
Lehrstuhl für Computergestützte Modellierung und Simulation
Department of Civil, Geo and Environmental Engineering
Technical University of Munich

BIM-Based Code Compliance Checking of the
Musterbauordnung

Scientific work to obtain the degree

Master of Science (M.Sc.)

at the Department of Civil, Geo and Environmental Engineering of the
Technical University of Munich.

Supervised by Prof. Dr.-Ing. André Borrmann
Simon Vilgertshofer, M.Sc.
Lehrstuhl für Computergestützte Modellierung und Simulation

Submitted by Sebastian Schliski
03664813

Submitted on July 15, 2021

Abstract

The present work deals with the Automated Code Compliance Checking (ACCC) of 3D
building models and outlines a methodology for translating content from standards and
legal texts into machine-interpretable information, thus enabling an automated verifica-
tion of these contents. Therefore, the fifth section of the Model Building Regulation
(Musterbauordnung) (MBO) is the central point of the investigations.

The digitization of the Architecture, Engineering and Construction (AEC) sector is
steadily progressing and is significantly influenced by the Building Information Modeling
(BIM) method. BIM utilizes digital building models instead of 2D plans for a building’s plan-
ning, construction, and maintenance throughout its entire life cycle. All project participants
incorporate their planning services as model content into the building model. This change
in the way of working aims at reducing planning errors and the resulting costs and delays.
In order to assure high model quality, consistent quality and conformity checking of all
model contents have to be conducted.

Design results of engineers and architects are claimed and regulated by standards and
legal texts. The underlying models and model contents reflect the quality of this planning
performance. In order to be able to carry out an automated check concerning these
regulations, a translation of the demanded contents into machine-interpretable information
is required. The development of code compliance checking tests is complicated because
of the very high complexity of the respective standards or legal texts.

For this purpose, this work outlines a methodology for identifying and processing
relevant data. To assess the absence or presence of information, detailed knowledge of
the used data format is required. For this purpose, appropriate classes of the open data
format Industry Foundation Classes (IFC) are discussed regarding automated compliance
checks, and essential information for testing the fifth section of the MBO are identified.
Therefore, an approach is developed to check the correctness of the resulting mapping
process into the IFC format and adherence to outlined exchange requirements.

In conclusion, the described methodology for enabling ACCC of regulatory require-
ments is tested for its stability based on selected sections of the MBO and a sample
building model.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der automatisierten Konformitätsprüfung von
3D Gebäudemodellen und legt dabei eine Methodik zugrunde, Inhalte aus Normen und
Gesetzestexten in maschinen-interpretierbare Informationen zu übersetzen und somit eine
automatisierte Prüfung dieser Inhalte zu ermöglichen. Dabei stellt der fünfte Abschnitt der
Musterbauordnung den zentralen Punkt der Untersuchungen dar.

Die Digitalisierung der Baubranche schreitet stetig voran und wird dabei maßgeblich
durch die Methode des Building Information Modeling (BIM) geprägt. Hierbei werden
digitale Gebäudemodelle verwendet, um eine effizientere Planung und Erhaltung von
Gebäuden zu ermöglichen. Alle Projektbeteiligten lassen ihre Planungsleistung als Mod-
ellinhalte in das Gebäudemodell miteinfließen. Diese Veränderung der Arbeitsweise ver-
folgt das Ziel der Reduzierung von Planungsfehler und der daraus entstehenden Kosten
bzw. Verzögerungen. Um dieses Ziel gewährleisten zu können, bedarf es konsequenter
Qualitäts- und Konformitätsprüfung aller Modellinhalte.

Planungsergebnisse von Ingenieuren und Architekten werden durch Normen und
Gesetzestexte gefordert und reguliert. Die Qualität dieser planerischen Leistung spiegelt
sich in den zugrundeliegenden Modellen bzw. Modellinhalten wider. Um ein Modell hin-
sichtlich dieser Anforderungen automatisiert prüfen zu können, wird eine Übersetzung der
geforderten Inhalte in maschinen-interpretierbare Informationen benötigt. Die Entwicklung
solcher Konformitätsprüfungen ist durch die meist hohe Komplexität der jeweiligen Normen
bzw. Gesetzestexte sehr kompliziert.

Deshalb wird in der vorliegenden Arbeit ein Konzept zur Identifikation und Aufberei-
tung relevanter Daten dargelegt. Um das Fehlen bzw. Vorhandensein von Informationen
beurteilen zu können, wird ein detailliertes Wissen hinsichtlich des verwendeten Datenfor-
mates benötigt. Hierzu werden für die automatisierte Prüfung relevante Klassen aus dem
offen Datenformat IFC diskutiert und zusätzliche essenzielle Informationen zur Prüfung der
Musterbauordnung identifiziert, die per Attribut in das Modell übergeben werden. Desweit-
eren wird ein Ansatz zur anschließenden Weiterverarbeitung der Daten und des daraus
resultierende Übertragungsprozesses in das Datenformat IFC offengelegt. Dazu wird
der Übertragungsprozess der zusätzlich nötigen Informationen auf seine Richtigkeit bzw.
Vollständigkeit überprüft und die Einhaltung der dargelegten Austauschanforderungen
verifiziert.

Anschließend wird das dargelegte Konzept zur automatisierten Prüfung anhand
ausgewählter Ausschnitte der MBO und eines Probegebäudemodells auf ihre Tragfähigkeit
geprüft und deren Ergebnisse diskutiert.

Contents

Contents V

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 2

1.3 Structure of work . 2

2 Introduction to IFC, IDM, MVD and Co. 4

2.1 Historical Background . 4

2.2 Industry Foundation Class . 4

2.2.1 IFC Layers . 5

2.2.2 Inheritance Hierarchy . 7

2.2.3 Object Relationship . 8

2.2.4 Technological Outlook . 10

2.3 Information Delivery Manual and Model View Definitions 10

2.3.1 mvdXML . 12

2.4 LOD, LOG, LOI . 14

2.5 Summary . 15

3 Code Compliance Checking 16

3.1 Introduction . 16

3.2 Levels of Model Quality . 17

3.3 Technical Approaches . 18

3.3.1 Hard-Coded Tests . 18

3.3.2 Domain Specific Programming Languages 21

V

3.3.3 Visual Programming Language . 22

3.4 Summary . 25

4 Musterbauordnung 27

4.1 Introduction . 27

4.2 Fifth Section of Musterbauordnung . 27

4.3 Representation & Complexity of Regulatory Requirements 29

4.3.1 Representation . 29

4.3.2 Complexity . 30

4.4 Extraction Methods . 31

4.4.1 Semantic Mark-Up RASE Methodology 31

4.4.2 Natural Language Processing . 33

4.5 Summary . 36

5 Concept 37

5.1 RASE Mark Up Technique . 37

5.2 IFC Data Coverage . 39

5.2.1 Three-Dimensional Aggregation . 39

5.2.2 Building Element Aggregation . 43

5.2.3 Additional Semantic Assignment . 46

5.2.4 Building Element Allocation . 47

5.3 Data Extraction and Mapping . 49

5.3.1 Granularity and Complexity . 50

5.3.2 Further Analysis and Strategies . 52

5.3.3 Data Mapping Tables . 54

5.3.4 Code Compliance Checking Approaches 58

5.4 Technical Implementation . 59

5.5 Summary . 62

6 Proof of Concept 64

6.1 Additional Data Identification . 64

6.2 Model Data Quality . 67

6.3 Use Cases . 70

6.3.1 §33 - First and Second Escape Way 70

6.3.2 § 34 - Stairs . 74

6.4 Validation . 77

6.4.1 Validation of Data Quality . 77

6.4.2 Validation of Design Quality . 79

6.5 Approach Evaluation and Limitations . 83

6.6 Summary . 85

7 Conclusion 86

7.1 Summary . 86

7.2 Future Work . 88

A 90

List of Figures 91

List of Tables 94

List of Algorithms 95

References 96

Acronyms

ACCC Automated Code Compliance Checking
AEC Architecture, Engineering and Construction
AI Artificial Intelligence
API Application Programming Interface
BCA Building Construction Authority
BCF BIM Collaboration Format
BEP BIM Execution Plan
BERA Building Environment Rule and Analysis
BIM Building Information Modeling
BOM BERA Object Model
BPMN Business Process Modeling Notation
bsDD buildingSMART Data Dictionary
bSI buildingSMART International
CDE Common Data Environment
CFG Context-Free Grammar
CORENET Construction and Real Estate Network
EIR Exchange Information Requirements
ER Exchange Requirements
GUI Graphical User Interface
HOAI Fee Structure for Architects and Engineers
IAI International Alliance for Interoperability
IDM Information Delivery Manual
IDS Information Delivery Specification
IFC Industry Foundation Classes
ISO International Organization for Standardization
LoD Level of Detail
LOD Level of Development
LoG Level of Geometry
LoI Level of Information
MBO Model Building Regulation (Musterbauordnung)
ML Machine Learning
MVD Model View Definition
NLP Natural Language Processing
OWL Ontology Web Language
POS Part-Of-Speech
PSG Phrase Structure Grammar
RDF Resource Description Language
STEP Standard for the Exchange of Product Model Data

IX

UID Unique Identifier
VCCL Visual Code Checking Language
VPL Visual Programming Language
XML Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

The last century was affected by high demands for living and working spaces in metropoli-
tan areas, resulting in rising rent and purchase prices worldwide. These issues concern
social and economic parts of life and increase the pressure on society, companies, and
governments. Additionally, more than a third of global CO2 emissions are caused by the
building and construction sector if upstream power generation is taken into consideration
(JONES and HOWARTH, 2019). Therefore, inaccurate planning and construction affect
the issues mentioned above. Due to this, the Architecture, Engineering, and Construc-
tion (AEC) sector holds a special responsibility in terms of enhancing current planning,
production, and sustainability processes.

In order to meet these demands, Building Information Modeling (BIM) helps to reduce
time and cost-consuming errors in the planning and production phases. Roland Berger
states the substantial impacts of digital technologies, like BIM, on business models and
emphasizes the potential in improving the overall efficiency (“Roland Berger Focus”, 2017).

Nevertheless, companies of the AEC sector need to invest more money in digitization.
According to McKinsey Global Institute, the construction sector is the second-lowest
digitized industry in 2015 and was not able to catch up in last years (“McKinsey”, 2016,
RIBEIRINHO et al., 2020).

The outdated way of detecting design errors is based on manually reviewing two-
dimensional planning documents. This process is error-prone and time-consuming. BIM
enables Automated Code Compliance Checking (ACCC) to evaluate a digital building
model’s quality concerning its data, modeling, and design quality. All validation results can
easily be documented and communicated between all stakeholders (Figure 1.1).

Checking for compliance with specific guidelines often requires the user to identify
essential information to test for its claimed requirements and enrich building models with
the determined additional data. Therefore, this master’s thesis outlines techniques to
detect and structure this necessary information and approach an efficient mapping process.
These issues are accomplished by utilizing recent BIM-tools for generating, processing,
and evaluating mandatory data and checking results.

1

VS
IS

O

D
IN

Detect and Structure
Essential Data

Map into IFC Automatable Processes

Code Compliance

Checking

Communication
via BCF

• Error Prone
• Uneconomical - Time Consuming
• Missing Traceability
• Tedious Task

Figure 1.1: Manual Error Detection vs. BIM Based Compliance Checking

1.2 Scope

This thesis identifies required data and outlines exchange requirements to check for com-
pliance concerning the fifth section of the MBO. Therefore, a methodology is established
to enable the user to distinguish it from commonly present data in the open data format
IFC. Additional required information is processed for a mapping process into IFC and
verified in a data quality check.

The output of this work contains Exchange Information Requirements (EIR) for con-
tents of MBO and relating data mapping tables. Furthermore, a data quality checking
procedure is implemented in Solibri Office to check the existence of required properties
and validate the before-established exchange requirements. Additionally, different code
compliance checking scenarios and extraction methods of norms and regulations are
outlined. Finally, all outlined concepts are validated for their correctness and reliability in a
case study testing for §33 and §34 of the fifth section of the MBO.

1.3 Structure of work

Chapter 2 gives an overview of the technical background, concerning the IFC schema
and its overall structure. In addition, relevant BIM relating methodologies, like Information
Delivery Manual (IDM), Model View Definition (MVD) and Level of Development (LOD) are
covered.

Chapter 3 gives an overview of ACCC and its different technical approaches. Selected
implementations of hard-coded tests, domain specific programming languages and Visual
Code Checking Language (VCCL) are outlined. They are reviewed with regard to their
particular field of application and compared concerning its strengths and weaknesses.

2

In Chapter 4 the basic knowledge of standards is explained and the relevant contents
of MBO regarding this master’s thesis are outlined. Additionally, norm’s representation
types and levels of complexity are postulated. Furthermore, different approaches of
(semi-)automated information extraction methods are represented and evaluated.

The conceptual approaches of this master thesis are outlined in Chapter 5. In the
beginning, the RASE mark up technique of the former chapter is applied and essential
data for ACCC is outlined. The overall identification and mapping of additional data is
generalized by terms of granularity and application of mapping tables.

Chapter 6 shows the implementation and validation of the before presented ap-
proaches. As case study, the paragraphs 33 and 34 of MBO are utilized as use cases.
Existing and new developed Solibri Office checks are implemented to validate a test
building model comprising several design errors regarding the underlying use cases. Fur-
thermore, the approach is evaluated and limitations are discussed. Additional suggestions
for future work of this thesis are reviewed in Chapter 7.

3

Chapter 2

Introduction to IFC, IDM, MVD and Co.

The basis of effective utilization of BIM are open data formats like IFC and determined
methodology to structure new workflows, enabling operators to handle large amounts
of information and data. This chapter covers basic knowledge of IFC and its general
structure and outlines essential official methods for handling and enhancing BIM working
procedures.

2.1 Historical Background

In late 1980, scientists began to search for consistent and loss-free data exchange, and
the idea of a geometric and semantic representation arose. The first attempts at a loss-free
exchange of geometric data between heterogeneous CAD-Systems were started in the
1970s, which resulted in Standard for the Exchange of Product Model Data (STEP). Due
to protracted bureaucratic processes of International Organization for Standardization
(ISO), these first steps of digitization in the AEC sector were not further pursued. By
state-funded research and with the additional participation of industry, the standardization
efforts were further intensified and, in 1995, substantiated with the founding of the non-
profit organization International Alliance for Interoperability (IAI) which was later renamed
buildingSMART International (bSI).

In 1997, bSI released IFC Version 1.0 as a standardized data format for exchanging
semantic and geometric information, which is regularly updated and extended to the
current version IFC4 (2021). One of bSI core strategies is its open access of IFC (Open
BIM) and thereby guaranteeing a rapid rise of users and applications. Hence, it is available
free of cost, vendor-neutral, and independent of ISO standardization (“Technical Roadmap
2021”, 2021, BORRMANN et al., 2015).

2.2 Industry Foundation Class

IFC is a vendor-neutral and standardized data format to describe and exchange information
of buildings and civil infrastructures (“buildingSMARTa”, 2021). IFC is connected to
the above mentioned STEP by having the same underlying data modeling language in
common, named EXPRESS. EXPRESS is a declarative language and can be used to
define object-oriented data models. The entity type is comparable to classes in object-
oriented theory and can be additionally defined with several attributes and relations to
other entity types. Furthermore, inheritance can be used to pass attributes and relations

4

to subtypes (BORRMANN et al., 2015). The following paragraphs cover the IFC Layers,
their connected hierarchical structure, and object relationships.

2.2.1 IFC Layers

Due to the rising complexity and amount of classes, the IFC schema is subdivided into
four layers. These layers structure the overall inheritance possibilities: upper layers can
reference elements of lower layers, but not vice versa. Figure 2.1 highlights the four IFC
Layers Domain Layer, Interoperability Layer, Core Layer, the Resource Layer, and its
incorporated schemata which are explained in the following.

Figure 2.1: Four Layers of IFC Schema (“buildingSMARTb”, 2021)

5

Resource Layer:

The Resource Layer is on the lowest level and contains the fundamental data structure,
which can be referenced in the whole building model. The Resource Layer classes’
uniqueness is the absence of identity, and it is impossible to instantiate a class as a
discrete object. Only objects of the upper layers can reference these classes because
the upper layer classes are sub-classes of IfcRoot. One of the most used schemata
resources are, e.g., of type: Material, Topology, Cost, and Geometry.

Core Layer:

The next level in the hierarchy is the Core Layer and its fundamental classes of the
IFC schema. A central position is the Kernel-schema containing its abstract classes
IfcRoot, IfcObject, IfcActor, IfcProcess, IfcProduct, IfcProject and IfcRelationship.
Abstract classes can not be directly instantiated but by their sub-classes. IfcRoot is
the start point of the inheritance schema of IFC. All these entities can be referenced
and substantiated by the upper layers to define fundamental relations, basic structures,
and general concepts. Additionally, the Core Layer contains three extension schemata
Product Extension, Process Extension and Control Extension which are directly
connected to the Kernel classes. These schemata offer classes to describe spaces
and their relations, different processes, and the declaration of control objects.

Interoperability Layer:

The Interoperability Layer, or Shared Layer, serves as an intermediate level and
therefore contains classes derived from the Core Layer’s Classes, which are often
used in several domains. These definitions are used for inter-domain exchange
of information (“buildingSMARTb”, 2021). For example, IfcWall or IfcColumn are
important components in the construction field but are used by several domains.

Domain Layer:

The final level in the hierarchical layer structure builds the Domain Layer. Its domain-
specific schemata cover classes that can be directly assigned to a particular domain
and define entities of a specific product, process, or resource. These objects are used
for intra-domain exchange and sharing of information. The current IFC4 implies 11
domains (“buildingSMARTb”, 2021 BORRMANN et al., 2015).

6

2.2.2 Inheritance Hierarchy

The layer structure mentioned above of IFC builds the overall composition of the inheritance
hierarchy in the object-oriented data format. This hierarchy defines which classes can
access what kind of attributes and, therefore, strongly influence the specialization- and
generalization relationships. Figure 2.2 shows some of the most important entities of the
upper layers and thus, only picture a section of the whole underlying inheritance hierarchy.
The red marked classes are abstract classes of the Kernel-Schema in Section 2.2.1 and
are highlighted for clarity.

Figure 2.2: Most Important Entities of the Inheritance Hierarchy in the IFC Schema
(BORRMANN et al., 2015)

7

The class IfcRoot directly or indirectly defines all entities, except for the ones belonging
to the Resource Layer. All IFC classes are defined by bSI and additional information and
explanation are available online. Listing 2.1 depicts the EXPRESS specification of the
IfcRoot exemplarily:

Algorithm 2.1: IfcRoot EXPRESS Specification (“buildingSMARTc”, 2021)

ENTITY I f cRoo t
ABSTRACT SUPERTYPE OF(ONEOF(I f c O b j e c t D e f i n i t i o n , I f c P r o p e r t y D e f i n i t i o n ,

I f c R e l a t i o n s h i p)) ;
G loba l Id : I f cG loba l l yUn ique Id ;
OwnerHistory : OPTIONAL I fcOwnerHis tory ;
Name : OPTIONAL I f c L a b e l ;
Desc r i p t i on : OPTIONAL I f c T e x t ;

UNIQUE
UR1 : Globa l Id ;

END_ENTITY ;

In Listing 2.1, the abstract supertypes IfcPropertyDefintion, IfcRelationship, IfcObject-
Definition are defined comparable to Figure 2.2. Additionally, all necessary and optional
attributes are represented. Objects of IfcRoot require a unique identification by IfcGlobal-
lyUniqueId. Selective attributes of an object can be Name (IfcLabel), Information about
ownership and origin (IfcOwnerHistory), and Description (IfcText) and are marked as
OPTIONAL (BORRMANN et al., 2015, “buildingSMARTc”, 2021).

2.2.3 Object Relationship

In IFC, relations between objects are rather realized by the direct compound of these
objects than by inserted objects which represent the relation by itself. The super-class of
all relations is IfcRelationship and has 6 sub-classes. These sub-classes define different
relations like spatial relations, e.g., the relations of spaces to surrounding components,
defining multilayered components, implementing extension mechanisms like Property Sets,
and different approaches of geometric representations.

Spartial Aggregation and Space-Element-Relation:

The spatial collection hierarchy in IFC is arranged by the super-class IfcSpatialStruc-
tureElement, and its sub-classes comprise semantics from the site’s representation
to building, story, and spaces description. Additionally, in a lot of BIM applications,
e.g., ACCC, the relation of spaces to surrounding objects, like walls, windows, etc.,
are of great interest. The sub-class IfcRelSpaceBoundary references via attribute Re-
latingSpace space objects and via RelatedBuildingElement particular elements. The
resulting Space Boundaries always refer to the space object and can be distinguished
in two levels. Level 1 neglects additional information, and Level 2 considers if on the
other side is a space (Level 2b) or an element (Level 2a).

8

Materials:

Another application of relationships is the connection of materials and components.
An important functionality of IFC is the representation of multilayered components.
The sub-class IfcRelAssociatesMaterial connects material to components, and com-
posite materials can be linked to components by IfcMaterialRelationship as well.
Additional material parameters can be coupled via IfcMaterialProperties which can
use predefined property sets or specified by the user.

Property Sets:

IFC covers a large variety of semantics and, therefore, must prevent reaching an
unclear complexity. For this reason, the property definition of objects is split into
static and dynamic (property sets) generated attributes. The former are fundamental
features of objects, like for doors the OverallWidth and OverallHeight, and can be seen
as standard information that always has to be delivered. Attributes, e.g., belonging to
national standards, can be linked via property sets, using the sub-classes of IfcProp-
erty. Additionally, property sets can be grouped via IfcPropertySet and referenced with
objects via IfcRelAssignsProperties. A negative side-effect of this schema is a missing
clear definition or labeling of certain objects and attributes. Different stakeholders
may vary in labeling property sets which results in a lack of interoperability. Avoiding
this problem, bSI introduced the buildingSMART Data Dictionary (bsDD) to publish
standardized property sets definitions regarding classifications, properties, values,
units, and even translations for different languages.

Geometric Representation:

Because geometries are linked to an object, IFC handles semantic and geometric
information separately. Therefore, objects can have several geometric representations,
but semantic information is always leading: at first, an object is described via its
semantic information and afterward by its geometry. The reason for this is the different
application fields in the AEC sector with varying demands in terms of geometric quality.
A widespread approach is the triangulated surface description which approximates
the surface with a triangle mesh (IfcTriangulatedFaceSet). It is often used for pure
visualization in applications because nearly every software can use the given informa-
tion. But this comes with huge memory requirements, and curved surfaces are only
poorly approximated. Solid Modeling (IfcSolidModel) is an approach often used by
BIM tools to implement changes made by the user. A flexible method is the Boundary
Representation or the Constructive Solid Geometry (CSG), which utilizes base units
and boolean operations to construct geometries.

9

The implementation of geometric representations is always accompanied by position-
ing in space. The IFC schema uses local and global coordinate systems to enhance
the flexibility in terms of changes. Objects inside a story are localized inside the
coordinate system of the story, which is in turn placed inside the building’s coordi-
nate system. The global coordinate system refers to the IfcSite object, and all local
coordinate systems are referenced (BORRMANN et al., 2015).

2.2.4 Technological Outlook

IFC was implemented for a file-based exchange of building models. New technical con-
cepts like Common Data Environment (CDE), Digital Twins, or future Smart Cities require
an object-based use of IFC data and appropriate Application Programming Interface (API)
designs to enhance interoperability. Therefore, IFC needs to be able to facilitate partial file
exchanges and allowing smaller discreet exchanges. This new version of IFC would still
enable the exchange of files and, additionally, the access, maintenance, and exchange via
APIs. The current complex structure of IFC results from its closeness to EXPRESS and
bounds it to the representation structure of STEP format. This complicates the process of
accessing building models via an API and prevents the object-based access and exchange
of partial IFC data.

bSI states in its technical roadmap of 2020 that IFC needs to ensure a reliable use by
a stricter but also easier implementation to enable more predictable and consistent results.
Due to rising requirements of additional domains and extensions, IFC has to become
modular to provide efficient access. Additionally, circular references have to be removed
to decrease its complexity, and the overall methodologies must base on modern computer
interpretable languages like XSD, OWL, and JSON (“Technical Roadmap 2020”, 2021).

2.3 Information Delivery Manual and Model View Definitions

The AEC sector is characterized by many different participating stakeholders in a project
and, therefore, by a vast amount of exchanged data. bSI developed the IDM and the
MVD to avoid issues in terms of data exchange by standardizing these processes. A fully
enriched BIM-model contains a significant amount of information that is only required by
specific stakeholders and thus is redundant in other use cases. Unneeded data might
confuse users or interfere with a stakeholder’s BIM use case and therefore lead to planning
or construction errors.

10

The overall method is separated into two parts: the functional part, realized by the
IDM, and the technical aspect, transposed by the MVD. This whole procedure is divided
into six sub-processes:

1. Definition of participating stakeholders, their roles and tasks

2. Chronological and organizational integration of all sub-processes in
Business Process Modeling Notation (BPMN)

3. Determining all data exchange interfaces

4. Formalizing Exchange Requirements (ER)

5. Information mapping onto IFC

6. Technical implementation of MVD via mvdXML

Sub-process 4 introduces the concept of exchange requirements which describes
conditions of how to enrich certain elements in the BIM model. These boundaries are
represented in tables, sorted by building elements, and include the chosen data type,
units, relations, and sometimes permitted ranges of value. The tables have to be further
formalized for an automated software implementation into the IFC data format (sub-process
5). Several ER can be grouped to an MVD to define mandatory or optional information
and what kind of classes, attributes, and relations are used. MVDs enable partial mapping
to allow the exchange of partial models for certain stakeholders with their specifically
required information (BORRMANN et al., 2015).

IFC 4 provides two basic views; the Reference View supports the coordination by eas-
ing the merging process of partial models or domain models. Only geometrically reduced
objects combined with the relational representation of spatial and physical components
are exported. The merging of models can be used for code compliance checking like error
detection. In contrast, the Design Transfer View enables the export of advanced geometric
components.

Figure 2.3: Scope of Design Transfer View and Reference View (IFC 4) Compared to
Coordination View (IFC 2x3) (BALDWIN, 2017)

11

2.3.1 mvdXML

A huge amount of data requires possibilities to verify its correctness and completeness.
For this reason, bSI developed the mvdXML as a technical implementation of the MVD.
MvdXML is a standardized format to specify MVDs and its respective EIR, including
exchange requirements and validation rules (CHIPMAN et al., 2016). These comprise ex-
change definitions of import and export scenarios via IFC. Exchange definitions represent
a reduced building model according to the user’s needs which eases the collaboration
process between different stakeholders and assures an export of only relevant data. Addi-
tionally, it facilitates an automated validation of these building models regarding their data
quality and replaces fault-prone manual efforts.

The mvdXML format utilizes Extensible Markup Language (XML) and can be created
and edited in any text or XML editor. To ease this manual process, bSI provides the
IfcDoc application for generating mvdXML files. The overall core structure of a mvdXML
file begins with two main sub-elements: Templates and Views. Templates represent a
list of reusable ConceptTemplates, which in turn define a graph, representing particular
entities and their relating attribute requirements. These attribute requirements are defined
inside a concept template and queried by mvd:AttributeRules and mvd:EntityRules. Views
comprise a list of model view definitions (ModelView), which contain particular entities and
relating concepts for defining exchange requirements. Every ModelView contains specific
mvd:ExchangeRequirements and Roots. Roots can hold a set of concepts with template
rules checking a subset of information (see Figure 2.4).

Templates

mvdXML

Views

ConceptTemplate ModelView

Attribute

mvd:Definitionmvd:Rulesmvd:SubTemplates

mvd:AttributeRule

mvd:EntityRulesmvd:Constraints

mvd:References

mvd:AttributeRules

mvd:Constraints

Attribute

mvd:Definitions mvd:BaseViewmvd:ExchangeReq.mvd:Roots

mvd:ConceptRoot

mvd:Definitions mvd:Applicability mvd:Concepts

mvd:Template mvd:TemplateRules

Figure 2.4: mvdXML Elements (Inspired by CHIPMAN et al., 2016)

An extraction of a mvdXML file is depicted in Algorithm 2.2 of a Templates body defition.
The ConceptTemplate declares its atributes of an Unique Identifier (UID), name and the
underlying IFC version. The applicable entity and root entity of this concept templates is

12

IfcDistributionElement. mvd:Rules includes the IFC definition of how a IfcDistributionPort
is linked to the root entity IfcDistributionElement. The IfcDistributionElement is nested by
several IFC entities and holds a reference to the relation class IfcRelNests which links it to
IfcDistributionPort. In the mvd:AttributeRules, three attributes are declared and can be
verified via the RuleID attribute (CHIPMAN et al., 2016).

Algorithm 2.2: Extraction of mvdXML File. Definition of Templates Body (CHIPMAN et al.,
2016)

<Templates >
<ConceptTemplate uuid =" bafc93b7 −d0e2−42d8−84cf −5da20ee1480a "
name=" Por t Assignment " applicableSchema =" IFC4 "
a p p l i c a b l e E n t i t y =" I f c D i s t r i b u t i o n E l e m e n t ">
< D e f i n i t i o n s >

< D e f i n i t i o n >
<Body>

< ! [CDATA[<p> D i s t r i b u t i o n por t s are def ined by < i >
I f c D i s t r i b u t i o n P o r t </ i > and at tached by the < i > I fcRelNests </ i
> r e l a t i o n s h i p . Por ts can be d i s t i n g u i s h e d by the < i >
I f c D i s t r i b u t i o n P o r t </ i > a t t r i b u t e s < i >Name</ i > , < i >
PredefinedType </ i > , and < i >F lowDirec t ion </ i > : < /p >]] >

</Body>
</ D e f i n i t i o n >

</ D e f i n i t i o n s >
<Rules>

< A t t r i b u t e R u l e Attr ibuteName =" IsNestedBy ">
<Ent i tyRu les >

<En t i t yRu le EntityName =" I fcRe lNes ts ">
<At t r i bu teRu les >

< A t t r i b u t e R u l e Attr ibuteName =" RelatedObjects ">
<Ent i tyRu les >

<En t i t yRu le EntityName =" I f c D i s t r i b u t i o n P o r t ">
<A t t r i bu teRu les >

< A t t r i b u t e R u l e Attr ibuteName ="Name" RuleID ="Name" / >
< A t t r i b u t e R u l e Attr ibuteName =" PredefinedType " RuleID

="Type " / >
< A t t r i b u t e R u l e Attr ibuteName =" F lowDi rec t ion " RuleID

=" Flow " / >
</ A t t r i bu teRu les >

</ Ent i t yRu le >
</ Ent i tyRu les >

</ A t t r i bu teRu le >
</ A t t r i bu teRu les >

</ Ent i t yRu le >
</ Ent i tyRu les >

</ A t t r i bu teRu le >
</ Rules>

</ ConceptTemplate>
</ Templates >

13

MvdXML format represents an automated way of defining and assuring a model’s data
correctness and existence. bSI implemented the format to facilitate reusable templates
and thus, implementing an efficient way of data quality checking. MvdXML lacks in
standardization due to its high flexibility of creating ConceptTemplates. This high level of
flexibility increases the chance of multiple identical mvdXML files for a similar or identical
use case and decreases its efficiency and, therefore, its applicability. Additionally, it
requires knowledge of the XML format and can result in an unclear structure that is hard
to control, especially in terms of manual adjustments due to the deficient quality provided
by IfcDoc (POPGAVRILOVA, 2020).

2.4 LOD, LOG, LOI

A project’s BIM model relies on its data which all stakeholders integrate. The amount of
data steadily increases during the progressing project phases and results in final status,
representing all necessary building characteristics. To ensure the data quality of building
elements in all project phases, the LOD was implemented. LOD establishes different
levels of information and covers requirements for geometric (Level of Geometry (LoG)) and
semantic (Level of Information (LoI)) information to guarantee a distinct and reliable data
basis. The particular LODs are determined in the BIM Execution Plan (BEP) and progress
with relating work phases, e.g., Fee Structure for Architects and Engineers (HOAI). The
“BIM4INFRA”, 2020 imposes five levels of development and its underlying working stages
(see illustration Figure 2.5):

LOD 100: Environment and rough building dimensions

LOD 200: Generic objects with approximated quantities, size, shape and location

LOD 300: Specific objects with reliable quantities, size, shape and location

LOD 350: LOD 300 + object relations

LOD 400: LOD 350 + increased level of detail (e.g. for fabrication)

Figure 2.5: Level of Development Illustrated by the Example of a Steal Beam (BORRMANN

et al., 2015)

14

The detailed requirements concerning geometry and semantics have to be defined for
every underlying use case. The intention behind LODs indicates the need for data manage-
ment due to its huge amounts. Another important component is a coherent nomenclature
of information that all stakeholders agreed on and used in their data enrichment processes.
bSI aims to ease this issue by creating bsDD, an online service that provides a database to
standardize additional data for particular use cases. Currently, bsDD can be accessed via
an API but bSI plans to improve its usability and provide new functionalities like integrating
bsDD content into Information Delivery Specification (IDS) contracts (“buildingSMARTd”,
2021,“BIM4INFRA”, 2020).

2.5 Summary

IFC and BIM exist over 20 years and reformed the way of planning in the AEC sector.
IFC is structured by a four-layer system which facilitates a strong inheritance hierarchy.
This comprises the definition of building elements, assignment of additional attributes
and properties, like materials, and its relations to other building elements. The current
approach of IFC reaches its limits and will be reworked over the next coming years to
facilitate upcoming technical concepts like Digital Twins or CDE. Due to its high amount
of information and different stakeholder, a good BIM workflow requires management
processes that addresses the client’s interests and assure high quality at the same
time. For this reason, IDM and MVD are one of several management and technical
implementation concepts to solve these issues. These methods address the procedure of
data exchange and are implemented via the mvdXML format. In addition, the principle of
LOD helps to determine the required depth of information in a particular project phase.
Therefore, a semantic and geometric category is distinguished and represented by five
different LoG and LoI levels. A general understanding of central characteristics and
concepts of BIM and IFC is required to structure and implement efficient code compliance
checking procedures.

15

Chapter 3

Code Compliance Checking

Chapter 3 gives a brief introduction of the process of code compliance checking and
its place in a BIM workflow. For this purpose, the different quality levels of building models
are defined for a deeper understanding of the overall compliance checking task. In a final
step, different technical implementations of code compliance checking approaches are
outlined and reviewed regarding their advantages and limitations.

3.1 Introduction

The implementation of BIM in the AEC sector shifts the planning processes to a model-
based workflow. The building model is the central object in all planning cycles and contains
the required information. A main use case of BIM is the direct generation of plans out
of the underlying building model. Therefore, checking the model’s quality and ensuring
a consistent model is mandatory for a proper workflow. Automating these manual and
iterative compliance processes results in improved efficiency and profitability.

Code compliance checking processes generally describe methods to test for a model’s
quality and are structured as shown in Figure 3.1. The first procedure is the rule inter-
pretation, which can only be realized by translating regulatory contents into a machine-
interpretable language. Due to various representation styles of standards or legal texts,
standardization of this process is still a challenge. This step results in a verifiable rule
which is executed subsequently. This execution comprises the interpretation and process-
ing of information delivered by the building model. The preparation of a building model
is mentioned in Figure 3.1 because of possible inconsistencies or missing information
in the underlying building model. The prevention of these errors can be realized via the
implementation of preprocessing steps, like modeling guidelines or detection by data
compliance checks. Testing for consistent models is a major task in utilization of BIM and
has to be applied in various use cases. The final step of a code compliance checking
process is to prepare and preserve checking results for a user review. Therefore, code
compliance checking covers the detection of planning or modeling errors and provides
possibilities for better communication between stakeholders but does not comprise its
elimination (PREIDEL, 2020, PREIDEL and BORRMANN, 2015).

16

Figure 3.1: General Structure of Compliance Checking (PREIDEL and BORRMANN, 2015)

3.2 Levels of Model Quality

Section 3.1 outlined the general need and structure of code compliance checking pro-
cesses. Checking a model’s quality can be distinguished in several levels, which vary in
its person in charge and overall testing scenarios. Generally, the issue of considering a
model’s quality can be divided into three levels.

The initial point of every building model is its design in a modeling tool and its resulting
data quality. The provided model must be checked in terms of overall correctness and
syntax. In addition, the raw data must be delivered in the determined project milestones,
which can also be checked in fixed data drop scenarios. The level of data quality depends
on software interfaces, such as the export into data formats like IFC. The software vendor
must ensure the correct and complete export of data into an open data format. This issue
is intensified by bSI and its certification of BIM software. Additionally, the model’s author
is responsible for his delivered data by modifying export settings which can enormously
influence the overall quality for particular use cases. An example of the abidance of data
quality is the securing of data availability during specific project milestones. This provided
data must be complete and represent the current planning state to guarantee flawless
data processing.

If the first level of model quality is guaranteed, content-related quality has to be
taken into consideration. This level comprises semantic and geometry-related data
and its interaction. Semantic and geometric information depends on various arranged
requirements concerning the underlying project and model use case. Compliance with
these issues must be ensured by the responsible model author or BIM-coordinator.

Based on the before mentioned levels and its provided data, use cases concerning
the planning quality of engineers and architects can be determined and developed. The
verified contents result from norms and regulations, but also from client requirements
which were agreed upon in the BEP. All stakeholders are responsible for their introduced
data and, therefore, are in charge of its compliance. Important is the difference between
data or content-related quality and planning quality. These two fields can independently
be flawless or incorrect of each other, but the former builds the required basis for the latter.
The establishment of a general way of compliance checking to ensure a high-quality model
is not possible and always depends on the underlying use case (PREIDEL, 2020).

17

Model Quality

Data Quality Content Related Quality Planning Quality

Topicality
ality

Availability

Integrity

…

Client
Requirements

Norms

Laws

…

Semantic Geometry
Semantic-
Geometry

Classification

Usability

Value
Assignment

…

Positioning

Usability

Clash
Detection

…

2D-3D
Consistency

…

Figure 3.2: Model’s Quality Levels (PREIDEL, 2020)

3.3 Technical Approaches

The before outlined process of code compliance checking is a mandatory method for
a BIM workflow and can support its user in terms of efficiency and accuracy. Several
different approaches of technical implementation were developed to counteract particular
weaknesses of already established approaches in the past. In the following, selected code
compliance checking approaches are depicted and reviewed in terms of their strengths
and weaknesses.

3.3.1 Hard-Coded Tests

Hard-coded tests represent programmed tests that are later immutable and check a
particular use case for its compliance. Software vendors often provide these tests but
as well, can be developed via an open API by software developers and engineers. This
approach is one of the most widespread technical approaches and enables a fast and
cheap compliance procedure. But, on the other hand, these tests represent black-boxes
for the user, and detailed insight into its functionalities is not assured.

Figure 3.3 depicts the difference of a black-box solution compared to a white-box
approach. Referred to code compliance checking, the underlying building model represents
the input data, and the results of the compliance test stand for the output. In between, the
overall checking process of applied test scenarios is illustrated by the box. In a black-box
approach or hard-coded compliance test, the overall functionality and checking strategy
remains invisible for the user. In contrast, all proceeding processes are observable in a
white-box approach.

18

Figure 3.3: Schematic Diagram of Black-Box and White-Box Processes (PREIDEL, 2020)

This matter is a significant weakness and risk of the hard-coded compliance test.
Incorrect use or misinterpretation of a test’s functionality can result in undetected errors
and, thus, planning and construction errors or delays. Furthermore, creating compact and
highly automated code compliance tests can result in lacking user involvement. However,
the user remains the person in charge and must supervise all checking results due to
their accuracy. Additionally, the development of coded compliance tests requires highly
skilled engineers, which are rare in the current market situation. This low supply of capable
labor forces limits the integration of a digitized compliance checking process and forces up
prices.

In order to counteract the before mentioned problems and challenges, libraries of
small complementing tests reduce the misunderstanding of tests and improve the user
involvement during the compliance checking procedure. Every test contains simple
scenarios, and the user builds the overall test structure by himself. All applied tests
are described in detail in a test documentation concerning their functionalities, required
data, and limitations. These strategies can ensure an efficient and accurate compliance
process using hard-coded compliance tests in an already widespread technique. To further
accelerate the implementation of code compliance checking, a new field of engineering
could be established in the AEC sector. Supplying the market with high quality and
standardized compliance checking libraries by private or governmental services would
have the potential to fuel the implementation process of BIM. Many planners require
periodic and highly generalizable use cases, and this offer would decrease the pressure
on offices and companies for rare, well-educated engineers with coding knowledge.

The following will outline two different approaches of hard-coded compliance test
software. Solibri Office represents an example of a code compliance checking tool es-
tablished in the private market and used by engineers and architects. The latter is a
tool developed by building authorities to enable rapid implementation of flawless BIM
methodology matching high-quality standards.

19

Solibri Office
Solibri Office was released in 2000 by the finish software company Solibri Inc., which
is now part of the Nemetschek Group, to enable reviewing and checking digital building
models for their quality. It is a popular and important tool for code compliance checking in
the AEC sector and can be used as a BIM model viewer, but also provides functionalities
like classifications. These classifications cover standard classifications like OmniClass,
and additionally, enables individual classifications as well. All results can be visually
reviewed and can be utilized in an efficient code compliance checking process. In terms
of code compliance checking, basic rules are delivered by Solibri and can be adjusted
via the Ruleset Manager. These rules enable engineers and architects to check building
models for the existence of particular attributes and their relating data types (data quality),
or overall planning quality like escape routes.

Adjusting the underlying tests concerning particular parameters assures enhanced
user involvement. In addition, gathering specific tests as a set of rules enables the assign-
ment of conditional operations between the tests and, therefore, guarantees the usage
of overall small single tests, decreasing the chance of misinterpretation or use of large
fully automated compliance tests. Currently, an API was released to enable the user to
develop his compliance tests to extend the existing rule library by individual requirements.
Regardless of its user-friendly functionalities, the use of the provided tests and the devel-
opment of compliance tests require high coding skills and a large amount of knowledge
concerning the data structure of IFC and Solibri. Additionally, the black-box character can
not be eliminated and, therefore, remains a risk of undetected errors (PREIDEL, 2020).

CORENET - Construction and Real Estate Network
In 1995, the Building Construction Authority (BCA) of Singapore established the Construc-
tion and Real Estate Network (CORENET) and thus, was one of the first national digital
platforms digitizing the planning process in the AEC sector. CORENET was introduced to
enable the submission of documents digitally and speeding up the overall authorization
process. A tool of CORENET enabled a first automated compliance check for fire safety
and accessibility of 2D plans. This approach of ACCC was continuously developed, and
the functionality of using 3D building models was introduced by the implementation of
the open data format IFC in 1998. The foundation of the current e-plan Check software
was laid in 2002, which uses hard-coded tests and a developed external library, called
FORNAX. This provides an API for a autonomous test development (EASTMAN et al.,
2009).

CORENET represents the possibility for state authorities to fuel the overall digitization
process successfully. In 2007, the authorization process took about 103 days and was
reduced to 26 days in 2014 (FIEDLER, 2015). Additionally, many projects are awarded
by public authorities, and planning errors can result in high additional costs funded by
tax revenues. The participation of state authorities in a project’s compliance process can
economize tax revenues and reduce the waste of tax money.

20

The strong black-box character of CORENET results from the underlying hard-coded
compliance tests, which are not accessible for the user. Therefore, the overall function-
ality is not observable and is characterized by low user involvement. The compatibility
with FORNAX strongly relies on the quality of the underlying data, which can result in
complications (SOLIHIN et al., 2016). In addition, the extension via the API requires
extensive coding knowledge and hinders it in a widespread utilization (PREIDEL, 2020).
Regardless of its downsides, CORENET is an effective approach of authorities to enhance
its administration efficiencies and indicates the strengths of digitization tools.

3.3.2 Domain Specific Programming Languages

The issue of user involvement regarding compliance procedures via hard-coded tests can
be reduced but not eliminated. Enabling the user to develop and implement the overall test
scenario facilitates a high user engagement. Domain-specific programming languages
come into place to advance this problem. It represents a programming language utilized by
the user for overall test development. A unique feature is the preparation and incorporation
of data that the underlying regulation or data model does not comprise. Preparing and
incorporating this data is facilitated by more considerable freedom for formulations, which
amplifies the risk of inconsistencies in the language’s declaration at the same time. The
syntax has to be determined in a particular scale which is represented by the underlying
domain. In addition, a domain-specific programming language should be expressible by a
simple syntax to assure the possibility of widespread use (PREIDEL, 2020). The following
outlined approach is an example of a domain-specific programming language and was
designed and implemented by Jin Kook Lee to evaluate building circulation and spatial
programs.

Building Environment Rule and Analysis
LEE, 2011 developed Building Environment Rule and Analysis (BERA) for the translation
of complex regulation contents. BERA is an imperative language and was designed to
provide ease of use for the complex underlying process. Therefore, a simple syntax is
implemented to quickly and easily access information via a dot notation. In addition, the
BERA Object Model (BOM) is introduced and based on the IFC data scheme. The use of
BERA is restrained to spatial and geometric information, and so is the underlying BOM.
Similar to other programming languages, BERA can be extended by other functionalities
and objects and, therefore, extend its use to other compliance fields.

The syntax was designed according to 4 core elements: Reference Directives enables
an import of external libraries to extend functionalities. Principle of Object Model Definition
and Declaration facilitates the declaration of objects and enables access of these classes,
which can be accessed by dot notation and its comprised information. In addition, logical
operations and advanced functionalities like recursion, inheritance, and more are appli-
cable. To facilitate the major use case of testing for complex regulation contents, BERA
provides a Rule Definition functionality. This is provided by a Rule object and an Execution

21

Statement grants access to the before defined information (see Algorithm 3.1 and 3.2).
The connection to Solibri Office realized a graphical representation of the results (LEE,
2011).

Algorithm 3.1: Definiton of myrule in BERA (LEE, 2011)

Rule myrule (Space space) {
space2 . area > 1000;
space2 . F loor = " Level_1 " ;
space2 . s e c u r i t y = " p u b l i c " ; }

Algorithm 3.2: Definition and Query of Space Category midOffice in BERA (LEE, 2011)

Space midOf f ice {
Space . area > 600;
Space . area < 900;
Space . he igh t > 9 ;
Space . name = " o f f i c e " ;
Space . name != " shared " ; }

get (midOf f ice) ;

BERA depicts the potential of domain-specific programming languages concerning
code compliance checking. Nevertheless, imperative languages require a high level of
generality in their logic base to define complex compliance processes. This missing
versatility restricts a wide use in the general field of code compliance checking (PREIDEL,
2020).

3.3.3 Visual Programming Language

Visual Programming Language (VPL) are formal languages with a graphical notation
that use graphical elements for describing operations and functions instead of textual
entities. This approach forms a system consisting of symbols and application rules.
Every symbol represents a visual element and conveys an explicit meaning that enables
intuitive distinction with little knowledge. A distinct graphical difference between these
elements facilitates a clear visualization and interpretation by the user. Additionally, its
flow-based character amplifies the high user-friendliness. The developed system of visual
elements forms a type of information flow, starting with the initial information as input
to its further processed information inside the graph to the final user-defined output
data. These characteristics make it a user and beginner-friendly language tool. One
of the most widespread VPL approaches is Grasshopper which is a Plug-In for the 3D
modeling software Rhinoceros 3D. Grasshopper extends functionalities of Rhinoceros 3D
by specifying different functionalities via a visual graph (see Figure 3.4).

22

Figure 3.4: Form Finding and Static Analysis of a Bridge via Kiwi!3d (Plug-In for Grasshop-
per) “TUM_ST”, 2021

High user interaction and ease of operation are one of VPL’s core advantages and
are the reason for its widespread usage. Though, complex tasks can result in unclear and
incomprehensible graphs and, therefore, can decrease its usability. In addition, function-
alities like loops and recursion are core principles in many programming languages and
enable the implementation of complex issues. Many approaches of VPL do not support
these operations or are only hardly implementable (PREIDEL, 2020). The following outlines
an approach developed by PREIDEL, 2020 to enable the use of VPL in a code compliance
checking process. Its core structure, and strengths and weaknesses are reviewed to
evaluate its contribution to a user central compliance checking strategy.

Visual Code Checking Language
PREIDEL, 2020 developed VCCL to address the above-outlined approaches’ weaknesses
by enabling a high user involvement in a code compliance procedure. To assure VCCL is an
applicable and user-friendly programming language, three core principles were identified
to facilitate this concept. Domain Specific Applicability describes the requirement of low
barriers relating to its practicability by domain-related labor forces. A low prerequisite
of coding knowledge reduces these barriers. Every coding language is implemented
in a particular application field and must meet its user’s needs. A Domain Specific
Expressiveness concerns the language design and thus its graphical elements and its
resulting grammar to match the underlying use case and its domain-specific requirements.
In addition, the principle of Transparency and Verifiability allows a high user-machine
connection and hedges this error-prone process.

VCCL is a strongly standardized and object-oriented language. Its graphical elements
represent particular objects and methods and their provided ports. A method represents
a data processing instance for one specific task, and ports serve as data transmission
of certain data types. PREIDEL, 2020 determines VCCL’s properties by being highly
generic to enable a broad application of its elements on various use cases independently

23

of its complexity. This assures the general applicability of its graphical methods to any
compliance checking scenario. This general applicability can only be achieved by a
great extent of granularity. Transparent code compliance checking processes rely on
a method’s decomposability to enable the user to identify all sub-processes and thus
feasible arising problems. The user plays a vital role in the application of VCCL and
acts as an additional controlling instance. Therefore, VCCL only aims to achieve a semi-
automated compliance checking process. The underlying data model strongly influences
the language’s complexity. Due to its widespread utilization in the export and exchange of
building models, IFC is utilized as a basis. The hierarchical structure of building elements,
storing attributes, and use of objective relations is adopted. Complex but often applied
principles of IFC, like inverse attributes, were discarded and displaced by the use of
references to its particular entity.

Figure 3.5: VCCL Graph Describing the Access to a Set of Walls. The Blue Trapezoid
Represents the Get Access Method and Grey Rectangles Underlying Objects. (PREIDEL

and BORRMANN, 2015)

The underlying functionalities of methods, like the Get Access function of Figure 3.5,
are realized by atomic methods. These atomic methods build the basis of the VCCL library
and are inaccessible for the user. An assembly of several objects and method elements
connected via provided ports results in a user-defined compliance checking process.
Assigned ports enable the input and output of data, and VCCL permits the production
of various output information. This functionality reduces the overall amount of knots and
edges and, therefore, reduces the overall complexity of the graph. Facilitating complex
tasks like code compliance checking, the VCCL library comprises numerous different fields
of operations. For example, comparing and applying arithmetic operations, or filtering for
building elements and processing its relation, are core principles for a proper compliance
procedure. Additionally, it provides methods to evaluate preliminary results and control
structures like iterations, solved by loops and bifurcations via if-else structures. These
functionalities assure a good user-machine interaction and enable the implementation of
complex compliance programs. Figure 3.6 depicts a graph for compliance testing of the
DIN 18232-2:2007-11.

24

Figure 3.6: VCCL Graph Describing the Central Regulation of DIN 18232-2:2007-11
(PREIDEL and BORRMANN, 2015)

VCCL is a promising approach of a user-central code compliance checking process.
Nevertheless, its expressive power depends on the total availability of atomic methods.
For this reason, the outlined system requires an extension of the existing library to
widen its field of application. However, this expansion of functionality comes with many
methods, resulting in a decrease in clarity and transparency. In addition, it decreases
user-friendliness, especially for beginners, and therefore, could prevent widespread usage.
Another limitation is the high labor costs for simple compliance checking queries (PREIDEL,
2020).

3.4 Summary

In conclusion, it is vital to understand the importance of code compliance checking in a
BIM based project. Understanding the general structure of a compliance checking process
is the basis of comprehending the importance of a proper rule interpretation procedure
and the decent preparation of the underlying building model. A building model’s quality
depends on three levels, of which the basic level represents the delivered data quality. The
intermediate level comprises the semantic and geometric related data and its interaction.
The third level represents the planning quality incorporated into the building model. These
different quality levels are subject of the code compliance checking process and can be va-
lidated by different technical approaches. The before-reviewed hard-coded tests represent
the most widespread approach but lack in their level of user involvement and transparency.
These issues can result in undetected errors and, therefore, in high additional costs and
time delays. Two software approaches are outlined and represent applications of the
private business sector (Solibri Office) and public authorities (CORENET). Both software
embody a high black-box character and thus increases the risk of undetected model
or planning errors. The other two technical approaches address the limitation of low
user interaction by implementing a domain-specific programming language and a visual
programming language. The former, BERA relies on a typed programming language,
using simple dot notation to facilitate the development of code compliance checks. On the
other hand, VCCL uses graphical elements for a code compliance check implementation.

25

Both approaches facilitate a user-central compliance checking process but require a large
library extension for more widespread usability. This need for an extension increases its
complexity and complicates its access for beginners.

Incremental test scenarios utilizing hard-coded compliance tests can decrease the
black-box character and enable efficient and fast compliance checking procedures. There-
fore, this work implements smaller single tests via the Solibri Office API in combination
with detailed test documentation to extend already existing compliance tests to validate
digital building models.

26

Chapter 4

Musterbauordnung

Norms and regulations are widely spread in various economic sectors to guarantee
uniformity and thus assure productivity while complying with quality standards. This
chapter outlines the contents of the fifth section of MBO and categorizes it in terms of
complexity and type of representation. In addition, the last section depicts a selection of
information extraction methods of norms and regulations.

4.1 Introduction

Standards are common guidelines in all economical sectors and are applied to guarantee
certain rights and obligations. The two most significant stakeholders in distributing and
manifesting laws or guidelines are various industry associations and the State itself. Con-
cerning Germany, three different types are distinguished: German Building Regulations,
norms, and technical or rather customer-specific guidelines. The former covers private
and public building laws and are passed by the German State. These laws have legal
character, and all residents in Germany can refer to them. Additionally, Deutsche Institut
für Normung e.V. publish norms to ensure products’ and processes’ quality, irrespective of
where or by whom it is produced. Guidelines comprise special field specifications and are
published by different associations or national facilities. Norms and guidelines are only
compulsory in terms of application if specific laws refer to them. Due to representing the
current stage of technology, norms and guidelines can be applied in court proceedings
regarding the warranty of defects (BLIND et al., 2021,“VDI”, 2021,PREIDEL, 2020).

4.2 Fifth Section of Musterbauordnung

Germany follows federalism’s organizational principle, and every federal state has its own
state-building regulations (Landesbauordnung). To ensure standardization, the conference
of the Minister of Construction publishes and updates the MBO on which all state building
regulations are based. The MBO itself does not have a legal status, which only comes
into force by implementation in state-building regulations (“DIBt”, 2021).

27

The MBO comprises requirements concerning:

- Developed properties,

- Engineered structures,

- Project’s stakeholder,

- Building supervisory authorities and its procedures.

This thesis covers Chapter 5: Emergency Routes, Openings, and Protection Devices
(§§ 33 - 38), which regulates fundamental fire protection standards of building elements.
In § 14, MBO defines its fire protection goals by rescuing humans and animals, enabling
firefighting operations, and preventing the spreading of fire and smoke. For these protection
goals, §33 comprises requirements for the escape ways of a building, which are also
used for firefighting operations. Spaces are supposed to have two escape ways directing
to open air. The first escape way leads over a necessary staircase, and the second
escape way can also use fire brigade rescue equipment. The latter is only required if no
safety stairwell is present. The following paragraphs § 34 - 38 include further demands
on stairs (§34), stairwells (§35), corridors (§36), windows, doors, and openings (§37),
and barriers (§38). All these elements can be part of an escape route. They must meet
strict requirements concerning fire behavior of load-bearing elements and coverings and
sufficient sizing of components that serve as a part of the escape route. In consideration
of special structures like schools, hospitals, high-rises, etc., further requirements are
mandated in several special building regulations (PLUM, 2016,“Musterbauordnung”, 2019).
In the following, the MBO’s contents of the fifth section is outlined more in detail:

§ 33 - First and Second Escape Way
Paragraph 33 establishes the requirement of two independent escape ways leading to
open air. The MBO differentiate horizontal and vertical escape ways. Both horizontal
escape ways can use the same corridor, but a necessary stair must be used as the
first vertical escape way. The second vertical escape way is required for buildings with
common rooms and can either be a window if the fire brigade has the required equipment
or another independent stair. A second vertical escape way is always required except for
the presence of a fireproof stairwell (security stairwell) (MAYR, 2014).

§ 34 - Stairway
This paragraph defines necessary stairways as stairways connecting two stories and are
part of an escape route. The MBO excludes particular types like escalators or retractable
stairways. Additionally, claims regarding the flammability properties of the stair’s bearing
structure are defined, and the existence of railings is postulated. An adequate usable
width of stair flights or distance from a door opening in the stairways direction is arrogated
but not further specified or limited by further details.

28

§ 35 - Necessary Stairwell and Exits
All necessary stairways (§34) must have a necessary stairwell except for building classes
1 and 2, specific maisonette apartments, or external stairways. Paragraph 35 also limits
the escape routes’ length to 35m reaching a necessary stairwell from every location in a
common room. Concerning super-imposed basements, two exists to necessary stairwells
per story are required, and for multiple stairwells, an adequate distribution should be
ensured. The request for a direct way to open-air is also taken up, and if not fulfilled, the
following room with determined properties must be built. As well as for stairways, the
flammability properties of materials and building elements is specified in detail as well as
for all openings. Additionally, all necessary stairwells must have lightning.

§ 36 - Necessary Corridors and open Corridors
The MBO introduces the concept of necessary corridors as corridors that are part of an
escape route and claims particular cases that do not require necessary corridors. All
regulations of paragraph 36 only concern necessary corridors in terms of their human
traffic capacity, length of smoke sections, openings, and flammability of building elements
and materials.

§ 37 - Windows, Doors and other Openings
Paragraph 37 outlines minimum dimension requirements for windows and doors and
claims the existence of at least one opening leading to open air in basements to ensure
smoke removal.

§ 38 - Barriers
In the last paragraph of section 5, the need for barriers is explicitly outlined, and minimum
barrier dimension requirements regarding certain building heights are claimed.

4.3 Representation & Complexity of Regulatory Requirements

4.3.1 Representation

A norm’s content can be described by a prescriptive or performance-based approach and
differ in specifying the implied requirements. The former assesses the included contents
and defines, e.g., if a specific material is permitted. It claims the desired performance
and aim, but does not state a concrete approach. On the other hand, the performance-
based way just generally states, e.g., in case of fire, the use of a necessary stair must be
possible for a sufficiently long time, without referring to permitted materials. Therefore,
in the planning phase, it must be demonstrated that all requirements are met. This
elaborate proof demands additional effort from all stakeholders and is much more complex
to translate into computer-readable information than a prescriptive represented norm. A
fundamental problem of the prescriptive approach is the restraint of new and enhanced
products due to a missing admission. New technical solutions need special application and

29

permission (PREIDEL, 2020). In regard to the MBO, it has a strong performance-based
character because it serves as a bill to be transferred to the law of federated states.

Additionally, the MBO is a continuous text, thus does not include other types of rep-
resentation like diagrams, graphics, tables, or equations. Continuous texts follow certain
principles and rules concerning the structure and written declaration defined in DIN 820-2
(“DIN 820-2”, 2021). A principle is the usage of modular auxiliary verbs to precisely
describe the content of standards and minimize misapprehension. Auxiliary verbs apply
to requirements (must), permissibility (is allowed), possibility (can), and recommendation
(should) and its related negations (MATTIUZZO and MIESNER, 2021). The conference of
the Minister of Construction aims to set strict guidelines; thus, MBO contains no recom-
mendations. Nonetheless, MBO does not precisely specify all demanded requirements
and leaves scope for interpretations:

§34 Treppen
5) Die nutzbare Breite der Treppenläufe und Treppenabsätze notwendiger
Treppen muss für den größten zu erwartenden Verkehr ausreichen.

The quote mentioned above is only one example of several vague statements in the fifth
section of MBO. The performance-based requirement states that a stair’s width must
match the maximum expected traffic without claiming particular values. DIN 18065 com-
prises specific requirements, e.g., concerning a stair’s dimensions. Therefore, MBO’s
missing requirements are complemented by different standards but restrict possibilities of
mere compliance checking regarding the MBO. To prevent confusion of the underlying
validated compliance scenario by compounding different regulatory documents, detailed
documentation must be conducted. The reason for missing specific requirements is again
the fact that MBO only aims to set boundaries for federal law and is supplemented by
different standards and regulations (PREIDEL, 2020).

4.3.2 Complexity

Transforming the information of a standard into machine-readable information for ACCC is
beneficial to be able to identify the complexity of required process steps. For this purpose,
the concept of complexity was introduced by Solihin and Eastman. 4 different categories
can be distinguished:

Tests with Explicit Input Data: It is the lowest entity in the complexity hierarchy and
tests for directly accessible attributes in the building model. Therefore, further computations
are not required, but the accessed information can be compared to a specific value range
or used in other equations. An example would be the information if a wall is external: this
value can be retrieved via the PropertySet Pset_WallCommon and the boolean property
IsExternal.

30

Tests with Derivative Information: This represents the next step of complexity and
applies to information that is not directly included in the building model. This data is
temporarily generated in a particular process without complex calculations. A typical
example is the distance calculation between two objects.

Tests with Extending Data Structure: Tests with extended data structure use infor-
mation that is not included in the building model. External libraries are used due to their
complex calculations methods and data structures to generate the required information.
For example, the computation of escape routes might require particular libraries like
graphs.

Tests for Validation: This category represents compliance checks relating to
performance-based approaches. The central substance of the test does not refer to
adherence to a particular claim, instead, it proves an overall solution. A common way of
validation is the reference approach. It compares available solutions with the examined
object. Examples for this category are guidelines for construction solutions that only
represent assistance for particular scenarios and are not the only valid solution. These ref-
erence approaches are hard to formalize and, therefore, represent the highest complexity
category (PREIDEL, 2020, SOLIHIN and EASTMAN, 2015).

4.4 Extraction Methods

The AEC sector is regulated by a large number of regulations on a national and interna-
tional level. Additionally, BIM processes often come along with further information-related
requirements in the form of, e.g., client requirements. The extraction procedure of infor-
mation from these regulations and guidelines is often difficult and time-consuming and is
complicated by different representation types. Automating this extraction process would
drastically reduce the time consumption in a code compliance checking test’s development
phase. Furthermore, the resulting identification of relevant additional data and contents
of a compliance test would ease the implementation process. In the last years, different
approaches of information extraction were the subject of several research programs. For
this thesis, the Mark Up Language RASE is outlined to identify and highlight essential
elements of sentences. Additionally, the process and its different technical approaches of
full automation text recognition and interpretation via Natural Language Processing (NLP)
is reviewed.

4.4.1 Semantic Mark-Up RASE Methodology

The RASE method is based on a semantic concept and enables a translation of a norm’s
content into well-structured information. Therefore, it utilizes mark-up operators to identify
relevant information which needs to be covered for a code compliance checking process.
Every normative document postulates claims that have to be satisfied. These claims
include one or several requirements which RASE identifies. Every claim refers to a

31

particular object or issue that RASE characterizes as the applicability object. The other
two operators apply for selections, and identify alternatives, or exceptions and work
by exclusion (HJELSETH and NISBET, 2011). All identified operators are marked via
different colored RASE tags and facilitate a well structured and clear representation of the
underlying content (see 4.1).

<R>Standard NS 11001-1, Clause: 5.2 Dimensioning an <a>access routeto a building

<R> The <a>access route for <s>pedestrians</s><s>wheelchair users</s> shall <r>not

be steeper than 1:20</r>. <E>For <a>distances of less than 3 metres, it may be steeper,

but <r>not more than 1:12</r>.</E> </R>

<R>The <a>access route shall have <r>clear width of a minimum of 1,8 m</r> and

<r>obstacles shall be placed so that they do not reduce that width </r>.<r>Maximum cross

fall shall be 2 %.</r></R>

<R>The <a>access route shall have <r>a horizontal landing at the start and end of the

incline<r>, plus <r>a horizontal landing for every 0,6 m of incline</r>. <r>The landing

shall be a minimum of 1,6 m deep.</r></R>

<R><r>Minimum clear height shall be 2,25 m </r>for the full width of the defined walking

zone of the entire <a>access routeincluding crossing points. </R></R>

Figure 4.1: Underlying RASE Mark-Up Tags Applied on Standard NS 11001-1 (HJELSETH

and NISBET, 2011)

RASE is optimized for interpreting regulatory documents but must be able to handle
variations in the text representation. Therefore, three principles are introduced to address
the resulting semantic issues. The principle of Translate is applied if norms or regulations
are expressed with clear metrics. In this case, direct insertion of RASE operators into the
original text is possible. If the operators can not be directly applied, certain metrics are
differently defined, or the underlying document is ill-drafted. The principle of Transform
comes into place, and a reformulation of the text is required to enable an application of
RASE on the reformulated text. In cases of strong generally formulated claims (Transfer),
the identified unclear information is presented to the user for a manual interpretation by a
professional (HJELSETH and NISBET, 2011).

The RASE mark up technique facilitates a well-structured text by highlighting relevant
information. HUDECZEK, 2017 uses this methodology for automating information extraction.
Additional tags extended the RASE tags to cover, e.g., references to pictures, tables, or
other norms, or to identify specific parameters and values. This required extension outlined
its limitations for an automated approach. In addition, RASE syntax is only applied to
textual representations and comes with the loss of information regarding representation
types like tables or pictures. The aforementioned extension of RASE tags to cover
references of images or tables reduces the chance of overall information loss but does
not improve information extraction processes. Nevertheless, this work aims to perform
manual information extraction due to missing proper technical solutions. RASE can be
manually utilized to understand the prevailing norm and regulation structure generally.

32

4.4.2 Natural Language Processing

NLP is a sub-field of computer science and linguistics and utilizes Artificial Intelligence
(AI) to process written or spoken words via computers in a human-like manner. The term
of natural language describes all written or spoken words by human beings. Since the
1950s, studies about the utilization of computers to understand and extract information
from natural language are conducted. NLP deals with understanding and generation
of natural language and speech recognition. The latter represents a more advanced
approach due to additional difficulties resulting from spoken languages, like covering
dialects (RESHAMWALA et al., 2013). The following outlines the approach of NLP to extract
relevant information of regulatory texts or norms.

Computer Science LinguisticsNLP

Rule-Based
Machine Learning
Neural Networks

Figure 4.2: NLP Position in Computer Science and Linguistics, and its Possible Technical
Implementations

NLP belongs to the broad field of AI applications and utilizes different technical
approaches for the information extraction process. The first approach represents the
oldest approach and uses manually coded rules to detect and categorize information.
Newer approaches comprise Machine Learning (ML) or neural networks to analyze and
extract natural language. NLP includes numerous fields of application, and its different
technical approaches can match these varying requirements. A broad application field
of texts covering the content of many domains, e.g., news texts, requires a more flexible
approach which is mostly covered by ML or neural network solutions. These technical
approaches require a large extend of information for their learning process but can learn
to adapt to different information fields. Two main challenges of information extraction
are the diverse vocabulary the software has to cover and understand, and the context
and syntax ambiguity because of numerous different domains. ZHANG and EL-GOHARY,
2015 focus on the domain-specific information extraction regarding regulatory texts and
processing of information to enable automated compliance checks via extracted data in the
construction sector. Therefore, a rule-based approach based on syntactical and semantic
features is utilized to increase its precision. The following comprises the methodology of a

33

domain-specific and rule-based approach and describes different methods and concepts
which are frequently used in an information extraction process.

Domain-specific information extraction focuses on a particular domain to narrow the di-
verse vocabulary and reduce context and syntax ambiguity. Text analysis can be conducted
concerning its syntax and semantics and requires a preprocessing step. The preparation
of underlying texts can be processed via several different methods. The tokenization
method splits the underlying text into units or called tokens. This process depends on
the overall methodology, varying from word to subword or character tokenization. The
overall tokenization process represents a preprocessing step to enable sentence splitting
and POS tagging. The before-mentioned process of sentence splitting identifies every
sentence of a text. Tokenization and sentence splitting utilize a particular delimiter to
recognize required elements.

Furthermore, texts include words in various forms, like different tenses or plural forms.
Morphological analysis help to identify the underlying word and map these to its lexical
representation in the dictionary. This method is not essential for NLP but can enhance the
identification of words and thus the underlying ontology concepts. An ontology is a data
model that outlines a domain’s knowledge and comprises its data and related relations.
Therefore, an ontology is represented by classes and its relationships. The most common
standards to create an ontology are Resource Description Language (RDF) and Ontology
Web Language (OWL) and are easily extensible to cover more data and relationships. For
example, an ontology regarding the construction sector covers numerous objects from this
domain and its relations. Due to its specific domain, the underlying ontology has to cover
less range of data which results in a higher interpretability and a enhanced preciseness of
understanding domain specific texts.

As information representation, ZHANG and EL-GOHARY, 2015 utilizes a tuple format
due to its straightforward manipulation and evaluation possibilities. Every object of this
tuple format is a semantic information and represents an ontology concept, an ontology
relation, a deontic operator indicator, like permission or prohibition, or a restriction. The
latter represents a constraint regarding the semantic information element’s definition.
These identified semantic elements can then be classified by their complexity and flexibility,
and a varying number of concepts and relations can be assigned. Thus, the first three
types of semantic information are simple and rigid elements, and the last type, restrictions,
represents a complex and flexible element.

Generating features to cover the text’s content and meaning is an additional task
besides the preprocessing of underlying texts. Therefore, syntactic features like Part-
Of-Speech (POS) tagging, Phrase Structure Grammar (PSG) based phrasal tags and
gazetter terms can be utilized in combination with semantic features of concepts and
relations to identify and define patterns. POS tagging classifies each word or other tokens,
like numbers or symbols, with its lexical and functional category. Table 4.1 outlines an
example of possible tags to categorize identified tokens. The assigned POS tags can be

34

utilized for a structural phrase analysis like a noun phrase, verb phrase, or prepositional
phrases, etc.

Table 4.1: Examples of POS Tags to Enable Classification of Tokens (ZHANG and EL-
GOHARY, 2015)

POS Tag Meaning
NN Singular or Mass Noun

NNS Plural Noun
NNP Singular Proper Noun
JJ Adjective

VBD Past Tense Verb

PSG utilizes application-specific rules, developed on the basis of a random sample
text, and is used to generate phrasal tags by identifying certain POS tags patterns. PSG
represents a sentences’ structure and facilitates the encoding of extensive sentence
structures to reduce its complexity. PSG can be further reduced and results in Context-
Free Grammar (CFG) to additionally decrease the number of patterns for the information
extraction. In a study of ZHANG and EL-GOHARY, 2015 the implementation and utilization
of PSG tags reduce the number of required patterns from 46 to 22 by more than 50%.
Gazetteer lists comprise a set of specific entities and group these terms on one particular
similarity. An example of a gazetteer list is the grouping of words like "no" and "not" in the
"negation" gazetteer list. In addition, numerous gazetteer lists are available for different
applications, like currency, countries, etc. These lists can be utilized as a feature for
information extraction processes and increase computational efficiency by separating
them from an overall ontology.

The overall information extraction process is realized by implementing rules to extract
semantic information and rules that verify and resolve conflicts by defining a resolution
strategy. The former are called information extraction rules and the latter conflict resolution
rules. These rules utilize the before-generated features and concepts of underlying
ontology to identify patterns and determine extractable parts. Conflict resolution rules
address different occurring problems in the extraction process. For example, the overall
number of particular present information elements in a sentence can exceed or fall below a
certain number. Therefore, conflict resolution rules claim borders for individual information
elements and are essential in information extraction processes. These conflict resolutions
have to address specific scenarios regarding the underlying use case and have to be
adjusted in the iterative development process of extraction rules. The development of
rules for a rule-based approach is conducted by constructing identified patterns, possible
relating features to select for underlying patterns and the overall semantic mapping.
Construction of a set of identified patterns represents an iterative and empirical process
by utilizing manual text analysis, constructing the overall pattern, testing, and validating
results. The process of feature selection comprises the identification and selection of all
present features in a pattern. Semantic mapping describes the transition of POS tags
patterns and their related semantic instances. ZHANG and EL-GOHARY, 2015 states,
a rule-based approach is favorable in cases of analyzing domain-specific texts due to

35

fewer ambiguity conflicts and, therefore, easier development of an ontology. Generally,
rule-based NLP has better precision and recall results compared to machine learning but
requires more human effort for its development of proper rules.

The complexity of information extraction regarding code compliance checking re-
quires extracting event information, e.g., requirements or restrictions. Simple information
extraction processes relate to named entity, attribute, and relation extraction. These
categories utilize single or two related concepts, except for the event extraction, which
requires numerous concepts. The term of deep NLP describes the aim to understand
entire sentences and, therefore, enable extraction of all underlying information. Shallow
NLP comprises only partial analysis of a sentence and capturing only specific types of
information. The evaluation of information extraction results relies on a golden standard.
Golden standards are manually examined by domain experts and represent the entirety of
identifiable information of the underlying text (ZHANG and EL-GOHARY, 2015).

4.5 Summary

Norms and regulatory texts are common in economic sectors to guarantee high quality and
clarify all stakeholders’ rights and obligations. In Germany, regulations, standards, and
guidelines are published by different institutions and vary in their status of legal character
and application fields.

The MBO represents a regulatory text to ensure standardization of federal-state
building regulations. The examined section 5 of MBO covers requirements concerning
the fire protection of buildings and comprises claims regarding the escape ways and its
associated building elements like stairs, stairwells, corridors, openings, and barriers of a
building.

Regulatory texts and norms can be categorized regarding their type of representation
and complexity to cover its requirements. Representation types comprise prescriptive
or performance-based approaches. The former restricts or claims particular designs or
materials, whereas performance-based approaches claim a level of quality. The latter
facilitates new technical solutions because of not required admissions. MBO itself has a
strong performance-based character due to its general approach standardizing federal law.
Additional types of representation are tables and pictures utilized in many norms or other
regulatory texts. The level of complexity refers to its required process steps of validating
information. It outlines four different levels, comprising tests of simply querying data from
a building model to information derivation from simple or complex computations.

To test for compliance with underlying norms and regulatory texts, extraction of
information is required to generate computer-interpretable information. This work outlines
the RASE mark-up methodology to enable the user to highlight and understand the
essential structure of the digested contents by applying RASE tags. The NLP represents
an AI based approach to process and extract information from texts automatically.

36

Chapter 5

Concept

The previous chapters outlined the fundamental understanding of BIM and its ne-
cessary constituent parts. Furthermore, the process of code compliance checking and
its different approaches was reviewed, and finally, the classification of standards and
automated information extraction methods were outlined. The following sections comprise
a concept to identify and process relevant information of the fifth section of MBO. Addi-
tionally, the mapping process of additional data is described and overall characteristics of
compliance checking procedures are reviewed.

5.1 RASE Mark Up Technique

Chapter 4 covered two variations of textual processing techniques. This thesis relies
on a manual approach based on the before mentioned RASE mark-up methodology by
[HJELSETH and NISBET, 2011] to structure and highlight all required information of a
regulatory text. All regulatory texts contain several checks, described by at least one
requirement, which are postulated by shall or must. The Applicability operator marks
the related object of a requirement, which the Selection operator can further specify. A
separate specification of applicability is the Exception to set certain exclusion of objects
if required. The operators enclose the particular word or part of a sentence and are
highlighted by different colors. The clear benefit of this technique is the explicit classification
of textual segments which instantly emphasize the importance of certain sections. This
reduces the amount of pure text to the essential, which is an advantage for straight
continuous texts like the MBO.

Figure 5.1 shows an extraction of the § 33th paragraph of the MBO. In the first
section, the utilization unit is the applied object enclosed with marked green operators.
Additionally, the following red Selection operator highlights the specification if the utilization
unit contains at least a single common room, two independent escape routes leading
to open-air are required. This requirement is set apart by blue enclosing operators. In
the next part, an Exception, marked by yellow operators, outlines a new Applicability,
now referring to the escape route itself. Even manually performing the RASE mark-up
technique ensures a better understanding of the standard’s context and enhances the
overall clarity of presented information for the user. The full RASE marked version of the
MBO can be found in the Appendix A.

37

§ 33 Erster und zweiter Rettungsweg

(1) Für Nutzungseinheiten<\a> </s>mit mindestens einem Aufenthaltsraum<\s>

wie Wohnungen, Praxen, selbstständige Betriebsstätten

</r> müssen in jedem Geschoss mindestens zwei voneinander unabhängige Rettungswege ins Freie

vorhanden sein<\r>;

</r> </e>beide Rettungswege<\a> dürfen jedoch innerhalb des Geschosses über denselben

notwendigen Flur führen.<\e><\r>

(2) Für Nutzungseinheiten<\a> </s>nach Absatz 1<\s>, </s>die nicht zu ebener Erde liegen<\s>,

</r>muss der erste Rettungsweg über eine notwendige Treppe führen<\r>.

Der zweite Rettungsweg<\a> </r>kann eine weitere notwendige Treppe<\r> oder eine

</r>mit Rettungsgeräten der Feuerwehr erreichbare Stelle<\r> der Nutzungseinheit sein.

</e>Ein zweiter Rettungsweg<\a>ist nicht erforderlich, wenn die </r>Rettung über einen sicher

erreichbaren Treppenraum<\r> möglich ist, in den Feuer und Rauch nicht eindringen können

(Sicherheitstreppenraum). <\e>

(3) Gebäude, deren zweiter Rettungsweg<\a> </s>über Rettungsgeräte der Feuerwehr führt<\s>

und bei denen die </s>Oberkante der Brüstung von zum Anleitern bestimmten Fenstern oder Stellen

mehr als 8 m über der Geländeoberfläche<\s> liegt, </r> dürfen nur errichtet werden, wenn die

Feuerwehr über die erforderlichen Rettungsgeräte wie Hubrettungsfahrzeuge verfügt<\r>. </e>

Bei </s>Sonderbauten<\s> ist der zweite Rettungsweg über Rettungsgeräte der Feuerwehr nur zulässig,

wenn </r>keine Bedenken wegen der Personenrettung<\r> bestehen. <\e>

Figure 5.1: Mark-Up Technique Based on the RASE concept

The highlighted text of 5.1 includes all information necessary for a code compliance
check. The Application of the first section is a utilization unit which can be represented
as an IfcSpace. The spaces’ identification can be guaranteed by a naming convention,
classification, or additional mapped attributes to enable an automated process. Further, the
Selection operator highlights the information of the existence of at least one common room.
The implicit identification of spaces being a common room is not possible. Rooms could
be identified via a naming convention and in combination with an underlying database to
capture specific space types. However, the resulting database would be hard-coded, and
the applied naming conventions have to match the implemented ones. This would result in
a rigid workflow and could cause time delay. Therefore, an additional boolean attribute is
more flexible and must be mapped to spaces to identify common and non-common rooms.
The first requirement includes the term of escape ways in a story. Escape routes do not
have a class representation in IFC like spaces but can be computed and represented by
graphs. Therefore, knowledge regarding the different representation types in IFC and
capability of underlying development environment are essential to be able to categorize
highlighted information.

In many cases, it is helpful to extract the marked information in a table format. The
user engages more often with the new information and ensures a better understanding
of its context, which is crucial for a consistent ACCC process. Additionally, the table’s
content summarizes the received information clearly, which can be used for the check
implementation later on. For example, in section (3), an exception for special buildings is

38

mentioned but not further specified, which can be easily completed in a table format. The
table (Mark_Up_Table.xlsx) can be found in the Appendix A.

RASE mark-up operators help identify all essential information vastly. Still, detailed
knowledge of the underlying data format and development environment is required to
assure a flawless code compliance checking scenario implementation. Furthermore,
unnecessary linked data in a building model must be prevented urgently due to possible
occurring inconsistencies or interference with other stakeholders’ information (BORRMANN

et al., 2015). The following section covers all included fundamental data in IFC for ACCC
to prevent needless mapped data.

5.2 IFC Data Coverage

This chapter comprises the core contents of IFC which build the basis for a reliable code
compliance checking process. An understanding of common data delivered by a building
model in IFC is necessary for an efficient mapping process of additional required data.
Therefore, the spatial aggregation and its relating classes are represented, followed by an
overview of components aggregation and possibilities in the open data scheme to assign
additional information. The last section outlines the importance of the correct allocation of
building elements to ensure a flawless workflow.

5.2.1 Three-Dimensional Aggregation

Compliance checking of the MBO requires detailed information about space-space and
space-object relations. As mentioned in Figure 5.1, the first section (1) demands the
existence of at least one common room in a utilization unit to require two independent
escape ways. This semantic could be translated by additional information like room labels
linking the common rooms to their relating utilization unit. However, additional mapped
information must be reduced to a minimum and these relations can be computed by the
standard spatial information of building models transferred via IFC.

First of all, the general principle of spatial aggregation in IFC has to be understood,
before reducing the amount of additional data. As mentioned in Chapter 2, IFC is an object-
oriented data format representing all occurring elements as discrete objects with specific
attributes. For example, all spatial elements of a building project are represented by the
class IfcSpatialStructreElements and its sub-classes IfcSite, IfcBuilding, IfcBuildingStorey,
and IfcSpace (“buildingSMARTe”, 2021). Its hierarchical aggregation is represented by
the relation object IfcRelAggregates. It links the project and the site object, the building to
its site, all building storeys to the building and all spaces (RelatedElements) enclosed by
parenthesis to its relating building story (RelatingElement) as shown in Figure 5.2 and 5.3.

39

#105=IfcProject

#1707=IfcRelAggregates

#1672=IfcSite

#1711=IfcRelAggregates

#1715=IfcRelAggregates

#1724=IfcRelAggregates

#115=IfcBuilding

#124=IfcBuildingStorey

#150=IfcSpace

RelatingObject

RelatedObject

RelatedObject

RelatedObject

RelatedObject

RelatingObject

RelatingObject

RelatingObject

#1684=IfcRelContainedIn
SpatialStructure

#920=IfcSlab

#990=IfcWall

#1042=IfcWall

#1075=IfcWall

#1108=IfcWall

RelatedObject

RelatedObject

Related
Object

Relating
Object

#313=IfcSpace

#466=IfcSpace

Figure 5.2: An Example of the Hierarchical Aggregation of Spatial Structure Elements and
Assignment of Building Elements

The first four attributes are derived from the base class IfcRoot (see 2.2.2) and
represents the UID, the IfcOwnerHistory, an optional name, and optional description. All
objects’ attributes are enclosed by parenthesis, separated by a comma, and always end
with a semicolon. Continuing attributes differ from class to class but can be found on the
bSI technical web page for each class and IFC version (“buildingSMARTf”, 2021). This
aggregation describes in detail its relations but doesn’t reference any absolute or relative
positioning of its elements in 3D space which is another mandatory information for ACCC.

40

#105= IFCPROJECT('3iIPdhi8D7zAYir0xdDagt',#41,'Project Number',$,$,'Project

Name','Project Status',(#97),#92);

#1672= IFCSITE('3iIPdhi8D7zAYir0xdDagr',#41,'Default',$,'',#1671,$,$,.ELEMENT.,

(42,21,31,181945),(-71,-3,-24,-263305),0.,$,$);

#115= IFCBUILDING('3iIPdhi8D7zAYir0xdDags',#41,'',$,$,#32,$,'',.ELEMENT.,$,$,#111);

#124= IFCBUILDINGSTOREY('3iIPdhi8D7zAYir0uOoOP8',#41,'Level 1',$,$,#122,$,'Level

1',.ELEMENT.,0.);

#150= IFCSPACE('3oGUzJFLD85gDtudg9VrrN',#41,'1',$,$,#133,#146,'Corridor',.ELEMENT.,

.INTERNAL.,$);

#313= IFCSPACE('31sRVdxoTEIhSFYtHOsqtJ',#41,'1',$,$,#280,#311,'Nutzungseinheit',

.ELEMENT.,.INTERNAL.,$);

#466= IFCSPACE('31sRVdxoTEIhSFYtHOsqqQ',#41,'2',$,$,#434,#464,'Aufenthaltsraum',

.ELEMENT.,.INTERNAL.,$);

#1707= IFCRELAGGREGATES('1qU9WVPLH1hhGls1_OPZdV',#41,$,$,#105,(#1672));

#1711= IFCRELAGGREGATES('0ROFxV0VL8YRr2p9_rt61C',#41,$,$,#1672,(#115));

#1715= FCRELAGGREGATES('1vK3KfqgSHqv5Y00A6FnIY',#41,$,$,#124,(#150,#313,#466));

#1724= IFCRELAGGREGATES('3ioAY2VOL1QOEtMGyzl4Rh',#41,$,$,#115,(#124));

Figure 5.3: Aggregation of Spatial Structure Elements

Positioning of components in IFC, except for IfcSite, is secured by relative positioning
via local coordinate systems, the IfcLocalPlacement class. IfcLocalPlacement is always
linked in the relating object’s attributes and contains as the first attribute another IfcLo-
calPlacement entity. This optional attribute provides the related parent coordinate system.
If it’s not set, the object is placed absolutely in the global coordinate system. The second
attribute is the RelativePlacement and contains the transformation from the parent coordi-
nate system to the local placement. RelativePlacement uses the IfcPlacement parent class
and its sub-classes IfcAxisPlacement, IfcAxis2Placement2D and IfcAxis2Placement3D.

#6= IFCCARTESIANPOINT((0.,0.,0.));

#1670= IFCAXIS2PLACEMENT3D(#6,$,$);

#1671= IFCLOCALPLACEMENT($,#1670);

#1672=IFCSITE('3iIPdhi8D7zAYir0xdDagr',#41,'Default',$,'',#1671,$,$,.ELEMENT.,(42,21,31

,181945),(-71,-3,-24,-263305),0.,$,$);

Figure 5.4: Absolute Positioning of IfcSite

Figure 5.4 depicts the particular case of the IfcSite entity and its placement in the
global coordinate system. IfcLocalPlacement attribute’s RelativePlacement is missing and
substituted with $ and, therefore, is not placed relatively to another component, but in the
global coordinate system’s origin. Next to the spatial building entity relations and their
geometric positioning, the allocation of the remaining components, like walls, columns,

41

etc., to their relating spatial elements plays an important role for ACCC. This eases the
overall process of finding space-object relations.

A standard assignment of elements to its containing spatial structures in IFC is realized
by the IfcRelContainedInSpatialStructure class. As mentioned above, spatial structures
are IfcSite, IfcBuilding, IfcBuildingStorey and IfcSpace and its relating building elements
are assigned. IfcRelContainedInSpatialStructure contains the common four attributes of
IfcRoot and holds as its fifth attribute a set of RelatedElements, representing the assigned
building elements, enclosed in parenthesis. The last attribute covers the RelatingElement,
like in Figure 5.5 an IfcBuildingStorey.

#124= IFCBUILDINGSTOREY('3iIPdhi8D7zAYir0uOoOP8',#41,'Level 1',$,$,#122,$,'Level

1',.ELEMENT.,0.);

#920= IFCSLAB('3oGUzJFLD85gDtudg9VrFm',#41,'Floor:Generic Floor -

400mm:201980',$,'Floor:Generic Floor - 400mm',#898,#918,'201980',.FLOOR.);

#990= IFCWALL ('3oGUzJFLD85gDtudg9Vr83',#41,'Basic Wall:Generic -

200mm:201999',$,'Basic Wall:Generic - 200mm:249',#963,#988,'201999', .NOTDEFINED.);

#1042= IFCWALL ('3oGUzJFLD85gDtudg9Vr8S',#41,'Basic Wall:Generic -

200mm:202000',$,'Basic Wall:Generic - 200mm:249',#1022,#1040,'202000',

.NOTDEFINED.);

#1075= IFCWALL ('3oGUzJFLD85gDtudg9Vr8T',#41,'Basic Wall:Generic -

200mm:202001',$,'Basic Wall:Generic - 200mm:249',#1055,#1073,'202001',

.NOTDEFINED.);

#1108= IFCWALL ('3oGUzJFLD85gDtudg9Vr8U',#41,'Basic Wall:Generic -

200mm:202002',$,'Basic Wall:Generic - 200mm:249',#1088,#1106,'202002',

.NOTDEFINED.);

#1684=

IFCRELCONTAINEDINSPATIALSTRUCTURE('1vK3KfqgSHqv5Y0066FnIY',#41,$,$,(#920,#990,

#1042,#1075,#1108),#124);

Figure 5.5: Linking of Building Components to Spatial Elements

An additional possibility to receive advanced spaces-object relation can be achieved
by changing the IFC-export settings. If Space boundaries are selected, the IfcRelSpace-
Boundary class is added to the exported IFC file. It inherits, like all sub-entities from
IfcRoot, an UID, a relating IfcOwnerHistory, optional name, and description. The fifth
attribute references the bounded space, followed by the building element that represents
this boundary. Physical boundaries can be, e.g., IfcWall, IfcSlab, IfcWindow, and IfcDoor.
Spaces can as well be limited in their expansion by virtual Space Separators. If the Space
boundary represents a virtual border, the sixth attribute is empty and filled with $. A
further feature is the representation and calculation of occupied space area relating to
surrounding Space boundaries. The seventh attribute passes the calculated area infor-
mation whereby the overall area of a space can be computed and every Space boundary
with its contribution. The last two attributes hold enumerations about whether it’s a virtual

42

or physical border and internal or external. Figure 5.6 shows examples for a virtual and
physical Space boundary.

#861=

IFCSPACE('31sRVdxoTEIhSFYtHOsqrS',#42,'5',$,$,#847,#858,'Space',.ELEMENT.,.SPACE.,$);

#970= IFCSLAB('3oGUzJFLD85gDtudg9VrFm',#42,'Floor:Generic Floor -

400mm:201980',$,'Floor:Generic Floor - 400mm',#933,#966,'201980',.FLOOR.);

#909=

IFCRELSPACEBOUNDARY('1aqQfG6HP99RF1xpAIB1oV',#42,'1stLevel',$,#861,$,#908,

.VIRTUAL.,.INTERNAL.);

#2295=

IFCRELSPACEBOUNDARY('3tDiD7U1FsOjYJIWHOAqm',#42,'1stLevel',$,#861,#970,#878,

.PHYSICAL.,INTERNAL.);

Figure 5.6: Virtual and Physical Space Boundary

In terms of ACCC, the chosen level of Space Boundaries is secondary most of the time.
Level 2 gives additional information on whether a building element or space is on the other
side. This information could as well be used for checking mechanisms but is mostly used for
thermal computations (“buildingSMARTg”, 2021). Space boundaries are useful if space’s
area must be assigned to particular building elements, e.g., space occupied by windows.
For more general space information the Ifc Quantity Set Qto_SpaceBaseQuantities can
be used instead.

IFC has a strong representation of three-dimensional information, which can be utilized
in code compliance checking procedures. Nevertheless, this information relies on the
modeling process and has to be determined and agreed on in every project. For example,
a digital building model can be modeled without proper building story assignment, leading
to significant problems for hard-coded compliance tests if required. Therefore, these
requirements must be addressed in a test’s documentation and a project’s exchange
requirements.

5.2.2 Building Element Aggregation

The in 5.2.1 mentioned IfcRelAggregates class is used for object composition and decom-
position as well. Certain building elements can be exported to IFC as an assembly of parts,
representing the building element as an aggregation or as a single entity, directly including
an object’s representation. As a composition of building elements, every single part holds
its representation, and the whole building element is represented by this assembly, as
shown in Figure 5.7 (“buildingSMARTi”, 2021).

43

#145= IFCLOCALPLACEMENT(#134,#144);

#147= IFCSTAIR('0Yj0wT8r6k8hjf$fbth9h',#42,'AssembledStair:Stair:209667',$,'Assembled

Stair:180mm max riser 275mm tread:159374',#145,$,'209667',.NOTDEFINED.);

#4871=IFCRELAGGREGATES('0Yj0wcT8r6k8hjf$bbth9h',#42,$,$,#147,(#1033,#1067,#1098,

#3014,#4860));

#1033= IFCSTAIRFLIGHT('0Yj0wcT8r6k8hjf$fbth9r',#42,'Assembled Stair:Stair:209667 Run

1',$,'Assembled Stair:180mm max riser 275mm tread:159374’,

#162,#1028,'209693',23,22,0.57058085130663,0.902230971128609,.NOTDEFINED.);

#1067= IFCMEMBER('0Yj0wcT8r6k8hjf$fbth9t',#42,'Assembled Stair:Stair:209667 Stringer

1',$,'Assembled Stair:180mm max riser 275mm tread:159374’,

#1037,#1061,'209695',.STRINGER.);

#1098= IFCMEMBER('0Yj0wcT8r6k8hjf$fbth98',#42,'Assembled Stair:Stair:209667 Stringer

2',$,'Assembled Stair:180mm max riser 275mm tread:159374’,

#1071,#1095,'209696',.STRINGER.);

#3014= IFCRAILING('0Yj0wcT8r6k8hjf$fbth90',#42,'Railing:900mm Pipe:209704’,$,

'Railing:900mm Pipe',#1181,#3011,'209704',.NOTDEFINED.);

#4860= IFCRAILING('0Yj0wcT8r6k8hjf$fbth94',#42,'Railing:900mm Pipe:209708’,$,

'Railing:900mm Pipe',#3030,#4857,'209708',.NOTDEFINED.);

#4857= IFCPRODUCTDEFINITIONSHAPE($,$,(#4853));

Figure 5.7: Object’s Shape Representation of IfcStair as an Assembly of Building Elements

The IfcStair entity holds an IfcLocalPlacement attribute followed by $. This missing
attribute states the IfcProductDefinitionShape, enclosed in parentheses and therefore,
represents a set of possible IfcShapeRepresentations. A missing IfcProductDefinition-
Shape indicates an assembled IfcStair object; thus, all aggregated elements hold their
shape representation. The highlighted attributes in the stair’s sub-elements hold the
IfcProductDefinitionShape attribute, outlined for the last element in line #4857, IfcRailing.

Regarding ACCC, an export of specific categories of building elements must be con-
sidered depending on the required level of detail in respect of claims made by regulations
and standards. As mentioned in chapter 3, hard-coded tests rely on strict abidance by
correct data-object assignment. Therefore, all required elements must be assigned and
exported for a flawless and accurate compliance process. These export requirements must
be outlined and determined in ER and IDM process. The following covers all assembled
standard building elements and their export requirements optimized for ACCC regarding
the MBO in this thesis.

44

IfcStair

A stair can be an assembly entity or a single entity. In this thesis, stairs are exported as
an aggregation of building elements. A stair is assembled by IfcStairFlight, representing
risers and treads, IfcRailing, IfcSlab (Landing), and IfcMember representing parts like its
bearing structure. bSI states to assign IfcMember to entities of IfcBeam or IfcColumn if
it can be expressed more specifically (“buildingSMARTh”, 2021). These concerns must
be supervised in every particular project in consultation with structural engineers, but
concerning this thesis, no further specifications will be made concerning IfcMembers. An
assembly entity for stairs, checking for the fifth section of the MBO, is beneficial, e.g., due
to detailed demands for the worst fire resistance stair’s components. Therefore, all fire
resistance properties are just assigned to its relating building element and the user doesn’t
have to identify the decisive fire resistance by himself.

IfcRamp

IFC enables aggregation of ramps composed of a ramp flight and landings, which are
represented by slabs. These slabs can contain an enumeration, like LANDING, in its
PredefinedType attribute to define its specific slab type. Like for stairs mentioned above,
railings are es well linked to the IfcRamp entity by IfcRelAggregates. Regarding this thesis,
it is an advantage to attache all railings to its relating stair or ramp entities because MBO
claims their existence.

IfcCurtainWall

Curtain walls are complex building elements, and therefore its sub-elements can hold vital
information for ACCC. IfcCurtainWalls are composed of IfcPlates representing the glazing
panels and the mullions by IfcMembers. As already mentioned above, for IfcStair, the
specific assignment of IfcMember entities to IfcBeam or IfcColumn must be stated in every
project but won’t be further specified in this thesis. Additionally, panels can be replaced by
IfcDoors or IfcWindows and thus are part of the aggregation. This assignment of crucial
escape way components strengthens the benefit of modeling and exporting curtain walls
as assembly entities for compliance checking processes.

IfcRoof

The architectural shape of roofs are numerous and can be represented by a single roof
entity. IfcRoofs are aggregated by IfcSlabs and complemented by structural components
like IfcBeam or voided and filled by building elements like IfcWindow. Detailed access to
the roof’s sub-elements is not required due to missing claims concerning roofs and their

45

sub-elements in the MBO, but in this thesis, the IfcRoof will be exported as an aggregated
entity.

The specific building element aggregation outlined above represents an additional ex-
change requirement concerning this thesis and the compliance checking scenario for
the fifth section of MBO. Therefore, the underlying building elements are modeled and
exported as outlined and are validated in the implemented compliance procedure.

The following concepts of additional semantic assignment in IFC do not directly apply
to this thesis and should only be used if all participants agreed on the precise usage.
Nevertheless, they are presented for reasons of completeness of IFC classes.

5.2.3 Additional Semantic Assignment

IfcClassification

IFC provides the functionality to array objects in a class or category by their principal
purpose or characteristics. IfcClassifications build a hierarchical scheme and establish
the functionality to apply taxonomies. IfcClassifications hold detailed information about
the used classification systems like OmniClass, UniFormat, and many more. IfcClassi-
ficationReferences relate to its classification system (IfcClassification) and provide the
classification information for specific building components. The relation object IfcRe-
lAssociatesClassification connects a set of appropriate components and the belonging
IfcClassificationReference as depicted in Figure 5.8 (“buildingSMARTk”, 2021).

#314= IFCWALL('0Yj0wcT8r6k8hjf$fbthKy',#42,'Basic Wall:Interior - 138mm Partition (1-

hr):210004',$,'Basic Wall:Interior',#285,#310,'210004',.NOTDEFINED.);

#431= IFCWALL('0Yj0wcT8r6k8hjf$fbthK_',#42,'Basic Wall:Interior - 138mm Partition (1-

hr):210006',$,'Basic Wall:Interior’,#409,#427,'210006',.NOTDEFINED.);

#578= IFCCLASSIFICATION('User','2020',$,'UserDefined',$,$,$);

#580= IFCCLASSIFICATIONREFERENCE($,'Shear Wall',$,#578,$,$);

#581= IFCRELASSOCIATESCLASSIFICATION('pVZN3mirRru6najDa29G+g',#42,'Wall

Classification',$,(#314,#431),#580);

Figure 5.8: Classification of Shear Walls with a User Defined Classification System

Classifications are a widespread approach in a BIM workflow to enrich semantics.
This functionality is helpful for ACCC in cases of allocating building components to a
particular category containing various sub-elements. An example would be the use of
rooms and categorization regarding its common room status. In this thesis, only property
sets (see 2.2.3) are used for data mapping to guarantee high clarity for the user and all
stakeholders. Nevertheless, if code compliance checking process is well implemented and

46

enough experience was gained, a separation of mapped data in terms of the used data
assignment methodology can be taken into consideration.

IfcGroup

The aggregation of building elements mentioned above is a standard solution in IFC to
provide an enhanced semantic to specific composite components. Modeling tools, like
Revit, provide another functionality to represent relationships between building components
by grouping them. In Revit, Groups can be used to allocate particular modeled building
elements that are often used in the same aggregation. Using these groups allows a much
faster and more efficient modeling process. This grouping semantic is as well integrated
into the IFC data scheme, as shown in Figure 5.9.

Figure 5.9: Grouping of two Walls in a Test Group

The IfcGroup class represents the actual grouping entity which is linked by the relation
object IfcRelAssignsToGroup with the included set of IfcWalls. In general, bSI designed
IfcGroups to nest "products, processes, controls, resources, actors or other groups, .."
(“buildingSMARTj”, 2021) without dependencies or hierarchical meaning. Objects can be
linked to several groups simultaneously, and groups can be assigned to further objects
like processes, resources, and control entities via relationship classes like IfcRelAssign-
sToProcess, IfcRelAssignsToResource, and IfcRelAssignsToControl (“buildingSMARTj”,
2021). Grouping via IfcGroups could be used in ACCC for additional relation semantic
of spatially separated components. This should only be taken into consideration if all
project’s stakeholders agree on this approach and guarantees a significant improvement
in clarity and saving of labor.

5.2.4 Building Element Allocation

Modeling tools provide a variety of standard building element categories to model, e.g.,
walls and slabs. These categories already hold numerous important element-specific
properties and functionalities. For example, walls are automatically voided and filled with
doors and windows. In IFC, IfcRelFillsElement and IfcRelVoidsElement facilitate this
functionality by linking voiding and filling elements and reducing the computation effort in
compliance checking processes drastically.

47

The appearance of specific building categories can be extended in Revit by the
importation of families. These families represent user-defined components that have to
be assigned to its relating Revit category. Later on, this assignment ensures the correct
allocation to building element type in IFC. ACCC depends on delivered information of a
building model, like correct type assignment of building elements. In compliance checking
tests, this type of information is often used to sort components and test particular attributes.
An incorrect allocation can prevent the assignment of information regarding particular
building components and result in undetected errors.

The AEC sector has a large variety of building elements, and many are not covered by
standard categories of IFC, e.g., ladders (see Figure 5.10). Hence, bSI provides the class
IfcBuildingElementProxy with the same functionality as subtypes of IfcBuildingElement
but does not represent a particular type of building components.

IfcBuildingElement

IfcBeam

IfcBuildingElementProxy

IfcChimney

IfcColumn

IfcCovering

IfcCurtainWall

IfcDoor IfcFootingIfcRoof

IfcRampFlight

IfcRamp

IfcMember

IfcPile

IfcPlate

IfcRailing

IfcWindow

IfcStairFlight

IfcStair

IfcSlab

IfcShadingDevice

IfcWall

Figure 5.10: Entity Inheritance of IfcBuildingElement and its Sub-Classes (“buildingS-
MARTl”, 2021)

Building elements that can not be classified into one of IfcBuildingElement ’s sub-
classes can be assigned to the IfcBuildingElementProxy. This class provides the same
functionalities as the other subtypes, but it is missing attributes providing meaning for
a particular building element. Table 5.1 represents an additional part of the exchange
requirements to check for compliance with the fifth section of MBO and depicts the
underlying building element allocation regarding its IFC element type.

48

Table 5.1: Building Elements and relating Element Types in IFC

Building Element IFC Element Type Building Element IFC Element Type
(Glass-)Door IfcDoor Window IfcWindow

Railing IfcRailing Stair Steps IfcStairFlight
Stair IfcStair Stair Elements IfcMember

Ramp IfcRamp Ramp Flight IfcRampFlight
Wall IfcWall Curtain Wall IfcCurtainWall

Beam IfcBeam Column IfcColumn
Floor IfcSlab Withdrawal IfcB.El.Prox

Suspended Ceiling IfcCovering Area IfcSpace
Escalator IfcTransp.Elem. Ladder IfcB.El.Prox

Light Source IfcLightFixture Glass Cover (horiz.) IfcRoof
Room IfcSpace Utilization Unit IfcSpace

Opening IfcOpening Roof IfcRoof
Skylight (door) IfcWindow Side Part Door IfcWindow

The table above does not contain any requirements for coverings, plaster, and insula-
tion which can be represented by IfcCovering and specified by its attribute PredefinedType.
These coverings are part of multilayered components like walls, columns, or beams. The
legal text claims, e.g., the fire resistance of surfaces, plaster and insulation, to match
particular requirements. In this thesis, multilayered walls are exported as solid walls
because they represent the most general approach and cover a low level of detail of
even early project phases. The resulting fire resistance or behavior of walls, columns,
and beams is realized by the most decisive element of this compound. The user must
incorporate this issue in the mapping process. An advantage despite the additional labor
during the mapping procedure is the applicability of resulting compliance tests in earlier
project stages. Therefore, a less detailed model can be checked for compliance, and
planning errors can be detected in early project phases. A part of the outlined building
elements is utilized in the test building model and validated in the implemented compliance
checking procedure.

5.3 Data Extraction and Mapping

Chapter 5.2 outlined various classes in the IFC scheme and how these standard seman-
tics can be arranged and used for ACCC. The structured and prepared information of
regulations and standards (see 5.1) have to be passed to all relating building elements via
property sets. The following sections introduce the different levels of granularity and their
impact on the information extraction process. In addition, the overall mapping process
with all additional information of the MBO is presented and reviewed, and different code
compliance checking approaches are outlined and discussed.

49

5.3.1 Granularity and Complexity

ACCC requires computer-readable information to test compliance with specific standards
and regulations. The diversity of representation types (see 4.3) often provide different
levels of descriptive precision and, therefore, lead to variable approaches of handling this
information which will be outlined in the following section.

In general, norms claim certain issues and their abidance. The existence of a claim is
essential to translate information into computer interpretable data for compliance checking
(see 5.11). Hence, structuring information as shown in 5.1 outlines what information is
demanded and might be checked.

Existence of Claim

Granularity & Complexity
- Extensive
- Coarse
- Fine

Development Environment
Capability

Figure 5.11: Three Fundamental Element Hierarchy for Information Translation into Com-
puter Readable Data

A claim’s granularity and complexity build the second hierarchical element. Granularity
delivers information about semantic preciseness (BITTNER and SMITH, 2002). The finer its
granularity, the easier it is to map as explicit data. Complex demands in regulations and
standards must be disintegrated into simple, precise data that can be mapped to building
components. Via these explicit input data, tests of higher complexity with extended data
structure or even tests for validation of certain circumstances can be realized.

§35 Notwendige Treppenräume, Ausgänge
1) Notwendige Treppen sind ohne eigenen Treppenraum zulässig ... als
Außentreppe, wenn ihre Nutzung ausreichend sicher ist und im Brandfall
nicht gefährdet werden kann.

The MBO claims stairs, which are part of an escape route, do not have to be inside
of a stairwell if it is an external stair and its use is sufficiently safe and not endangered
in case of fire. The granularity is extensive and does not set any boundaries regarding
the sufficient safety of external stairs. Therefore, further specifications are required
to check for compliance automatically, e.g., incorporating the user and handing over
unclear situations. The MBO is complemented by federal laws in a much more detailed
version. Checking for compliance with the MBO can often be advantageous because
of its uniformity for all federal states. Parts of regulations with an extensive granularity

50

should only be compounded with other complementing norms combined with detailed
documentation to clarify the overall checking procedure. In a compliance checking process,
it is always recommended to separate contents of different norms and test each claim
individually. This distinct separation ensures well-arranged issue management.

§35 Notwendige Treppenräume, Ausgänge
2) Sind mehrere notwendige Treppenräume erforderlich, müssen sie so verteilt
sein, dass sie möglichst entgegengesetzt liegen und dass die Rettungswege
möglichst kurz sind.

The second section of §35 demands several stairwells to be well distributed and
positioned in opposite directions. Additionally, its relating escape routes are supposed
to be as short as possible. A coarse granularity combined with complex problems like
this spatial and geometric question of stairwells distribution in buildings. Claims of this
granularity are generally quantifiable but depend on the overall developer skills and the
provided technical possibilities of the development environment. Requirements differ
in their granularity and complexity, and the former represents a dynamic principle, so a
uniform approach is not applicable. It always depends on the user’s valuation. The process
mentioned above of passing specific issues directly to the user for a detailed rating of the
problem fits many cases with coarse granularity. If issues are describable via certain value
boundaries or similar borders, default thresholds or input of user values can be utilized.

§36 Notwendige Flure, offene Gänge
2) Notwendige Flure müssen so breit sein, dass sie für den größten zu er-
wartenden Verkehr ausreichen.

This extraction of the fifth section of MBO corridors’ width must match the maximum
occurring traffic. The granularity is fine, but the claim is missing a boundary value. Fine
granularity does not require the user’s assessment and is solvable via thresholds or user
inputs. Especially thresholds strengthen the black-box character of hard-coded code
compliance checks because the user can not see the underlying thresholds. Inevitable
thresholds require detailed test documentation why a implementation of user input is
preferable.

Fine granularity and boundary values guarantee a quantifiable problem. The granu-
larity’s acuteness enables the user to identify all affected and involved building elements.
Additionally, detailed relating information can be mapped and often complemented with
boundary values. For example, the following extraction of § 34 regarding stairs outlines the
requirements of a stair’s bearing structure. Depending on the particular building class, the
bearing element must match a specific fire resistance and behavior. All addressed building
components and their additional attributes are specified and facilitate a clear identification
for the mapping process.

51

§34 Treppen
4) Die tragenden TeilenotwendigerTreppen müssen
1. in Gebäuden der Gebäudeklasse 5 feuerhemmend und aus nichtbrennbaren
Baustoffen
2. in Gebäuden der Gebäudeklasse 4 aus nichtbrennbaren Baustoffen
3. in Gebäuden der Gebäudeklasse 3 aus nichtbrennbaren Baustoffen oder
feuerhemmend

The existence of a claim and its granularity define whether a circumstance is gener-
ally testable for compliance. The last element represents a software’s or development
environment’s capability to test for the underlying issue. Therefore, the developer requires
detailed knowledge about the used software combined with extensive know-how in the
particular AEC field relating norms and regulations and the overall data coverage of IFC.

5.3.2 Further Analysis and Strategies

A claim’s granularity specifies whether its comprised information is reducible to simple
explicit data or requires further workarounds. In this section, additional assessment ap-
proaches to handle and review information extracted from standards are outlined. The
outlined procedures enable users to manage various information types and make nece-
ssary decisions in an efficient extraction and mapping process.

General Claims

§33 (3) states that the second escape route via a window can only be realized if the
fire brigade has the necessary life-saving equipment. The requirement’s granularity is
sufficient to map this information directly, but fire brigade objects are not present in IFC.
Hence, an integrated check-box in the interface ensures the availability of all required data
without identifying concerned objects.

§33 Erster und zweiter Rettungsweg
(3) ..., wenn die Feuerwehr über die erforderlichen Rettungsgeräte wie Hubret-
tungsfahrzeuge verfügt.

52

Implicit Semantics and Modelling Standards

One of AEC sector’s characteristics is unique projects and resulting high complexity.
Therefore, developing algorithms capable of handling a multitude of different scenarios
(high level of generalization) requires a lot of coding knowledge and a reliable database.

§35 Notwendige Treppenräume, Ausgänge
(4) Der obere Abschluss notwendiger Treppenräume muss als raumab-
schließendes Bauteil die Feuerwiderstandsfähigkeit der Decken des Gebäudes
haben; dies gilt nicht, wenn der obere Abschluss das Dach ist und die Trep-
penraumwände bis unter die Dachhaut reichen.

The first requirement of §35 (4) claims matching fire resistance of a stairwell’s top
closure (ceiling or roof) and the building’s ceilings (IfcSlab). Therefore, all concerned
objects of a stairwell can be accessed by the underlying three-dimensional aggregation
in IFC (see 5.2.1) and the highest building elements of either IfcSlab or IfcRoof can
be accessed and evaluated regarding its fire resistance. Strict modeling standards can
guarantee the exact stairwell’s height to validate the top closure. Hence, the implicit
derivation of the top closure can be implicitly derived, and additional mapping is averted.

The modeling standards mentioned above establish exact requirements in the mod-
eling process and facilitate reliable core information, enabling replicability for underlying
compliance scenarios. A modeling requirement would be the claim for the existence of
spaces and their detailed modeling properties, e.g., space must expand to its bordering
building components. These exact requirements should be included by the underlying test
documentations and distributed to all affected stakeholders.

Besides the definition and implementation of modeling standards, the algorithms used
to derive implicit information have to be evaluated for their steadiness regarding many
occurring scenarios. Undetected errors lead to fatal mistakes in the issue management
and result in time loss and additional costs. For this reason, the utilization of complex algo-
rithms producing implicitly derived data is only applicable for scenarios with manageable
complexity. Furthermore, §35 (4) includes detailed requirements concerning the stairwell
walls reaching the roof membrane. Highly detailed modeling requirements are challenging
to meet and, therefore, delivered as additional information (ReachingRoof) mapped to
relating walls.

Method Limitations and User’s Incorporation

An insufficient granularity (see 5.3.1) can be handled via incorporating the check’s user
and using his valuation of present problems. Despite an imprecise description of stated
claims in a norm or regulation, the current limitations of ACCC have to be known and well
understood by the user to apply sufficient methods preventing undetected errors. So far,

53

the following situations might appear in a code compliance checking process and require
the human ability to make accurate decisions.

Incorporating users resembles the approach of serving concerned elements "on a
tray" to reduce error rates and amount of work simultaneously. The goal of fully automated
tests is not realizable in every scenario, but user incorporation can complement the current
issue management process. An example is the missing Level of Detail (LoD) (not LOD).
Although IFC covers a large number of classes to represent building elements of various
types, correlations like free space in a stair between its railing and steps (§38 (1) 6.) are
undetectable via algorithms. Additionally, reliable solutions are hindered by the plurality of
design possibilities, and therefore, a domain expert’s opinion can provide a remedy.

Furthermore, the representation of specific relations between coherent building ele-
ments like windows and its correlating device to open it (§35 (8)) is not possible in the
current state (IFC 4). Additional data could solve this missing semantic, but in this case,
the approach should be avoided due to the rapidly rising amount of data. Directly involv-
ing and presenting affected objects to the user prevents a large amount of additionally
required data and results in active user involvement. Another example in MBO is §37 (1)
that requires changes in the arrangement of its environment to check its validity. It claims
the presence of elevators, mounts, or bars if windows can not be cleaned up from the
ground floor, inside of buildings, or balconies. These constantly changing situations require
a valuation of its subprocesses and are not evaluable in an ACCC process, which only
represents a particular project phase. Regarding this scenario, IFC provides functionalities
of assigning building elements to certain project phases to simulate processes.

The different approaches outlined above cover various scenarios to identify essential
information and handle insufficient stated requirements or technical realization possibilities.
These approaches are applied to identify crucial data comprised by the data mapping
tables in the following section and implementation of compliance checking scenario
regarding the underlying use cases.

5.3.3 Data Mapping Tables

The overall content of this section 5.3 represents a detailed approach of sub-processes
Determining all Data Exchange Interfaces, Formalizing Exchange Requirements and
Information Mapping onto IFC Data Format in 2.3. Now the latter mentioned sub-process
can be executed by mapping the identified information provided by standards to its relating
building components in IFC. Requirements for this procedure are the exact knowledge
about the relating IFC entities and their distinct adherence in the mapping process. In
addition, often huge data sets must be passed to enable checking for compliance with
the content of the fifth section of the MBO. Therefore, a clear structure of additional data
relating components and data types must be delivered to ensure a flawless workflow.

54

In this thesis, all additional data are mapped via property sets (see 2.2.3). bSI provides
standard property sets for passing commonly used information for certain classes. These
property sets start with a Pset_ prefix, followed by BuildingElementCommon and can
be looked up for every particular IFC entity on “buildingSMARTf”, 2021. An exemplary
object like IfcDoor holds specific object attributes and its relating data type, which are
always defined in the class’ entity itself (see 5.12). Every door has a certain height
and width independently of its use. Additional common used data can be added via
Pset_DoorCommon property set and can hold information as depicted in Figure 5.13. For
an efficient mapping process, it is mandatory to ensure the singularity of data and prevent
mapping the same data in several ways, e.g., via user-defined property sets.

Figure 5.12: Standard Door Properties Included in Entity Definition (“buildingSMARTm”,
2021)

Figure 5.13: Extraction of Additional Door Information of Pset_DoorCommon (“buildingS-
MARTm”, 2021)

The strict use of common property sets for already implemented data prevents the
provision of multiple equivalent mapped data. Due to the fact, property sets can only be
applied to its relating (common property set) or assigned IFC entity (user-defined property
set), an exact definition of specific building elements (e.g., escalator) concerning their
allocation to specific IFC entities is essential (5.2.4). All project participants should agree
on these export definitions in an early project stage to prevent vagueness and time delay.
In addition, user-defined property sets hold information that is not comprised by common
property sets. The user-defined property sets for this thesis have a MBO_ prefix, followed
by the BuildingElement and ends with Properties, e.g. MBO_DoorProperties.

Applying the techniques of the aforementioned sections, all required additional in-
formation can be detected and translated into attributes and its underlying data types to
enable an assignment to IFC entities. bSI provides all information about every building
element that is included in the current IFC4 version (see 5.10). Every incorporated in-
formation, common and additional, should be gathered in a table where its assignment
to certain entities, underlying data types, and nomenclature can be reviewed. IFC data

55

types are sub-classes of IfcMeasureResource and can be looked up on the building smart
homepage “buildingSMARTf”, 2021. Figure 5.14 shows an extraction of the elaborated
property set definition of this thesis which can be found as a full document in the Appendix
A.

Figure 5.14: Extraction of Customer Defined Property Sets for Additional MBO Information

56

The first row of Figure 5.14 represents the mapped data and its relating data types
and outlines all required IFC entities for a full test of the fifth section of MBO. Even though
MBO does not claim any requirements for columns or beams, these building elements
are typically part of bearing structures. Due to the exported IFC entity and the filtering of
components in compliance checking processes regarding the entity type, neglecting these
bearing structure elements can lead to missing compliance. The blue rows represent the
user-defined property sets, yellow the quantity take-off properties, and green the used
common property sets. The checkmark specifies the corresponding property and IFC
entity (row), respectively, and in relating columns, the property sets or quantity take of
sets.

QTO sets can be looked up on “buildingSMARTf”, 2021 as well as common property
sets. MBO states demands regarding these building elements and their dimensions. The
utilization of QTO sets reduces computation time by accessing area information of windows
and openings.

The whole property set table incorporates 42 additional attributes. Common property
sets cover ten attributes, and 30 are mapped via user-defined property sets. Additionally,
two are transferred via QTO sets. Furthermore, the number of information is reduced by
five attributes concerning user-defined property sets by applying a naming convention to
spaces. An extended version of the property set is available in the Appendix A with detailed
information about all required information of MBO like interface and user incorporation.
Additionally, mapping tables like 5.14 require a short description of all mapped properties.
Additional tags can complement them to identify relating content in the standards or
regulations quickly. The table’s extraction above misses these due to reasons of missing
space but is included in the full document.

In BIM projects, the enrichment of additional data of building models must be well
documented and communicated, and all stakeholders require access to the underlying
spreadsheets gathering and explaining information in detail. These spreadsheets are
characterized by a growing complexity depending on the particular project and underlying
regulations. The representation of contained information in rows and columns involves the
risk of errors during the mapping process and requires strict review and check of correct
data assignment. In addition, the naming of attributes must be agreed upon and used
for the particular case to ensure conformity of mapped data and deposited information in
the hard-coded compliance test. The attributes depicted in 5.14 represent an additional
exchange requirement regarding the use case of code compliance checking of the fifth
section of MBO. Therefore, the compliance checking procedure in the case study must
validate the existence and consistency of all required data.

57

5.3.4 Code Compliance Checking Approaches

ACCC requires reliable information to ensure that specific contents are testable and
concurrent achievement of a high level of repeatability. Some operators lack a deeper
understanding of the transition from standard 3D models to a semantic building model and
its effects on the modeling process. Therefore, overall knowledge about proper semantic
modeling is often not present and can result in models with modest quality. Additionally, for
particular cases, the same semantics can be delivered in various ways inside of IFC due
to a multitude of classes. For a proper code compliance workflow, key semantics must be
identified on which all tests can relate. These key semantics build the basis of mandatory
information for the appropriate performance of the underlying compliance tests and build
the first level for all code compliance workflows. Key semantics can vary for different
application fields and have to be individually identified. Therefore, the development of
tests to evaluate the overall data quality of the provided building model is required to the
applicability of advanced code compliance checks. In cases of additional mapped data,
the correctness of mapped data in terms of assignment to all relating components, correct
terminology, etc., have to be evaluated.

Figure 5.15: Incremental vs "Full-"Test Approach Testing for Compliance with 5th Section
of MBO. Incremental Requirements are Divided into Further Sub-Tests

58

The followed code compliance checking level concerns the check of model quality, like
clash detection tests, and planning quality of architects and engineers regarding norms and
standards. Users and developers can decide whether the checking process is supposed
to be incremental or that "full-" tests are preferred. "Full-" tests describe checking methods
of extensive contents via a single test. This approach results in fast compliance processes
but is characterized by low user engagement and a strong black box character. In addition,
these tests require a lot of data due to their large and complex functionalities and often
result in an inflexible manner. Therefore, it can often only be applied in late project phases.
On the other hand, incremental tests represent the approach of high user engagement
by utilizing a library of tests, each checking for small sub-contents of a specific use case.
This can reduce the black box character to an acceptable minimum, and the user can fulfill
its responsibility regarding the correctness of a model’s quality.

An incremental checking process enables the use of calculated information of previous
tests for subsequent tests. This possibility can reduce the amount of additional data.
For example, in MBO, certain building objects, like stairs, or corridors, are considered
to be necessary if it is part of an escape route. Therefore, a test for evaluating escape
routes could be applied, and all affected building elements that require the necessary
attribute can be passed to all following tests that need this additional information, e.g.,
requirements concerning the composition of necessary stairwells. However, this procedure
requires a library of tests that can only be built over time, and additionally, the development
environment must be able to pass information from test to test. The advantages concerning
incremental test scenarios are utilized in this work to facilitate a compliance checking
scenario with high user involvement.

5.4 Technical Implementation

The overall code compliance checking procedure and its implementation depends on the
development environment‘s capability. Therefore, the environment must provide sufficient
functionalities to query and process all delivered information from the building model for
conclusive issue management. An environment‘s functionalities depend on its underlying
library of methods accessible via API. A method provides a particular functionality, takes
one or several input arguments, processes them, and generates specific output data. For
all coding languages, the passed arguments must match the required input data type.
Thus, a wide range of compatibility between methods of a library is a major issue and
enhances its effectiveness.

59

A fundamental part of every code compliance checking test represents the filtering
of building elements. All compliance tests relate to specific building components which
have to be identified and extracted from the model. Enabling the user to determine all
affected building elements for a particular test increases the user involvement and a
test‘s reusability for different scenarios. Filtering properties can be conducted via certain
building element types, like IfcStair, and further specified attributes like names, property
sets, or even particular values. Varying nomenclature of building elements in different
projects can be easily applied, and thus, flawless filtering of objects is assured. Applying
filters results in a list of selected building components that can be used and processed
in a code compliance checking process. The utilized software Solibri Office provides
highly adjustable component filters. Filtering components can be conducted via extensive
selection of specifiable properties.

Wall

Door

Window

WallFilter:
Building Element Wall

Input:
List of Building Elements

Output:
List of all Walls

Wall

Wall

Wall

Wall

Figure 5.16: Filtering for Component Type Wall to Receive List of Wall Components for
Further Processing and Calculation

For hard-coded tests, the underlying filter function represents the back-end part, and
all its delivered information can be entered by the user, e.g., via Graphical User Interface
(GUI) (front-end). Handling data structures like lists in hard-coded languages like Java
is a common task and enables efficient methods included in standard libraries. These
methods comprise arithmetical and relational operators, loops, and branching and can be
utilized for filter functionalities or other processing steps.

All filtered building elements can now be investigated, and relevant information can be
queried, which represents the lowest complexity level (see section 4.3.2). Significant infor-
mation hold by the underlying entity can be directly accessed, or by querying respective
classes, additional semantics or geometrical data can be accessed (see section 5.2). This
process can be sped up by implementing its own data model and convicting all required
information of data formats like IFC. An optimized data model for particular use cases like

60

ACCC increases the overall efficiency by decreasing complexity and querying time due
to a less complicated data structure (PREIDEL, 2020). As depicted in Figure 5.17, every
wall entity’s properties of the filtered list of walls are examined. In this example, three
different attributes are queried and can be compared to underlying claims of norms or user
requirements. The query checks whether a wall is an internal or external wall, if the wall
has a flammable cladding, and the value of the overall cladding thickness. Solibri Office
utilizes its data format and translates required data from IFC. Therefore, the accessible
information does not simply rely on the contents in IFC but also on the utilized software
database. For example, via the API, all building elements are stored as Components and
use an extensive library of methods to access further information. On the other hand,
buildings, building stories, etc., represent their class in Solibri’s data environment and
provide only a few methods to query additional information.

Wall

Wall

Wall

List of all Walls

For Each

Wall

MBO_WallProp:
CladdingThickness

2.3cm

MBO_WallProp:
CombustibleCladding

Yes

Pset_WallCommon:
IsExternal

No

Property
Query

Figure 5.17: Wall’s Property Query regarding its Cladding Thickness, Combustibility and
External Positioning

Besides properties like names or materials, geometrical and spatial relations play a
vital role in compliance checking in the AEC sector. A development environment that pro-
vides numerous functionalities for handling spatial relations facilitates broad applicability.
BORRMANN, 2007 states three fundamental categories of spatial operators: metrical, direc-
tional, and topological operators and form the derivative information of 4.3.2. The former
is used to determine distances between two objects. Dependent on the underlying use
case, three-dimensional, plane horizontal, or vertical distances are required and represent
standard spatial methods to facilitate compliance checking tests. Directional operators
are utilized to determine the relative positioning of objects to each other, e.g., underneath
and above or north and south. Topological operators describe relations between objects
and give information about whether they touch, overlap, or contain each other (see Figure
5.18 for all possibilities). Due to large model sizes and complex computations, topological
calculations often use bounding boxes for component interactions. Bounding boxes, or
smallest enclosing boxes, represent an enclosing box of the relating body and therefore
only represent its shape in a simple way. Detailed geometrical information of particular
objects can be extracted from the underlying building model (PREIDEL, 2020). Nearly all
functionalities are utilizable in Solibri Office.

61

Figure 5.18: Schematic Representation of Topological Operators (PREIDEL, 2020)

These topological operators can be combined with IFC Spatial Structure and used
to provide an advanced spatial relation. By assigning, e.g., IfcSpaces to all building’s
areas, building elements can be referenced with their relating spaces. Thus, all spaces link
its included and bordering building elements and vice versa. By distinguishing between
containing and including, and touching and overlapping topological operators, an additional
semantic is generated whether a building component is part of a space or its border.
Additionally, establishing a method to find the nearest building component or even a
specific type is an important tool for code compliance checking and reduces a large
amount of implementation work.

In addition, preprocessed data and drafted relations can be further utilized as input
data for methods, e.g., escape route calculations (extended data structure see 4.3.2).
Methods of this large and complex scope can increase the black-box character of particular
tests to a large amount and should be avoided or represent a single test instance that hands
its results to subsequent tests. All results of compliance checks should be visualized
in a model viewer to enhance user interaction and clarity. Introducing severity in the
representation of the results of particular building elements supports the user in its
decision-making and reduces the risk of false error evaluation. Solibri’ API enables the
user to validate intersections between building components, and therefore, a part of
topological operators are utilizable. The visualization of problems and displaying different
levels of severity of checking results represents a key performance of Solibri Office.

5.5 Summary

This chapter introduced a general approach to translate the content of standards or legal
texts into computer-interpretable information to be able to use them in a code compliance
checking process. For this purpose, the RASE Mark Up Technique was manually utilized.
It allows the user to identify the overall structure, and thus relevant content is easier to
perceive. So-called mark-up tables are used to summarize standard content clearly and
enable supplementation of additional information. A basic understanding of the underlying
IFC data format is of great relevance for an efficient mapping process.

For this reason, essential structures of the open data format IFC are disclosed, and
thus information already contained is outlined. Detailed knowledge about the existence
of content in a model is of great importance to avoid unnecessary mapping of data. In
order to facilitate the extraction and subsequent mapping of information, the concept of
granularity is introduced, which gives the user a starting point for how detailed a demand

62

or factual situation is described. Different ways of dealing with insufficient information in
a code compliance checking process are revealed and discussed based on examples
from the MBO. The mapping of the additional information is solved via mapping tables,
which contain all important information regarding the additional data and its terminology,
data types, and relating building elements. Finally, the requirements for a development
environment are defined, and the basic features of technical implementation of ACCC are
disclosed. This includes filtering components and querying their attributes, differences of
relation types, and their processing into more complex calculation methods.

The methods for identifying and processing relevant information result in this work’s
exchange requirements comprising the mapping table, building element allocation table,
component’s aggregation, and correct modeling spatial aggregation are utilized and
validated in the case study. In addition, the underlying code compliance checking process
uses an incremental test scenario to enhance its user involvement and validates the test
building model’s design quality via hard-coded tests.

63

Chapter 6

Proof of Concept

This chapter covers the outlined concept of chapter 5 and validates it on the basis of
selected use cases regarding its reliability and applicability. The case study is compounded
by 6 sections. The first section 6.1 reviews the additional attributes of the mapping
tables. In the following section 6.2, the implemented test scenario regarding the exchange
requirements and its resulting data quality is outlined. Section 6.3 covers the contents
of underlying use cases §33 and §34 and comprises the general approach to test for its
requirements. On this basis, the implemented checking scenarios of data quality and
model quality are validated and reviewed in 6.4. Section 6.5 evaluates the achieved
strengths and limitations of the overall implementation process. In the end, section 6.6
gives a summary of the before outlined content.

Data Quality

Digital Buidling Model
Exchange Requirements

Build. Elem. Aggregation

Build. Elem. Allocation

Required Property Sets

§33 – Escape
Routes

Escape Route Analysis

Escape via Windows

Existence Safety Stairwell

Classified Spaces
Classified Stairs
Classified Doors

§34 – Stairs

Permitted Stair Types

Stairs Built In A Row

Fire Resistance and
Flammability of Stairs

Stair Dimensioning

Classified Stairs
Classified Spaces

Figure 6.1: Underlying Tests Scenarios. Dotted Blocks Represent Custom Implemented
Tests. Continuous Blocks Delivered from Solibri Office

6.1 Additional Data Identification

In section 5.3.3, 42 required information are identified to test for compliance regarding the
fifth section of the MBO. Common property sets cover ten entities, and two are assigned
to quantity take-off classes. The remaining 30 can further be reduced by five attributes by
applying a naming convention. These reduced properties comprise information concerning
space use classification, to be able to distinguish escape route parts, like corridors or
stairwells, utilization units, like apartments or offices, its sub-spaces, e.g., common rooms
like bedrooms or non-common rooms like bathrooms or kitchens and even different shaft
types (§37, §38). This classification of spaces plays a vital role in escape route analysis

64

and requires strict differentiation. In particular projects, naming conventions are not always
applicable, and therefore, all information must be mapped into the underlying model. All
remaining properties are covered by user-defined property sets and are characterized by a
MBO_ prefix, followed by the relating IFC Entity and Properties, e.g. MBO_RoofProperties.
The following outlines the identification process of additional data of MBO by its relating
paragraphs. Therefore, the well structured text of MBO_RASE_MarkUp.pdf via RASE
tags is utilized, in combination with the discussed IFC classes in 5.2, the principle of a
requirement’s granularity, and additional methods to handle insufficient detailed texts (see
section 5.3). The following results are contained in Mapping_Table.xlsx which links tags to
MBO_DataTags.pdf. Both documents are digitally attached to the Appendix A.

The first paragraph contains three additional attributes and two requirements for an
interface input to cover all outlined information. Utilization units are not represented as
IfcSpaces because it interferes with the utilization of the escape route analysis test from
Solibri Office. The requirement concerning escape routes is conducted for sub-spaces and
differentiated in common and non-common rooms. This attribute is not implicitly identifiable
and must be mapped via an additional boolean attribute. This applies analogously to
stairwells concerning their safety status. An attribute verifying whether it is a safety stairwell
requires additional information to validate. Both attributes are passed via user-defined
property sets. The assignment of the necessary attribute to building elements of an escape
route can not be automatically passed from the escape route analysis in Solibri. Regarding
stairs, all stairs are verified as necessary if it holds the FireExit attribute of the common
property set. Therefore, the semantic is indirectly mapped to its entity, additional data
is reduced, and mentioned in the relating test documentations. Furthermore, a boolean
interface input is utilized to access information concerning the third section of §33. A
checking-box passes the information if the fire brigade has the required rescue equipment
due to a missing class in IFC.

§34 comprises overall 11 additional attributes and utilizes three interface inputs.
Besides the covered attributes above, the attribute RequiredSlope is utilized to access a
ramp’s slope. Additionally, different stair types and components like ladders and escalators
must be distinguishable. Therefore, the underlying building element types are assigned
via user-defined property sets with the Escalator, Ladder, and Retractable property. The
escalator attribute could be passed as IfcTransportElementTypeEnum in the relating
IfcTransportElement entity, but in this thesis, the property set is preferred. Furthermore,
properties of common property sets are required to identify the bearing structure of stairs,
its flammability and fire resistance, and distinguish external and internal stairs. User input
via the interface is utilized to cover the underlying building class, the stair’s capacity, and
the sufficient length of the stair landing.

The third paragraph contains many of the previously defined data. Overall, §35
comprises 22 additional attributes and one interface input to cover the building class. The
requirement of leading to open air is represented by the IsExternal property of stairs.
The first section requires the size of spaces which is solved by the utilization of QTO
sets. MBO requires gross areas, thus the area of surrounding walls has to be taken into

65

consideration as well. The third section contains requirements concerning doors covered
by common properties SmokeStop and SelfClosing. bSI states that doors assigned
with a smoke stop attribute must be self-closing, so for this case, the assignment of
single SmokeStop attribute is sufficient. Nevertheless, MBO distinguishes AirTight and
SmokeStop doors, so the SelfClosing attribute is still required. Additionally, different wall
types are claimed for specific building classes and are not implicitly identifiable. Firewall
and MechanicalExposure cover these requirements concerning specific walls. Due to the
required high level of detail and an increase of reproducibility, the attribute ReachingRoof
is assigned to stairwell walls to identify if they reach the roof’s membrane. Furthermore,
this thesis aims to provide compliance tests capable of validating building models in early
project phases. Therefore, the required flammability properties of walls, columns, and
beams coverings are mapped to the relating entities instead of querying the single covering
elements. The presence of stairwells safety lighting can only be identified by assignment
of an additional SafetyLightning attribute. The smoke removal of a building is realized via
openings and windows. Therefore, all components that are designed as smoke removals
must hold an additional SmokeRemoval property to be able to identify all eligible entities.
Additionally, its size (QTO property) and whether it is openable Openable can not be
identified by the compliance checking algorithm itself and requires additional attributes.

§36 comprises overall 16 additional attributes and two interface inputs. Besides
some of the previously outlined attributes, information regarding the number of a stair’s
steps is required if it is located inside a necessary corridor. The common property of
NumberOfThread and NumberOfRiser holds detailed information regarding this claim.
Additionally, necessary corridors must be separated by not lockable doors. The boolean
attribute Lockable specifies if doors can be locked, and SingleEscapeDirection properties
are assigned to corridor spaces due to requirements concerning its length of corridors
with a single escape direction.

The first section of §37 is not evaluable by mapping additional attributes. Even if
windows are categorized with an extra property to be cleanable, a relation to other building
components that facilitate a cleaning process is not possible. This case relies on a
user investigation by handing window entities to the user. The second section can be
represented by an additional attribute assigned to windows but only relies on the mapped
information, and the underlying semantic is not further processed. Therefore, this thesis
does not cover the requirement due to low benefits. The last section includes requirements
concerning the area of windows that are utilized as an escape route. This requires
information regarding the clear inner width and height and is passed via a user-defined
property set.

The last paragraph comprises five additional attributes. The exchange requirements
regarding building element allocation and its respective entity type determine to allocate
horizontal glass coverings to IfcRoof. Therefore, the Walkable attribute is only assigned
to IfcRoof, and in addition, information concerning roofs is required if people use it for
stay (Residence). Additionally, horizontal openings require attributes if they are covered
(SafelyCovered), and the covering entity must be locked (Locked) to prevent removal.

66

6.2 Model Data Quality

Chapter 5 included the underlying exchange requirements for the checking procedure
regarding the fifth section of MBO. The determined exchange requirements claim a
well-implemented digital building model containing the fundamental spatial relations of a
building, relating building stories and building components. Furthermore, the exported
aggregated building elements must be decomposed by sub-components, and all building
elements must be allocated to their determined IFC entity class. Additionally, all identified
additional attributes must be present and correctly assigned. After a building model is
generated and all information is enriched, the overall data quality plays a vital role for a
good BIM workflow. Therefore, the abidance of the exchange requirements has to be
validated to guarantee a model’s data quality. As mentioned in section 3.2, a model’s
data quality represents the first level of the overall model quality. The implementation and
use of mvdXML files facilitate validation of models concerning its provided data quality
for particular MVDs. However, mvdXML requires extensive implementation effort and,
as stated by POPGAVRILOVA, 2020, lacks essential functionalities resulting in insufficient
results. Solibri Office provides checks to analyze underlying data quality and an open API
to extend existing tests and, therefore, is utilized in this work.

Checking the compliance with exchange requirements comprises:

- Proper model structure: sufficient spatial relations and consistent component assign-
ment - manually reviewed

- Decomposition of stairs, roofs, curtain walls and ramps - checked via SOL/SS02/1.0

- Correct building element allocation (5.1) - checked via SOL/171/1.4

- Properties existence: verify if building element holds essential property for the
underlying use case - check via SOL/203/2.4

- Information location: check if property exists in required property set and if assigned
to correct entity - check via SOL/203/2.4

- Property value type, syntax and overall existence: examine properties data type, com-
ply to predefined syntax and check if values were assigned - check via SOL/203/2.4

Figure 6.2: Underlying Tests of Data Quality Compliance Scenario

67

The adherence of exchange requirements is validated with three compliance tests.
The allocation of building elements and overall quality of additional attributes are validated
via tests delivered by Solibri. The building element aggregation validation is conducted by
implementing a test via the Solibri API.

The spatial aggregation can be manually reviewed in the model of Solibri Office. The
Model Tree facilitates visualizing only selected stories where the correct assignment of
components to its relating story can be viewed. Automation of this process via the API can
not be achieved because the building and its relating stories can not be individually queried
in Solibri. Stories do not represent a physical component in Solibri and, therefore, do
not comprise dimensional values. Building elements are represented by the Component
class inside of Solibri and supply numerous methods to query additional data. Stories
rely on the BuildingStorey class and do only provide information about a stories’ name
and its relating building components. A building’s story can only be accessed via single
components to get information about its location.

The aggregation of components can be manually examined or tested via custom
implemented test Building Element Aggregation Test - SOL/SS02/1.0 in the API which
can be found in the Attachment A. This functionality can be implemented via the API, but
Solibri handles sub-components of aggregations like main components. For example,
a roof has its own IfcRoof entity and is aggregated of 4 IfcPlates as sub-components.
These sub-components are recognized as individual roof entities and pass the filter if
roofs are selected as components. Sub-components do not have further aggregation units
and, therefore, are marked as fault components. The occurrence of errors can be easily
prevented by adjusting the filter and excluding, e.g. IfcEntitys of type IfcSlab (see Figure
6.3).

Figure 6.3: Adjustment of Filter in Element Aggregation Test to Generate Proper Results

Another important issue is the correct building element allocation which can be
automatically checked with Solibri test Component Property Values Must Be Consistent -
SOL/171/1.4 which was renamed to Building Element Allocation. This test enables the
user to check if all components are, e.g., of the same IfcType and incorrectly assigned
components can be easily identified.

68

Required Property Sets - SOL/203/2.4 validates if the digital building model contains
specific property sets and the correctness of value assignment. As an input parame-
ter, all components that are supposed to be checked have to be assigned to filters in
Checked Components, and in Property Sets, all requirements concerning particular prop-
erty sets and properties can be adjusted. For example, all stairs require (Must exist)
the Pset_StairCommon property set which must hold the FireExit property and must be
assigned as True (see 6.4). To ease and accelerate this process, platforms like BIMQ
provide excel files to allow an automated rule set up.

Figure 6.4: Parameter Set Up for Required Property Sets - SOL/203/2.4

The parameter set up in Solibri Office is flexible and enables the user to configure all
requirements according to his claims. Checked Components of Figure 6.4 represents the
filters for the following property set check. These filters, e.g., can be adjusted by filtering
only components with particular names, classification, or all other properties. Due to this
detailed adjustment, the test scenario can be highly detailed, and a single component type
can be tested for different requirements. Like for all other testing scenarios, Solibri Office
visualizes all errors with the underlying components.

69

6.3 Use Cases

This section outlines the content and requirements of this work’s underlying use cases
to evaluate the approach’s capacity. The first use case covers §33 and its requirements
concerning the first and second escape way. This paragraph is chosen as a use case due
to its complexity in terms of escape route calculations and its importance in the following
paragraphs. The second use case is § 34, comprising all requirements of necessary stairs.
Necessary Stairs are part of an escape route and, therefore, similar to the other paragraphs
representing further requirements for escape route elements like corridors or stairwells.
After the use cases’ contents and requirements are outlined, its implementation in Solibri
Office is demonstrated, and precise test documentation is provided in the Appendix A.

6.3.1 §33 - First and Second Escape Way

§33 is the first paragraph of the fifth section of the MBO and claims requirements for the
first and second escape ways. It comprises three sub-sections and represents a central
object in the following paragraphs of §34-§37. §34 to §37 are parts of escape routes and
state additional, more detailed requirements concerning its properties and design. The
following depicts the original quote of §33 of the MBO and a short explanation of essential
information:

(1) Für Nutzungseinheiten mit mindestens einem Aufenthaltsraum wie Woh-
nungen, Praxen, selbstständige Betriebsstätten müssen in jedem Geschoss
mindestens zwei voneinander unabhängige Rettungswege ins Freie vorhan-
den sein; beide Rettungswege dürfen jedoch innerhalb des Geschosses über
denselben notwendigen Flur führen.

The first part introduces the term of utilization units and only specifies it by a list of
examples, like apartments or practices. Utilization units with at least one common room
require two independent escape routes leading to open air in every story. These escape
routes can use the same corridor (horizontal escape way), but requirements regarding
vertical escape routes and their independence are further specified in the second part of
§33.

This first part can be tested by filtering IfcSpaces and querying the property of
CommonRoom to verify if it requires two or one escape route. The complex escape
route calculation requires the before identified spaces and, additionally, the destination
components leading to open air, like a door with, e.g., an IsExternal property. The
escape route must pass doors connecting two separated spaces and must not omit walls.
Therefore, all rooms in a building must be represented by IfcSpaces to guarantee a valid
escape route space. A graph can then be generated, and components like stairwells or
stairs can be classified or marked as necessary components.

70

(2) Für Nutzungseinheiten nach Absatz 1, die nicht zu ebener Erde liegen,
muss der erste Rettungsweg über eine notwendige Treppe führen. Der zweite
Rettungsweg kann eine weitere notwendige Treppe oder eine mit Rettungs-
geräten der Feuerwehr erreichbare Stelle der Nutzungseinheit sein. Ein zweiter
Rettungsweg ist nicht erforderlich, wenn die Rettung über einen sicher erre-
ichbaren Treppenraum möglich ist, in den Feuer und Rauch nicht eindringen
können (Sicherheitstreppenraum).

The second part refers to the previous one and specifies more detailed requirements
for vertical escape routes relating to the first and second escape routes. Primary escape
routes must use a stair which are therefore classified as necessary stairs. All essential
components of an escape route are categorized as necessary. The second escape
route can be a different stair (separated vertical escape routes, but accessed via the
same corridor) or a location in a utilization unit that the fire brigade can reach via rescue
equipment. Additionally, the existence of a second escape route is not claimed if the
building has a safety stairwell. This term of safety stairwells or further requirements are
not specified in the MBO.

Invalid input components of the escape route check, which do not have a required
second escape route, can then be tested for the existence of windows enabling a secondary
escape route or the presence of a safety stairwell in the building. Valid escape windows
can be identified by holding information about whether they are external, and it is supposed
to be a FireExit. These windows can be queried by being part or close to the relating
IfcSpace. Safety stairwells can be identified via the naming or implementation of an
additional filter adjustable by the user. An additional filter is a more flexible approach and
should be favored for implementation due to resulting problems utilizing a hard-coded
required nomenclature. In this work, an incremental test scenario implementation is
preferred, and therefore, the requirements regarding escape windows and safety stairwells
are split into two separate tests.

(3) Gebäude, deren zweiter Rettungsweg über Rettungsgeräte der Feuerwehr
führt und bei denen die Oberkante der Brüstung von zum Anleitern bestimmten
Fenstern oder Stellen mehr als 8 m über der Geländeoberfläche liegt, dürfen
nur errichtet werden, wenn die Feuerwehr über die erforderlichen Rettungs-
geräte wie Hubrettungsfahrzeuge verfügt. Bei Sonderbauten ist der zweite
Rettungsweg über Rettungsgeräte der Feuerwehr nur zulässig, wenn keine
Bedenken wegen der Personenrettung bestehen.

The last part specifies the requirements concerning rescue via the fire brigade’s life-
saving equipment. Locations or windows which are more than 8 m above the ground are
only permitted as secondary escape routes if the fire brigade has the required equipment.
Additionally, special buildings are mentioned, and rescue via life-saving equipment is only
permitted for special cases. This work and its implemented tests do not cover special
structures. The before-mentioned requirements regarding the fire brigade do not relate to

71

any object representable in a building model. Therefore, it is transmitted as an interface
input by the user.

Filtering spaces to analyze their escape route can be achieved in several ways, e.g.,
their naming. This filtering is a flexible solution for varying project requirements and
therefore represents a proper solution. Additionally, properties of CommonRoom and
SafetyStairwell have to be assigned to spaces to verify essential information concerning
the underlying component and test scenario. IsExternal and FireExit are determined
semantics to identify valid escape windows. Therefore, four properties have to be mapped
into the underlying building model to test for compliance with §33.

Test Scenario Implementation

This test scenario utilizes three compliance tests to validate the underlying building model
regarding §33. Therefore, the test Escape Route Analysis - SOL/179/4.3 is used and two
additional tests (Second Escape Route via Window & Second Escape Route via Safety
Stairwell) are implemented via the Solibri API, covering escape routes via windows and
safety stairwells (see Figure 6.5).

Existence Safety Stairwell

First Escape Route

Escape via Windows

Pass validated
Common Rooms

Second Escape Route

Pass failed
Common Rooms

Pass failed
Common Rooms

Figure 6.5: Test Scenario of Common Rooms. Continuous Blocks Represent Tests
Provided by Solibri. Dotted Blocks Represent Custom Implemented Tests via API

Solibri Office provides the check Escape Route Analysis - SOL/179/4.3 to calculate
and verify a space´s escape route leading to a user-defined exit door. As input, the
test requires the underlying spaces by utilizing its classification functionality. All rooms
can be classified and loaded into the test´s filter. Additionally, all stairs and exit doors
have to be entered via classification and therefore, the test only verifies devised escape
routes. Classifications can be set up and saved in Solibri and loaded into desired projects
independently. This facilitates reusable and fast test usage, despite a constantly changing
building model during a project. The investigated room entities are then forwarded to the
following test to verify whether escape windows or safety stairwells are present.

Solibri Office utilizes incremental test scenarios by providing the use of gatekeeper
rules. These rules regulate conditions under which the following test receives particular
components. Therefore, the Escape Route Analysis - SOL/179/4.3 can be used as a
gatekeeper rule and adjusted, determining which building elements are handed over to
the following test (see 6.6). Only components of the main default filter can be passed to a
gatekeeper rule’s sub-rules. Thus handing over components to another rule is possible

72

but limited by this fact. The functionality of nesting tests is unlimited, and large nesting
chains can be created to enable highly flexible and user-central compliance scenarios.
Nevertheless, nesting must not result in confusing test structures and is only applicable in
a controlled manner.

Figure 6.6: Adjustment of Gatekeeper Rule Component Handover

The test scenario for §33 comprises three different tests in which the Escape Route
Analysis - SOL/179/4.3 is utilized several times to test for the first and second escape route.
Both tests are nested and validate all space components passing the first escape route test
for the existence of a second route. All space components failing this second escape route
analysis have to be checked for a safety stairwell in the building or valid escape windows
(see Figure 6.7). The test scenario includes incremental tests and is in chronological order
extended by an additional test. This concept is chosen due to the mechanism of Solibri
Office that occurring errors in between the test chain are not displayed in the results and
the overall test chain disappears from the working interface. Extending all incremental
scenarios step by step enables the user to keep track of occurring errors. The primary
escape route analysis is set up with a high travel distance, and its destination door leads
to open air. This is set up to verify the overall escape route of the building, and later on,
the escape route to the stairwell can be tested with the required distance of 35m (§35
(2)) via an additional escape route test. The fundamental test Escape Route Analysis
- SOL/179/4.3 is not able to calculate an escape route over ladders or ramps. Filtering
ladders or ramps in the Vertical Access was not recognized in test building models, and
escape route calculations failed. Therefore, the underlying test scenario only validates
stairs. A detailed individual report of a test’s functionality and limitations can be found in
the test documentation in the Attachment A.

73

Figure 6.7: Test Scenario to Test for Compliance with Paragraph 33 of MBO

6.3.2 § 34 - Stairs

Paragraph 34 claims requirements concerning necessary stairs which are part of an
escape route. It declares different prohibited stair types and several design requirements
regarding underlying building class. The following outlines the original quote of §34 and a
short explanation of essential information:

(1) Jedes nicht zu ebener Erde liegende Geschoss und der benutzbare
Dachraum eines Gebäudes müssen über mindestens eine Treppe zugänglich
sein (notwendige Treppe). Statt notwendiger Treppen sind Rampen mit flacher
Neigung zulässig.

Every story requires at least one stair if it is above ground level. Instead of stairs,
ramps with a slight slope are accepted as well. This requirement is already checked for a
well set up of §33 via utilizing Escape Route Analysis - SOL/179/4.3. The escape route
analysis test by Solibri can not calculate an escape route over ramps and is mentioned as
a limitation of the existing tool in the test documentation.

(2) Einschiebbare Treppen und Rolltreppen sind als notwendige Treppen un-
zulässig. In Gebäuden der Gebäudeklassen 1 und 2 sind einschiebbare
Treppen und Leitern als Zugang zu einem Dachraum ohne Aufenthaltsraum
zulässig.

74

The second part defines invalid stair types like retractable stairs and escalators.
Additionally, the building class of the underlying building determines if retractable stairs
and ladders are acceptable as access to attics with a common room. This only applies to
building classes 1 and 2.

The core of this test scenario still is the escape route analysis which requires all
necessary stairs of the building. These classified stairs have to be split for the underlying
tests of §§34, so only stairs of a common stairwell are filtered. By passing stairs per
stairwell, the highest stair and its connection to the attic is identifiable. Retractable
stairs holding the property of Retractable are prohibited for particular building classes
with common rooms in the attic. Additionally, the attic is represented by IfcSpaces and
holds the CommonRoom property. The escape route test scenario already determines a
possible escape route from the attic over the stairs. Entities like escalators and ladders
can be verified by the property Escalator or Ladder. The underlying building class can be
assigned to the underlying IfcBuilding entity but will be implemented as a user input for
this work.

(3) Notwendige Treppen sind in einem Zuge zu allen angeschlossenen
Geschossen zu führen; sie müssen mit den Treppen zum Dachraum unmittel-
bar verbunden sein. Dies gilt nicht für Treppen
1. in Gebäuden der Gebäudeklassen 1 bis 3,
2. nach § 35 Abs. 1 Satz 3 Nr. 2

Necessary stairs have to be built in a row and connect to every story. Additionally,
they must connect to the stair leading to the attic of the building. An exception for this are
buildings of building classes 1 to 3 or two-story utilization units smaller than 200 square
meters and with different escape ways on each floor.

This case is hard to generalize due to its low level of granularity. Further specifications
of in-row-built stairs are not outlined and, therefore, hard to detect. Again, all necessary
classified stairs are used as input stairs but have to be split, so the user enters only stairs of
a common stairwell. A test of its horizontal distance and a user-adjustable threshold might
be a possible solution to cover most of the occurring cases. Their connection to all stories
is validated before in the escape route analysis test. Additionally, input via the interface
concerning the building class is again implemented. The second exception concerning the
utilization unit represents a rare case and is neglected in the implementation of this work.

(4) Die tragenden Teile notwendiger Treppen müssen
1. in Gebäuden der Gebäudeklasse 5 feuerhemmend und aus nichtbrennbaren
Baustoffen,
2. in Gebäuden der Gebäudeklasse 4 aus nichtbrennbaren Baustoffen,
3. in Gebäuden der Gebäudeklasse 3 aus nichtbrennbaren Baustoffen oder
feuerhemmend sein. Tragende Teile von Außentreppen nach § 35 Abs. 1 Satz
3 Nr. 3 für Gebäude der Gebäudeklassen 3 bis 5 müssen aus nichtbrennbaren
Baustoffen bestehen.

75

Part 4 claims requirements concerning the fire resistance and flammability of materials of
the bearing structure of necessary stairs. Building classes 1 and 2 have no conditions,
and external and internal stairs are distinguished. Regarding exterior stairs, the bearing
elements must be noncombustible materials independently of the underlying building
classes 3 to 5. Internal stairs must be fire resistant and noncombustible in building class 5,
in building class 4 be incombustible and in building class 3 either be noncombustible or
fire resistant.

Internal and external stairs can be distinguished by accessing the IsExternal property.
Additionally, its fire resistance is stored in the FireRating attribute, and its flammability
is passed by the property SurfaceSpreadOfFlame. Both properties can be mapped to
all sub-entities with their specific entity of the stair, and all aggregated elements are
queried to determine the most critical component. Applying another approach by manually
specifying the critical element by the user during modeling and the resulting fire rating
and flammability are mapped to the single stair object. This work follows the approach of
mapping the flammability and fire resistance of the most critical element of the stair to its
stair object. The underlying building class is again passed by user input and distinguishes
all occurring cases.

(5) Die nutzbare Breite der Treppenläufe und Treppenabsätze notwendiger
Treppen muss für den größten zu erwartenden Verkehr ausreichen.

The usable stair width must match the maximum possible traffic. The MBO does not state
any requirements but can be found in DIN 18065.

(6) Treppen müssen einen festen und griffsicheren Handlauf haben. Für
Treppen sind Handläufe auf beiden Seiten und Zwischenhandläufe vorzusehen,
soweit die Verkehrssicherheit dies erfordert.

A stair must have at least one fixed handrail or both sides, if the transport safety claims it.
Like part 5, no further requirements are stated.

(7) Eine Treppe darf nicht unmittelbar hinter einer Tür beginnen, die in Rich-
tung der Treppe aufschlägt; zwischen Treppe und Tür ist ein ausreichender
Treppenabsatz anzuordnen.

A stair requires a sufficient distance to a door opening in its direction. The provided Solibri
Accessible Stair Rule SOL/210/3.1 test can verify requirements of (5) to (7).

Stairs are filtered in test scenario for § 33 via classifications and are handed over
to Escape Route Analysis - SOL/179/4.3. Therefore, these stairs are used again via
their classification by the FireExit property to be evaluated against design requirements
stated by § 34. To facilitate this process, six other properties are mapped to identify
partially prohibited stair types by Ladder and Escalator attribute. These data are mapped

76

to IfcTransportElemets and IfcBuildingElementProxy due to the missing ladder class
in IFC. Additionally, stairs and ladders must hold information about its flammability
(SurfaceSpreadOfFlames) and fire resistance (FireRating) and stairs must be identifiable
as retractable (Retractable). The CommonRoom property must be assigned to rooms in
the attic to identify common rooms in the attic.

Test Scenario Implementation

§34 is implemented via four compliance tests. The first three of 6.8 are custom imple-
mented tests via the Solibri API and the last test is provided by Solibri. All tests receive
the classified stairs of the escape route scenario via its main default filter, and the user
can enter the building class via interface.

Figure 6.8: Test Scenario to Test for Compliance with Paragraph 34 of MBO

6.4 Validation

This section validates the approach’s quality regarding its mapped data and the relating
checking process concerning its consistency to enable a compliance check of the outlined
use cases. Additionally, the performance of implemented test scenario is assessed to
check for compliance with §33 and §34 in terms of its applicability to verify a building model.
In the beginning, the exchange requirements for the underlying compliance scenarios are
validated, and wrong assigned components are identified to ensure a consistent building
model. In the following step, the building model, which comprises errors conflicting with
several requirements of the MBO, is checked for conformity with both paragraphs. All
errors have to be identified, and a corrected building model will undergo the same testing
procedure to validate the checking procedure’s quality.

6.4.1 Validation of Data Quality

Section 6.2 outlined the overall checking structure to verify key semantics for §33 and §34.
Occurring errors and relating components are described in the checking results and can
be quickly reviewed by the user (see Figure 6.9). All issues can be communicated via BIM
Collaboration Format (BCF) and adjusted by relating person in charge in the underlying
modeling software.

77

Figure 6.9: Results of Data Quality Scenario for Following Compliance Check of §33 and
§34

The side of the building’s entrance is not supposed to have windows used for rescue,
and therefore, the property FireExit is false for all windows on that side of the building.
Additionally, the stairwell is not designed as a safety stairwell, and all stairwell spaces are
marked as false regarding the SafetyStairwell property. All these requirements can be
adjusted and verified via the Required Property Sets - SOL/203/2.4 test.

In general, the Building Element Aggregation Test - SOL/SS02/1.0 enables a fast setup
to check for aggregation of building elements. Additionally, a correct element allocation can
be tested by utilizing Component Property Values Must be Consistent - SOL/171/1.4. Both
tests can be adjusted to the user’s requirements and help to check crucial aspects of a
model’s data quality. However, checking for the existence of certain properties and property
sets with additional correct assignment represents a complex checking task. Required
Property Sets - SOL/203/2.4 can be flexibly adjusted via component filters. Additionally,
adding several compliance tests of the same type facilitates an agile workflow to handle
all occurring scenarios in this work. Many design errors regarding this MBO section can
only be detected by plain information enrichment regarding particular components. This
results from missing detailed requirements, e.g., regarding the design of safety stairwells,
or for a computer undetectable functionalities, like whether a stair is retractable or not.
Large models with huge amounts of data require extensive data management to ensure
an accurate information assignment and a proper resulting code compliance checking
procedure.

78

6.4.2 Validation of Design Quality

The employed building model comprises the following errors which have to be detected:

- Insufficient escape route available. Find windows for second escape route or check
for existence of safety stairwell

- Retractable stairs as necessary stair

- Insufficient flammability of stairs

Escape Route

All common rooms, e.g., living rooms, require two escape routes leading to open air. The
underlying building model only has a single entrance, so the failing space components of
the second route analysis are checking for rescue windows or the presence of a safety
stairwell.

Figure 6.10: Result Overview of Test Scenario for Common Rooms Checking for First and
Second Escape Route

Figure 6.10 depicts the result overview of the test scenario for common rooms. The
first escape route analysis test is passed and displaced with a green OK sign. The second
escape route analysis test failed and is marked with the highest severity due to missing
escape routes. The third test chain verifies all failed space components and detects 30
rooms that can not be evacuated via the relating windows. The test provides the possibility
to choose if the fire brigade has necessary life-saving equipment to enable a rescue via
windows 8m above ground. All space components with windows designated for rescue
now pass the test and do not require a second escape route. The remaining 24 common
rooms on the north side miss their second escape route if the building does not have
a safety stairwell. The current stairwell design is not intended to be a safety stairwell.
Therefore the test can not find any safety stairwell in the building (see 6.11).

79

Figure 6.11: Visualization of Common Rooms missing Second Escape Route and Identified
Stairwell

All issues and affected components are communicated and adjusted to guarantee a
sufficient escape route for all common rooms. Rescue via windows on the north side is
not possible, so that the stairwell will be designed as a safety stairwell. The same test
scenario validates the adjusted version of the building model. Additionally, the length of
the escape route leading to the safety stairwell is investigated and limited to 35m. Both
tests regarding the safety stairwell are passed, and the building model fulfills all escape
route requirements of § 33 (see Figure 6.12).

80

Figure 6.12: Test Validates New Assigned Safety Stairwell and No Second Escape Route
Is Required

Stair Requirements

Stairs represent an essential part of the escape route analysis and are a user input
parameter for Escape Route Analysis - SOL/179/4.3. Therefore these stairs are further
tested for requirements regarding different prohibited stair types, fire resistance, and
flammability properties, and if all stairs are built in a row. Additionally, MBO claims
undefined limitations for stairs regarding its dimensions.

Figure 6.13: Result Overview of Test Scenario for Stairs

Figure 6.13 shows the result overview of the test scenario for stairs. The test identified
two retractable stairs and an escalator which were selected by the user to test for escape
route parts but are prohibited in the underlying building class 4 (see Figure 6.14). Besides
stairs, the test can verify ladders and escalators if the necessary properties are assigned.
Additionally, the fire resistance and flammability do not comply with the claims regarding
building class 4. The last test enables to test many stair properties which cover the last

81

three parts of §34, but because of missing limitations of the MBO further investigations
are neglected.

Figure 6.14: Visualization of Prohibited Stair Types and Elevator as Escape Route Parts in
Building Class 4

All occurring errors are again communicated, and the stairs are not designed as
retractable stairs anymore. Additionally, all stairs are planned as noncombustible to comply
with the flammability claims of MBO regarding building class 4. Test results Figure 6.15
depicts that all tests are passed, and the building model fulfills all requirements.

Figure 6.15: Test Validates New Assigned Property Values Concerning Flammability and
Types of Stairs

82

6.5 Approach Evaluation and Limitations

The validation results outline the capacity of the overall compliance checking procedure
and demonstrate an effective approach to test for requirements claimed by norms or other
regulations like the MBO. The following evaluation reviews the strengths and limitations of
the development environment of Solibri Office, examines the resulting black-box character
of the checking scenarios, and discusses the context of modeling software and the overall
modeling process regarding its effect on the compliance checking process.

Solibri provides several tests to check for particular parts of the fifth section of MBO.
The API enables the implementation of user-defined rules to complement specific contents.
The implemented tests of this work are explained in test documentation (see A), which
individually covers every test’s functionality and limitations. Test documentations give the
user a better understanding of the applied compliance tests and reduce the chance of
undetected errors or wrong utilization. Nevertheless, this does not apply to the provided
tests by Solibri. Tests with a more straightforward functionality, like Required Property
Sets - SOL/203/2.4 are easier to understand and might be acceptable with missing docu-
mentation. On the other hand, complex tests like Escape Route Analysis - SOL/179/4.3
require an extensive understanding of the overall Solibri functionalities, and essential
modeling requirements can only be detected by trial and error. For example, MBO claims
the existence of escape routes for utilization units, e.g., apartments. If the overall utilization
unit is represented by an IfcSpace and its sub-spaces are present as well, Escape Route
Analysis - SOL/179/4.3 does not recognize the walls and calculates escape routes leading
through walls (see Figure 6.16). Additionally, limitations regarding uncovered cases like
ramps and ladders are not mentioned and can only be tested by the user.

Figure 6.16: Left Example: Represents Overall Utilization Unit and Includes its Sub-Spaces
e.g., Living Room. Right Example: Model Only Contains Sub-Spaces and Generates
Correct Escape Route

83

The first compliance scenario utilizes the Gatekeeper functionality. Gatekeeper rules
are a strong tool and increase the overall depth of testable content by creating test chains
of several checks. However, this functionality comes along with constraints that partially
interfere with the compliance checking process. The first limitation of Gatekeeper rules
is that only specified components of the main default filter can be passed by condition
to following rules. On the one hand, this limitation prevents confusing checking chains,
but regarding many checking procedures, it would be helpful to choose which compo-
nents or objects are passed. For example, handing over the calculated escape route
graph and classifying affected building components would automate the overall process.
Nevertheless, Solibri Office created a proper user involvement by utilizing its flexible filter
functionalities. This enables an agile workflow, and the person in charge is always aware
of which components are entering the checking process. Additionally, chaining compliance
tests via Gatekeeper rules facilitate a highly incremental checking process. Requirements
claimed by §33 and §34 are split up into different tests, resulting in smaller and simpler
tests. Regarding the underlying black-box tests, this again reduces the risk of undetected
errors or wrong application. The most significant limitation of Gatekeeper rules is the
disappearing of rule sets if a checking chain is failing in between. This is only symbolized
by a black bar in the error severity, but the problem is not identifiable (see Figure 6.17).
A new setup of the overall checking chain is only possible in the Ruleset Manager. This
problem could not be solved and is just counteracted by extending the test chains step by
step to determine issues early.

Figure 6.17: Checking Chain Failed in Second Link and Rest Disappears

Code compliance checks, especially complex ones, often require specific modeling
requirements. In addition to missing test documentations as discussed above, the overall
modeling process requires a more standardized manner. Detailed information regarding
certain modeling use cases leads to a more reliable semantic basis of a building model
and increases the applicability range of code compliance checking procedures. This
standardization, e.g., regarding modeling requirements of utilization units and sub-spaces,
can prevent situations of 6.16.

The enriched information for the automated compliance check requires a large amount
of manual work. An example of this is the assignment of flammability and fire resistance
value to necessary stair components. The flammability of a component results from the
relating materials that can be mapped to the entity. In this work, only the assignment of
properties was verified in the data quality but missed an additional validation if the model
creator correctly assigns these properties due to further fulfilled requirements. Another
example is the presence of a safety stairwell which is validated by accessing spaces
representing the stairwell and holding the SafetyStairwell property. An additional check
verifying if the requirements for a safety stairwell are fulfilled would improve the overall
reliability of enriched data and decreases the dependence of plain mapped data.

84

6.6 Summary

This chapter examines the concepts of chapter 5 concerning validation of the fifth section
of MBO by translating essential information into computer interpretable information. There-
fore, already implemented compliance tests of Solibri Office are utilized and extended
by six custom implemented tests. The abidance of exchange requirements is validated
via three individual tests. The aggregation of building elements is checked by custom
implemented check via API and two additional tests provided by Solibri Office are utilized
to check the allocation to the correct IFC classes and correctness of enriched attributes.
A test building model containing several errors regarding the §33 and §34 of MBO is
examined in terms of the model’s design quality. Both use cases are validated via seven
compliance checks. Five of these are implemented via the Solibri API and validate the ex-
istence of escape windows or safety stairwells, and requirements concern necessary stair
entities. These testing results of the underlying compliance scenarios and the implementa-
tion process are reviewed and discussed concerning their overall strength and limitations.
This work outlines the strength of incremental test scenarios utilizing hard-coded tests
combined with detailed test documentation to reduce its black-box character and enhance
user involvement.

85

Chapter 7

Conclusion

This chapter summarizes the content and results of the underlying work. In addition,
the second section gives an outlook based on the evaluated implementation problems.

7.1 Summary

The process of digitization transformed all economic sectors and drastically increased its
efficiency and overall way of working. The AEC sector is one of the least digitized sectors
and therefore, misses a lot of potential to face upcoming challenges. The BIM method is
part of this digitization process and facilitates the use of digital building models throughout
the planning, building and maintenance phase.

This work aims to develop an approach to analyze norms and other regulatory texts
to be able to identify essential information as exchange requirements for the compliance
checking process. These information are then utilized for an automated compliance check
concerning the underlying requirements. Therefore, the information has to be transformed
into machine-interpretable data and assigned to relating building components in the digital
building model.

As a starting point, this work provides fundamental information concerning the open
data format IFC. An understanding of its overall class structure, inheritance hierarchy and
object relationship are essential to guarantee a correct utilization of modelling and export
processes. Beside an open data format, BIM requires standardized processes to structure
new working procedures and large amount of data of underlying projects. For this reason,
terms of IDM, MVD and LOD are introduced and its role in a BIM project is discussed.

Maintaining a high model quality throughout its life time plays a vital role in the
application of BIM. ACCC describes the process of (semi-) automated software programs,
testing a digital building model for its data and design quality, and the overall consistency.
These three introduced levels of model quality differ in its characteristics and can strongly
influence each other. Code compliance checking helps to identify errors in a building
model to communicate them with relating person in charge to enable their elimination
in a modelling software later on. The process of ACCC face a variety of different fields
of application and use cases. Therefore, several technical approaches are developed in
the last years to counteract and compensate limitations of existing methods. A standard
and most wide spread approach represents hard-coded compliance tests, but which
are accompanied by a strong black-box character. This work outlines two additional

86

approaches: domain specific programming languages by the example of BERA and a
visual programming language, VCCL.

The highest level of model quality represents the design quality claimed by norms
and regulatory texts. The MBO ensures a standardization in the building regulations of
federal states in Germany. MBO itself does not have a legal status but states general
claims e.g., fire protection. The core of this work represents the fifth section of MBO
regulating requirements for escape ways, its escape way elements and overall presence
of barriers in a building. Content and requirements of MBO are predominantly represented
in a performance-based way due to its general character in legislation. The large amount
of norms and regulations and its different representation types resulted in different ap-
proaches to automatically extract information and requirements. This work outlines two
approaches to enable an automated analysis and structuring of regulatory texts.

For the conceptual implementation of identifying essential information for compliance
checking, the RASE mark up technique is manually utilized. It facilitates a well structured
text, highlighting essential applying objects, requirements and exceptions. These identified
information must be distinguished from standard included data in a building model ex-
ported in IFC to prevent multiple mapping of similar information. Therefore, essential basic
functionalities covered by IFC data scheme are outlined, comprising three dimensional
aggregations, aggregation of specific building elements, allocation of underlying building
elements to underlying IFC entities and additional semantic assignment operations like
classifications and grouping of building elements. Due to the general character of MBO it
often states vague requirements concerning particular scenarios. To make this more tangi-
ble, the term and levels of granularity are introduced and different handling concepts are
discussed on the basis of certain examples of the MBO. To be able to enrich digital building
models with the identified information, data mapping tables are utilized comprising the
underlying information, data types and IFC entities. Additionally, the compliance checking
processes of incremental and full-automated tests are discussed regarding its black-box
character and the resulting problems. A technical implementation of code compliance
checking tests requires certain functionalities of filtering building element components,
querying its properties and geometrical and spatial relations. These functionalities are
core methods in every code compliance checking approach and are reviewed according
to its technical implementation.

As a proof of concept, the mapping process of all 42 identified information covered by
the mapping table is outlined and its technical implementation is reviewed. The test building
model is modelled in Revit and enriched via shared parameter files. Required information
are then mapped to relating entities in Revit, and exported into IFC 4. This export of
additional information is facilitated by user defined property sets which are attached to
the underlying IFC entities. The quality of exported and mapped data was validated in
Solibri Office. Custom implemented and already existing tests are used to verify abidance
of determined exchange requirements. This process represents an essential part of the
workflow and its utilization enables a consistent building model. To validate errors in the
building model, the first two paragraphs of the fifth section are employed as use cases.

87

§33 claims requirements concerning the first and second escape route, and represents
the central part for the remaining paragraphs. The following paragraphs, like the second
use case §34, represents parts of the escape route and comprise detailed requirements
regarding its designs. §34 cover claims concerning necessary stairs of a building and
its demands regarding certain properties, like flammability, or design aspects. The first
checking scenario comprises three individual tests and can validate §33 except for escape
route leading over ramps or ladders, and overall special buildings like schools are not
covered. Checking scenario for §34 consists of four individual tests, although the last three
sections of §34 in MBO do not cover any specific requirements but can be validated.

All custom implemented compliance tests are described in a test documentation
in terms of its functionalities and limitations to reduce the black box character of hard
coded tests. Additionally, the checking scenarios consist of highly incremental tests to
ensure small and simpler tests, increasing chance of responsible utilization by the user.
Nevertheless, applied tests of Solibri Office only provide minimal documentation of overall
functionality although its high complexity of escape route calculation and modelling re-
quirements for correct processing. These complex compliance tests outlined the necessity
for an increasing standardization of modelling processes to ensure a reliable data basis for
code compliance checking. Additionally, the validated compliance results of this work only
represents verification of enriched information. This process requires extensions of further
tests checking for particular design requirements and thus attesting assigned information.
Nevertheless, this work outlined the strength of incremental test scenarios utilizing hard-
coded tests combined with detailed test documentation to reduce its black-box character
and enhance user involvement. Additionally, the mapping of additional attributes facilitated
an automatic validation of the MBO’s content and improved the issue management of
building models by further automation.

7.2 Future Work

This work outlined and evaluated the developed approach for handling and analysing
regulatory texts, to identify essential data and enabling a code compliance check regarding
these requirements.

This checking process is merely based on querying assigned information. The mapped
information can be verified regarding its existence and assignment to correct building
elements, but a validation of its overall correctness, representing particular design criteria
or other objects, is missing. Therefore, checking scenarios have to be extended by further
tests which verify additional properties or design requirements. This extension would
represent another security layer and act as an additional validation instance regarding the
mapped data. An examples for this is the assignment of flammability values which are as
well connected to assigned building materials. This specific process requires extensive
data basis covering numerous materials, but can act as another compliance instance to
ensure consistent digital building models. Another additional verification off a properties

88

validness would be e.g., to validate if in front of a FireExit window is enough space for
rescue via fire brigade.

The enrichment of data and its utilization in processes like code compliance checking
depends on adherence regarding specific nomenclature. bSI’ tool of bsDD enables
an implementation of property sets and a coherent naming convention of underlying
properties resulting in a higher standardization. Additionally, an increasing standardization
of modelling processes facilitates a reliable data base and data structure concerning
underlying digital building models. This resulting stable and consistent data base could
accelerate the expansion of code compliance checking tests covering numerous use cases.
Organisations like standards committees can outline general modelling guidelines which
are taught in universities or vocational schools and are extended over time.

The examined MBO section claimed requirements regarding fire protection of build-
ings. The mapped information regarding fire protection topics could be utilized by other
project stakeholders for their occurring BIM workflows. Huge amount of data and multiple
assignment of same information can be reduced by examining overlapping of data between
different stakeholders. This increased efficiency can be used in similar BIM use cases and
results in a decreasing risk of errors and a reduced workload.

Solibri released a new add-on to validate building models regarding the MBO. It
comprises several tests to evaluate the paragraphs of the fifth section in combination with
a set of classifications to classify all underlying building elements. The additional attributes
outlined in this thesis can be utilized for an automated building element classification via
the provided add-on. The official release is one day before the submission date of this
thesis. Therefore, an investigation of the determined attributes in combination with the
add-on must be conducted in future works.

89

Appendix A

The attachment includes in digital form:

- MBO_AdditionalIdentifiedData

· Mapping_Table

· MBO_RASE_MarkUp

· MBO_DataTags

· Mark_Up_Table

- Models

· Example Models (.rvt + .ifc)

· Shared Parameter File (.txt)

· User Defined Property Sets (.txt)

· Solibri File (.smc)

- Solibri Tests

· Test Documentation

· Solibri Tests (.jar)

· Source Code Solibri Tests

· Solibri Rule Sets (.cset)

90

List of Figures

1.1 Manual Error Detection vs. BIM Based Compliance Checking 2

2.1 Four Layers of IFC Schema (“buildingSMARTb”, 2021) 5

2.2 Most Important Entities of the Inheritance Hierarchy in the IFC Schema
(BORRMANN et al., 2015) . 7

2.3 Scope of Design Transfer View and Reference View (IFC 4) Compared to
Coordination View (IFC 2x3) (BALDWIN, 2017) 11

2.4 mvdXML Elements (Inspired by CHIPMAN et al., 2016) 12

2.5 Level of Development Illustrated by the Example of a Steal Beam
(BORRMANN et al., 2015) . 14

3.1 General Structure of Compliance Checking (PREIDEL and BORRMANN, 2015) 17

3.2 Model’s Quality Levels (PREIDEL, 2020) . 18

3.3 Schematic Diagram of Black-Box and White-Box Processes (PREIDEL, 2020) 19

3.4 Form Finding and Static Analysis of a Bridge via Kiwi!3d (Plug-In for
Grasshopper) “TUM_ST”, 2021 . 23

3.5 VCCL Graph Describing the Access to a Set of Walls. The Blue Trape-
zoid Represents the Get Access Method and Grey Rectangles Underlying
Objects. (PREIDEL and BORRMANN, 2015) 24

3.6 VCCL Graph Describing the Central Regulation of DIN 18232-2:2007-11
(PREIDEL and BORRMANN, 2015) . 25

4.1 Underlying RASE Mark-Up Tags Applied on Standard NS 11001-1
(HJELSETH and NISBET, 2011) . 32

4.2 NLP Position in Computer Science and Linguistics, and its Possible Techni-
cal Implementations . 33

5.1 Mark-Up Technique Based on the RASE concept 38

5.2 An Example of the Hierarchical Aggregation of Spatial Structure Elements
and Assignment of Building Elements . 40

5.3 Aggregation of Spatial Structure Elements 41

91

5.4 Absolute Positioning of IfcSite . 41

5.5 Linking of Building Components to Spatial Elements 42

5.6 Virtual and Physical Space Boundary . 43

5.7 Object’s Shape Representation of IfcStair as an Assembly of Building
Elements . 44

5.8 Classification of Shear Walls with a User Defined Classification System . . 46

5.9 Grouping of two Walls in a Test Group . 47

5.10 Entity Inheritance of IfcBuildingElement and its Sub-Classes (“buildingS-
MARTl”, 2021) . 48

5.11 Three Fundamental Element Hierarchy for Information Translation into Com-
puter Readable Data . 50

5.12 Standard Door Properties Included in Entity Definition (“buildingSMARTm”,
2021) . 55

5.13 Extraction of Additional Door Information of Pset_DoorCommon (“buildingS-
MARTm”, 2021) . 55

5.14 Extraction of Customer Defined Property Sets for Additional MBO Information 56

5.15 Incremental vs "Full-"Test Approach Testing for Compliance with 5th Section
of MBO. Incremental Requirements are Divided into Further Sub-Tests . . 58

5.16 Filtering for Component Type Wall to Receive List of Wall Components for
Further Processing and Calculation . 60

5.17 Wall’s Property Query regarding its Cladding Thickness, Combustibility and
External Positioning . 61

5.18 Schematic Representation of Topological Operators (PREIDEL, 2020) . . . 62

6.1 Underlying Tests Scenarios. Dotted Blocks Represent Custom Implemented
Tests. Continuous Blocks Delivered from Solibri Office 64

6.2 Underlying Tests of Data Quality Compliance Scenario 67

6.3 Adjustment of Filter in Element Aggregation Test to Generate Proper Results 68

6.4 Parameter Set Up for Required Property Sets - SOL/203/2.4 69

6.5 Test Scenario of Common Rooms. Continuous Blocks Represent Tests
Provided by Solibri. Dotted Blocks Represent Custom Implemented Tests
via API . 72

6.6 Adjustment of Gatekeeper Rule Component Handover 73

6.7 Test Scenario to Test for Compliance with Paragraph 33 of MBO 74

92

6.8 Test Scenario to Test for Compliance with Paragraph 34 of MBO 77

6.9 Results of Data Quality Scenario for Following Compliance Check of §33
and §34 . 78

6.10 Result Overview of Test Scenario for Common Rooms Checking for First
and Second Escape Route . 79

6.11 Visualization of Common Rooms missing Second Escape Route and Identi-
fied Stairwell . 80

6.12 Test Validates New Assigned Safety Stairwell and No Second Escape Route
Is Required . 81

6.13 Result Overview of Test Scenario for Stairs 81

6.14 Visualization of Prohibited Stair Types and Elevator as Escape Route Parts
in Building Class 4 . 82

6.15 Test Validates New Assigned Property Values Concerning Flammability and
Types of Stairs . 82

6.16 Left Example: Represents Overall Utilization Unit and Includes its Sub-
Spaces e.g., Living Room. Right Example: Model Only Contains Sub-
Spaces and Generates Correct Escape Route 83

6.17 Checking Chain Failed in Second Link and Rest Disappears 84

93

List of Tables

4.1 Examples of POS Tags to Enable Classification of Tokens (ZHANG and
EL-GOHARY, 2015) . 35

5.1 Building Elements and relating Element Types in IFC 49

94

List of Algorithms

2.1 IfcRoot EXPRESS Specification (“buildingSMARTc”, 2021) 8

2.2 Extraction of mvdXML File. Definition of Templates Body (CHIPMAN et al.,
2016) . 13

3.1 Definiton of myrule in BERA (LEE, 2011) 22

95

References

BALDWIN, M. (2017). Der bim-manager - praktische anleitung für das bim-projektmanagement.
Beuth.

Bim4infra [lastly accessed: 2021-05-06]. (2020). https://bim4infra.de/wp-content/uploads/
2019/07/BIM4INFRA2020_AP4_Teil7.pdf

BITTNER, T., & SMITH, B. (2002). A unified theory of granularity, vagueness and approxima-
tion. Department of Computer Science. https://www.researchgate.net/publication/
2498722_A_Unified_Theory_of_Granularity_Vagueness_and_Approximation

BLIND, K., JUNGMITTAG, A., & MANGELSDORF, A. (2021). Din [lastly accessed: 2021-
01-04]. https://www.din.de/blob/79542/946e70a818ebdaacce9705652a052b25/
gesamtwirtschaftlicher-nutzen-der-normung-data.pdf

BORRMANN, A. (2007). Computerunterstützung verteilt-kooperativer bauplanung durch
integration interaktiver simulationen und räumlicher datenbanken. https://mediatum.
ub.tum.de/doc/618188/618188.pdf

BORRMANN, A., KOCH, C., KÖNIG, M., & BEETZ, J. (2015). Building information modeling -
technologische grundlagen und industrielle praxis. Springer.

Buildingsmarta [lastly accessed: 2020-11-27]. (2021). https://technical.buildingsmart.org/
standards/ifc

Buildingsmartb [lastly accessed: 2020-12-01]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/introduction.htm

Buildingsmartc [lastly accessed: 2020-12-06]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifckernel/lexical/ifcroot.htm

Buildingsmartd [lastly accessed: 2020-12-07]. (2021). https://www.buildingsmart.org/
users/services/buildingsmart-data-dictionary/

Buildingsmarte [lastly accessed: 2021-03-17]. (2021). https://standards.buildingsmart.
org / IFC / RELEASE / IFC4 / ADD1 / HTML / schema / ifcproductextension / lexical /
ifcspatialstructureelement.htm

Buildingsmartf [lastly accessed: 2021-03-17]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/

Buildingsmartg [lastly accessed: 2021-03-22]. (2021). https://standards.buildingsmart.
org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/
ifcrelspaceboundary.htm

Buildingsmarth [lastly accessed: 2021-03-22]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/
ifcmember.htm

Buildingsmarti [lastly accessed: 2021-03-23]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/
ifcstair.htm

Buildingsmartj [lastly accessed: 2021-03-23]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifckernel/lexical/ifcgroup.htm

96

https://bim4infra.de/wp-content/uploads/2019/07/BIM4INFRA2020_AP4_Teil7.pdf
https://bim4infra.de/wp-content/uploads/2019/07/BIM4INFRA2020_AP4_Teil7.pdf
https://www.researchgate.net/publication/2498722_A_Unified_Theory_of_Granularity_Vagueness_and_Approximation
https://www.researchgate.net/publication/2498722_A_Unified_Theory_of_Granularity_Vagueness_and_Approximation
https://www.din.de/blob/79542/946e70a818ebdaacce9705652a052b25/gesamtwirtschaftlicher-nutzen-der-normung-data.pdf
https://www.din.de/blob/79542/946e70a818ebdaacce9705652a052b25/gesamtwirtschaftlicher-nutzen-der-normung-data.pdf
https://mediatum.ub.tum.de/doc/618188/618188.pdf
https://mediatum.ub.tum.de/doc/618188/618188.pdf
https://technical.buildingsmart.org/standards/ifc
https://technical.buildingsmart.org/standards/ifc
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/introduction.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/introduction.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifckernel/lexical/ifcroot.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifckernel/lexical/ifcroot.htm
https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/
https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/ifcrelspaceboundary.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/ifcrelspaceboundary.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/ifcrelspaceboundary.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcmember.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcmember.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcmember.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcstair.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcstair.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcstair.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifckernel/lexical/ifcgroup.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifckernel/lexical/ifcgroup.htm

Buildingsmartk [lastly accessed: 2021-03-23]. (2021). https://standards.buildingsmart.
org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcexternalreferenceresource/
lexical/ifcclassification.htm

Buildingsmartl [lastly accessed: 2021-03-25]. (2021). https://standards.buildingsmart.
org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/
ifcbuildingelement.htm

Buildingsmartm [lastly accessed: 2021-04-12]. (2021). https://standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/
ifcdoor.htm

CHIPMAN, T., LIEBICH, T., & WEISE, M. (2016). Mvdxml version 1.1 final specification of a
standardized format to define and exchange model view definitions with exchange
requirements and validation rules.

Dibt [lastly accessed: 2021-01-04]. (2021). https://web.archive.org/web/20170811104734/
https://www.dibt.de/de/Zulassungen/abZ-FAQ-Frage-5.html

Din 820-2 [lastly accessed: 2021-02-25]. (2021). https://www.beuth.de/de/norm/din-820-
2/165417565

EASTMAN, C., LEE, J.-m., JEONG, Y.-s., & LEE, J.-k. (2009). Automatic rule-based checking
of building designs. Automation in Construction, 18(8), 1011–1033. https://doi.org/
https://doi.org/10.1016/j.autcon.2009.07.002

FIEDLER, J. (2015). Modernization scenarios of the building permit procedure in consider-
ation of new technological tools [lastly accessed: 2021-05-16]. https://repositum.
tuwien.at/handle/20.500.12708/2830

HJELSETH, E., & NISBET, N. (2011). Capturing normative constraints by use of the
semantic mark-up rase methodology. Department of Mathematical Sciences; Tech-
nology. https://www.researchgate.net/publication/265059517_CAPTURING_
NORMATIVE_CONSTRAINTS_BY_USE_OF_THE_SEMANTIC_MARK-UP_
RASE_METHODOLOGY

HUDECZEK, D. (2017). Formalisierung von normen mithilfe von auszeichnungssprachen
für die automatisierte konformitätsüberprüfung. https://publications.cms.bgu.tum.
de/theses/2017_Hudeczek.pdf

JONES, R., & HOWARTH, A. (2019). World-gbc [lastly accessed: 2021-01-07]. https :
//www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published

LEE, J. (2011). Building environment rule and analysis (bera) language and its application
for evaluating building circulation and spatial program. Advanced Engineering
Informatics. https://smartech.gatech.edu/handle/1853/39482

MATTIUZZO, C., & MIESNER, S. (2021). Genormte normensprache [lastly accessed: 2021-
02-25]. https://www.kan.de/publikationen/kanbrief/normatives-und-informatives/
genormte-normensprache/

MAYR, J. (2014). Anforderungen, planung und ausführung von rettungswegen. Feuertrutz
Verlag. https : / / www. kalksandstein . de / bv _ ksi / binaries / content / 83044 / file _
bauseminare_ks-ost_2014_vortrag_josef_mayr_de.pdf

Mckinsey [lastly accessed: 2021-01-02]. (2016). https://www.mckinsey.com/business-
functions/operations/our-insights/imagining-constructions-digital-future

97

https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcexternalreferenceresource/lexical/ifcclassification.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcexternalreferenceresource/lexical/ifcclassification.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcexternalreferenceresource/lexical/ifcclassification.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/ifcbuildingelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/ifcbuildingelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcproductextension/lexical/ifcbuildingelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcdoor.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcdoor.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcdoor.htm
https://web.archive.org/web/20170811104734/https://www.dibt.de/de/Zulassungen/abZ-FAQ-Frage-5.html
https://web.archive.org/web/20170811104734/https://www.dibt.de/de/Zulassungen/abZ-FAQ-Frage-5.html
https://www.beuth.de/de/norm/din-820-2/165417565
https://www.beuth.de/de/norm/din-820-2/165417565
https://doi.org/https://doi.org/10.1016/j.autcon.2009.07.002
https://doi.org/https://doi.org/10.1016/j.autcon.2009.07.002
https://repositum.tuwien.at/handle/20.500.12708/2830
https://repositum.tuwien.at/handle/20.500.12708/2830
https://www.researchgate.net/publication/265059517_CAPTURING_NORMATIVE_CONSTRAINTS_BY_USE_OF_THE_SEMANTIC_MARK-UP_RASE_METHODOLOGY
https://www.researchgate.net/publication/265059517_CAPTURING_NORMATIVE_CONSTRAINTS_BY_USE_OF_THE_SEMANTIC_MARK-UP_RASE_METHODOLOGY
https://www.researchgate.net/publication/265059517_CAPTURING_NORMATIVE_CONSTRAINTS_BY_USE_OF_THE_SEMANTIC_MARK-UP_RASE_METHODOLOGY
https://publications.cms.bgu.tum.de/theses/2017_Hudeczek.pdf
https://publications.cms.bgu.tum.de/theses/2017_Hudeczek.pdf
https://www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published
https://www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published
https://smartech.gatech.edu/handle/1853/39482
https://www.kan.de/publikationen/kanbrief/normatives-und-informatives/genormte-normensprache/
https://www.kan.de/publikationen/kanbrief/normatives-und-informatives/genormte-normensprache/
https://www.kalksandstein.de/bv_ksi/binaries/content/83044/file_bauseminare_ks-ost_2014_vortrag_josef_mayr_de.pdf
https://www.kalksandstein.de/bv_ksi/binaries/content/83044/file_bauseminare_ks-ost_2014_vortrag_josef_mayr_de.pdf
https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future
https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future

Musterbauordnung [lastly accessed: 2021-01-06]. (2019). https://www.bauministerkonferenz.
de/Dokumente/42323097.pdf

PLUM, A. (2016). Brandlasten in rettungswegen, grundlagen für einzelfallbetrachtungen.
BFT Cognos GmbH. https://www.bft-cognos.de/assets/files/Veroeffentlichungen/
10_Brandlasten%20in%20Rettungswegen.pdf

POPGAVRILOVA, G. (2020). Assuring building information quality for building analytics by
translating use cases of bim@sre standard into the mvd format. https://publications.
cms.bgu.tum.de/theses/2020_Popgavrilova_Braun_MVD.pdf

PREIDEL, C. (2020). Automatisierte konformitätsprüfung digitaler bauwerksmodelle hin-
sichtlich geltender normen und richtlinien mit hilfe einer visuellen programmier-
sprache [lastly accessed: 2021-01-04]. https://mediatum.ub.tum.de/doc/1534486/
1534486.pdf

PREIDEL, C., & BORRMANN, A. (2015). Automated code compliance checking based on a
visual language and building information modeling. https://publications.cms.bgu.
tum.de/2015_Preidel_ISARC.pdf

RESHAMWALA, A., MISHRA, D., & PAWAR, P. (2013). Review on natural language process-
ing.

RIBEIRINHO, M., MISCHKE, J., STRUBE, G., SJÖDIN, E., BLANKCO, J., PALTER, R., BJÖRCK,
E., ROCKHILL, D., & ANDERSSON, T. (2020). The next normal in construction [lastly
accessed: 2021-07-09]. https://www.mckinsey.de/~/media/mckinsey/business%
5C % 20functions / operations / our % 5C % 20insights / the % 5C % 20next % 5C %
20normal%5C%20in%5C%20construction/the-next-normal-in-construction.pdf

Roland berger focus [lastly accessed: 2021-01-06]. (2017). https://www.rolandberger.com/
de/Insights/Publications/Point-of-View-Details_29440.html

SOLIHIN, W., & EASTMAN, C. (2015). Automation in construction.
SOLIHIN, W., EASTMAN, C., & LEE, Y. C. (2016). A framework for fully integrated building

information models in a federated environment. Advanced Engineering Informatics,
30(2), 168–189. https://doi.org/https://doi.org/10.1016/j.aei.2016.02.007

Technical roadmap 2020. (2021). https://buildingsmart-1xbd3ajdayi.netdna-ssl.com/wp-
content/uploads/2020/09/20200430_buildingSMART_Technical_Roadmap.pdf

Technical roadmap 2021 [lastly accessed: 2021-07-09]. (2021). https://www.buildingsmart.
org/standards/bsi-standards/industry-foundation-classes/

Tum_st [lastly accessed: 2021-05-19]. (2021). https:/ /www.bgu.tum.de/st/software/
forschung/kiwi3d/

Vdi [lastly accessed: 2021-01-04]. (2021). https://www.vdi.de/ueber-uns/organisation
ZHANG, J., & EL-GOHARY, N. (2015). Semantic nlp-based information extraction from

construction regulatory documents for automated compliance checking. ASCE.
https://www.researchgate.net/publication/273024453_Semantic_NLP-Based_
Information _ Extraction _ from _ Construction _ Regulatory _ Documents _ for _
Automated_Compliance_Checking

98

https://www.bauministerkonferenz.de/Dokumente/42323097.pdf
https://www.bauministerkonferenz.de/Dokumente/42323097.pdf
https://www.bft-cognos.de/assets/files/Veroeffentlichungen/10_Brandlasten%20in%20Rettungswegen.pdf
https://www.bft-cognos.de/assets/files/Veroeffentlichungen/10_Brandlasten%20in%20Rettungswegen.pdf
https://publications.cms.bgu.tum.de/theses/2020_Popgavrilova_Braun_MVD.pdf
https://publications.cms.bgu.tum.de/theses/2020_Popgavrilova_Braun_MVD.pdf
https://mediatum.ub.tum.de/doc/1534486/1534486.pdf
https://mediatum.ub.tum.de/doc/1534486/1534486.pdf
https://publications.cms.bgu.tum.de/2015_Preidel_ISARC.pdf
https://publications.cms.bgu.tum.de/2015_Preidel_ISARC.pdf
https://www.mckinsey.de/~/media/mckinsey/business%5C%20functions/operations/our%5C%20insights/the%5C%20next%5C%20normal%5C%20in%5C%20construction/the-next-normal-in-construction.pdf
https://www.mckinsey.de/~/media/mckinsey/business%5C%20functions/operations/our%5C%20insights/the%5C%20next%5C%20normal%5C%20in%5C%20construction/the-next-normal-in-construction.pdf
https://www.mckinsey.de/~/media/mckinsey/business%5C%20functions/operations/our%5C%20insights/the%5C%20next%5C%20normal%5C%20in%5C%20construction/the-next-normal-in-construction.pdf
https://www.rolandberger.com/de/Insights/Publications/Point-of-View-Details_29440.html
https://www.rolandberger.com/de/Insights/Publications/Point-of-View-Details_29440.html
https://doi.org/https://doi.org/10.1016/j.aei.2016.02.007
https://buildingsmart-1xbd3ajdayi.netdna-ssl.com/wp-content/uploads/2020/09/20200430_buildingSMART_Technical_Roadmap.pdf
https://buildingsmart-1xbd3ajdayi.netdna-ssl.com/wp-content/uploads/2020/09/20200430_buildingSMART_Technical_Roadmap.pdf
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.bgu.tum.de/st/software/forschung/kiwi3d/
https://www.bgu.tum.de/st/software/forschung/kiwi3d/
https://www.vdi.de/ueber-uns/organisation
https://www.researchgate.net/publication/273024453_Semantic_NLP-Based_Information_Extraction_from_Construction_Regulatory_Documents_for_Automated_Compliance_Checking
https://www.researchgate.net/publication/273024453_Semantic_NLP-Based_Information_Extraction_from_Construction_Regulatory_Documents_for_Automated_Compliance_Checking
https://www.researchgate.net/publication/273024453_Semantic_NLP-Based_Information_Extraction_from_Construction_Regulatory_Documents_for_Automated_Compliance_Checking

Appendix B

Declaration

I hereby affirm that I have independently written the thesis submitted by me and have
not used any sources or aids other than those indicated.

Munich, July 15, 2021, Sebastian Schliski

99

	Contents
	Introduction
	Motivation
	Scope
	Structure of work

	Introduction to IFC, IDM, MVD and Co.
	Historical Background
	Industry Foundation Class
	IFC Layers
	Inheritance Hierarchy
	Object Relationship
	Technological Outlook

	Information Delivery Manual and Model View Definitions
	mvdXML

	LOD, LOG, LOI
	Summary

	Code Compliance Checking
	Introduction
	Levels of Model Quality
	Technical Approaches
	Hard-Coded Tests
	Domain Specific Programming Languages
	Visual Programming Language

	Summary

	Musterbauordnung
	Introduction
	Fifth Section of Musterbauordnung
	Representation & Complexity of Regulatory Requirements
	Representation
	Complexity

	Extraction Methods
	Semantic Mark-Up RASE Methodology
	Natural Language Processing

	Summary

	Concept
	RASE Mark Up Technique
	IFC Data Coverage
	Three-Dimensional Aggregation
	Building Element Aggregation
	Additional Semantic Assignment
	Building Element Allocation

	Data Extraction and Mapping
	Granularity and Complexity
	Further Analysis and Strategies
	Data Mapping Tables
	Code Compliance Checking Approaches

	Technical Implementation
	Summary

	Proof of Concept
	Additional Data Identification
	Model Data Quality
	Use Cases
	§33 - First and Second Escape Way
	§ 34 - Stairs

	Validation
	Validation of Data Quality
	Validation of Design Quality

	Approach Evaluation and Limitations
	Summary

	Conclusion
	Summary
	Future Work

	
	List of Figures
	List of Tables
	List of Algorithms
	References

