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Abstract II 
 

Deep learning algorithms can identify valid semantic information from the original 3D 

point cloud that can be used to create BIM models of the built environment. This is an 

important step in generating the digital twin of a building. Compared with traditional 

unimodal deep learning algorithms that directly process 3D point clouds, multimodal 

fusion algorithms that leverage 2D images as supplementary information for 3D scenes 

have greater performance advantages. It is worth noting that multimodal fusion 

algorithms do not exist independently but are derived from existing unimodal methods 

- 2D and 3D unimodal deep learning networks are chosen as the backbone networks 

to process the information from different modalities and fuse them at the right time. 

In this study, the performance of an open-source multimodal algorithm, MVPNet, is 

improved on 3D semantic segmentation task by using KPConv as a more robust and 

stronger 3D backbone. Different modules of the two networks are meaningfully 

combined: the 2D-3D lifting method provided by MVPNet aggregates selected 2D 

multi-view images features into 3D point cloud, and then KPConv is used to fuse these 

features in 3D space to predict 3D semantic labels. 

On a custom ScanNet dataset, the proposed network achieves a score of 74.40 mIoU 

on the 3D semantic segmentation task, outperforming the original MVPNet (+3.19 

mIoU). In addition, rich ablation studies are designed to investigate the appropriate 

fusion structure, timing, and the effect of 3D color, etc.  

Abstract 



Zusammenfassung III 
 

Die Verwendung von Deep Learning Algorithmen zur Identifizierung gültiger 

semantischer Informationen aus der originalen 3D Punktwolke zur Generierung eines 

BIM-Modells der bebauten Umgebung ist ein wichtiges Mittel zur Erstellung eines 

digitalen Zwillings des Gebäudes. Im Vergleich zu traditionellen unimodalen Deep 

Learning Algorithmen, die 3D Punktwolken direkt verarbeiten, haben multimodale 

Fusionsalgorithmen, die 2D-Bilder als Zusatzinformationen für 3D Szenen nutzen, 

größere Leistungsvorteile. Es ist erwähnenswert, dass multimodale 

Fusionsalgorithmen nicht unabhängig voneinander existieren, sondern von 

bestehenden unimodalen Methoden abgeleitet werden - 2D und 3D unimodale Deep 

Learning Netzwerke werden als Backbone-Netzwerke gewählt, um die Informationen 

aus verschiedenen Modalitäten zu verarbeiten und zum richtigen Zeitpunkt zu 

fusionieren. 

In dieser Studie wird die Leistung eines multimodalen Open-Source-Algorithmus, 

MVPNet, bei einer 3D semantischen Segmentierungsaufgabe verbessert, indem 

KPConv als robusteres und stärkeres 3D-Backbone eingesetzt wird. Verschiedene 

Module der beiden Netzwerke werden sinnvoll kombiniert: Die 2D-3D-Lifting Methode 

von MVPNet aggregiert ausgewählte 2D-Multiview-Bilder-Features zu einer 3D 

Punktwolke, und dann wird KPConv verwendet, um diese Features im 3D Raum zu 

fusionieren, um semantische 3D Labels vorherzusagen. 

Auf einem benutzerdefinierten ScanNet Dataset erreicht das vorgestellte Netzwerk 

eine Score von 74,40 mIoU bei der 3D semantischen Segmentierungsaufgabe und 

übertrifft damit das ursprüngliche MVPNet (+3,19 mIoU). Darüber hinaus werden 

umfangreiche Ablationsstudien durchgeführt, um die geeignete Fusionsstruktur, das 

Timing und den Effekt der 3D Farbe etc. zu untersuchen. 
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 Introduction 1 
 

1.1 Motivation 

In the construction industry and related research sectors, the concept of Digital Twin 

(DT) is becoming increasingly essential. It is a concept associated with Industry 4.0 

and aims to bring the building model, object information, and data received from sen-

sors and actuators together as one system, generating a digital duplicate of the phys-

ical environment, states, and processes (Wahbeh et al., 2020). 

In order to capture the current physical state of the built environment, 3D point clouds 

can be utilized to depict the precise details of the as-is physical environment (Tan Qu 

& Wei Sun, 2015). A Keyword here is Scan-to-BIM, which describes approaches that 

interpret generated point clouds and create a valid as-built BIM model from them. 

(Braun, 2020) 

However, 3D point clouds do not provide any geometric primitives or semantic infor-

mation, which makes it difficult to detect / classify objects in point cloud. For any further 

representations and automated assessment, the 3D point cloud needs to be processed 

by deep learning methods in order to obtain useful semantic data. (Stojanovic et al., 

2020)  

Deep learning has shown outstanding performance in a wide range of computer vision 

tasks, especially 2D image processing, such es object detection, semantic segmenta-

tion etc. As its name indicates, deep learning uses deep neural network and convolu-

tion operation to extract high-dimension features from training data, and this operation 

usually requires a structured data, as it originally designed for raster images. (Xie et 

al., 2020) However, different from the images, the data structure of 3D point cloud is 

irregular, continuous, unstructured, and unordered (Bello et al., 2020). This makes fea-

ture extractions on the point cloud challenging for traditional deep learning models. In 

order to solve this problem, preprocess the point cloud data before inputting it to net-

work may need to be considered. Based on the representation of point cloud, the deep 

learning-based point cloud processing approaches can be briefly divided into three 

categories: voxel-based, point-based and multi-view-based. 

1 Introduction 
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The voxel-based approaches solved both unstructured and unordered problems of raw 

point cloud by partitions the point cloud into a fixed-resolution 3D grid, which has a 

discrete regular data structure. The voxelized data can be further processed by 3D 

convolutions, as in the case of pixels in 2D convolutions. However, the voxel-based 

methods require high memory consumption due to the sparsity of the voxels - voxel 

structures not only store occupied spaces, but also store free or unknown spaces. In 

addition, some spatial resolution and fine-grained 3D geometry information can also 

lose during voxelization. (Cui et al., 2021) 

Point-based approaches process point cloud directly without transforming it into an 

intermediate data representation (Xie et al., 2020). A pioneering deep learning frame-

work in this direction is PointNet (Qi, Su, et al., 2017). PointNet uses symmetric func-

tion (Max-pooling) to ensure the permutation invariance of input point cloud data and 

solved unordered problem. It also employs T-Net modules to align point clouds, to 

make sure that the object represented by the point cloud data is invariant to some 

spatial transformations, such as rotation and translation. For per-point feature extrac-

tion, it uses shared Multi-Layer Perceptron (MLP) to process individual points (Cui et 

al., 2021). In addition to the PointNet-based approach, some recent works also con-

centrated on defining specialized convolution operations for points, e.g., KPConv 

(Thomas et al., 2019). But applying the point-based methods directly on massive point 

cloud can be time-consuming and memory-expensive.  

The traditional Multi-view-based methods try to represent the 3D point cloud by multi-

view 2D images. These rendered images can then be processed by standard 2D con-

volutions and features from these views are then aggregated for accurate 3D scene 

recognition (X. Chen et al., 2017). The performance of early multi-view-based deep 

learning architecture was not satisfactory. The main reasons are that the approximate 

2D projection leads to the limitations and loss of the geometric structure. Furthermore, 

because multi-view projected images must cover all spaces containing points, it is usu-

ally difficult to choose a suitable viewpoint for multi-view projection to cover all points 

in large and complex scenes (Xie et al., 2020).  

In summary, employing these mono-modal algorithms to convert point clouds into other 

representations or directly process them, more or less will result in data loss or exces-

sive computational costs. Of course, continuing to enhance the structure and perfor-
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mance of such algorithms is an improvement path, but we might be able to get inspi-

ration from the multi-view-based method and consider another direction: whether we 

can use mature 2D perceptron to improve the processing of 3D scenes. 

If using a more accurate term to describe the commonality of the algorithms in this 

direction, it will be Multi-Modality Fusion. Broadly speaking, multimodal fusion gath-

ers rich characteristics of complicated scenarios from various sensors and integrates 

them to gain more spatial and contextual information for robust, accurate, and fast 

scene understanding (Y. Zhang et al., 2020). Narrowly speaking, we want to employ 

mature 2D Convolutional Neural Network (CNN) to extract semantic features of 2D 

images to enrich the expression of point clouds, or obtain 2D region proposals to 

achieve more fast, robust and accurate results in 3D point cloud segmentation / detec-

tion tasks. It is also worth noting that deep multi-modal fusion methods do not exist 

independently but derive from existing mono-modal algorithms. The voxel- or point- 

based mono-modal approaches are chosen as the backbone network for processing 

data in a holistic or segregated manner (Y. Zhang et al., 2020). 

1.2 Research objectives 

The main goal of this thesis is to optimize an open-source multimodal deep learning 

algorithms called Multi-view-PointNet (MVPNet) to improve its metrics (mIoU, IoU) on 

the indoor point cloud semantic segmentation tasks.  

The research aims to answer the following questions: 

- Is it possible to improve MVPNet by changing its 3D network from PointNet to 

KPConv?  

- How much better does the proposed MV-KPConv (the optimized MVPNet) per-

form compare to the baseline model in terms of mIoU and IoU on class doors 

and windows?  

- Is the 2D – 3D lifting method provided by MVPNet feasible for different 2D input 

format? 

- How do early, middle, and late fusions perform on MV-KPConv respectively? 

Does using two types of fusion in the network at the same time improve network 

performance? 

- To what extent do 3D point cloud colors affect the proposed network that al-

ready fuse 2D image colors? 
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1.3 Reading guide 

This thesis is structured in the following chapters: 

- Chapter 2 presents the theoretical background of the methods used in this the-

sis. It includes the introduction to different fusion theories, as well as illustration 

of the principles of KPConv. This information provides useful theoretical basis 

for understanding the optimization proposed in this thesis. 

- Chapter 3 gives an overview of state-of-art multimodal methods that use 2D 

images to support 3D point cloud processing. The performance of these 

method is summarized and their limitations are discussed. 

- Chapter 4 explain the workflow of the proposed method in this research. 

- Chapter 5 shows the performance of the proposed method and analyzes the 

method through a series of ablation studies. 

- Chapter 6 answers all the research questions, discusses the findings during 

the research and summarizes the contributions of this thesis. The limitations of 

the proposed method and the possibility of its continued optimization will be 

provided. 
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This section presents the theoretical background involved in the main methods used 

in this study. Starting from how to project 2D images to 3D, the different fusion opera-

tions, fusion time points, the point cloud neighbor types used in this paper and the KD 

tree data structure to accelerate the efficiency of neighbor search are introduced in 

turn. Finally, the basic principle of KPConv and the architecture of the KP-FCNN con-

structed based on it are illustrated. 

2.1 From 2D to 3D 

Typically, the feature map of a 2D image 𝐹2𝐷  can be expressed as 𝐹2𝐷 ∈ 𝑅𝐶×𝐻×𝑊 , 

where 𝐶, 𝐻, 𝑊 refer to the feature channels, height, and width dimensions of the fea-

ture map. However, for unstructured point cloud data, its feature map is usually repre-

sented as 𝐹3𝐷 ∈ 𝑅𝐶×𝑁, where 𝑁 denotes the number of points. To achieve the fusion 

of the two modalities, it is usually necessary to reproject the pixel-wise features into 

the 3D space so that they can be associated with the point-wise features. A common 

approach is to use depth information and camera projection matrix. 

With the RGB-D camera, we can obtain the color image and its corresponding depth 

map. The depth map contains information about the distance of each pixel in the color 

image from the sensor. Let the coordinates of a pixel in the image be (𝑢, 𝑣, 𝑑), where 

𝑑 denotes the depth information, then its spatial point coordinates (𝑥, 𝑦, 𝑧) under the 

camera coordinate system can be obtained by the following equation: 

𝑥 =
(𝑢 − 𝑐𝑥) ∙ 𝑧

𝑓𝑥
 

𝑦 =
(𝑣 − 𝑐𝑦) ∙ 𝑧

𝑓𝑦
 

𝑧 =
𝑑

𝑠
 

where 𝑓𝑥,  𝑓𝑦 refers to the focal length of the camera on the 𝑥, 𝑦 axes, 𝑐𝑥, 𝑐𝑦 refers to 

the center of the camera sensor, and 𝑠 refers to the scaling factor of the depth map. 

Usually, the four parameters 𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦 will be defined as the intrinsic matrix 𝐾 of the 

camera: 

2 Theoretical Basis 
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𝐾 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 0

] 

Finally, by adding the camera pose information the spatial point coordinates (𝑥, 𝑦, 𝑧) in 

the world coordinate system can be obtained: 

𝑠 ∙ [
𝑢
𝑣
1

] = 𝐾 ∙ (𝑅 ∙ [
𝑥
𝑦
𝑧

] + 𝑡) 

where 𝑅 and 𝑡 are the camera pose. 𝑅 represents the rotation matrix and 𝑡 represents 

the translation vector, which together are the extrinsic matrix of the camera. The ex-

trinsic matrix and the intrinsic matrix make up the camera projection matrix (D. Zhang, 

2011). 

Based on this simple matrix model, the coordinates of each pixel can be reprojected 

into the world coordinate system, enabling the alignment of 2D and 3D information. 

2.2 Fusion operations 

One of the core aspects of multimodal fusion is how to effectively fuse the feature maps 

of multiple modalities together through mathematical operations in a deep learning net-

work. Denote 𝑀1 and 𝑀2 as two different modalities, their corresponding feature maps 

are 𝑓𝑀1 and 𝑓𝑀2. Some typical fusion operations are summarized below (Feng et al., 

2021).  

2.2.1 Addition 

The fused feature 𝑓𝑀𝑀 can be obtained by summing up the two feature maps element-

wise. It is worth noting that before performing the summation operation, it is necessary 

to ensure that the feature maps of the two modalities have the same shape. Because 

in linear algebra, two matrices must have an equal number of rows and columns to be 

added. 

𝑓𝑀𝑀 = 𝑓𝑀1 + 𝑓𝑀2 

2.2.2 Average mean and Maximum 

Similar to addition, feature maps can be fused by calculating element-wise averages 

or selecting the largest value of corresponding feature maps of all the modalities at 

each axis. 
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𝑓𝑀𝑀 = 𝑚𝑒𝑎𝑛(𝑓𝑀1 , 𝑓𝑀2)  

𝑓𝑀𝑀 = 𝑚𝑎𝑥(𝑓𝑀1 , 𝑓𝑀2)  

2.2.3 Concatenation 

Concatenation is a relatively common fusion operation. Instead of requiring the feature 

maps of the two modalities to have the same shape, as in the previously mentioned 

operations, the axes that perform the concatenation operation are allowed to have dif-

ferent lengths. This provides a great convenience. For example, when there is a 64-

channel feature map 𝑓𝑖 ∈ 𝑅64×𝑁 and a 128-channel feature map 𝑓𝑗 ∈ 𝑅128×𝑁, they can 

be fused into a 192-channel feature map  𝑓𝑘 ∈ 𝑅192×𝑁 by a simple connection operation. 

However, if addition or averaging operation is used here for fusion, it may be necessary 

to first perform a linear transformation of one feature map to match the shape of an-

other feature map before performing the subsequent fusion operation. 

𝑓𝑀𝑀 = 𝑓𝑀1  ⨁ 𝑓𝑀2 

2.2.4 Ensemble 

This operation ensembles features from different sensing modalities. Ensembles are 

often used to fuse Regions of Interests (ROIs) in object detection networks (Feng et 

al., 2021). A classic example is Frustum PointNets (Qi et al., 2018). Frustum PointNets 

uses a pre-trained image detector to construct 2D bounding boxes that build frustums 

in 3D point clouds. Then, the point clouds within multiple frustums will be used for 3D 

objects detection.  

𝑓𝑀𝑀 = 𝑓𝑀1  ∪  𝑓𝑀2  

2.2.5 Adaptive fusion module 

Although deep learning-based algorithms automatically learn representative features, 

multimodal input is likely to be poor in many circumstances. Multimodal data's redun-

dancy, imbalance, uncertainty, and even contradiction may have a substantial impact 

on the model's performance. Simple fusion techniques like summation and concatena-

tion mentioned above only go so far in assisting in the generation of optimal joint fea-

ture representations (Y. Zhang et al., 2020). To solve this problem, some adaptive 

fusion modules are designed to learn to explicitly weight feature maps from different 

modalities. Specific gating units that assign class- or modality-wise weights are fre-

quently included in such fusion approaches. Much of the latest research has focused 
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on this area. Xu et al. propose an adaptive attention module for 3D object detection 

networks to fuse 2D and 3D sensors at the semantic level (Xu et al., 2021). The input 

points and 2D/3D semantic predictions are first utilized to learn an attention mask 

through PointNet-like module (Qi, Su, et al., 2017). The attention mask will then be 

used to adaptively fuse information from 2D and 3D semantic labels. Dai et al. also 

propose an attentional feature fusion approach that is suitable for most common sce-

narios of 2D image fusion (Y. Dai et al., 2021). In summary, the features of the two 

modalities are averaged with the learned weights 𝑤𝑀1 and 𝑤𝑀2 by the adaptive fusion 

module 𝐴, and then the combined feature map 𝑓𝑀𝑀 is output by a simple fusion oper-

ation such as concatenation: 

𝑓𝑀𝑀 = 𝐴(𝑤𝑀1 ∙ 𝑓𝑀1  ⨁ 𝑤𝑀2 ∙ 𝑓𝑀2), 𝑤𝑖𝑡ℎ  𝑤𝑀1 + 𝑤𝑀2 = 1 

 

2.3 Fusion timing 

Fusion architectures can be classified based on when information from multiple mo-

dalities are integrated during processing. Three general categories are early fusion, 

middle fusion and late fusion. 

2.3.1 Early fusion 

Early fusion refers to the integration of monomodal feature sets before learning con-

cepts (Snoek et al., 2005). This operation learns the joint features of multiple modalities 

at an early stage, fully exploiting the information of the raw data (Cui et al., 2021). Early 

fusion networks normally involve relatively minimal memory and computational com-

plexities since this process allows robust cross-modal information interaction and ap-

plies only one single stream for learning purposes (L. He, 2019). However, this comes 

at the price of model rigidity. When an input is replaced with a new sensing modality 

or the input channels are extended, for example, the early fused network must be en-

tirely retrained. Early fusion is also sensitive to spatial-temporal data misalignment 

among sensors, which can be caused by calibration errors, differing sampling rates, 

and so on. Passing all modalities through the same network does not always address 

the fundamental data disparities between them (Feng et al., 2021). 
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Figure 1 Early fusion 

2.3.2 Late fusion 

Late fusion processes each modality on a separate path and fuses the outputs in the 

decision / result level. Because multiple single paths can use different architectures 

and configurations, this approach allows for more modeling flexibility. Single modality 

algorithms can be trained with data from their own sensors. As a result, there is no 

requirement to synchronize or align multimodal data with other modalities. Only the 

final fusion step necessitates data that has been simultaneously aligned and tagged. 

Late fusion approaches provide greater scalability, making it easier to add or delete 

modalities (Atrey et al., 2010). When a new sensory modality is introduced, just its 

domain-specific network needs to be trained, leaving existing networks unaffected. It 

does, however, have substantial compute costs and memory requirements. Further-

more, it discards a wealth of intermediate features that could be quite useful when 

fusing (Feng et al., 2021). 
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Figure 2 Late fusion 

2.3.3 Middle fusion 

The term "Middle fusion" refers to a middle ground between early and late fusion. At 

the intermediate layers, it mixes feature representations from several perceptual mo-

dalities. This enables the network to learn across modalities at different depths using 

multiple feature representations. This is the most complicated fusion method. It's also 

difficult to tell whether the added complexity results in meaningful improvements: given 

the specific network structure, finding the optimal way to fuse the middle layers is not 

easy (Pang et al., 2020). 
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Figure 3 Middle fusion with short-cut 

2.4 Point cloud neighborhood 

When working with 3D point clouds, searching the neighbors of a point is a frequently 

used method. In this study, the spherical neighborhoods and K nearest neighborhoods 

(KNN) are used. 

The spherical neighborhood refers to the points 𝑥𝑖 contained within a sphere centered 

at one point 𝑥0 and with radius 𝑟 ∈ 𝑅. Note both 𝑥𝑖 and 𝑥0 belong to point cloud 𝑃. 

𝑁𝑟𝑎𝑑𝑖𝑢𝑠(𝑥0, 𝑃, 𝑟) = {𝑥𝑖 ∈ 𝑃 |  ∥ 𝑥0 − 𝑥𝑖 ∥ ≤ 𝑟} 

The KNN of point 𝑥0 are the 𝐾 points that are the closest to 𝑥0. 

𝑁𝐾𝑁𝑁(𝑥0, 𝑃, 𝐾) = {𝑥𝑖 ∈ 𝑃 |  ∥ 𝑥0 − 𝑥𝑖 ∥ ≤ ∥ 𝑥0 − 𝑥𝑖+1 ∥, 𝑖 < 𝐾} 

Each type has its own characteristics. Spherical neighborhoods have a fixed geometric 

volume that is determined by a radius, whereas KNNs can be found anywhere in space. 

However, KNN can have a fixed number of neighborhoods, but the number of neigh-

bors in spherical neighborhoods can be variable (Thomas, 2020). 

2.5 KD-tree 

In order to reduce the complexity of the neighbor search, KD-tree will be used as an 

acceleration data structure to enhance efficiency. 
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The KD-Tree is a binary tree structure which always divides the data along perpendic-

ular hyperplanes to the axes. In 2D, the method begins by locating a midpoint along 

the horizontal axis and then splits the space into two halves perpendicular to the axis 

at this midpoint. The center point along the vertical axis is determined for each subdi-

vision. Subdivisions are then splited into halves at that midpoint by a line perpendicular 

to the vertical axis. The preceding procedures are continued until the partition space 

can no longer be split further (Vega Torres et al., 2020). Because partitioning is done 

simply along the data axes, the construction of a KD-tree is very rapid. Once con-

structed, the nearest neighbor of a query point can be identified using only 𝑂[log (𝑁)] 

distance computations (Bentley, 1975). Many highly optimized open-source KD-tree 

implementations are available. In this study, the Scikit-learn library (Pedregosa et al., 

2011) was used. 

2.6 KPConv 

Kernel Point Convolution (KPConv) is a novel point convolution operator inspired by 

image-based convolution, but instead of kernel pixels, a set of kernel points are utilized 

to define the area where each kernel weight is applied. Let 𝑥𝑖 and 𝑓𝑖 be the points from 

point cloud 𝑃 ∈ 𝑅𝑁×3 and their corresponding features from 𝐹 ∈ 𝑅𝑁×𝐷. The kernel point 

convolution of 𝐹 by a kernel 𝑔 at a point 𝑥 ∈ 𝑅3 can be defined as: 

(𝐹 ∗ 𝑔)(𝑥) = ∑ 𝑔(𝑥𝑖 − 𝑥)𝑓𝑖

𝑥𝑖𝜖𝑁𝑥

 

𝑤𝑖𝑡ℎ 𝑁𝑥 = {𝑥𝑖 ∈ 𝑃 |  ∥ 𝑥𝑖 − 𝑥 ∥ ≤  𝑟} 

Where 𝑁𝑥 are the radius neighbor points of 𝑥  (Thomas et al., 2019). The kernel func-

tion 𝑔 takes 𝑥𝑖 − 𝑥 as input, which are the neighbors positions centered on 𝑥. For sake 

of clarity, we use 𝑦𝑖 to represent these positions. Since spherical neighborhood is used, 

𝑦𝑖 are always in the sphere 𝑆𝑟
3 = {𝑦 ∈ 𝑅3 |  ∥ 𝑦 ∥ ≤  𝑟}. This 𝑆𝑟

3 is thus the definition do-

main of 𝑔. Similar to image convolution kernels, the 𝑔 is required to apply different 

weights to different areas inside this domain. The Kernel points are used to define 

these areas in 3D space. Let {�̃�𝑘 | 𝑘 < 𝐾} be the 𝐾 kernel points and {𝑊𝑘 | 𝑘 < 𝐾} be 

the related weight matrices that transfer features from dimension 𝐷𝑖𝑛 to 𝐷𝑜𝑢𝑡. The ker-

nel function 𝑔 for ∀𝑦𝑖 ∈ 𝑆𝑟
3 can be defined as: 

𝑔(𝑦𝑖) = ∑ ℎ(𝑦𝑖, �̃�𝑘)𝑊𝑘 ,

𝑘<𝐾

               ∀𝑘 < 𝐾, �̃�𝑘 ∈ 𝑆𝑟
3, 𝑊𝑘 ∈ 𝑅𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 
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Where ℎ is the linear correlation between �̃�𝑘 and 𝑦𝑖: 

ℎ(𝑦𝑖, �̃�𝑘) = max (0, 1 −
∥ 𝑦𝑖 − �̃�𝑘 ∥

𝜎
) 

where 𝜎 is the influence distance of the kernel points, which is relevant to the input 

density (Thomas et al., 2019). 

 

Figure 4 For a more straightforward demonstration, compare an image convolution to a KPConv on 2D points. Each 
pixel feature vector in the image is multiplied by a weight matrix Wk assigned by the kernel's alignment with the 
image. In KPConv, input points are not aligned with kernel points, and the number of input points can vary. As a 
result, each point feature is multiplied by all the kernel weight matrices, with a correlation coefficient hik based on 
its position relative to the kernel points (Thomas et al., 2019). 

The kernel points required for the convolution operation defined above need to be reg-

ularly placed in the spherical domain. The distribution of kernel points within the sphere 

can be defined in advance, i.e., the rigid kernel. Figure 5 shows several rigid kernel 

variants with 𝐾 points.  

 

Figure 5 Illustration of the kernel points in stable dispositions. The red dot is a Kernel point that is fixed at the 
center of the sphere.The blue dots are the remaining kernel points that form a regular polyhedron inside the 

sphere (Thomas et al., 2019). 
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When given a large enough 𝐾  to cover the spherical domain, the rigid version of 

KPConv is already very efficient. However, because these locations are continuous in 

space, the kernel point position can be learned by network to adapt local geometry of 

point cloud. By learning a set of 𝐾 shifts ∆(𝑥) for every convolution location 𝑥 ∈ 𝑅3, the 

deformable KPConv can be defined as (Thomas et al., 2019): 

(𝐹 ∗ 𝑔)(𝑥) = ∑ 𝑔(𝑥𝑖 − 𝑥, ∆(𝑥))𝑓𝑖

𝑥𝑖𝜖𝑁𝑥

 

𝑔𝑑𝑒𝑓𝑜𝑟𝑚(𝑦𝑖) = ∑ ℎ(𝑦𝑖 , �̃�𝑘 + ∆𝑘(𝑥))𝑊𝑘 

𝑘<𝐾

 

In order to generate sensible offsets, additional “fitting” regularization loss and “repul-

sive” regularization loss are defined for the deformable kernel. For rigid kernel, a cross-

entropy loss is used. 

Base on the KPConv operator, KP-CNN and KP-FCNN are designed for the classifi-

cation and the segmentation tasks (see Figure 6). KP-FCNN is composed of encoder 

and decoder. The encoder part has five layers. Each layer contains a strided KPConv 

block and followed by a standard KPConv block, while the first layer consists of two 

standard KPConv blocks. These convolutional blocks are designed like bottleneck 

ResNet blocks (K. He et al., 2016). Instead of the image convolution, KPConv is used 

here followed by batch normalization and leaky ReLU activation (see Figure 7). 

The decoder part employs nearest upsampling to get the final point-wise features. Skip 

connections are used to transport the features between intermediate layers of the en-

coder and the decoder. These features are concatenated to the upsampled features 

and processed by a unary convolution, which is the equivalent of a 1×1 convolution in 

image. The segmentation head of the network is two fully connected layers followed 

by softmax to predict the semantic label of each point. As a next-generation point-

based approach, KP-FCNN demonstrates strong performance and outperforms Point-

Net (Qi, Yi, et al., 2017) on multiple datasets.  
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Figure 6 Demostration of two net work architecture base on KPConv (Thomas et al., 2019) 

 

Figure 7 KPConv blocks used in KP-FCNN. Above is the rigid KPConv and below is the deformable version. 
Optional blocks: shortcut max pooling(1) is only needed for strided KPConv, and shortcut 1x1 convolution(2) is only 
needed when Din ≠ 2D. D are the green number above layers in figure 6. The shortcut feature and main feature are 

summed before output. (Thomas et al., 2019) 
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In this section, the state of the art (SOTA) multimodal algorithms using both 3D point 

clouds and 2D images will be presented. Not only in the field of point cloud semantic 

segmentation, multimodal algorithms also show great potential for object detection and 

instance segmentation tasks. At the end of this section, their characteristics as well as 

performance on various datasets will be compared and summarized in a table. 

3.1 Object detection 

The goal of the object detection task is to classify and localize one or more objects in 

an image or point cloud. Its output are usually one or more bounding boxes for locali-

zation of objects (e.g., defined by a point, width, and height), and a class label for each 

bounding box. 

3.1.1 Frustum-PointNet & Frustum-ConvNet & SIFR-Net 

The current multi-modal fusion method for 3D Object detection can start from the ear-

liest Frustum-PointNet (Qi et al., 2018), which is a typical result level fusion method. 

The idea behind result level fusion is to limit the 3D search space for 3D object detec-

tion by using the results of off-the-shelf 2D object detectors, which reduces computa-

tion and improves run time (Cui et al., 2021). The detailed process is as follows: First, 

a 2D object detector is used to predict the 2D bounding box of the interested objects 

in the image and determine their categories. The 2D region proposal is then projected 

into the 3D point cloud through the calibrated camera projection matrix and thus be-

come 3D frustum proposals. Rotate the point cloud data in the frustum so that the 

coordinate axis is the center viewing angle. PointNet (or PointNet++) is then used for 

instance segmentation on the converted point cloud data. The result of instance seg-

mentation is used as a mask to obtain all point clouds belonging to an instance - this 

operation filters the background or noise points. The centroid of obtained point cloud 

will be calculated as the origin of the new coordinate system. Regression is performed 

by a T-Net module to get the residual of the target centroid and the current coordinate 

origin, and then the point cloud is translated. After the point cloud is translated to the 

calculated target centroid, the center, size and orientation of the 3D bounding box are 

regressed through PointNet (or PointNet++) to obtain the final output. 

3 Related Work 
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Wang et al. made some improvements based on the Frustum-PointNet framework and 

proposed a Frustum-ConvNet (Wang & Jia, 2019). Instead of one frustum for each 

object, they generated a sequence of frustums along the frustum axis for each 2D 

region and applied PointNet to extract features for each frustum. The frustum-level 

features were reformed to generate a 2D feature map, which was then fed into a fully 

convolutional network for 3D box estimation (Lu & Shi, 2020).  

Another improvement comes from SIFR-Net (Zhao et al., 2019) proposed by Zhao et 

al.. The highlight of SFIR-Net is, they not only used the 2D bounding box generated to 

reduce the processing area of the point cloud, but also used 2D CNN to extract the 

features (color information) of the image and input it into the Point-UNet module (a 3D 

instance segmentation network), where the image features are concatenated with the 

point cloud information to enhance the performance. It can be said that SIFR-Net has 

initially realized both feature level and result level fusion. This method achieves signif-

icant improvement on both indoor and outdoor datasets as compared to Frustum-

PointNets. 

In summary, the main advantage of Frustum-based method is that the 3D search space 

is limited using 2D results to reduce computational cost. But due to sequential result-

level fusion, the overall performance is limited by the image detector: when the 2D 

detector fails, the solution will fail. The redundant information from image is also not 

fully leveraged. In addition, SIFR-Net performance better on indoor dataset as com-

pared to Frustum-PointNets and Frustum-ConvNet. 

3.1.2 PointPainting 

PointPainting (Vora et al., 2020) uses 2D semantic prediction results to do the per-

point fusion. They first apply semantic segmentation on image to obtain 2D semantic 

maps with segmentation scores. Then the lidar points are transformed by a homoge-

nous transformation followed by a projection into the semantic maps. Once the lidar 

points are projected into the image, the segmentation scores for the relevant pixel are 

appended to the point cloud as additional channels to create the “painted” point cloud. 

The authors argued that the fused point clouds can be consumed by any point cloud 

network that learns an encoder, since PointPainting just changes the input dimension 

of the lidar points. To demonstrate this flexibility, the fused point cloud is fed into mul-

tiple existing point cloud detectors, such as PointRCNN (Shi et al., 2019), VoxelNet 
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(Zhou & Tuzel, 2018) and PointPillar (Lang et al., 2019) to achieve significant perfor-

mance improvement. 

 

Figure 8 Pipline of PointPainting (Vora et al., 2020) 

The novelty of PointPainting is that it fuses high-level image semantics to points rather 

then directly appends RGB information to points. Adding RGB information to points 

directly results in the loss of the majority of texture information, leaving the fusion use-

less - only a small percentage of pixels have corresponding points due to the resolution 

mismatch between dense RGB and sparse depth. (Cui et al., 2021) 

However, the PointPainting approach makes the image and LiDAR models highly cou-

pled. This requires the LiDAR model to be retrained when the image model changes, 

which reduces the overall reliability and increases the development cost. Furthermore, 

3D search space is also not limited which leads to high computational cost. (Guo et al., 

2020) 

3.1.3 EPNet 

The EPNet (Huang et al., 2020) is composed of a geometric stream and an image 

stream, which produce the point features and image semantic features, respectively. 

The LiDAR-guided Image Fusion (LI-Fusion) modules are designed to enhance the 

point features with corresponding image semantic features in different scales, leading 

to more discriminative feature representations. 

Image Stream uses camera images as input and uses a series of convolution opera-

tions to extract semantic information. A simple network structure is adopted, consisting 

of four lightweight convolutional blocks, each convolutional block is composed of two 

3×3 convolutional layers, a batch normalization layer and a ReLU activation function. 
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Geometric Stream uses lidar point clouds as input, and contains 4 pairs of Set Abstrac-

tion (SA) and Feature Propagation (FP) layers to extract features. Both SA and FP 

layers come from Pointnet++, as mentioned in chapter 2.4. In simple terms, SA is used 

for downsampling and FP is used for upsampling. 

 

Figure 9 Pipline of EPNet (Huang et al., 2020) 

The highlight of this network is the proposed LiDAR-guided Image Fusion (LI-Fusion) 

module, which adaptively fuses the features from both modalities. It consists of a grid 

generator, an image sampler, and a LI-Fusion layer. The grid generator establishes 

the correspondence between the point cloud and the camera image in a point-pixel 

manner. The image sampler is used to get the semantic feature for each point from its 

corresponding pixel, and output the point-wise image feature. LI-Fusion layer then uti-

lizes the LiDAR feature to adaptively estimate the importance of the image feature in 

a point-wise manner. In detail, they train the network to learn a weight map 𝑤, then 

concatenate the LiDAR feature with the semantic image feature multiple weights. In 

doing so, useful image features can be used to enhance the features of the points, 

while suppressing the features that interfere with the image. EPNet shows good per-

formance in indoor dataset. It is free of image annotations, namely 2D bounding box 

annotations, as opposed to Frustum-PointNet. 
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Figure 10 LI-Fusion Module (Huang et al., 2020) 

3.1.4 3D-CVF (Cross-View Feature Mapping) 

3D-CVF (Yoo et al., 2020) followed the basic idea of multi-view-based method that 

mentioned in chapter 1.1 and proposed a novel fusion method. The network consists 

of following parts: The LIDAR pipeline uses voxel-based backbone network to voxelize 

the point cloud and pass it through six 3D sparse convolution layers to get the LiDAR 

feature map of 128 channels in the BEV (Bird’s eyes view) domain. In parallel to the 

LiDAR pipeline, the multi-view camera images are processed by the CNN backbone 

network in camera pipeline. The camera features are fed into cross-view feature (CVF) 

mapping module, which use the auto-calibrated projection module to transform the 

camera-view features into the Bird’s eyes view (BEV) features (represent the feature 

map of image information on lidar-voxel, in order to align camera and lidar). The adap-

tive gated fusion network can selectively fuse the camera and LiDAR features depend-

ing on the relevance to the object detection task, i.e., calculate the respective weights 

of camera and LiDAR features and then concatenate the features. Proposals are gen-

erated from the joint camera-LiDAR feature map obtained by the above fusion. The 

author argue that the joint camera-LiDAR feature map does not have sufficient spatial 

information, so they further use PointNet to extract the camera features and point cloud 

features separately, then use the 3D-RoI-based fusion network module to fuse them 

with the join camera-LiDAR feature map. This fused feature is finally used to produce 

the final detection results. 
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Figure 11 Pipline of 3D-CVF (Yoo et al., 2020) 

Unfortunately, this method was not tested on the indoor dataset. The biggest difference 

between this approach and the previous multi-modal networks is the fusion method. 

Previously, pixel-to-point fusion was used (e.g., EPNet, PointPainting etc.). This paper 

first converts the image information to the BEV (Bird’s eyes view) to obtains the repre-

sentation of the camera information on the voxel, then fuse camera-voxel with point 

cloud-voxel. In addition, the author did a total of two fusions, which further improved 

the accuracy. 

3.1.5 CLOCs 

CLOCs (Pang et al., 2020) is a novel Camera-LiDAR Object Candidates fusion net-

work. It uses fusion at the decision-level, i.e., late-fusion. The advantage of this fusion 

is that the two modal network structures do not interfere with each other and can be 

trained and combined independently, i.e., it has low-complexity and very good flexibility. 

However, this fusion strategy has also certain shortcomings as mentioned in section 

2.3.2. 

The pipeline of CLOCs is: First, any 2D and 3D detectors generate 𝑘 2D detection 

candidates and 𝑛 3D detection candidates (2D, 3D box); Then CLOCs takes the 2D 

and 3D detection candidates and do the fusion, the final output from CLOCs would be 

𝑛 fused confidence scores for 𝑛 3D detection candidates; Finally, replace the old con-

fidence scores (from the 3D detector) with the new fused confidence scores from 
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CLOCs for post processing stage. These 𝑛 3D detection candidates with the corre-

sponding CLOCs fused confidence scores are treated as the input for 3D detector post-

processing functions (Non-Maximum Suppression (NMS) or other filtering) to generate 

final predictions.  

 

Figure 12 CLOCs Fusion network achitecture (Pang et al., 2020) 

The general output of a 2D object detector is a set of 2D bounding boxes in the image 

plane and corresponding confident scores (see the Figure 13). The 𝑘 2D detection 

candidates in one image can be defined as a P2D set. For 𝑖𝑡ℎ detection 𝑃𝑖
2𝐷, 𝑥𝑖1, 𝑦𝑖1 and 

 𝑥𝑖2, 𝑦𝑖2 are the pixel coordinates of the top left and bottom right corner points from the 

2D bounding box. The 𝑠𝑖
2𝐷 is the 2D confident score. The output of 3D object detectors 

are also 3D oriented bounding boxes in LiDAR coordinate and confident scores. 𝑃3𝐷  

is the set of all 𝑛  3D detection candidates in one LiDAR scan. For 𝑖𝑡ℎ  detection 

𝑃𝑖
3𝐷, [ℎ𝑖 , 𝑤𝑖, 𝑙𝑖, 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖, 𝜃𝑖] is the 7-digit vector for 3D bounding box. 𝑠𝑖

3𝐷 is the 3D confi-

dent score. Note that the author takes 2D and 3D detection results without doing NMS.  

 

Figure 13 CLOCs mix the prediction results of 2D and 3D networks into a sparse tensor T, which is then fed into a 

convolutional network to process fused results.(Pang et al., 2020) 



 Related Work 23 
 

For 𝑘 2D detections and 𝑛 3D detections, the author builds a 𝑘 ×  𝑛 ×  4 tensor 𝑇, 

where 𝐼𝑜𝑈𝑖,𝑗   is the 𝐼𝑜𝑈 between 𝑖𝑡ℎ  2D detection and 𝑗𝑡ℎ projected 3D detection, 𝑠𝑖
2𝐷 

and 𝑠𝑖
2𝐷 are the confident scores for 𝑖𝑡ℎ 2D detection and 𝑗𝑡ℎ 3D detection respectively. 

The 𝑑𝑗 represents the normalized distance between the 𝑗𝑡ℎ 3D bounding box and the 

LiDAR in XY plane (ground). The elements 𝑇𝑖,𝑗   with zero 𝐼𝑜𝑈 are eliminated. In this 

way, the 2D and 3D results can be expressed as a four-dimensional tensor of coeffi-

cients, which can then be directly input to the convolutional network for fusion. 

What this paper proposes is a novel and flexible fusion method, not a certain network 

structure, so there are many possibilities for the choice of 2D detectors and 3D detec-

tors. The author did an experiment with PV-RCNN (Shi et al., 2020) + Cascade RCNN 

(Cai & Vasconcelos, 2018) on KITTI dataset and got quite good results.  

3.2 Semantic segmentation 

The goal of semantic segmentation is to predict a semantic label for each point in the 

input point cloud, or for each pixel in the input image. It can be said that the semantic 

segmentation detects the objects at the pixel / point level. 

3.2.1 Virtual Multi-view fusion 

As mentioned in introduction, the classic multi-view-based method cannot reach state 

of the art performance on the standard 3D segmentation benchmark due to the chal-

lenges of occlusion, illumination variations, difficulty choosing an appropriate viewpoint 

as well as camera posture misalignment in the RGB-D scan dataset (Kundu et al., 

2020). However, Virtual MV-Fusion (Kundu et al., 2020) proposed a new view-based 

3D semantic segmentation method, which overcomes these problems and achieved a 

high ranking on the ScanNet (A. Dai et al., 2017) benchmark. Its central concept is to 

employ synthetic images generated from a "virtual view" of a 3D scene rather than 

processing raw photographic images captured by a physical camera. 

Authors first choose virtual viewpoints for each 3D scene throughout the training stage. 

They select camera intrinsic, camera extrinsic, which channels to render, and render-

ing parameters (e.g., depth range, backface culling) for each virtual view. It should be 

noted that the virtual view enables for the free selection of camera parameters that are 

most effective for 2D semantic segmentation tasks. For example, as for camera intrin-

sic, they use a pinhole camera model with significantly higher field of view (FOV) than 

the original cameras, providing larger context that leads to more accurate 2D semantic 
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segmentation. As for camera extrinsic, they use a mixture of the different sampling 

strategies to generate many novel views. And through channel rendering they let 2D 

views to capture additional channels that are difficult to capture with real cameras, e.g., 

normal and coordinates. They turn on backface culling in the rendering so that the 

backface do not block the camera views. This allows to select views from outside a 

room (behind a wall) to see more context from the view that are not physically possible 

with real cameras. It can potentially improve model performance.  

 

Figure 14 Proposed virtual view selection approaches. This approach gives us the possibility to freely choose the 
camera pose and parameters - even if it is not physically possible.(Kundu et al., 2020) 

After the intrinsic & extrinsic and rendering parameters & channels are selected, they 

then generate training data by the selected virtual views and ground truth semantic 

labels. The 2D semantic segmentation models are trained using these data and this 

trained model will also be used in the inference stage. At inference stage, they select 

and render virtual views using a similar approach as in the training stage, but without 

the ground truth semantic labels. They conduct 2D semantic segmentation on the ren-

dered virtual views using the trained model, project the 2D semantic features to 3D, 

then derive the semantic category in 3D by fusing multiple projected 2D semantic fea-

tures. (Kundu et al., 2020) 

This method has demonstrated excellent performance on both indoor datasets. It also 

shows that the simple method of carefully selecting and rendering virtual views enables 

multi-view fusion to outperform almost all recent 3D convolutional networks. however, 

notice that it might restrict the method to be used only over previously acquired data, 
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and not in real-time applications, since the pose of the camera is not physically possi-

ble. In addition, the code in this paper is not open source. 

3.2.2 MVPNet (Multi-view PointNet) 

MVPNet (Jaritz et al., 2019) takes dense multi-view images and sparse point cloud as 

input and fuses them to predict the semantic labels for each point. 

 

Figure 15 Pipline of MVPNet (Jaritz et al., 2019) 

Authors first divide the whole scene into chunks (around 90 chunks for an average 

scene) following PointNet++ implementation. For each chunk, a fixed number of 2D 

views (RGB-D frames) are selected so that the chunk is maximally covered. Those 

views are then fed into a 2D encoder-decoder network in order to obtain feature maps 

of same size as the input images. The pixels in images (feature maps) are unprojected 

into 3D space through the camera projection matrix to form a dense point cloud cover-

ing the entire chunk. Then, the features of the dense unprojected point cloud are ag-

gregated into the sparse input point cloud to augment each point with these 2D image 

features. Finally, PointNet++ is applied to process the multi-view feature augmented 

point cloud and do the semantic segmentation task. 

The novelty of this work is that they establish pixel-point-point correlations to transfer 

2D features to the canonical 3D point cloud space and express the pixel-like 2D fea-

tures as point cloud-like 3D features. Note that the pixel-point-point association here 

can be understood as follows: pixel-point can be explained as each pixel having a 

mapping relationship to a point in the dense point cloud generated by its projection. 

This means that the features of a pixel on the feature map of an image can be inter-

preted as the features of a point on the dense point cloud. The point-point represents 

the association between a dense point cloud and a sparse point cloud. This allows 

point features on a dense point cloud to be transferred to a sparse point cloud.  

The advantage of this correlation is that once all modalities are represented in a 3D 

point cloud, the distance between two data points may be properly described in the 

continuous domain without discretization errors. This allows correlation between two 

data points to be precisely defined. Based on this, they have designed a novel feature 
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aggregation module which includes a shared MLP in order to adaptively distill 2D se-

mantic features for 3D point cloud. According to the authors, the whole 2D-3D feature 

lifting module is differentiable, which enables end-to-end training and provides a great 

deal of flexibility. Furthermore, this 2D-3D lifting approach makes it feasible to fully 

exploit image features from a geometric perspective for 3D networks that require point 

clouds as input. (Jaritz et al., 2019) However, as a relatively old 3D network, Point-

Net++ may limits the performance of the overall model. Therefore, it would make sense 

to further improve the performance of MVPNet with a more powerful, SOTA 3D network.  

3.2.3 Unified point-based framework 

Unified point-based framework proposed by (Chiang et al., 2019) learns 2D textural 

appearance, 3D structures and global context features from point clouds. This method 

uses point-based networks to extract local geometric features and global context from 

sparsely sampled point sets without voxelization (Guo et al., 2020). 

 

Figure 16 Pipline of Unified Point-based Network (Chiang et al., 2019) 

The framework consists of four parts: (1) They apply a 2D CNN to extract 2D features 

from rendered images and back project them into the 3D coordinates. The 2D features 

are interpolated and concatenated with 3D point features as inputs for 3D point-based 

networks; (2) Locally, a sub-volume encoder extracts local details in a target 3D sub-

volume; (3) Globally, global context encoder extracts global context priors from a sam-

pled sparse scene pointsets; (4) The decoder fuses the 2D image features, local fea-

tures, and global feature in a concatenate manner. Then they deploy multiple MLPs 

and feature propagation layers from Pointnet++ to decode the aggregated features and 

upsample points to original input size. Finally, the point features are passed through 

an output layer consisting of two MLPs, which predicts the semantic labels for each 
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point in the sub-volume. The test results of this model on the ScanNet benchmark are 

slightly worse than those of MVPNet. 

3.3 Instance segmentation 

Instance segmentation is the process of recognizing each object instance for each 

known object in an image or point cloud. It combined object detection and semantic 

segmentation. The bounding box is used to classify individual objects and localize each 

object instance. To classify each pixel / point into a fixed set of categories without 

differentiating object instances, each instance must also be segmented. 

3.3.1 3D-SIS 

(Hou et al., 2019) proposed a 3D fully convolutional Semantic Instance Segmen-

tation (3D-SIS) network to achieve semantic instance segmentation on RGB-D scans. 

The network consists of two parts: 3D detection backbone and 3D mask backbone. 

The multi-view image features (color information) are first extracted and downsampled 

using ENet based network (Paszke et al., 2016). Noted that here they choose to “sum-

marize” the RGB information by decreasing the dimension of image features, which 

solved the mismatch problem between a high-resolution image feature map and a low-

resolution voxelized point cloud feature map. They then back project each of these 

features back to 3D voxel grid using the corresponding depth image, camera intrinsic, 

and 6 DOF (Degree of freedom) poses. The image feature in 3D voxel representation 

will concatenate (fuse) with 3D voxels which contain geometric information.  

 

Figure 17 Pipline of 3D-SIS (Hou et al., 2019) 

In the 3D detection branch, the features of fusion data are further extracted through a 

3D CNN block, and then enter the RPN (region proposal network). The network has 

two inputs, one is a feature layer with a smaller receptive field, which represents a 

small anchor, and the other is a layer with a larger receptive field, which represents a 
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large anchor. After training the RPN, use the ROI (Region of interest) generated by the 

RPN as input to train the classification branch. In the 3D mask branch, a 3D CNN takes 

images, point cloud features and 3D object detection results to predict per-voxel in-

stance labels. 
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3.4 Summary 

Table 3.1 Summary of STOA Multi-modal Method (all the values are in percentage) “-” means missing information 

Network Task 
2D Back-

bone 
3D Back-

bone 
Fusion Operation and 

Method 
Fusion 
Timing 

KITTI1 [AP] ScanNetV2 

S3DIS 
[mIoU] 

SUN-
RGBD 

[mAP] Cars 
Pedes-
trians 

Cy-
clists 

Door 
[IoU] 

Window 
[IoU] 

mIoU 

Frustum-
PointNet (Qi et 

al., 2018) 

Object 
detection 

Mask-RCNN 
(K. He et al., 

2018) 

PointNet++ 
(Qi, Yi, et 
al., 2017) 

Ensemble: using region 
proposal of 2D detector to 
narrow the detection range 

of 3D network 

Late; De-
cision 
level 

69.79 42.15 56.12 - - - - 54.0 

Frustum-Con-
vNet (Wang & 

Jia, 2019) 

Object 
detection 

Faster R-
CNN (Ren et 

al., 2017) 

PointNet; 
Fully con-
volutional 
network 

Ensemble: Using region 
proposal from RGB image 
detector to build frustums 

Late; De-
cision 
level 

76.39 43.38 65.07 - - - - 57.5 

SIFR-Net (Zhao 
et al., 2019) 

Object 
detection 

YOLOv3 
(Redmon & 

Farhadi, 
2018);ResNe
t-50(K. He et 

al., 2016) 

Point-UNet 

Ensemble: using region 
proposal of YOLO detector; 
Feature concatenation: im-
age features are extracted 
by ResNet and combined 

with point cloud as input to 
3D network 

Early; 
Late; De-
cision & 
Feature 

level 

72.052 60.852 60.342 - - - - 58.4 

PointPainting 
(Vora et al., 

2020) 

Object 
detection 

DeepLabv3 
(L.-C. Chen 
et al., 2017) 

PointRCN
N (Shi et 
al., 2019) 

Feature concatenation Early 71.70 40.97 63.78 - - - - - 

EPNet (Huang 
et al., 2020) 

Object 
detection 

2D CNN 
PointNet-
like layers 

Feature concatenation; 
Adaptive fusion module; 
Multiplication; Addition 

Middle 79.28 - - - - - - 59.8 

 

1 Listed here are the average precision (AP) of 3D detection task for each category at modrate difficulty. 
2 results on KITTI validation set for 3D object detection. 
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Network Task 
2D Back-

bone 
3D Back-

bone 
Fusion Operation and 

Method 
Fusion 
Timing 

KITTI [AP] ScanNetV2 

S3DIS 
[mIoU] 

SUN-
RGBD 

[mAP] Cars 
Pedes-
trians 

Cy-
clists 

Door 
[IoU] 

Window 
[IoU] 

mIoU3 

3D-CVF (Yoo et 
al., 2020) 

Object 
detection 

ResNet PointNet 
Feature concatenation; 
Adaptive fusion module 

Early; 
Late 

80.05 - - - - - - - 

CLOCs (Pang et 
al., 2020) 

Object 
detection 

PV-RCNN 
(Shi et al., 

2020) 

Cascade-
RCNN(Cai 

& 
Vasconcel
os, 2018) 

The 2D and 3D predictions 
are mixed and represented 
as sparse tensor and then 
input to 2D CNN for fusion. 

Late; De-
cision 
level 

80.67 - - - - - - - 

Virtual MVFu-
sion (Kundu et 

al., 2020) 

Semantic 
segmen-

tation 

DeepLabv3; 
Xcpetion65 

(Google, 
2014) 

- 

Average: projecting multi-
ple image features to each 
3D point, the fused feature 
at each point obtained by 
averaging all these fea-

tures. 

Late; De-
cision 
level 

- - - 66.4 72.8 74.60 65.384 - 

MVPNet (Jaritz 
et al., 2019) 

Semantic 
segmen-

tation 

UNet-Res-
Net34 

PointNet++ Feature concatenation Early - - - 55.3 60.8 64.10 62.434 - 

Unified point-
based Network 
(Chiang et al., 

2019) 

Semantic 
segmen-

tation 
DeepLab 

PointNet++ 
like layers 

Feature concatenation Early - - - 56.1 59.8 63.40 - - 

3D-SIS (Hou et 
al., 2019) 

Instance 
segmen-

tation 
ENet 

3D ResNet 
blocks 

Feature concatenation Early - - - 32.05 23.55 38.25 - - 

 

3 Mean Intersection over Union (mIoU) of 20 classes  
4 Area 5 of S3DIS is used here as test set. 
5 (Mean) average precision AP at overlap 0.50 (AP 50%), metric for instance segmentation. 
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From the above literature review, we can see that multimodal fusion methods not only 

perform well in 3D semantic segmentation tasks, but also show great potential in 3D 

object detection and instance segmentation tasks. Since the main goal of this study is 

to effectively fuse complementary information from 2D images and 3D point cloud in 

order to achieve better 3D scene understanding on real-world data, three multimodal 

fusion algorithms that rank high on the ScanNet 3D semantic segmentation benchmark 

are evaluated in the literature review. As one of the few open-source multimodal algo-

rithms on the benchmark, MVPNet has the potential to continue to improve while 

demonstrating its excellent performance.  

As mentioned in Chapter 3.2.2, MVPNet proposed a novel method to augment point 

cloud with 2D semantic features. A small number of images that can accurately cover 

a given point cloud can be selected in real-time by their proposed algorithm. The se-

mantic features extracted by these images through the 2D network can also be trans-

ferred to the 3D point cloud through an end-to-end feature aggregation module. Since 

the final output of this flexible 2D-3D lifting method is a 3D point-like feature, it is pos-

sible to process these features using a different point-based 3D network. 

As one of the best point-based 3D networks, KPConv accepts a similar input format as 

PointNet++. Compare to PointNet, the point convolution is better suited to extract fine-

grained per-point and local geometry (Cui et al., 2021). Moreover, the KP-FCNN based 

on KPConv is more powerful, and it outperforms (68.4 mIoU) PointNet++ (33.9 mIoU) 

on the ScanNet 3D semantic benchmark. Therefore, it would be interesting to use KP-

FCNN instead of PointNet++ to improve the metrics of MVPNet, or to integrate the 

modules of MVPNet into KP-FCNN to study the chemistry between them. 
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The algorithm pipline of this study is illustrate in Figure 18. The code of this method is 

mainly based on the KPConv implementation, and many modules and functions from 

original MVPNet are meaningfully incorporated. 

 

Figure 18 The algorithm pipline of this study 

The method starts with preprocessing stage. First, useful 2D and 3D information are 

extracted from the raw data and transformed into serialized files (pickle). Scene point 

clouds are subsampled to reduce the computational cost. The overlap of each video 

frame with the scene point cloud is computed in order to know the coverage area of 

each image. During the data loading phase, spherical sub-clouds are selected from 

the scene point cloud as input to the 3D network. Using the overlap information 

provided in the preprocessing phase, a certain number of images that can cover the 

input sphere well can be selected in real-time. Each pixel of these images is 

unprojected into 3D space to form a dense point cloud. Using KNN, the input sparse 

point cloud and the dense unprojected point cloud can be correlated. At this moment, 

the association between the image pixels, the dense unprojected point cloud, and the 

sparse input point cloud is established. Finally, the selected images are fed into a pre-

trained 2D network to obtain feature maps of the same size as the input images. The 

feature aggregation module receives these feature maps associated with dense point 

4 Methodology 
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cloud, as well as the sparse spherical sub-clouds as inputs, and then transfers 2D 

semantic features from the dense point cloud to each sparse point through the 

previously established KNN correlations. Finally, the sparse point cloud augmented by 

the image features is fed into KP-FCNN to fuse with the geometric information. Several 

different fusion architechtures are tested in KP-FCNN. 

4.1 Dataset 

The ScanNet (A. Dai et al., 2017) dataset covers various indoor scenes such as offices, 

bedrooms, and bathrooms etc., with a total of 2.5 million frames collected using an 

Occipital structure sensor attached to iPad Air2, which is a commodity RGB-D sensor 

with design similar to the Microsoft Kinect v1. The complete dataset contains 1201 

training scenes and 312 validation scenes. Each scene's data contains an RGB-D se-

quence, corresponding camera postures, and a whole scene mesh annotated with 20 

semantic classes. The test set includes 100 scenes with disguised ground truth for 

benchmarking. 

Due to disk capacity limitations and because doors and windows are more generic and 

common objects for interior scenes, only scenes containing these two classes were 

selected from all training and validation sets by using the browse tool provided on the 

ScanNet website1. This sub-dataset containing 118 training scenes and 28 validation 

scenes was used in this study. 

4.2 Preprocessing 

4.2.1 Data Preparation 

The idea of data preparation is similar to MVPNet. Each scene in the downloaded 

ScanNet dataset contains both 2D and 3D information. 3D information includes the 

whole scene mesh and 3D semantic labels stored in .ply format. 2D information is 

stored in .sens file, and the 2D frame color, depth, camera intrinsic, camera pose and 

2D labels need to be extracted from this raw data by running the SensReader script 

provided by ScanNet. The extracted RGB images, depth maps and 2D labels are 

stored in .png or .jpg format with a native resolution of 640 × 480. To save disk space 

 

1 http://www.scan-net.org/ 
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and data loading time, these images are then compressed to 160 × 120 using PIL (Py-

thon Image Library). Although the pixel count is much reduced, they are still sufficient 

to provide rich texture information (Jaritz et al., 2019).  

Accordingly, 3D information also needs to be processed. All the original 3D information 

of each scene is stored as mesh in a .ply file, and the XYZ coordinates, RBG values 

and 3D labels of the points can be obtained by accessing vertices. The extracted 3D 

information of each scene will be stored in a dictionary in the form of numpy array. 

Eventually, all this dictionary data in the training set (validation set) is dumped into a 

pickle (.pkl) file and stored on disk. This approach can greatly speed up the reading of 

data. 

At this point, the data preparation is complete. The 3D information of each scene from 

each split can simply be retrieved from the pickel file by the “load” command; the 2D 

information can be loaded directly from the folder by the function provided by PIL, so 

there is no need to also dump it into pickel form. 

4.2.2 Point cloud sampling 

Point clouds of real scenes usually show different densities. This is related to the scan-

ning techniques and equipment used to capture these point clouds. For example, fixed 

laser scans often suffer from bad sampling, with a huge number of points close to the 

scanner and few points far from it. Different densities affect the results and efficiency 

of point cloud processing methods. It will be difficult to discern object shapes if the 

density is too low, and the computation time will be too long if the density is too high. 

The trade-off between performance and efficiency is determined by the size of the 

object and the level of detail required by the processing method. Subsampling methods 

can adjust the density of points to different scales. From the original point cloud, these 

methods generate new point cloud with a reduced density. These methods are typically 

used to balance the density of the entire scene (Madali, 2021).  

In this study, grid subsampling provided by KPConv is used as sampling strategy. It 

projects the point cloud into a 3D grid, where each voxel retains only one point closest 

to the barycenter of the voxel. This method has many advantages. It equalizes the 

density of the point cloud, the density of point cloud can be easily controlled through 

voxel size, and is very fast.  



 Methodology 35 
 

 

Figure 19 Grid subsampling illustrated on 2D points. Each small grid contains a number of points, and the point 
closest to the center of the grid is taken as the sampling point (Madali, 2021). 

4.2.3 Compute the overlap of images with point cloud 

ScanNet offers a variety of indoor scenes of varying sizes. Small scenes, such as bath-

rooms and bedrooms, usually contain around 1500 RGB-D images taken within the 

scene; large scenes, such as living rooms and offices, can have around 6000 images. 

These RGB-D images are actually frames in the video stream, and there is a strong 

overlap between consecutive frames. It would be redundant and computationally ex-

pensive to process them all. Also, although the scene point cloud have been grid sam-

pled before being fed into network, the scene is still too large to be segmented as a 

whole. Therefore, KPConv actually takes spheres in the whole scene point cloud and 

then segments the sub-point cloud contained inside the sphere. Due to these two char-

acteristics, we need to know which region of the whole scene point cloud is covered 

by each frame, so that we can accurately select the images that maximize coverage of 

the input sphere from the redundant video stream during data loading process. 

First, 6000 base points are randomly selected in the whole scene point cloud after 

being sampled by the grid subsampling. Note that the original MVPNet picks 4000 base 

points on an unsampled point cloud. To improve accuracy on sparser point clouds, the 

number of base points is increased. After picking base points, a KD-tree is created for 

the base point cloud, for later neighborhood search. Then, all RGB frames belonging 

to this scene are looped over. For each frame, it is projected into the 3D domain using 

its depth map, pose and the camera intrinsic matrix. For each point in the projected 

point cloud, find its nearest neighbor (only one and up to 1 cm away) in the whole 
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scene base point cloud. Eventually, the so-called overlap is actually a Boolean type 

mask array with the length of the number of base points selected in the scene. If a 

nearest neighbor base point is found, then the index of this base point is noted down 

and the Boolean value of this index position in the mask array is assigned to true. For 

example, if 3 points are selected as base points in a scene (this is only an example, 

there are actually 6000 base points), they might be the 3rd, 415th and 801st points in 

the whole scene points. Their indices can be summarized as an array like [3, 415, 810]. 

If the mask array for frame 𝑋 is [𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒], then we can say that frame 𝑋 co-

vers base point 0 and base point 1, but uncovers base point 2. From this we can know 

which area of the original point cloud is covered by this frame by knowing which base 

points it can cover. Finally, the overlap of all images of a scene with this scene point 

cloud can be expressed as a 2D mask array 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒_𝑟𝑔𝑏𝑑_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑁𝐵×𝑁𝐹 , 

where 𝑁𝐵 refers to the number of all base points in the scene and 𝑁𝐹 refers to the 

number of all RGB frames in the scene. 

 

Figure 20 Compute the overlap of an image with scene point cloud using base point method. The white points are 
the whole scene point clouds after grid subsampling. The red points in (a) are the selected base points. The blue 

points in (b) are the dense point cloud formed by projecting the image into 3D space. The green points in (b) 

represent the red base points covered by the dense point cloud. 

4.3 Data loading 

After preparing the data and knowing the coverage area of each image, the data loader 

for the network can be built. The following sections introduce several key steps in the 

data loading process. 

4.3.1 The picking strategy 
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Like mentioned before, the scene in dataset is too big to be processed as a whole by 

the network. Thus, the input to KP-FCNN is actually the spherical sub-clouds of the 

scene. The spheres that contain the input sub-clouds are smaller than the entire scene 

but large enough to cover some objects. It is possible to randomly select the location 

of the input spheres in the scene, but the prerequisite for using this approach is that 

the density of the scene point cloud is relatively uniform. If the point cloud density is 

not balanced, then regions with higher point densities have a higher probability of being 

selected and will therefore be sampled more often than regions with lower densities. 

This creates a bias in the network training (Thomas, 2020).  

In order to have every region of the scene sampled evenly, KPConv uses a potential 

picking strategy to select the input spheres. First, the scene point cloud is continue 

subsampled to obtain some coarse points that are uniformly distributed in the scene. 

These points will be the potential locations for spherical center. An initial potential value 

will be assigned to each coarse point, and when a point is selected, its potential value 

will be increased and the potential values of its surrounding coarse points will also be 

updated by using Tukey weights. The function of Tukey weights is defined as follows: 

𝑇𝑢𝑘𝑒𝑦(𝑑) = {(1 − (
𝑑

𝑑𝑇𝑢𝑘
)

2

)

2

, 𝑖𝑓 𝑑 ≤ 𝑑𝑇𝑢𝑘

0               , 𝑖𝑓 𝑑 > 𝑑𝑇𝑢𝑘

 

The 𝑑𝑇𝑢𝑘  is defined as 𝑑𝑇𝑢𝑘 = 𝑅/3 , where 𝑅  is the radius of input sphere. The 

magnitude of the Tukey weight is related to the distance 𝑑 from the center of the sphere. 

Points that are closer than the distance 𝑑𝑇𝑢𝑘 are updated. This range was chosen to 

be lower than the radius of the actual input spheres, which causes overlap between 

the input spheres. This guarantees that each point is tested multiple times by different 

sphere locations. The closer the point is to the center of the sphere, the greater the 

weight and the greater the increase in potential value, and vice versa. Each new sphere 

center is picked as the minimum of the potentials across the scene (see Figure 21). 

In this way, the spatial regularity of the picking can be ensured by tracking the potential 

value of each coarse point (Thomas, 2020). 
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Figure 21 For clarification, a 1D illustration of the spatially regular selection method with potential updates is 
shown (Thomas, 2020). As showed in (1), the selected center of the sphere (green dots) has the highest potential 
value, and the potential values added to the surrounding coarse points decrease in order of distance. (2) shows 
that only the potential values of points in the range 𝑑𝑇𝑢𝑘 are updated. (3) demonstrates that each time the point 
with the lowest potential value in the scene is selected as the new input sphere center. This strategy helps the 
network to be robust to varying densities and pick the same amount of sphere in every location of the scene. 

4.3.2 View selection 

During data loading, the overlap information obtained by chapter 4.2.3 is used to select 

the RGB-D frames on-the-fly with a greedy algorithm (Jaritz et al., 2019). Knowing 

which base points are included in the input sphere sub-cloud, the overlap information 

can continue to be filtered to know which images these base points can be covered by. 

The image that covers the largest number of base points is selected first. After one 

selection is done, all the base points covered by this image are set to invalid and then 

the next round of image selection is started until the desired number of images are 

selected. For example, imaging the overlap information for an input sphere looks like 

this:  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = [

[𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒],
[𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒],
[𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒],
[𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒]

] 
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This 2D mask array has the shape (4, 3), where 4 means there are 4 base points in 

the sphere sub-cloud and 3 means there are a total of 3 images in this whole scene 

(for ease of explanation only). Since Boolean values are actually 0 and 1, we can add 

up the rows in this matrix above along the columns. As a result, we can get an array 

like this [3, 2, 0]. The indices of this array represent the IDs of the images of this scene, 

and the values inside the array represent the number of base points covered by each 

image in the spherical sub-cloud. Therefore, the first image has the maximum cover-

age since it covers 3 base points. Since the first 3 base points have been covered, the 

overlap matrix has to be adjusted before the next selection round starts:  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝_𝑢𝑝𝑑𝑎𝑡𝑒 = [

[𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒],
[𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒],
[𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒],
[𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒]

] 

The selected views need to be projected into 3D space to form a dense point cloud 

that completely covers the spherical sub-cloud. For each point in the spherical sub-

cloud, find its K nearest neighbors in the dense point cloud and return the indices of 

these neighbors. Based on MVPNet's experience, the value of K was set to 3 in method.  

Algorithm 1: Select the views covering the input sphere sub-cloud and establish 
the correspondence between dense pixels and sparse point clouds 

 Inputs:  

 𝐹 ∈ 𝑅𝑁𝐹×𝐻×𝑊×3: RGB images of a scene. 𝑁𝐹 refers to number of all frames in 
the scene. 

 𝐷 ∈ 𝑅𝑁𝐹×𝐻×𝑊×1: Image corresponding depth maps. 

 𝑀 ∈ 𝑅4×4: Camera intrinsic matrix. 

 𝑃 ∈ 𝑅4×4: Camera pose. 

 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈ 𝑅𝑁𝑆×3: Input spherical sparse sub-point cloud, with 𝑁𝑆 points. 

 𝑂𝑖𝑚𝑎𝑔𝑒𝑠 ∈ 𝐵𝑁𝐵×𝑁𝐹: Overlap of all images of a scene with this scene point 

cloud. 𝑁𝐵 refers to number of all base points in the scene. 

 𝐼𝑏𝑎𝑠𝑒 ∈ 𝑅𝑁𝐵𝑆: Indices of the base points contained in the input spherical sub-

cloud. 𝑁𝐵𝑆 refers to number of base points in sphere. 

 𝑁𝑉: Number of views to select. 

 Outputs: 

 𝐹𝑠𝑒𝑙𝑒𝑐𝑡  ∈ 𝑅𝑁𝑉×𝐻×𝑊×3 : Selected RGB views with 𝑁𝑉  selected views, 3 RGB 
channels. 

 𝑆𝑑𝑒𝑛𝑠𝑒 ∈ 𝑅𝑁𝑉×𝐻×𝑊×3: Dense point clouds formed by projected frames with 𝑁𝑉 
selected views, 3 XYZ channels. 
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 𝐾𝑁 ∈ 𝑅𝑁×𝐾: Indices of the 𝐾 nearest neighbors in the 𝑆𝑑𝑒𝑛𝑠𝑒 for each point in 
the 𝑆𝑠𝑝𝑎𝑟𝑠𝑒. 

  

1.     𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑂𝑖𝑚𝑎𝑔𝑒𝑠[𝐼𝑏𝑎𝑠𝑒]                                                          ⊳ 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ∈ 𝐵𝑁𝐵𝑆×𝑁𝐹 

2.     for 𝑖 = 0 to 𝑁𝑉 do 

3.         𝑓𝑟𝑎𝑚𝑒𝐼𝐷 ←  𝐶ℎ𝑜𝑜𝑠𝑒𝐹𝑟𝑎𝑚𝑒𝐼𝐷𝑊𝑖𝑡ℎ𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑟𝑢𝑒(𝑂𝑣𝑒𝑟𝑙𝑎𝑝) 

4.         𝐹𝑠𝑒𝑙𝑒𝑐𝑡 ← 𝐹[𝑓𝑟𝑎𝑚𝑒𝐼𝐷] 

5.         𝐷𝑠𝑒𝑙𝑒𝑐𝑡 ← 𝐷[𝑓𝑟𝑎𝑚𝑒𝐼𝐷] 

6.         𝑂𝑣𝑒𝑟𝑙𝑎𝑝[𝑂𝑣𝑒𝑟𝑙𝑎𝑝[: , 𝑓𝑟𝑎𝑚𝑒𝐼𝐷]] ←  𝐹𝑎𝑙𝑠𝑒  

7.     end 

8.     𝑆𝑑𝑒𝑛𝑠𝑒  ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛( 𝐷𝑠𝑒𝑙𝑒𝑐𝑡, 𝑀, 𝑃) 

9.     for 𝑝𝑜𝑖𝑛𝑡 in 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 do 

10.         𝐾𝑁 ← find 𝐾 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑆𝑑𝑒𝑛𝑠𝑒                                ⊳ 𝐾𝑁 ∈ 𝑅𝑁𝑆×𝐾 

11.     end 

12.     return 𝐹𝑠𝑒𝑙𝑒𝑐𝑡, 𝑆𝑑𝑒𝑛𝑠𝑒, 𝐾𝑁 

 

(a) (d) 

(b) (c) 

Figure 22 (a) is a whole scene point cloud with labels. (b) is the input spherical subcloud (labels are only for better 
visualization). The red dots are the base points inside it. (c) is the dense point cloud formed by the projection of the 
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5 selected views. (d) is what the dense point cloud looks like in the full scene view. It can be seen that the selected 

2D views cover the input subcloud very well, providing rich texture information. 

4.3.3 Data augmentation 

Data augmentation is used for both 2D and 3D data to increase the variety of input and 

help the robustness of the network. The augmentation strategy for 2D images follows 

the original MVPNet. Color jitter and flip are applied to the selected images (Jaritz et 

al., 2019). As for 3D data, the input point clouds to KPCov are scaled independently in 

each dimension. The scaling factor is picked uniformly in [0.8, 1.2]. Also, they rotate the 

point clouds around the vertical axis with a random angle in [0, 2𝜋]. Besides these, a 

gaussian noise is added to the point coordinates to perturb their positions (Thomas, 

2020). 

4.3.4 Variable batch size 

The point cloud input to KPConv is a spherical sub-cloud. In the preprocessing stage, 

a KD tree is built up for the whole scene point cloud data sampled by the grid subsam-

pling. Later, in the data loading phase, the potential strategy is used to select the loca-

tion of the sphere center point. Given the radius of the sphere and the known spherical 

center point, the KD tree can be used to query all neighbors of the center point within 

the radius, thus obtaining a spherical sub-cloud. Since the distance criterion is used to 

obtain the spherical neighborhoods, it is not guaranteed that the number of points 

within all spheres is the same, since spheres at different locations may contain different 

objects. A network usually processes batches of a few point clouds, but in case of 

KPConv, the input point clouds have varying sizes, so they cannot be stacked along a 

new "batch” dimension. Thus, the point and point-wise feature tensors need to be 

stacked along their first dimension (number of points). Because the number of points 

can vary greatly, they employ a variable batch size, picking as many batch elements 

as possible until a certain total number of batch points is attained (Hermosilla et al., 

2018). This limit is established to ensure that the average batch size matches the target 

batch size (set as a hyperparameter).  

However, it is not only the points that need to be fed into the network, but also the 

selected images 𝐹𝑠𝑒𝑙𝑒𝑐𝑡  ∈ 𝑅𝑁𝑉×𝐻×𝑊×3  , the dense projected point cloud 𝑆𝑑𝑒𝑛𝑠𝑒  ∈

𝑅𝑁𝑉×𝐻×𝑊×3 and the KNN indices 𝐾𝑁 ∈ 𝑅𝑁𝑆×𝐾  from chapter 4.3.2. They need to be 

stacked along the "batch" dimension, because the 2D network and the feature aggre-

gation module provided by MVPNet require such an input format. So here a little trick 
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is used: the 𝐹𝑠𝑒𝑙𝑒𝑐𝑡 and 𝑆𝑑𝑒𝑛𝑠𝑒 tensors are given an expanded dimension as the batch 

dimension and let them be stacked along this dimension. The size of one dimension of 

the 𝐾𝑁 is the variable number of points 𝑁, so it is not credible to apply the above 

method. Instead of expanding a new dimension, the 𝐾𝑁 of each batch element is ap-

pended to a list to be fed into the network. 

4.4 The Network 

The following pseudo-code describes the pipeline of the proposed network. 

First, the images are processed by a 2D network (see section 4.4.1) to obtain 2D se-

mantic feature maps 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ∈ 𝑅𝐵×𝐶𝑓𝑒𝑎𝑡×𝑁𝑉×𝐻×𝑊, where 𝐵 denotes the batch size, 

𝐶𝑓𝑒𝑎𝑡 denotes the number of feature channels (64), 𝑁𝑉 denotes the number of images 

selected for each input sub-cloud of batch elements, and 𝐻 and 𝑊 denote the height 

and width of the images. In Section 4.3.2 we establish the pixel-point-point correlation, 

which is expressed as 𝐾𝑁 ∈ 𝑅𝑁𝑆×𝐾, i.e., the indices of the K nearest neighbors in the 

dense projected point cloud for each point in spherical sparse sub-point cloud 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈

𝑅𝑁𝑆×3. Since the dense point cloud is nothing but a projection of each pixel of the im-

ages into the 3D space, 𝐾𝑁 can also be interpreted as the indices of the K nearest 

neighbor pixels in the images for each point in 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈ 𝑅𝑁𝑆×3. Since 𝐾𝑁 is input to the 

network as a list, a for loop is used to extract the 𝐾𝑁𝑏𝑎𝑡𝑐ℎ_𝑖 belonging to each batch 

element. For each batch element, the 𝐾𝑁𝑏𝑎𝑡𝑐ℎ_𝑖 and 𝐺𝑎𝑡ℎ𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝑜𝑖𝑛𝑡𝑠𝐵𝑦𝐼𝑛𝑑𝑖𝑐𝑒𝑠 

functions can be used to obtain the semantic features of the K nearest neighbor pixels 

in the 2D feature maps 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖 for each point in the input sparse sub-cloud 

𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈ 𝑅𝑁𝑆×3 . The same operation is done on the dense projected point cloud 

𝑆𝑑𝑒𝑛𝑠𝑒
𝑏𝑎𝑡𝑐ℎ_𝑖 of each batch element. As the outputs of the above operations, the processed 

𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖  and the 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒
𝑏𝑎𝑡𝑐ℎ_𝑖  of all batch elements are concate-

nated along their dimension of the number of points (𝑁𝑆), so that they can later be 

used by the 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 module. Here 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒 ∈ 𝑅1×3×𝑁×𝐾 represents 

the coordinates of the K nearest neighbor points of each point in the input sparse point 

cloud 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈ 𝑅𝑁×3  in the dense point cloud 𝑆𝑑𝑒𝑛𝑠𝑒  ∈ 𝑅𝐵×𝑁𝑉×𝐻×𝑊×3 .The 

𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ∈ 𝑅1×𝐶𝑓𝑒𝑎𝑡×𝑁×𝐾 can be interpreted as the semantic features at the 

K nearest neighbor points in the dense point cloud 𝑆𝑑𝑒𝑛𝑠𝑒  ∈ 𝑅𝐵×𝑁𝑉×𝐻×𝑊×3  for each 

point in the input sparse point cloud 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈ 𝑅𝑁×3, thanks to the pixel-point-point cor-

relation (see Chapter 3.2.2). 
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In fact, these two tensors can be interpreted as grouped points in dense unprojected 

point cloud 𝑆𝑑𝑒𝑛𝑠𝑒 . Take 𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷  as an example, its dimension is 

1 × 𝐶𝑓𝑒𝑎𝑡 × 𝑁 × 𝐾. Imagine that there are 𝑁 points in the input sparse point cloud, and 

each point has 𝐾 nearest neighbors in the dense point cloud, then 𝑁 × 𝐾 actually ex-

presses 𝑁 groups of 𝐾 points in the dense point cloud, and 𝐶𝑓𝑒𝑎𝑡 means that each of 

these points has 𝐶𝑓𝑒𝑎𝑡  channels of 2D semantic features. 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒 ∈ 𝑅1×3×𝑁×𝐾 

tensor is the same thing, and they have almost the same shape - the only difference is 

that here each point has only 3 channels of geometric features, i.e., coordinates XYZ. 

These grouped neighborhood points in 𝑆𝑑𝑒𝑛𝑠𝑒  are then fed into the 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 module with 𝑆𝑠𝑝𝑎𝑟𝑠𝑒, which includes a shared MLP inspired by 

(Liang et al., 2018) in order to distill a new feature for each point in 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 from its K 

nearest neighbors in 𝑆𝑑𝑒𝑛𝑠𝑒 (Jaritz et al., 2019). (See section 4.4.2) 

Subsequently, the distilled 2D feature tensor is concatenated with geometry feature (Z) 

and a constant tensor with all values of 1 to form a fused feature. The reason why only 

Z coordinates are used instead of XY coordinates is explained in Section 5.5.1.This 

constant 1 feature is to prevent black/dark points from being ignored, since KPConv 

considers a point with all feature equal to zero equivalent to empty space (Thomas et 

al., 2019). This fused feature will then be fed into KP-FCNN. Section 4.4.3 shows some 

architectures of the KP-FCNN used in this study. 

Algorithm 2: The forward function of the proposed network 

 Inputs:  

 𝐹𝑠𝑒𝑙𝑒𝑐𝑡 ∈ 𝑅𝐵×𝑁𝑉×𝐻×𝑊×3: Selected RGB images stacked along batch dimension 

with 𝑁𝑉 selected views, 3 RGB channels, 𝐵 refers to batch size, 𝐻 and 𝑊are 

height and width of image. 

 𝐾𝑁𝐿𝑖𝑠𝑡  ∈ 𝑅𝑁𝑆×𝐾 : A list of Indices of the 𝐾 nearest neighbors in the 𝑆𝑑𝑒𝑛𝑠𝑒  for 

each point in the 𝑆𝑠𝑝𝑎𝑟𝑠𝑒. The length of the list is the batch size. 𝑁𝑆 refers to 

various number of input points in each batch element (see algorithm 1). 

 𝑆𝑑𝑒𝑛𝑠𝑒 ∈ 𝑅𝐵×𝑁𝑉×𝐻×𝑊×3: Dense point clouds formed by projected frames with 𝑁𝑉 

selected views, 3 XYZ channels, stacked along batch dimension. 

 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 ∈ 𝑅𝑁×3: Sparse input point clouds with 𝑁 points. 

 𝑍 ∈ 𝑅𝑁×1: Z coordinates of sparse input point clouds as geometric feature 

 Output: 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛 ∈ 𝑅𝑁×20:  Network prediction, 20 refers to 20 semantic classes. 
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1. 𝐵 ← 𝐺𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒(𝐹𝑠𝑒𝑙𝑒𝑐𝑡) 

2. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ← 𝑁𝑒𝑡𝑤𝑜𝑟𝑘2𝐷(𝐹𝑠𝑒𝑙𝑒𝑐𝑡)                       ⊳ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ∈ 𝑅𝐵×𝐶𝑓𝑒𝑎𝑡×𝑁𝑉×𝐻×𝑊 

3. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ← 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷)                     ⊳ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ∈ 𝑅𝐵×𝐶𝑓𝑒𝑎𝑡×𝑁𝑉∗𝐻∗𝑊 

4. 𝑆𝑑𝑒𝑛𝑠𝑒 ← 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑆𝑑𝑒𝑛𝑠𝑒)                                                          ⊳ 𝑆𝑑𝑒𝑛𝑠𝑒 ∈ 𝑅𝐵×3×𝑁𝑉∗𝐻∗𝑊 

5. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝐿𝑖𝑠𝑡 ← [ ] 

6. 𝑆𝑑𝑒𝑛𝑠𝑒
𝐿𝑖𝑠𝑡 ← [ ] 

7. for 𝑖 = 0 to 𝐵 do 

8.     𝐾𝑁𝑏𝑎𝑡𝑐ℎ_𝑖 ← 𝐾𝑁𝐿𝑖𝑠𝑡[𝑖]                                                         ⊳ 𝐾𝑁𝑏𝑎𝑡𝑐ℎ_𝑖 ∈ 𝑅𝑁𝑆×𝐾 

9.     𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷[𝑖, ∶, ∶]          

⊳  𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖 ∈ 𝑅1×𝐶𝑓𝑒𝑎𝑡×𝑁𝑉∗𝐻∗𝑊 

10.     𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖 ←

     𝐺𝑎𝑡ℎ𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝑜𝑖𝑛𝑡𝑠𝐵𝑦𝐼𝑛𝑑𝑖𝑐𝑒𝑠(𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖, 𝐾𝑁𝑏𝑎𝑡𝑐ℎ_𝑖) 

                                                                      ⊳ 𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖 ∈ 𝑅1×𝐶𝑓𝑒𝑎𝑡×𝑁𝑆×𝐾 

11.     append 𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝑏𝑎𝑡𝑐ℎ_𝑖 to 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝐿𝑖𝑠𝑡 

12.     𝑆𝑑𝑒𝑛𝑠𝑒
𝑏𝑎𝑡𝑐ℎ_𝑖 ← 𝑆𝑑𝑒𝑛𝑠𝑒[𝑖, ∶, ∶]                                            ⊳ 𝑆𝑑𝑒𝑛𝑠𝑒

𝑏𝑎𝑡𝑐ℎ_𝑖 ∈ 𝑅1×3×𝑁𝑉∗𝐻∗𝑊 

13.     𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒
𝑏𝑎𝑡𝑐ℎ_𝑖 ← 𝐺𝑎𝑡ℎ𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝑜𝑖𝑛𝑡𝑠𝐵𝑦𝐼𝑛𝑑𝑖𝑐𝑒𝑠(𝑆𝑑𝑒𝑛𝑠𝑒

𝑏𝑎𝑡𝑐ℎ_𝑖 , 𝐾𝑁𝑏𝑎𝑡𝑐ℎ_𝑖) 

                                                                                                ⊳ 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒
𝑏𝑎𝑡𝑐ℎ_𝑖 ∈ 𝑅1×3×𝑁𝑆×𝐾 

14.     append 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒
𝑏𝑎𝑡𝑐ℎ_𝑖 to 𝑆𝑑𝑒𝑛𝑠𝑒

𝐿𝑖𝑠𝑡  

15. end 

16. 𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ← Concatenate all elements in 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷𝐿𝑖𝑠𝑡  

                                                                  ⊳ 𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ∈ 𝑅1×𝐶𝑓𝑒𝑎𝑡×𝑁×𝐾 

17. 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒 ← Concatenate all elements in 𝑆𝑑𝑒𝑛𝑠𝑒
𝐿𝑖𝑠𝑡   

                                                                               ⊳ 𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒 ∈ 𝑅1×3×𝑁×𝐾 

18. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷3𝐷

← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑈𝑠𝑒𝑓𝑢𝑙_𝑆𝑑𝑒𝑛𝑠𝑒 , 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 , 𝑈𝑠𝑒𝑓𝑢𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷 ) 

                    ⊳ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷3𝐷 ∈ 𝑅𝑁×𝐶𝑓𝑒𝑎𝑡 

19. 𝑖𝑛𝑝𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(1, 𝑍, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2𝐷3𝐷) 

                                                                                            ⊳ 𝑖𝑛𝑝𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ∈ 𝑅𝑁×𝐶𝑓𝑒𝑎𝑡_𝑓𝑢𝑠𝑒𝑑  

20. 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛 ← 𝐾𝑃𝐶𝑜𝑛𝑣(𝑆𝑠𝑝𝑎𝑟𝑠𝑒, 𝑖𝑛𝑝𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 

21. return 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛 
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4.4.1 2D Network 

The 2D network architecture from the original MVPNet was continued to be used. The 

backbone of the 2D Encoder network is an ImageNet-pretrained ResNet34 (K. He et 

al., 2016) with batch normalization and dropout. The decoder network is a lightweight 

variant of U-Net (Ronneberger et al., 2015). Here, the convolution is used to fuse con-

catenated features form skip connections (copy), and the transposed convolution is 

applied for upsampling. Batch normalization and ReLU are attached after each convo-

lution layer. This 2D network was pretrained first on the task of 2D semantic segmen-

tation on our custom ScanNet dataset, and then integrated into the whole pipeline with 

frozen weights. The feature map output by the 2D network has 64 channels of semantic 

features. Furthermore, the size of the output feature map 𝐻 × 𝑊 is equal to that of the 

input image, and fixed to 160 × 120. This makes subsequent 2D-3D feature lifting pos-

sible (Jaritz et al., 2019). 

 

Figure 23 The architecture of the 2D encoder-decoder network (Jaritz et al., 2019) 
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4.4.2 Feature aggregation module 

At the beginning of Section 4.4, it is mentioned that the 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 module 

receives groups of neighboring points in the dense point cloud 𝑆𝑑𝑒𝑛𝑠𝑒 , which have se-

mantic features and spatial locations. For semantic segmentation, the labels have to 

be predicted for the input point cloud 𝑆𝑠𝑝𝑎𝑟𝑠𝑒. Thus, the features from the unprojected 

point cloud 𝑆𝑑𝑒𝑛𝑠𝑒 need to be transferred to 𝑆𝑠𝑝𝑎𝑟𝑠𝑒. The 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 module 

is used to distill a new feature for each point in 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 from its 𝐾 nearest neighbors in 

𝑆𝑑𝑒𝑛𝑠𝑒 (Jaritz et al., 2019): 

𝐹𝑖 = ∑ 𝑀𝐿𝑃(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝑓𝑗 , 𝑓𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗)])

𝑗∈𝑁𝐾(𝑖)

 

where 𝐹𝑖 is the distilled feature at point 𝑥𝑖 in 𝑆𝑠𝑝𝑎𝑟𝑠𝑒, 𝑓𝑗 the semantic feature at one of 

the 𝐾  nearest neighbor points 𝑥𝑗  in 𝑆𝑑𝑒𝑛𝑠𝑒 , and 𝑓𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗) the distance feature be-

tween the two points which can be defined as: 

𝑓𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝑥𝑖 − 𝑥𝑗 , ∥ 𝑥𝑖 − 𝑥𝑗 ∥2] 

The author argued that the MLP can transform 2D image features to an embedding 

space more consistent with the 3D representation (Jaritz et al., 2019). In this study, a 

three-layer MLP with 64 channels is used. Eventually, the features of the 𝐾 nearest 

neighbor points are fused by the summation operation to become 64-channel semantic 

features attached to each point of the 𝑆𝑠𝑝𝑎𝑟𝑠𝑒. Note that the 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 mod-

ule is differentiable and the weights inside the MLP need to be learned and updated 

by back propagation of the network (see Section 6.2.1). And since this module has no 

loss function of its own, its internal weights are adjusted by the loss function of the 3D 

network, i.e., KP-FCNN. 

4.4.3 KP-FCNN 

The architecture of the KP-FCNN in this study basically follows the standard structure 

presented in Chapter 2.6. The encoder part still consists of five layers, but except for 

the initial layer, a standard KPConv block has been added to the remaining layers, 

making the network structure deeper and thus better able to extract features. Based 

on this infrastructure, three fusion architectures were designed to investigate the im-

pact of fusion timing on the proposed network. 
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(a) Early fusion 

 

(b) Late fusion 

 

(c) Middle fusion 

Figure 24 Three fusion architectures base on KP-FCNN 
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In the early fusion variant, the geometric feature and the 64-channel image features 

output by the feature aggregation module are concatenated and fed into the KP-FCNN. 

In the late fusion, geometric feature are passed through the encoder and decoder of 

KP-FCNN and then connected with image features in front of the segmentation head. 

In middle fusion, geometric features and image features are passed through sperate 

encoders and then averaged and fused before the decoder. Consistent with the stand-

ard architecture, the skip connection is also used to pass the features from the middle 

layers of the encoder to the decoder. The only difference is that the upsampled features 

in the decoder are concatenated with features from both encoders. 



 Results and Analysis 49 
 

This section presents some implementation details, hardware-software information, 

and quantitative and qualitative results of the network on the validation set. Finally, the 

time consumption of the network is analyzed and several ablation studies are con-

ducted. 

5.1 Network parameters 

The network implementation is mainly base on Pytorch version of KPConv1. Some 

basic parameter settings are borrowed from the Tensorflow version of KPConv's im-

plementation2 on ScanNet dataset, since there is no Pytorch implementation for Scan-

Net. The size of grid voxels 𝑓𝑖𝑟𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑑𝑙 in grid subsampling was set to 4 cm as 

done by (Thomas et al., 2019). The input sphere radius is chosen as 1.2 m. According 

to the author, the rule of thumb is to have the radius approximatively 50 times bigger 

than 𝑓𝑖𝑟𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑑𝑙, however, the GPU of the computer used in this thesis can 

only handle a maximum sphere radius of 30 times bigger than 𝑓𝑖𝑟𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑑𝑙 - the 

larger the radius, the more points are input. The batch size is set to 5, which is the 

largest batch size our GPU can handle. The network is trained with Stochastic Gradient 

Descent (SGD) optimizer with a momentum of 0.98 and a weight decay of 0.001. The 

initial learning rate is set to 0.01 and then divided by 10 every 150 epochs. Multiple 

experiments showed that the network needed roughly 400 - 450 epochs to converge, 

which is similar to what was reported in the KPConv paper, so the maximum epoch 

was set to 500. Each epoch contains 500 steps, which means that 2500 spheres are 

processed per epoch. The remaining parameter settings follow the default settings of 

KPConv.  

As for the 2D part, 5 views are selected for each input sphere during training and vali-

dation. The 𝐾 in KNN is set to 3. The mean and standard deviations for image normal-

ization are set to [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], which are the default 

settings when use ImageNet-pretrained model provided by Pytorch. This 2D model 

was trained on the task of 2D semantic segmentation on our custom ScanNet dataset. 

 

1 https://github.com/HuguesTHOMAS/KPConv-PyTorch  
2 https://github.com/HuguesTHOMAS/KPConv/blob/master/training_Scannet.py  

5 Results and Analysis 

https://github.com/HuguesTHOMAS/KPConv-PyTorch
https://github.com/HuguesTHOMAS/KPConv/blob/master/training_Scannet.py
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During training, the SGD optimizer with a momentum 0.9 and a weight decay of 0.0001 

was used. The batch size was set to 32 and the network has been iterated 80,000 

times. 

5.2 Hardware and software 

The network proposed in this thesis was trained and tested on a laptop with Ubuntu 

16.04 operating system, a 5GB Quadro P2000 GPU and 32 GB RAM. CUDA 10.0 and 

CUDNN 7.6.4 were installed. All experiments were run in a mini conda environment 

with Python 3.6, Pytorch 1.2.0 and other dependencies. All packages and libraries 

needed for MVPNet and KPConv are listed in their git repositories1.  

5.3 Validation results 

In this study, Intersection over Union (IoU) is used as evaluation metric, which is quite 

routine for semantic segmentation tasks. As illustrated in the picture below, the IoU is 

the area of overlap between the predicted segmentation and the ground truth divided 

by the area of union between the predicted segmentation and the ground truth. This 

measure has a scale of 0 to 100%, with 0 indicating no overlap and 100% indicating 

fully overlapping segmentation. The mean IoU (mIoU) for multi-class segmentation is 

derived by averaging the IoU of each class (Tiu, 2019). 

 

Figure 25 IoU, also known as Jaccard index (Wikipedia, n.d.) 

It is worth noting, as mentioned before, that the network accepts spherical subclouds 

as input and makes predictions for the points in them. When testing, the network should 

be able to test each part of the scene in a regular way, instead of taking random points 

 

1 https://github.com/maxjaritz/mvpnet/blob/master/environment.yml  
  https://github.com/HuguesTHOMAS/KPConv-PyTorch/blob/master/INSTALL.md  

https://github.com/maxjaritz/mvpnet/blob/master/environment.yml
https://github.com/HuguesTHOMAS/KPConv-PyTorch/blob/master/INSTALL.md
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in the scene so that high-density regions are selected more often and thus tested more 

often, which is a waste of time. Therefore, the sphere picking strategy introduced in 

Chapter 4.3.1 is also used here. In simple terms, this solution is to assign a potential 

value at each point of the dataset. Whenever the network tests a sphere, the potential 

value of this sphere is increased so that we know that this region has been tested. The 

next sphere is chosen in the region of lowest potential so that each part of the dataset 

will be selected approximately the same number of times. In addition, the potential is 

increasing as a Gaussian function (the center increases the most and the increasing 

value decreases with distance). This means that when next time the network has to 

test a sphere in the same area, the same center will not be selected, so that a given 

point will be tested by different spheres. Eventually, a voting schema is used to 

determine the predicted result of a point, i.e. the result probabilities of a point is 

calculated as the average of the probabilities that this point obtained from different 

spheres1. The higher the number of votes, the less random are the results. In this study, 

the number of votes was set to 30, which indicates that every location of the dataset 

has been tested by at least 30 different input test spheres. This number provides 

relatively stable results while saving time. 

The following Table 5.1 summarizes the performance of several fusion structures with 

rigid or deformable kernel. The proposed netwok is named as Multi-view-KPConv, i.e. 

MV-KPConv. The original MVPNet and KPConv are applied as the baseline models 

here. They were both trained and tested on our custom ScanNet dataset. To be fair, 

the original MVPNet also uses 5 input images. All tests were done on a validation set 

consisting of 28 scenarios. 

 

 

1 https://github.com/HuguesTHOMAS/KPConv/issues/49  

https://github.com/HuguesTHOMAS/KPConv/issues/49
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Table 5.1 Semantic segmentation IoU scores on custom ScanNet dataset 

Network Kernel mIoU wall floor 
cab-
inet 

bed 
chai

r 
sofa 

ta-
ble 

door 
win-
dow 

boo
kshe

lf 

pic-
ture 

cou
nter 

desk 
cur-
tain 

fridg
e 

sho
wer 

toi-
let 

sink bath 
othe

r 

MVPNet - 71.21 83.16 92.76 59.78 84.15 87.78 83.95 74.38 81.08 79.59 93.70 11.42 95.46 72.16 40.63 85.58 20.72 86.72 52.03 68.07 81.04 

KPConv1 rigid2 52.58 73.15 92.05 46.05 71.23 81.67 53.22 57.50 37.98 53.85 63.87 3.76 60.82 62.21 15.32 5.51 20.34 88.09 46.55 74.34 44.03 

MV-
KPConv 

(Early 
fusion) 

rigid 74.40 86.01 93.51 60.37 91.21 90.16 83.48 74.92 83.09 79.67 95.15 10.90 84.70 74.03 48.97 88.69 44.02 90.50 56.51 66.62 85.56 

deform. 72.86 85.67 93.42 61.48 91.50 89.66 80.59 77.18 81.04 79.48 94.72 11.98 84.40 75.15 45.26 78.46 43.03 83.20 52.56 63.09 85.43 

MV-
KPConv 
(Middle 
fusion) 

rigid 73.72 85.56 93.54 60.89 88.88 89.18 83.74 76.15 82.46 81.08 95.16 11.05 86.47 74.50 51.57 87.05 40.09 87.66 55.19 59.79 84.37 

deform. 72.33 85.61 93.39 57.54 89.95 89.77 81.79 73.00 81.61 78.47 94.97 11.43 86.24 71.63 44.44 84.47 39.78 84.32 54.38 61.81 82.06 

MV-
KPConv 
(Late fu-

sion) 

rigid 72.18 85.25 93.13 62.14 88.31 90.05 84.31 72.43 79.75 80.49 92.91 11.74 85.38 74.56 39.39 84.64 35.33 85.90 55.74 59.69 82.45 

deform. 71.50 84.58 93.48 57.65 89.69 89.11 83.26 75.46 78.62 78.61 93.05 12.36 80.47 72.70 41.43 86.02 34.14 83.12 54.77 60.59 80.82 

 

 

1 Only used Z as additional geometric feature 
2 In the test, the baseline KPConv with rigid kernel performs better then deformable version, so the best data are recorded here. 
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All fusion structures in the table above fuse 1-channel geometric features (Z) with 64-

channel image features. The ablation experiments in Section 5.5.1 explain the reason 

for such a design choise. Regardless of the fusion structure and kernel types, the pro-

posed MV-KPConv's mIoU scores exceeded both baseline models. This shows that 

using a more powerful 3D network can indeed improve the performance of MVPNet, 

and that the original KPConv can benefit a lot from the fused 2D image information. 

Comparing the different kernel types, we can find that rigid kernel generally performs 

better than deformable kernel on ScanNet dataset. This is largely consistent with what 

is reported in the (Thomas et al., 2019). Comparing different fusion structures, we can 

see that the early fusion using rigid kernel has the best performance. This also confirms 

the advantage of early fusion, which allows the network to fully exploit the information 

of the raw data. The MV-KPConv has a significant improvement over the baseline 

model in terms of detection performance for major categories such as doors, walls, 

and floors. At the same time, KPConv's strong interpretation capability also allows the 

network to obtain better scores in minority categories, for example, the score for the 

shower curtain category is nearly doubled. 

Some qualitative results are presented in the following images.  
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Ground truth 

 

KPConv 

 

MVPNet 

 

MV-KPConv 

Figure 26 Visualization results of baseline models and MV-KPConv. It can be seen that compared to MVPNet, 
MV-KPConv can better identify minority categories, such as shower curtain. For the recognition of similarly 

shaped objects, such as desks and tables, MV-KPConv has a lower error rate. 

5.4 Computational time analysis 

Figure 27 - Figure 32 show the curve of loss and training time of MV-KPConv when 

using rigid kernel or deformation kernel under the early fusion structure. It can be seen 

that the network takes 400 - 450 epochs to converge regardless of which kernel type 

is used. The deformed kernel version has a higher loss than the rigid kernel version. 

This is because in addition to the cross-entropy loss, it uses two additional regularized 

loss functions to enable the network to learn the locations of the kernel points correctly. 

The deformation kernel version requires significantly more training time than the rigid 

kernel version, which is related to the fact that the deformation kernel version has more 

parameters than the rigid kernel, as can be seen from the model size comparison in 

Table 5.2.  
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Figure 27 Loss curves of MV-KPConv early fusion 
versions using rigid kernel. 

 

Figure 28. Loss curves of MV-KPConv early fusion 

versions using deformable kernel. 

 

Figure 29 Training time of the early fusion version of 

MV-KPConv using rigid kernel 

 

Figure 30 Training time of the early fusion version of 
MV-KPConvs using deformable kernel. 

 

Figure 31 mIoU variation on the validation set during 
training for early fusion version of MV-KPConv using 

rigid kernel. 

 

Figure 32 mIoU variation on the validation set during 
training for early fusion version of MV-KPConv using 

deformable kernel. 

Table 5.2 compares the computation times of different versions of MV-KPConv and 

MVPNet. Both MVPNet and MV-KPConv spend a lot of time in the preprocessing stage 

to calculate the overlap of images and point clouds. However, MVPNet uses parallel 
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processes on the CPU through the multiprocessing package to speed up the compu-

tation, i.e., multiple scene data are processed simultaneously by 16 sub-processes. 

However, the current MV-KPConv implementation does not use multithreading on the 

CPU in the preprocessing stage. One of the difficulties is that in the preprocessing 

stage a for loop is used to downsample the point cloud scene by scene. This operation 

is single-threaded and runs on the GPU. The current implementation is that after 

downsampling the point cloud of a scene, the overlap between the images and the 

sampled point cloud is calculated directly. Since the time complexity of this for loop is 

positively related to the number of scenes to be processed, it is conceivable that the 

time required for the preprocessing phase will be staggering when processing larger 

data sets. Therefore, it is necessary to introduce multi-threading for the preprocessing 

stage of MV-KPConv in the future.  

In the training phase, it can be noted that although MV-KPConv has better semantic 

segmentation capability, the time required and the volume of the model is much larger 

than that of MVPNet. Because KPConv has a deeper and more complex structure than 

PointNet, and requires more parameters. It can be noted that the late fusion takes 

slightly more time than early fusion. This is because an additional small linear transfor-

mation layer is added to the end of decoder in order to make the shape of the fused 

features acceptable to the segmented head. Moreover, due to the use of two encoders, 

the intermediate fusion structure has a much larger number of parameters than the 

other two structures, which makes the training time required much higher. 

Table 5.2 Runtime and model size comparison 

Step Network Model size [MB] Computational time [h] 

Preprocessing 

MVPNet - 2.4 

MV-KPConv - 3.3 

Training 

2D Network 180 16 

MVPNet1 282 5 

KPConv 186 28 

MV-KPConv rigid 1 457 47 

 

1 The model size of MVPNet and MV-KPConv include the 2D model size. The training time of MVPNet 
and MV-KPConv do not include the training time of the 2D model. 
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(Early fusion) 

MV-KPConv deform 
(Early fusion) 

468 54 

MV-KPConv rigid  

(Middle fusion) 
500 56 

MV-KPConv deform 
(Middle fusion) 

513 63 

MV-KPConv rigid  

(Late fusion) 
457 48 

MV-KPConv deform  

(Late fusion) 
468 54.5 

Inference 

MVPNet 282 0.13 

MV-KPConv rigid 1 

(Early fusion) 
457 0.25 

5.5 Ablation studies 

To analyze the design choices and to better understand the network characteristics, 

some ablation experiments were conducted on the validation set. Since the early fusion 

version of MV-KPConv using rigid kernel performed best, the ablation studies were 

essentially conducted on this version. 

5.5.1 Geometric feature 

To understand whether fusing 3D geometric features is really beneficial for the network, 

or whether 2D image features are sufficient, MV-KPConv with, without or with partial 

geometric features was compared. In fact, KPConv is geometric convolution. Using 

only the constant 1 as a feature attached to the input points, KPConv can also differ-

entiate the 3D shape implied by the local point cloud through the spatial relationship of 

neighboring points in the sphere sub-cloud (see Figure 33). 

 

1 Since the difference in inference time between different fusion structures is small and the early fusion 
version with rigid kernel performs best, only the optimal version is recorded here. 
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Figure 33 KPConv illustrated on 2D points. Input points with a constant scalar feature (in grey) are convolved 
through a KPConv that is defined by a set of kernel points (in black) with filter weights on each point (Thomas et 

al., 2019). 

However, the results of the experiment showed that the MV-KPConv does benefit from 

the complementary information provided by the geometric features (height) compared 

to the use of image features alone. Interestingly, good result can be obtained using 

only Z coordinates, and XY coordinates seem to be useless to the network. This can 

be explained by the fact that X and Y do not make any sense in a dataset where the 

orientation of the objects in the scene can be in any direction. However, the Z value is 

the height of the point and actually has a geometric meaning. It will remain the same 

regardless of the orientation of the dataset. 

Table 5.3 Influence of geometric features 

Network mIoU 

MV-KPConv1 (+ 1 + XYZ + Image features) 73.90 

MV-KPConv (+ 1 + Z + Image features) 74.40 

MV-KPConv (+ 1 + Image features) 74.22 

5.5.2 Fusion twice 

Inspired by the 3D-CVF (Yoo et al., 2020) introduced in Chapter 3.1.4, an attempt was 

made to perform both early and late fusion in one network. The initial idea was that 

perhaps the image-geometry joint features used in the early fusion stage did not con-

tain sufficient spatial information, since the dimensionality of the geometric features is 

 

1 Constant 1 feature is to prevent black/dark points from being ignored, see chapter 4.4. 
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much smaller compared to the 64-channel image features. Therefore, it was chosen to 

concatenate the geometric feature again to the output fusion features before the seg-

mentation head. However, the results are not satisfactory. The reason may be that the 

simple feature concatenation operation does not benefit the network. Because 3D-CVF 

actually proposes a dedicated fusion module to adaptively fuse the features a second 

time. Also, the appropriate timing of the second fusion needs to be further investigated, 

because 3D-CVF does not directly and brutally feed the second fused features into the 

network head, but uses a refinement network to further process the fused information. 

The inspiration given by this experiment is that complex fusion structures require re-

fined network design and special fusion methods, which are determined only through 

extensive experiments and studies. 

Table 5.4 Fusion twice compared to early fusion 

Network mIoU 

MV-KPConv (Early fusion) 74.40 

MV-KPConv (Early + Late fusion) 73.67 

5.5.3 3D point color 

To investigate the effect of point cloud color, an additional 3-channel RGB feature was 

fused in an early stage. It is noticed that the use of point cloud colors has instead a 

negative effect on the network. This may be because ScanNet's point cloud is obtained 

by 3D reconstruction of images and the point cloud color is also derived from the im-

ages. However, the 2D network has already processed the color information and it is 

confusing for the network if we pass the unprocessed color information to the 3D net-

work as well at this point. 

Table 5.5 Influence of point cloud color 

Network mIoU 

MV-KPConv (+ 1 + Z + Image features) 74.40 

MV-KPConv (+ 1 + Z + RBG + Image features) 73.36 

5.5.4 Number of views 

In the proposed network, 5 images are selected for each input sphere. This number 

was chosen based on the results of the ablation study in the MVPNet paper (Jaritz et 

al., 2019). Since MVPNet is based on PointNet implementation, the input to the 3D 
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network is a point cloud chunk of 1.5 𝑚 ×  1.5 𝑚 ×  𝑠𝑐𝑒𝑛𝑒 ℎ𝑒𝑖𝑔ℎ𝑡. They studied the 

coverage of an input point cloud chunk with different number of images and found that 

5 views could already cover 97.45% of the chunk area. In our experiments, the radius 

of the input sphere was chosen to be 1.2 𝑚. Because the volume of the input sphere 

is similar to the volume of the chunk in the MVPNet, and more views means more 

computations and more memory budget. Therefore, 5 images are selected by default 

to balance performance and effect. Since the coverage of 5 images is already large, 

increasing to 6 images hardly changes score. This was also verified by the experi-

mental results. However, it is conceivable that using a larger number of images such 

as 10 can result in a slightly better score, however this comes at the cost of more 

calculations. It is worth noting that testing with 6 images is the maximum number that 

the hardware used can handle. The maximum number of images that our GPU can 

handle when training the network is 5. This is another reason why 5 was chosen as 

the default number. 

Table 5.6 Impact of the number of images 

Network mIoU 

MV-KPConv (5 Images) 74.40 

MV-KPConv (6 Images) 74.40 
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This study is devoted to improving the performance of 3D point cloud semantic seg-

mentation by using multimodal fusion with 2D images. To this end, the performance of 

an open-source multimodal algorithm is enhanced by introducing a more powerful 3D 

network. Based on the experimental results in the previous chapter, conclusions and 

possibilities for future optimization of the network will be discussed in this chapter. 

6.1 Conclusions 

In this section, conclusions will be drawn by answering the research questions defined 

in Chapter 1.2.  

Is it possible to improve MVPNet by changing its 3D network from PointNet to 

KPConv?  

The experimental results demonstrate that using more powerful 3D networks can im-

prove the semantic segmentation capability of MVPNet. This is made possible by the 

clear hierarchical structure of MVPNet. First, a separate pre-trained 2D network is used 

to extract image features. Since the 2D network is not involved in 3D training, this 

allows it to be flexibly integrated into the workflow of a different 3D network. 

Furthermore, the 2D network is designed to adapt the decoder so that the output 

feature map is the same size as the input image, which allows each pixel to have its 

own features, thus making 2D - 3D feature lifting possible through the established pixel-

dot mapping. 

Secondly, the whole 2D – 3D feature lifting method provided by MVPNet (including 

image selection, feature aggregation) is related to the 2D network but independent of 

the 3D network. Because as mentioned earlier, the feature transfer presupposes that 

the 2D network outputs a feature map of the same size as the input image. At the same 

time, the output of the whole 2D-3D lifting module is a point cloud augmented by 

features, which is not fundamentally different from a color point cloud: except that each 

point has 64 channels of image semantic features instead of 3 channels of RGB 

features. Such feature-augmented point clouds are a widely accepted format by 3D 

networks such as KPConv. 

6 Conclusions and Future Works 
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Finally, the core feature aggregation module of the 2D-3D lifting method proposed by 

MVPNet is differentiable, which means that when it is integrated into KPConv, its 

weights can be learned by backpropagation according to the loss function of KPConv, 

and thus adaptively aggregates the 2D features best suited for the 3D network.  

From the above points we can draw an inference that the feature lifting method of 

MVPNet is not only applicable to KPConv, but also to other 3D networks. In terms of 

implementation, some main works we may need to do are, for example, paying 

attention to some details of point cloud preprocessing by different networks, the format 

of the input and output feature tensor, and rewriting the data loader of the 3D network 

so that it can load 2D images, etc. 

How much better does the proposed MV-KPConv perform compare to the base-

line model in terms of mIoU and IoU on class doors and windows? 

On the custom ScanNet validation set, MV-KPConv achieves the best score of 74.40 

mIoU. This score is 3.19 mIoU higher than MVPNet, and 21.82 mIoU higher than the 

original KPConv. In the recognition of door categories, MV-KPConv is 2.01 IoU higher 

than MVPNet. However, the difference between two networks is not significant for the 

recognition of windows. In addition, MV-KPConv has a greater improvement in the 

recognition of large objects such as walls, floors and beds. For minority categories, 

such as shower curtain, the proposed network also achieves good scores. 

How do early, middle, and late fusions perform on MV-KPConv respectively? 

Does using two types of fusion in the network at the same time improve network 

performance? 

The experimental data in Table 5.1 demonstrate that the mIoU scores of all three MV-

KPConv fusion structures surpass the baseline model. Comparing the three fusion 

structures, it can be found that early fusion is more advantageous than intermediate 

and late fusion. Firstly, in the result of semantic segmentation, the early fusion version 

has the highest score, followed by the middle fusion version and finally the late fusion. 

This demonstrates that learning the joint features of multiple modalities at an early 

stage can make full utilization of the information from the raw data. Secondly, in terms 

of computation time, the early fusion version jointly handles the features of both mo-

dalities, making it the least demanding in terms of computation and low memory budget. 

The ablation experiments in Chapter 5.5.2 demonstrate that it is not beneficial to simply 

mimic other literature and use two fusions in the proposed network. This is related to 
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the different designs, structures, and principles of the different networks, and requires 

in-depth studies and experiments to determine the optimal fusion time point. 

To what extent do 3D point cloud colors affect the proposed network that al-

ready fuse 2D image? 

Fusing point cloud colors while using 2D image semantic features has only negative 

effects for the proposed network. The reason for this is explained in Section 5.5.3. In 

simply terms, the sparse RGB features attached to the point cloud are derived from 

the pictures. This is because the point cloud of ScanNet is obtained from the 3D re-

construction of RGB images. The feature maps output from the 2D network already 

contains rich color and texture information, and adding the unprocessed color infor-

mation again at this point actually pollutes the input features and causes confusion. 

Is the 2D – 3D lifting method provided by MVPNet feasible for different 2D input 

format? 

As mentioned earlier, the 2D-3D lifting method provided by MVPNet requires image 

formats that are related to the image formats accepted by the 2D network. The current 

2D network only accepts the normal field of view (NFoV) images. If the input image 

format is a panorama or fisheye view, then it needs to be mapped to an NFoV image 

first, a related conversion method is provided in (Sun, 2020). Once we have the RGB 

images in normal view and their corresponding depth maps, we can project them to 

3D space to form dense point cloud. Subsequently, we can normally follow the lifting 

methods provided by MVPNet for overlap calculation, image selection, feature aggre-

gation, etc. If the panorama or fisheye image does not have the corresponding depth 

information, then we may need a deep learning network to predict the depth of the 

image so that it can be mapped to 3D space. The keyword here is monocular depth 

estimation, such as (Yang et al., 2018). 
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6.2 Discussion 

6.2.1 Other possible workflows 

The workflow of MV-KPConv presented in this study actually underwent three itera-

tions. The initial network design was informed by the recommendations1 of the author 

of MVPNet. First, 30 images were selected for a whole scene. After that, these images 

were processed using the pre-trained 2D network. Using the feature aggregation mod-

ule, a feature augmented point cloud of this scene was obtained, which was then stored 

on the hard disk. Finally, this scene point cloud with 64-channels image features at-

tached is used as the input to KPConv. This workflow looks very intuitive, but there are 

problems with the implementation. First, the feature aggregation module contains 

MLPs need to learn weights. If the untrained feature aggregation module is used di-

rectly, the resulting semantic features will be meaningless. Second, as mentioned in 

Section 4.4.2, the weights inside the feature aggregation module are updated accord-

ing to the loss function of the 3D network. Taking MVPNet as an example, a backprop-

agation starts from the bottom of PointNet and updates the weights all the way up 

through the feature aggregation module, stopping in front of the frozen 2D network. If 

we follow the workflow suggested by the author of MVPNet and use the feature aggre-

gation module trained by PointNet to generate feature augmented point clouds, it can 

be found that such a MV-KPConv can obtain a score of 70.1 mIoU with rigid kernel, 

but a very poor score with deformation kernel. The reason for this is that the PointNet 

and the rigid version of KPConv use the same cross-entropy loss function, while the 

deformation kernel version uses two additional loss functions to control the shift of the 

kernel. Thus, the aggregated 2D features make no sense for KPConv which uses a 

deformation kernel. This is clearly a bad implementation. 

To solve this problem, in the second version of MV-KPConv, the feature aggregation 

module is added to the forward function of the network so that it can learn the weights 

correctly according to the loss function of KPConv. The optimal result obtained in this 

version is 70.39 mIoU. However, the 2D network and other modules of the feature 

lifting method, such as the 𝐺𝑎𝑡ℎ𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝑜𝑖𝑛𝑡𝑠𝐵𝑦𝐼𝑛𝑑𝑖𝑐𝑒𝑠 function (see Section 4.4), 

etc., are not combined into the forward function. These modules are placed in a sepa-

 

1 https://github.com/maxjaritz/mvpnet/issues/3  

https://github.com/maxjaritz/mvpnet/issues/3
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rate script and their outputs are stored on disk as sequence files, which are then avail-

able to the KPConv data loader. This implementation makes the whole workflow inflex-

ible and wastes a lot of disk space. Meanwhile, the score we obtained is slightly higher 

than the previous version, but the core idea remains the same, which is to select 30 

images for the whole scene as additional information for the 3D semantic segmentation. 

And this score is still lower than MVPNet's 71.21 mIoU, so we need a new implemen-

tation idea. 

Eventually, the workflow proposed in this thesis was adopted. The pre-trained 2D net-

work and the 2D-3D lifting module are integrated into the MV-KPConv network in its 

entirety. Also, the data loader was rewritten to make it possible to select 5 images for 

each input sphere sub-cloud in real time. This implementation allows for a larger num-

ber of images to be used per scene compared to 30 images per scene. Moreover, the 

coverage of each image is more accurate, bringing more useful texture information. 

Such an implementation allows the proposed network to exceed the baseline model, 

reaching 74.40 mIoU on our validation set. 

6.2.2 Better fusion methods and better 3D networks 

At the time of writing this thesis, a new adaptive cross-modal learning network (Jaritz 

et al., 2021) was found to be proposed by the author of MVPNet. The architecture of 

the first half of this network is very similar to MVPNet, however, in the second half of 

the network, he designed a mechanism to make the output features of the 2D and 3D 

networks learn from each other by mimicking each other (see Figure 34).  

 

Figure 34 Pipline of xMUDA network (Jaritz et al., 2021) 
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In the final stage of the network, before the detection head, he does not simply con-

catenate and fuse the features of the two modalities, but makes the individual unimodal 

features obtain complementary information from the cascaded features through the 

mimicry mechanism (see Figure 35).  

The inspiration from this recent work is that adaptive fusion methods are more efficient 

and provide more effective complementary information than simple concatenation op-

erations. This is also a trend in multimodal fusion research. At the same time, it can be 

noted that he used SparseConvNet (Graham et al., 2018) as a 3D backbone in this 

new study. In fact, SparseConvNet is ranked higher than KPConv on the ScanNet 

benchmark. Therefore, in the future, it would make sense to use this better 3D network 

for fusion features. 

 

Figure 35 Instead of simply joining and fusing the features of two modalities, xMUDA enables each unimodal 
feature to obtain complementary information from the cascaded features through an imitation mechanism (Jaritz 

et al., 2021). 

6.2.3 When to fuse 

It is not simple to answer this question - no conclusive evidence can be found in the 

literature review in Chapter 3 that one fusion method is better than the other. Perfor-

mance depends heavily on the data and network structure. In addition, the fusion struc-

ture designed in this paper is more based on intuitive and empirical results and does 

not delve into the way the network works and how the layers in it behave in the face of 

different fusion approaches. As suggested in the (Feng et al., 2021), the network struc-

ture design can be optimized in the future by visual analysis techniques, similar meth-

ods such as (Liu et al., 2017), for understanding image classification in CNNs. Such 

visualization tools can help to understand and analyze how the network operates, di-

agnose problems, and ultimately improve the network structure. 
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6.3 Contributions 

This thesis introduces the following contributions: 

⚫ The proposed fusion network meaningfully combines the modules of MVPNet and 

KPConv, and its 3D semantic segmentation performance outperforms these two 

original networks. 

⚫ It is demonstrated that the 2D-3D feature lifting method provided by MVPNet is 

applicable to different 3D networks and has the potential to accept different 2D 

image input formats. 

⚫ A detailed literature review summarizes the STOA multimodal fusion methods and 

gives a table of their respective characteristics. 

⚫ The impact of different fusion structure designs on the network is investigated, and 

the performance of the network is further improved by selecting a suitable fusion 

structure. 

⚫ Implemented a Pytorch version of KPConv's ScanNet data loader, filling the gap 

in the public git repository. 

6.4 Limitations and future works 

One of the limitations of the proposed method comes from the hardware. The Quadro 

P2000 used for training and testing is a good GPU, but its 5GB of memory makes it 

not an optimal solution for deep learning. This prevents the recommended values of 

the KPConv hyperparameters from being set. For example, the input sphere radius of 

the network is set to 1.2 m when using a rigid kernel because of GPU memory limita-

tions. With the deformation kernel, the sphere radius can only be set to a maximum of 

1 m, while the recommended radius is 2 m. This may also be the reason why the de-

formation kernel version generally performs less well than the rigid kernel. Smaller in-

put spheres may result in some objects not being included more completely. The mis-

take of misidentifying a part of the cabinet edge as a table in Figure 34 may be due to 

this reason. Therefore, using a GPU with larger memory to test the network may be 

able to further improve the performance of the network in the future. 
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Figure 36 Misidentification of part of the edge of a 

cabinet as a table 

 

Figure 37 Original Mesh 

Another of the more common drawbacks of MV-KPConv is its lower accuracy for coun-

ter recognition comparing to MVPNet. This can be seen in the following pictures and 

in Table 5.1. In the future, it will be interesting to study improvements for this phenom-

enon. 

 

Figure 38 Original mesh 

 

Figure 39 MVPNet (counter in light 
blue) 

 

Figure 40 MV-KPConv (counter in 
light blue) 

Furthermore, as mentioned in Section 5.4, the algorithm implementation of MV-

KPConv in the preprocessing stage is not good and requires a lot of time to calculate 

the overlap between the photos and the point cloud. A possible optimization would be 

to introduce multithreading here, allowing the program to process multiple scene data 

at the same time. 

Finally, the proposed method in this thesis has only been trained and tested on the 

indoor small-scale scene datasets. However, the performance of the network in the 
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face of large-scale scenes is still unknown. Therefore, in the future, it would be inter-

esting to study the behavior of the proposed method in datasets with such character-

istics, such as the Stanford 2D-3D-Semantics dataset (Armeni et al., 2017).
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Table 6.1 Visualization results of 3D semantic segmentation by MV-KPConv on 28 validation scenarios 
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