first proof the result in characteristic zero. By the Lefschetz principle, we may assume

k = C. For complex varieties, the Brauer group is isomorphic to the torsion subgroup of

H2(X,O∗X) in the analytic topology. After taking cohomology in the exponential sequence,

we get H2(X,O∗X) ∼= H3(X,Z). Thus, Br(X) ∼= H3(X,Z)tors. By Theorem 2.3 of Chapter 1,

we know that H3(X,Z) ∼= H2(X,Z) ∼= NS(X). Hence,

Br(X) ∼= H3(X,Z)tors ∼= H2(X,Z)tors ∼= NS(X)tors.

Suppose now that p ≥ 5. To calculate the Brauer group in this situation we consider

the p-torsion and the prime-to-p-torsion of the Brauer group separately. By Theorem 2.5 in

Chapter 1, for every prime number l 6= p there is an isomorphism

H2
ét(X,Zl) ∼= H2

ét(X,Zl(1)) ∼= NS(X)⊗ Zl.

Moreover, that statement remains true for l = p after replacing the étale topology with the

flat topology. Let tl(X) denote the rank of the Tate module TlBr(X) of the Brauer group

Br(X) and tp(X) the rank of TpH
2
fl(X,Gm). As in the proof of Theorem 2.5 of Chapter 1, we

have tl(X) = 0 for every prime number l, including l = p. Form this it follows that Br(X) is

a finite Abelian group.

For l 6= p: Since p - ln, we can consider the Kummer exact sequence

0→ µln → Gm
·ln−→ Gm → 0.

After taking cohomology it yields the short exact sequence

0→ Pic(X)(ln) → H2
ét(X,µln)→ lnH

2
ét(X,Gm)→ 0, (1.3)
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where Pic(X)(ln) denotes the cokernel of the multiplication by ln map on Pic(X). On the

other hand, from the exact sequence

0→ Z/lnZ→ Z/ln+mZ→ Z/lmZ→ 0

after taking cohomology and passing to the projective limit in n we get the short exact

sequence

0→ H2
ét(X,Zl(1))(lm) → H2

ét(X, (Z/lmZ)(1))→ lmH
3
ét(X,Zl(1))→ 0. (1.4)

Moreover, since l 6= p, there is a (non-canonical) isomorphism µlm ∼= (Z/lmZ)(1). Com-

bining the sequences (1.3) and (1.4) and using the snake lemma, we get an exact sequence

for all m ≥ 1 including m =∞

0→ (Z/lmZ)tl → lmBr(X)→ lmH
3
ét(X,Zl(1))→ 0.

Since ρ(X) = b2(X), the same argument as in the proof of Theorem 2.5 of Chapter 1 shows

that tl = 0. Thus, we obtain an isomorphism

lmBr(X) ∼= lmH
3
ét(X,Zl(1)).

For m =∞ and using Poincaré duality for étale cohomology we get

l∞Br(X) ∼= l∞H
3
ét(X,Zl(1)) ∼= l∞H

2
ét(X,Zl(1)).

This together with Theorem 2.5 in Chapter 1 yields the isomorphism

l∞Br(X) ∼= l∞(NS(X)⊗ Zl).

For l = p: A similar argument as above shows that there exist a short exact sequence for

all m ≥ 1 including m =∞

0→ (Z/pmZ)tp → pmBr(X)→ pmH
3
fl(X,Zp(1))→ 0.

Again, since ρ(X) = b2(X), we see that tp(X) = 0 and we get an isomorphism

pmBr(X) ∼= pmH
3
fl(X,Zp(1)).

By [Ill79, Section II(5.22.5)] there exist a short exact sequence

0→ H3
fl(X,Zp(1))→ H2(X,WΩ1

X/k)
F−1−−−→ H2(X,WΩ1

X/k).

Thus

p∞Br(X) ∼= p∞H
3
fl(X,Zp(1)) ∼=

p∞
ker(F − 1: H2(X,WΩ1

X/k)→ H2(X,WΩ1
X/k)).

Claim 1.32. The p-torsion of the Brauer group of X is zero, that is, p∞Br(X) = 0.

Proof of the claim: By [Lan79, Proposition 4.3] we know that H2(X,WOX) = 0,

so in particular it is a finitely generated W -module. Moreover, by [Ill79, Section II.2.D.] all

the other cohomology groups Hj(X,WΩi
X/k) are finitely generated W -modules. Thus, X is
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Hodge-Witt. According to Illusie (cf. [Ill83, Theorem 3.4.1]), for any Hodge-Witt variety

there is a canonical decomposition

Hn
cris(X/W ) ∼=

⊕
i+j=n

Hj(X,WΩi
X/k).

In particular, for n = 3 we get

H3
cris(X/W ) ∼= H1(X,WΩ2

X/k)⊕H
2(X,WΩ1

X/k).

Since H3
cris(X/W ) ∼= W 2 by Theorem 2.12 in Chapter 1, we see that H2(X,WΩ1

X/k) is

isomorphic to 0, W or W 2. In all these cases H2(X,WΩ1
X/k) has no torsion and so does the

kernel of F − 1 on H2(X,WΩ1
X/k). Thus,

p∞Br(X) =
p∞

ker(F − 1: H2(X,WΩ1
X/k)→ H2(X,WΩ1

X/k)) = 0.

�

So far we have shown that l∞Br(X) ∼= l∞(NS(X)⊗ Zl) for l 6= p and p∞Br(X) = 0.

Moreover, according to table 1.3, the torsion of the Néron-Severi group NS(X) of a bielliptic

surface X in characteristic different from 2 and 3 can be Z/2Z, (Z/2Z)2, Z/3Z or 0. Thus,

for l 6= 2, 3 we get l∞Br(X) = 0. Putting all these results together we get

Br(X) =
⊕

l∈{2,3}
l∞Br(X) =

⊕
l∈{2,3}

l∞(NS(X)⊗ Zl).

Now using table 1.3 it is easy to compute Br(X) and we obtain Br(X) ∼= NS(X)tors. �

2. Moduli Stacks of Bielliptic Surfaces

In this section we define and describe the moduli stack Mbiell of bielliptic surfaces over

Spec Z[1
6 ], whose geometric points correspond to bielliptic surfaces over algebraically closed

fields of characteristic different from 2 and 3. To simplify notation we will denoteMbiell byM.

Consider the following moduli problem:

M : (Sch /Z[1/6])op −→ (Set),

S 7−→M(S) :=


proper and smooth morphism X → S of

algebraic spaces, whose geometric fibers

are bielliptic surfaces

 .

More precisely, let M denote the category fibered in groupoids over Spec Z[1
6 ] whose

objects are families of bielliptic surfaces π : X → S, where S is a Z[1
6 ]-scheme, and whose

morphisms are Cartesian diagrams
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X ′

π′

��

// X

π

��
S′ // S.

The projection

M→ (Sch/Z[1
6 ]), (π : X → S) 7→ S

makes M into a category fibered in groupoids over the category (Sch/Z[1
6 ]) of schemes over

Spec Z[1
6 ]. Moreover, M is a stack.

Proposition 2.1. The category fibered in groupoids M is a stack for the étale topology.

Proof. This is just a special case of the general fact that relative algebraic spaces, the

bases of which are schemes, form a stack. More precisely, the category X whose objects are

pairs (X,U), where U is an affine S-scheme and X is a U -algebraic space, i.e., an algebraic

space X together with a morphism of algebraic spaces X → U , and whose morphisms are

Cartesian diagrams

X ′

π′

��

// X

π

��
U ′ // U

is a stack for the étale topology, and even for the fpqc topology on (Aff/S) (see, for example,

[LMB00, (3.4.6) and (9.4)]).

�

2.1. Splitting of the Moduli Stack M. An important consequence of the separation

of families studied in the previous section, that is, of Theorem 1.8, is that the moduli stack

M splits into seven disjoint components corresponding to the stacks parameterizing families

of bielliptic surfaces of each type. More precisely, we have the following result.

Proposition 2.2. The stack of bielliptic surfaces M splits into a disjoint union

M =
⊔
M(i),

where M(i) denotes the substack of M whose objects are families of bielliptic surfaces of type

(i).

Proof. LetM(i) denote the substack ofM parameterizing families of bielliptic surfaces

of type (i) and denote by j : M(i) → M the inclusion morphism. We will show that j is

representable by a closed immersion. Hence, M(i) is a closed substack of M. Let S be a
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Noetherian scheme and let π : X → S be a family of bielliptic surfaces view as a morphism

π : S →M. Consider now the fiber product M(i) ×j,M,π S, which we will denote by S(i) to

simplify notation.

For a scheme T , an element of S(i)(T ) is given by a triple (a : Y → T, t : T → S, σ),

where (a : Y → T ) ∈ M(i)(T ) is a family of bielliptic surfaces of type (i), t : T → S is a

morphism from T to S and σ is an isomorphism σ : Y
∼−→ XT over T , where XT denotes the

pullback of the family π : X → S along t : T → S. That is, we have the following diagram

Y
∼
σ

//

τ

  

XT

πT

��

// X

π

��
T // S.

Now let S′ be the scheme whose functor of points is given by

S′(T ) = {T → S ∈ S(T ) | XT → T is a family of bielliptic surfaces of type (i)}.

Clearly, the map S(i)(T ) → S′(T ), (a, t, σ) 7→ t is surjective. Moreover, injectivity follows

from the definition of the fiber product of categories fibered in groupoids (see, for example,

[LMB00, (2.2.2)]). Hence, the fiber product S(i) is representable by the scheme S′. By

Corollary 1.16, S′ is a finite union of connected components of S. Thus, S′ is a closed

subscheme of S. Hence, the canonical projection S(i) =M(i) ×j,M,π S → S is representable

by a closed immersion andM(i) is therefore a closed substack ofM (cf. [LMB00, Définition

(3.14)]). �

From Proposition 2.2 it follows that one may study the moduli stacks M(i) individually.

Accordingly, we will focus on the study of the moduli stack M(a1). Moreover, following the

work of Tsuchihashi on the moduli spaces of complex bielliptic surfaces (cf. Theorem 1.3),

we will relate the moduli stack M(a1) to a product of stacks parameterizing elliptic curves

equipped with a certain level structure. More precisely, we will define a morphism of stack

ϕ : Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]→M(a1),

where Y1(2)[1/6] denotes the algebraic stack over SpecZ[1
6 ] parameterizing elliptic curves E/S

together with a Γ1(2)-structure and M1,1[1/6] the Deligne-Mumford stack over Spec Z[1
6 ] of

elliptic curves.

2.2. The Moduli Stack M(a1). In order to give a precise definition of the moduli

stacks mentioned above, we first recall the notion of an elliptic curve over an scheme S and

the definitions of some level structures that can be defined on such elliptic curves. For a

detailed exposition we refer to the work of Katz and Mazur [KM85] and Deligne-Rapoport

[DR73].
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Definition 2.3. Let S be an arbitrary scheme and N be an integer.

(1) An elliptic curve over S is a pair (f : E → S, e), where f is a smooth and proper

morphism, e : S → E is a section of f , i.e., f ◦ e = idS , and for every geometric point

s : Spec k → S the pullback (Es, es) is an elliptic curve over k.

(2) A Γ1(N)-structure on an elliptic curve E/S is a homomorphism

φ : Z/NZ→ E [N ](S),

such that the effective Cartier divisor in E∑
a mod N

[φ(a)]

is a subgroup scheme of E , where [φ(a)] denotes the effective Cartier divisor in E/S
defined by the section φ(a) ∈ E(S). The point P := φ(1) in E [N ](S) is called a point

of exact order N .

Equivalently, a Γ1(N)-structure on E/S is an N -isogeny of elliptic curves over S

π : E → E ′,

that is, a homomorphism which is finite locally free of degree N) together with a

point P ∈ (kerπ)(S) ⊂ E [N ](S) such that for the corresponding homomorphism

φ : Z/NZ→ kerπ, a 7→ aP

we have an equality of effective Cartier divisors in E

kerπ =
∑

a mod N

[aP ].

(3) A Γ0(N)-structure on an elliptic curve E/S is an N -isogeny

π : E → E ′

which is cyclic in the sense that, locally fppf on S, the kernel kerπ admits a generator.

Equivalently, a Γ0(N)-structure on E/S is a finite flat subgroup scheme K ⊂
E [N ], locally free of rank N , which is cyclic in the sense that, locally fppf on S, it

admits a generator.

(4) The moduli stack of elliptic curves M1,1 is the stack parameterizing elliptic curves.

It is a smooth and separated Deligne-Mumford stack of finite type over Spec Z (cf.

[Ols16, Theorem 13.1.2]). The stackM1,1⊗ZZ[1/N ] will be denoted byM1,1[1/N ].

(5) The stack parameterizing elliptic curves E/S together with a Γ1(N)-structure, i.e.,

together with a point P ∈ E [N ](S) of exact order N , will be denoted by Y1(N).

According to [DR73, IV, (4.8)] the stack Y1(N)[1/N ] := Y1(N) ⊗Z Z[1/N ] is an

algebraic stack.
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Consider the following data:

• S ∈ (Sch/Z[1
6 ]),

• (f1 : E1 → S, e1, P ) ∈ Y1(2)[1/6](S), where e1 : S → E1 is a section of f1, and P a

point of exact order 2 in E1/S, and

• (f0 : E0 → S, e0) ∈M1,1[1/6](S), where e0 : S → E0 is a section of f0.

Consider the fiber product

X̃ := E1 ×S E0

p1

��

p0 // E0

f0

��
E1

f1

// S.

Note that X̃ is a smooth and proper scheme over S, since f0 and f1 are smooth and proper

morphisms. We denote its structure morphism by π̃ : X̃ → S.

Remark 2.4. If S = SpecR, with R a Dedekind domain (e.g., a DVR), then the elliptic

curves E1, E0 are projective over S (see [Lic68, Theorem 2.8]), and thus X̃ is projective over

S.

Let GP ⊂ E1 be the cyclic subgroup of rank 2 generated by P , i.e., GP = e1(S) + P (S).

Since 2 is invertible on S, GP is a finite and étale group scheme over S, which is isomorphic

to the constant S-group scheme (Z/2Z)S by [KM85, Lemma 1.4.4]. Moreover, we can define

a free action

σP : GP ×S X̃ → X̃

of GP on X̃ as follows: for every S-scheme T , let (γ1 : T → E1, γ0 : T → E0) be a T -point of

X̃ and set

PT · (γ1, γ0) := σP (PT , (γ1, γ0)) = (γ1 + PT ,−γ0),

where PT is the point on E1(T ) induced by the base change T → S.

We can now consider the quotient of X̃ by the free action of GP on X̃ .

Proposition 2.5. The quotient X := X̃/GP is a smooth and proper algebraic space over

S, whose geometric fibers are bielliptic surfaces of type (a1), i.e., X → S ∈M(a1)(S).

Proof. For the reader familiar with algebraic spaces this may be a straightforward result.

Nevertheless, we give a proof, which amounts to checking the properties using the theory of

algebraic spaces as explained, for example, in [Sta19, Tag 025R].

https://stacks.math.columbia.edu/tag/025R
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Since the action of GP on X̃ is free, the map

j : GP ×S X̃ → X̃ ×S X̃

is a monomorphism and is indeed an étale equivalence relation on X . Then, by [Sta19, Tag

02WW] the quotient X := X̃/GP is an algebraic space and the quotient map q : X̃ → X is

étale and surjective. Thus, we have a commutative diagram of algebraic spaces

X̃

π̃

��

q
// X

π

��
S

where q is étale and surjective, and π̃ is smooth and proper. Then X is smooth over S by

[Sta19, Tag 0AHE].

According to [Sta19, Tag 08AJ], to show that X is proper over S it is enough to show that

it is separated and of finite type over S, since X̃ is proper over S. That π is separated follows

from the fact that π̃ is separated and the group GP is finite, by [Sta19, Tag 02Z4]. Moreover,

X is quasi-compact by definition, since q : X̃ → X is an étale cover with X̃ a quasi-compact

scheme. Thus, π is of finite type if it is locally of finite type, which is true by descent (see

[Sta19, Tag 0AHC]). Hence, X is proper over S.

Finally, the quotient X = X̃/GP is a universal categorical quotient, see, for example

[Ryd13, Theorem 2.16]. In particular, forming the quotient X commutes with arbitrary base

change. Thus, for a geometric point s = Spec k in S the geometric fiber Xs of π : X → S is

isomorphic to the quotient Xs/(GP )s ∼= (E1s ×k E0s)/(GP )s, which is a bielliptic surface of

type (a1).

�

As a consequence of the last proposition we obtain the following corollary.

Corollary 2.6. There is a well-defined morphism of stacks

ϕ : Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]→M(a1)

given (in the above notation) by ϕ((E1, P ), E0) = X .

Proposition 2.7. The morphism ϕ is surjective on geometric points.

Proof. This follows directly from Bombieri and Mumford’s structure theorem of bielliptic

surfaces, see Theorem 1.16 in Chapter 1. �

2.3. The Morphism of Stacks ϕ. We want to investigate the morphism ϕ defined in

the previous section. In order to do so, we will first study the situation over algebraically

https://stacks.math.columbia.edu/tag/02WW
https://stacks.math.columbia.edu/tag/02WW
https://stacks.math.columbia.edu/tag/0AHE
https://stacks.math.columbia.edu/tag/08AJ
https://stacks.math.columbia.edu/tag/02Z4
https://stacks.math.columbia.edu/tag/0AHC
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closed fields of characteristic different from 2 and 3. More precisely, we will show that, if k is

an algebraically closed field with char(k) 6= 2, 3, then the induced morphism

ϕk : Y1(2)[1/6](k)×M1,1[1/6](k)→M(a1)(k)

is an isomorphism. On the other hand, we expect the morphism ϕ to be an isomorphism of

stacks. We take a first step towards that conjecture an show that ϕ is an epimorphism of

stacks.

2.3.1. The Morphism ϕ on Geometric Points.

Recall the structure theorem of bielliptic surfaces over algebraically closed fields (cf. The-

orem 1.16 in Chapter 1 and [BM77, Theorem 4, §3]). According to it, every bielliptic surface

X over an algebraically closed field k is of the form

X = (E × F )/G,

where E and F are elliptic curves and G is a finite group subscheme of E acting diagonally

on the product E × F .

If X is of type (a1) and the characteristic of k is different from 2, then G is isomorphic to

the constant group scheme Z/2Z. Then, G(k) = Z/2Z has a unique generator, which is a two

torsion point a ∈ E[2](k). Thus, from X we obtain an elliptic curve E together with a two

torsion point a ∈ E[2](k) and a second elliptic curve F , such that

X ∼= (E × F )/〈a〉,

where the action of 〈a〉 on the product E × F is given by a · (x, y) = (x+ a,−y).

Thus, the induced map

ϕk : Y1(2)[1/2](k)×M1,1[1/2](k)→M(a1)(k), ((E, a), F ) 7→ E × F/〈a〉.

is surjective.

Moreover, the map ϕk is even injective. To see this, it is enough to go through the proof

by Bombieri and Mumford of theorem [BM77, Theorem 4, §3] and note that every choice of

their construction is canonical, in the sense that it is unique up to isomorphism.

Proposition 2.8. Let k be an algebraically closed field of characteristic different from 2

and 3. Then the map

ϕk : Y1(2)[1/6](k)×M1,1[1/6](k)→M(a1)(k)

is an isomorphism.
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Proof. As mentioned before, the above map is surjective by Theorem 1.16 of Chapter

1. Now consider a bielliptic surface f : X → B := Alb(X) of type (a1). After choosing a base

point b0 ∈ B, the proof of [BM77, Theorem 4, §3] shows that

X ∼= (B × F )/B[2],

where F := f−1(b0) is the fiber of f over the base point b0 ∈ B and the action of B[2] on F

is defined via the Albanese fibration f .

Recall that the Albanese variety B := Alb(X) and the Albanese map f : X → B are unique

up to isomorphism. Moreover, since the fibration f : X → B is isotrivial, i.e., all its fibers

are isomorphic, the elliptic curve F is also unique up to isomorphism and independent of the

choice of the base point b0 ∈ B.

Let α : B[2] → Aut(F ) denote the action of B[2] on F . Since it is defined via the Albanese

map f , this action is also defined in a canonical way. However, this action is not faithful. So

we have to quotient out by the kernel of α and set

E := B/ ker(α) and G := B[2]/ ker(α).

Then, E and G are also uniquely defined. Since G is isomorphic to the constant group scheme

Z/2Z, there is a unique generator a ∈ G(k) of G(k).

In conclusion, all the choices involved in the construction of Bombieri and Mumford in the

proof of [BM77, Theorem 4, §3] are canonical, i.e., unique up to isomorphism, since they are

based on the Albanese variety Alb(X) of X. �

2.3.2. Construction via R1f∗OX .

There is a more explicit description of the elliptic curves E and F , the group G and the

two torsion point a ∈ G(k), which allow us to see that they are defined in a canonical way.

Thus, the preimage of a bielliptic surface X of type (a1) under ϕk is unique up to isomorphism.

Let f : X → B := Alb(X) be a bielliptic surface of type (a1) together with its Albanese

fibration. Consider the invertible sheaf L := R1f∗OX on B. It is a torsion invertible sheaf

of order equal to the order of canonical sheaf ωX on X (cf. Corollary 1.15 (iii) in Chapter

1). Since X is of type (a1), we have ord(L) = ord(ωX) = 2. We can thus consider the étale

cyclic cover

πB : E := Spec
B
⊕1
i=0 (L−1)⊗i → B

of B defined by L. It is a finite étale map of degree 2. Note that E is unique up to isomor-

phism from the description of the relative spectrum as a functor (cf. [Sta19, Tag 01LQ]).

https://stacks.math.columbia.edu/tag/01LQ
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Moreover, by the Serre-Lang theorem (cf. [Mum08, Chapter IV,§18]) E has a structure of

Abelian variety such that πB is a separable isogeny. Thus, E is an elliptic curve.

Now consider the Cartesian diagram

X ′

f ′

��

πX // X

f

��
E

πB // B.

Proposition 2.9. With the above notation we have: ωX′ ∼= OX′ and X ′ is an Abelian

surface. Moreover, X ′ is in fact isomorphic to the Abelian canonical cover X̃ of X.

Proof. Since πB is finite étale and f is flat, then πX is also finite étale of the same

degree. In particular, ωX′ ∼= π∗XωX holds. From the canonical bundle formula, we know that

ωX ∼= f∗(L−1). Finally, by the definition of the étale cyclic cover πB, we have π∗B(L−1) ∼= OE .

Putting all these results together and using the commutativity of the Cartesian diagram above

one gets

ωX′ ∼= π∗XωX
∼= π∗X(f∗(L−1)) ∼= (f ′)∗(π∗B(L−1)) ∼= (f ′)∗(OE) ∼= OX′ .

From ωX′ ∼= OX′ , it follows that X ′ is minimal, it has Kodaira dimension zero and its geo-

metric genus is given by pg(X
′) = h0(ωX′) = h0(OX′) = 1. Moreover, since χ(OX) = 0,

we have χ(OX′) ∼= deg(πX) · χ(OX) = 0. Thus, q(X) = 2. From the classification of alge-

braic surfaces it follows that X ′ is an Abelian surface (since we are excluding characteristic 2).

An alternative way to show that X ′ is an Abelian surface is the following: consider the Abelian

canonical cover π : X̃ → X of X (cf. Definition 1.21 in Chapter 1). Since π∗XωX
∼= OX′ , it

follows from the universal property of the canonical cover X̃ that there is a unique map

g : X ′ → X̃, such that the following diagram commutes

X̃

π

��
X ′

g

>>

πX // X.

Since both ωX and L−1 have the same order, then πX and π have the same degree. Thus, g

must have degree 1 and is therefore an isomorphism. Hence, X ′ is isomorphic to the Abelian

canonical cover of X. �

Now choose a base point x̃0 ∈ X̃ such that f ′ becomes a homomorphism of Abelian

varieties. Let e0 ∈ E be the identity on E and let F := ker(f ′) be the kernel of f ′, i.e., F is
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the fiber of f ′ over e0. Note that it is isomorphic to the fiber of f over πB(e0). We obtain an

exact sequence of Abelian varieties

0→ F → X ′
f ′−→ E → 0.

Since X is of type (a1), the Albanese fibration f admits a section λ : B → X, which induces a

section λ′ : E → X ′ of f ′. Thus, the above exact sequence splits and we obtain an isomorphism

X ′ ∼= E × F.

Let G := ker(πB) ⊂ E be the kernel of πB. Then G acts on E by translations and B ∼= E/G.

Moreover, G acts on X ′ = X ×B E via the second factor such that

X ∼= X ′/G ∼= (E × F )/G.

Finally, since πB is a separable isogeny, G is a finite étale group scheme of rank 2. Hence, G

is isomorphic to the constant group scheme Z/2Z and there is a unique generator a ∈ G(k)

of G(k).

In this manner we get from X uniquely, in a canonical way, the data (E, a), F such that

X ∼= E × F/〈a〉.

Remark 2.10. It turns out that the elliptic curve E from above can also be described via

the Stein factorization of the composition of the Abelian canonical cover with the Albanese

fibration. Indeed, by definition, the Stein factorization B′ of the composition

X̃
π−→ X

f−→ B

is given by B′ = Spec
B

(f ◦ π)∗OX̃ . But π∗OX̃ ∼= ⊕
n−1
i=0 ω

⊗i
X and ωX ∼= f∗(L−1). Thus, we

have the following chain of isomorphisms:

(f ◦ π)∗OX̃ ∼= f∗(π∗OX̃)

∼= f∗(⊕n−1
i=0 ω

⊗i
X )

∼= f∗(⊕n−1
i=0 (f∗(L−1))⊗i)

∼= f∗(⊕n−1
i=0 f

∗((L−1)⊗i))

∼= f∗(f
∗(⊕n−1

i=0 (L−1)⊗i))

∼= f∗OX ⊗
(
⊕n−1
i=0 (L−1)⊗i

)
∼= OB ⊗

(
⊕n−1
i=0 (L−1)⊗i

)
∼= ⊕n−1

i=0 (L−1)⊗i.

Hence, B′ = Spec
B

(f ◦ π)∗OX̃ ∼= Spec
B
⊕n−1
i=0 (L−1)⊗i = E.
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Moreover, on can directly show that the map B′ → B is étale, so that B′ is an elliptic curve,

by the Serre-Lang theorem [Mum08, Chapter IV,§18]. Indeed, since L has the same order

than ωX , the map B′ → B has the same degree as the Abelian canonical cover π : X̃ → X.

From this, it follows that the diagram

X̃

��

π // X

f

��
B′ // B

is Cartesian, i.e., X̃ ∼= X×BB′. Since π is étale and f is faithfully flat, it follows that B′ → B

is étale.

2.3.3. The Epimorphism Property.

As mentioned before, we expect the morphism ϕ to be an isomorphism of stacks according

to the following definition.

Definition 2.11 ([LMB00], Définition (3.6)). Let S be a scheme and F : X → Y a

morphism of stacks over (Sch/S). Then F is a monomorphism (resp. an isomorphism) if for

every S-scheme U ∈ (Sch/S) the induced functor FU : X (U) → Y(U) is fully faithful (resp.

is an equivalence of categories, that is, if it is fully faithful and essentially surjective).

Explicitly, we state the following conjecture.

Conjecture 2.12. The morphism of stacks

ϕ : Y1(2)[1/6]×Z[1/6]M1,1[1/6]→M(a1)

is an isomorphism of stacks, i.e., for every scheme S ∈ (Sch/Z[1/2]) the induced functor

ϕS : Y1(2)[1/6](S)×M1,1[1/6](S)→M(a1)(S)

is an equivalence of categories.

In order to prove that a morphism of stacks is an isomorphism, one may use the following

definition and result about morphism of stacks.

Definition 2.13 ([LMB00], Définition (3.6)). Let S be a scheme and F : X → Y a

morphism of stacks over (Sch/S). Then F is an epimorphism if for every S-scheme U ∈
(Sch/S) and every object y ∈ Y(U), there exist an étale covering U ′ → U and an object

x′ ∈ X (U ′), such that FU ′(x
′) is isomorphic to the pullback yU ′ ∈ Y(U ′) of y ∈ Y(U) by

U ′ → U .
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Lemma 2.14 ([LMB00], Corollaire (3.7.1)). Let S be a scheme and F : X → Y a mor-

phism of stacks over (Sch/S). Then F is an isomorphism if and only if F is a monomorphism

and an epimorphism.

Thus, as a first step towards a proof of the above conjecture, we prove the following result.

Theorem 2.15. The morphism of stacks

ϕ : Y1(2)[1/6]×Z[1/6]M1,1[1/6]→M(a1)

is an epimorphism of stacks.

First, we need a lemma.

Lemma 2.16. Let π : X → S be a family of bielliptic surfaces over an affine scheme

S = Spec R. Then, there exist an étale cover S′ of S such that the base change π′ : X ′ → S′

along S′ → S admits a polarization L′.

Proof. Let s ∈ S be a closed point and consider the local ring at s for the étale topology

OhS,s := lim−→
(Ui,ui)

Γ(Ui,OUi),

where the limit is over the connected affine étale neighborhoods (Ui, ui) of s (cf. [Mil13, p.

31]). Note that, since all the étale neighborhoods Ui are affine, the transitions map between

them are all affine.

Let Sh := Spec OhS,s denote the henselization of S at s. For every Ui the canonical

homomorphism

Γ(Ui,OUi)→ lim−→
(Ui,ui)

= OhS,s

induces a morphisms

Sh → Spec Γ(Ui,OUi) = Ui → S,

where the last arrow is étale. We don’t know however, if the first arrow is étale.

We will prove the claim of the lemma in three step. First, we prove that X h := X ×S Sh

admits a polarization. Second, by writing Sh as a direct limit of the étale connected affine

neighborhoods Ui of S and using the fact that the Picard functor PicX/S is limit preserving,

we show that the polarization on X h descends to a polarization on Xj = X ×S Uj for some

étale neighborhood Uj of S. Finally, the étale cover S′ will be constructed as a disjoint union

of étale neighborhoods of the kind found in Step 2 for every s ∈ S.

Step 1: Let πh : X h → Sh denote the pullback of π : X → S along Sh → S and consider

the special fiber Xs = X ×Sh X h. Since the special fiber is projective and the ring OhS,s is



88 2. MODULI OF BIELLIPTIC SURFACES

henselian, we can argue as in the beginning of the proof of Lemma 1.9: from the fact that

PicXh/Sh is smooth (cf. Proposition 1.7 (b)) together with Hensel’s lemma, it follows that

an ample line bundle on Xs extends to a relatively ample line bundle Lh on X h.

Step 2: Since all the Ui are affine, the limit lim←−Ui exist in the category of schemes and

one has

Sh = SpecOhS,s = Spec (lim−→Γ(Ui,OUi)) = lim←−Ui.

Then, by [Sta19, Tag 01YZ], X h can be written as follows:

X h = lim←−Xi = lim←−(X ×S Ui).

Consider now the relative Picard algebraic space PicX/S . It is locally of finite presentation

by Proposition 1.7 (a). In other words, the relative Picard functor PicX/S is limit preserving

(see [Sta19, Tag 05N0]). Thus,

PicX/S(Sh) = lim−→PicX/S(Ui).

Now the line bundle Lh on X h found in Step 1 defines an element ξ ∈ PicX/S(Sh) which in

turn determines an element ξi ∈ PicX/S(Ui) = PicXi/Ui(Ui) for some i. Let ξi be represented

by a line bundle Li on Xi. Since the pullback Lh of Li to X h is ample, then for some Uj the

pullback Lj of Li to Xj is ample, by [Sta19, Tag 09MT]. Hence, Lj is a polarization of Xj .

Note that Lj is relatively ample over Uj because it is ample and Uj is affine (cf. [Sta19, Tag

01VK]).

Step 3: For every s ∈ S we have shown that we can find an étale neighborhood Us of s,

such that Xs = X ×S Us admits a polarization. We can now take the disjoint union

S′ :=
⊔
s∈S

Us → S,

which is an étale cover of S. Note that S′ is a finite union, since S is Noetherian. Then, the

base change π′ : X ′ → S′ along S′ → S admits a polarization L′.
�

Proof of Theorem 2.15. Let S be a connected and reduced Noetherian scheme over

Z[1
6 ]. Let π : X → S be an object in M(a1)(S).

Step 1: By Corollary 1.30, after an étale base change, we may assume that S is an affine

scheme and that the family π : X → S admits a canonical cover τ : X̃ → X which is an

Abelian scheme over S. Let σ̃ : S → X̃ denote the identity section of X̃ . Then, σ̃ induces a

section σ : S → X of the family π : X → S and we may define the Albanese scheme AlbX/S ,

https://stacks.math.columbia.edu/tag/01YZ
https://stacks.math.columbia.edu/tag/05N0
https://stacks.math.columbia.edu/tag/09MT
https://stacks.math.columbia.edu/tag/01VK
https://stacks.math.columbia.edu/tag/01VK
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which we will denote by B to simplify notation, and the Albanese morphism

f : X → B := AlbX/S .

Furthermore, according to Lemma 2.16, after an étale base change, we may also assume

that π : X → S admits a polarization L.

Claim 2.17. the Albanese morphism

f : X → B := AlbX/S .

admits a section λ : B → X .

Proof of Claim 2.17. To prove this claim, we will use Seiler’s results corresponding to

Proposition 1.21 and Proposition 1.22.

Let s ∈ S denote the closed point of S. By Proposition 1.21, there exist a smooth family

γ : C → S and an S-morphism g : X → C that induces the second elliptic fibration gs : Xs → P1

on the geometric special fiber Xs of the family π : X → S. Moreover, since Xs is a bielliptic

surface of type (a1), the second elliptic fibration gs has a fiber 2F ′s of multiplicity 2, such that

F ′s is a section of the Albanese fibration of Xs. Then, according to Proposition 1.22, there

exist a unique flat family F ′ → S of curves, a closed S-immersion F ′ → X , and a section

σ : S → C, such that F ′s is the fiber of F ′ → S over s ∈ S. Then, F ′ → X is a section of

the Albanese morphism f : X → B. Indeed, both F ′ and B are proper and flat over S and

the composition F ′ → X f−→ B is fiberwise an isomorphism. Then, by the fibral isomorphism

criterion (cf. [Gro67, Corollaire 17.9.5]), the composition F ′ → X f−→ B is an isomorphism.

We will denote this section by λ.

�

Step 2: Now consider the composition f̃ := τ ◦ f : X̃ → B. It is proper, since both f and

τ are proper. Thus, we may consider the Stein factorization

πB : E := Spec B(f̃∗OX̃ )→ B.

Claim 2.18. The commutative diagram

X̃

��

τ // X

f

��
E

πB // B

is Cartesian, that is, X̃ ∼= X ×B E.

Proof of the claim 2.18. Let X ′ := X ×B E denote the fiber product. From the

universal property of the fiber product, there exist a unique S-morphism u : X̃ → X ′. Note
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that both X̃ and X ′ are flat and proper over S. Indeed, this is clear for X̃ , and for X ′

one can argue as follows: the composition f̃ := τ ◦ f : X̃ → B is flat and has geometrically

reduced fibers, since its geometric fibers are disjoint unions of elliptic curves. Moreover,

since f̃ is proper, it is of finite type. Now because B is Noetherian (as it is a finite type

algebraic space over the Noetherian scheme S), we have that f̃ is of finite presentation. By

[Sta19, Tag 0E0D], we get then that πB : E → B is finite étale. From this one easily sees

that X ′ → E → B → S is smooth and proper and therefore flat and proper. Moreover, u

is fiberwise (on geometric fibers) an isomorphism. Then, by the fibral isomorphism criterion

(cf. [Gro67, Corollaire 17.9.5]), the S-morphism u : X̃ → X ′ is an isomorphism.

�

Step 3: Since πB is finite and étale, it is proper and smooth. Therefore, E is proper

and smooth over S. Furthermore, its geometric fibers are elliptic curves (cf. Section 2.3.2).

Denote by fE the projection fE : X̃ ∼= X ×B E → E . From the section σ̃ we get a section

σE := fE ◦ σ̃ of E/S, so that by Theorem 1.28 the curve E/S is an elliptic curve over S. Note

that by definition σE is sent to the zero section of B by πB. Furthermore, the map fE : X̃ → E
is then by construction a homomorphism of Abelian schemes, since fE sends the section σ̃ to

the section σE .

Now let F be the fiber of fE over σE , that is, F = X̃ ×E S. Note that F is isomorphic to

the fiber of f over the zero section of the Albanese scheme B. Since f is a smooth and proper

morphism by Lemma 1.20, F is smooth and proper over S. Moreover, we get an induced

section of F/S from the section λ of the Albanese morphism f . Thus, by Theorem 1.28, F
is an elliptic curve over S. (One can also get an induced section from the section σ̃).

In this way we obtain an exact sequence of Abelian schemes over S

0→ F → X̃ fE−→ E → 0. (2.1)

Moreover, since the section of the Albanese morphism f induces a section λE of fE , the

sequence (2.1) splits. Recall that the category of fppf sheaves of Abelian S-groups is an

Abelian category and that S is a final object. Thus, applying the splitting lemma we have

X̃ ∼= E ×S F .

Now let G := kerπB ⊂ E be the kernel of πB. Since πB is finite étale of degree equal to the

order of ωX/S , G is a finite étale S-subgroup scheme of E of rank 2. Note that G acts on E by

translations such that B ∼= E/G. Moreover, G acts on X̃ ∼= X ×B E via the second factor such

that X ∼= X̃/G. Thus,

X ∼= (E ×S F)/G.

https://stacks.math.columbia.edu/tag/0E0D


3. MARKED AND NUMERICALLY POLARIZED BIELLIPTIC SURFACES 91

Since G is a finite étale S-group scheme, it is étale locally on S constant. Thus, after a (finite)

étale base change, G is constant and isomorphic to the constant group scheme (Z/2Z)S . Thus,

there is a (unique) generator P ∈ G(S) ⊆ E [2](S).

In conclusion, after replacing S by an étale covering of S′ → S, there exist elliptic curves E
and F over S and a point P ∈ G(S) ⊆ E [2](S) of exact order 2, such that

X ∼= E ×S F/G,

where G is isomorphic to the cyclic group of rank 2 generated by P . Therefore, the morphism

ϕ is an epimorphism. �

Remark 2.19. A crucial point in the proof of theorem above is the existence of the section

of the Albanese morphism. We obtained that section by proving that a family of bielliptic

surfaces admits a polarization after an étale base change. However, one could alternatively

modify the moduli problemM(a1) and consider polarized families of bielliptic surfaces of type

(a1). In this manner, every family would come with a polarization, which can then be used

to obtain a section of the Albanese morphism.

3. Marked and Numerically Polarized Bielliptic Surfaces

In this section we present some results on marked and numerically polarized bielliptic

surfaces, respectively.

There are two main reasons for consider marked bielliptic surfaces. First, as we will

see, a bielliptic surface X over an algebraically closed field k of arbitrary characteristic comes

naturally equipped with a marking, that is, an isometry φ : U → Num(X). Furthermore, from

this marking one can construct a unique numerical polarization of degree 2 on X. Thus, it

is worth considering the question, whether this extra structure should be taken into account

when defining moduli spaces of bielliptic surfaces. Second, a family of bielliptic surfaces

coming from a product of relative elliptic curves (as described at the beginning of Section

2.2) also comes with extra structure, such as a marking of the relative Néron-Severi lattice

and a (numerical) polarization.

Our original aim in studying families of bielliptic surfaces with extra structure was to

obtain a better behaved moduli stack. Recall that the automorphism groups of bielliptic

surfaces are not finite (cf. Section 4). Consequently, the moduli stackM of bielliptic surfaces

can not be a Deligne-Mumford stack. By considering marked bielliptic surfaces instead, we

wanted to obtain better (e.g., finite) automorphism groups, so that the moduli stack could

be in principle a Deligne-Mumford stack. However, we will see that every automorphism of

a bielliptic surface fixes the Néron-Severi lattice (see Proposition 3.3). Thus, a marking or a

numerical polarization on a bielliptic surface does not ridigify the moduli problem.



92 2. MODULI OF BIELLIPTIC SURFACES

Although our study of marked bielliptic surfaces did not lead to the desired goal, we

decided to include our results, as we think they still are of some interest for the study of

moduli spaces of bielliptic surfaces.

3.1. Marked Bielliptic Surfaces.

Definition 3.1. A marked bielliptic surface is a pair (X,φ) consisting of a bielliptic

surface X together with an isometry φ : U → Num(X).

Proposition 3.2. Let X be a bielliptic surface over an algebraically closed field k of ar-

bitrary characteristic. Then, X is a marked bielliptic surface. Moreover, if the characteristic

of k is different from 2 and 3 and X = E × F/G, then we have the following:

(1) There is a standard marking given by rational multiples of the numerical classes [F ]

and [E] of a fiber of the Albanese fibrations and the second fibration of X, respectively.

(2) There is a unique numerical polarization of degree 2 on X.

Proof. The first claim is just a restatement of Proposition 3.1 of Chapter 1 according

to which Num(X) is isomorphic to the hyperbolic lattice U . Thus, X is a marked bielliptic

surface. If k is a field of characteristic different from 2 and 3 and X = E×F/G, then Theorem

3.3 of Chapter 1 gives a basis {α[E], β[F ]} with α, β ∈ Q. Denote this basis elements by

e = α[E] and f = β[F ]. By sending these basis elements to the standard (hyperbolic) basis

of U one obtains an isometry φ−1 : Num(X) → U . Moreover, taking the sum of the basis

elements of Num(X), we get an ample numerical class η = e + f ∈ Num(X) of degree 2.

Indeed, η is of degree two since

η2 = e2 + 2(e · f) + f2 = 1 + 0 + 1 = 2

and is an ample class according to Lemma 3.2 of Chapter 1.

Finally, a numerical ample class λ ∈ Num(X) of degree 2 is unique. Indeed, let λ = ae+bf

with a, b ∈ Z. Then, again by Lemma 3.2 of Chapter 1, we have

λ ∈ Amp(X) ⇐⇒ a, b > 0.

From λ2 = 2ab = 2 we get that α = β = 1. Therefore, λ = e+ f = η.

�

Proposition 3.3. Let X be a bielliptic surface over an algebraically closed field k of

characteristic different from 2 and 3. Then, every automorphism of X fixes the Néron-Severi

lattice.

Proof. Let φ ∈ Aut(X) be an automorphism of X = E × F/G. By Theorem 3.3 of

Chapter 1, there is a basis {α[F ], β[E]} of Num(X) with α, β ∈ Q and where [F ] and [E]

denote the numerical class of a fiber of the Albanese fibration and of the second elliptic

fibration of X, respectively. We will work with this basis for Num(X).
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The induced automorphism φ∗ preserves the intersection product on Num(X), which is

given by the intersection matrix

A :=

(
0 1

1 0

)
.

Thus, φ∗ as to be given by one of the following matrices {±I,±A}, where I denotes the

identity matrix. Moreover, since the pullback of an ample class by φ has to be ample again,

φ∗ has to preserve the ample cone of Num(X), which lies within the first quadrant of the

[F ] − [E]-plane. Thus, φ∗ is given either by the identity matrix I or by A. Finally, recall

from Chapter 1, Section 4, that according to Corollary 4.4, φ is induced from an element of

Aut(E)× Aut(F ) which normalizes G. In particular, φ∗ is diagonal and thus must be given

by the identity matrix. �

We want to show that, for families of bielliptic surfaces coming from a product of relative

elliptic curves as described in Section 2.2, an analogous result to Proposition 3.2 holds. Let

us start with the definition of the relative Néron-Severi lattice.

Definition 3.4. Let π : X → S be a family of bielliptic surfaces. Let NumX/S denotes

the quotient fpqc-sheaf

(PicX/S/PicτX/S)(fpqc).

If NumX/S is representable by a scheme (resp. by an algebraic space), we will denote by

NumX/S the scheme (resp. the algebraic space) that represents it. Moreover, we write

Num(X/S) := NumX/S(S)

for the S-valued points of NumX/S and call it the relative Néron-Severi lattice.

Let π : X → S be a family of bielliptic surfaces and s a geometric point of S. Then we

have

h2(OXs) = h1(OXs)− b1(Xs)/2.

The following proposition appears in [Lie15b, Proposition 4.4] and [EHS12, Proposition

4.2] and applies to bielliptic surfaces.

Proposition 3.5 (Ekedahl−Hyland−Shepherd-Barron). Let π : X → S be a family of

bielliptic surfaces. Then NumX/S is a locally constant sheaf of torsion-free finitely generated

Abelian groups.

We keep considering the case of bielliptic surfaces of type (a1) and keep the notation

of section 2.2, where π : X → S is the family of bielliptic surfaces of type (a1) given by

X = X̃/GP with
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X̃ := E1 ×S E0

p1

��

p0 // E0

f0

��
E1

f1 // S.

e0

WW

e1

ii

Denote by [e0] := e0(S) the relative effective Cartier divisor on E0/S corresponding to

the section e0 ∈ E0(S), and similarly for the relative effective Cartier divisor [e1] on E1/S .

Consider now the closed subscheme E1 ×S [e0] ⊂ X̃ obtained from [e0] after pulling it back

along the map f1 : E1 → S. This is a relative effective Cartier divisor on X̃/S which we denote

by F̃1 := E1×S [e0]. Similarly, we define the relative effective Cartier divisors F̃0 := [e1]×S E0

and F̃P := [P ]×S E0 on X̃/S, where [P ] := P (S) denotes the relative effective Cartier divisor

corresponding to the point P ∈ E1[2](S).

From the definition of the action σP on X̃ , we see that the divisors F̃0 + F̃P and F̃1 are

invariant under that action. Let us denote by F0 and F1 the scheme theoretic image under

the morphism q : X̃ → X of F̃0 + F̃P and F̃1, respectively.

Proposition 3.6. The closed subspaces F0 and F1 of X are relative effective Cartier

divisors on X/S.

Proof. We prove the claim for F1. The same argument can be used to prove that F0 is

a relatively effective Cartier divisor on X/S.

Since F̃1 is invariant under the action σP , the scheme theoretic inverse image of F1 coincide

with F̃1, that is, F̃1
∼= F1 ×X X̃ . Moreover, for a closed subspace Z ⊂ X , the properties

of being an effective Cartier divisor and the one of being flat over X can both be checked

étale locally, by [Sta19, Tag 083C (3)] and [Sta19, Tag 03MK (5)], respectively. Recall that

the quotient map q : X̃ → X is étale and surjective (cf. proof of Proposition 2.5). Since

F̃1
∼= F1 ×X X̃ is a relative effective Cartier divisor on X̃/S, it follows that F1 is an effective

Cartier divisor on X and that it is flat over X . As X is flat over S, we see that F1 is flat over

S. Thus, F1 is a relative effective Cartier divisor on X/S. �

Proposition 3.7. Assume that S is reduced and let s ∈ S be a geometric point. Consider

the geometric fiber Xs. Then, we have the following:

• F0|Xs is a fiber of the Albanese fibration of Xs, and

• F1|Xs is contained in a fiber of the second elliptic fibration of Xs over P1.

In particular, the sum F0 + F1 is a relatively ample divisor on X/S, that is, a polarization.

https://stacks.math.columbia.edu/tag/083C
https://stacks.math.columbia.edu/tag/03MK


3. MARKED AND NUMERICALLY POLARIZED BIELLIPTIC SURFACES 95

Proof. Note that F̃1 is reduced, since it is flat over the reduced scheme S. Then, by

[Sta19, Tag 0830], the scheme theoretic image of F̃1 under the quotient morphism q : X̃ → X
is the reduced induced algebraic space structure on the closure of the set theoretic image of

F̃1 under q. Moreover, since the morphism q is finite and in particular universally closed, the

scheme theoretic image F1 of F̃1 coincides with the set theoretic image (with the reduced in-

duced algebraic space structure). But taking the set theoretic image commute with pullbacks.

Thus, we get

F1|Xs = q(F̃1)|Xs = qs(F̃1|Xs) = qs(E1,s × {0E0,s}),

where qs denotes the pullback of the morphism q along s : Spec k → S for an algebraically

closed field k, and 0E0,s denotes the identity element of the elliptic curve E0,s over k. Finally,

it is clear that qs(E1,s × {0E0,s}) is mapped to a point by the second fibration g : Xs → P1 of

the bielliptic surface Xs and thus it is contained in a fiber of the fibration g over P1.

Similarly, it can be shown that F0|Xs = qs(0E1,s × E0,s) is mapped to a point by the

Albanese fibration f : Xs → Alb(Xs). Since the fibers of f are smooth, F0|Xs is a fiber of f .

Consider now the sum L := F0 + F1. By the discussion above, the pullback Ls is the

sum of a fiber of the Albanese fibration of Xs and a divisor contained in a fiber of the second

fibration over P1. Thus, the numerical class [Ls] is of the form [Ls] = [E]+ [F ], where [F ] and

[E] denote the numerical class of a fiber of the Albanese fibration and of the second fibration

of Xs, respectively (this corresponds to the notation of Section 3 in Chapter 1). Thus, it

follows from Lemma 3.2 of Chapter 1 that Ls is an ample divisor. Since these is true for

every geometric point s ∈ S, we conclude that L := F0 + F1 is relatively ample, that is, a

polarization on X . �

By checking the intersection theory on geometric points, we get

F2
0 = F2

1 = 0, and F0 · F1 = 2 (the rank of GP ).

Proposition 3.8. Let [Fi] ∈ Num(X/S) denote the numerical class of Fi, for i = 1, 2.

Then there exist integers m0,m1 ∈ N such that

1

mi
[Fi] ∈ Num(X/S) and [F0] · [F1] = m0m1.

In particular, 1
m1

[F1], 1
m0

[F0] is a basis of Num(X/S).

Proof. We may assume that S = Spec R, where R is a complete Noetherian local ring

with algebraically closed residue field. Let s ∈ S be the closed point of R, and consider the

specialization map

sp : Num(X/S) ↪→ Num(Xs), [L] 7→ [L]|s. (3.1)

https://stacks.math.columbia.edu/tag/0830
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This map is injective, since the intersection pairing is non-degenerate, and it is well-

defined. Indeed, this is the case if the specialization map at the level of the relative Pi-

card scheme is surjective up to torsion by [SGA71, Expose X, App. 7.9]. Since the rela-

tive Picard scheme PicX/S is smooth, Hensel’s lemma implies that the specialization map

sp : Pic(X/S)→ Pic(Xs) is surjective.

Moreover, since PicτX/S is an open and closed subscheme of the smooth scheme PicX/S ,

it is smooth. Thus NumX/S is smooth. Again, with Hensel’s lemma we get that the special-

ization map (3.1) is surjective.

From Theorem 3.3 of Chapter 1 we have that there exist integers m0,m1, such that

{ 1
m0

[F0]|s, 1
m1

[F1]|s} is a basis of Num(Xs). In particular, [F0]|s · [F1]|s = m0m1.

The assertion now follows from the bijectivity of the specialization map (3.1). �

Definition 3.9. A marked family of bielliptic surfaces over a Noetherian base scheme S

is a pair (X , φ) consisting of a family π : X → S of bielliptic surfaces over S together with a

lattice isomorphism (isometry)

φ : US → NumX/S ,

where US denotes the constant sheaf associated to the hyperbolic plane U .

Remark 3.10. Note that NumX/S is constant for a marked family of bielliptic surfaces

(X , φ). Moreover, from Proposition 3.5, after an étale base change this is always the case for

every (not necessarily marked) family of bielliptic surfaces.

From Proposition 3.8 we see that { 1
m1

[F1], 1
m0

[F0]} is a basis of Num(X/S). In particular

Num(X/S) is constant of rank 2 and we get an isomorphism

φ : US → NumX/S .

We can now consider the following moduli problem for marked bielliptic surfaces.

LetM(a1)
U denote the stack over SpecZ[1

6 ] whose objects are marked families of bielliptic

surfaces (π : X → S, φ) of type (a1) over a scheme S.

A morphism

(π′ : X ′ → S′, φ′)→ (π : X → S, φ)

is a pair (a, b), where

a : S′ → S, b : X ′ → X

are morphism of algebraic spaces, such that the square

X ′

π′

��

b // X

π

��
S′

a // S
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is Cartesian and the following diagram commutes

US ×S S′

��

a∗φ:=φ×SS′ // NumX/S ×S S′

��
US′

φ′
// NumX ′/S′ .

Note that the vertical arrows in the above diagram are isomorphisms.

We have shown that a family of bielliptic surfaces of type (a1) coming from the product

of modular curves is indeed a marked family of bielliptic surfaces (see Proposition 3.8). Thus,

there is a well-defined morphism of stacks ϕU fitting in the following commutative diagram:

Y1(2)×
Z[

1
6 ]
M1,1

ϕ

%%

ϕU //M(a1)
U

forget

��

M(a1).

The vertical arrow is in the diagram is the forgetful functor which forgets the marking.

3.2. Getting a Numerical Polarization from a Marked Family. We have seen

that a bielliptic surface X over an algebraically closed field k comes naturally with a stan-

dard marking, as the Néron-Severi lattice is isomorphic to the hyperbolic plane U . Moreover,

from the marking we get a unique numerical ample class η ∈ Num(X) of degree 2. The

following is the analogous result for marked families of bielliptic surfaces.

Proposition 3.11. Let (π : X → S, φ : US → NumX/S) be a marked family of bielliptic

surfaces over an irreducible base scheme S. Then there exist a unique numerical polarization

λ ∈ Num(X/S) of degree 2 on X/S, that is, a global section λ ∈ Num(X/S) with self-

intersection λ2 = 2, such that for every geometric point s of S the section λs ∈ Num(Xs) is

an ample numerical class.

Proof. From the marking φ, we get an isometry U ∼= Num(X/S). Choosing the standard

(hyperbolic) basis of U we get elements

e, f ∈ Num(X/S) such that e2 = f2 = 0, e · f = 1.
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Now set λ := e+f ∈ Num(X/S). Then we have λ2 = 2 > 0. Let L ∈ Pic(X/S) := PicX/S(S)

be a global section with numerical class [L] = λ ∈ Num(X/S) and let η ∈ S be the generic

point of S.

Consider the restriction Lη = L|Xη ∈ Num(Xη) of L to the geometric generic fiber Xη. We

have L2
η > 0. From Lemma 3.10 of Chapter 1 it follows that either Lη or L−1

η is effective. We

may assume that Lη is effective. Otherwise we just replace e, f with −e,−f . In particular,

Lη is ample, since L2
η > 0.

Since Lη is effective, we have h0(Lη) > 0. By flat base change (cf. [Sta19, Tag 02KH]),

it follows that h0(Lη) > 0, so Lη is also effective. Then, form the upper semi-continuity of

the function s 7→ h0(Xs,Ls) (cf. [Mum08, Chapter II, section 5]), it follows that for every

s ∈ S we have h0(Ls) > 0, i.e., Ls is effective for every s ∈ S.

Restricting to the geometric fiber Xs, we see that Ls on Xs is also effective, and since

L2
s > 0 also holds for every geometric point s ∈ S, we see that Ls is ample for every geometric

point s ∈ S. Thus, [Ls] = λs ∈ Num(Xs) is an ample class for every geometric point s of S.

The degree of λ can be checked on the fibers. Finally, the claim about the uniqueness is

proved as in the proof of Proposition 3.2 and by restricting to the fibers.

�

3.3. Numerically Polarized Bielliptic Surfaces. Let us now consider numerically

polarized bielliptic surfaces.

LetM(a1)
d,Num denote the stack over SpecZ[1

6 ] whose objects are pairs (π : X → S, λ), where

π : X → S is a family of bielliptic surfaces of type (a1) over a scheme S, and λ is a numerical

class of a polarization L of degree d on X/S.

A morphism

(π′ : X ′ → S′, λ′)→ (π : X → S, λ)

is a triple (a, b, ε), where

a : S′ → S, b : X ′ → X

are morphism of algebraic spaces, such that the square

X ′

π′

��

b // X

π

��
S′

a // S
is Cartesian and ε : b∗λ→ λ′ is an isomorphism.

https://stacks.math.columbia.edu/tag/02KH
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From Proposition 3.11 it follows that there is a well-defined morphism of stacks ψ2,Num

fitting in the following commuting diagram, where ϕ2,Num denotes the composition ψ2,Num ◦
ϕU :

Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]

ϕ

##

ϕU //

ϕ2,Num

))

M(a1)
U

ψ2,Num

��

M(a1)
2,Num

forget

��

M(a1).

Both M(a1)
U and M(a1)

d,Num are good candidates for being the ”right” moduli space of biel-

liptic surfaces of type (a1), since the extra structure required on them is naturally found in

bielliptic surfaces. Moreover, we believe that the extra structure on these moduli stacks could

be used to obtain more information about the morphisms ϕU and ϕ2,Num, respectively. We,

however, do not investigate this question further.

4. Outlook and Final Discussion

In this section we want to discuss some questions related to our main results. In order to

do so, let us recall them.

(1) Separation of families (Theorem 1.8): every family π : X → S of bielliptic surfaces

over a connected Z[1
6 ]-scheme S has as geometric fibers bielliptic surfaces of the same

type. Consequently, the moduli stack M over Spec Z[1
6 ] of bielliptic surfaces splits

into seven disjoint components (see Proposition 2.2).

(2) The epimorphism ϕ (Theorem 2.15): by considering the moduli stack M(a1) over

Z[1
6 ], we constructed a morphism of stacks

ϕ : Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]→M(a1)

which is an epimorphism (cf. Theorem 2.15).

We want to discuss the following questions:

(1.1) What can be said about the separation of families in small characteristic?

(2.1) What would it follow, if ϕ were an isomorphism of stacks? In other words, which nice

properties does the product Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6] have, that would be preserved

by ϕ, if it were an isomorphism?
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(2.2) Can similar morphisms be constructed for each of the stacks M(i) parameterizing

bielliptic surfaces of type (i)? More precisely, can we relate each one of this stacks

to (a product of) modular stacks in a similar way, as we have done for the stack

M(a1)? What has to be taken into account in order to do so?

4.1. Separation of Families in Small Characteristic. In this section we discuss

some partial results for classical bielliptic surfaces in small characteristic. We will work over

a scheme S = SpecR with R a complete discrete valuation ring.

Recall that the order of the canonical bundle of a bielliptic surface is given by the following

table.

Type char(k) 6= 2, 3 char(k) = 2 char(k) = 3

(a) 2 1 2

(b) 3 3 1

(c) 4 1 4

(d) 6 3 2

Table 4.1. Order of ωX in Pic(X).

Definition 4.1. By a classical bielliptic surface we mean a bielliptic surfaces X over an

algebraically closed field k of characteristic p such that ord(ωX) 6= 1.

Note that one could define classical bielliptic surfaces by one of the other equivalent con-

ditions stated in Corollary 1.20 in Chapter 1.

The following facts still hold in small characteristic for classical bielliptic surfaces (cf.

Proposition 1.7 and Lemma 1.9).

Lemma 4.2. Let π : X → S be a family of bielliptic surfaces over S = SpecR, where R is

a complete discrete valuation ring. Assume that the special geometric fiber Xk is a classical

bielliptic surface. Then,

(1) The relative Picard scheme PicX/S is smooth.

(2) The identity component of the relative Picard scheme Pic0
X/S is an elliptic curve

over S.

(3) The torsion Néron-Severi scheme NSτX/S is a finite and étale S-group scheme.

Proof. (1) Since Xk is a classical bielliptic surface, we have H2(Xk,OXk) = 0.

From this, the claim can be proved following the argument in the proof of Proposition

1.7.

(2) Given that Xk is a classical bielliptic surface, the Picard scheme Pic0
Xk/k

is an elliptic

curve, since it is reduced and of dimension 1. Then, one may argue as in the proof

of Lemma 1.9 (a).
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(3) This is a restatement of Lemma 1.9 (b). In the proof of that lemma we used the fact

that the relative Picard scheme PicX/S is smooth, which in the present case is given

by (1).

�

Proposition 4.3. Let X → S be a family of bielliptic surfaces over S = Spec R where

R is a complete discrete valuation ring of characteristic p ∈ {2, 3}. Assume that the special

geometric fiber Xk is a classical bielliptic surface of type (i), then the geometric generic fiber

XK is a (classical) bielliptic surface of the same type.

Proof. First, we prove that the orders of the canonical bundles of XK and Xk, respec-

tively, are the same. Indeed, by Lemma 4.2 (2), Pic0
X/S is an elliptic curve over S. Let n

be the least common multiple of the orders of the canonical bundles of the different types

of bielliptic surfaces in the given characteristic (cf. Table 4.1). Thus, n = 3 if char(k) = 2

and n = 4 if char(k) = 3. In both cases n is not divisible by the characteristic p. Hence,

the kernel Pic0
X/S [n] of the multiplication by n map on Pic0

X/S is a finite and étale S-group

scheme (see, for example, [KM85, Theorem 2.3.1]). Then, by Hensel’s lemma, the reduction

map

Pic0(XK)[n] ∼= Pic0
X/S [n](K)→ Pic0

X/S [n](k) ∼= Pic0(Xk)[n]

sending ωXK to ωXk is bijective. Thus, ord(ωXK ) = ord(ωXk).

Second, we have NS(ωXK ) = NS(ωXk). Indeed, since NSτX/S is a finite and étale S-group

scheme by Lemma 4.2(3), the reduction map

NSτ (XK) ∼= NSτX/S(K)→ NSτX/S(k) ∼= NSτ (Xk)

is bijective. Hence, NSτ (ωXK ) = NSτ (ωXk). Then, it follows that NS(ωXK ) = NS(ωXk), since

both bielliptic surfaces have the same Picard number ρ(XK) = ρ(Xk) = 2.

Finally, by arguing as in the case of bielliptic surfaces in characteristic different from 2

and 3 (see Proposition 1.14), the Néron-Severi groups can be computed either directly (in

the case of the Jacobian bielliptic surfaces) or by lifting to characteristic zero (in the case

of non-Jacobian bielliptic surfaces) 2. Recall that, according to Theorem 5.12 of Chapter

1, bielliptic surfaces lift to characteristic zero, even in small characteristic. Moreover, the

Néron-Severi group is invariant under deformation, again by Lemma 4.2(3).

Using these facts a case by case study shows that the type of XK and Xk must be the

same. �

Remarks 4.4. (1) The same result still holds if the discrete valuation ring R is of

mixed characteristic, provided the type of the geometric special fiber in question

is not (d). For this type the problem lies in the fact that the canonical bundle of

2In the case a bielliptic surface X of type (a3) (in characteristic 2) one has NS(X) ∼= µ2. This was directly
computed by Lang in [Lan79, p. 497].
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the geometric generic fiber could, in principle, have order 6, which is divisible by the

residue characteristic p ∈ {2, 3}. Note that for the other classical types the canonical

order is the same as in characteristic zero (cf. Table 4.1).

(2) The previous result is only about families of bielliptic surfaces in characteristic 2

and 3. In particular, we are assuming that the geometric generic fiber is a bielliptic

surface (as are all geometric fibers of such a family). We are not considering families

of (quasi-)bielliptic surfaces, whose geometric fibers can be either bielliptic or quasi-

bielliptic surfaces. The situation for such families is much more delicate, since for

a quasi-bielliptic surface X the identity component of the Picard scheme Pic0
X/k is

non-reduced. Therefore, if π : X → S is a family of (quasi-)bielliptic surfaces having

some quasi-bielliptic surfaces as geometric fibers, the relative Picard scheme Pic0
X/S

can not be an elliptic curves, for it would contain some non-reduced fibers.

4.2. An Isomorphism of Stacks. In what follows we shortly discuss a direct conse-

quence that would follow, if one could find an isomorphism of stacks

ϕ∗ : Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]→M(a1)

∗ ,

whereM(a1)
∗ denotes one of the moduli stacksM(a1),M(a1)

U orM(a1)
2,Num. From the knowledge

of certain properties of the stacks on the left-hand side, one could similarly conclude that the

stack M(a1)
∗ also possesses that properties.

As we saw at the beginning of Section 2.2, the stacks on the left-hand side have the

following properties:

• The moduli stack of elliptic curvesM1,1 is a smooth and separated Deligne-Mumford

stack of finite type over Z (see, for example, [Ols16, Theorem 13.1.2]).

• The stack Y1(2)[1/6] of elliptic curves with a Γ1-structure over Z[1
6 ] is an algebraic

stack (see, for example, [DR73, IV,(4.8)]).

Thus, we obtain the following conditional result.

Proposition 4.5. Let

ϕ∗ : Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6]→M(a1)

∗

be a morphism of stacks, where M(a1)
∗ denotes one of the moduli stacks M(a1),M(a1)

U or

M(a1)
2,Num. If ϕ∗ is an isomorphism of stacks, then M(a1)

∗ is an algebraic stack.

Proof. The product Y1(2)[1/6]×
Z[

1
6 ]
M1,1[1/6] is an algebraic stack over S by [Sta19,

Tag 04TE] (see also [LMB00, Proposition (4.5)(i)]). Then, since ϕ∗ is an isomorphism of

stacks, it follows that M(a1)
∗ is an algebraic stack by [Sta19, Tag 03YQ]. �

https://stacks.math.columbia.edu/tag/04TE
https://stacks.math.columbia.edu/tag/03YQ
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Similarly, the stack M(a1)
∗ will have any property shared by both stacks Y1(2)[1/6] and

M1,1[1/6], which is preserved under the formation of the 2-categorical fiber product. We left

to the reader the investigation of such further properties and refer to [DR73] and [KM85]

for the theory and properties of the stacks Y1(N)[1/N ] and M1,1.

4.3. Morphism Between Moduli for Other Types. We now discuss the possibility

of constructing morphisms of stacks ϕ(i) from (products of) modular stacks to the stacksM(i)

parameterizing families of bielliptic surfaces of type (i), which are analogous to the morphism

ϕ constructed for the stack M(a1). We will explain some of the difficulties we encountered

when attempting to carry out the construction of such morphisms ϕ(i). Moreover, we will

address the question of which of our results about ϕ in the case (a1) carry over to these other

morphisms.

Let us first consider the case of the other Jacobian types, i.e., the types (b1), (c1) and (d).

We start with the moduli stack M(b1) parameterizing bielliptic surfaces of type (b1).

4.3.1. The Moduli Stack M(b1).

Consider the following data:

• S ∈ (Sch/Z[1
6 ]),

• (f1 : E1 → S, e1, P ) ∈ Y1(3)[1/6](S), where e1 : S → E1 is a section of f1, and P a

point of exact order 3 in E1/S, and

• (f0 : E0 → S, e0) ∈ M1,1[1/6](S), where e0 : S → E0 is a section of f0, together with

an automorphism ω ∈ Aut(E0/S, e0) of order 3 which fixes the identity section.

Let X̃ = E1 ×S E0 be the fiber product of the curves and GP ⊂ E1 be the cyclic subgroup

of rank 3 generated by P , i.e., GP = e1(S) + P (S) + 2P (S) ⊂ E1. Since 3 is invertible on S,

GP is a finite and étale group scheme over S, which is isomorphic to the constant S-group

scheme (Z/3Z)S by [KM85, Lemma 1.4.4]. Moreover, we can define a free action

σP : GP ×S X̃ → X̃

of GP on X̃ as follows: for every S-scheme T let (γ1 : T → E1, γ0 : T → E0) be a T -point of X̃
and set

PT · (γ1, γ0) := σP (PT , (γ1, γ0)) = (γ1 + PT , ω(γ0) = ω ◦ γ0),

where PT is the point on E1(T ) induced by the base change T → S.

Similarly as in the case (a1) (see Proposition 2.5), the quotient X := X̃/GP is a smooth

and proper algebraic space over S, whose geometric fibers are bielliptic surfaces of type (b1),
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i.e., X → S ∈M(b1)(S).

The first difficulty we encounter in generalizing our construction is the existence of the

automorphism ω of E0/S of order 3. We don’t know which elliptic curves over S admit such an

automorphism. If E0 = E0×S is a trivial family defined by an elliptic curve E0 of j-invariant

j(E0) = 0, then E/S admits such an automorphism ω. Probably, an isotrivial family of elliptic

curves, that is, a family whose fibers are all isomorphic to one elliptic curve, having as fibers

elliptic curves of j-invariant zero, would also admit such an automorphism. Moreover, we

don’t know if there is a substack ofM1,1 parameterizing elliptic curves E/S together with an

automorphism of order 3.

Let us assume that there is a substack M(j=0)
1,1 ⊂ M1,1 parameterizing elliptic curves

E/S together with an automorphism ω of E/S of order 3. Then, we obtain a well-defined

morphism of stacks

ϕ(b1) : Y1(3)[1/6]×Z [1
6 ]M(j=0)

1,1 [1/6]→M(b1).

The second difficulty we encounter is the following: in the (a1)-case, we proved that the

morphism ϕ is an epimorphism (see, Theorem 2.15). Our proof uses the fact that a finite étale

group scheme of rank 2 over a connected scheme has étale locally a unique generator. This is

no longer true if the rank of the group scheme is 3, as it is in the (b1)-case we are currently

considering. This rises the question of how important is the choice of the generator of the

group GP one wants to quotient out. In the present case, the S-points P and 2P generate

the same group scheme GP , but we can use each one of them to define two different actions

σP and σ2P on X̃ . Does this two actions define the same quotient?

The results of Tsuchihashi on complex bielliptic surfaces, which we presented in Section

1.1, suggest that what is crucial for constructing a bielliptic surface X = E × F/G out of

two elliptic curves E,F with torsion data G ⊂ E is the group G itself and not necessarily

the generator of the group G one chooses to defined the action of G on the product E × F .

Indeed, according to Tsuchihashi results (see, Theorem 1.3), a coarse moduli space M (b1) for

bielliptic surfaces of type (b1) is given by the modular curve Y0(3), which can be interpreted as

the moduli space parameterizing (isomorphism classes of) pairs (E,G), where E is a complex

elliptic curve and G is a cyclic subgroup of E of order 3 (see, for example, [DS05, Section

1.5]). This suggests that one should consider the modular stack Y0(3) parameterizing elliptic

curves E/S together with a Γ0(N)-structure instead of the modular stack Y1(3).

Let us recall the definition of a Γ0-structure on a relative elliptic curve E/S.

Definition 4.6. Let N be an integer.
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(1) A Γ0(N)-structure on an elliptic curve E/S is an N -isogeny

π : E → E ′

which is cyclic in the sense that locally fppf on S, the kernel kerπ admits a generator.

Equivalently, a Γ0(N)-structure on E/S is a finite flat subgroup scheme K ⊂
E [N ], locally free of rank N , which is cyclic in the sense that locally fppf on S, it

admits a generator.

(2) The stack parameterizing elliptic curves E/S together with a Γ0(N)-structure will

be denoted by Y0(N). According to [DR73, IV, (4.3)] the stack Y0(N)[1/N ] :=

Y0(N)⊗Z Z[1/N ] is an algebraic stack.

Note that there is a natural morphism of stacks

Φforget : Y1(N)[1/N ]→ Y0(N)[1/N ]

defined by forgetting the generator: let S be a scheme over Spec Z[ 1
N ] and E/S an elliptic

curve with a Γ1(N)-structure, that is, together with a point P ∈ E [N ](S) of exact order N .

To P we can associate the cyclic subgroup GP := 〈P 〉 ⊂ E generated by P . By associating to

the pair (E/S, P ) the pair (E/S,GP ) one obtains the desired morphism.

Coming back to the moduli stack M(b1), note that the morphism of stacks ϕ(b1) factors

as follows:

Y1(3)[1/6]×
Z[

1
6 ]
M(j=0)

1,1 [1/6]

ϕ(b1)

**

(Φforget, id)
// Y0(3)[1/6]×

Z[
1
6 ]
M(j=0)

1,1 [1/6]

ψ(b1)

��

M(b1).

Using the same arguments as in the proof of Proposition 2.15, where we proved that the

morphism ϕ is an epimorphism, one can show that both ϕ(b1) and ψ(b1) are epimorphism. The

main difference with the (a1)-case is that the cyclic subgroup scheme G ⊂ E (in the notation

of the proof) may admit several generators étale locally. This, however, is not crucial for

proving that ϕ(b1) is an epimorphism. Nevertheless, it could be relevant in order to show the

fully faithfulness of these morphisms. In particular, the morphism ψ(b1) have more chances

to be an isomorphism of stacks than the morphism ϕ(b1).

4.3.2. The Other Jacobian Types. Similar as in the previous case, one can study the re-

maining Jacobian cases, that is, the cases (c1) and (d). In this cases we encounter the same
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difficulty regarding the existence of automorphism of order 4 and 3, respectively, for elliptic

curves over a given scheme S. Moreover, under the assumption of the existence of substacks

M(j=1728)
1,1 and M(j=0)

1,1 parameterizing elliptic curves E/S together with an automorphism ω

of E/S of order 4 and 3, respectively, one may defined similar morphisms as we did for the

case (b1). We leave to the reader to carry out this explicitly.

4.3.3. The Non-Jacobian Cases. As for the non-Jacobian cases (a2), (b2) and (c2) let

us shortly mention that the main difficulty in generalizing the results from the (a1)-case to

the case (a2), for example, lies in the following fact: for a non-Jacobian bielliptic surface

X = E × F/G the Abelian canonical cover X̃ does not coincide with the product E × F .

Due to this fact, our strategy used to study the case (a1) does not generalize directly to the

non-Jacobian cases.
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Sci., Paris, 1963, p. 37. MR 0257095 61

[BFTV19] Jonas Bergstrm, Eugenia Ferrari, Sofia Tirabassi, and Magnus Vodrup, On the brauer group of

bielliptic surfaces, 2019. 73

[BK86] Spencer Bloch and Kazuya Kato, p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math.

(1986), no. 63, 107–152. MR 849653 33

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathe-
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