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Abstract
Hybrids systems arise when the continuous dynamic behaviors interact with the discrete ones,
which provide an attractive framework for describing the complex systems or approximating
the nonlinear systems. Prior to the analysis, verification, computation, and control of these
systems, the identification of hybrid systems is essential. Naturally, this thesis is motivated
by solving the identification problem of hybrid systems, including offline identification and
online identification.
There are tremendous systems that can be categorized as hybrid systems. In this thesis,

we concentrate on the identification of several representative hybrid systems, i.e., Piece-
Wise Affine AutoRegressive eXogenous (PWARX) system, continuous-time PieceWise Affine
(PWA) system, and continuous-time Switched Nonlinear System (SNS). Universally, the
identification of hybrid systems includes estimating the number of subsystems, the switch-
ing signal/polyhedral partitions, and the subsystem models. The PWARX systems draw
attention due to their simple formulations and universal approximation properties in recent
years. In the thesis, we propose a novel method to address the identification problem of
PWARX systems, which is motivated by reducing the computational complexity while es-
timating the polyhedral partitions. In particular, a cluster-based algorithm is designed to
acquire the number of submodels, the initial labeled data set, and the initial parameters
corresponding to each submodel. Additionally, we develop a modified self-training support
vector machine algorithm to simultaneously identify the hyperplanes and parameters of each
submodel with the outputs of the cluster-based algorithm. The proposed algorithm is com-
putationally efficient for partition estimation and able to accomplish this task with only a
small quantity of classified regression vectors.
The continuous-time PWA systems and switched nonlinear systems are more appropriate

to describing the intrinsic mechanism of the complex system and designing the correspond-
ing control strategies. However, the existing methods for identifying them are exiguous,
especially for the online identification methods. Therefore, the motivation is to build a gen-
eralized framework for the continuous-time hybrid system in state-space form. The main
challenge is the coupling between the subsystem dynamics and the switching behavior. In
this dissertation, this framework is composed of three stages: a) switching detection and
active mode estimation, b) subsystem identification, c) switching signal/polyhedral parti-
tion estimation. The corresponding algorithms and their proof is also presented. Specifi-
cally, the algorithms for switching detection and active mode estimation are designed based
on the delay error dynamics (continuous-time PWA systems) and the subspace projection
method (continuous-time SNSs). Following the estimated active mode, the modified inte-
grated concurrent learning identifier is proposed to update the subsystem parameters with
the assistance of the Luenberger-observer and state reset mechanism. Finally, the switching
signal/polyhedral partitions are confirmed via the estimates. In addition, some refinement
strategies are also provided to cope with the extreme situations (for continuous-time PWA
systems) and the model structure selection (for continuous-time SNSs). The effectiveness
of these proposed identification approaches for hybrid systems are illustrated via simulation
results.
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Zusammenfassung
Hybride Systeme entstehen, wenn die kontinuierlichen dynamischen Verhaltensweisen mit
den diskreten interagieren, was einen attraktiven Rahmen für die Beschreibung der kom-
plexen Systeme oder eine Annährung an nichtlineare Systeme bietet. Vor der Analyse,
Überprüfung, Berechnung und Steuerung dieser Systeme ist die Identifizierung hybrider
Systeme unabdingbar. Diese Arbeit ist durch die Lösung des Identifikationsproblems hy-
brider Systeme, einschließlich Offline-Identifikation und Online-Identifikation, motiviert. Es
gibt eine Vielzahl an Systeme, die als Hybridsystem kategorisiert werden können. In dieser
Arbeit konzentrieren wir uns auf die Identifizierung mehrerer repräsentativer Hybridsys-
teme, d. h. PWARX-System, zeitkontinuierliche PWA Systeme und geschaltete nichtlin-
eare Systeme. Allgemein umfasst die Identifizierung von Hybridsystemen die Schätzung
der Anzahl von Subsystemen, des Schaltsignals/der polyhedrischen Partition und der Sub-
systemmodelle. Die PWARX-Systeme machen in den letzten Jahren durch ihre einfache
Formulierung und universellen Näherungseigenschaften auf sich aufmerksam. In der Disser-
tation schlagen wir eine neuartige Methode vor, um das Identifikationsproblem von PWARX-
Systemen anzugehen, die durch die Reduzierung der Rechenkomplexität bei der Schätzung
der polyedrischen Partitionen motiviert wird. Insbesondere ist ein clusterbasierter Algo-
rithmus entworfen worden, um die Anzahl von Untermodellen, den gekenn-zeichneten und
die Anfangsparameter des entsprechenden Untermodell zu erfassen. Darüber hinaus en-
twickeln wir einen modifizierten selbstlernenden Support-Vektor-Machine-Algorithmus, um
gleichzeitig die Hyperebenen und Parameter jedes Teilmodells mit den Ausgaben des clus-
terbasierten Algorithmus zu identifizieren. Der vorgeschlagene Algorithmus ist rechenef-
fizient für die Bereichsschätzung und in der Lage, diese Aufgabe mit nur einer kleinen
Menge klassifizierter Regressionsvektoren zu erfüllen. Betrachtet man die zeitkontinuier-
lichen PWA-Systeme und geschaltete nichtlineare Systeme, sind sie besser geeignet, um
den intrinsischen Mechanismus des komplexen Systems zu beschreiben und die entsprechen-
den Regelstrategien für sie zu entwerfen. Die Identifizierungsmethoden für sie sind jedoch
aufgrund ihrer Formulierungen, insbesondere für die Online-Identifizierung, ausbaufähig.
Daher besteht die Motivation darin, einen allgemeinen Rahmen für das zeitkontinuierliche
Hybridsystem in Zustandsform zu erstellen. Die Hauptherausforderung ist die Kopplung
zwischen der Subsystemdynamik und dem Schaltverhalten. In dieser Arbeit besteht dieser
Rahmen aus drei Stufen: a) Schaltdetektion und aktive Modusschätzung, b) Subsystemiden-
tifikation, c) Schaltsignalschätzung/polyedrische Partitionsschätzung. Die entsprechenden
Algorithmen und deren Beweis werden in der Arbeit vorgestellt. Insbesondere werden die
Algorithmen für die Schalterkennung und die Schätzung des aktiven Modus basierend auf
der Verzögerungsfehlerdynamik (kontinuierliche PWA-Systeme) und dem Unterraumprojek-
tionsverfahren (kontinuierliche SNSs) entworfen. Nach dem geschätzten aktiven Modus wird
die modifizierte I-CL-Kennung vorgeschlagen, um die Subsystemparameter mit Hilfe des
Luenberger-Beobachtungsverfahren und des Zustandsrücksetzmechanismus zu aktualisieren.
Schließlich werden die Schaltsignal- /polyedrischen Partitionen über die geschätzten aktiven
Modi und die Subsystemparameter bestätigt. Darüber hinaus werden auch einige Ver-
feinerungsstrategien bereitgestellt, um die Extremsituationen (für zeitkontinuierliche PWA-
Systeme) und die Modellstrukturauswahl (für zeitkontinuierliche SNSs) zu bewältigen. Die
Wirksamkeit dieser Identifikationsansätze für Hybridsysteme wird durch Simulationsergeb-
nisse veranschaulicht.
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Notation

Acronyms and Abbreviations
AHS Automated Highway System

PWA Piecewise affine (system)

PWL Piecewise linear (system)

PWARX Piecewise autoregressive exogenous (system)

HHARX Hing hyperplane autoregressive exogenous (system)

PWNS Piecewise nonlinear system

PWNARX Piecewise nonlinear autoregressive exogenous (system)

SNARX Switched nonlinear autoregressive exogenous (system)

SARX Piecewise autoregressive exogenous (system)

SNS Switched nonlinear system

SLS Switched linear system

PE Persistently exciting/persistent excitation

CL Concurrent learning

LC Local cluster

sub LC Sub local cluster

I-CL Integral concurrent learning

SVM Support vector machine

M-SVM Multicategory-Support vector machines

RLS Recursive least squares

LS Least squares

BFR Best fit rate

WMR Wheeled mobile robot

PBH Popov-Belevitch-Hautus (Test)
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Notation

Conventions

Scalars, Vectors, and Matrices
Scalars and vectors are denoted by lower case letters. Matrices are denoted by upper case
letters.

Subscripts and Superscripts
ȧ Time derivative of a

â Estimate of a

ã Difference between estimated and true value of a

a−1 Inverse of a

aT Transpose of a

ai ai refers to a of the i-th subsystem

ac Point ac is the center of a local cluster

(A)[i∗] i-th row vector of matrix A

(A)[∗i] i-th column vector of matrix A

(A)[̄i∗] Matrix formed by removing the i-th row from A

(A)[∗̄i] Matrix formed by removing the i-th column from A

(A)[̄i,j̄] Matrix formed by removing the i-th row and j-th column from A

Number Sets
N set of natural numbers

N+ set of positive natural numbers

R set of real numbers

R+ set of positive real numbers

C set of complex numbers
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Notation

Operations
vec(A) vec-operator which concatenates the columns of the matrix A

Cols(A) space spanned by column vectors of matrix A

rank(A) rank of matrix A

#A cardinality of set A

B/A the set of elements in set B but not in set A.

�[i] list of operators ≤ and < for the i-th system

var(·) variance of a sequence of scalars.

For a vector b ∈ Rn, the following operations exist.

||b||1 `1 norm:‖b‖1 = ∑n
i=1 |bi|

||b||2 `2 norm:‖b‖2 =
√∑n

i=1 b
2
i

||b||∞ `∞ norm: ‖b‖∞ = maxi |bi|

d(b1, b2) standardized Euclidean distance of vector b1, b2: d(b1, b2) =
√∑n

i=1
(bi−bi)2

s2
i

.

Symbols
General

θ system parameter vector

s number of subsystems

X system polyhedral partition

u input of a dynamic system

y output of a dynamic system

V Lyapunov function

δ,α, ρ small constants

∆t integration window

J cost function
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Notation

P positive definite matrix in a quadratic Lyapunov function

σ active mode

η moving window

t time

T period of input signal

N normal distribution

Hi matrix defining the hyperplanes of region Xi

µi number of hyperplanes defining X〉

Am stable design matrix in parameter identifiers or reference system

PWARX system

xk regression vector

na, nb model orders

ϕk extended regression vector

ek output-measurement noise

N number of data samples for identification

D set of data points

L local cluster

(xc, yc) center of a local cluster

(x̌, y̌) data points in a local cluster

` label of a data point

Dl initial labeled data set

DT collection of the center of each sub LC

G classifier group

ξ linear penalty

NT total amount of training data

r the number of iterations

γ geometric margins

x



Notation

Continuous-Time PWA system

x state of a dynamic system

Ai system matrix of the i-th subystem of a PWA system

Bi input matrix of the i-th subystem of a PWA system

fi affine input vector of the i-th subystem of a PWA system

ε delay error

te delay shift

Ξ sampling matrix

N sampling size

ts sampling interval

Φ state-transition matrix

χ standard deviation

ε0 initial error state vector

tsw switching time instant

Xi,Ui integrated history stack of the i-th subsystem

tini,q Switching time: q-th activation of subsystem i

touti,q time: q-th deactivation of subsystem i

Tsw sequence of switching instants

ei prediction error of the i-th subsystem

Continuous-Time SNS

x state of a dynamic system

ϕ basis function

κ parameter of basis function

ψ regression vector formed by basis functions

τ∆ time required to recognize the active mode correctly

τdwell minimum dwell time

Υi,Φi the sampling matrices of i-th subsystem
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Π projection matrix

ε residual computed for switching detection

hNN last diagonal element of Π

ζ threshold vector

N sampling size

ts sampling interval

Hi history stack of i-th subsystem

Θ parameter of the i-th subsystem before transformation

ei prediction error of the i-th subsystem

S residual matrix for MSS
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Introduction 1.

Hybrid systems are dynamic systems that exhibit both continuous and discrete dynamic
behaviors. They are especially profound in many technological systems, in which logic
decision-making and embedded control actions are integrated with continuous physical pro-
cesses. Hybrid dynamics provide a convenient framework for modeling systems in a wide
range of engineering applications:

• Mechanical Systems: Continuous motions which are interrupted by collisions.

• Electrical Circuits: Continuous phenomena such as the charging of capacitors, etc.
are interrupted by switches opening and closing, or diodes going on or off.

• Chemical Process: Continuous evolution of chemical reactions which is controlled
by valves and pumps.

• Embedded Computation Systems: Digital computer interacts with a mostly ana-
logue environment.

In addition, a majority of the complex dynamical systems around us may reasonably be
depicted in hybrid terms, such as epidemiology [1], legged locomotion [2], cascading failures
on the electrical grid [3], gear shift system [4], and automated highway system [5]. In
particular, we describe the gear shift system and automated highway system in detail for
intuitive expressions.

Gear Shift System
The gear shift system is indispensable in cars, which is used to move a vehicle forward, in
reverse, or remain neutral. The core of the shift system is a gearbox, whose gears can be
switched manically or automatically. Figure 1.1 shows a model of a car with a gearbox
having four gears.
The longitudinal position of the car along the road is denoted by x1 and its velocity

by x2 (lateral dynamics are ignored). The model has two control signals: the gear denoted
gear = 1, . . . , 4 and the throttle position denoted u = [umin,umax]. Gear shifting is necessary
because little power can be generated by the engine at very low or very high engine speed.
The function fi represents the efficiency of gear i. Typical shapes of the functions fi are
shown in Figure 1.2.
According to the description of the gear shift system, it can be modeled as a hybrid system.

The dynamic of each subsystem (gear) is continuous and nonlinear. In addition, the gears are
also switched manually or automatically during driving, which implies the discrete dynamics
of the system.
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1 Introduction

gear=1 gear=2 gear=3 gear=4

Figure 1.1.: A hybrid system modelling a car with four gears.

Figure 1.2.: The efficiency functions of the different gears.

Several interesting control problems can be posed for this gear shift system, such as de-
signing an optimal control strategy to drive from A point to B point in minimum time. The
problem is not trivial if we include the reasonable assumption that each gear shift takes
a certain amount of time. It is worth noting that the design of the optimal controller is
founded on the known efficiency functions of each gear fi, the switching sequence, and the
switching instants.

Automated Highway System
Highway congestion problem draws more and more attention these days, especially in and
around urban areas. One of the feasible solutions considered for this problem is traffic
automation, either partial or full. The use of an automated system that performs some
or all of the tasks of the driver may reduce or eliminate human errors and hence improve
safety. Moreover, as the automatic controller can react to disturbances faster than a human
driver, automation may also decrease the average inter-vehicle spacing and hence increase
throughput and reduce congestion and delays.
The design of an automated highway system (AHS) is an extremely challenging control

yet a popular problem. Thus, a number of methods have been proposed for addressing it.
One of the most forward-looking AHS designs involves a fully automated highway system
that supports platooning of vehicles. The platooning concept [6] assumes that traffic on
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the highway is organized in groups of tightly spaced vehicles (platoons). The platooning
structure achieves a balance between safety and throughput. In recent years, computational
and experimental studies have shown that an AHS that supports platooning is not only
technologically feasible but, if designed properly, may lead to an improvement of both the
safety and the throughput of the highway system, under normal operation.
Implementation of the platooning concept requires automatic vehicle control, since human

drivers are not fast and reliable enough to produce the necessary inputs. A hierarchical
controller is employed to manage the complexity of the design process. The controller is
organized in four layers (Figure 1.3). The top two layers, called network and link, reside on
the roadside and are primarily concerned with throughput maximization, while the bottom
two, called coordination and regulation, are the major concerns in the safety and reside
on the vehicles. The physical layer is not part of the controller. It contains the “plant”,
i.e. the vehicles and highway, with their sensors, actuators, and communication equipment.
Subsequently, we focus on the description of the coordination and regulation layers.

Network Layer
(Routing)

Link Layer
(Flow)

Coordination Layer
(Communication)

Regulation Layer
(Control)

Round Side On-Board

Discrete

Physical Layer
(Vehicles)

Continuous

Figure 1.3.: The Automated Highway System control hierarchy.

The coordination layer coordinates the operation of neighbouring platoons by choosing
manoeuvres that the platoons need to carry out. For normal operation, these manoeuvres
are join to join two platoons into one, split to break up one platoon into two, lane change,
entry and exit. The coordination layer is primarily a discrete controller. It uses communi-
cation protocols, in the form of finite state machines, to coordinate the execution of these
manoeuvres between neighbouring vehicles.
The regulation layer receives the coordination layer commands and readings from the vehi-

cle sensors and generates throttle, steering and braking commands for the vehicle actuators.
For this purpose it utilises a number of continuous time feedback control laws that use the
readings provided by the sensors to calculate the actuator inputs required for a particular
manoeuvre. In addition to the control laws needed for the manoeuvres, the regulation layer
makes use of two default controllers, one for leader and one for follower operation.
The interaction between the coordination layer (which is primarily discrete) and the reg-

ulation layer (which is primarily continuous) gives rise to interesting hybrid dynamics. To
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ensure the safety of the AHS, one needs to verify that the closed loop hybrid system does
not enter a bad partition of its state space (e.g. does not allow any two vehicles to collide
at high relative velocity). It can be shown that information available through discrete coor-
dination can be used together with appropriate continuous controllers to ensure the safety
of the closed loop hybrid system.
Even though the hybrid models are more appropriate to describe the complex systems

and approximate the nonlinear systems, most of the researchers still concentrate on studying
dynamical systems which are either completely continuous or discrete due to their simple
formulations. However, it is a platitude that completely continuous or discrete dynamical
models are inadequate to describe most of the real systems. As a consequence, the field of
hybrid system modeling has been greatly concerned in the last few decades.
Prior to the analysis, verification, computation, and control of these dynamic systems

and phenomena, the corresponding hybrid models need to be identified. Therefore, the
identification of hybrid systems has been greatly concerned in recent years [7–14]. Hybrid
system identification aims at using statistical methods to construct the models of hybrid
systems mainly from experimental data. Generally, two types of models are in the field
of system identification: grey-box model and black-box model [15]. The focus of the grey-
box model identification is the estimation of unknown free parameters while knowing the
model structure. Alternatively, no prior model is available for the black-box model and the
model structure is also required to be identified. From another perspective, the identification
methods can be categorized as online and offline. The online identification methods estimate
the parameters of a model when new data is available during the operation of the model.
Considering offline identification, all the input/output data are collected before estimating
the model parameters. The estimated parameters are updated with time in the online
identification methods while invariant for the offline methods.
One of the main difficulties to discuss the identification of hybrid system is that the term

“hybrid” is not restrictive: the interpretation of the term could be stretched to include
virtually any dynamical system we can think of [16]. Obviously, it is unrealistic to discuss
the identification for all hybrid systems. Therefore, we briefly categorized the hybrid systems
into different types and concentrate on the identification of some representative types. The
classified hybrid systems are shown in Table 1.1. It should be noted that hybrid systems
can be classified according to various criteria. The switching mechanism and formulation
are selected as the criteria since they are the major concerns of our thesis.
Various approaches have been presented to cope with the identification of hybrid sys-

tems [11–14,17–19]. The offline identification for discrete-time hybrid systems in the input-
output form is spotlighted in these approaches due to their easy implementation [20–23].
However, the traditional partition estimation for switching dependent hybrid systems is
generally expensive and time-consuming, especially for large data sets [24], being one of
the critical challenges in hybrid system identification. Compared with offline identification,
online identification for continuous-time hybrid systems in the state-space form is more chal-
lenging but essential. It follows that the continuous-time hybrid systems in the state-space
form are more effective while describing the intrinsic mechanism of dynamical systems. Also,
direct identification of continuous-time models based on sampled data can outperform the
discrete-time models in the case of rapidly or irregularly sampled data [25,26]. In addition,
the online or recursive identification methods are in favor for real-time applications due to
their abilities to handle large amounts of data. Even with the aforementioned advantages,
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Table 1.1.: Hybrid System Classification

Hybrid System

Input-output form SARX system, PWARX system, HHARX system, . . .

State-space form PWA system, PWL system, SLS, SNS, . . .

Time dependent switching SARX system, SLS, SNS, . . .

State dependent switching PWA system, PWL system, HHARX system,. . .

Linear subsystem PWL system, SLS, SARX system, . . .

Affine subsystem PWA system,PWARX system, . . .

Nonlinear subsystem SNS, PWNS, PWNARX system, SNARX system, . . .

only a few online identification methods are proposed for continuous-time hybrid systems in
state-space form due to critical challenges. It is worth noting that these methods also have
limitations in some aspects. Therefore, one of the critical challenges in hybrid system iden-
tification is to build a consummated framework for online identification of continuous-time
hybrid systems in state-space form.
While the above introduction sets the general motivation for this work, it is obvious that

researching the identification of all hybrid systems is unrealistic. Therefore, we focus on the
identification of three kinds of representative hybrid systems in the thesis, which are the
PieceWise AutoRegressive eXogenous (PWARX) system, continuous-time PieceWise Affine
(PWA) system, and continuous-time switched nonlinear system (SNS). The following section
describes the challenges addressed in this thesis in greater detail.

1.1. Challenges
In this thesis, we concern the following three challenges revolving the identification of hybrid
systems.

i) How to achieve the efficient offline identification of the PWARX system?

ii) How to accomplish the online identification of the continuous-time PWA
system?

iii) How to carry out the online identification of the continuous-time switched
nonlinear system?

Among multitudes of hybrid systems, the representative ones are the PWARX system,
continuous-time PWA system, and continuous-time SNS. These models have their own ad-
vantages and disadvantages while approximating the nonlinear systems and describing the
complex systems. The strengths of the PWARX system are its simple formulation and uni-
versal approximation properties. On the other hand, the input-output form weakens its
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ability to describe and control the state variables. Considering the continuous-time PWA
systems, the intrinsic mechanism of the complex systems is easier to be described by them,
which implies less effort while designing their control strategy. In addition, the continuous-
time SNSs prevent the heavy computation burden by using tremendous subsystems to ap-
proximate the nonlinear systems. Also, the intrinsic mechanism of the complex systems,
especially the nonlinear terms can be illustrated apparently through the SNSs. However,
these advantages are built on its complex formulation which leading to hard identification
of the system. To solve the first challenge, the polyhedral partition estimation is the major
concern to improve the efficiency of offline identification for PWARX systems. For the sec-
ond and third challenges, the framework based on integral concurrent learning is established
for the online identification of continuous-time PWA systems and further enhanced for the
continuous-time SNSs, respectively. A more detailed description of these challenges is pro-
vided in the following subsections. At the end of this chapter, we highlight the contribution
and illustrate the structure of this dissertation.

1.1.1. Offline Identification of PWARX System

The first challenge is motivated by the fact that the offline identification methods for PWARX
systems are generally expensive and time-consuming, especially for large data sets. It is
beneficial to improve the efficiency of the PWARX system identification for some scenarios
with limited computation power and memory.
PWARX systems are a subclass of hybrid systems representing the input-output relation-

ship of PWA systems, with the specification that the switching mechanism is determined by
a polyhedral partition of the regressor space. The research of PWA systems starts in the
mid-twentieth. The modeling of saturated systems with a partitioning of the state space is
proposed by Kalman in the 1950s as the first work related to the piecewise linear systems [27].
In the 1970s, PWA models experienced their first major growth in interest. The circuit com-
munity was in need for efficient simulation and analysis tools [28, 29] for large scale circuits
with piecewise linear elements such as diodes. Later, Sontag provided pioneering insights
into discrete-time PWA systems that are still appreciated today [30, 31]. Today, PWARX
systems are particularly focused among PWA systems due to their simple formulation and
universal approximation properties. Also, the identification of PWARX models has received
great attention as the foundation of model-based control [32–36].
The offline identification of PWARX models incorporates the estimation of both parame-

ters of each submodel and polyhedral partitions. Thus the identification approaches devel-
oped in previous works generally consist of two stages, i.e., i) identifying the parameters of
each affine submodel and ii) estimating polyhedral partitions of the input-state space [37–41].
For the first stage, various methods have been presented to identify the parameters of each
affine submodel. However, unlike the first stage, the SVM algorithm is dominantly employed
to estimate the partitions of submodels [37–41]. It follows that the SVM algorithm is capable
of estimating the hyperplanes precisely. However, effective and well-performed as SVM is
regarding the identification tasks, it can be numerically inefficient. In SVM algorithm, all
the data points are required to be labeled and classified before estimating the polyhedral
partitions in these algorithms, which is generally expensive and time-consuming, especially
for large data sets [24]. Besides, computing feasible partitions through the SVM algorithm
may suffer high computational complexity [42] in this case. Therefore, the major concern
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of the efficient offline PWARX identification in our thesis is to provide a novel algorithm to
reduce the computational complexity of the polyhedral partition estimation.

1.1.2. Online Identification of Continuous-Time Hybrid Systems
Regarding the second and third challenges, it is essential to develop a complete framework
for the online identification of the continuous-time PWA systems and continuous-time SNSs.
They are two typical hybrid systems, whose formulations are continuous-time in state-space
form. These systems are profitable while describing the intrinsic mechanism of the com-
plex system and designing the corresponding control strategy. However, the costs of these
profits are the difficulties while doing their identifications since their formulations are rather
complicated.
Compared with offline identification, the online or recursive identification methods are

in favor for real-time applications due to their abilities to handle large amounts of data.
Moreover, the online identification of the parameters is the foundation of adaptive control.
The continuous-time models are formulated in differential equations. They are probably
more mainstream in science and engineering, and studied more extensively, than discrete-
time models, because various natural phenomena (e.g., motion of objects, flow of electric
current) take place smoothly over continuous time. Considering the aforementioned advan-
tages, some papers have been presented for the continuous-time PWA systems and SNS
identification [43, 44]. However, these works have their own limitations: the switching sig-
nal/polyhedral partitions need to be known in advance or only the bi-model/tri-model sys-
tems can be estimated. Due to the aforementioned advantages and limitations, a framework
for the online identification of continuous-time PWA systems and SNS is essential to be
developed.

1.2. Contributions and Thesis Outline
This dissertation provides solutions to the above-motivated challenges arising for the iden-
tification of hybrid systems. Before going into detail, the interested readers may refer to
Appendix A for the preliminary information on the proposed semi-supervised learning-based
algorithm and Appendix B for the helpful background on the stability analysis of the switched
system in the proposed online identification framework. Chapter 2 begins with an introduc-
tion to PWARX systems and provides the formulation of their identification problem. Subse-
quently, we describe the novel offline identification approach for the PWARX systems which
are based on the semi-supervised learning. The computational complexity of the proposed
algorithm for polyhedral partition estimation is discussed and compared with the original al-
gorithms to show its strength. Furthermore, numerical experiments on the PWARX system
identification are conducted to demonstrate the effectiveness of the proposed approaches. In
Chapter 3, we propose a complete framework for the online identification of continuous-time
PWA systems, whose effectiveness is validated through numerical experiments. The rigor-
ous mathematical proof for the algorithms proposed in the framework is also given. The
enhanced version of the framework from Chapter 3 is presented to handle the online identi-
fication of continuous-time SNS in Chapter 4. In the enhanced framework, we adopt a new
active mode recognition algorithm which is based on the subspace projection and integrate
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a proposed MSS strategy. Final conclusions and possible directions for future work will be
given in Chapter 5.

Offline Identification for PWARX systems (Chapter 2)

For the offline identification of PWARX systems, we propose an efficient approach by impos-
ing the semi-supervised learning algorithms in the polyhedral partition estimation procedure.
It is worthy to point out that the state-of-art methods generally employ the SVM algorithms
for the polyhedral partition estimation, whose precision is built on the expensive and time-
consuming implementation, especially for large data sets. In fact, this drawback is the
motivation of presenting the novel identification method. The proposed approach is com-
prised of a cluster-based algorithm and a modified self-training SVM algorithm. The cluster-
based algorithm is designed to obtain the initial labeled data set, initial parameters of each
submodel, and the number of submodels simultaneously. The modified self-training SVM
algorithm then computes the parameters of submodels and estimates the polyhedral parti-
tions with the outputs of the cluster-based algorithm. By imposing a customized selection
strategy, the modified self-training SVM algorithm is capable of estimating the polyhedral
partitions precisely with partially-labeled data set. Moreover, the computational complexity
of the modified self-training SVM algorithm is analyzed and compared with the traditional
SVM algorithm to justify its higher efficiency.
The material presented in Chapter 2 has been published in IEEE Transactions on Circuits

and Systems I: Regular Papers [129].

Online Identification for Continuous-Time PWA Systems
(Chapter 3)

In this chapter, we aim at offering a complete framework for the online identification of
continuous-time PWA systems. To the best of our knowledge, the existing approaches for
solving this problem have their corresponding drawbacks, such as the limitation of only
identifying bi-model/tri-model PWA systems or the assumption of knowing the polyhedral
partitions in advance. Strictly, these methods can not be regarded as generalized identifica-
tion methods for the continuous-time PWA systems. Therefore, we present the generalized
framework for the online identification of continuous-time PWA systems in this chapter. The
framework separates the online identification into three tasks, i.e., the online active mode
recognition, the online estimation of each subsystem, and the identification of polyhedral
partitions. The first task is achieved by analyzing the discrete-time dynamics of the pro-
posed delay error. Furthermore, an online algorithm is designed to estimate the number
of subsystems and recognize the active mode hinged on the dynamics. According to the
recognized active mode, we generalize the integral concurrent learning identifier to estimate
the parameters of each subsystem and provide the convergence proof of the identifier. The
generalized identifier avoids the estimation of state derivatives while maintaining the con-
vergence of parameters. Taking into consideration the estimation of polyhedral partitions,
the process is accomplished through a cost function that is designed via the estimated sub-
system parameters. The proposition of the approach sheds light on the online identification
of continuous-time PWA systems in state-space form.
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The material presented in Chapter 3 has been published in IEEE Transactions on Circuits
and Systems I: Regular Papers [130].

Online Identification for Continuous-Time SNSs (Chapter 4)
In order to identify the continuous-time SNSs online, we enhance the framework in chapter
3 by replacing the active mode recognition algorithm and involving the model structure
selection (MSS) strategy. Considering the complex formulation of the switched nonlinear
system, it is not a surprise that the online identification of continuous-time SNSs is more
challenging, which results in even fewer works published than the online identification of
continuous-time PWA systems. Whereas, the switched nonlinear systems play a critical
role in the maintenance of describing the intrinsic dynamics and physical interpretations
of the complex systems [45]. Therefore, we present the enhanced framework for the online
identification of continuous-time SNSs. Similarly, the task for online identification can be
decomposed into: online estimation of the number of subsystems, the switching sequence, and
each subsystem. Concretely speaking, a theorem based on the projection matrix in statistics
is introduced to address the identification of the number of subsystems and the switching
sequence. Derived from the theorem, an online algorithm is designed to estimate the number
of subsystems and the active mode. Following the estimation of active mode, the modified
I-CL identifier is also employed for the subsystem identification, whose convergence proof is
provided. Additionally, a refinement strategy for MSS is introduced to improve the efficiency
of the proposed method. The strategy can be integrated into the framework to determine the
model structure of each subsystem before identifying their parameters. Clearly, the proposed
approach fills a gap in the field of online identification of continuous-time SNSs.
The material presented in Chapter 4 has been published in the International Journal of

Robust and Nonlinear Control [131].
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Semi-supervised Learning-based
Offline Identification of PWARX
Systems 2.

In this chapter, the semi-supervised learning-based method for the offline identification of
PWARX system is introduced. Section 2.1 begins with a formal definition of PWARX
systems, which is the target system to be identified throughout this chapter. Based on
the literature review, we also derive limitations in the state-of-art identification approaches.
Subsequently, the proposed identification method is described in Section 2.2, including the
cluster-based algorithm and the modified self-training SVM algorithm. Furthermore, the
computational complexity of the proposed modified self-training SVM algorithm is evaluated
and compared with the original SVM algorithm in this chapter. Naturally, the numerical
experiments are provided to validate the effectiveness of the proposed method in Section 2.3.
The summary and the open problems to be solved are the subjects of Section 2.4.

2.1. Introduction to PWARX Systems and Problem
Formulation

The PWARX systems considered in this chapter are a special class of hybrid systems, i.e.,
systems whose dynamics are characterized by a regression vector and a discrete switch-mode.
The regression vector is defined as the collection of past input and output to observations and
the discrete mode depends on a partitioning of the state-input space. Owning to their simple
structure and universal approximation properties, PWARX models are especially applicable
for the approximation of nonlinear systems. In the following, the formulation of the PWARX
system is introduced and the limitations of the existing identification methods for PWARX
systems are stated based on the literature review.

2.1.1. PWARX Systems
The PWARX model belongs to the class of discrete-time models in input-output form, which
map inputs u ∈ Rnu to outputs y ∈ R. They consist of a collection of ARX models that
operate on the same regressor vector. The regressor vector, which constitutes the continuous
state of the system, is defined as the collection of previous input and output observations,
i.e.,

xk = [yk−1 . . . yk−na uT
k−1 . . . uT

k−nb
]T, (2.1)

where uk and yk are the input vector and output vector at time k, respectively. na and nb
are the system orders, and therefore, x ∈ Rnx with nx = na + nunb.
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Following the definition of regression vector, the PWARX model is defined as follows

yk =



θT
1

xk
1

+ ek if xk ∈ X1,

... ... k = 1, 2, . . . ,N .

θT
s

xk
1

+ ek if xk ∈ Xs,

(2.2)

where ek ∈ R is the noise at time k and {θi}si=1 are the parameter vectors that define
the constituent submodels of model (2.2). s ∈ N+ is the number of submodels. For the
convenience, we denote ϕk = [xT

k 1]T as the extended regression vector at time k.
As aforementioned, the switching is state-depended, i.e., the current state vector stays in

which polyhedron determines which subsystem is activated now. Therefore, the bounded
polyhedron Xi with i = 1, . . . , s in equation (2.2) is the partition of the i-th submodel and
is defined as

Xi = {xk ∈ Rnx | Hi · ϕk �[i] 0}, (2.3)
where Hi ∈ Rµi×(nx+1) is the hyperplane matrix, i.e.,

Hi =
[
h>1,i . . . h>µi,i

]
, (2.4)

and µi ∈ N+ is the number of hyperplanes that bound the corresponding partition. In the
equation (2.3), �[i] indicates a list of µi operators ≤ and < to decide which hyperplanes of
Hi belong to Xi. Note that the discrimination between ≤ and < in the operator vector �[i]
is necessary to obtain a complete partition of the state space without overlapping partitions,
i.e., there hold Xi

⋂Xj = ∅, ∀i 6= j and X = ⋃s
i=1Xi.

2.1.2. Problem Formulation and State of the Art Limitations
After introducing the PWARX system, we are now going to formulate the identification
problem and present an overview of existing identification approaches. The most general
problem formulation for the PWARX system identification reads as follows:

Problem 1 (Identification of PWARX Systems). Given the system orders na and nb of
a PWARX model and a set of N data points D = {(xk, yk)}Nk=1 generated therefrom, estimate
the number of submodels s, the parameter vectors {θi}si=1, and polyhedral partitions {Xi}si=1.

According to the definition of PWARX systems and Problem 1, the identification of
PWARX model incorporates the estimation of both parameters of each submodel and their
polyhedral partitions. To the best of our knowledge, the state-of-art identification approaches
follow a general procedure with two stages, i.e., i) identifying the parameters of each affine
submodel and ii) estimating polyhedral partitions of the input-state space [37–41]. For the
first stage, tremendous methods have been presented in previous works to identify the pa-
rameters of each affine submodel. In [40], the parameters of each submodel are computed
through a clustering technique based on k-means. Meanwhile, the confidence of each sample
is introduced and exploited in order to improve the performance of the technique. A similar
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algorithm proposed by [39] accomplishes the parameter estimation via employing a clustering
method based on a Gaussian mixture model. By introducing kernel function-based weighted
least squares (WLS), a recursive identification algorithm is developed in [38] for parameter
identification. Conditions on the input signal and the PWARX system are imposed to guar-
antee the almost sure convergence of the WLS estimates. In [37], a convex framework based
on `1-regularization is proposed to accomplish the identification of submodel parameters.
However, unlike the first stage, the SVM algorithm is dominantly employed to estimate the
partitions of submodels in the papers mentioned above [37–41]. The reason is that the SVM
algorithm is capable of estimating the hyperplanes precisely. Even though the SVM algo-
rithm is effective and well-performed regarding the identification tasks, it can be numerically
inefficient. In SVM algorithm, all the data points are required to be labeled and classified
before estimating the polyhedral partitions in these algorithms, which is generally expensive
and time-consuming, especially for large data sets [24]. Besides, computing feasible parti-
tions through the SVM algorithm may suffer high computational complexity [42] in this case.
Taking into consideration these limitations of the SVM algorithm, recent literature propose
various extensions [46–48], which, however, have not been applied in the PWA identification.
Instead, the authors in [49] propose a linear multi-category discrimination method which is
numerically efficient in the partitioning stage. This method, nonetheless, results in low ac-
curacy while dealing with small training sets due to adopting the average stochastic gradient
descent. Moreover, the large quantity of coefficients that required to be assigned and tuned
in priority is also a drawback.

Another challenge in the PWARX identification is to specify a proper number of affine
submodels to guarantee the overall accuracy. The trade-off between accuracy, generalization,
and model complexity is necessary to be taken into account. As depicted in Problem 1, it is a
challenge to identify all these parameters simultaneously with only the set of N data points.
Therefore, the majority of the methods in the literature assume some quantities to be known
in advance, particularly the number of subsystems [18,39,40]. However, it is obvious that the
assumption of knowing the subsystem number is a critical limitation for the identification
approaches. In the last decades, most works of PWARX system identification abandon this
assumption and frontally tackle this problem. A fuzzy clustering validation-based algorithm
was proposed in [50] to obtain the optimal submodel number. In [49], the optimal number
is chosen by means of cross-validation, and the number of submodels corresponding to the
largest best fit rate (BFR) is set to be the optimum. Specifically, the BFR is introduced as
an index to assess model quality. In these methods, an algorithm to determine the optimal
number of submodels needs to be specifically designed and implemented ahead of identifica-
tion. As an alternative, the paper [51] tackles this issue by observing the distribution of the
data points and fixing the number manually, which is subjective and inapplicable for general
identification problems.

In summary, the assumption of knowing the number of subsystems in advance can be the
major limitation of most existing approaches. Furthermore, the state-of-art identification
approaches for PWARX systems lack the novelty in the polyhedral partition estimation
process. The traditional linear discrimination methods are directly employed after gaining
the parameters of the subsystem, especially the SVM algorithm. Whereas, the traditional
SVM algorithm is expensive and time-consuming while dealing with a large data set. The
motivation of proposing our identification approach is to overcome these limitations.
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2.2. The Identification Approach
The identification approach consists of the cluster-based algorithm and the self-training SVM
algorithm. The initial conditions are acquired by implementing the cluster-based algorithm.
Then, the modified self-training SVM algorithm estimates the submodel parameters and
polyhedral partitions via the initial conditions. In addition, the coefficients that are required
to be tuned are discussed in the section as well. The overview of the approach is illustrated
through the following block diagram.
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Figure 2.1.: The overview of the proposed approach. The green and blue blocks indicate the
cluster-based algorithm and modified self-training SVM algorithm, respectively.

2.2.1. Cluster-based Algorithm
The cluster-based algorithm aims at obtaining the number of submodels, the initial labeled
data set, and the initial parameters. It provides a method for initialization and is generally
applicable in other identification approaches for PWA systems that require initialization as
well, e.g., Bayesian-based methods, clustering-based methods [26]. In the algorithm, we
introduce two original concepts: local cluster and sub local cluster for splitting the data set
into clusters. Based on these concepts, two cost functions are designed to accomplish the
task. Particularly, one of them is utilized to estimate the number of submodels.
Before presenting the cluster-based algorithm, it is necessary to introduce the concept of

local cluster.

Definition 1 (Local Cluster). A local cluster L of a center (xc, yc) ∈ D is built by collecting
the data points (xk, yk) in the hypersphere of radius δ. i.e.,

{(xk, yk) | d(xc,xk) < δ,∀(xk, yk) ∈ D} (2.5)

Moreover, an LC is said to be pure, if it only possesses data points belonging to the same
submodel. Otherwise, it is said to be a mixed LC.

Definition 1 is inspired by [40] where a similar concept, local data set, is introduced to select
a fixed number of data points based on Euclidean norm. In this article, as an alternative, we
adopt the standardized Euclidean distance in the definition of LC due to its advantages in
obtaining pure LCs. This advantage is revealed through an illustrative example in Section
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2.2 The Identification Approach

2.3. Meanwhile, Definition 1 indicates that the LCs are composed of the neighboring points.
This characteristic is also beneficial to obtain pure LCs according to the formulation of the
PWARX model.
Note that the LCs are extracted from the data set D iteratively and we denote the n-th

LCs as Ln. Additionally, we denote each LC as Ln = {(x̌i, y̌i)}cn
i=1 where cn is the number

of data points in corresponding LC. At each iteration, an LC is extracted with respect to
a randomly selected center and fixed radius δ. Hence, the data set D is updated as D \ Ln
from which we extract the next LC. This process terminates until D = ∅. Clearly, the LCs
satisfy ⋃Ln = D and Ln

⋂Lm = ∅, ∀n 6= m. As the process is terminated, the data points
from D are allocated into a group of LCs.
Clearly, the target of proposing the local cluster is to separate the data set into small

subsets such that there are pure LCs for the next stage. Therefore, it is easy to find out that
the LC can also be defined based on the number of data points in a cluster instead of the
radius of a cluster, which is adopted in [40]. However, to obtain the LCs whose definition
is based on the number of data points, the sort of the distance between the center and
other points is necessary. Consider that the LCs are extracted from the data set in sequence
until the data set is empty, we choose Definition 1 for easier implementation. Naturally, the
easy implementation also pay the price, i.e., the choice of the radius δ. In Section 2.2.3,
we discuss the choice of δ and illustrate the relationship between the performance of the
proposed approach and the value of δ in the simulation (Section 2.3).
After the extraction process is terminated, a group of LCs is obtained. To acquire the

initial labeled data set from the group, the concept of a set of sub local clusters (sub LCs) is
introduced as follows.

Definition 2 (Sub LCs). A set of sub LCs are s pure LCs with respect to each submodel
in the PWARX model (2.2), i.e.,

{L̂i|L̂i ⊆ Xi, i = 1, 2, . . . , s}. (2.6)

The set of sub LCs plays a fundamental role in the overall identification approach. It is
assigned to be the initial labeled data set based on which the modified self-training SVM
algorithm can be implemented. Thus the value of δ is required to be properly selected such
that a set of sub LCs does exist. Detailed discussion on the choice of δ is presented in Section
2.2.3. Note that there could exist several sets of sub LCs and the pure LCs in one set of sub
LCs may not be unique. In the cluster-based algorithm, we do not aim at selecting all sets
of sub LCs but focus on extracting any one of them. To this end, we design the following
cost function to extract a set of sub LCs.

J(Ln) = R(Ln) + αS(Ln). (2.7)

In cost function (2.7), R(Ln) is the residual component designed to distinguish the pure LCs.
Meanwhile, S(Ln) is presented as the similarity component for discriminating pure LCs from
different submodels to comprise a set of sub LCs. α is the regularization coefficient to adjust
the weights of the two components.
By the cost function (2.7), we can discriminate a set of sub LCs from Ln by solving the

optimization problem min J(Ln) iteratively. At each iteration, every J(Ln) is calculated and
the minimum value corresponds to one element of a set of sub LC. Note that the results hold
true only when the iteration time is less or equal to s. Now, we introduce the components
of J(Ln) in detail.
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2 Offline Identification of PWARX systems

Residual Component R(Ln)

In cost function (2.7), the residual component R(Ln) for distinguishing pure LCs is given by

R(Ln) = ||Yn − Φnθ̌n||∞ (2.8)

where
θ̌n = (ΦT

nΦn)−1ΦT
nYn,

Φn =

x̌1 x̌2 . . . x̌cn

1 1 . . . 1


T

, Yn = [y̌1 y̌2 . . . y̌cn ]T.
(2.9)

Here, the cost function stands for the infinity norm of residuals for each data point in Ln.
We elaborate the meaning of R(Ln) from the perspective of outliers. An outlier in a set of
data is defined to be an observation that appears to be inconsistent with the remainder of
that set of data [52]. Clearly, the data points in pure LC is generated by a linear model
without outliers. Conversely, the mixed LC is a data set with some outliers, which are the
data points from other submodels. Therefore, the residual used to detect outliers [52] can
be imposed to distinguish pure LCs.
If a linear regression model is built with a data set without outliers, the residuals are

assumed to have a normal distribution with a mean 0 [53]. Apparently, an LC is more likely
to be pure if every residual has an absolute value closer to 0. Accordingly, we build a linear
regression model for every LC and compute the corresponding value of R(Ln). If there is
no existence of outliers in an LC, the corresponding R(Ln) is close to 0. Any outlier in an
LC causes a greater value of R(Ln). Therefore, the cost function R(Ln) can be utilized as a
criterion to distinguish pure LCs.

Similarity Component S(Ln)

The similarity component S(Ln) is designed as follows to discriminate pure LCs from different
submodels.

S(Ln) =


0 if ĉ = 0,

1− tanh( min
i=1,...,ĉ

(||θ̌n − θ̂i||2)) if ĉ > 0,
(2.10)

where ĉ and θ̂i are the number of discriminated sub LCs and their corresponding parameter,
respectively. Clearly, S(Ln) is updated with respect to ĉ. While discriminating the first
sub LC (ĉ = 0), S(Ln) is dropped from the cost function J due to the fact that the first
extracted pure LC must be a sub LC. Throughout the later procedure, S(Ln) is activated
to obtain the rest members of a set of sub LCs. At each iteration, if one Ln and either of
sub LC from {L̂i}ĉi=1 are from identical submodel, the corresponding S(Ln) value is close to
1. On the contrary, one Ln will correspond to a small S(Ln) if this LC is from a distinct
submodel with any sub LCs in {L̂i}ĉi=1. Consequently, we can employ S(Ln) as a criterion
to discriminate LCs from different submodels. Note that the scale of the parameters can
be disparate in different local clusters. Thus tanh is adopted to normalize and re-scale the
discrepancies. Moreover, the adoption of tanh ensures the cost function to be non-negative.
The following figure shows the roles of the cost function terms in the selection of a set of
sub LC intuitively.
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2.2 The Identification Approach

Figure 2.2.: The roles of the R(Ln) and S(Ln) in the extraction of a set of sub LCs. The first
sub LC L̂1 has been extracted. The term R(Ln) distinguishes the pure LCs and
the term S(Ln) discriminates that these pure LCs are from different submodels.

It is worth noticing that the residual component R(Ln) of each LC is invariant at each
iteration during the selection of sub LCs. It follows that the value of R(Ln) is only related
to the structure of each LC. Therefore, we can compute R(Ln) of each LC in advance and
only update J(Ln) with new S(Ln) at each iteration.

Remark 1. In the cluster-based algorithm, the center of each LC, i.e., (xn, yn), is selected
randomly from the data set D. Although the choice of (xn, yn) affects the number of mixed
and pure local clusters, the approach will still be well-performed as long as there exists at
least one set of sub LCs in all local clusters. Even if all LCs are mixed due to the unfortunate
choices of (xn, yn), we can avoid this situation effortlessly by adjusting ρ of LCs. Therefore,
the random choices of (xn, yn) do not lead to poor performance of the proposed approach.

Apart from the sub LCs, the number of the submodels s can be obtained by recording the
value of min J(Ln) at each iteration. We denote the value of min J(Ln) at the j-th iteration
as Ji. Considering the case when a set of s sub LCs has been obtained after the s-th iteration.
If we continue to solve the minimization problem, the value of Js+1 increases immediately.
No matter the (s+ 1)-th LC is either a mixed one or from a repetitive submodel, leading to
an abrupt increment of R(Ln) or S(Ln). Then, the cost function value of later LC fluctuates
in a relatively high value. Thus, the submodel number can be estimated with the following
cost function.

s = arg min
i=2,...,m−1

(var(J1, . . . , Ji−1) + var(Ji+1, . . . Jm)) (2.11)

where m is the iteration times and assigned as the upper bound of the number of submodels.
The upper bound is given in advance and limits the number of submodels for the identifi-
cation. A higher number of submodels s results in a more accurate description of the PWA
model. However, this may cause poor generalization to the data not used in the identifica-
tion phase and increase the computational burden of the proposed algorithm. Therefore, we
impose an upper bound m and estimate the optimal submodel number inside the boundary.
Following the estimation of s, a set of sub LCs L̂i and the corresponding parameter θ̂i

are picked up. Later, we assign the label `i to every data points in L̂i for i = 1 . . . s.
Consequently, the initial labeled data set is obtained by assembling the labelled sub LCs. It
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2 Offline Identification of PWARX systems

is denoted as Dl = {(xk, `k)}n̂k=1 where xk = [xT
k yk]T and n̂ is the number of labeled data

points.
To conclude, the number of submodels s, the initial parameters {θ̂i}si=1, and the initial

labeled data set Dl are procured through the cluster-based algorithm. The algorithm is
summarized in Algorithm 1.

Algorithm 1 Cluster-based algorithm
Input:

Data set D = {(xk, yk)}Nk=1, radius of LCs δ, upper bound m
Output:

Number of submodels s, initial labeled data set Dl and initial parameters {θ̂i}si=1
1: Set n = 1, ĉ = 0
2: repeat
3: Select a data point randomly from D and denoted as (xn, yn)
4: Build Ln by Definition 1.
5: D ← D \ Ln
6: n← n+ 1
7: until D = ∅
8: Calculate the parameter θ̌n of each Ln with the equation (2.9)
9: Calculate R(Ln) of each Ln with the equation (2.8)

10: for i = 1 to m do
11: Calculate S(Ln) of each Ln with the equation (2.10)
12: Calculate J(Ln) of each Ln with the equation (2.7)
13: p← arg min

n
J(Ln)

14: Ji ← J(Lp), L̂i ← Lp, θ̂i ← θ̌p, ĉ← i

15: Update S(Ln) with θ̂i and ĉ
16: end for
17: Calculate the number of submodels s with the equation (2.11)
18: Assign labels `1 . . . `s to every data points in L̂1 . . . L̂s and compose the labeled data set
Dl

19: return s, Dl, {θ̂i}si=1

2.2.2. Modified Self-Training SVM Algorithm
Armed with initial conditions obtained by the cluster-based algorithm, the modified self-
training SVM algorithm is introduced to estimate the parameters of submodels and corre-
sponding the polyhedral partitions. By imposing a customized selection strategy, the modi-
fied self-training SVM algorithm is capable of estimating the polyhedral partitions precisely
with partially-labeled data set. Moreover, the computational complexity of the modified
self-training SVM algorithm is analyzed and compared with the traditional SVM algorithm
to justify its lower computational complexity.
The modified self-training SVM algorithm is described in Algorithm 2. The initial training

set DT is a collection of the center corresponding to every sub LC in Dl. At each iteration,
the classifiers are trained with DT . Note that the kernel of the SVM for training is linear
due to the definition of the polyhedral partition. Then DT and Dl are updated and {θ̂i}si=1

18



2.2 The Identification Approach

are re-calculated with the updated Dl. With the iterative procedures, the trained classifiers
gradually converge to the optimal hyperplanes and the criterion for terminating the iteration
is designed as follows. For a given tolerance ρ, if there holds

max
i=1,2,...,q

(
f(w(j)

i , ξ(j)
i )− f(w(j−1)

i , ξ(j−1)
i )

)
< ρ, (2.12)

where

f(wi, ξi) =
1
2||wi||

2 + C
#DT∑
k=1

ξk,i, (2.13)

then the iteration is terminated. In the equation (2.12), j, q and C indicates the index of
iteration, the number of classifiers, and the penalty parameters, respectively. ξk,i implies the
linear penalty ξ of every sample in DT w.r.t the classifier (wi, bi). Note that the termination
condition is built on Theorem 1 that is proved to be true. Afterwards, the classifiers are
trained for nre times without discarding process (Step 19), where nre is assigned to a small
scalar by users.
In Algorithm 2, we design the strategy to update the training set based on the fact that

only the SVs contribute to the optimal hyperplane. Consequently, data points that are not
SVs could be eliminated without affecting the trained hyperplanes. To sum up, for a data set
D, the same optimal hyperplanes can be obtained with a small training set DT as long as the
SVs of D are involved in DT . In other words, Algorithm 2 converges to optimal hyperplanes
in this circumstance. Therefore, our update strategy is designed to collect the samples which
are more likely to be SVs into DT . The update strategy is composed of the union process
and discard process.
As pointed out in Appendix A, the geometric margins between SVs and the classifiers of
D are smaller than any other samples in D. Thus, the data points whose geometric margin
corresponding to either classifier is the minimum are collected asM in Algorithm 2. Note
that these data points are selected from D \DT . Clearly, the data points collected based on
the equation (2.14) is more likely to be the SVs of D.
The design of the update strategy also improves the convergence speed of Algorithm 2.

According to the proof of Theorem 1, the data points fromM formulate the new constraints
in the optimization problem of SVM algorithm. Note that the trained classifiers remain
constant if the new constraints have been fulfilled. Clearly, this situation happens when
all data points in M are correctly classified and their geometric margins w.r.t the current
classifiers are greater than 1. Therefore, the update strategy based on minimum geometric
margins ensures that the classifiers do not remain constant at each iteration in the early
stage. In summary, by avoiding the classifiers from being constant, the update strategy
improves the convergence rate of the proposed algorithm.
The update strategy of DT also includes the procedure of discarding samples fromDT . The

non-SVs of DT are discarded after training the classifiers at each iteration. This procedure is
designed to increase the computational efficiency of the algorithm. Moreover, the discarding
procedure will not affect the convergence of the modified self-training algorithm, which is
described in the appendix.
In the modified self-training SVM algorithm, the parameters of submodels are updated

with the labeled data set Dl instead of using the training set DT at each iteration. The
reason is the parameters calculated with more samples are more plausible in the regression
analysis. Compare to the training set, the labeled data set is updated without the procedure
of discarding and contains more samples for computing the parameters.
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2 Offline Identification of PWARX systems

Algorithm 2 Modified self-training SVM algorithm
Input: Initial labeled data set Dl, initial parameters {θ̂i}si=1, tolerance ρ, Penalty coefficient

C.
Output: Hyperplanes group G and estimated submodel parameters {θi}si=1

1: Let j = 0
2: Extract initial training set DT from Dl
3: repeat
4: Train a classifier group G(j) = {(w(j)

i , b(j)
i )}qi=1 with training data set DT

5: Let DT ← DSVT
6: Let

M =
q⋃
i=1

arg min
x∈D\DT

γ(w(j)
i , b(j)

i , x) (2.14)

7: DenoteM = {(x′k, y′k)}
q
k=1

8: for k = 1 to q do
9: Let

n = arg min
i=1,...,s

||y′k − θ̂ix′k|| (2.15)

10: `′k ← `n
11: end for
12: DenoteM` = {(x′k, `′k)}

q
k=1 where x′k = [x′Tk y′k]T

13: DT ← DSVT ∪M`, Dl ← Dl ∪M`

14: Recomputed {θ̂i}si=1 with Dl and the equation (2.9)
15: j ← j + 1
16: until max

i=1,2,...,q

(
f(w(j)

i , ξ(j)
i )− f(w(j−1)

i , ξ(j−1)
i )

)
< ρ

17: for j to j + nre do
18: Step 4 and Step 6-18
19: end for
20: G = {(w(j)

i , b(j)
i )}qi=1, {θi}si=1 = {θ̂i}si=1

21: return Hyperplane group G and estimated submodel parameters {θi}si=1

For the termination condition (2.12), the employment of f(wi, ξi) is based on the following
theorem which is inspired by [54].
Theorem 1. For f(wi, ξi) defined in (2.13), we have

f(w(j)
i , ξ(j)

i ) ≥ f(w(j−1)
i , ξ(j−1)

i ) (2.16)

The proof of the theorem is as follows:

Proof. According to the modified self-training SVM Algorithm, we assume (w(1), b(1)) is the
classifier at the first iteration, which is the solution of the optimization problem with initial
training data set DT .

min 1
2 ||w

(1)||2 + C
N1∑
k=1

ξk

s.t. `k((w(1))Txk + b(1)) ≥ 1− ξk, k = 1, · · · ,N1

(2.17)
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where N1 is the number of data points in DT , xk is the data point, `k is the corresponding
label. The label `k of each data point remains constant over the iterations.
Clearly, the solution of the optimization problem (2.17) is identical to the solution of the

following problem based on the property of support vectors.

min 1
2 ||w

(1)||2 + C
Nsv∑
k=1

ξk

s.t. `svk ((w(1))Txsvk + b(1)) ≥ 1− ξk, k = 1, · · · ,Nsv

(2.18)

where Nsv is the number of support vectors in DT , xsvk is one support vector of DT , `svk is
the corresponding label.
For the second iteration of Algorithm 2, the updated training data set DT is composed of

support vectors xsvk and the data points fromM. We can find that (w(2), b(2)) is the solution
of the following optimization problem.

min 1
2 ||w

(2)||2 + C
Nsv∑
k=1

ξk + C
q∑
i=1

ξi

s.t. `svk ((w(2))Txsvk + b(2)) ≥ 1− ξk, k = 1, · · · ,Nsv

`′i((w(2))Tx′i + b(2)) ≥ 1− ξi, i = 1, · · · , q

(2.19)

where (x′k, `′k) is the sample of M. The classifier is trained with the updated DT . From
the equations (2.18) and (2.19), (w(2), ξ(2), b(2)) is a feasible solution of the equation (2.17).
Since (w(1), ξ(1), b(1)) is an optimal solution of the equation (2.17), we have

f(w(1), ξ(1)) ≤ f(w(2), ξ(2)) (2.20)

where
f(w, ξ) =

1
2||w||

2 + C
N∑
k=1

ξk. (2.21)

It yields that
f(w(j−1), ξ(j−1)) ≤ f(w(j), ξ(j)). (2.22)

For a given labeled data set D, the value of f(w, ξ) trained with the modified self-training
SVM is bounded. The maximum value of f is obtained while (w∗, ξ∗, b∗) is the solution of

min 1
2 ||w

∗||2,

s.t. `k(w∗Txk + b∗) ≥ 1− ξ∗k, k = 1, · · · ,N ,
(2.23)

where (xk, `k) are the data points of D. Thus 1
2 ||w

(j)||2 of the modified self-training SVM is
convergent and monotonically non-decreasing over the iterations.

Clearly, the proof implies the suitability of adopting the f(wi, ξi) as the stopping criterion
and also analyzes the convergence of the modified self-training SVM algorithm. In addition,
the stop ping criterion also indicates that the choice of ρ influences the efficiency and per-
formance of our algorithm, which is presented in Section 2.2.3. It is worth noticing that the
termination criterion f(wi, ξi) may converge to a local minimum by Theorem 1. The update
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2 Offline Identification of PWARX systems

strategy only guarantees that the criterion will not converge to a local minimum in the early
stage. Consequently, we design the retraining step (step 19) in the algorithm to avoid local
minimum.
Compared with the traditional self-training SVM, the proposed modified self-training SVM

designs a novel selection strategy for collecting the unlabeled data points. In our algorithm,
the unlabeled data which are collected to augment the training set are corresponding to the
minimum geometric margin instead of the highest confidence. Moreover, the predicted labels
are determined by the estimated parameter of submodels in our algorithm rather than the
classifiers trained at the last iteration in the original self-training. Clearly, the predicted
labels in our algorithm are more plausible in the PWA system identification. Thus, the
proposed modified self-training SVM is specifically designed for PWA identification and
adopts the features of PWA systems sufficiently.
In summary, the estimated hyperplanes {(w(j)

i , b(j)
i )}qi=1 and the estimated submodel pa-

rameters {θi}si=1 can be computed with the Algorithm 2 . Thus the identification of PWARX
system described in Problem 1 is achieved by implementing the proposed cluster-based al-
gorithm and modified self-training SVM algorithm.

Remark 2. The modified self-training SVM algorithm is designed for linear separable and
inseparable cases by adjusting the penalty parameter C. The submodel of PWA systems is
generally linear separable as stated in the identification task. Therefore, we generally choose
a relatively large value of C in the algorithm corresponding to assigning a higher penalty to
errors [55].

Remark 3. The modified self-training SVM algorithm includes calculating the geometric
margins, computing submodel parameters with Dl, and training the classifiers with DT at
each iteration. The computational complexity of the algorithm can be calculated as follows.
The complexity of calculating the geometric margins and submodel parameter is O(r ·

N) + O(r ·NDl
), where r is the number of iteration, N is the number of samples in D, NDl

is the number of samples in Dl. The complexity of the SVM training is O ([r(nsv + s)]3),
where nsv is the number of support vectors at each iteration, s is the number of submodels.
Therefore, the total computational complexity of modified self-training SVM is

O(r ·N) +O(r ·NDl
) +O

(
[r(nsv + s)]3

)
(2.24)

Above complexity grows linearly with respect to the number of iterations r. The number of
iteration r � N in the algorithm. The scale of r is presented in Section 2.3. Moreover, the
other coefficients in the (2.24) also fulfill nsv, s,NDl

� N as well. Therefore, it is obvious
that (2.24) is much smaller than the computational complexity of a normal SVM O(N3).

2.2.3. Tuning the Coefficients δ, ρ, and α

In Definition 1, δ is given in advance to define LC. Consider the LC extraction procedure in
cluster-based algorithm, a lower δ implies more LCs and further, more pure LCs. However,
when the noise level is not negligible, a lower δ implies fewer data points in the regression
leading to poor initial parameter estimation. This causes inaccuracy in the identification
procedure. On the contrary, a higher δ provides more data for regression in every LC and
improves the accuracy of parameters estimations. Whereas, a higher δ denotes fewer pure
LCs and fewer number of iterations for extracting sub LCs. Therefore, the choice of the
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2.3 Simulation Studies

parameter δ is a trade-off between the number of pure LCs and the accuracy of regression.
Before extracting LCs, the data points are normalized to adjust them to a notionally common
scale. This strategy ensures the selection of δ is not determined by the PWA models. As
a result, it is reasonable to choose a relatively large δ since it increases the credibility of
estimated parameters and reduces the number of iterations as well. The reduction of pure
LCs caused by the choice will not influence the algorithm performance as long as at least
one set of sub LCs still exist. Nevertheless, too large δ that vanishes all the pure LCs is
apparently unacceptable.
The parameter ρ is the terminal condition of our algorithm. Obviously, a smaller ρ leads

to more iterations before converge and brings a higher BFR. However, the rise of f(w, ξ)
is decided by the newly joined samples and not continuous. This characteristics illustrates
there is a lower bound for ρ, The accuracy of the estimation will not getting better after ρ
exceeds the boundary.
Consider the parameter α, which is a regularization coefficient to adjust the weights of

the residual component and the similarity component in the cost function (2.7). Too small
α leads to the situation that the LCs from the same submodels are involved in the set of
sub LCs. Conversely, mixed LCs can be collected into the set of sub LCs while choosing a
too large α. Therefore, When a validation data set is available, a sensible idea would be to
tune α with cross-validation techniques.

2.3. Simulation Studies
In the section, the effectiveness of the proposed approach is validated through three simula-
tions. The first simulation is designed to show the superiority of adopting the standardized
Euclidean distance to define the local cluster. The utility of the proposed approach is demon-
strated through the second simulation. Finally, the performances of the existing approaches
and the proposed approach are contrasted in the third simulation.

2.3.1. Comparison of Local Cluster Definitions
The main challenge of the cluster-based algorithm is to extract sub LCs from the data set.
In the definition, we adopt the standardized Euclidean distance to define LCs instead of the
Euclidean distance mentioned in [40]. Both of the algorithms aim at obtaining LCs but our
algorithm concentrates more on the pure LCs. Utilizing the Euclidean distance may cause
no existence of pure LCs in some circumstances. To illustrate this drawback, a PWARX
system is given as an instance.

yk =
{

[50 0.2 0.1]ϕk if xk ∈ X1,
[60 0.1 0.3]ϕk if xk ∈ X2,

(2.25)

where ϕk = [xT
k 1]T, xk = [yk−1 uk−1]T and

X1 = {x ∈ R2 : [0 1 0]ϕk < 0},
X2 = {x ∈ R2 : [0 − 1 0]ϕk ≤ 0}.

In this simulation, the input uk is distributed uniformly in the interval [−0.5, 0.5] and the
initial regression vector is x0 = [y0,u0]T = [0, 0]T. The regression vectors generated by the
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2 Offline Identification of PWARX systems

system (2.25) is shown in Figures 2.3 and 2.4, where the data points with the same color
belong to an LC. As is presented in Figure 2.3, all LCs are mixed LCs if the LC is defined with
Euclidean distance which is sensitive to the scaling of vectors. Obviously, this circumstance
makes the cluster-based algorithm infeasible. In contrast, using the standardized Euclidean
distance avoids this drawback by introducing normalization. The LCs defined with standard
Euclidean distance are illustrated in Figure 2.4 and six of them are pure LCs. Clearly, our
definition of LC is more suitable for our algorithm.
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Figure 2.3.: The generated regression vectors (data points) and the hyperplane (blue line)
of the system (2.25), where the LCs (data points with same color) are extracted
by adopting Euclidean distance in the definition.

2.3.2. Identification of PWARX Model

In this section, a series of simulations are conducted to illustrate the effectiveness of the pro-
posed identification approach. We consider the following single-input-single-output (SISO)
PWARX model composed of three submodels, i.e, s = 3, with the orders na = nb = 1.

yk =


[−0.4 1 1.5]ϕk + ek if xk ∈ X1,
[0.5 − 1 − 0.5]ϕk + ek if xk ∈ X2,
[−0.3 0.5 − 1.7]ϕk + ek if xk ∈ X3

(2.26)
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Figure 2.4.: The generated regression vectors (data points) and the hyperplane (blue line)
of the system (2.25). Extracted LCs (data points with same color) by adopting
standard Euclidean distance in the definition.

where ϕk = [xT
k 1]T, xk = [yk−1 uk−1]T and

X1 = {x ∈ R2 :
[

4 −1 10
]
ϕk < 0},

X2 = {x ∈ R2 :

−4 1 −10

5 1 −6

ϕk ≤ 0},

X3 = {x ∈ R2 :
[
−5 −1 6

]
ϕk < 0}.

(2.27)

The PWARX model is typical and widely utilized for simulation in the existing papers
[39, 50, 56, 57]. The input uk is distributed randomly on the interval [−2, 2] with N = 1000.
The output yk of the system is corrupted by an additive normal noise ek ∼ N (0, 0.12). To
qualify the effect of noise, we impose the Signal-to-Noise Ratio (SNR) as follows

SNR = 10 log
∑N
k=1(yk − ek)2∑N

k=1 e
2
k

. (2.28)

By implementing (2.28), the SNR of the noise ek is 25dB in the simulation. Under afore-
mentioned configurations, 1000 data points {(xk, yk)}1000

k=1 conforming to the model (2.26)
are generated and shown in Figure 2.5 in the regression vector space. Then the proposed
identification approach is implemented with the coefficients δ = 0.1, C = 1000, α = 2,
nre = 6, and ρ = 10−3. By running the cluster-based algorithm, the number of submodels
is estimated as s = 3. In addition, a set of sub LCs is extracted, which is shown as stars
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2 Offline Identification of PWARX systems

in Figure 2.5. The set DT for classifier training is also shown as pentagons in the same fig-
ure. Apparently, all the sub LCs in this set satisfy Definition 2. Subsequently, the modified
self-training SVM converges after 24 iterations and only 24.2% data points are classified and
labeled in total. Compared with previous works, our algorithm is capable of estimating the
hyperplanes precisely with a small fraction of labeled data points.
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Figure 2.5.: Regression vectors (red, blue, green) generated by system (2.26), whose color
represents the corresponding submodel. The sub LCs L̂i (pentagon points with
different colors) extracted with cluster-based algorithm and hyperplanes (dashed
red line) trained with initial labeled data set DT .

Based on the results obtained by the cluster-based algorithm, we then show the identifi-
cation performance of the modified self-training SVM algorithm. As is presented in Figure
2.6, the blue and red dashed lines are the estimated and the true hyperplanes, respectively.
In detail, we plot the estimated hyperplanes with respect to the iteration times in Figure
2.7. Note that wi of the hyperplane is a vector which is donated by wi =

[
w1
i w2

i

]T
in the

simulation. In Figure 2.7, the entries of each hyperplane are plotted with different colors and
styles. As is illustrated in Figure 2.7, the estimated hyperplanes converge to the true hyper-
planes

[
−4 1 −10

]T
and

[
5 1 −6

]T
after 24 iterations. Apart from the hyperplanes, as

is presented in Table 2.1, the estimated parameters of each submodel are close to the true
ones. Thus the simulation results indicates the submodel parameters and hyperplanes are
well-estimated. In addition, the proposed algorithm is more efficient than traditional SVM
since less data points are employed.
We evaluate the performance of the proposed approach by the best fit rate (BFR) [58]

26



2.3 Simulation Studies

�� �� � � �
yk− 1

��

��

�

�

�

u
k
−
1

Figure 2.6.: Regression vectors (red, blue, green) generated by system (2.26), whose color
represents the corresponding submodel. The true hyperplanes (blue dashed line)
and the estimated hyperplanes (red dashed line) of system (2.26).
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Figure 2.7.: The hyperplanes (w1, b1) and (w2, b2) with respect to the iteration times while
implementing Algorithm 2. The red lines are the values of w1

1, w2
1, b1 (dash-

dotted line, dashed line, and solid line), respectively. The blue lines are the value
of w1

2, w2
2, and b2 (dash-dotted line, dashed line, and solid line), respectively.
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2 Offline Identification of PWARX systems

Table 2.1.: True (θi) and estimated (θ̂i) parameter vectors in the simulation

θ1 θ̂1 θ2 θ̂2 θ3 θ̂3

-0.4 -0.3890 0.5 0.5036 -0.3 -0.2816

1 0.9711 -1 -1.0102 0.5 0.4945

1.5 1.5801 -0.5 -0.4766 -1.7 -1.7084

which is defined as follows

BFR = max
{

1− ||y − ŷ||
||y − ȳ1)|| , 0

}
× 100%, (2.29)

where y ∈ RN is the true output sequence, ŷ ∈ RN is the estimated output sequence.
Additionally, ȳ ∈ R is the mean of the true output sequence and 1 is an all-ones vector with
suitable dimension.
A validation data set containing 200 data points is generated in the same conditions as

(2.26). Figure 2.8 depicts the true output y and the estimated output ŷ, as well as their error
y − ŷ. For the sake of vision, 100 data points are plotted. The BFR value of the estimated
PWARX system is 92.289%. The value implies the accuracy of the proposed approach is
quite satisfying.
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Figure 2.8.: System output y (blue line) and estimated output ŷ (red line) of the validation
data set, as well as their error y − ŷ.

The total amount of training data NT and the number of iterations r are crucial factors
to evaluate the computational complexity of our algorithm.The total amount of training
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data is calculated by summing the cardinality of DT at each iteration. Therefore, we record
them with different ρ, N and PWA model (from [56] and [40]) in Table 2.2. The percentage
of NT/N is around 20% while N = 1000. The percentage is getting much smaller with
respect to the increment of N . While N = 50000, the percentage is around 4%. The result
shows that fewer points are used in the training process compared with traditional SVM.
Therefore, the modified self-training SVM is more efficient than traditional SVM, especially
for large data set. The scale of iteration times of two different PWA models are similar
to each other, showing the efficiency of modified self-training is not highly related to the
PWA model type. According to our simulations, the convergent speed is related to the
choice of ρ. Generally, the algorithm convergence very fast (in 40 iterations). In addition, a
smaller tolerance ρ requires more iterations to converge. The values of BFR are around 90%
in various conditions, showing a satisfying performance of our algorithm even for a small
training set.

Table 2.2.: Number of iterations, total amount of training samples and BFR of modified
self-training SVM in various conditions

N
PWA model I [56] PWA model II [40]

ρ = 10−2 ρ = 10−3 ρ = 10−2 ρ = 10−3

1000 r = 16 r = 26 r = 18 r = 27

NT = 193 NT = 242 NT = 215 NT = 287

10000 r = 41 r = 45 r = 38 r = 47

NT = 607 NT = 679 NT = 581 NT = 712

50000 r = 58 r = 64 r = 52 r = 61

NT = 1372 NT = 1907 NT = 1057 NT = 1812

1000 BFR = 88.29% BFR = 92.29% BFR = 89.82% BFR = 89.59%

10000 BFR = 89.04% BFR = 93.86% BFR = 92.02% BFR = 91.33%

50000 BFR = 90.95% BFR = 93.41% BFR = 93.34% BFR = 91.30%

The coefficients δ, ρ and α influence the performance of our algorithm greatly. Therefore,
we analysis the sensitivity of δ, ρ and α with respect to BFR for the PWA system (2.26)
through the same validation set used in Figure 2.8. Figs. 2.9, 2.10, and 2.11 illustrate the
values of BFR with respect to different values of δ, ρ, and α, respectively. Note that, the
BFR rates are relatively high with the coefficient 0.10 ≤ δ ≤ 0.15, indicating a satisfying
performance of our algorithm. For ρ ≤ 10−3, the final estimate is fairly insensitive to the
tolerance. Moreover, a wild range of 1.0 ≤ α ≤ 10.0 is allowed under the condition that the
performance of our algorithm is satisfying.
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Figure 2.9.: BFR with respect to the tuning parameter δ in the PWA system (2.26)
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Figure 2.10.: BFR with respect to tuning parameter ρ in the PWA system (2.26)

2.3.3. Comparison with Previous Works
For comparison, the models simulated in the [49,50] are also identified with our approach by
using the data points generated in the same conditions. In [50], a 3-submodel PWA system
is identified with its algorithm and BFR value is 74.43%. The same regression problem is
solved by our identification algorithm and the BFR equals 90.04%. Moreover, to evaluate
the ability of the proposed approach, we approximate the hybrid dynamic model mentioned
in [49] with the data points generated in same conditions. Likewise, the BFR value computed
with our algorithm is 88.19% whereas 85.19% in [49] and 53.40% in [40] as is listed in Table
2.3. In [49], the hybrid dynamic model is approximated with a PWA system owing 12 local
submodels to obtain the best BFR (85.19%). By using our approach, a 5-submodels PWA
system is established with 88.19% BFR. Therefore, the proposed approach provides a better
quality PWA model with fewer submodels in the approximation of hybrid dynamic model.
The simulation results indicate that the proposed approach provides a good performance

for the PWA system identification, even with a quite low signal/noise ratio. Moreover,
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Figure 2.11.: BFR with respect to tuning parameter α in the PWA system (2.26)

Table 2.3.: Comparison of BFR values between the proposed approach and other recent
works

Approaches hybrid dynamic model [49]

Proposed approach 88.37%

Breschi [49] 85.19%

Ferrari-Trecate [40] 53.40%

fewer data points are required to be labeled and used for training by using the modified
self-training algorithm. The total numbers of training samples in various conditions are
listed in the simulation. This advantage increases the efficiency of modified self-training
algorithm compared to the traditional SVM algorithm. Moreover, compared with the very
recent works [49], the simulation results imply that the proposed approach achieves satisfying
performance for the approximation of hybrid dynamic systems. As a matter of fact, our
algorithm approximates the model even preciser with fewer number of submodels.

2.4. Summary
In this chapter, we focus on the identification of a representative hybrid system, PWARX
system. The novel efficient approach designed for the identification of PWARX systems is
presented. The approach consists of the cluster-based algorithm and modified self-training
SVM algorithm. The number of submodels, the parameter of each submodel, and the poly-
hedral partition of each submodel are estimated via the approach.
The cluster-based algorithm is constructed on the local cluster and sub local cluster, which

are defined with the standardized Euclidean distance. The essence of the algorithm is to
search a set of sub LCs which contains the information of every submodel. The procedure
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2 Offline Identification of PWARX systems

is achieved via the designed cost function. The initial labeled data set, initial parameters,
and the number of submodels, are then determined from the extracted set of sub LCs.
Subsequently, the modified self-training SVM algorithm is designed to identify the polyhedral
partitions by regarding the initial labeled data set, initial parameters, and the number of
submodels as prerequisites. In the modified self-training SVM algorithm, the hyperplanes
are updated with the labeled training set, which is initially extracted from the initial labeled
data set and enlarged in every iteration. The support vectors and the unlabeled data points
are two key elements of the proposed strategy to enlarge the labeled training set. The
parameter of each subsystem is also updated with the enlarged labeled data set. Through
the iterations, the hyperplanes and the parameters converge to the true values, whose proof is
demonstrated in the chapter. We also analyze the computational complexity of the modified
self-training SVM algorithm and compare it with the traditional SVM to justify the profit
of our algorithm.
Following the description of the proposed method, we do a series of simulations to provide

an intuitive expression of our method. The first simulation shows the superiority of adopting
the standardized Euclidean distance to define the local cluster. The effectiveness of the
proposed approach is illustrated through the second simulation. Finally, the performances
of the existing approaches and the proposed approach are contrasted in the third simulation.
Through the analysis of the computational complexity and the simulation, it is obvious

that the proposed approach is computationally efficient for the estimation of the polyhedral
partition. In addition, our method is capable of accomplishing the estimation of the polyhe-
dral partition with partially-labeled data set. However, the proposed approach also suffers
a minor drawback: Several parameters, e.g., δ, ρ, and α, are required to be tuned. The
choice of these parameters may affect the performance of the algorithms. This limitation
can be compensated by incorporating some known knowledge about the system, i.e. fixing
the number of subsystems. Additional benefits of incorporating known knowledge are more
precise estimates and faster convergence.
Future research will be devoted to searching for a more efficient cluster-based algorithm

for initialization. In addition, proposing a novel identification method with fewer or even no
coefficients to be tuned can also be considered as future works.
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Framework for Online Identifica-
tion of Continuous-Time Piece-
wise Affine Systems 3.

In this chapter, we propose an online identification framework for continuous-time PWA sys-
tems in state-space form, with an arbitrary number of subsystems and unknown partitions
or subsystems. The number of subsystems, subsystem parameters, and the corresponding
polyhedral partitions are estimated via the framework. In the framework, the identifica-
tion problem of PWA systems is solved in three stages: a) online active mode recognition,
b) online estimation of the subsystem parameters, c) estimation of polyhedral partitions.
In the first stage, we analyze the discrete-time dynamics of the proposed delay error and
design an online algorithm to recognize the active mode and estimate the number of sub-
systems hinged on the dynamics. According to the recognized active mode, we generalize
the integral concurrent learning identifier to estimate the parameters of each subsystem and
provide its convergence proof. Consider the estimation of polyhedral partitions, the process
is accomplished by minimizing the proposed cost function based on the estimated subsystem
parameters.

3.1. Introduction to PWA Systems and Problem
Formulation

The dynamics of the PWA systems are characterized by a continuous state and a discrete
mode. Specifically, the dynamics of the PWA systems vary from the switching behavior
and the switching dependents on the polyhedral partition that the state vector stays. The
continuous-time PWA system is more superior while describing the intrinsic mechanism of
complex systems. In addition, continuous-time PWA systems provide a better depiction of
the systems in the case of rapidly or irregularly sampled data.

3.1.1. Continuous-Time PWA Systems
The continuous-time PWA system in state-space form is defined as follows

ẋ(t) =



A1x(t) +B1u(t) + f1, if
x(t)
u(t)

 ∈ X1,

... ...

Asx(t) +Bsu(t) + fs, if
x(t)
u(t)

 ∈ Xs,
(3.1)
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where x ∈ Rn, u ∈ Rp are measurable state and input vectors. The PWA system (3.1)
consists of s ∈ N+ subsystems and each of them is characterized by the unknown parameters
Ai ∈ Rn×n, Bi ∈ Rn×p and fi ∈ Rn, respectively. Correspondingly, the state-input space X
is partitioned into s polyhedral partitions. The i-th subsystem is only activated when the
state-input vector stays inside the polyhedral partitions Xi. Each polyhedral partitions Xi
can be represented by a number of µi ∈ N+ hyperplanes with a combined matrix

Hi =


h1,i
...

hµi,i

 , (3.2)

where Hi ∈ Rµi×(n+p+1). Since the partition Xi is the intersection of µi half spaces, the i-th
polyhedral partition is given by

Xi =


x
u

 ∈ Rn+p
∣∣∣∣∣Hi


x

u

1

 �[µi] 0


, (3.3)

where �[µi] stands for a list of operators (< or ≤). Here, the operators need to be selected
appropriately to avoid overlapping partitions and ensure that only one subsystem being
activated once. Therefore, the polyhedron partitions fulfill the conditions X = ⋃s

i=1Xi and
Xi
⋂Xj = ∅, ∀i 6= j.
It is worth noticing that the transformation between the PWA system and the PWARX

system is feasible. The interplay of continuous dynamics and state-based mode switches
in PWA systems and PWARX systems complicates the realization theory of this class of
systems [59, 60]. For every PWARX system, there exists an equivalent PWA state-space
system. There exist, however, some PWA state-space systems that cannot be converted to
the class of PWARX systems. It follows that the class of systems realizable by PWARX
models is a subset of the class of systems realizable by PWA state-space models. Even if the
PWA state-space systems can be transformed into the class of PWARX systems, one known
problem is that the conversion of PWA state-space systems to PWARX systems can result
in a tremendous increase of modes and parameters.

3.1.2. Problem Formulation and State of the Art Limitations
The most general problem formulation for identification of continuous-time PWA systems
can be described as follows:

Problem 2. Given the current and previous measured state vectors x and input vectors
u generated by the PWA system (3.1), derive a recursive (online) algorithm such that the
estimation of the number of subsystems s, the parameters of each subsystem Ai, Bi, fi, and
the polyhedral partition of each subsystem Xi are guaranteed to converge to the true system
parameters.

The identification of PWA systems includes estimating the number of subsystems, pa-
rameters of each affine subsystem together with the corresponding partitions. The main
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challenge that arises here is the coupling between subsystem identification and partition es-
timation. Even provided the measurements of the state and input, it is still difficult to reveal
which subsystem and partition they belong to. Therefore, multifarious methods to tackle
the identification problem of PWA systems have been presented. Overviews of identification
approaches for PWA systems can be referred to in [26,61].
The majority of the identification approaches of PWA systems are based on discrete-time

models in input-output form. For instance, in [37–41], various identification approaches are
presented to deal with the piecewise autoregressive exogenous (PWARX) models. Neverthe-
less, by comparing with the input-output form, the PWA models in the state-space form are
more suitable to describe the intrinsic mechanism of systems so as to design the correspond-
ing control strategies. It is straightforward to identify the PWA models in the state-space
form by converting them into the PWARX models. However, the conversion can lead to a
tremendous increase of modes and parameters [26]. Therefore, some approaches for iden-
tifying the discrete-time PWA models in the state-space form directly have been reported
in [62–64]. Note that the proposed identification approaches in the aforementioned papers
only focus on discrete-time PWA models. However, direct identification of continuous-time
models based on sampled data can outperform the discrete-time models in the case of rapidly
or irregularly sampled data [25]. Therefore, the identification of continuous-time PWA sys-
tems has drawn attention and a series of papers to solve the problem have been published
in the past decade [65,66].
From another perspective, the identification methods for PWA systems can also be cate-

gorized as online and offline. Most of the previous works investigate offline methods which
suffer from high computational costs with an increasing number of measurements and higher
system dimensions. Alternatively, the online or recursive methods are in favor for real-
time applications due to their abilities to handle large amounts of data. Thus, some re-
searchers also propose the online or recursive methods to solve the identification problem of
discrete-time PWA systems [67–69]. In this regard, we focus on the online identification of
continuous-time PWA systems in this paper.
Thanks to the aforementioned advantages, the online identification of continuous-time

PWA models in the state-space form has gradually received considerable attention in recent
years. Very recently, Kersting and Buss proposed a series of online identification methods
for PWA systems [44]. In [44], the identification problem is tackled by generalized adaptive
parameter identifiers and enhanced concurrent learning identifiers independently. Note that
persistence excitation (PE) condition is the preliminary of the convergence of the former
identifiers. The PE condition plays a critical role in system identification and can be de-
scribed as: If the exogenous reference input contains as many spectral lines as the number
of unknown parameters, then the plant states are PE, and the parameter error converges
exponentially to zero [70]. However, the condition on persistent excitation of the input is
restrictive and often infeasible to monitor online [71]. Therefore, the enhanced concurrent
learning identifiers based on the relaxed PE condition are also proposed in [44]. The short-
coming of the enhanced identifiers, nonetheless, is the requirement of the state derivatives.
Generally, the precision of the estimated state derivatives may not be guaranteed. It is also
worth noticing that the premise of the above identification approaches is that the switching
hyperplanes are known a priori. This assumption severely limits the application of the iden-
tifiers since the switching hyperplanes are generally required to be estimated. Meanwhile,
it also transforms the identification problem of PWA systems into several affine systems to
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avoid the coupling challenge. In addition, the paper [43] proposed an online identification
method for PWA systems with unknown subsystems and partitions. The continuous PWA
is recast into max-form representation and estimated online via a designed cost function.
The approach is limited to solely identify the bimodal and trimodal PWA systems.
The concurrent learning technique has been applied widely for the system control and

identification [44, 72–74]. The technique can be summarized as updating the estimated pa-
rameters recursively based on designed updating law until the estimated parameters converge
to the true values. It is firstly introduced in [71] to overcome the limitations in adaptive
systems, which is the assumption on the persistence of excitation. The concurrent learn-
ing technique improves the convergence rates of the estimated parameters and relaxes the
assumption by using the current and past measurements concurrently. Furthermore, con-
current learning is especially promising in the field of switched systems due to providing
a continuous adaptation regardless of which subsystem is activated [44, 73, 74]. Later, a
novel integral concurrent learning method is presented in [75] that circumvents the need for
state derivatives while maintaining parameter convergence properties. Note that the method
in [75] is developed for linear systems instead of switching systems.

3.2. Framework for Online Identification of
Continuous-Time PWA System

The online identification task can be decomposed into three sub-tasks: the switching detec-
tion and active mode estimation, the subsystem identification, and the polyhedral partition
estimation. The algorithms for accomplishing these tasks compose the framework for on-
line identification of PWA system. The overview of the approach is illustrated through the
following block diagram.

Given current and
previous state-input

vectors

Detect the switching
and recognize the

active mode 


Design observers of each
subsystem based on the
recognized active mode 

Update the subsystem
parameters  based on

integral concurrent learning

Obtain the estimated
subsystem parameters

Estimate the
polyhedral partitions 

Figure 3.1.: The overview of the proposed online identification approach. The different color
blocks indicate different stages in the proposed approach.

3.2.1. Switching Detection and Active Mode Recognition
In this section, we propose the algorithm for recognizing which subsystem is activated cur-
rently, i.e., the active mode, in the PWA system. To achieve the objective, it is intuitive to
consider the parameters of each subsystem as the criteria for estimating the active mode.
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However, it’s impractical to acknowledge the parameters of each subsystem directly. There-
fore, the proposed method recognizes the active mode indirectly by imposing delay errors
and analyzing the dynamics of the delay errors while exciting the PWA system with a proper
input signal.
Before presenting the algorithm, we introduce the following assumption and theorem.

Assumption 1. The state matrices of the PWA system (3.1) satisfy

eAi 6= eAj ,∀i 6= j and i, j ∈ {1, 2, . . . s}. (3.4)

The recognition of active mode is quite a challenge under the condition of solely measuring
the previous and current inputs and states. Thus, we present the technical assumption
(Assumption 1) such that different characteristics of each subsystem are provided for active
mode recognition. Moreover, the assumption is feasible while considering the real systems
that can be modeled as PWA, such as wheeled mobile robot (WMR) or hybrid two-tank
system [43,44].
According to the measured previous and current state vectors of the PWA system, we

define the delay error ε(t) ∈ Rn as follows

ε(t) = x(t)− x(t− te), t ≥ te, (3.5)

where te ∈ R+ is the user-defined delay shift. By the definition of error vector, we sample
a group of ε(t) at current and previous time instants to comprise the sampling matrix
Ξ(t) ∈ Rn×N

Ξ(t) = [ε(t), ε(t− ts), . . . , ε(t− (N − 1)ts)], (3.6)
under the condition that t ≥ te + Nts. In the equation, N ∈ N+ is the sampling size and
ts ∈ R+ is the sampling interval. Note that the choice of N , te, and ts are discussed later.
Following the above concepts, the following theorem is asserted to carry out the switching
detection.

Theorem 2. Given a delay shift te, suppose each subsystem of the PWA system is excited
by a periodic input signals whose period T satisfies iT = te, where i ∈ N+. Consider a time
interval [t1, t2], t2 > t1 + Nts + te. If there is no switching occurs within [t1, t2], then there
exists a fixed state-transition matrix Φ satisfying

Ξ(t) = ΦΞ(t− ts), (3.7)

while t ∈ [t1 +Nts + te, t2].

Proof. To prove the theorem, we consider the case when one subsystem is activated. For the
sake of convenience, the subsystem index i is neglected throughout the proof (i.e. Ai , A,
Bi , B or fi , f). For the current time t and t− te, the system dynamics are given by

ẋ(t) = Ax(t) +Bu(t) + f , (3.8)

ẋ(t− te) = Ax(t− te) +Bu(t− te) + f . (3.9)
By the subtraction of equations (3.8) and (3.9), the dynamics of ε(t) is governed by

ε̇(t) = Aε(t) +B (u(t)− u(t− te)) . (3.10)
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Additionally, in light of u(t)− u(t− te) = 0, the equation (3.10) can be rewritten as

ε̇(t) = Aε(t). (3.11)

Clearly, the equation (3.11) is state-space representation of a linear invariant system with
zero input. The solution of (3.11) can be calculated explicitly as follows:

ε(t) = eAtε0, (3.12)

where ε0 ∈ Rn is the first error state vector after the switching occurs, i.e., initial error state
vector. After acquiring the solution of ε(t), the state error ε(t) can be described as follows
by imposing a time interval ts

ε(t) = eAtε0 = eAtseA(t−ts)ε0 = eAtsε(t− ts). (3.13)

Thus, we obtain a series of equations

ε(t) = eAtsε(t− ts),
ε(t− ts) = eAtsε(t− 2ts),

...
ε(t− (N − 1)ts) = eAtsε(t−Nts).

(3.14)

By the definition of Ξ(t), the series of equations can be written in matrix form

Ξ(t) = eAtsΞ(t− ts) = ΦΞ(t− ts), (3.15)

where Φ is the state transition matrix. This leads to the result of Theorem 2.

The main challenge of implementing Theorem 2 for switching detection is how to design
the input signals. Fortunately, the papers [44, 66] have already provided the exemplary
input signals for online identification. In these papers, the input signals are designed as
the sum of different frequencies sinusoidal signals and piecewise constant/ramp signal. The
piecewise constant or ramp signal is designed for switching between different subsystems.
In addition, the sum of different frequencies sinusoidal signals is adopted to excite each
subsystem and fulfill the PE-like condition as well. The PE-like condition guarantees the
converge of estimated parameters. These signals perfectly conform that each subsystem is
excited by a periodic input signal. Therefore, it is easy to design a similar input signal which
meets the requirements of Theorem 2 by adjusting the delay shift te and the frequencies of
sinusoidal signals. Specifically, a typical instance of the input signal for online identification
is presented in Section 3.3.
It is worth noticing that Theorem 2 only aims at switching detection. It is still essential

to recognize the mode of the active subsystem in online identification. Theorem 2 describes
the existence of a fixed state-transition matrix (STM) Φ in the non-switching conditions.
The matrix Φ is also required to be unique such that the estimated Φ can be adopted for the
active mode recognition. Obviously, the uniqueness of Φ is equivalent to the existence of a
full row rank sampling matrix. It follows that all the sampling matrices in a non-switching
time interval are full row rank as long as there exists one full row rank sampling matrix in
the interval according to the equations (3.5) and (3.7). Generally, there always exist a full
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row rank Ξ(t) due to the sampling size N > n and the measurement noises. Nonetheless,
there are still some extreme situations that lead to the row rank-deficient Ξ(t) (noiseless)
or ill-posed Ξ(t) (with noises). In the section 3.2.1, we discuss the extreme situation and
propose a refinement strategy to acquire the unique Φ under the situation. Following the
uniqueness prerequisite, the constant value of estimated Φ only depends on the state matrix
Ai of each subsystem while ts is fixed. In the light of Assumption 1, the constant value of
Φ with respect to different active modes are distinct. Therefore, the steady STM Φ can be
estimated as a criterion to recognize the active mode.
The online recognition of the active mode is accomplished by implementing Algorithm 3.

In the algorithm, the STM Φ(t) is estimated via the iterative Tikhonov method [76,77]. Note
that the estimated STM is denoted by Φ̂(t). In fact, the traditional least square (LS) method
seems also applicable to calculate Φ̂(t) by solely referring to the equation (3.7). However,
the estimation problem is ill-posed with the passage of time while the STM is convergent.
In other words, noises will dominate the sampling matrix Ξ(t) and a small perturbation
of the data may result in large perturbations of the solution [78]. The ill-posed problem
can not be solved by the traditional LS method [76]. Therefore, we employ the iterative
Tikhonov method, which is proposed to tackle the ill-posed problem, in our algorithm. The
iterative Tikhonov method in standard form is summarized as solving the following penalized
minimization problem

min
Φ̂∈Rn×n

||Ξ(t)− Φ̂(t)Ξ(t− ts)||+ α||Φ̂(t)− Φ̂(t− ts)||, (3.16)

where α is a predefined regularized parameter. The value of α determines how sensitive
Φ̂(t) is to the Ξ(t) and how close the solution is to the previous estimated STM Φ̂(t −
ts). The choice of α is important in the iterated Tikhonov method and many strategies
have been proposed in the literature [79]. To simplify, we adopt a stationary α during the
iteration. Consider our estimation problem, the regularized parameters α should be assigned
a relatively large value such that the estimated Φ̂(t) is not too sensitive to the sampling
matrix Ξ(t) while it is dominated by noises. On the other hand, a too large value of α
inhibits the abrupt change of Φ̂ while switching occurs. This situation is also unacceptable
for active mode recognition. In fact, the choice of α is quite loose in our algorithm and the
effects on performance are presented in the simulation section.
The iterated Tikhonov method [79] can then be expressed compactly in the following form

as the solution of the penalized minimization problem 3.16

Φ̂(t) = Φ̂(t− ts) +
(
Ξ(t)− Φ̂(t− ts)Ξ(t− ts)

)
ΞT(t− ts)(

Ξ(t− ts)ΞT(t− ts) + αI
)−1

.
(3.17)

Obviously, the iterative Tikhonov method considers the previous estimated STM in the
estimation. This strategy ensures that the estimated STM is not determined by the noises
in the ill-posed conditions.
Subsequently, the online active mode recognition can be treated as the online steady-state

detection of the estimated STM Φ̂ by Theorem 2. Some methods for online steady-state
detection have been documented in [80–82]. In the algorithm, we adopt the method from [80]
and analyze the standard deviation of Φ̂ over a predefined moving window η and a predefined
threshold γ.
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time

Figure 3.2.: Moving windows of η data points at near k-th time

The online steady-state detection algorithm in [80] is introduced for a vapor compression
system based on a moving window and the standard deviations of seven measurements. The
concept of the steady-state detector originates from noise filter theory. The most common
and simple steady-state detectors analyze the data over a predefined moving window, as
illustrated in Figure 3.2.
The variance or standard deviation of important parameters is typically utilized to indicate

the statistical spread within the data distribution and can be used to characterize random
variation of the measured signals. The steady-state detector in [80] calculates the standard
deviation of the parameters in a recursive fashion. Suppose that at any instant k, the average
of the latest η samples of a data sequence, φi, is given by

φ̄k = 1
η

k∑
i=k−η+1

φi. (3.18)

The difference between two averages of the latest η samples at the current time, k, and at
the previous time instant, k − 1, is

φ̄k − φ̄k−1 = 1
η

 k∑
i=k−η+1

φi −
k−1∑
i=k−η

φi

 = 1
η

(φk − φk−η) . (3.19)

Naturally, the following equation yields

φ̄k = φ̄k−1 + 1
η

(φk − φk−η) . (3.20)

This approach is known as a moving window average because the average at each k-th instant
is based on the most recent set of η values. Similarity, a moving window variance vk can be
define as

vk = 1
η

k∑
i=k−η+1

(
φi − φ̄k

)2
= 1
η

k∑
i=k−η+1

φ2
i − φ̄2

k, (3.21)

vk = vk−1 + 1
η

(
φ2
k − φ2

k−η

)
−
(
φ̄2
k − φ̄2

k−1

)
. (3.22)
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The moving window standard deviation is then given as

χk = √vk. (3.23)

The steady-state detector identifies steady operation if the standard deviations for the
selected features representing the status of the system fall below the defined threshold γ.
As reported in [80], the threshold γ is generally assigned as 3χ, where χ is the standard

deviation of the steady-state. If Φ̂ remains a steady-state, the switching does not occur
and the steady-state is recorded as the criterion for the active subsystem. Additionally, we
impose a user-defined threshold ρ to discriminate whether the currently active mode is a
new one or repetitive one and determine the active mode σ̂(t) accordingly. Otherwise, the
switching occurs in the moving window, the estimated active mode σ̂(t) is set as zero until
Φ̂ keeps steady again. Note that the state and input vectors x(t), u(t) corresponding to
σ̂(t) = 0 are skipped in the next stage of identification. Eventually, the online switching
detection and active mode recognition are realized via Algorithm 3.

Algorithm 3 Recognition of Active Mode
Input: delay shift te, sampling interval ts, sampling size N , moving windows size η, thresh-

olds ρ, γ
Output: The estimated number of subsystems ŝ, and the recognized active mode σ̂(t).

1: Let ŝ = 1, t0 = te +Nts.
2: Calculate the initial STM Φ̂(t0) with LS
3: while t ≥ t0 do
4: Use the iterative Tikhonov method to update Φ̂(t)
5: Discriminate the steady-state of Φ̂(t) with γ and η.
6: if Φ̂(t) is a steady state then
7: if Ξ(t) is row rank-deficient and Flag==True then
8: Update the Φ̂(t) for iterative Tikhonov method with the refinement strategy in

Section 3.2.1
9: Flag← False

10: end if
11: if mini=1,...,ŝ(||Φ̂(t)− Φ̂i||) > ρ then
12: ŝ← ŝ+ 1, σ̂(t)← ŝ, Φ̂i ← Φ̂(t)
13: else
14: σ̂(t)← argmini=1,...,ŝ(||Φ̂(t)− Φ̂i||)
15: end if
16: else
17: σ̂(t)← 0, Flag← True
18: end if
19: end while
20: return ŝ, and σ̂(t).

According to Algorithm 3, there exists a delay between active mode recognition and the
switching occurrence, i.e., te+Nts+η. For instance, if the i-th subsystem is activated at time
instant t̂, the active mode is estimated as i at the time instant t̂+ te+Nts+η via Algorithm
3. Therefore, the dwell time, being the time between consecutive switchings, should be long
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enough for the recognition of the active mode. Then, the identification of each subsystem is
carried out based on the recognized active mode. Obviously, the requirement can be easily
fulfilled by adjusting the piecewise constant or ramp component in the input signal as well
as te, N , ts, and η.
The assignment of te, N , ts, and η are still a major problem to implement the algorithm.

The sampling matrix Ξ(t) and the delay in the mode recognition are affected by the choice of
te, N , and ts, Generally, the sampling size is chosen such that N � n to ensure the full row
rank of Ξ(t). Meanwhile, the delay shift te and sampling interval ts are assigned small values
for a shorter delay in the mode recognition. However, too small te and ts cause that the
entries of all sampling matrices are close to zero. Hence, the estimated Φ̂ is not applicable
for the mode recognition. Clearly, this circumstance only occurs while choosing extremely
small te and ts.

Remark 4. From Theorem 2 and Algorithm 3, the switching detection and mode recognition
are achieved via the estimated STM. The formula of the STM is

Φi = eAits . (3.24)

In the above equation, ts is the pre-defined sampling interval and Ai is the state matrix of
the i-th subsystem. It is quite natural to wonder if it is possible to calculate the state matrix
Ai of the i-th subsystem via the estimated state-transition matrix Φi. However, the state
matrix Ai cannot be calculated with the identified STM Φi. The reason is that some matrices
may have more than one logarithm. The logarithm of a matrix is another matrix such that
the matrix exponential of the latter matrix equals the original matrix. It is the inverse

operation of the matrix exponential. For instance, if the estimated STM Φi =

−1 0

0 −1

,
then the state matrix Ai could be either

1
ts
·

 0 π

−π 0

 or
1
ts
·

 0 3π

−3π 0

. Thus, the estimated

STM can not be used to directly calculate the state matrix Ai. Actually, this feature is also
the inspiration of the Assumption 1. The state-transition matrix is employed as the criteria
for mode recognition in the proposed method and should be different in each subsystem.
However, one state-transition matrix Φi may correspond to more than one state matrix Ai
as stated above. Therefore, the technical assumption focuses on the distinct state-transition
matrices of each subsystem for mode recognition.

Discussion
Full row rank of the sampling matrix Ξ(t) plays a fundamental role in the proposed iden-
tification approach. However, in very extreme situations, row rank-deficiency may occur.
Thus, in this subsection, we look into the row rank of the sampling matrix Ξ(t) and provide
a refinement strategy to deal with the row rank-deficient Ξ(t).
It is worth noticing that the STM Φ̂(t) can also be estimated even if Ξ(t) is row rank-

deficient due to the adoption of the iterative Tikhonov method. Nonetheless, the estimated
Φ̂(t) is not only determined by the sampling data in Ξ(t) but also the last estimation Φ̂(t−ts).
This feature leads to the consequence that different fixed estimated STMs may be obtained

42



3.2 Framework for Online Identification of Continuous-Time PWA System

for the same subsystem by applying the proposed method. It follows that the initial STM
which is calculated by the first sampling matrices Ξ0 might be different each time the same
subsystem is activated. Therefore, the outline of the refinement strategy is to reformulate a
full row rank matrix by concatenating the sampling matrices excited by the adjusted inputs.
Note that the adjusted input guarantees that no switching occurs. Ultimately, we can obtain
the unique initial STM for the iterative Tikhonov method by using the reformulated matrix.
According to the equation (3.7), all sampling matrices in the interval are row rank-deficient

if there exists a row rank-deficient sampling matrix in a non-switching interval. Thus, we
only need to analyze the row rank of one sampling matrix in this section.
The first sampling matrices Ξ0 after the switching instant tsw is represented as

Ξ0 =
[
eA(N−1)tsε0 eA(N−2)tsε0 . . . eAtsε0 ε0

]
, (3.25)

where
ε0 = x(tsw + te)− x(tsw). (3.26)

According to these equations and Popov-Belovich-Hautus (PBH) test in control theory, the
sampling matrix Ξ0 is row rank-deficient if and only if the rank of the augmented matrix
rank[eAts − λI ε0] < n for every complex eigenvalue λ of A [83]. This condition indicates
that the row rank of the sampling matrix is resolved by ε0. The specific relationship between
ε0 and eAts is not the focus of this dissertation. Instead, we propose the refinement strategy
and handle the problem based on the role of ε0 in the determination of row rank. In the
refinement strategy, we reformulate a matrix by uniting the sampling matrices with distinct
ε0, which is achieved via the adjusted input signal. For instance, two sampling matrices Ξ0
and Ξ′0 with distinct initial vector ε0 and ε′0 for the same subsystem are acquired. Then the
reformulated matrix is given by

[Ξ0 Ξ′0] =
[
eA(N−1)ts [ε0 ε

′
0] eA(N−2)ts [ε0 ε

′
0] . . . eAts [ε0 ε

′
0] [ε0 ε

′
0].
]

(3.27)

Now, the row rank of [Ξ0 Ξ′0] is determined by rank[eAts − λI ε0 ε
′
0] for every complex

eigenvalue λ of A according to the PBH test [83]. The reformulated matrix can be easily
full row rank by concatenating the sampling matrices with distinct initial vectors, i.e., ε0.
These sampling matrices with distinct ε0 are obtained by adjusting the input signal in the
refinement strategy.
The refinement strategy is described as follows. Firstly, after the switching occurs, if the

first sampling matrix Ξ0 is row rank-deficient, it is recorded as part of the reformulated
matrix. Then, the phase of the input signal is adjusted to acquire other sampling matrices.
During the excitation of the adjusted input signals, a sampling matrix is recorded again
and appended into the reformulated matrix. Note that the adjustment of the input signal
could be the aptitude, phase, or frequency as long as the period te remains and the current
subsystem is still activated. The above steps are repeated until the reformulated matrix
is of full row rank. Then, the initial STM is determined via the reformulated matrix and
the iterated Tikhonov method carries on estimating the STM based on the initial STM.
Consider the characteristics of the iterative Tikhonov method, the estimated STM remains
steady until the switching occurs. Meanwhile, the unique matrix can be treated as the
criterion for mode recognition.
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The main limitation of the refinement strategy is the time cost for establishing the refor-
mulated matrix. The active mode is unacknowledged and set as zero before the reformulated
matrix is obtained, which requires more time for identification. Therefore, the delay shift te
and ts shall be assigned a small value under this circumstance. In Section 3.3, a simulation is
provided to validate the effectiveness of the proposed refinement strategy while the sampling
matrix is singular.

3.2.2. Parameter Identifiers based on Integral Concurrent
Learning

In this section, we concentrate on the online identification of each subsystem and propose
a generalized integral concurrent learning adaptive identifier. The identifier was firstly pro-
posed to identify linear systems and documented in [75]. We generalize the identifier to
realize the identification of the PWA system. Before introducing the identifier, we define the
integrated history stacks as follows.

Definition 3. Let tik denote the k-th selected time instant while the i-th subsystem is active.
Suppose there holds tik ∈ [∆t, t], where ∆t is the integration window and t is the current
time. The q-element (q ∈ N+) integrated history stacks of states and inputs of subsystem i
are defined as

Xi = [X(ti1),X(ti2), . . . ,X(tiq)],
Ui = [U(ti1),U(ti2), . . . ,U(tiq)],

(3.28)

where
X(t) =

∫ t

t−∆t
x(τ)dτ , U(t) =

∫ t

t−∆t
u(τ)dτ , (3.29)

and [
x(τ)T u(τ)T

]T
∈ Xi for τ ∈ [tik −∆t, tik ]. (3.30)

For the generalized integral concurrent learning identifier, the following assumption on the
integrated history stacks arises to ensure the convergence of the estimated parameters.

Assumption 2. For each subsystem i, the integrated history stacks Xi and Ui contain q
elements, such that there exists n+ p+ 1 linearly independent vectors [X(tik)T,U(tik)T, 1]T.

This assumption 2 indicates that the sufficient excitation only lasts for a finite period of
time, which is weaker than the typical PE condition. However, this assumption is adequate
for the integral concurrent learning techniques to accomplish the identification. The proof
of parameters convergence based on the assumption will be provided later. Note that the
number of recorded elements is generally q = n + p + 1 in order to confine computational
complexity. The methods for recording new integrated history stacks and replacing existing
ones are presented in Section 3.2.3 in detail.
We denote the estimated parameters by Âi ∈ Rn×n, B̂i ∈ Rn×p, and f̂i ∈ Rn. The

objective of the identifier is to design an update law so that these estimates converge to the
true parameters. To achieve the target, we firstly design the state observer to predict the
state of the i-th subsystem

˙̂xi = Amx̂i + (Âi − Am)x+ B̂iu+ f̂i, if σ̂(t) = i, (3.31)
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where Am ∈ Rn×n is a stable (Hurwitz) matrix. For a Hurwitz matrix, there always exists a
symmetric, positive definite P ∈ Rn×n satisfying

AT
mP + PAm = −Qe, (3.32)

where Qe ∈ Rn×n is a positive definite matrix.
The updating law of the proposed identifier is based on the prediction error, which is

defined as ei = x̂i − x. However, the state observer (3.31) is only designed to predict the
state while the subsystem is active. Thus, we impose the discrete state reset from [66] to
overcome this limitation. The predicted state x̂i is reset and set equal to the true state x
while the corresponding subsystem is inactive, i.e.,

x̂i = x, if σ̂(t) 6= i. (3.33)

Figure 3.3.: State reset of the state prediction for the i-th subsystem upon deactivation of
the i-th subsystem dynamics, i.e., x̂i(t) = x(t) as σ̂(t) 6= i.

Figure 3.3 shows that the state is predicted while the i-th subsystem is active and reset
to the true state while it is inactive. The state reset guarantees that the states from other
subsystems are abandoned during the i-th subsystem identification.
Before proposing the update law, we transform the estimated and true parameters into

vectors for the sake of convenience. We denote

θi =
[
vec (Ai)T vec (Bi)T vec (fi)T

]T
∈ Rn(n+p+1), (3.34)

θ̂i =
[
vec (Âi)T vec (B̂i)T vec (f̂i)T

]T
∈ Rn(n+p+1). (3.35)

In addition, we make use of the Kronecker product ⊗ and introduce the matrices

Γ =


γ1Inn 0 0

0 γ2Inp 0

0 0 γ3In

 , Ψ =


x

u

1

⊗ In, (3.36)
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where γ1, γ2, γ3 ∈ R+ and Ψ ∈ Rn(n+p+1)×n. Furthermore, Inn, Inp, and In are identity
matrices of dimension nn, np, and n, respectively. Afterwards, the identification for PWA
systems can be achieved by designing the following update law.

Theorem 3. Consider the PWA system (3.1) with the estimated active mode σ̂(t). Let the
state of each subsystem be estimated by the corresponding observer. Then, the parameter
update law of the i-th subsystem is designed as

˙̂
θi = −ΓΨPei + kCL

2 Γ
q∑

k=1
Y(tik)T

(
x(tik)− x(tik −∆t)− Y(tik)θ̂i

)
, (3.37)

where for any k = 1, . . . , q,
Y(tik) =

∫ tik

tik
−∆t

ΨT(τ)dτ . (3.38)

In the equation (3.37), kCL ∈ R+ is a control gain, ∆t ∈ R+ is the size of the integration
window. The update law (3.37) ensures that ei converge to zero and the estimated parameters
θ̂i converge to θi exponentially.

The proof of Theorem 3 is presented as follows.

Proof. In the section, Theorem 3 is proved through the designed Lyapunov function for each
subsystem. The derivative of all Lyapunov functions is justified to be negative regardless of
the active mode. Specifically, the estimated parameter θ̂i of subsystem i converges to the
true parameter θi no matter the i-th subsystem is active (σ̂ = i) or not (σ̂ 6= i). Therefore,
we analyze the stability of all subsystems separately at first and naturally neglect the index
i throughout the proof(i.e. A , Ai or Y(t) , Yi(t)).
Based on the formulations of θ and Ψ in the equation (3.34) and (3.36), one subsystem of

the PWA system is written as
ẋ = ΨTθ. (3.39)

Naturally, the integration of the equation (3.39) yields∫ t

t−∆t
ẋ(τ)dτ =

∫ t

t−∆t
ΨT(τ)θdτ , ∀t > ∆t. (3.40)

Then, substituting (3.38) into (3.40) and using the fundamental theorem of calculus, we get

x(t)− x(t−∆t) = Y(t)θ,∀t > ∆t. (3.41)
Combining the equations (3.37) and (3.41), The update law of the subsystem is given by

˙̃θ = ˙̂
θ = −ΓΨPe− kCL

2 Γ
q∑

k=1
Y(tk)TY(tk)θ̃, ∀tk > ∆t, (3.42)

where
θ̃ = θ̂ − θ. (3.43)

In addition, the derivative of the prediction error for the active subsystem along the equa-
tions (3.36) and (3.43) takes the form

ė = ˙̂x− ẋ = Ame+ ΨTθ̃. (3.44)
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In the proof, the quadratic candidate Lyapunov function is designed as

V =
[
eT θ̃T

] P 0

0 Γ−1


e
θ̃

 . (3.45)

Following the equations (3.42) and (3.44), the time derivative of V is given by

V̇ = eTAT
mPe+ eTPAme+ θ̃TΨPe+ eTPΨTθ̃

− eTPΨTθ̃ − θ̃TΨPe− kCLθ̃
T

q∑
k=1
Y(tk)TY(tk)θ̃

= eT(AT
mP + PAm)e− θ̃TkCL

q∑
k=1
Y(tk)TY(tk)θ̃

= −eTQee− θ̃TQθθ̃,

(3.46)

where Qe = −(AT
mP + PAm) and Qθ = kCL

∑q
k=1 Y(tk)T Y(tk). The matrix Qe is positive

definite since the matrix Am is designed to be Hurwitz. Furthermore, Qθ has the same
eigenvalues as∑q

k=1 [X(tik)T,U(tik)T, 1]T[X(tik)T,U(tik)T, 1] due to the definition of Ψ. Thus,
Qθ is also positive definite by Assumption 2. In summary, the derivative of V

V̇ =
[
eT θ̃T

] −Qe 0

0 −Qθ


e
θ̃

 , (3.47)

is negative definite and the prediction error e and θ̃ converge to zero exponentially while the
subsystem is active (σ = i).
Subsequently, V̇ is also shown to be negative for σ 6= i. The prediction error e = 0 while

σ 6= i due to the state reset. Therefore, the derivative for Lyapunov function V̇ transforms
into

V̇ = −θ̃TQθθ̃, (3.48)

for σ 6= i. This indicates that even if the subsystem is presently inactive, θ̃ of the correspond-
ing subsystem also converges to zero. Thus, the value of V is strictly decreasing according
to the equations (3.47) and (3.48). In addition, the state reset (3.33) decreases V by eTPe.
Therefore, the switching between σ = i and σ 6= i does not affect the convergence of e and
θ̃. In conclusion, the negative definiteness of V̇ justifies that ei and θ̃i for each subsystem
converge to zero exponentially while the subsystem is active or inactive with the update law.
The designed Lyapunov function and its derivatives only show stability in the sense of

Lyapunov for all subsystems individually. As reported in [84, 85], the candidate Lyapunov
functions have to be Lyapunov-like along all possible trajectories and switching sequences to
achieve the stability of the overall switched system. This requires the values of the Lyapunov
functions at each activation of the corresponding subsystem to form a decreasing sequence.
In order to show that the candidate Lyapunov functions are Lyapunov-like, we provide

some precise notations for the switching process. Denote the instance of the q-th activation
of sub-model i by tini,q, i.e., σ−(tini,q) 6= i and σ+(tini,q) = i. Equivalently, the instance tout

i,q
refers to the q-th exit from sub-model i (σ−(tout

i,q ) = i and σ+(tout
i,q ) 6= i). Then, the following
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requirement arises for stability in the sense of Lyapunov for switched systems [84] based on
these notations.

Vi(tini,q) ≥ Vi(tini,q+1),∀q > 1, (3.49)

where Vi is the candidate Lyapunov functions value of the i-th subsystem.
For the reason that the equation (3.46) is negative definite, the value of candidate Lya-

punov function fulfills
Vi(tini,q) > Vi(tout

i,q ). (3.50)

Furthermore, the state reset mechanism indicates that ei(t) = 0 for the inactive periods t ∈
(tout
i,q , tini,q+1]. Thus, the history stack term works and the parameter errors remain decreasing

during the inactive periods, i.e., θ̃i(tout
i,q ) > θ̃i(tini,q+1). It follows that

Vi
(
tout
i,q

)
=
[
e>i Pei + θ̃>i Γ−1θ̃i

]
tout
i,q

>
[
θ̃>i Γ−1θ̃i

]
tini,q+1

= Vi
(
tini,q+1

)
,

(3.51)

which shows that the equation (3.49) is satisfied. Naturally, all state errors and parameter
errors converge to zero by implementing the proposed update law.

The update law (3.37) consists of two terms. The first term −ΓΨPei stands on current
states, inputs, and prediction errors. The second term is based on selected, integrated history
stacks. Therefore, the current and recorded data are used simultaneously in the update law.
This property is beneficial to the identification of the PWA system since the estimated
parameters of inactive subsystems are also updated based on recorded data. In addition,
selecting feasible i-th integrated history stacks for the update law (3.37) is straightforward
while knowing the estimated active mode σ̂(t).
It is clear that update law and corresponding proof are presented under the condition that

tik > ∆t, ∀ik due to the lower bound of the integration in (3.38). In fact, the update law
is effective while Assumption 2 is satisfied. Thus, the integrated history stacks can also be
formulated with time instants tik < ∆t as long as Assumption 2 is fulfilled. Meanwhile, the
lower bound of the integration tik −∆t is replaced by zero. For the sake of convenience, we
select the time points fulfilling tik > ∆t in our algorithm. Even so, the time instants can still
be selected in a wide range to satisfy Assumption 2 as ∆t is generally assigned to a small
value.
The integral concurrent learning identifier from [75] is generalized to the piecewise affine

system by imposing the observer and state reset in our method. Meanwhile, the adoption
of the integrated history stack in the identifier bears a major advantage compared to the
traditional concurrent learning technique. The integrated history stacks ensure the conver-
gence of estimated parameters of each subsystem without the assumption that the measured
derivative matches the real derivative.

3.2.3. History Stack Management in Generalized Integral
Concurrent Learning Identifier

In the discussion of the generalized integral concurrent learning identifier, the integrated
history stacks are assumed to be invariant so far. However, the parameter convergence is
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maintained as long as Qθ remains positive definite considering the equation (3.47). Alterna-
tively stated, we can arbitrarily replace the elements of the integrated history stack under the
condition that Qθ is positive definite. Note that the elements for replacement are required
to be from the same subsystem as the integrated history stack.
All the integrated history stacks are empty at the beginning. Afterwards, the elements

are added into the corresponding integrated history stacks until Assumption 2 is fulfilled.
The new element should be sufficiently different from the previously recorded elements to
fulfil the assumption. For each subsystem, we define the integrated state-input vector at the
time instance t as Ω(t) = [XT(t) UT(t)]T. Let Ωprev denotes one of the recorded integrated
state-input vector. The new element is sufficiently different from the previous one if the
following inequality is satisfied

||Ω(t)− Ωprev||2

||Ω(t)|| ≥ κ, (3.52)

where κ ∈ R+ is a design threshold. Note that the inequality is slightly modified from [86]
by replacing the state-input vectors into integrated state-input vectors. To confine the
computational complexity, the number of recorded data elements q is generally limited as
n+p+1. Once the integral history stack is filled with q elements that satisfying Assumption
2, we can update the stacks based on whether replacing the old element with the new one
is beneficial. As stated in equation (3.47), the rate of convergence can be characterized by
Qθ. The derivative of the Lyapunov function of an inactive subsystem fulfills the following
condition

V̇ = −θ̃TQθθ̃ ≤ −λmin(Qθ)θ̃Tθ̃. (3.53)
Thus, the target of managing the integrated history stack is to maximize the minimum
eigenvalue of Qθ, such that the rate of convergence is maximized. Obviously, it is beneficial
to replace the old element with the new one only if this increases the minimum eigenvalue
of Qθ. The methods for accomplishing the task have been proposed by [65] and [86]. In our
approach, we apply the eigenvalue maximization method from [65].

3.2.4. Polyhedral Partition Estimation
In this section, we consider the estimation of polyhedral partitions. The straightforward
solution is to obtain the polyhedral partition with the state vectors around the estimated
switching instants. Then, polyhedral partitions can be estimated through the linear discrim-
ination methods. Some algorithms have already been proposed for solving the problem but
most of them are designed for the discrete switching systems [87–89].
However, even if Algorithm 3 can be improved to acquire the switching instants directly

via the switching detection, their precision still can not be guaranteed. It follows that the
estimated switching instants are not precise enough under the noisy condition due to the
adoption of steady-state detectors. The precision of the estimated switching instants is
quite strictly since a slightly uncertainty in the instants will cause great deviation of the
state vectors. Then, the great biases for the polyhedral partition estimation is unavoidable.
Therefore, the hyperplanes obtained via the estimated switching instants are infeasible for
the PWA system identification.
To handle this problem, we present another method to estimate the polyhedral partitions

after obtaining the estimated switching sequence and subsystem parameters. The method is
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built on the designed cost function that includes these estimates. Actually, this problem is
quite primary while acknowledging these conditions. As presented in Algorithm 3, there are
some time intervals whose recognized active modes are σ̂ = 0. Let [t0i , t0j ] denote the interval
with unrecognized active mode while switching from i-th mode to j-th mode. Obviously, the
switching time instant locates in the time interval [t0i , t0j ]. Therefore, the switching instant t̂
can be obtained by searching the minimum of the following cost function.

J(t) =
∫ t

t0i

||x̌i(τ)− x(τ)||2dτ +
∫ t0j

t
||x̌j(τ)− x(τ)||2dτ , t ∈ [t0i , t0j ]. (3.54)

where x̌i(t) is the state generated by the estimated i-th system. Since the solution of the
optimization problem locates inside the interval [t0i , t0j ], the population optimization algo-
rithms such as genetic algorithm, ant colony, or particle swarm optimization are feasible
for solving the problem [90]. Following the estimated switching instants, it is convenient to
obtain the polyhedral partitions via support vector machine or linear regression since the
switching sequence and the state vectors around switching instants are acknowledged.

3.3. Simulation Studies
In this section, a series of simulations are conducted to validate the effectiveness of the
proposed online identification approach.

3.3.1. Numerical Experiment
In the numerical experiment, we consider the following PWA system:

ẋ(t) =



A1x(t) +B1u(t) + f1 if
x(t)
u(t)

 ∈ X1,

A2x(t) +B2u(t) + f2 if
x(t)
u(t)

 ∈ X2,

A3x(t) +B3u(t) + f3 if
x(t)
u(t)

 ∈ X3.

(3.55)

The parameters of each subsystem are

A1 =

 0 1

−2 −1

 , B1 =

 0

1.5

 , f1 =

 0

0.4

 ,

A2 =

 0 1

−2.5 −1

 , B2 =

 0

1.5

 , f2 =

 0

0.2

 ,

A3 =

 0 1

−1.5 −1

 , B3 =

 0

1.5

 , f3 =

 0

−0.3

 ,

50



3.3 Simulation Studies

and polyhedral partitions Xi with

H1 =

 1 0 0 −2

−1 0 0 −2

 , �[1] =

≤
≤

 ,

H2 =
[
−1 0 0 2

]
, �[2] =

[
<

]
,

H3 =
[
1 0 0 2

]
, �[3] =

[
<

]
.

In the simulation, the time step is 0.01s and the system is excited with the following input
signal

u(t) =
2∑

k=1
sin(ωkt) + ū(t), (3.56)

where ω1 = πrad/s, and ω2 = 2πrad/s. The signal ū(t) switches every 50s between the
values ū1 = 0, ū2 = 6, and ū3 = −6 to excite the system into the three corresponding
partitions. The switching sequence is 1 → 2 → 1 → 3 → 1 → 2 · · · . In addition, the
measured state is corrupted by a state-measurement white noise which is distributed as
N ∼ (0, 10−3) [44]. Figure 3.4 shows the state space trajectory of the PWA system (3.55)
excited by the input (3.56) from t = 0s to t = 400s.

Subsystem 1 Subsystem 2Subsystem 3

Figure 3.4.: State space trajectory (red green orange) generated by the PWA system (3.55),
whose color represents the corresponding subsystem. The true hyperplanes of
the system (3.55) are illustrated by the dashed lines.

In the simulation, we set the coefficients for estimating active mode as: the delay shift
te = 6s, the sampling interval ts = 0.1s, the sampling size N = 6, the moving data window
size η = 2s, the threshold ρ = 0.2, γ = 0.01, the regularized parameter α = 10. Clearly,
the input signal and the delay shift te in the simulation satisfy the periodic condition in
Theorem 2. Also, the piecewise input signal guarantees the activation of each subsystem
and the dwell time is long enough for identification.
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3 Online Identification of Continuous-Time Piecewise Affine Systems

By implementing Algorithm 1, the STM Φ̂(t) is estimated. Every entry of the matrix Φ̂(t)
with respect to time is plotted with the solid line in different colors in the Figure 3.5. Note
that Φ̂(t) before 6.6s are nonexistent due to the delay between the active mode recognition
and the switching occurrence. The figure indicates that the estimated STM Φ̂(t) is fixed
while no switching occurs, whose value reveals the active mode as well.

Figure 3.5.: Every entry (red line, blue line, purple line, and yellow line) in estimated state
transition matrix Φ̂(t) from 0s to 400s, whose steady value reveals the mode
of active subsystem ,i.e., 1©, 2©, and 3©. Meanwhile, the Φ̂(t) before 6.6s are
nonexistent due to insufficient data for their calculation.

Subsequently, the active modes from t = 0s to t = 400s are estimated by implementing
the proposed approach. The true and estimated active modes are plotted in Figure 3.6(a)
and 3.6(b), respectively. In Figure 3.6(b), the active modes of a short interval after the
switching occurs is ˆσ(t) = 0. It follows that there exists a time delay between the occurrence
of switching and the correct recognition of the active mode. The correct recognition requires
sufficient information from the new subsystem. Thus, it is infeasible to recognized the new
active mode after the switching immediately. We assign the estimated active mode into 0
manually in this short interval after the switching occurs. Naturally, the state vectors in the
interval is ignored during the subsystem parameter estimation.
For the generalized integral concurrent learning identifier, all initial estimated parameters

are set to zero matrices or vectors. The coefficients for the state observer and update law
are γ1 = γ2 = γ3 = 1, and

Am =

−10 0

0 −10

 , P =

0.05 0

0 0.05

 . (3.57)

Each integrated history stack contains q = 4 elements. Initially, the integrated history
stacks of all subsystems are empty. The integrated elements X(tik) are calculated with the
integrated window size ∆t = 1s. Once an integrated history stack is full, the elements are
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managed with the method proposed by [65]. For the update law (3.37), the control gain is
kCL = 0.6 once the integrated history stack is full and fulfills Assumption 2. Before that,
the control gain kCL = 0 and the update law without concurrent learning are used.
In addition, the parameter error θ̃i of each subsystem w.r.t time are depicted in Figure 3.7.

Simulation results show a fast convergence of all estimated parameters to true parameters
as expected. Moreover, Figure 3.7 illustrates that the adaptation is carried out no matter
the corresponding subsystem is active or not.

(a)

(b)

Figure 3.6.: The true active mode σ(t) (3.6(a)) and estimated active mode σ̂(t) (3.6(b)) of
the PWA system in the simulation.

Following the estimation of the subsystem parameters, we identify the switching time
instants of the PWA system (3.55) by solving the optimization problem in Section 3.2.4.
In the simulation, the sequence of switching instants Tsw and the estimated corresponding
active mode σ̂ before and after them are shown in Table 3.1. Then, the parameters of the
trained hyperplanes are re-scaled and listed in Table 3.2. These tables indicate that the
subsystem parameters and the polyhedral partitions are well-estimated.
The performance of the proposed approach is evaluated by the modified best fit rate (BFR)
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(a)

(b)

(c)

Figure 3.7.: The estimated parameter error θ̃i of each subsystem in the simulation. 3.7(a),
3.7(b), and 3.7(c) are the estimated error of subsystem 1, 2 and 3, respectively.
Every entry of the estimated error vector is visualized by solid lines with different
colors in every sub-figure.
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Table 3.1.: Sequence of switching instants Tsw and the corresponding active mode σ̂ before
and after them

σ̂ Tsw[s] σ̂ Tsw[s] σ̂ Tsw[s]

1 150.85 2

50.54 3 300.76

2 200.99 1

100.45 1 351.06

1 251.01 3

Table 3.2.: True hyperplane parameters (h1,h2) and estimated hyperplane parameters (ĥ1,
ĥ2 ) in the simulation

h1 ĥ1 h2 ĥ2

1 1 1 1

0 -0.014 0 -0.029

0 -0.031 0 -0.04

-2 -2.105 2 1.9577

which is defined as follows

BFR = max
{

1− ||xi − x̂i||
||xi − x̄1)|| , 0

}
× 100%, (3.58)

where i is the index of the entry in state vectors. xi ∈ RN is the sequence of the i-th entry
in true state vector x. x̂i ∈ RN is the sequence of i-th entry in estimated state vector x̂.
Additionally, x̄ ∈ R is the mean of xi and 1 is an all-ones vector with suitable dimension.
The BFR is originally designed to evaluate the performance of the approach based on

the true and estimated outputs, which are not provided in our simulation [58]. Therefore,
we do slight modification to the equation of BFR and utilize the state vectors to evaluate
performance instead of the outputs in the simulation. The replacement can also be regarded
as computing the BFR of the PWA system (3.55) while the system is with the output matrix
[0 1] or [1 0] and without a direct feed-through.
In the evaluation, the true and estimated PWA systems are excited by the same input

signal, which is a random signal between [−4, 4]. The error between the state-vector x and
the estimated state-vector x̂ from 0s to 400s are plotted in Figure 3.8. Meanwhile, we replace
the output sequence with the sequence of each entry x1 and x2 in state vectors to calculate
the BFR. The BFR values of the estimated x̂1 and x̂2 are 97.21% and 97.77%. The values
imply the satisfying accuracy of the proposed approach.

55



3 Online Identification of Continuous-Time Piecewise Affine Systems

Figure 3.8.: Errors of the true state-space vector x and estimated state-space vector x̂ in the
evaluation.

We also discuss the choice of α and elaborate that a relatively large value is suitable. To
justify that the choice of α is quite loose in our approach, the BFR values of our approach
with respect to different α are depicted in Figure 3.9. The figure reveals that a regularized
parameter α ∈ [0.1 19] provides the satisfying accuracy for the proposed approach.

Figure 3.9.: The regularized parameter α with respect to BFR value.

3.3.2. Wheeled Mobile Robot System

In this section, we evaluate the effectiveness of the online identification approach on the
wheeled mobile robot (WMR) shown in Figure 3.10. This example is presented in the paper
[43] and the following simulations not only evaluate the effectiveness of our approach but
also compare it with the online fault detection and identification (FDI) technique proposed
in [43]. The WMR is assumed to be rigid and it is driven by a torque Tq to control the
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Figure 3.10.: Schematic representation of the wheeled mobile robot

heading angle Ψ . The kinematic and dynamic equations for the WMR are

ẏ = u0sinΨ ,
Ψ̇ = R,

Ṙ = 0.751
I
Tq,

(3.59)

where u0 is the forward velocity of the robot and assumed to be constant, by designing
appropriately a cruise controller. The heading angle Ψ is measured with respect to the
positive x-axis in the inertial frame. In the equation (3.59), 0.75 is the unknown actuator
effectiveness, and I = 1kg ·m2 (which is known) corresponds to the moment of inertia of the
WMR with respect to the center of its mass. Inspired by this example, the actual system
can be considered as the PWA system in the form

ẋ =


A1x+B1u+ f1 if

x
u

 ∈ X1,

A2x+B2u+ f2 if
x
u

 ∈ X2,
(3.60)

where [x,u] = [x1,x2,x3,u] = [y, Ψ,R,T ].
The parameters of each subsystem are

A1 =


0 2

π
u0 0

0 0 1

0 0 0

 , B1 =


0

0
0.75
I

 , f1 =


0

0

0

 ,

A2 =


0 − 2

π
u0 0

0 0 1

0 0 0

 , B1 =


0

0
0.75
I

 , f2 =


2u0

0

0

 ,
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with u0 = 1. The aforementioned matrices arise from approximating, in the range [−π/2, 3π/2].
As a consequence, the switching surface between the two subsystems is given by

H1 =
[
0 2

π
0 0 −1

]
, �[1] =

[
≤
]

,

H2 =
[
0 − 2

π
0 0 1

]
, �[2] =

[
<

]
.

In the simulation, we use the same initial state and input signal from [43]. The initial
state is taken as x0 = [1,π/2, 0]T and the input is a series of steering and counter-steering
sinusoids at frequency 0.2, 0.8, and 1.6 rad/s.
Meanwhile, the coefficients for our approach is set as: the delay shift te = 1.6s, the

sampling interval ts = 0.1s, the sampling size N = 6, the moving data window size η = 2s,
the threshold ρ = 0.01, γ = 0.001, the regularized parameter α = 0.1. Clearly, the input
signal and the delay shift te in the simulation satisfy the periodic condition in Theorem 2. The
coefficients for the state observer and update law are the same as the previous example. The
simulation results are described in Figure 3.11. The figure shows the estimated parameter
error θ̃i of each subsystem w.r.t time. Clearly, the consequences indicate the effectiveness of
the proposed approach while identifying the WMR system.
In order to check the consistency of the approach and the possibility of getting trapped into

local minima, we have selected many initial estimate θ̂(0) for the test [43]. The performance
of the approach w.r.t different initial estimates are shown in Table 3.3. Table 3.3 shows the

Table 3.3.: Performance depending on the initial estimate

Var(θ − θ̂(0)) Avg||θ − θ̂st||/||θ||

0.03 0.21%

0.1 0.41%

0.3 0.53%

1.0 0.49%

3.0 0.30%

distance between the true and the estimated parameters (at steady state) ||θ − θ̂st||/||θ|| as
a function of the variance of θ − θ̂(0). The table illustrates that the steady-state distance
keeps a similar level, regardless of the initial estimate θ̂(0). On the contrary, the performance
of online FDI in [43] shows that the steady-state distance also increases while the initial
estimate is very far from the true parameter. It follows that the online FDI is based on the
Gauss-Newton algorithm, which may not converge to the actual parameters. Actually, this
is also the drawback of the online FDI technique proposed in [43].
In this section, the effectiveness of the proposed approach is validated via identifying the

WMR system. In addition, the comparison between the proposed approach and the online
FDI technique is also presented in this section. Compare to the online FDI technique, the
proposed approach is not sensitive to the initial parameters.
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(a)

(b)

(c)

Figure 3.11.: The estimated active mode σ̂(t) and the estimated parameter error θ̃i of each
subsystem. 3.11(a) is the estimated active mode σ̂(t). 3.11(b) and 3.11(c) are
the estimated error of subsystem 1 and 2, respectively. Every entry of the
estimated error vector is visualized by solid lines with different colors in every
sub-figure.
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3.3.3. Extreme Situation: Rank-deficient Sampling Matrices
To validate the effectiveness of the proposed refinement strategy, we carry out a simulation
with the following PWA system.

ẋ(t) =


A1x(t) +B1u(t) + f1 if

x(t)
u(t)

 ∈ X1,

A2x(t) +B2u(t) + f2 if
x(t)
u(t)

 ∈ X2.
(3.61)

The parameters of each subsystem are

A1 =

−1 0

0 −1

 , B1 =

 1

1.5

 , f1 =

 0

0.4

 ,

A2 =

 0 1

−2 −1

 , B2 =

 1

1.5

 , f2 =

 0

0.2

 ,

and polyhedral partitions Xi with

H1 =
[
1 0 0 −2

]
, �[1] =

[
≤
]

,

H2 =
[
−1 0 0 2

]
, �[2] =

[
<

]
.

The state matrix of the first subsystem in PWA system (3.61) is identity matrix, which is
a rare case for real systems. As aforementioned, for the identity state matrix, the row rank
of the augmented matrix [0 0 ε0] is always 1 regardless of ε0 and the sampling matrix for
the first subsystem is always row rank-deficient. Therefore, we implement the refinement
strategy to provide distinct ε0 for the augmented matrix such that the reformulated matrix
is full row rank.
In the simulation, the time step is 0.01s and the system is excited with the following input

signal

u(t) =
3∑

k=1
sin(ωkt) + ū(t), (3.62)

where ω1 = 2πrad/s, ω2 = 4πrad/s, and ω3 = 8πrad/s. The signal ū(t) switches every
50s between the values ū1 = 0, ū2 = 6 and excite the system into the two corresponding
partitions. The switching sequence is 1 → 2 → 1 → 2 · · · . In addition, the delay shift
te = 1s, the sampling interval ts = 0.2s, the sampling size N = 5 are used in the simulation.
The estimated STM without the refinement strategy is shown in Figure 3.12(a). The

estimated STM Φ̂ of the first subsystem are not unique due to the row rank-deficient of the
augmented matrix rank[eAts − λI ε0]. Therefore, we adopt the refinement strategy after
detecting the row rank-deficient Ξ(t). The input signal is adjusted at 3s after the switching
occurs. The adjusted input signal is given by

u(t) =
3∑

k=1
cos(ωkt) + ū(t), (3.63)
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where ω1 = 2πrad/s, ω2 = 4πrad/s, and ω3 = 8πrad/s. Note that only the phase of the
input signal is adjusted to guarantee the unchanged active mode. Meanwhile, the sampling
matrices corresponding to the original and adjusted input signals are recorded. These ma-
trices reformulate a full row rank matrix to calculate the initial STM of the first subsystem.
Subsequently, Φ̂ is updated based on the initial STM. The estimated STM Φ̂ with the re-
finement strategy is shown in Figure 3.12(b). Clearly, Φ̂ is unique and can be employed for
the active mode recognition with the refinement strategy.

(a)

(b)

Figure 3.12.: Estimated STM Φ̂(t) without the refinement strategy (3.12(a)) and with refine-
ment strategy (3.12(b)) from 0s to 200s. The number 1©, and 2© indicate the
active modes. Meanwhile, the Φ̂(t) before 2s are nonexistent due to insufficient
data for their calculation.

61



3 Online Identification of Continuous-Time Piecewise Affine Systems

3.4. Summary
The major concern of this chapter is the online identification of continuous-time PWA sys-
tems in state-space form. Taking into consideration the formulation of the continuous-time
PWA system, we decompose the identification task into three sub-tasks: recognition of the
active mode, estimation of the subsystem parameters, and identification of the polyhedral
partitions. Then, we propose a novel approach to cope with the online identification of
continuous-time PWA systems.
For the first sub-task, we propose an online algorithm to detect switching and recognize

the active mode. The algorithm is evolved from the defined delay error, i.e, the error between
the current and previous states. The active mode recognition is then accomplished by ana-
lyzing the dynamics of the delay error which is excited by an appropriately designed input
signal. Moreover, there is an unavoidable delay between the occurrence of switching and the
correct recognition of active mode since the confirmation of the new active mode requires
sufficient information from the new subsystem. To guarantee the precision of the subsys-
tem identification, the active mode during the delay is manually assigned as zero and the
corresponding state-input vectors are skipped in the subsystem identification. In addition,
we discuss the extreme situations that lead to the unrecognized active modes and provide a
refinement strategy to handle the situations. The first sub-task is heretofore accomplished.
According to the recognized active mode, the generalized I-CL identifier is derived to

identify the parameters of each subsystem. In the identifier, we impose the Luenberger-
observer for each subsystem to predict the states. In order to ensure the stability of the
hybrid system with the multiple-Lyapunov-functions concept, the predicted state of inactive
subsystems needs to be reset and kept equal to the actual state measurements, i.e., state-
reset mechanism. The update law for the parameters of each subsystem is then designed
based on the predicted states. Stability of the update law is ensured by Lyapunov analysis,
while the convergence is guaranteed under the assumption of integrated history stacks.
Subsequently, the third sub-task is accomplished by optimizing the proposed cost func-

tion while knowing the switching sequence and the estimated subsystem parameters. The
optimization can be summarized as searching for the optimal switching instants such that
the state error is minimized. The state-input vectors before and after the optimal switching
instants are then extracted to estimated the polyhedral partitions.
Following the description of the proposed method, we do a series of simulations to verify

the effectiveness of our method. The first and second simulations show the capability of the
proposed method via a numerical experiment and a WMR system, respectively. Then, the
performances of the refinement strategy to handle the extreme situations are illustrated in
the third simulation. In addition, the proposed framework is generalized while identifying
other continuous-time hybrid systems with linear/affine subsystems, such as PWL systems,
SLSs, and PWA systems. The proposed active mode recognition algorithm identifies their
discrete dynamics behaviors while the generalized I-CL identifier confirms their continuous
ones. Note that the limitation of identifying the linear/affine hybrid systems is caused by
the delay errors in the proposed active mode recognition algorithm.
In summary, we propose a novel framework for online identification of continuous-time

PWA systems, including the number of subsystems, parameters of each subsystem, and
polyhedral partition of each subsystem. The effectiveness of the approach is verified in the
extensive simulations.
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Online Identification of Switched
Nonlinear Systems 4.

In this chapter, we describe the enhanced framework for the online identification of switched
nonlinear systems. The dynamics of the SNSs are decided by the nonlinear subsystem
and the switching signals. Thus, the main challenge of the online identification framework
is how to handle the estimation of these nonlinear subsystems. The framework for the
online identification of continuous-time SNSs includes the switching signal estimation and the
subsystem identification. The switching signal estimation is decomposed into the switching
detection and the active mode recognition tasks, which are accomplished via the proposed
algorithm. Meanwhile, the identification of subsystems not only requires to obtain the
parameters but also their model structures. Therefore, we use the modified I-CL identifier
to update the subsystem parameters and propose a refinement strategy to realized the MSS
of the nonlinear subsystems.

4.1. Introduction to Switched Nonlinear Systems and
Problem Formulation

The switched nonlinear system is a representative class of hybrid system, whose dynamics is
determined by the nonlinear subsystems and the switching signal. Compare to PWA systems,
the SNSs require fewer subsystems to describe a complex system, whereas their nonlinear
subsystems are more complicated. In some scenarios, the small number of local subsystems
greatly alleviates the computational complexity of identifying these complex systems. In
addition, nonlinear hybrid systems in the state-space form are more intuitive to depict the
internal states of the systems so as to design the corresponding control strategies.

4.1.1. Continuous-Time Switched Nonlinear Systems
The continuous-time switched nonlinear systems in state-space form are defined as follows

ẋ(t) =


f1(x(t),u(t)), if σ(t) = 1,

... ...
fs(x(t),u(t)), if σ(t) = s,

(4.1)

where x ∈ Rnx , u ∈ Rnu are the state and input vectors, respectively. σ(t) ∈ {1, 2, . . . , s} is
the switching signal that determines the sequence of activation among s subsystems. Corre-
spondingly, each nonlinear subsystem fi(·) can be expressed as a linear combination of basis
functions ϕj(x(t),u(t)), j = 1, . . . ,nb with the respective parameter vectors κi,1, . . . ,κi,nb

[91],
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4 Online Identification of Continuous-Time Switched Nonlinear Systems

i.e.,

fi(x(t),u(t)) =
nb∑
j=1

κi,jϕj(x(t),u(t)), (4.2)

where κi,j ∈ Rnx . For the sake of convenience, we use the notation ϕj to represent the j-th
basis function. Then, the i-th nonlinear subsystem can be written as the following matrix
form

ẋ(t) = fi(x(t),u(t)) = ΘT
i ψ(t), (4.3)

where all basis functions are collected in the regression vector ψ(t) = [ϕ1, . . . ,ϕnb
]T ∈ Rnb

and the corresponding parameter vector Θi = [κi,1, . . . ,κi,nb
]T ∈ Rnb×nx .

Typical basis functions are the linear basis function, Gaussian radial basis function, and
polynomial basis function, which are selected based on the application scenarios [92, 93].
Without loss of generality, let the first nx basis functions be the nx entries of x, i.e., ψ(t) =
[xT(t),ϕnx+1, . . . ,ϕnb

]. This is a technical transformation regardless of the identification
results. If the entries of the state x are not contained in the nonlinear subsystem, the
corresponding parameters will converge to 0 in the identification procedure.

4.1.2. Problem Formulation and State of the Art Limitations
Following the re-written formulation of the nonlinear subsystems, the identification problem
of the switched nonlinear system is now presented as follows.

Problem 3. Given a group of basis functions ϕj, j = 1, . . . ,nb, input signal u, and measured
state x in the switched nonlinear system (4.1), design an online algorithm such that estimates
of the number of subsystems s, switching signal σ(t), parameters of each subsystem Θi are
guaranteed to converge to the true values.

In the last decades, switched nonlinear systems and the corresponding control methods
have drawn considerable attention among various hybrid systems due to the ability of mod-
elling practical systems [94–97]. The identification of switched nonlinear systems has been
extensively studied as the foundation of analyzing and controlling these systems [98–100].
In the last few decades, the identification of linear or affine hybrid systems has been spot-

lighted due to their universal approximation properties and simple interpretations [49,101].
However, the satisfying accuracy of describing the complex systems with linear or affine
hybrid systems is generally built on the high number of local subsystems (and switchings
among them) [26]. Consequently, the computational complexity of the identification meth-
ods greatly aggravates along with the increasing number of switchings. In addition, the
identified linear or affine hybrid models prevent describing the intrinsic mechanism of the
complex systems and hinder their physical interpretations [45]. Therefore, the identification
of switched nonlinear systems has received considerable attention in these years.
For the switched nonlinear system identification, the majority of the works concentrate

on handling the discrete-time switched nonlinear systems in input-output form, especially
the switched nonlinear autoregressive exogenous (ARX) models [91, 102–105]. In the paper
of Lauer [102], the identification of hybrid nonlinear ARX systems is recast as an uncon-
strained nonlinear continuous optimization problem and solved efficiently by using standard
optimization methods. Breschi employs a probabilistic framework using categorical and
Bernoulli distributions to identify the switched nonlinear ARX systems [104]. Very recently,
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a new methodology named hybrid-sparse identification of nonlinear dynamics is developed
to identify separate nonlinear dynamical regimes by imposing information theory [105]. Nev-
ertheless, the nonlinear hybrid models in the state-space form are more intuitive to depict
the internal states of the systems so as to design the corresponding control strategies [44].
Furthermore, as pointed out by Garnier [25], direct identification of continuous-time mod-
els based on sampled data can outperform the discrete-time models in case of rapidly or
irregularly sampled data.
From another perspective, the aforementioned identification methods for switched nonlin-

ear systems are offline, which suffer from high computational costs owning to the increasing
number of samples. In order to solve this problem, an attempt to deal with switched non-
linear system identification recursively is reported in the paper of Bianchi [91]. This paper
introduces an iterative randomized approach for the segmentation of time-ordered data ob-
served from switched nonlinear ARX (SNARX) models. The iterative procedure is only
adopted to refine the switching instants from an initial guess. In fact, the approach still
offers an offline algorithm in each segmentation and the reduction of the combinatorial com-
plexity is limited. Meanwhile, The paper of Goldar proposes a concurrent learning based
identification method for the continuous-time switched nonlinear systems [74]. However, it
is not a strictly online identification method due to the assumption that the switching signal
is known. In general, online identification methods are capable to identify the switching sig-
nal and handle the data in sequence, which is more efficient than offline methods. Besides,
the online identification method for switched nonlinear systems is also the foundation of
adaptive control. The adaptive control is a control method that using the controller which
must adapt to a controlled system [106–108]. It is widely used to control the nonlinear
or linear systems with varying parameters and initially uncertain [109], especially for air-
craft flies [110–112]. In this regard, we focus on the online identification approach for the
continuous-time switched nonlinear systems in state-space form.
It is worth noticing that most works for the online identification of continuous-time affine

hybrid systems are realized via the concurrent learning technique [44,73,74]. The concurrent
learning technique can be summarized as using the recorded and current data concurrently
for adaption in the framework of model reference adaptive control. The technique is espe-
cially promising in the field of online continuous-time affine hybrid systems identification due
to providing a continuous adaptation regardless of which subsystem is activated. However,
the main drawback of concurrent learning technique, i.e., the necessity of state derivatives,
is also inherited by these works. A novel integral concurrent learning method is presented
that circumvents the drawback while maintaining parameter convergence properties, which
is limited to the adaptive control of the linearly parameterized systems [75]. In this chap-
ter, we concentrate on extending the integral concurrent learning method to achieve the
identification of continuous-time switched nonlinear systems.

4.2. Enhanced Framework for Online Identification of
Continuous-Time SNSs

In this section, we propose a novel framework for the online identification of continuous-time
switched nonlinear systems in state-space form. The number of subsystems, the switching
sequence, and the nonlinear subsystems are identified through the proposed framework. The
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identification framework consists of the algorithms for the switching signal estimation, and
the subsystem identification. In addition, we design the refinement strategy for the model
structure selection (MSS) to improve the proposed framework. Note that the employment
of the MSS strategy is optional. The overview of the framework is illustrated through the
following block diagram.

Given current and
previous state-input

vectors

Detect the switching
and recognize the active

mode 


Design observers of each
subsystem based on the
recognized active mode 

Update the subsystem
parameters with the

observers

Obtain the estimated
subsystem parameters

Select the appropriate model
structure

Design observers of each
subsystem based on the
recognized active mode 

Update the subsystem
parameters with the

observers

Figure 4.1.: The overview of the proposed online identification framework. The different
color blocks indicate different stages in the proposed framework. The dotted
line block implies the optional strategy.

Specifically, A theorem based on the projection matrix in statistics is introduced to address
the identification of the number of subsystems and the switching sequence. Derived from the
theorem, an online algorithm is designed to estimate the active mode, and the estimation
of subsystems number is also hinged on the algorithm. Following the estimation of the
active mode, the integral concurrent learning method is extended to identify the nonlinear
subsystem, whose convergence proof is provided in the section. The extended identifier also
retains the advantage of the traditional integral concurrent learning method, i.e., removing
the need to estimate state derivatives [75]. Additionally, a refinement strategy for MSS
is introduced to improve the efficiency of the proposed approach. The strategy can be
integrated into the active mode estimation algorithm to determine the model structure of
each subsystem before identifying the nonlinear subsystems.
The solution of Problem 3 is presented in the following sections. Specifically, the identi-

fication procedure for the switched nonlinear system comprises two stages. The first stage
(Section 4.2.1) is proposed to estimate the switching signal σ(t), including the tasks of
switching detection and mode recognition. To achieve the objective, the dwell time, being
the time between consecutive switchings, is required to satisfy the following assumption in
the identification.

Assumption 3. The switching signal causes repeated activation of all subsystems. In
addition, there exists a positive τ∆ such that the minimum dwell time fulfills τdwell > τ∆.

The delay between the switching occurrence and the correct active mode recognition is
unavoidable conforming to the designed algorithm in the first stage. Therefore, Assumption
3 for minimum dwell-time should be fulfilled, where τ∆ is the time required to recognize
the active mode correctly. Note that the value of τ∆ will be stated later. Following the
estimated switching signal σ̂(t) from the first stage, the integral concurrent learning identifier
is extended to identify the parameters of each subsystem in the second stage (Section 4.2.2).
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4.2.1. Switching Signal Estimation
In this section, we propose the recursive algorithm for estimating the switching sequence,
including the switching detection and active mode recognition. The algorithm is inspired by
the data-driven projection subspace method and the principle is to generate the residual as
the mode switching indicator [89]. Compare to the original projection subspace method for
discrete-time systems, the proposed method is designed for continuous-time systems. Mean-
while, the assumption of the state matrix A is relaxed according to the equation (4.3) [113].
Before introducing the algorithms, it is worth noticing that the modes of switched nonlinear

systems are required to be discernible. Indeed, if two modes are not discernible, it is not
possible to determine which one is active and estimate the switching signal. The definition
of discernability is stated as follows [89].

Definition 4. Two modes i, j are discernible for all inputs in a time interval [0,T ] (T > 0),
if for all initial states and for the same input applied in the modes i and j, the states x in
the two modes i and j are different.

In the algorithm, the sampling matrices comprised by the regression vectors ψ(t) are the
foundation. For a time sequence ti1 , ti2 , . . . , tiN that satisfying σ(τ) = i, ∀τ ∈ [max(tij −
∆t, 0), tij ], where ∆t ∈ R+ is the size of integration window, the following sampling matrices
are obtained

Υi =
[
δ(ti1) δ(ti2) . . . δ(tiN )

]
∈ Rnx×N ,

Φi =
[
φ(ti1) φ(ti2) . . . φ(tiN )

]
∈ Rnb×N ,

(4.4)

where
δ(t) = x(t)− x(max(t−∆t, 0)),

φ(t) =
∫ t

max(t−∆t,0)
ψ(τ)dτ .

(4.5)

The matrices Φi and Υi are formed by the inputs and outputs of the integrated equation
(4.3), i.e., φ and δ, respectively. Following the sampling matrices, we acquire the crucial
prerequisite for the switching detection and active mode recognition, i.e., Υi = ΘT

i Φi. Addi-
tionally, the difficulties of measuring the state derivatives are avoided.
The sampling matrix Φi is prescribed to obtain nb linearly independent vectors, i.e., the

number of independent rows of matrix is fewer than its number of independent columns. This
condition can be achieved easily by assigning a large sampling size N such that N � nb.
It is obvious that the matrix ΦiΦT

i is invertible while Φi is full row rank and the inverse of
matrix ΦiΦT

i is denoted by Gi.
Subsequently, we append the current error state δ(t) and the current integrated basis

function φ(t) into the corresponding sampling matrices and obtain

Υ(t) =
[
Υi δ(t)

]
, Φ(t) =

[
Φi φ(t)

]
. (4.6)

Then, the projection matrix is formulated as Π(t) = I − ΦT(t)
(
Φ(t)ΦT(t)

)−1
Φ(t) and the

condition Υ(t)Π(t) = 0 is fulfilled while the current δ(t) and φ(t) are also generated by the
i-th subsystem. Thus, we define the last column vector of the matrix Υ(t)Π(t) as follows

ε(t) = δ(t)−ΥiΦT
i M(t)φ(t)− δ(t)φT(t)M(t)φ(t), (4.7)

67



4 Online Identification of Continuous-Time Switched Nonlinear Systems

where

M(t) = Gi −
Giφ(t)φT(t)Gi

1 + φT(t)Giφ(t) . (4.8)

The residual ε(t) ∈ Rnx is the current residual that reveals whether the switching occurs
at time t or not. Following the definition of ε(t), the following theorem is proposed for the
switching detection.

Theorem 4. Suppose that all the inputs are nonzero. For the current time t, if the active
modes are fixed during [t−∆t, t], i.e., σ(τ) = i,∀τ ∈ [t−∆t, t] where i = 1, 2, . . . , s, then
the residuals fulfills

ε(τ) = 0,∀τ ∈ [t−∆t, t]. (4.9)

Otherwise, ∃τ ∈ [t−∆t, t] such that ε(τ) 6= 0

Proof. By integrating the equation (4.3), the sampling matrices Θi and Φi satisfy

Υi = ΘT
i Φi. (4.10)

Meanwhile, if the current integrated state vector and regression vector are also generated by
the i-th subsystem, then

Υ(t) = ΘT
i Φ(t), (4.11)

where

Υ(t) =
[
Υi δ(t)

]
, Φ(t) =

[
Φi φ(t)

]
. (4.12)

By the formulation of projection matrix and the equation (4.11), the following condition
holds:

Υ(t)Π(t) = ΘT
i Φ(t)Π(t) = 0, (4.13)

where

Π(t) = I − ΦT(t)
(
Φ(t)ΦT(t)

)−1
Φ(t). (4.14)

Denote M(t) =
(
Φ(t)ΦT(t)

)−1
. According to lock matrix multiplication rules and Sher-

man–Morrison–Woodbury formula [114], we have

M(t) =
(
Φ(t)ΦT(t)

)−1
= Gi −

Giφ(t)φT(t)Gi

1 + φT(t)Giφ(t) . (4.15)
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Then, the equation (4.13) can be rewritten as

Υ(t)Π(t)
= Υ(t)

(
I − ΦT(t)M(t)Φ(t)

)
= Υi(t)

(
I −

[
Φi φ(t)

]T
M(t)

[
Φi φ(t)

])

= Υ(t)

I −
 ΦT

i

φT(t)

M(t)
[
Φi φ(t)

]

= Υ(t)

I −
 ΦT

i M(t)Φi ΦT
i M(t)φ(t)

φ(t)TM(t)Φi φ(t)TM(t)φ(t)




= Υ(t)−
[
Υi δ(t)

]  ΦT
i M(t)Φi ΦT

i M(t)φ(t)

φT(t)M(t)Φi φT(t)M(t)φ(t)


= Υ(t)−

[
ΥiΦT

i M(t)Φi + δ(t)φT(t)M(t)Φi |

ΥiΦT
i M(t)φ(t) + δ(t)φT(t)M(t)φ(t)

]
.

(4.16)

Later, we define ε(t) as the last column of the matrix Υ(t)Π(t), i.e.,

ε(t) = δ(t)−ΥiΦT
i M(t)φ(t) + δ(t)φT(t)M(t)φ(t). (4.17)

The residual ε(t) represents the current information of the projection of Υ(t) on Π(t). If
σ(τ) = i,∀τ ∈ [t − ∆t, t], ε(t) is a zero vector according to the equation (4.13) under
noiseless condition.
On the contrary, if the switching occurs at t̂ ∈ [t−∆t, t] and the mode switches from i to

j, the equation (4.13) is now transformed into

Υ(t)Π(t) = ΘT
i

[
Φi

∫ t̂
t−∆t ψ(τ)dτ +

∫ t
t̂ ψ(τ)dτ

]
Π(t)

+ (ΘT
j −ΘT

i )
[
0 . . . 0

∫ t
t̂ ψ(τ)dτ

]
Π(t)

= ΘT
i Φ(t)Π(t)

+ (ΘT
j −ΘT

i )
[
0 . . . 0

∫ t
t̂ ψ(τ)dτ

]
Π(t)

= (ΘT
j −ΘT

i )
[
0 . . . 0

∫ t
t̂ ψ(τ)dτ

]
Π(t).

(4.18)

Then, the last column of the matrix Υ(t)Π(t) is

ε(t) = hNN(t)(ΘT
j −ΘT

i )
∫ t

t̂
ψ(τ)dτ

= hNN(t)
(
x(t)− x(t̂)− xi(t) + x(t̂)

)
= hNN(t) (x(t)− xi(t)) ,

(4.19)
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where
hNN(t) = 1− φ(t)TM(t)φ(t), (4.20)

and x(t) and xi(t) implies the current state and the state at t if no switching occurs, re-
spectively. Consider the assumption that the modes of the switched nonlinear system are
discernible, the following condition holds:

x(t)− xi(t) 6= 0. (4.21)

Therefore, whether the residual ε(t) is a zero vector is determined by hNN(t), the last diagonal
element of Π(t). The residual fulfills ε(t) 6= 0 as long as hNN(t) 6= 0. Considering the
formulation of projection matrix Π(t), it can be regraded as the residual maker matrix in
the least squares regression of ΥT(t) on ΦT(t) in statistics [115].
Subsequently, let us assume that hNN(t) = 0 at first. It is obvious that the matrix

Π(t) is both symmetric
(
Π(t) = ΠT(t)

)
and idempotent (Π(t) = Π2(t)) conforming to the

equation (4.14). Thus, all entries in the last row and column of Π(t) are zeros as long as
hNN(t) = 0. Since Π(t)ΥT(t) are the residuals in the least squares regression of ΥT(t) on
ΦT(t), it is clear that the entries of last row of ΥT(t), i.e, δT(t) are perfect fit on the last row
of ΦT(t), i.e., φT(t) in the linear regression and every residual is zero [115].
Under the noiseless condition, the matrix Φi and Υi are the perfect fit for each other in the

linear regression for the reason that they are generated by the same subsystem. However, the
parameters between the vectors φT(t) and δT(t) are different from the parameters between
Φi and Υi. Therefore, a perfect fit for the entries of δT(t) and φT(t) in the regression is
impossible under noiseless condition. Hence, the condition hNN(t) 6= 0 is satisfied while
switching occurs.
In summary, the following condition holds:

ε(t) 6= 0, (4.22)

while the switching occurs and the residual ε(t) can be employed as a criterion for switching
detection.

Theorem 4 endeavors to provide a criterion ε(t), which varies with the occurrence of
switching, for the switching detection. According to the equation (4.19), the value of ε(t)
is affected by hNN(t), the last diagonal element of Π(t). Clearly, the value of ε(t) and
hNN(t) are non-zero while switching occurs under the noiseless condition. However, in real
applications, the measured states are corrupted by noises, which may result in hNN(t) = 0
while switching occurs in an extreme case. It is unlikely but not impossible. Even though,
we can still handle it by monitoring hNN(t) in advance via equation (4.20) and skip the mode
recognition procedure by assigning the active mode to 0 while hNN(t) = 0.
It is inapplicable to directly detect switching by judging whether ε(t) equals zero in real

applications. It follows that the measured states and inputs are generally corrupted by
noises. According to the proof, if no switching occurs, the residual ε(t) follows E[ε] ≈ 0
while the measurement noise is zero-mean Gaussian noise. Note that E[·] represents the
mathematical expectation.
Therefore, the switching detection task turns into detecting a mean change in the residual,

which can be solved via finite moving average algorithm (FMA) [116]. The outline of the
FMA algorithm is calculating the mathematical expectation of residual in a window and
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comparing it with a pre-defined threshold. The FMA algorithm depends on two coefficients:
a window size η for mathematical expectation computation and a threshold vector ζ ∈ Rnx

for comparison. The work of Zouari provides us the standard for choosing the window size
η and the threshold ζ for switching detection [88]. The window size of FMA is chosen as
η = N · ts. The threshold ζ is set based on data-driven residuals generation for each mode,
which is given by

ζ[j∗] = 0.9
√

var[ε[j∗]], j = 1, 2, . . . ,nx, (4.23)

when the active mode is fixed in the time window [t − η, t]. In Equation (4.23), var[ε[j∗]]
denotes the variance of the j-th entries of ε in the window. Note that ζ[j∗] and ε[j∗] in the
equation denote the j-th entry of the vectors ζ and ε, respectively. There are still some other
standards for choosing the threshold and window size η and other methods for the mean
change detection. However, we do not concentrate on the mean change detection in our work.
We only select a feasible and convenient method to achieve it. The FMA method [116,117]
is adopted here only for the sake of ease in implementation and its effectiveness in detecting
small shifts in the mean.
Subsequently, Algorithm 4 is proposed to detect switching and recognize the active mode

based on Theorem 4.
In Algorithm 4, a fixed sampling interval ts is used to generate the sampling matrices

and ti1 ∼ tiN of the equation (4.4) are assigned specific values. For instance, the sampling
matrices of the first subsystem fulfill t11 = t0 − (N − 1)ts, t12 = t0 − (N − 2)ts, . . . , t1N

= t0.
Note that the choices of ts and N only need to fulfill that there are nb linearly independent
vectors in Φi, which can be realized without effort. After obtaining the sampling matrices,
the expectation of the residual E[ε] is computed for switching detection. It is worth noticing
that E[ε] in Algorithm 4 is the expectation in window [t− η, t].
Indeed, another challenge for designing the algorithm is how to determine whether the

active mode after switching is a new one or a repetitive one. To achieve this, the sampling
matrices are recorded from the subsystems whose modes have already been recognized, i.e.,
Υi and Φi for i = 1, 2, . . . ŝ in the algorithm (see line 18 in Algorithm 4). Note that ŝ is
the number of subsystems whose modes have been recognized. Subsequently, for each i, we
calculate the residual εi corresponding to Υi and Φi with the vectors φ(t) and δ(t) which
are generated by the current subsystem (see line 12 in Algorithm 4). If the expectation of
the residual in the window fulfills E[εi] < ζ, the current subsystem is a repetitive one and
the active mode is i. Otherwise, the current subsystem is a new one and the corresponding
sampling matrices will be stored as well. Eventually, the switching signal mode σ̂(t) is
estimated online by implementing Algorithm 4.
In Algorithm 4, there is a delay τ∆ = Nts+∆t+η between the occurrence of switching and

the correct estimation of the active mode. For instance, if the i-th subsystem is activated at
time instant tj, the active mode is estimated as i at the time instant tj + τ∆ via Algorithm
4. Therefore, we set the estimated active mode σ̂ as zero during this delay period and the
corresponding regression vectors are not applied in the estimation of subsystem parameters.
In addition, the delay is exactly the time required to recognize the active mode correctly in
Assumption 3. It follows that the minimum dwell time needs to satisfy τdwell > τ∆. Consider
the effect of delay τ∆, the stage of estimating the subsystem parameters will be skipped
during the interval (tj, tj + τ∆) since the active mode is zero, i.e., σ̂(t) = 0, ∀t ∈ (tj, tj + τ∆).
Therefore, the identification procedure is less time-consuming if we choose a small ts, η, and
∆t. Fortunately, the identification results remain the same regardless of the choice of ts, η,
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and ∆t due to the recursive estimation of the subsystem parameters.

4.2.2. Estimation of Subsystem Parameters
In this section, we focus on the online identification of each subsystem and propose the ex-
tension of integral concurrent learning adaptive identifier. The original method was firstly
documented for adaptive control of linear systems [75]. In the section, the original method
is extended to accomplish the identification of switched nonlinear systems. In the proposed
identifier, we design the state observer for each subsystem and impose the state-reset mech-
anism to achieve the identification. Before introducing our identifier, we firstly define the
integrated history stacks.

Algorithm 4 Recognition of Active Mode
Input: integration window size ∆t, sampling interval ts, sampling size N , window size η.
Output: The estimated number of subsystems ŝ, estimated active mode σ̂(t), and sequence

of switching instants Tsw.
1: Let ŝ = 1, σ̂ = 1,j = 0, τ∆ = Nts + ∆t+ η, Flag=True, Tsw = ∅.
2: Υ1 = [δ(t0 − (N − 1)ts), . . . , δ(t0 − ts), δ(t0)]
3: Φ1 = [φ(t0 − (N − 1)ts), . . . ,φ(t0 − ts),φ(t0)]
4: Set the threshold ζ with the computed ε in the window [t0 − η, t0]
5: 〈Model structure selection via the refinement strategy (Section 4.2.3)〉
6: while t ≥ t0 do
7: if E[ε] ≥ ζ and Flag is True then
8: j ← j + 1, σ̂ = 0;
9: tj ← t, Tsw ← Tsw ∪ t, Flag←False;

10: end if
11: if t ∈ (tj, tj + τ∆) then
12: σ̂ ← 0;
13: else if t = tj + τ∆ then
14: Calculate the residual εi(t) with respect to Υi and Φi for i = 1, . . . , ŝ.
15: if ∃E[εi] < ζ for i = 1, 2, . . . , ŝ then
16: σ̂ ← i;
17: else
18: σ̂ ← ŝ+ 1;
19: Υσ̂ = [δ(t− (N − 1)ts), . . . , δ(t− ts), δ(t)]
20: Φσ̂ = [φ(t− (N − 1)ts), . . . ,φ(t− ts),φ(t)]
21: 〈Model structure selection via the refinement strategy (Section 4.2.3)〉
22: ŝ← ŝ+ 1;
23: end if
24: Flag←True
25: end if
26: Identify the subsystems according to σ̂(t) (Section 4.2.2)
27: end while
28: Return: ŝ, σ̂(t), and Tsw
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Definition 5. The q-element (q ∈ N+) integrated history stack of subsystem i is defined as

Hi = [φ(ti1),φ(ti2), . . . ,φ(tiq)], (4.24)

where tik is the k-th recorded time instant while the i-th subsystem is active, and

σ(τ) = i for τ ∈ [tik −∆t, tik ],∀k = 1, . . . , q. (4.25)

The integrated history stacks Hi, i = 1, 2, . . . , s are composed by the recorded integrated
regression vectors, whose integration window size ∆t is generally user-defined. In the ex-
tended integral concurrent learning adaptive identifier, the elements of each integrated his-
tory stack are selected such that there exist nb linearly independent vectors. This requirement
guarantees that sufficient information for the identification is contained in the integrated his-
tory stacks. Also, it provides a relaxed PE condition to ensure the convergence of estimated
parameters.

Remark 5. Consider the demands of the integrated history stacks in Definition 5, the sam-
pling matrix Φi is perfectly suitable to be the integrated history stack of the i-th subsystem
for the proposed identifiers. Therefore, we directly employ Φi as the integrated history stacks
for the i-th identifier in our approach, i.e. Hi = Φi and q = N .

As aforementioned, the entries of x are involved in the regression vector ψ through a
technical transformation. Hence, the i-th nonlinear subsystem can be transformed into

ẋ = Aix+ ΘT
i ψ, (4.26)

where
Θi =

[
Ai ΘT

i

]T
, (4.27)

ψ =
[
xT ψ

T
]T

, (4.28)

and the parameters Ai ∈ Rnx×nx and Θi ∈ R(nb−nx)×nx . The vector ψ ∈ R(nb−nx) is obtained
by extracting the state vector x(t) from regression vector ψ(t).
According to the equation (4.26), we design a state observer to predict the states of the

i-th subsystem
˙̂xi = Amx̂i + (Âi − Am)x+ Θ̂

T
i ψ, if σ̂(t) = i, (4.29)

where Âi ∈ Rnx×nx and Θ̂i ∈ R(nb−nx)×nx are the estimated parameters. Am ∈ Rnx×nx is a
stable (Hurwitz) matrix which guarantees x̂i does not diverge. It follows that there always
exists a symmetric, positive definite P ∈ Rnx×nx satisfying

AT
mP + PAm = −Qe, (4.30)

where Qe ∈ Rnx×nx is a positive definite matrix [118]. Generally, the initial state in the
observer is set as a null vector.
By the designed state observer (4.29), the i-th prediction error is defined as ei = x̂i − x.

The update law for the i-the estimated parameter is built on ei. Meanwhile, the prediction
error ei is unrelated to the estimation process while the i-th subsystem is inactive. Thus,
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we impose the discrete state reset mechanism to deal with the inactive situation [44]. The
predicted state x̂i is reset and set equal to the true state x while the corresponding subsystem
is inactive, i.e.,
Figure 3.3 illustrates the state reset and shows how the state prediction for the i-th

subsystem pauses while σ̂(t) 6= i. The state reset ensures that the prediction error ei = 0
while the i-th subsystem is inactive. In other words, the information from other subsystems
is unrelated to the estimation of the i-th subsystem parameters.
In order to obtain a unified update law, the estimated and true parameters are recon-

structed into vectors. We denote

θi =
[
vec (Ai)T vec (Θi)T

]T
∈ Rnbnx , (4.31)

θ̂i =
[
vec (Âi)T vec (Θ̂i)T

]T
∈ Rnbnx . (4.32)

Besides, we introduce the gain matrix for the update law

Ψ = ψ ⊗ Inx , Γ =

γ1Inxnx 0

0 γ2I(nb−nx)nx

 (4.33)

where γ1, γ2 ∈ R+ are the gain. Moreover, Inx , Inxnx and I(nb−nx)nx are identity matrices
of dimension nx, nxnx and (nb − nx)nx, respectively. Consequently, the update law of the
extended integrated concurrent learning identifier for the switched nonlinear system identi-
fication is designed as follows.

Theorem 5. Consider the switched nonlinear system (4.1) with the estimated active mode
σ̂(t). Let the states of each subsystem be predicted with the corresponding observer (4.29).
Then, the update law of the i-th subsystem

˙̂
θi = −ΓΨPei + kCL

2 Γ
N∑
k=1
Y(tik)

(
δ(tik)− YT(tik)θ̂i

)
, (4.34)

where for any k = 1, . . . ,N ,
Y(tik) = φ(tik)⊗ Inx , (4.35)

ensures that ei converges to zero exponentially and the estimated parameters θ̂i converge to
the true parameters θi. In the equation (4.34), kCL ∈ R+ is the gain and Inx is the identity
matrix of dimension nx.

Proof. The proof for theorem 5 is similar to the proof of theorem 4. Therefore, we only
provide a brief version in this proof and spotlight the differences while proving Theorem 5.
In the proof, we also neglect the index i (i.e. Y(t) , Yi(t) or θ , θi)
By recalling the definitions of θ in the equation (4.31), the state equation of one subsystem

of the switched nonlinear system is written as

ẋ = (ψ ⊗ Inx)Tθ. (4.36)
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Integrating the equation (4.36) yields
∫ t

max(0,t−∆t)
ẋ(τ)dτ =

∫ t

max(0,t−∆t)
(ψ(τ)⊗ Inx)Tθdτ

=
(∫ t

max(0,t−∆t)
ψ(τ)dτ ⊗ Inx

)T

θ.
(4.37)

Then, substituting (4.5) into (4.37), we obtain

δ(t) = (φ(t)⊗ Inx)Tθ = YT(t)θ. (4.38)

With the equation (4.38), the update law of the subsystem takes the form

˙̂
θ = −ΓΨPe+ kCL

2 Γ
N∑
k=1
Y(tk)

(
δ(tk)− YT(tk)θ̂

)

= −ΓΨPe− kCL

2 Γ
N∑
k=1
Y(tk)YT(tk)θ̃,

(4.39)

where
θ̃ = θ̂ − θ. (4.40)

Additionally, the derivative of the prediction error for the active subsystem along the equa-
tions (4.26) and (3.31) is given by

ė = ˙̂x− ẋ = Ame+ (Â− A)x+ (Θ̂−Θ)Tψ

= Ame+ ΨTθ̃,
(4.41)

where
Ψ = ψ ⊗ Inx . (4.42)

Consider the same quadratic candidate Lyapunov function used in the proof of Theorem2

V =
[
eT θ̃T

] P 0

0 Γ−1


e
θ̃

 . (4.43)

In light of the equations (4.39) and (4.41), the time derivative of V yields

V̇ = ėTPe+ eTP ė+ ˙̃θTΓ−1θ̃ + θ̃TΓ−1 ˙̃θ
= −eTQee− θ̃TQθθ̃,

(4.44)

where Qe = −(AT
mP +PAm) and Qθ = kCL

∑N
k=1 Y(tk) YT(tk). It is obvious the formulation

of V̇ is similar to the equation (4.44). Therefore, the successive proof is also similar to the
proof of Theorem 2, which will not be presented in detail here. In summary, the state error
ei and the estimation error θ̃i of parameters for i = 1, 2 . . . s converge to zero exponentially.
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The update law (4.34) is constructed by two terms. The first and second terms are
based on the prediction error ei and integrated history stack Φi, respectively. While the
i-th subsystem is activated, both of them are effective to update the estimated parameters.
On the other hand, the estimated parameters are also updated by the second term while
the i-th subsystem is inactive and ei = 0. Thus the current and recorded data are used
simultaneously in the update law. The update law is beneficial to the switched system
identification since the estimated parameters of each subsystem are updated regardless of
the activation condition.

Remark 6. In the extended integral concurrent learning identifier, the convergence rate
of the parameters is determined by the minimum eigenvalues of Qθ (See Proof). It is thus
intuitive to update the integrated history stack such that the minimum eigenvalue ηmin of
Qθ is maximized, as this maximizes the rate of convergence. The strategies for updating
the integrated history stack are mature and have been widely used [44, 119]. They can be
summarized as replacing each column vectors of Φi and re-calculate the minimum eigenvalue
of ∑N

k=1 φ(tik)φ(tik)T. Then, among the original and replaced integrated history stack, the
one that corresponds to the maximum λmin is the new integrated history stack. However, the
update strategy for history stacks owns a heavy computational burden, especially when the
regression vector is high dimensional. In fact, the parameter convergence is still maintained
even if the integrated history stack is not updated. The update strategy is only proposed
to improve the convergence rate of the identification. Therefore, the adoption of the update
strategies in our approach is flexible considering the number of basis functions.

4.2.3. Refinement Strategy for Model Structure Selection
In the proposed identification approach, the regression vectors which are generated based
on the basis functions participant in the whole procedure. Although the choice of basis
functions for the switched nonlinear system is important for identification, it is not the main
concern of our dissertation. In fact, the limitation of the proposed approach is that the
nonlinear terms of the system must be included in the selected basis functions. Therefore,
we select a vast number of basis functions for the identification in the proposed approach.
The vast number of basis functions guarantee the accuracy, whereas leads to high dimension
regression vectors. Some of the basis functions may be redundant for the system and increase
the computation burden for online identification. The estimated parameters with respect to
the redundant basis functions will also be updated and converge to zero in our approach.
Although the proposed approach is online, the computational burden is still heavy while

the regression vectors are high dimensional. Therefore, we propose a strategy based on
the inputs and states to solve the MSS problem of the nonlinear subsystems. Specifically,
the purpose of MSS is to determine which basis function is redundant and which one is
indispensable for the system to be identified.
In order to reduce the computational burden in high dimensional situation, we present a

theorem for MSS based on the aforementioned sampling matrices Υi and Φi.

Theorem 6. Let Pi denote the term ΦiΦT
i , if the j-th basis function is redundant, then the

residual matrix Rm satisfies

Rm = Υi

(
I − ((Φi)[j̄∗])TGi,j̄(Φi)[j̄∗]

)
= 0, (4.45)
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where

Gi,j̄ =
(
Gi +

(Girj)(eT
j Gi)

1− eT
j Girj

)
[j̄,j̄]

, (4.46)

and
rj = (Pi)[∗j] − ej; (4.47)

Otherwise, S 6= 0.

Proof. In the proof, we assume that no switching occurs while selecting model structure and
neglecting the index i in the proof for sake of convenience, such as Φ = Φi, Υ = Υi,Gj̄ =
Gi,j̄,κj = κi,j.
The inverse of the matrix P[j̄,j̄] = Φ[j̄∗](Φ[j̄∗])T plays an important role throughout the

proof. Therefore, we need to prove that the sub-matrix P[j̄,j̄] is invertible at first. As
aforementioned, P = ΦΦT is invertible, whose inverse matrix is G. If the j-th diagonal
elements of P and G are not null, then P[j̄,j̄] is invertible, whose inverse can be computed via
G [120]. Consider the formulations of P and G, both of them are positive-definite matrices
and the diagonal elements are all positive. Thus, the sub-matrix P[j̄,j̄] is invertible.
According to the inverse of block matrix and the property of elementary transformation,

it is obvious
(P[j̄,j̄])−1 = ((P − rjeT

j )−1)[j̄,j̄], (4.48)

where
rj = (Pi)[∗j] − ej. (4.49)

Then, the inverse of P[j̄,j̄], which is denoted by Gj̄, is computed based on the Sherman-
Morrison formula [121]:

Gj̄ = ((P − rjeT
j )−1)[j̄,j̄] =

(
Gi +

(Girj)(eT
j Gi)

1− eT
j Girj

)
[j̄,j̄]

. (4.50)

We extract the entries which are generated by the j-th basis function from sampling
matrix, i.e., the j-th row of the Φi. Then, the equation (4.10) is transformed into

Υ = (Θ[j̄∗])TΦ[j̄∗] + κjΦ[j∗]. (4.51)

Therefore, if the j-th basis function is redundant, the parameter κj = 0 and it yields

Υ = (Θ[j̄∗])TΦ[j̄∗]. (4.52)

Thus, we denote Rm = Υ
(
I − (Φ[j̄∗])TGj̄Φ[j̄∗]

)
, which is given by

Rm = Υ
(
I − (Φ[j̄∗])TGj̄Φ[j̄∗]

)
= Υ−Υ(Φ[j̄∗])T(Φ[j̄∗](Φ[j̄∗])T)−1Φ[j̄∗]

= Υ− (Θ[j̄∗])TΦ[j̄∗]

= 0.

(4.53)
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On the contrary, if the j-th basis function is indispensable, the matrix Rm takes the form

Rm = Υ
(
I − (Φ[j̄∗])TGj̄Φ[j̄∗]

)
= (Θ[j̄∗])TΦ[j̄∗]

(
I − (Φ[j̄∗])TGj̄Φ[j̄∗]

)
+ κjΦ[j∗]

(
I − (Φ[j̄∗])TGj̄Φ[j̄∗]

)
= κjΦ[j∗] − κjΦ[j∗](Φ[j̄∗])TGj̄Φ[j̄∗].

(4.54)

Since κj ∈ Rnx and Φ[j∗] ∈ R1×N , the only condition that fulfills Rm = 0 is that the vector
(Φ[j∗])T is in the space spanned by the eigenvectors of (Φ[j̄∗])TGj̄Φ[j̄∗], whose eigenvalues are
1.
We define the basis vectors of the eigenspace of (Φ[j̄∗])TGj̄Φ[j̄∗] corresponding to eigenvalues

1 as v1, v2 . . . , vp. Obviously, we have

(Φ[j̄∗])TGj̄Φ[j̄∗]V = V , (4.55)

where
V =

[
v1, v2 . . . vp

]
. (4.56)

Since there exists a matrix Q = Gj̄Φ[j̄∗]V such that (Φ[j̄∗])TQ = V , the column space of
(Φ[j̄∗])T and V satisfy:

Cols((Φ[j̄∗])T) ⊇ Cols(V ). (4.57)

The vector (Φ[j∗])T is the j-th column of ΦT. For the reason that the matrix Φ is full row
rank, the vector (Φ[j∗])T is linear independent to the other columns of ΦT. In other words, the
vector (Φ[j∗])T is not in the column space of (Φ[j̄∗])T. According to the equation (4.56) and
(4.57), the vector (Φ[j∗])T is also not in the eigenspace of (Φ[j̄∗])TGj̄Φ[j̄∗], whose eigenvalues
are 1. Therefore, the matrix Rm 6= 0 as long as the j-th basis function is indispensable.
In summary, the matrix Rm can be employed as a criterion for MSS. If the j-th basis

function is indispensable, the residual matrix Rm 6= 0, otherwise, Rm = 0.

Theorem 6 can be summarized as calculating the corresponding residual with the projec-
tion matrix after deleting either basis function from the nonlinear subsystem. The proposed
theorem provides the criterion Rm for the MSS strategy. In order to apply Theorem 5 to
a practical nonlinear system, we adopt a similar method to FMA for the MSS. According
to Equations (4.16) and (4.53), the residual matrix Rm and residual ε share similar formu-
lations. Indeed, while the j-th basis function is redundant, the column vectors of Rm are
exactly the residuals ε. Therefore, we compute the mathematical expectation of the column
vector of Rm and compare it with the same threshold ζ. The basis function is redundant
if the expectation exceeds the threshold; otherwise, it is indispensable. Note that we adopt
the Sherman-Morrison formula to calculate Gi,j̄, i.e., the inverse of matrix P after deleting
the j-th basis function, for lower computation burden.
The refinement for MSS is introduced to raise the efficiency of the method, whose employ-

ment is determined by the application scenarios. If the number of basis functions is small,
the refinement may not be essential for the identification.
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4.3. Simulation Studies
In this section, a series of simulations are conducted to validate the effectiveness of the
proposed online identification approach. The switched nonlinear system for simulations is
selected as follows:

ẋ1 = f1,σ(t)(x,u),
ẋ2 = f2,σ(t)(x,u),

(4.58)

where
f1,1 = x2 + 0.5u− 0.3x3

1 + 0.4, f2,1 = −2x1 − x2 + 1.5u+ 0.3x3
1,

f1,2 = 0.5u− 0.5x3
1 − 0.3x1x2u, f2,2 = 1.5u− 0.3x3

2 + 0.5x1x2u,
f1,3 = x2 − 0.3x1x2u+ 0.5, f2,3 = −x1 − x2 + 1.5u+ 0.4x1x2u.

(4.59)

In the simulation, the time step is 0.01s and the system is excited by the following input
signal:

u(t) = sin(3t) + 0.5sin(2t)− sin(t). (4.60)

The input signal is designed to be adequately rich both in frequency as well as in amplitude
so that the relaxed PE condition can be easily fulfilled [122]. The switching signal σ(t)
switches every 100s and obeys the switching sequence 1→ 2→ 3→ 1→ . . .. Every state of
the system, i.e., x1, x2, is corrupted by a zero mean Gaussian measurement noise of variance
0.005. Figure 4.2 shows the state space trajectory of the switched nonlinear system (4.58)
excited by the input (4.60) from t = 0s to t = 600s.

subsystem1
subsystem2
subsystem3

Figure 4.2.: State space trajectory generated by the switched nonlinear system (4.58), whose
color represents the corresponding subsystem.

In the simulation, we set the coefficients for Algorithm 4 as: the integration window size
∆t = 0.1s, the sampling interval ts = 0.5s, the sampling size N = 15. The basis functions for
the identification are determined as ϕ1(x,u) = x1, ϕ2(x,u) = x2, ϕ3(x,u) = u, ϕ4(x,u) = 1,
ϕ5(x,u) = x3

1, ϕ6(x,u) = x3
2, ϕ7(x,u) = x1x2u. By implementing Algorithm 4, the active

modes from t = 0s to t = 600s are estimated and depicted in Figure 4.3(b). Meanwhile,
the true active modes are plotted in Figure 4.3(a) for comparison. In Figure 4.3(b), there
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is a short interval whose estimated active mode is zero after every switching. This interval
indicates the delay between the switching occurrence and the correct estimation of the active
mode. Moreover, the state and regression vectors during these intervals are ignored in the
identification procedure due to the unknown active modes. However, the existence of zero
is infeasible in the estimated switching signal. Thus, we replace the zero active modes
with the corresponding correctly estimated active mode in the estimated switching signal.
For instance, the active mode of the interval around 100s is alternated from 0 to 2 in the
estimated switching signal.

(a)

(b)

Figure 4.3.: The true active mode σ(t) (4.3(a)) and estimated active mode σ̂(t) (4.3(b)) of
the switched nonlinear system in the simulation.

For the extended integral concurrent learning identifier, all initial estimated parameters
are set to zeros. The coefficients for the state observer and update law are γ1 = γ2 = 4, and

Am =

−10 0

0 −10

 , P =

0.05 0

0 0.05

 . (4.61)

As presented in Remark 5, the sampling matrix Φi is employed as the i-th integrated history
stack for the identification of subsystems. For the update law (4.34), the control gain is
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kCL = 0.8 once the sampling matrix Φi is obtained. Before that, the control gain kCL = 0
and the update laws without concurrent learning are adopted.
By implementing the update law, the estimated parameter error θ̃i = θ̂i − θi ∈ R14 of

each subsystem w.r.t time is depicted in Figure 4.4, respectively. In these figures, the legend
θ̃i,j implies the j-th entry of the parameter θ̃i. Simulation results show a fast convergence
of all estimated subsystem parameters to true parameters as expected. Meanwhile, it also
illustrates that the adaptation is carried out no matter the corresponding subsystem is active
or not. However, the estimated parameter errors do not converge to zeros perfectly due to the
measurement Gaussian noise. Thus, the values of true and estimated parameters are listed
in Table 4.1. The simulation results indicate the subsystem parameters are well-estimated.

Table 4.1.: True parameters (θ1,θ2,θ3) and estimated parameters (θ̂1,θ̂2,θ̂3) in the simulation

θ1 θ̂1 θ̂2 θ̂2 θ̂3 θ̂3

0 0.00 0 0.01 0 0

-2 -2.00 0 0.00 -1 -1.03

1 1.04 0 0.00 1 0.99

-1 -1.00 0 0.02 -1 -0.98

0.5 0.48 0.5 0.51 0 -0.00

1.5 1.49 1.5 1.50 1.5 1.52

0.4 0.39 0 0 0.5 0.51

0 0 0 0 0 0.00

-0.3 -0.31 -0.5 -0.53 0 0.00

0.3 0.31 0 -0.02 0 0.03

0 -0.02 0 0 0 0.01

0 0.01 -0.3 -0.31 0 -0.01

0 0.02 -0.3 -0.26 -0.3 -0.3

0 0 0.5 0.5 0.4 0.43

In the evaluation, the true and estimated switched nonlinear systems are excited by the
same input signal, which is a random signal between [−2, 2]. Each entry of the true state-
vector x and the estimated state-vector x̂ from 0s to 400s are plotted in Figure 4.5. In
addition, the performance of the identification approach is evaluated by the modified (BFR),
i.e., Equation (3.58). The BFR values of the estimated x̂1 and x̂2 are 96.24% and 94.36%.
The figure and values imply the satisfactory performance of the proposed approach.
In the simulation, the refinement strategy for the MSS is also demonstrated. The existence

of the basis functions being determined via the strategy is listed in Table 4.2. In Table 4.2,
the model structure of each subsystem is revealed by check-mark and cross-mark. The check-
mark indicates that the basis function is indispensable for the subsystem. Otherwise, the
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(a)

(b)

(c)

Figure 4.4.: The errors of estimated and true parameters θ̃i in subsystem 1, 2 and 3, respec-
tively. Every entry of the error vector is visualized by solid lines with different
colors in every sub-figure.
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(a)

(b)

Figure 4.5.: The entries of the true state-space vector x and the estimated state-space vector
x̂ while excited by the same random signal between [−2, 2].
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corresponding mark is a cross-mark. The effectiveness of the proposed refinement strategy
is proved through the simulation.
In addition, the Sherman-Morrison formula is adopted in the strategy to calculate the

inverse matrix. To justify the higher efficiency of using the formula, we record the time
costs for MSS while using and not using the Sherman-Morrison formula, respectively. In the
simulation, the average time for MSS is 3.02s (using Sherman-Morrison formula) and 3.65s
(without using Sherman-Morrison formula) after running the algorithm 500 times.
To make it more intuitive, we enlarge the selected basis function and make the regression

vector φ(t) ∈ R15, the average time of MSS are now 3.05s (using Sherman-Morrison formula)
and 4.45s (without using Sherman-Morrison formula). Thus, the effectiveness of Sherman-
Morrison formula is confirmed through the recorded time.

Table 4.2.: The estimated and true model structure of the switched nonlinear system

Basis subsystem 1 subsystem 2 subsystem 3

function estimated true estimated true estimated true

x1 3 3 7 7 3 3

x2 3 3 7 7 3 3

u 3 3 3 3 3 3

1 3 3 7 7 3 3

x3
1 3 3 3 3 7 7

x3
2 7 7 3 3 7 7

x1x2u 7 7 3 3 3 3

4.4. Summary
In this chapter, we enhance the online framework to accomplish the online identification of
switched nonlinear systems. The enhanced framework consists of two stages: estimation of
the active mode and identification of subsystem parameters.
In the first stage, we propose an algorithm to detect switching and recognize the active

mode recursively. The number of the subsystem is also determined with the algorithm. The
algorithm is an extension of the subspace-projection method and the residual computed with
the projection matrix is selected as the criterion for switching detection. After the switching
is detected, the active mode estimation is then achieved via the recorded sampling matrices
of the recognized subsystems. The residuals computed with the recorded sampling matrices
reveal whether the active mode after switching is a new one or a repetitive one. The proof
of the active mode estimation algorithm is presented in the chapter.
According to the estimated active mode, the extended integral concurrent learning identi-

fier is derived to identify each subsystem in the second stage. The identifier is similar to the
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one proposed in Chapter 3 and the same state-reset mechanism is employed to guarantee
the convergence of the estimated parameters. The major difference is the adoption of regres-
sion vectors instead of state vectors in the identifier. The theoretical proof of the extended
integral concurrent learning identifier is also described.
In the aforementioned algorithms, the regression vectors which are generated based on the

basis functions are the foundations. Generally, we select a vast number of basis functions
for the identification in the proposed approach to ensure accuracy. It is essential to select
a proper model structure of the SNS since the high dimensional regression vectors increase
the computational burden. Therefore, we propose a strategy for MSS as a refinement of
the proposed approach. In the refinement strategy, the computed residual matrices are
adopted as criteria to discriminate whether a basis function is redundant or dispensable for
the subsystem. Naturally, we present the analytical proof of the refinement strategy in this
chapter. It is worth noticing that the strategy is an option for the proposed methods since
the extended I-CL identifiers ensure the convergence of the parameters regardless of MSS.
The users could decide the adoption of the refinement strategy considering the computational
burden.
Some simulations are also provided in the chapter after describing the proposed methods.

The effectiveness of our approach and the corresponding refinement strategy is verified in ex-
tensive numerical experiments. In addition, the proposed framework is also applicable while
identifying other continuous-time hybrid systems, such as PWNS, SLS, and PWA systems.
It is a generalized framework for hybrid system identification regardless of the subsystem for-
mulations. It follows that the hybrid system arises when the continuous dynamic behaviors
interact with the discrete ones. The active mode recognition algorithm identifies its discrete
dynamic behaviors while the extended I-CL identifier confirms its continuous ones. For the
hybrid systems with state-dependent switching rules, the cost function from Chapter 3 is
applicable to estimate their polyhedral partitions. In fact, these aforementioned algorithms
can be combined freely according to the type of hybrid systems to be identified.
In summary, the number of subsystems, switching signal, and the parameters of each

subsystem are precisely estimated online by implementing the proposed approach. The lim-
itation of the proposed approach is that the nonlinear terms of the system must be included
in the selected basis functions. Future works will concentrate on solving this limitation.
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Conclusions and Outlook 5.

In this dissertation, we provide novel methods for the identification of representative hybrid
systems, the PWARX systems, continuous-time PWA systems, and continuous-time SNSs.
In the beginning, we take an overview of the essential concepts, concerning factors, develop-
ment paradigms, and approaches for hybrid system identification in previous works. Hinged
on this, we firstly propose an efficient offline identification method for the PWARX systems,
including a cluster-based algorithm for the initialization and a modified self-training algo-
rithm for the parameter and polyhedral partition estimation. The method aims at achieving
the identification efficiently by improving the traditional algorithm for polyhedral partitions
estimation.
Subsequently, we develop the framework for the online identification of continuous-time

hybrid systems. As an attempt to fill the void of the online identification methods for the hy-
brid systems, our work is targeted to propose an online, generalized framework to identify the
hybrid systems. The framework contains the algorithms for switching detection and active
mode recognition, subsystem parameter identification, and polyhedral partition estimation.
The essence of the algorithm for active mode recognition is designing an appropriate input
signal and analyzing the dynamics of the defined delay error. In addition, we also propose
a strategy to handle the extreme situations which lead to the unrecognized active mode.
Based on the recognized active mode, the generalized I-CL identifier is presented to online
estimate the subsystem parameters. The polyhedral partitions are estimated through the
designed cost function that evolved from the estimated switching sequence and subsystem
parameters.
However, the proposed framework is limited to identify the hybrid system with linear/affine

subsystems. Therefore, we enhance the framework to achieve the identification of the hybrid
system with nonlinear subsystems, i.e., switched nonlinear systems. To the best of our
knowledge, there are no works for the online identification of continuous-time nonlinear
hybrid systems in state-space form. The enhancements can be summarized as designing a
new active mode recognition algorithm and a refinement strategy for MSS for the framework.
It follows that the delay error dynamics, being the foundation of the active mode recognition
algorithm for PWA systems, are inapplicable if the subsystem formulation contains nonlinear
terms. Therefore, we propose a new active mode recognition algorithm derived from the
projection subspace method. The generalized I-CL identifier is still employed to online
estimate the subsystem parameters. The refinement strategy for MSS is presented and can
be integrated into the framework for online identification.
We validate the effectiveness of these novel identification methods through numerical sim-

ulations. The corresponding refinement strategies for handling rank-deficient extreme situ-
ations and selecting the model strictures are also verified through the simulation.
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5.1. Conclusions
By proposing novel approaches for the online identification of hybrid systems and validating
them in simulations and experiments, we provide reliable and applicable solutions to the
three questions described in Section 1.1. The correspondence between our solutions and the
questions is specifically interpreted as follows.

Solution to question 1: How to efficiently achieve the offline
identification of the PWARX system?
In Chapter 2, we propose a novel offline identification method for PWARX systems to solve
this question. The conventional offline methods for the PWARX system identification gener-
ally adopt the SVM algorithm and neglect the computational complexity in the polyhedral
partition estimation process. It follows that the SVM algorithm is capable to estimate the
hyperplanes precisely whereas bringing heavy computation burdens for a large data set.
Therefore, we consider the drawback of the existing methods and present a novel semi-
supervised learning-based approach to cope with the identification method efficiently. Our
method contains two proposed algorithms: the cluster-based algorithm and the modified
self-training algorithm. The cluster-based algorithm can be considered as an initialization
procedure to obtain the initial conditions, including the number of subsystems, initial param-
eters, and initial data sets. The cluster-based algorithm is also practical for the initialization
of other identification methods. These initial conditions are then applied in the self-training
SVM algorithm to update the subsystem parameters and the hyperplanes that constructing
the polyhedral partitions. The convergence proof of the estimated hyperplanes is provided in
the chapter as well. In the novel approach, we argue that only a small amount of the labeled
data points and a large amount of the unlabeled data points are adequate to estimate the
precise hyperplanes. Only the points in the initial data sets and the support vectors are
labeled during the update process.
We also consider the computational complexity of the proposed modified self-training SVM

algorithm and compare it with the original SVM algorithm. It is validated that the proposed
approach is effective with low computational complexity through numerical experiments.
Moreover, the accuracy comparisons with some existing approaches are also provided in the
section and reveal a satisfying accuracy of the proposed method.

Solution to question 2: How to accomplish the online
identification of the continuous-time PWA system?
In Chapter 3, we solve this problem by developing a novel framework for the online iden-
tification of continuous-time PWA systems. Different from the conventional identification
methods with limitations, the proposed online framework can identify the continuous-time
PWA systems with an arbitrary number of subsystems by solely using the measured state-
input vectors. The major challenge to achieve such responsiveness is to decouple the sub-
system dynamics and switching process through the measurements. We tackle this issue
by inferring the delay error and analyzing its dynamics. The delay errors are formulated
into the sampling matrix and then provide a criterion for the switching detection and active
mode recognition. Clearly, the subsystem dynamics and switching process are decoupled
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after estimating which subsystem the state vector belongs to, i.e., active mode. In addition,
we discuss the extreme situations that lead to the unrecognized active modes and provide
a refinement strategy to handle these situations. Subsequently, the subsystem parameter
is updated with the proposed generalized I-CL identifier at the insistence of the designed
Luenberger-observer for each subsystem. The convergence proof of the identifier is presented.
Later, we transform the estimation problem of polyhedral partitions into an optimization
problem by proposing a cost function. The simulation results show that the proposed frame-
work provides a satisfying accuracy for the online identification of continuous-time PWA
systems. Moreover, a WMR system is identified to validate the effectiveness of the proposed
framework in real scenario.
The proposed framework is generalized for the identification of linear/affine hybrid sys-

tems, such as PWL systems, switched linear systems, and switched affine systems. It follows
that the hybrid system arises when the continuous dynamic behaviors interact with the dis-
crete ones. The active mode recognition algorithm decouples the interaction between the
continuous and discrete dynamic behaviors. The generalized I-CL identifier estimates the
continuous dynamics. In addition, the estimation process of polyhedral partition is optional
in the framework, considering the switching mechanism of target hybrid systems. Note that
the proposed framework is limited to linear/affine hybrid systems. The reason is that the
delay errors dynamics are inapplicable for the active mode recognition while there are non-
linear terms in the hybrid systems. This limitation is also the motivation for solving question
3.
In summary, we propose a novel framework for online identification of continuous-time

PWA systems, including the number of subsystems, parameters, and polyhedral partition
of each subsystem. The effectiveness of the approach is proved in the extensive numerical
simulations.

Solution to question 3: How to carry out the online identification
of the continuous-time switched nonlinear system?
In Chapter 4, we focus on the online identification of the continuous-time SNS. Considering
the formulation of the SNS, it is intuitive that the framework in Chapter 3 needs to be
enhanced before applying them for the SNS. For instance, the delay error for active mode
recognition is built on the affine subsystem of the PWA system, which is nonlinear in the
SNSs. In addition, the model structure selection is also unavoidable for SNS identification.
To resolve these issues, we enhance the framework for the online identification in Chapter 3
by replacing the original active mode recognition algorithm and integrating the MSS strategy.
Firstly, the new algorithm for active mode recognition is designed based on the subspace
projection. The technical assumption is also replaced by a common discernible assumption
in the field of identification. The generalized I-CL identifier is then still employed for the
estimation of the subsystem parameters. Furthermore, we develop a refinement strategy
for the MSS of the subsystems, which can be integrated into the framework to select a
proper model structure before estimating the subsystem parameters. The effectiveness of
the enhanced framework is justified via the numerical experiment and the accuracy of the
estimates is satisfying. Also, the improvement of implementing the refinement strategy is
validated in the simulation. It is clear that the proposed framework can now be generalized
to identify the nonlinear hybrid systems, such as PWNSs, and SLSs. The reason is that the
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active mode recognition algorithm is now capable to handle the nonlinear subsystems and the
MSS strategy also copes with the heavy computational burden caused by high-dimensional
regression vectors. Note that the estimation process of polyhedral partition from Chapter
3 can also be integrated into the framework, considering the switching mechanism of target
hybrid systems.
In summary, this dissertation provides novel offline and online identification approaches

for representative hybrid systems, i.e., PWARX systems, continuous-time PWA systems,
and continuous-time SNSs. The semi-supervised learning-based approach concerns the poly-
hedral partition estimation process and is designed to improve the efficiency of the offline
identification of PWARX systems (See Section 2). Considering the continuous-time hybrid
systems in state-space form, i.e., PWA system and switched nonlinear system, we develop
the generalized frameworks for the online identification of them. We decompose the online
identification into three tasks: a) active mode recognition, b) subsystem identification, and
c) switching signal estimation/polyhedral partition estimation. The algorithms for solving
these tasks are presented and proved in Chapter 3 and 4. These algorithms can also be
combined to achieve the identification of tremendous hybrid systems, such as PWL systems,
switched linear/affine systems, and piecewise nonlinear systems. Moreover, the effectiveness
of the proposed approach and frameworks are revealed through numerical experiments. Nev-
ertheless, there are still several issues in the online identification that are not perfectly solved
in this dissertation, which will be detailedly interpreted in Section 5.2, with an outlook of
the possible improvements.

5.2. Improvements and Future Research Directions
While the proposed methods provide a novel perspective to cope with the hybrid system
identification, it also leaves several open problems for potential improvements. Some of the
major concerns are specifically discussed as follows.

Generalization of the coefficients in the offline identification
method.
The major remaining issue for the proposed offline identification method for the PWARX
system is how to choose appropriate coefficients to acquire a satisfying accuracy. Even though
we have provided the qualitative relationship between the performance of the approach and
these coefficients, the main challenge is that the qualitative relationship is not adequate
to acquire generalized coefficients that provide satisfying performance for the identification.
Improvements include acquiring the generalized coefficients for the satisfying accuracy or
redesign the approach to reduce the coefficients that need to be tuned.

Dwell time of the hybrid system.
As mentioned in Section 4.2, there is a delay between the occurrence of switching and the
estimation of active mode correctly. The reason is that we can confirm the active mode after
switching only when the residuals/expectations are in a steady-state or in a small range,
whose calculations are based on the data in a time interval. However, the existence of the
delay requires that the dwell time is long enough such that the parameters of the subsystems
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can be updated after recognizing the active mode. This feature may still lead to some
difficulties while identifying the hybrid system with fast switching. Therefore, improving the
algorithm to shorten the delay or totally eliminate it could be future research directions.

Robustness of the online identification methods.
The generalized I-CL identifier is the major component of the framework for online identi-
fication. However, the identifier is sensitive to the estimated active mode. In other words,
if the active mode is wrongly estimated, the generalized I-CL identifier may not guarantee
the convergence of the estimated subsystem parameters. To handle this problem, we assign
zero to the active modes which can not be confirmed and skip their state-inputs vectors
while using the generalized I-CL identifier to update parameters. However, this countermea-
sure may be inapplicable while the measurement noise is intense. It follows that switching
detection and active mode recognition are achieved by comparing the calculated residu-
als/expectations with the pre-defined thresholds. The intense measurement noises may lead
to large uncertainties and the active mode which is wrongly estimated. As a result, the
subsystem parameters identified by the generalized I-CL identifier may not be converged.
Therefore, the robustness of the proposed framework needs to be analyzed and improved in
future works. To the best of our knowledge, the relationship between the online switching
signal estimation and the measurement noise has been researched in some papers. However,
their research is built on the acknowledgment of subsystem models, which is infeasible in
system identification. Thus, the robustness of online switching detection and active mode
estimation is still a major challenge in future research directions.
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Support Vector Machine (SVM) A.

For a classification problem, the output of the training process is a discriminant, a vector
function that determines the class of the sample to be tested. The prediction is conducted
usually by explicitly applying the discriminant. A classification model is referred to as a
parametric method if its discriminant depends on a parameterized probabilistic distribution.
The training of parametric models renders an estimation problem for the distribution pa-
rameters, where statistic methods are used. Otherwise, the classification model is called a
non-parametric method, where the discriminant is obtained by solving an optimization prob-
lem. In this section, we introduce background knowledge of SVM algorithm [123], which is
a representative non-parametric classification method used in the polyhedral estimation of
hybrid system.
Support Vector Machine (SVM) is a non-parametric classifier with an excellent capability

of generalization. From a geometric point of view, SVM creates a pair of hyperplane for each
two-class data set. The training process of the classifier tends to create the widest separation
between the hyperplane pair. As a result, SVM is quite insensitive to the distribution of the
data set since its structure only depends on a small cluster of training samples. Nonlinear
kernel functions allow the mapping of samples into higher-dimensional spaces, such that
linearly inseparable problems can be solved.
Consider a data set D = {(xk, `k)}Nk=1 with cardinality N ∈ N+, where each data point is

a pair consisting of a vector xk and a label `k. The fundamental task of SVM is to train a
classifier (w, b) to separate the samples with labels, where w ∈ Rn and b ∈ R are the weight
and intercept of the classifier, respectively.
Equivalently, training an SVM classifier is to solve the following quadratic optimization

problem.

max
0≤αk≤C

(
min
w,b

1
2 ||w||

2 +
N∑
k=1

αk(1− `k(wTxk + b))
)

, (A.1)

where αk, k = 1, . . . ,N are the Lagrange multipliers and C is the penalty parameter. Ac-
cording to the Lagrange duality principle, the optimization is transformed into

α∗ = arg min
α

−1
2

N∑
k=1

N∑
j=1

αkαj`k`jxT
kxj +

N∑
k=1

αk

 ,

s.t.
N∑
k=1

αk`k = 0, 0 6 αk 6 C,∀k = 1, 2, · · · ,N .
(A.2)

By solving the optimization problem, the weight of the hyperplane is

w =
N∑
k=1

αk`kxk. (A.3)
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The intercept can be easily calculated through the weight.
By Karush-Kuhn-Tucker (KKT) conditions [124], it requires that

αk[`k(wTxk + b)− 1 + ξk] = 0 for all k = 1, 2, . . . ,N , (A.4)

where ξk ≥ 0 are the slack variables which measure the degree of misclassification. Since
there holds `k(wTxk + b) ≥ 1− ξk for all k = 1, 2, . . . ,N , it is straightforward that the data
point with positive αk implies `k(wTxk + b) ≤ 1. In this regard, support vectors are defined
as data points which correspond to non-zero αk in [55]. Equivalently, we define the support
vectors (SVs) as follows.

Definition 6. Consider the SVM classifier (w, b) trained with data set D = {(xk, `k)}Nk=1,
the support vectors are the data points satisfying

`k(wTxk + b) ≤ 1. (A.5)

By definition 6, the SVs are the data points lie on or in the margins of the SVM classifier
which are defined as wTxk + b = ±1. It follows that only a small number of the training
data points end up as SVs and the majority lie outside of the classifier margins [48]. For a
data set D for SVM training, we denote the set of support vectors as DSV . The data points
in D \ DSV are defined as non-support vectors (non-SVs). In addition, the trained classifier
is fully determined by SVs in SVM [125].
Another concept in SVM algorithm is the geometric margin of trained classifiers [126]

which is defined as follows.

Figure A.1.: The geometric margin γ between a data point xi and the decision boundary.

Definition 7. For the classifier (w, b) trained by data set D = {(xk, `k)}Nk=1, the geometric
margin between a certain data point (xk, `k) and the classifier is given by

γ(w, b, xk) =
|wTxk + b|
||w||

. (A.6)
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As depicted in the equation, the geometric margin is defined as the distance from a data
point to the decision boundary. Figure A.1 illustrates the geometric margin between a data
point xi and the decision boundary. Note that the definition of the geometric margin in the
foundation of the proposed modified self-training SVM algorithm.
Although the classifier introduced above is designed for binary classification, the concepts

are the same for the multi-class classification. The reason is that the multi-class classi-
fication problems are generally considered as a collection of several binary classification
problems [127].
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Background on the Identification
of Continuous-Time Hybrid Sys-
tems B.

This appendix provides necessary backgrounds on the stability of switch systems, which
are needed throughout the dissertation. Important stability notions for switched and hybrid
systems are summarized in this Appendix. Note that both the continuous-time PWA system
and switched nonlinear system can be categorized as switched systems.

B.1. Lyapunov’s Stability Theory
The concept of Lyapunov stability is a fundamental tool in the analysis of dynamic systems.
In this thesis, we assume that the basic Lyapunov stability concepts are known [128]. The
stability definitions for switched systems presented in [85] are straightforward modifications
of the standard stability concepts in [128].
Let x = 0 be an equilibrium point of the switched system. Then, the switched system is

stable in the sense of Lyapunov if, for each ε, there exists a δ = δ(ε) > 0 such that

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ε ∀t ≥ 0 (B.1)

The switched system is globally asymptotically stable if it is stable and there exists T (ε, δ) > 0
for arbitrary positive numbers ε and δ such that

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ε ∀t ≥ T (B.2)

Moreover, the switched system is called globally exponentially stable if there exist constants
c > 0 and λ > 0 such that the state of switched system for all initial conditions satisfies the
inequality

‖x(t)‖ ≤ c‖x(0)‖e−λt ∀t ≥ 0 (B.3)
It is worth noticing that asymptotic or exponential stability is referred to as uniform if
stability is not only asymptotic or exponential for a particular switching signal but over
the whole set of all switching signals. Hence, the notion global uniform asymptotic stability
(GUAS) implies independence between the global asymptotic stability and the choice of the
switching signal σ.
As mentioned above, the stability of switched systems is heavily determined by the switch-

ing signal. This condition yields two levels of stability. First, The target of proving the
stability under arbitrary switching is to find conditions such that the asymptotic stability of
a switched system is guarantee for all possible switching signals σ. This approach is essential
if the switching mechanism is unconstrained, unknown, or too complicated to be modeled.
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Moreover, a necessary condition of the asymptotic stability of a switched system is that all
individual subsystems must be asymptotically stable. Note that stability under arbitrary
switching is highly desirable as it implies that the switching can be ignored while analysing
the switched systems. However, it is obvious that only few classes of switched systems allow
stability under arbitrary switching.
Considering the switched systems which are not asymptotically stable for arbitrary switch-

ing, it is necessary to figure out which condition switching signals fulfill to ensure that
switched system is asymptotically stable. This approach is referred to as stability under
constrained switching and can be further divided according to the set of subsystems. If at
least some subsystems are asymptotically stable, it suffices to characterize as well as possible
the class of switching signals that preserve asymptotic stability for the switched system. The
existence of such switching sequences is guaranteed as one could just keep a stable subsys-
tems active for all times. In case none of the subsystems is asymptotically stable, the task
is to construct a stabilizing switching sequence. This task is considerably more challenging
and is not in the scope of this work. The interested reader is referred to [85] for more details
on the later case.

B.2. Common and Multiple Lyapunov Functions
The existence of a function that qualifies as a Lyapunov function for all subsystems is the
foundation of the stability of a switched system under arbitrary switching. Such a Lyapunov
function is called a common Lyapunov function for the family of subsystems. Particularly, a
common Lyapunov function for switched systems is a positive definite (V (x) > 0,∀x 6= 0) and
continuously differential function V : Rn → R, if there exists a positive definite, continuous
function W : Rn → R, such that

V̇ (x) = ∂V (x)
∂x

gi(x) ≤ −W (x) < 0, ∀x, ∀i ∈ I (B.4)

The relationship between the asymptotic stability of a switched system and the existence of
a common Lyapunov function is described in the following theorem.

Theorem 7. ”If all subsystems of a switched system share a radially unbounded common
Lyapunov function, then the switched system is globally uniformly asymptotically stable
(GUAS).” [ [85], Th.2.1]

The idea behind this theorem is that the common Lyapunov function V will decrease in
time in any subsystem i. The rate of decrease of V is characterized by W and is thus not
affected by switching. Hence, the asymptotic stability is uniform with respect to σ, which
can thus be arbitrary. For the special case in which V (x) and W (x) are quadratic in x, the
theorem implies global uniform exponential stability. Even though the common Lyapunov
function benefits a lot while analyzing the stability of switched systems, the difficulties of
searching one for switched systems severely limits its adoption. Therefore, we turn into the
multiple Lyapunov functions for assistance.
As pointed out before, it might not be possible to prove asymptotic stability of a switched

system under arbitrary switching. In that case, one can proceed by constraining the switching
signal and work with multiple Lyapunov functions.
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Suppose that all systems are globally asymptotically stable and an individual Lyapunov
function Vi is known for each subsystem i ∈ I. The target is then to prove stability for
a constrained switching signal σ based on the switched Lyapunov function Vσ. Before the
corresponding analysis, we provide a more precise notation for σ. We denote tj, j = 1, 2, . . .
as the switching instants. Between two consecutive switching instants, the switching signal
is constant, i.e. σ(t) = σ(tj), tj ≤ t < tj+1.
There exist cases that the values of the Lyapunov functions Vi coincide at all switching

times tj, i.e., Vσ(tj−1)(tj) = Vσ(tj)(tj). It is clear that Vσ is a continuous Lyapunov function
for the switched systems in this case. Then, the stability of the switched system directly
follows from such a continuous Lyapunov function. Figure B.1(a) visualizes this scenario for
a switched system with two subsystems.
A continuous Lyapunov function is a rare special case of multiple Lyapunov functions

that mainly occurs for state-dependent switching signals and specially constructed local
Lyapunov functions. Commonly, Vδ is discontinuous at switching times. It follows that the
individual Lyapunov functions Vi is antagonistic. Generally, the value of the currently active
(σ(t) = i) Lyapunov function Vi decreases, while the values of currently inactive Lyapunov
functions Vj increase as long as σ 6= j. Figure B.1(b) gives an example for such discontinuous
Lyapunov functions. Despite the possible increase of Vσ at every switch, multiple Lyapunov

(a) (b)

Figure B.1.: Multiple Lyapunov functions Vi form a switched Lyapunov function Vσ, (a)
continuous Lyapunov function, (b) discontinuous Lyapunov function.

functions still is capable to prove the asymptotic stability. The idea is to analyze the values
of each Lyapunov function Vi individually at the beginning of each interval in which the
corresponding subsystem is active, i.e. in which σ(t) = i. As shown by the following theorem,
the switched system is asymptotically stable if the values of the Lyapunov functions at each
activation form a decreasing sequence.

Theorem 8 (Multiple Lyapunov Functions). Let the subsystems be a finite family of glob-
ally asymptotically stable systems, and let Vi, i ∈ I be a family of corresponding radially
unbounded Lyapunov functions. Suppose that there exists a family of positive definite
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continuous functions Wi, i ∈ I with the property that for every pair of switching times
(tj, tn), j < n such that σ(tj) = σ(tn) = i ∈ I and σ(tk) 6= i for tj < tk < tn, we have

Vi (x (tl))− Vi (x (tj) ≤ −Wi (x (tj)) (B.5)

Then the switched system is globally asymptotically stable.” [ [85], Th.3.1]

According to the theorem of multiple Lyapunov functions, the proof of the I-CL identifiers
for continuous-time PWA systems and SNSs are accomplished.
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The Popov-Belevitch-Hautus
Test for Controllability C.

This appendix provides a brief description of PBH controllability test, which is the foundation
of solving extreme conditions in Chapter 3.
Suppose we have a linear system described by the state equation

ẋ(t) = Ax(t) +Bu(t),
x(0) = x0.

(C.1)

Controllability and observability are two critical properties while studying the linear sys-
tems. Generally speaking, controllability measures the ability of a particular actuator config-
uration to control all the states of the system; conversely, observability measures the ability
of the particular sensor configuration to supply all the information necessary to estimate all
the states of the system. In the appendix, we concerns the controllability of linear system.
In particular, a system is said to be completely controllable, if it is possible to transfer the
system state from any initial state x(t0) to any desired state x(t) in specified finite time by
a control vector u(t).
We assume that the readers have the primary knowledge of the controllability and observ-

ability. Then, the theorem for judging whether a linear system is controllable is as follows.

Theorem 9 (Controllability). The linear system (C.1) is controllable if and only if the rank
of [B AB . . . An−1B] equals to n, i.e., rank[B AB . . . An−1B] = n.

Note that n is the order of the system (C.1). Obviously, the theorem for judging controlla-
bility is hard to implement while the system order is high. Therefore, the PBH controllability
tests give us alternative ways to test for controllability of a linear system. We state the test
as a theorem.

Theorem 10 (PBH test). (A,B) is controllable, if and only if there exists no left eigenvector
of A orthogonal to the columns of B.

We will prove the sufficiency and necessity of the statement separately.
i) If there exists a left eigenvector of A orthogonal to the columns of B, then (A,B) is

uncontrollable:

Proof. Suppose that w ∈ Cn, w 6= 0 is a left eigenvector of A, that is orthogonal to the
columns of B. Then

wTA = λwT, wTB = 0 (C.2)

so
wT[B AB . . . An−1B] = 0 (C.3)

101



C The Popov-Belevitch-Hautus Test for Controllability

and therefore
rank([B AB . . . An−1B]) < 0 (C.4)

which means the controllability matrix has linearly dependent rows, and is not controllable.

ii) If (A,B) is not controllable, there exists a left eigenvector of A orthogonal to the
columns of B:

Proof. Suppose
rank([B AB . . . An−1B]) < 0 (C.5)

we can change coordinates as follows

Ã = T−1AT =

 Ã11 Ã12

0 Ã22

 , B̃ = T−1B =

 B̃11

0

 (C.6)

Let λ be an eigenvalue of Ã22, and w22 be an associated left eigenvector. Define

w = T−T

 0

w22

 6= 0 (C.7)

and so

wTA =

 0

w22


T

T−1

T
 Ã11 Ã12

0 Ã22

T−1


=
[

0 wT22Ã22

]
T−1

=
[

0 λwT22

]
T−1

= λ
[

0 wT22

]
T−1

= λwT

(C.8)

Similarly,

wTB =

 0

w22


T

T−1

T
 B̃11

0




=
[

0 wT22

]  B̃11

0


= 0.

(C.9)

According to Theorem 10, the rank of [B AB . . . An−1B] is determined by the relationship
between the left eigenvector of A and the columns of B.
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