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With the increasing application of computer technology in various fields, the combina-

tion of BIM and computer vision technology has become a current research hotspot. 

For the 3D reconstruction work of the existing scenes, it used to rely on tedious manual 

modeling, which often consumes a lot of time and labor costs. However, the emer-

gence of point clouds makes this work simple and efficient. By scanning the real scene 

with lidar or camera to obtain the point cloud data, we can further process the point 

cloud data, so as to achieve the purpose of 3D scene reconstruction. In this process, 

how to accurately identify a specific object from the point cloud data is a key factor in 

3D reconstruction.  

Semantic registration is an important step when processing 3D point clouds. The ap-

plications of point cloud registration range from object modeling and tracking to simul-

taneous localization and mapping. The overall objective of registration is to align indi-

vidual point clouds and fuse them to a single point cloud, so that subsequent pro-

cessing steps like object reconstruction can be applied. This article studies the point 

cloud semantic registration in 3D reconstruction, and also studies other point cloud 

processing algorithms. This article is also my first attempt in the field of point cloud 

processing and 3D reconstruction.  

I would like to thank my supervisor Mr. Yuandong Pan and Mr. Florian Noichl for the 

amazing guidance and mentoring that he showcased during the entire process of the 

project. 

 

Chen Liu 

Munich, 01-08-2021 
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Development of as-built BIM presents an ongoing challenge for the global BIM and 

computing engineering communities. The manual process for constructing as-built 

BIMs is time-consuming and requires skilled workers, the modeling time can be several 

weeks or months for a normal building. Therefore, the development of automated as-

built BIM from point cloud data is necessary and it ś the focus of current research. 

Point cloud refers to the type of data obtained through a 3D scanner. The scanned 

data is recorded in the form of points. Each point contains three-dimensional coordi-

nates, color information and intensity. Due to these characteristics of point clouds, 

more and more researchers are considering applying point clouds in the field of as-

built BIM 3D reconstruction. A very important part of the 3D scene reconstruction is to 

identify the specific CAD model in the point cloud. Semantic registration is an important 

approach to achieve this purpose. 

This thesis aimed to complete a workflow of point cloud registration with Point Cloud 

Library(PCL). We first reviewed the mature point cloud processing algorithms, and in-

troduced the relevant knowledge background in our thesis. Then a variety of point 

cloud processing algorithms in PCL were used in the registration process, such as 

noise filter, keypoint detection, feature descriptor computation, correspondence group-

ing and so on. Through this workflow, the CAD model can be accurately identified from 

the point cloud. And in the experiment part, we input multiple point clouds in different 

indoor scene to verify the point cloud registration process and fully analysis the influ-

ence of some critical factors. Finally, combined with the analysis of the experimental 

results, we put forward some suggestions for future research in this direction. 

  

Abstract 
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Die Entwicklung von as-built-BIM stellt eine ständige Herausforderung für die globale 

BIM und Computing-Engineering-Community dar. Der manuelle Prozess zur Erstel-

lung von Bestands-BIMs ist zeitaufwändig und erfordert Facharbeiter, die Modellie-

rungszeit kann für ein normales Gebäude mehrere Wochen oder Monate betragen. 

Daher ist die Entwicklung von automatisiertem Bestands-BIM aus Punktwolkendaten 

notwendig und steht im Fokus der aktuellen Forschung. Punktwolke bezieht sich auf 

die Art von Daten, die durch einen 3D-Scanner erhalten werden. Die gescannten Da-

ten werden in Form von Punkten aufgezeichnet. Jeder Punkt enthält dreidimensionale 

Koordinaten, Farbinformationen und Intensität. Aufgrund dieser Eigenschaften von 

Punktwolken erwägen immer mehr Forscher den Einsatz von Punktwolken im Bereich 

der As-Built-BIM-3D-Rekonstruktion. Ein sehr wichtiger Teil der 3D-Szenenrekonstruk-

tion besteht darin, das spezifische CAD-Modell in der Punktwolke zu identifizieren. Die 

semantische Registrierung ist ein wichtiger Ansatz, um dieses Ziel zu erreichen. 

Diese Arbeit zielte darauf ab, einen Workflow der Punktwolkenregistrierung mit der 

Point Cloud Library (PCL) zu vervollständigen. Wir haben zuerst die ausgereiften 

Punktwolkenverarbeitungsalgorithmen überprüft und den relevanten Wissenshinter-

grund in unsere Diplomarbeit eingeführt. Dann wurden eine Vielzahl von Punktwolken-

Verarbeitungsalgorithmen in PCL im Registrierungsprozess verwendet, wie z. Durch 

diesen Workflow kann das CAD-Modell aus der Punktwolke genau identifiziert werden. 

Und im experimentellen Teil geben wir mehrere Punktwolken in verschiedenen Indoor-

Szenen ein, um den Punktwolkenregistrierungsprozess zu überprüfen und den Ein-

fluss einiger kritischer Faktoren vollständig zu analysieren. Zusammen mit der Analyse 

der experimentellen Ergebnisse unterbreiten wir schließlich einige Vorschläge für zu-

künftige Forschungen in dieser Richtung.  

Zusammenfassung 
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1.1 Introduction 

Point cloud refers to the type of data obtained through a 3D scanner. The scanned 

data is recorded in the form of points. Each point contains three-dimensional coordi-

nates, and some may contain color information (R, G, B) or the intensity of the reflective 

surface of the object. Due to these characteristics of point clouds, more and more re-

searchers are considering applying point clouds in the field of as-built BIM 3D recon-

struction. 

An as-built BIM refers to a digital representation of the facility as it was actually built or 

as it currently exists. Rich semantic information is contained in a BIM (NIBS, 2015). It 

covers geometry, spatial relationships, geographic information systems, and the nature 

and quantity of various building components. The building information model can be 

used to show the product life cycle of the entire building, including the construction 

process and the operation process. It is very convenient to extract information about 

the materials in the building. All parts and systems in the building can be presented.  

However, the manual process for constructing as-built BIMs is time-consuming and 

requires skilled workers, the modeling time can be several weeks or months for an 

normal building. Therefore, the development of automated as-built BIM from point 

cloud data is necessary and it ś the focus of current research. A very important part of 

the 3D scene reconstruction is to identify the specific CAD model in the point cloud. 

There are currently two mainstream methods, semantic segmentation and semantic 

registration. Both methods have their own advantages and disadvantages and different 

usage scenarios. 

In regard to modelling, the concept of semantic segmentation has arisen in different 

research domains, mainly in computer vision, and robotics[1]. As an important notion 

towards complete scene understanding, semantic segmentation is applied to numer-

ous application such as autonomous driving, augmented reality, image search engines, 

and computational photography [2]. For semantic segmentation in indoor modelling, 

the research is usually performed on RGB-D sensor depth images for small indoor 

scenes[3]. Figure1.1 shows the semantic segmentation result from point cloud. 

1 Introduction and Motivation 
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Figure1.1: Point clouds from indoor and outdoor scenes on the left. Semantic segmentation results pro-
duced by the presented method on the right.[11] 

Nevertheless, although the semantic segmentation method has a wide range of appli-

cations in the field of computer version, the semantic segmentation methods are hard 

to implement, time-consuming, and in some cases inaccurate, especially for complex 

point cloud scenes[4]. For example, Babacan et al.’s (2017) deep learning model ex-

hibited over 90% precision and 90% recall in segmenting walls and floors, but only 

roughly 40% precision for beams and 55% recall for doors. The SVM model in Koppula 

et al. (2011) succeeded in office point clouds with 80% precision and 70% recall, but 

unsatisfactory result for home point clouds. Wang et al.’s (2018) model was effective 

on dense point clouds (about 90% recall), but less effective on sparse and noisy data 

(about 40% recall). In summary, the semantic segmentation method is not effective 

when faced with the fundamental challenge of segmenting complex point clouds. Un-

controlled real-life environments characterized by diversity of labels, irregular geome-

tries, and topological relationships all make semantic segmentation even less satisfac-

tory[5].  

Compared with semantic segmentation methods, semantic registration has more ad-

vantages when faced some complex point cloud scenes. The overall objective of reg-

istration is to align individual point clouds and fuse them to a single point cloud, so that 

subsequent processing steps like object reconstruction can be applied. Usually the 

point clouds are captured by 3D sensors from different viewpoints, then the registration 

finds the relative position and orientation between views in a global coordinate frame, 

such that the overlapping areas between the point clouds match as well as possible[6]. 
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And semantic registration has wide application in computer vision, computer graphics, 

robotic perception, photogrammetry, cultural heritage modeling, digital archaeology, 

and architecture. Figure1.2 shows an example of point cloud registration. 

 

Figure1.2: Examples of registration between a reference point cloud (light green points) and a reading 

point cloud (dark blue points). Left: Initial position of the two point clouds. Middle: Alignment error (dark 

red lines). Right: Final alignment of the two point clouds.[19] 

In this thesis, align one point cloud A (3D model) with another point cloud B (3D scene) 

to generate the posture information of point cloud A relative to point cloud B is the main 

focus. The tools of registration in this article are mainly from open-source Point Cloud 

Library(PCL). PCL is a stand-alone, large scale, open project for 3D point cloud pro-

cessing. It is released under the BSD license and contains numerous state-of-the-art 

algorithms for various applications including noise filtering, object feature estimation, 

3D surface reconstruction, semantic segmentation, visualization, point cloud registra-

tion, as well as higher-level tools and applications for performing mapping and object 

recognition.  

 

1.2 Related literature 

The problem of indoor scene automated modeling by semantic registration has been 

extensively studied, there are several ways to process raw point cloud data. 

Barazzetti[12] used NURBS curves and surfaces to reconstruct complex and irregular 

objects, but the user has to identify the different structural objects from point clouds 

data and extract the discontinuity lines of constructive elements manually. Xue[13] pre-

sent an optimization-based model generation method which semantic BIM compo-

nents could be organized automatically. A fitness function was generated from target 

measure in point cloud then the fittest model was output with necessary inverse trans-

formation. This method has a higher automation level and a cost saving could also be 
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expected, but the accuracy and availability of component libraries match the target 

measure not perfectly. Wang[14] propose a new approach to improve efficiency of au-

tomatic reconstruction by fully exploring the regularity and variability of man-made 

structure in indoor scene. Furthermore, a key point extraction algorithm was designed 

to match the scanned objects’ point cloud data and database models. Corsia[15] de-

signed a novel segmentation algorithm based on region growing and edge detection, 

then each segment is computed keypoints and multi-scale features to match the CAD 

models from database. This method has higher efficiency and accuracy in processing 

large-scale scenes. Xue[4] present a semantic registration approach to recognize BIM 

components from 3D point clouds directly, then in order to optimize the suitability of 

CAD Models an objective function was designed to minimize the Root Mean Square 

Error between the as-built BIM and the input 3D point cloud. Xu[16] developed a frame-

work of reconstruction of indoor scenes, the method is on the basis that objects are 

movable and environment-independent. However it ś not suitable for large-scale scene 

(e.g.Lecture Hall) with immovable chairs or desks. Nan[17] develop a approach for 

object-level scene reconstruction, over segmented input point cloud data was classi-

fied and templated were deformed to fit to the classified point cloud, finally the best 

matching templates were selected. Kerber[18] designed a novel symmetry detection 

method for large-scale point cloud data. The feature descriptors is designed for each 

sample point in order to locate all symmetry points. The author used this method in the 

overall modeling of the building outlook and achieved good results. 

 

1.3 Goal of thesis 

This thesis mainly realizes the correct registration of the target model point cloud from 

the scene point cloud, which combines a variety of algorithms in the PCL. The target 

model point cloud data is converted from CAD model. The scene point cloud data used 

in the thesis is collected by the CMS department. The flow chart of point cloud regis-

tration is shown in Figure1.3. 
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Figure1.3: flow chart of point cloud registration in this thesis 

PCL is an important assistant for this thesis, and many algorithms in the PCL are used. 

For example, downsampling VoxelGrid filter in the prepocessing of point cloud, SIFT 

algorithm and uniform sampling algorithm in point cloud keypoint extraction, FPFH 

method and SHOT descriptor in point cloud descriptor computation, correspondence 

estimation and correspondence grouping, etc. The Point Cloud Library provides spe-

cific implementations of these algorithms. 

In order to ensure that the algorithm has better robustness, a variety of different algo-

rithms have been tested, and various point cloud scenarios have been used to verify 

the algorithm. Although the final model is not fully optimized, this study provides a rel-

atively comprehensive and meticulous methodology with plenty of experiments and 

illustrations. 

 

1.4 Layout of this thesis 

Chapter 1 points out the significance why 3D point cloud registration is needed based 

on current situation and trend, the robustness of the semantic registration method in 

some complex scenes is clarified compared with semantic segmentation. Here the fea-

sibility of this technique is shown in described scenarios. And this chapter announces 

the objective of this study and a brief procedure for evaluation and optimization. 

Chapter 2 introduces the theoretical background of the algorithms used in the point 

cloud registration process. For example, Harris detector and Scale-invariant Feature 

Transform(SIFT) detector used in key points extraction, Fast Point Feature Histograms 

(FPFH) descriptor and SHOT descriptor used in descriptor computation, Local Surface 

Patches and Hough Voting in correspondence grouping, and a variant of Iterative Clos-

est Point(ICP) algorithm in registration refinement.  

Chapter 3 first lists the tools involved in this study and then demonstrate the workflow 

of point cloud registration. Explains in detail how to achieve the successful registration 
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of the target point cloud and the scene point cloud through the step-by-step processing 

of the point cloud. 

Chapter 4 shows some specific test cases, including different algorithm, different pa-

rameter combinations and their corresponding results. By analyzing the result of reg-

istration, a better parameter combination is to find, and the robustness of methodology 

is to test and verify. 

Chapter 5 discusses some further influence on point cloud registration, and analyzes 

the drawback of this study. Some ideas for current method are proposed to achieve a 

more accurate and stable optimization in the future. 
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This chapter explores the theoretical basis for studying into the research goal. To lay 

the foundation, required knowledge in data structure and Computer Vision will be in-

troduced. 

 

2.1 KD-tree 

A KD-tree is a data structure used in computer science for organizing some number of 

points in a space with K dimensions, first introduced by Bentley (1975)[7]. The KD-tree 

is a binary tree in which each node is a k-dimensional point. All non-leaf nodes can 

divide the space into two half spaces as a hyperplane. Figure 2.1 is an example of the 

subdivisions of a 2D space[8]. The corresponding binary tree is on the right side of the 

plot. 

 

Figure 2.1: 2D feature space shown on the left corresponds to the tree on the right [7]. 

Because we will generally only deal with point clouds in three dimensions, so all of the 

k-d trees will be three-dimensional. In this thesis, we used KD-tree to perform a nearest 

neighbor search. Compared with exhaustive search, KD-tree nearest neighbor search 

can be more efficient, saving time and computing resources. It has been empirically 

proven to be one of the best performing solutions[9]. In order to initialize the algorithm 

faster, PCL depends on Fast Library for Approximate Nearest Neighbors(FLANN)[10], 

an open-source library for fast nearest neighbor searches. 

2 Theoretical Background  



 8 
 

2.2 SIFT Keypoints 

Scale Invariant Feature Transform(SIFT) is a scale-based Spatial image local feature 

description algorithm[25]. Although it can only describe the local features of the image, 

but this feature is very important for viewing angle changes and affine changes. For 

change of rotation, scale scaling, and brightness, it will maintain a certain degree of 

stability. The principle of SIFT is as follows: 

2.2.1 Generation of scale space 

First of all, we have to understand a concept, what is scale space. From the perspective 

of cognition, in an image, even if we have no concept of an object or we are not familiar 

with it, people can still perceive the structure of the object. If you want to know the 

meaningful of an image, you must first clarify the question: In an image, only within a 

certain scale range, an object is meaningful. To give an example, the concept of a 

branch can only be perceived as a branch by observing it at a distance of a few centi-

meters to a few meters. If you observe at the micrometer level or the kilometer level, 

you will not be able to perceive the concept of branches. In this way, you can perceive 

the concept of cells or forests. 

Therefore, the blur degree of each image becomes larger in the scale space gradually, 

which can simulate the formation process of the target on the retina when the distance 

between people and target from close to far. And the larger the scale, the more blurred 

the image. 

The scale space 𝐿(𝑥, 𝑦, 𝜎) is defined by the convolution of a variable-scale Gaussian 

𝐺(𝑥, 𝑦, 𝜎) with an input image 𝐼(𝑥, 𝑦). The function is as following: 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒−(𝑥2+𝑦2)/2𝜎2

 

𝐺(𝑥, 𝑦, 𝜎) is variable-scale Gaussian function, 𝜎 is factor of scale space, it determines 

the smoothness of the image, (𝑥, 𝑦) is coordinate of image pixel. 

Figure 2.2.1 shows a practical method of establishing DOG. The initial image is con-

volved with Gaussian functions with different σ values to obtain a set of blurred images, 

and then this set of blurred images is subtracted from each other to obtain the corre-

sponding DOG. These blurred images are separated in the scale space by a factor of 

K, and the highest scale in the set should be twice the lowest scale. In order to carry 
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out follow-up work and meet the above requirements, each set needs to get  𝑠 + 3 

blurred images through convolution, and 𝑘 = 21/𝑠. 

 

Figure 2.2: The process to construction of DOG[25] 

After a stack of images is created, downsampling is needed to get the DOG of the 

next stack of images. In actual operation, a fuzzy image is created with the σ value 

twice that of the first image, and then the image is downsampled, that is, one pixel is 

extracted from every two pixels, and the DOG of the next image can be obtained. 

2.2.2 Detect extreme points in scale space 

To efficiently detect stable key point locations in scale space, Lowe[26] proposed us-

ing scale-space extrema in the difference-of-Gaussian function convolved with the 

image. 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎) 

𝐷(𝑥, 𝑦, 𝜎) is difference-of-Gaussian function, this function is introduced for effective de-

tection of stable feature points in scale space. When detecting extreme points, each 

pixel must be compared with 26 points (8 adjacent pixels of the same scale and its 
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upper and lower adjacent scales 9×2 points), which is shown in figure 2.3. If the DOG 

(difference of Gaussian) operator of one pixel is the biggest or smallest in these 26 

points, then this pixel is the feature point. 

 

Figure 2.3: Maxima and minima of the difference-of-Gaussian images are detected by comparing 

a pixel (marked with X) to its 26 neighbors in 3 × 3 regions at the current and adjacent scales 

(marked with circles)[25] 

2.2.3 Locate extreme points precisely 

By fitting a three-dimensional quadratic function to accurately locate the feature 

points position and scale (get sub-pixel accuracy), while removing low contrast fea-

ture points and unstable edge response points to enhance stability of matching and 

improve the ability of anti-noise. Performing the curve fitting of the scale space DOG 

function, using the Taylor expansion of the DOG function in the scale space, we can 

get the following formula: 

𝐷(𝑥) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑥
𝑥 +

1

2
𝑥𝑇

𝜕2𝐷

𝜕𝑥2
𝑥 

where D and its derivatives are evaluated at the sample point and 𝑥 = (𝑥, 𝑦, 𝜎)𝑇 is the 

offset from this point. The location of the extremum is determined by taking the deriv-

ative of this function with respect to x and setting it to zero: 

𝑋̂ = −
𝜕2𝐷−1

𝜕𝑋2

𝜕𝐷

𝜕𝑋
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Add 𝑋̂ to the location of its sample point to get the interpolated estimate for the location 

of the extremum. 

2.2.4 Specify direction parameters for each feature point 

Using the gradient direction distribution characteristics of the neighboring pixels of the 

feature point specifies the direction parameter for each feature point, so that the oper-

ator process the ability of rotation invariance. The gradient mode and direction of each 

pixel are: 

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1), 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2 

𝜃(𝑥, 𝑦) = 𝑡𝑎𝑛−1(
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
) 

Sampling in the neighborhood window centered on the feature point, and using histo-

grams to count the gradient direction of neighboring pixels. The range of gradient his-

togram is 0°~360°, every 10° is a column, and the gradient modulus 𝑚 is used as the 

contribution weight, that is, the more far away of the neighborhood from the center 

point, the smaller of its contribution to the histogram.  

So far, the feature points of the image have been detected, and each feature point has 

three pieces of information: location, scale and direction. The SIFT keypoint class in 

PCL converts the two-dimensional image SIFT operator into 3D space, this class can 

calculate out the SIFT keypoint of point cloud, to realize the direct application of SIFT 

keypoint in point cloud.  

 

2.3 FPFH descriptor 

Fast Point Feature Histograms (FPFH) is a feature descriptor based on the normal 

angle between points and their neighboring points, and the angle between points. 

FPFH descriptor is first introduced by Rudu[23]. It is a optimized algorithm from Point 

feature Histograms(PFH). The improved algorithm retains the main geometric charac-

teristics of the point description in PFH, and reduces the computational complexity from 

O(𝑛 ∙ 𝑘2) to O(𝑛 ∙ 𝑘), where n is the midpoint of the point cloud data The number of 

points, k is the number of points contained in the neighborhood of each point.  

To understand the principle of FPFH, we need to first understand the working mecha-

nism of PFH. The PFH descriptor forms a multi-dimensional histogram to describe the 
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geometric properties of the k-neighborhood of the point by parameterizing the spatial 

difference between the query point and the neighboring point. The high-dimensional 

hyperspace where the histogram is located provides a measurable information space 

for the feature representation. It is invariant to the 6-dimensional pose of the corre-

sponding surface of the point cloud, and is robust under different sampling densities or 

neighborhood noise levels. The point feature histogram (PFH) representation is based 

on the relationship between a point and its k neighbors and their estimated normal. It 

considers all the interactions between the normal directions and tries to capture the 

best sample surface changes. Describe the geometric characteristics of the sample. 

Therefore, the quality of surface normal estimation is an important factor for PFH[24]. 

The calculation principle of PFH is shown in Figure 2.4. For any point 𝑝𝑞  in space 

(marked in red), 𝑝𝑘1~𝑝𝑘5 are the neighborhood points with 𝑝𝑞 as the center and radius. 

In order to describe the relationship between any two points 𝑝𝑠, 𝑝𝑡 and the correspond-

ing normals of the points, a local coordinate system needs to be established with one 

of the points as the origin, as shown in Figure 2.5. 

 

 

Figure 2.4: The influence region diagram for a Point Feature Histogram[23]. 
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Figure 2.5: The local reference frame and the three angles α, φ and θ computed by FPFH at each 

point pair[6]. 

The PFH feature is further optimized and upgraded to obtain the Fast Point Feature 

Histogram (FPFH). The calculation process of FPFH is similar to that of PFH. For any 

point 𝑝𝑞 (marked in red) and its k-neighboring points 𝑝𝑘1~𝑝𝑘5, construct a local coordi-

nate system according to each neighboring point, and obtain a quadruple with each k-

neighboring point, and obtain the point feature histogram through statistics The graph 

is called Simple Point Feature Histograms (SPFH) due to the lack of the pairwise in-

terconnection between neighboring points and neighboring points. As shown in Figure 

2.6, then use 𝑝𝑘1~𝑝𝑘5 as the target points to find the k-neighboring points, calculate 

the normal vector, construct the local coordinate system, and obtain the SPFH.  

 

Figure2.6: The influence region diagram for a Fast Point Feature Histogram. Each red point is con-

nected only to its direct k-neighbors (enclosed by the gray circle). Each direct neighbor point is con-

nected to its own neighbors and the resulted histograms are weighted together with the histogram of 

the red point to form the FPFH. The connections marked with 2 will contribute to the FPFH twice[23]. 
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In this way, the SPFH(𝑝𝑘) with 𝑝𝑞 and its neighboring points as the target point is ob-

tained, and the FPFH feature calculation formula of the final point 𝑝𝑞 is shown in for-

mula[23]:  

𝐹𝑃𝐹𝐻(𝑝) = 𝑆𝑃𝐹(𝑝) +
1

𝑘
∑

1

𝑤𝑘
∙ 𝑆𝑃𝐹(𝑝𝑘)

𝑘

𝑖=1

 

 

2.4 SHOT descriptor 

The traditional point cloud local feature descriptor (3D Local Feature Descriptor) can 

be divided into Signature and Histograms, which is shown in Figure 2.7. 

Signatures describe the 3D surface neighborhood (support) of a given point by defining 

an invariant local reference frame and according to the local coordinates, encoding 

one or more geometric measurements computed individually at each point of a subset 

of the support[20]. It encodes local spatial geometric information by defining a local 

reference coordinate system (LRF). Due to the existence of LRF, the eigenvalues of 

its local geometric space are ordered. 

Histograms describe the support by encoding counters of local topological entities into 

histograms according to a specific quantized domain such as point coordinates[20]. 

Histogram divides the eigenvalues into intervals, and encodes them in the way of his-

togram statistics, and the statistics are disordered. 

Signature of Histograms of Orientations (SHOT) is a 3D descriptor that encodes histo-

grams of basic first-order differential entities, which are more representative of the local 

structure of the surface compared to plain 3D coordinates. It’s first introduced by Tom-

bari and get a good result[20] and then merged with texture-based measurement[21]. 

The use of histograms defined a unique and robust 3D local reference frame, it can 

bring in the effect that filtered the noise. By introducing the geometric information con-

cerning the location of the points within the support, making it possible to enhance the 

discriminative power of the descriptor. 

On the one hand, by defining an invariant local coordinate system (RF) and separately 

encoding and calculating the geometric characteristics of a point’s support area ac-

cording to the local coordinates, the 3D surface neighborhood of a given point (here 
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Figure 2.7: Signatures and Histograms are the two main 3D descriptors[20]. 

inafter referred to as support) is described. On the other hand, the histogram-based 

method describes the support area by accumulating local geometric or topological 

measurements (such as the number of points, grid triangle area) into a histogram ac-

cording to a specific quantization domain (such as point coordinates, curvature), which 

requires definition Reference Axis (RA) or local RF. 

The steps to generate a SHOT descriptor are following:  

(1).The local reference coordinate system LRF is established according to the neigh-

borhood information of the feature point sphere, and the sphere neighborhood of the 

feature point is divided into the radial direction (inner and outer sphere), longitude (time 

zone) and latitude direction (north and south hemisphere). Usually the radial is divided 

into 2, the longitude is divided into 8, and the latitude is divided into 2, a total of 32 

Small Areas.  
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(2).Building a distribution histogram for each Small Areas separately. A set of local 

histograms over the 3D volumes defined by a 3D grid superimposed on the support 

are computed. For each of the local histograms, cos𝜃𝑖 as a function to accumulate 

point counts into bins by the angle 𝜃𝑖, which located between the normal at each point 

within the corresponding part of the grid 𝑛𝑣𝑖, and the normal at the feature point 𝑛𝑢. 

That is, the function can be expressed as cos𝜃𝑖=𝑛𝑣𝑖 ∙ 𝑛𝑢. According to the value of 

cos𝜃𝑖  on the local surface, the corresponding histogram interval is accumulated. In or-

der to overcome the boundary effect in the histogram construction process, when each 

point is accumulated to a specific interval of the histogram, quadrilinear interpolation is 

performed on the adjacent interval of the histogram and the corresponding interval of 

the adjacent Small Area histogram. The dimension of the orientation histogram feature 

depends on the number of histogram intervals, and its dimension is 𝑛 ∙ 32. Tom et al. 

used experiments to prove that when n=11, that is, the feature dimension is 352, the 

orientation histogram feature achieves the best recognition rate [22]. 

As for the structure of the signature, we use an isotropic spherical grid that encom-

passes partitions along the radial, azimuth and elevation axes, as described in Figure 

2.8 [20]. 

 

Figure 2.8: The 3D grid deployed by SHOT, which is repeatably oriented by the local reference frame 

denoted by the blue arrows. 

 

For the Quadrilinear Interpolation method to overcome the boundary effect, that is, 

when voting for each point, interpolation voting is carried out from four dimensions 

according to the distance weight. First, for the same small area (volume), 11 bins are 
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divided, and interpolation voting is performed from the cos 𝜃 dimension, as shown in 

the Figure 2.9 below; then, for its adjacent small areas (volumes) based on the weight 

d (angle distance or Euclidean distance) performs corresponding interpolation voting, 

as shown in the following Figure (2.10, 2.11, 2.12). 

In other word, each point performs interpolation voting on 8 small regions (volume) in 

the three dimensions of radial, azimuth, and elevation, and each small region (volume) 

performs interpolation voting on two intervals (bins) for the cos 𝜃 dimension.. Therefore, 

a total of 16 bins are interpolated voting for each point. 

(1). Normal Cosine Interpolation 

Assuming that the characteristic value of a point in the support area is cos 𝜃, which is 

in the interval of (cos 𝜃𝑖 , cos 𝜃𝑖+1), first calculate the normalized distance (divided by the 

interval length S) from cos 𝜃 to cos 𝜃𝑖 and cos 𝜃𝑖+1 , marked as 𝑑𝑖 and 𝑑𝑖+1, and then 

vote for cos 𝜃𝑖 interval as +1 − 𝑑𝑖, and vote for cos 𝜃𝑖+1 interval as +1 − 𝑑𝑖+1. The func-

tion of linear interpolation is to distribute the current value to adjacent discrete intervals 

in a linear proportion. 

 

Figure 2.9: Interpolation on normal cosines[22] 

(2). Azimuth interpolation 

For azimuth, the weight 𝑑  is calculated as the angular distance. The interpolation 

method is the same as above. 
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Figure 2.10: Interpolation on azimuth[22] 

(3). Elevation Interpolation 

For elevation, the weight 𝑑 is also calculated as the angular distance. The interpolation 

method is the same as above. 

 

Figure 2.11: Interpolation on elevation[22] 

(4). Distance Interpolation 

For the distance dimension, the weight 𝑑 is calculated based on Euclidean distance. 
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Figure 2.12: Interpolation on distance[22] 

 

According to the above-mentioned academic principles, the Point Cloud Library pro-

vides users with specific SHOT descriptor algorithm implementation. Using the Point 

Cloud Library, we can easily and faster use the SHOT descriptor in the point cloud 

registration algorithm. 

 

2.5 VoxelGrid Downsampling 

Since the amount of point cloud data obtained is relatively large, if all the point cloud 

data are used to do the experiments, it will affect the speed of subsequent experiments, 

so we need to use part of point cloud to replace all point clouds to improve operational 

efficiency[26]. In PCL the VoxelGrid class can achieve this purpose, through the input 

point cloud data to create a three-dimensional voxel grid (think of the voxel grid as a 

collection of tiny three-dimensional cubes in space), and then in each voxel the center 

of gravity of all points in the voxel is used to approximate the other voxels point. The 

steps of making voxel grid are as follows: 

2.5.1 Determine the length L 

L is very important for the voxelgrid downsampling, if L is too large, the search effi-

ciency will be reduced. If L is too small, there will be many empty grids. Side length of 
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small cube grid is: 𝐿 = 𝛼 √𝑠/𝑐
3

, where 𝛼 is used to adjust the small cube grid of the side 

length, 𝑠 is the scale factor, 𝑐 is the number of point clouds in small grid. 

2.5.2 Determine the volume of the 3D voxel grid 

The volume of 3D voxel grid is 𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧, among them, 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are the maximum 

range of the point cloud on the X, Y, and Z axes. The number of point clouds contained 

in the unit small grid is 𝑐 = 𝑁/𝑉 (N is the point cloud total), then we can get 𝐿 =

𝛼 √𝑠𝐿𝑥𝐿𝑦𝐿𝑧/𝑁3 . Then we can divide the point cloud data into small cube grids. 

2.5.3 Find the gravity center 

The gravity center of each voxel grid is: 𝑋0 =
1

𝐶
∑ 𝑥𝑖

𝑐
𝑖=1 , 𝑌0 =

1

𝐶
∑ 𝑦𝑖

𝑐
𝑖=1 , 𝑍0 =

1

𝐶
∑ 𝑧𝑖

𝑐
𝑖=1 . Us-

ing the 𝑋0, 𝑌0, 𝑍0 to represent all the points in the small grid to achieve the downsam-

pling of the point cloud. The purpose of simplification of point cloud can be achieved. 

After VoxelGrid Downsampling, the number of point clouds is reduced, but the shape 

characteristics of the point clouds is not changed. Therefore, this method is used to 

improve the efficiency of point cloud registration.  

2.6 Iterative Closest Point 

Iterative closest point is one of the widely used algorithms in aligning three dimensional 

models in the field of point cloud registration. It is a high-level registration method 

based on free-form surfaces, which was first introduced by Besl and McKay[28]. In the 

iterative closest point algorithm, we need a source point cloud and a target point cloud. 

In usual condition, the target point cloud is kept fixed, while the other one, the source 

point cloud, is transformed to best match the reference. The algorithm iteratively re-

vises the transformation (combination of translation and rotation) needed to minimize 

a distance from the source to the reference point cloud, such as the sum of squared 

differences between the coordinates of the matched pairs. In the Figure 2.13, we can 

see the transformation process of the ICP algorithm intuitively. After multiple iterations, 

the blue curve is matched with the closest point corresponding to the red line. 
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Figure 2.13: Transformation between blue line and red line. 

In subsequent research, many researchers improved the ICP algorithm and proposed 

many variants of the ICP algorithm. For instance, Chen er al. [29] and Bergevin et al. 

[30] proposed an accurate registration method for point-to-plane search for nearby 

points. Rusinkiewicz [31] proposed weighted point-to-plane error metric to assign a 

different weight to each correspondence. In addition, Andrew and Sing [32] extracted 

a data registration method based on the texture information of the color 3D scan data 

points, and mainly considered the texture color information of the 3D scan points in the 

ICP algorithm to search for nearby points. Natasha et al. [33] analyzed the quality of 

point cloud data registration in the ICP algorithm. 

Although there are many variants of the ICP algorithm, they are all optimizations of the 

classic point-to-point ICP algorithm, so the following is an introduction to the theory of 

ICP algorithm. The theoretical basis of other variants of ICP algorithm is similar to the 

theory to be introduced. 

Suppose we have two sets of point clouds: Source point cloud P and target point cloud 

Q, their expressions are as follows: 

𝑃 = {𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛}, 𝑄 = {𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛} 

Then we need to calculate the corresponding near point of each point in Q in the P 

point set. In order to speed up the search process, the KD-tree algorithm can be used 

in this step to speed up the search. Compared with ordinary brute force search, KD-

tree search has higher search efficiency. 

After finding the corresponding near point, we need to find a rotation matrix R and 

transformation matrix T to minimize the following error function: 
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𝐸(𝑅, 𝑇) =
1

𝑛
∑ ||

𝑛

𝑖=1

𝑝𝑖 − 𝑞𝑖||
2 

Bring the obtained transformation and rotation matrix into the point cloud P, we can get 

a new set of point cloud P. 

If the distance between the new point cloud set P and the reference point set Q is less 

than a given threshold, the iterative calculation is stopped, otherwise the new transfor-

mation point set will continue to iterate as a new P until it reaches the requirement of 

the objective function.  

Through this continuous iterative method, we can find the transformation matrix and 

rotation matrix that minimize the distance between the two sets of point clouds, so as 

to achieve the purpose of accurately registering the two sets of point clouds. 

The original ICP algorithm occupies too much computing resources, is sensitive to the 

initial transformation, and easily falls into a local optimal solution. Since the introduction 

of ICP, there have been quite a few ICP improved algorithms, and a few are briefly 

listed: 

(1). Point-to-Plane ICP[29]: The point-to-point distance used in the cost function of the 

original ICP algorithm. Point-to-plane considers the distance from the source vertex to 

the surface where the target vertex is located. Compared with calculating the point-to-

point distance directly, taking into account the local structure of the point cloud, the 

accuracy is higher, and it is not easy to fall into the local optimum; but it should be 

noted that the point-to-plane optimization is a nonlinear problem, the speed is relatively 

slow, and its linear approximation is usually used; 

(2). Plane-to-Plane ICP[41]: Point-to-plane only considers the local structure of the tar-

get point cloud, plane-to-plane, as the name implies, also considers the local structure 

of the source point cloud, and calculates the distance from the surface to the surface; 

(3). Generalized ICP[42]: Considering the point-to-point, point-to-plane and plane-to-

plane strategies comprehensively, the accuracy and robustness are improved; 

(4). Normal ICP[43]:  Considering the normal vector and local curvature, and further 

using the local structure information of the point cloud, the experimental results in the 

paper have better performance than Generalized ICP. 
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2.7 Hough Voting 

Hough voting is a popular computer vision technique designed for sparse collections, 

so it is naturally suitable for point clouds. It’s first introduced by Tombari [34]. In his 

paper, he proposed a classic method of using Hough Voting ideas for target recognition 

in three-dimensional scenes, and achieved good results in cluttered scenes and occlu-

sions. This idea has been cited many times in scientific papers in recent years, and 

some deep learning methods also have the shadow of this voting idea. 

The algorithm uses the feature descriptors of the point cloud to calculate a series of 

matching pairs of model points and scene points. Firstly we need the feature points of 

the model and scene, which could be computed by FPFH descriptor or SHOT de-

scriptor. At the same time, each model feature point has a relative positional relation-

ship with the model centroid, model centroid is the red circle in Figure 2.14. 

Then the vector between each feature and the centroid is computed and stored, which 

is the blue arrows in Figure 2.14. The matched scene feature points can correspond to 

the position of a centroid, and the position information is used to vote related parame-

ters in the Hough space. If enough features vote for the presence of the object in a 

given position of the 3D space, then the object is detected and its pose is determined 

by means of the computed correspondences. 

 

Figure 2.14: Example of 3D Hough Voting based on local reference frame. 

In addition, we want this method to be rotation and translation invariant, so the vector 

between each feature and the centroid can’t be stored in the coordinates of the global 
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reference frame. Hence, as sketched in Figure 2.15[35], the local reference frame need 

to be computed both in the model and in the scene. In particular, because we need to 

compute local reference frame for each feature, so the reference frame has to be effi-

ciently computable and very robust to disturbance factors.   

 

Figure 2.15: Transformations induced by the use of local reference frame 

In summary, this method can be used in correspondence grouping in point cloud reg-

istration. We selected the bin in the Hough space having the maximum number of votes, 

only one instance of object can be sought from scene. 
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3.1 Overview 

The workflow of the proposed point cloud registration is illustrated in Figure 3.1.  

The first step is a preprocessing of the raw point cloud. The scene point cloud is filtered 

to remove most of noise, such as outliers points. And some details is trimmed by using 

software CloudCompare. Then the resolution of the model point cloud and the scene 

point cloud is calculated, because resolution is a very important parameter in registra-

tion. After that, the voxelgrid downsampling is applied to reduce the amount of data 

and adjust the resolution of model and scene to the same. 

 

 

Figure 3.1: The workflow of point cloud registration 

 

 

3 Methodology 
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The second step is key point extraction both in model and scene. PCL implements 

many key point detectors such as Harris corner detector, Intrinsic Shape Signature, 

SIFT Keypoint, 3D voxelization and so on. In this thesis, the SIFT Keypoint and 3D 

voxelization are applied to extract the key points.  

In third step, feature descriptor is computed for each detected keypoint. We use local 

descriptor in this step because it try to resemble shape and appearance only in a local 

neighborhood around a point and thus are very suitable for representing it in terms of 

matching. Hence, FPFH descriptor and SHOT descriptor are used to compute feature 

descriptor. 

The next step is to find corresponmdence between model and scene based on search-

ing similar feature descriptor. K-d tree is applied for rapid searches. This data structure 

has logarithmic search times but take longer to initialize. For this purpose, PCL de-

pends on FLANN [10], an open-source library for fast nearest neighbor searches. 

As a result of the matching stage, correspondences are determined by associating 

pairs of model-scene descriptors that lie close in the descriptor space. Next we need 

to make a correspondence grouping, to find out instance from scene. For this purpose, 

hough voting algorithm is used to get the correspondence grouping. In this step, the 

rotation and translation matrix between model and instance from scene should be cal-

culated out. 

The final step is the refinement using ICP algorithm. Through the ICP, we can further 

register the model and the instances found in the scene. So that we can get an accu-

rate transformation relationship between the model and the instance from scene. 

 

3.2 Toolkit 

3.2.1 Point cloud library 

PCL (Point Cloud Library) is a large cross-platform open source C++ programming 

library established on the basis of absorbing previous point cloud related research. It 

implements a large number of general point cloud related algorithms and efficient data 

structures, involving point cloud acquisition, filtering, segmentation, registration, re-

trieval, feature extraction, recognition, tracking, surface reconstruction, visualization, 
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etc. As shown in the Figure3.2, the PCL architecture diagram for 3D point cloud pro-

cessing, It supports multiple operating system platforms, and can run on Windows, 

Linux, Android, MacOS, and some embedded real-time systems. PCL is a BSD au-

thorization method that can be used for commercial and academic applications for free. 

PCL is completely a modular modern C++ template library. It is based on the following 

third-party libraries:  

Boost: This set of C++ libraries is used for threading and mainly for shared pointers, 

so there is no need to re-copy data that is already in the system. 

Eigen: It is an open-source template library for linear algebra (matrices, vectors). Most 

mathematical operations in PCL are implemented with Eigen. 

 

 

 

Figure3.2: Applications and relationships of each algorithm in PCL 

 

FLANN: It is a library that performs a fast approximate nearest neighbor search in high 

dimensional spaces. In PCL, it is especially important in the kd-tree module for fast k-

nearest neighbor search operations. 

VTK: Used in visualization module for point cloud rendering and visualization. 

OpenNI: It is used to retrieve point clouds from devices. 

In this thesis, the PCL version is PCL1.11.1. We downloaded the PCL code library to 

the local computer, and completed the relevant configuration through visual studio. 

After that, we can call the functions provided in PCL when developing with visual studio. 

Figure 3.3 shows some configuration pages in visual studio. 
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Figure 3.3: Configuration pages in visual studio 

 

3.2.2 Autodesk Fusion 360 

Fusion 360 is a three-dimensional visual modeling software launched by Autodesk Inc. 

in the United States. It integrates industrial design, mechanical design, collaboration, 

processing and other elements into one. Fusion 360 is also a cloud-based 3D modeling, 

CAD, CAM, CAE, and PCB software platform for product design and manufacturing. It 

supports .dwg .obj .stl file format. The more popular technologies in the software in-

clude direct modeling technology, T-spline modeling technology, connection-based as-

sembly technology, top-down parametric modeling technology, cloud data manage-

ment, etc. For students, teachers and educational institutions, it is a free software, and 

other commercial uses need to be paid for. 

Because when converting the CAD model to the point cloud model, we need to use 

the .obj format file, so we use Autodesk Fusion 360 to convert the .dwg file format to 

the .obj file format, which is shown in Figure3.4. 
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Figure 3.4: .dwg CAD model converted to .obj file format in Fusion 360 

 

 

3.2.3 CloudCompare 

CloudCompare is an open source 3D point cloud processing software. It has been 

originally designed to display large point cloud and perform comparison between two 

dense 3D points clouds. It relies on a specific octree structure dedicated to this task.  

Afterwards, many advanced algorithms has been included into CloudCompare (regis-

tration, resampling, color/normal vector/scale, statistical calculation, sensor manage-

ment, interactive or automatic segmentation, etc.). It is also a display enhancement 

tools (custom color gradient, color and normal vector Processing, calibration image 

processing, OpenGL shaders, plug-ins, etc.). In this study, we mainly use this software 

to display the result after point cloud prepocessing. We also use it to adjust the scale 

of model and scene, trim some details of model, or separate part of the point cloud 

from the big point cloud. 
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Figure 3.5: point cloud display in CloudCompare 

 

3.3 Prepocessing 

3.3.1 Noise Filter 

Point cloud collection can be collected by equipment such as RGBD camera or lidar. 

Due to the accuracy of the collection equipment, environmental factors, lighting factors,  
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and surface properties of the object, noise will inevitably appear in the point cloud data. 

The filtering process is to solve the problems of irregular and unsmooth point cloud 

data density, outliers, and noisy data. 

In this thesis, we use the StatisticalOutlierRemoval provided by PCL to remove the 

outlier points in scene. Statistical analysis techniques are used to centrally remove 

measurement noise points from a point cloud data. Perform statistical analysis on the 

neighborhood of each point, and eliminate the neighborhood points that do not meet 

certain standards.  

For each point, calculate its average distance to all adjacent points. Assuming that the 

distribution obtained is Gaussian, we can get a average value 𝜇 and a standard devi-

ation 𝜎. 

All points in this neighborhood point set whose distance from its neighborhood is 

greater than 𝜇 +  𝑠𝑡𝑑_𝑚𝑢𝑙 ∗  𝜎 outside the interval can be regarded as outliers and can 

be removed from the point cloud data. 𝑠𝑡𝑑_𝑚𝑢𝑙 is a threshold of multiples of standard 

deviation, which can be specified by yourself. 

Here is the corresponding code segment:  

pcl::StatisticalOutlierRemoval<pcl::PointXYZ> filters; 

filters.setInputCloud(cloud); 

filters.setMeanK(10); 

filters.setStddevMulThresh(1.0); 

filters.filter(*filtered); 

pcl::io::savePCDFile("afterfilter.pcd", *filtered); 

As shown in the code above, we first create a statistical analysis filter, and then input 

the cloud, which is the point cloud we want to process, and then set the number of 

adjacent points analyzed for each point to 10, and the multiple of standard deviation is 

set to 1.0, which means that if the distance of a point exceeds the average distance 

plus 1.0 times standard deviation, the point is marked as an outlier and it is removed. 

After statistical analysis and filtering, the output result is cloud_filtered. Finally, we store 

the result in a pcd file afterfilter.pcd. 
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3.3.2 Voxelgrid Downsampling 

The Voxelgrid method is used to achieve downsampling, that is, to reduce the number 

of points, while maintaining the shape of the point cloud, which is very practical in 

improving the speed of registration, surface reconstruction, shape recognition and 

other algorithms. 

The Voxelgrid class implemented by PCL creates a three-dimensional voxel grid (think 

of the voxel grid as a collection of tiny spatial three-dimensional cubes) through the 

input point cloud data. The center of gravity of all points in the voxel is approximated 

to display other points in the voxel, so that all points in the voxel are finally represented 

by a center of gravity point, and the filtered point cloud is obtained after processing all 

the voxels. This method is slower than the method of approximating the center of the 

voxel, but it is more accurate for the representation of the corresponding surface of the 

sample point. 

Here is the corresponding code segment: 

float leftSize = 0.02f; 

pcl::VoxelGrid<pcl::PointXYZ> downsample; 

downsample.setInputCloud(cloud); 

downsample.setLeafSize(leftSize, leftSize, leftSize); 

downsample.filter(*downsampling); 

pcl::io::savePCDFile("afterfilter.pcd", *downsampling); 

As shown in the code above, we first set the size of grid to 0.02, this parameter needs 

to be adjusted according to the density of the point cloud to ensure that a voxel grid of 

appropriate size is generated. Then we create a voxelgrid filter and input the cloud, 

which is the point cloud we want to process. After downsampling, the output result is 

𝑐𝑙𝑜𝑢𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. Finally, we store the result in a pcd file 𝑎𝑓𝑡𝑒𝑟𝑓𝑖𝑙𝑡𝑒𝑟. 𝑝𝑐𝑑. 

After downsampling the point cloud, the amount of data has been significantly reduced. 

Taking the point cloud used in the experiment as an example, the number of point 

clouds has been reduced from 177992 to 55917. We can also intuitively see the point 

cloud comparison before and after processing from the Figure3.6. 
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From the visualization results, it can also be clearly seen that the density of points is 

different from the degree of neatness. Although the amount of data is greatly reduced 

after processing, it is obvious that the shape features and spatial structure information 

contained in it are similar to the original point cloud. 

 

(a)                                                                             (b) 

 

(c)                                                               (d) 

Figure 3.6: visualization result of point cloud downsampling: (a) original point cloud section; (b) 

downsampled point cloud; (c) smaller section of the original point cloud; (d) smaller section of downsam-

pled point cloud. 
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3.4 Keypoint extraction 

3.4.1 3D Voxelization 

The same as the above mentioned downsampling method, by generating multiple 

spherical grids in the point cloud, each grid contains a certain number of points, and 

extracting the center of gravity of the grid as a key point. As shown in Figure 3.7, blue 

points are key points extracted from point choud. In simple experimental scenarios, 

this method is practical and efficient, and it can better maintain the shape characteris-

tics of the original point cloud. 

 

Figure 3.7: Key points extracted by 3D voxelization 

3.4.2 SIFT keypoint 

According to the introduction in the chapter II, we can know that the premise of locating 

and extracting sift keypoints is to construct a Difference of Gaussians(DOG) scale 

space, in order to further find extreme points in the Gaussian scale space. Each point 

must be compared with all neighboring points in its point domain (same scale space) 

and scale domain (adjacent scale space). When it is greater than (or less than) all 

adjacent points, the point is an extremum point.  

Because the local extremum points of the DOG come from a discrete space, so the 

extreme point found in the discrete space is not necessarily the true extreme point. So 
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we must try to eliminate the points that do not meet the conditions, such as low-contrast 

keypoints. 

The class SIFT Keypoint is the implementation of SIFT keypoint that transplants the 

SIFT keypoint from the 2D image to the 3D space after adjustment. The input is a point 

cloud with XYZ coordinates, and the output is the SIFT keypoints. 

Here is the corresponding code segment: 

pcl::SIFTKeypoint<pcl::PointXYZRGBA, pcl::PointWithScale> sift; 

pcl::PointCloud<pcl::PointWithScale> result_model; 

pcl::PointCloud<pcl::PointWithScale> result_scene; 

pcl ∷ search ∷ KdTree<pcl ∷ PointXYZRGBA> ∷ Ptr tree(new pcl ∷ search ∷

KdTree<pcl∷PointXYZRGBA>());   

sift.setScales(min_scale, n_octaves, n_scales_per_octave); 

sift.setSearchMethod(tree); 

sift.setMinimumContrast(min_contrast); 

sift.setInputCloud(model); 

sift.compute(result_model); 

pcl::copyPointCloud(result_model, *model_keypoints); 

We interpret some of the key functions: 

(1). sift.setScales(min_scale,n_octaves,n_scales_per_octave); 

Set the parameters related to the scale when searching, 𝑚𝑖𝑛_𝑠𝑐𝑎𝑙𝑒 is the standard de-

viation in the point cloud voxel scale space, the point cloud corresponds to the mini-

mum size of the voxel in the voxel grid, 𝑛𝑟_𝑜𝑐𝑡𝑎𝑣𝑒𝑠 is the number of voxel space scales 

when detecting key points, 𝑛_𝑠𝑐𝑎𝑙𝑒𝑠_ 𝑝𝑒𝑟 _ 𝑜𝑐𝑡𝑎𝑣𝑒 is the parameter required to calcu-

late the Gaussian space scale at each voxel space scale. 

(2). sift.setSearchMethod(tree); 

Specify the search method as KD-tree search, create an empty KD-tree object, and 

pass it to the sift detection object. 
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(3). sift.setMinimumContrast(min_contrast); 

Set the lower limit of contrast that candidate key points, to eliminate the extremum 

points that do not meet the conditions. 

Finally, we store the results in 𝑟𝑒𝑠𝑢𝑙𝑡_𝑚𝑜𝑑𝑒𝑙, and convert point type 𝑝𝑐𝑙::𝑃𝑜𝑖𝑛𝑡𝑊𝑖𝑡ℎ

𝑆𝑐𝑎𝑙𝑒 data to point type 𝑝𝑐𝑙::𝑃𝑜𝑖𝑛𝑡𝑋𝑌𝑍 data. And we store the converted result in 

𝑚𝑜𝑑𝑒𝑙_𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠. 

As shown in the Figure3.8, the input is a point cloud of a chair. After processing, the 

SIFT Keypoint are successfully extracted. The blue points in the figure are the key 

points. 

 

Figure 3.8: SIFT Keypoint extract from a chair point cloud 

 

3.5 Compute feature descriptor 

3.5.1 SHOT descriptor 

Before this, we have successfully extracted the key points from the model point cloud 

and the scene point cloud. In the next step, we need to calculate the feature descriptors 

of the key points.  

Based on the introduction in Chapter II, SHOT descriptor counts the topological fea-

tures around the feature points in the constructed local reference system, saves the 

features in the histogram, and normalizes them. According to this concept, first we 

have to construct a local reference system for each key point. Then we generate a 
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spherical support area for each key point. According to the constructed local coordinate 

system, we can divide the support area to 32 small area, which is radial direction(inner 

and outer), latitude direction(northern and southern hemisphere) and longitude direc-

tion(eight area). In this way, a spherical support area can be divided into 32 small areas. 

For each small area, construct a local histogram, vote based on the cosine value of 

the angle between the normal vector of the feature point and the local reference frame 

z-axis. Divide each local histogram into 11 bins, then the SHOT descriptor has 352 

dimension. It should be noted that because the local reference system is used, bound-

ary problems will inevitably occur. In order to solve this problem, SHOT descriptor 

adopted quadrilinear interpolation weaken the boundary effect. 

The encoding of the SHOT descriptor is very difficult, but fortunately the PCL provides 

the implementation of the SHOT descriptor, here is the code segment: 

pcl∷NormalEstimationOMP<PointType, NormalType> normal; 

normal.setKSearch(10); 

normal.setInputCloud(model); 

normal.compute(*normals); 

pcl∷SHOTEstimationOMP<PointType, NormalType,DescriptorType>shot;                                                          

shot.setRadiusSearch(0.08f); 

shot.setInputCloud(model_keypoints); 

shot.setInputNormals(normals); 

shot.setSearchSurface(model); 

shot.compute(*model_descriptors); 

As shown in the code above, we first need to compute the normals for each point of 

both the model and the scene cloud with the 𝑝𝑐𝑙 ∷ 𝑁𝑜𝑟𝑚𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑀𝑃 <

𝑝𝑐𝑙: : 𝑁𝑜𝑟𝑚𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑀𝑃> estimator, using the 10 nearest neighbors of each point. 

Then in order to generate the SHOT descriptor object, we use the implementation  

𝑝𝑐𝑙 ∷ 𝑆𝐻𝑂𝑇𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑀𝑃 < 𝑃𝑜𝑖𝑛𝑡𝑇𝑦𝑝𝑒, 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑦𝑝𝑒, 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑇𝑦𝑝𝑒 > . Then we 

set the radius for descriptor computation, the radius that defines the support area on 

which the descriptor is computed (i.e. the subset of keypoint neighbors being de-

scribed). It should be enough large to include at least a few tens of points, but not too 

large not to include clutter in the description of keypoints close to the object border. 
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Usually a value between 10-20 times of point cloud resolution does the job. Then we 

input the key points and normal vectors, and use 𝑠𝑒𝑡𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑢𝑟𝑓𝑎𝑐𝑒 function to input 

neighborhood area at its original point cloud. In the end, SHOT descriptor is computed 

and stored in vector 𝑚𝑜𝑑𝑒𝑙_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠. 

3.5.2 FPFH descriptor 

Surface normal and curvature estimation are the basic representation methods of ge-

ometric features around a certain point. Although it is relatively easy to calculate, there 

is not much information that can be provided. Because they only use a few parameter 

values to approximate the k-neighborhood geometric features of a point. In most sce-

narios, there will be many identical or similar feature values, so only using point fea-

tures will reduce a lot of global feature information. So we can collect global feature 

information through the Fast Point Feature Histogram(FPFH). 

According to the introduction in Chapter II, FPFH forms a multi-dimensional histogram 

to describe the geometric characteristics of the k-neighborhood of the point by param-

eterizing the spatial difference information between the query point and the neighbor-

ing point. The high-dimensional hyperspace where the histogram is located provides a 

measurable information space for the representation of the feature, which makes the 

6DOF (degree of freedom) attitude of the point cloud invariant, and it has good robust 

at different sampling densities or neighborhood noise levels. 

First of all, we find the three characteristic element values between query point and its 

k neighborhood, and then calculate it into a SimplePFH. Then we determine the k-

neighborhood for each point in the k-neighborhood respectively, and form its own 

SPFH according to the first step. Finally, weighted statistics on each SPFH in the 

neighborhood is performed, histogram can be calculated out. 

According to the concept of FPFH descriptor and progress of construction, PCL pro-

vides implementation in 𝑝𝑐𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 library. The default FPFH implementation uses 

11 binning subdivisions and a decorrelated scheme which results in a 33-byte array of 

float values. These are stored in a 𝑝𝑐𝑙: : 𝐹𝑃𝐹𝐻𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒33 point type. 

For users with demanding calculation speeds, PCL provides another implementation 

of FPFH estimation, which uses multi-core/multi-thread specifications and the OpenMP 

development model to improve calculation speed. The name of this class is 

𝑝𝑐𝑙: : 𝐹𝑃𝐹𝐻𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑀𝑃, and its application programming interface (API) is 100% 
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compatible with single-threaded 𝑝𝑐𝑙: : 𝐹𝑃𝐹𝐻𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛, which makes it suitable as a 

replacement component. In an 8-core system, the implementation of OpenMP can per-

form the same calculation on a single-core system in 6-8 times faster computing time. 

Here is the corresponding code segment: 

pcl::FPFHEstimation <pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33>fpfh;  

fpfh.setInputCloud (cloud); 

fpfh.setInputNormals (normals); 

fpfh.setSearchMethod (tree); 

pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs (new pcl::PointCloud 

<pcl::FPFHSignature33> ()); 

fpfh.setRadiusSearch (0.1); 

fpfh.compute (*fpfhs); 

As shown in the code above, first we create the FPFH estimation class, and pass the 

input cloud and normal to it. Then we create an empty KD-tree representation, and 

pass it to the FPFH estimation object. Its content will be filled inside the object, based 

on the given input dataset. Then we set the radius of sphere with all neighbors is 10cm, 

this radius should be larger than the radius used to estimate the surface normal. Finally, 

the feature is computed. 

 

3.6 Correspondence estimation 

Before that, no matter which feature descriptor computation method is used, we should 

already get the feature descriptor of model and scene. Now we need to determine 

point-to-point correspondences between model descriptors and scene descriptors. 

This is the process of pairing points 𝑝𝑖 from the source point cloud P to their closest 

neighbors 𝑞𝑗 in the target cloud 𝑄. We need to search for each point in the target point 

cloud to find a feature descriptor similar to the corresponding point of the origin point 

cloud.  

A primary approach of searching for the nearest neighbor is to perform an exhaustive 

search through all the points in target point cloud. However, PCL provides us with a 

better way, we cloud use K-d tree data structure to make a rapid search. There is a 
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third party FLANN included in PCL, by using the FLANN library, we can directly use 

the k-d tree data structure in the code. 

Here is the code about correspondence estimation 

pcl::CorrespondencesPtr findcorrespondence(new pcl::Correspondences()); 

pcl::KdTreeFLANN<DescriptorType> match; 

match.setInputCloud(model_descriptors); 

for (std::size_t i = 0; i < scene_descriptors->size(); ++i) 

{…… 

if (!std::isfinite(scene_descriptors->at(i).descriptor[0])) 

continue; 

if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) 

 findcorrespondence->push_back(correspondence); 

  ……} 

As shown in the code above, we first set a vector of correspondence estimation, which 

is named by 𝑚𝑜𝑑𝑒𝑙_𝑠𝑐𝑒𝑛𝑒_𝑐𝑜𝑟𝑟𝑠 , then we use the method of corresponding point 

searching is KD- tree nearest neighbor region. Descriptor of model as the input data 

for KD-tree search. Then we can find the closest point corresponding to the model 

descriptor in the scene descriptor, and set an appropriate matching threshold accord-

ing to the resolution of the point cloud and the radius of the field set by the previous 

SHOT descriptor computation. Finally, we store the matching corresponding pairs 

points in the vector 𝑚𝑜𝑑𝑒𝑙_𝑠𝑐𝑒𝑛𝑒_𝑐𝑜𝑟𝑟𝑠. 
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3.7 Correspondence Grouping 

In the previous step, correspondences are determined by searching pairs of model and 

scene descriptors that lie close in the descriptor space. However, most of the corre-

spondence between model and scene descriptors contained in the correspondence 

vector does not exist in the instance from scene we want to find. Hence, we need to 

filter these descriptor pairs, to find out the correspondence from instance in scene. A 

relatively common approach within 3D point cloud registration methods is usually re-

ferred to as correspondence grouping. 

In this step, we have to classify initial feature correspondences between two 3D point 

clouds obtained by matching local geometric descriptors into inliers and outliers, inliers 

means that these descriptor comes from model instance in scene which we want. Due 

to a number of factors, such as key points localization errors, and point cloud noise, 

limited overlap, clutter and occlusion, heavy outliers are generated in the initial corre-

spondence set. Hence, it’s very challenging to find the suitable group. 

Existing 3D correspondence grouping methods can be divided into two categories: 

group-based and individual-based[36]. Group-based method assume that inliers com-

bine a cluster in a particular domain and try to recover the cluster. In contrast, individ-

ual-based first assign scores to correspondence based on feature distance and con-

straints of geometry, then select the top-scored correspondence. 

Most commonly group-based methods are Random sampling consensus, Game the-

ory matching, Geometric consistency, Hough voting. Random sampling consensus it-

eratively estimates a model from correspondences and verifies its rationality. Game 

theory matching use spectral analysis and dynamic evolution on the affinity matrix to 

calculate out the inlier cluster. Geometric consistency forms a cluster for each corre-

spondence by ensuring correspondences in the cluster are compatible with the query 

correspondence; the cluster with the maximum element count is served as the inlier 

cluster[37]. Hough voting transforms correspondences to 3D points in a 3D Hough 

space and then finds the cluster in Hough space[34]. 

In this thesis, we perform Hough voting to make correspondence grouping. We have 

introduced the theory of Hough voting in Chapter II, the important process of Hough 

voting is: first we need to set the local reference frame both for model and scene, since 

we want the method could be rotation and translation invariant. Then the hough space 

is created, voting will be conducted in hough space. 
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Here is the code segment about Hough voting: 

pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> hough; 

hough.setHoughBinSize(size);  

hough.setHoughThreshold(threshold);  

hough.setUseInterpolation(true);  

hough.setUseDistanceWeight(false); 

hough.setInputCloud(model_keypoints);  

hough.setInputRf(model_rf);   

hough.setSceneCloud(scene_keypoints); 

hough.setSceneRf(scene_rf);           

hough.setModelSceneCorrespondences(correspondence); 

hough.recognize(rototranslations, clustered_corrs); 

As before, PCL provides us the implementation of Hough voting, we can use several 

function in PCL directly. pcl::Hough3DGrouping make a Hough voting class named 

hough, hough.setHoughBinSize set the sampling interval in Hough space, it defines 

the spatial length of each Hough bin. And it should be enough large to encompass 

oscillations due to noise of the 3D Hough votes but not too large to create spurious 

peaks in the Hough space. hough.setHoughThreshold set the threshold for the mini-

mum number of votes to determine whether there is an instance in the Hough space. 

hough.setUseInterpolation set whether to interpolate the vote score between neigh-

boring bins. hough.setUseDistanceWeight set whether the vote casting procedure 

uses the correspondence's distance as a score. hough.setInputCloud input the data 

into the Hough space. hough.setInputRf provide a pointer to the input dataset's refer-

ence frames, each point in the reference frame should be the reference frame of the 

correspondent point in the input dataset. hough.setModelSceneCorrespondences pro-

vide a pointer to the precomputed correspondences between points in the input dataset 

and points in the scene dataset. hough.recognize recognizes instances of the model 

from the scene. It also create a vector containing the correspondences for each in-

stance of the model, and a vector containing one transformation matrix for each in-

stance.  
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As sketched in Figure 3.9, we use an indoor environment as the scene point cloud, 

and a chair as the model point cloud, the correspondence grouping is found. The blue 

point is the key points extracted from point cloud and the green line is the correspond-

ence between model and instance in scene, the red chair is the instance found in scene. 

 

Figure 3.9: the result of correspondence grouping 

 

3.8 Iterative closest point refinement 

We have introduced the principle of Iterative Closest Point(ICP) algorithm in ChapterII, 

In point cloud registration, the ICP algorithm is a common algorithm for precise regis-

tration, which can calculate the nearest transformation of two point clouds. The ICP 

algorithm uses least squares estimation to calculate the transformation matrix. The 

principle is simple and has good accuracy. However, due to the iterative calculation, 

the calculation speed of the algorithm is slow. Moreover, when the ICP is used for the 

registration calculation, it has special requirements for the initial position of both point 

cloud. If the selected initial position is unreasonable, the algorithm will fall into a local 

optimum. 

The selection of the initial position is very important. The correct initial position can 

improve the success rate of the ICP calculation, and it can also greatly improve the 

calculation speed of the ICP algorithm. However, in the previous step, we not only 
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need to calculate the model instance in the scene point cloud, but also need to calcu-

late the location information of the model. In the Hough Voting class, hough.recognize 

can create a vector containing the translation matrices and rotation matrices. Hence, 

these translation matrices and rotation matrices can be used as position information, 

as the initial transformation position of the ICP algorithm. 

Regarding the implementation of the ICP algorithm, we can still find it from the PCL. 

And PCL provides a variety of functions to realize the multiple functions of the ICP 

algorithm. It should be noted that the ICP algorithm in PCL is implemented based on 

Singular Value Decomposition(SVD, an important method of matrix factorization in lin-

ear algebra).  

In addition, before using ICP, a few parameters need to be set: 

(1). setMaximumIterations:  

ICP is an iterative method, before using this method, we should set the maximum num-

ber of iterations, when this number is reached, ICP stops iterating. 

(2). setEuclideanFitnessEpsilon:  

Set the maximum allowed Euclidean error between two consecutive steps in the ICP 

iteration, before the algorithm is considered to have converged. The error is estimated 

as the sum of the differences between correspondences in an Euclidean sense, di-

vided by the number of correspondences. 

(3). setTransformtionEpsilon:  

Set the transformation epsilon (maximum allowable translation squared difference be-

tween two consecutive transformations) in order for an optimization to be considered 

as having converged to the final solution. 

(4). setMaxCorrespondenaceDistance:  

Set the maximum distance between corresponding point pairs (this value may have a 

greater impact on the registration result). 

After setting the initial parameters, we can use the function about ICP in PCL to finely 

register the point cloud.  
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Here is the corresponding code segment: 

std::vector<pcl::PointCloud<PointType>::ConstPtr> instance; 

pcl::transformPointCloud(*model, *rotated_model, rototranslations[i]); 

instance.push_back(rotated_model); 

pcl::IterativeClosestPoint<PointType, PointType> icp; 

icp.setMaximumIterations(max); 

icp.setMaxCorrespondenceDistance(distance); 

icp.setInputTarget(scene); 

icp.setInputSource(instance[i]); 

pcl::PointCloud<PointType>::Ptr registered(new pcl::PointCloud<PointType>); 

icp.align(*registered); 

As shown in the code above, pcl::transformPointCloud could obtain the position infor-

mation of the translation matrices and rotation matrices of the model that has been 

roughly transformed in the previous step and pass the transformation to model as initial 

position. The model with the initial position can be called rotated_model and then 

stored in vector instance. pcl::IterativeClosestPoint create a class of ICP. First, we set 

the initial parameters of the ICP algorithm. Then we input the source point cloud and 

target point cloud that need to be matched, the source point cloud is the instance model 

with initial position, and the target point cloud is the scene point cloud. Finally, we 

create a vector to store the result after ICP registration. 
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4.1 Hardware Information 

Since the subsequent efficiency and some restrictions are hardware-relevant, some of 

representative information are hereby listed briefly. 

Point cloud data is collected by Navvis VLS, which is a wearable mobile scanning sys-

tem suitable for high-quality reality capture in complex areas such as construction sites, 

stairs, and technical rooms.  

The algorithm and code in this thesis are developed and tested on a laptop with a 64-

bit Windows 10 operating system. The specifications of the used laptop are listed as 

follows: 

CPU: Intel(R) Core(TM) i5-7267U CPU @ 3.10GHz 

RAM: 8GB 

GPU: Intel(R) Iris(R) Plus Graphics 650 

 

4.2 Point Cloud Dataset 

4.2.1 Model 

The point cloud of model is converted from the CAD model. In order to be able to 

transform the CAD model into a point cloud model, we have tried a variety of methods. 

First of all, we used Cloudcompare for conversion. The Cloudcompare software con-

tains tools to convert mesh to point cloud, but the conversion result is very unsatisfac-

tory. The point cloud is very sparse and part of the point cloud is missing. So we used 

the surface sampling method provided in PCL. First, the file format .dwg is converted 

to the .obj format in Autodesk Fusion 360, and then the mesh surface is sampled by 

the method of surface sampling, pcl_mesh2pcd.exe in PCL is used. The code to call 

this program is shown in the Figure 4.1, where the -leaf_size parameter is the sampling 

density. The CAD models used in the experiment and the visualization of point cloud 

data after conversion are exhibited in Figure 4.2.  

 

4 Experiments and Results 
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Figure 4.1: the code to call the pcl_mesh2pcd.exe 

 

(a)                                           (b) 

 

(c)                                                   (d) 

 

(e)                                                    (f) 

Figure 4.2: (a),(c),(e) are the CAD model being converted and (b),(d),(f) are the point cloud after con-

version. 
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It should be noted that although the CAD model we are used is very similar to the 

physical object in real scene, but there is still a big gap with the model in the scene 

point cloud. This is because when the real scene is scanned, some parts are not col-

lected in the point cloud data due to the problems of noise and occlusion. Therefore, 

in order to make the model point cloud and the scene point cloud as similar as possible 

to avoid negative impact on the registration, the model point cloud need to be trimmed 

details by using Cloudcompare. 

4.2.2 Scene 

These three scene point clouds are all intercepted from a large point cloud, which is 

acquired using a wearable mobile scanning equipment Navvis VLS. These three sets 

of scene point clouds all contain the target model we want to register such as the chair 

in scene.1, the table in scene.2, and the computer screen in scene.3. The visualization 

of these three sets of scene point cloud is shown in Figure 4.3. Table 4.1 presents the 

information of all point cloud, which includes the resolution, number of points, and box 

dimensions. Because all the point cloud data are collected by the same instrument, the 

resolution of the point cloud is the same. In the following experimental validation, we 

will change the resolution of the point cloud by downsampling and upsampling, in order 

for testing the performance of algorithm with different point cloud resolution. 

Table 4.1 Point Cloud Datasets 

Nr. Nr. of Points 

Box Dimensions[m] 

Resolution 

x y z 

Model.1 7108 0.69192 0.66246 0.976044 0.01 

Scene.1 177992 4.11433 2.3951 1.51406 0.01 

Model.2 3831 0.729336 0.667839 0.742377 0.01 

Scene.2 56128 2.1815 2.45214 0.861658 0.01 

Model.3 2951 0.648599 0.239517 0.503199 0.01 

Scene.3 16267 1.1283 1.66858 1.2341 0.01 
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Figure 4.3: From top to the bottom: scene.1, scene.2 and scene.3 of point cloud 

 



 50 
 

4.3 Result and Analysis 

4.3.1 Result of Noise Filter 

As we mentioned before, in order to reduce the result error in the registration process, 

we filter the original point cloud using StatisticalOutlierRemoval method providing by 

PCL. We filtered the point clouds of the three scenes point cloud separately. The num-

ber of filtered points is also listed in table 4.2. We also visualize the filtered points in 

Figure 4.4, which can intuitively show which points in the point cloud are filtered out. 

 

(a) 

 

(b) 
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(c) 

Figure 4.4: The removed points during noise filter 

Table 4.2: Noise filter information 

 Scene.1 Scene.2 Scene.3 

Points before filter 177992 56182 16267 

Points after filter 169539 53910 15742 

Removed points 8453 2272 525 

 

4.3.2 Key Points and feature descriptor 

First, in order to test the performance of two different key point extraction algorithms, 

3D Voxelization and SIFT Keypoint, we input the Scene.1 from our point cloud dataset. 

Because Scene.1 contains a lot of details, for instance, the chair besides the table has 

a lot of curved surfaces, the table and monitor have a lot of flat surfaces. It can be 

measured that the two different algorithms deal with the curved surface and the flat 

surface respectively. In addition, there is a certain occlusion between the table and the 

chair, which can also test the effect of the algorithm on the occlusion situation. 

According to the previous introduction, radius of grid should be set in advance before 

input point cloud data when we use 3D Voxelization. Because the density of point cloud 

is 0.008, so we choose 0.08 as the radius. Scene.1 has 177992 points totally, 3751 
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key points are extracted with 3D Voxelization, and 5885 key points are detected with 

SIFT keypoint. The extracted key points are shown in the Figure 4.5. 

 

 

Figure 4.5: Key points (blue points) extracted from point cloud. Above figure is key points with 3D voxeli-

zation algorithm, bottom figure is key points with SIFT Keypoint algorithm. 
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From the figure, we can conclude that the key points extracted by the SIFT Keypoint 

algorithm did not maintain the shape of the original point cloud, while the key points 

extracted by the 3D Voxelization algorithm maintained the original shape of the point 

cloud.  

The reason for this phenomenon is related to the principle of the algorithm, 3D Voxeli-

zation create voxel grid in point cloud with a certain radius which we have set in ad-

vance, and in each voxel the center of gravity of all points in the voxel is used to ap-

proximate the other voxels point. The key points generated from this can well maintain 

the shape characteristics of the original point cloud. However, SIFT Keypoint algorithm 

extracts key points by detecting extreme points in Gaussian space, and extreme points 

contain less point cloud shape information.  

In addition, the computation time of the two algorithms is also different. In the key point 

extraction process of this point cloud, the computation time of the SIFT key point algo-

rithm is twice that of the 3D Voxelization algorithm. The calculation time of the 3D 

Voxelization algorithm is relatively short, thanks to its simpler calculation principle, and 

the calculation process is relatively straightforward. 

4.3.3 Registration Result 

We input three sets of models to test whether it can successfully locates and match 

the corresponding point cloud model in the scene. But the first two sets of models have 

matching errors, mainly because the algorithm parameters are not set to the best val-

ues. Therefore, we have made many attempts to optimize the parameter settings. 

These parameters have a great relationship with the density of the point cloud. 

For instance, in the SHOT feature descriptor computation algorithm, we have to set 

the radius of local reference frame and the radius for descriptor computation. The size 

of the radius depends on the density of the point cloud. If the density of the point cloud 

is larger, then within a certain radius, the number of points involved in the calculation 

will be more. On the contrary, if the point cloud is relatively sparse, then within a certain 

radius, the number of points involved in the calculation is small.  

The algorithm requires us to take a suitable radius to allow a suitable number of point 

clouds to participate in the calculation. If the radius is larger, the calculation time will 

be prolonged and the calculation efficiency will be reduced, but the feature points can 
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better express the local features. If the radius is reduced, the calculation time is short-

ened and the calculation efficiency is improved, but the calculated feature points can 

not well represent the local features. After constant attempts, we found that when the 

radius is 10 to 20 times the resolution of the point cloud, the calculation effect of the 

algorithm is ideal. 

In addition, in the correspondence grouping algorithm, we use the Hough voting 

method to group the found correspondence. According to the definition of the Hough 

voting, we need to preset the length of each Hough bin, which it can also be considered 

as the size of cluster. It should be enough large to encompass oscillations due to noise 

of the Hough votes but not too large to create spurious peaks in the Hough space. 

Then we also need to set the threshold of Hough voting to stipulate the minimum num-

ber of votes. It should be noted that these two parameters have a great influence on 

the results of the registration. If the parameter size is set incorrectly, a matching error 

will occur.  

For example, we set the radius for key points extraction is 0.06m, the radius of feature 

descriptor is 0.12m, the size of cluster is 0.5m and the threshold of Hough voting is 3. 

This is obviously a very unreasonable combination of parameters. The size of the clus-

ter group is too large, or the threshold of votes is set too small, then too many mean-

ingless feature points will be included. This will result in multiple model instances in the 

scene as shown in Figure 4.6. 

It can be seen from the Figure 4.6 that due to the inappropriate cluster size, only part 

of the feature points in the model are matched, that is, the feature points on the seat 

plate of the chair are matched with the corresponding feature points in the scene. Part 

of the feature points involved in the matching also caused the model's pose estimation 

error in the scene. 
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Figure 4.6: Not ideal matching result with multiple instance in scene. 

After many experiments, the appropriate algorithm parameters were found, and all 

three sets of point cloud models can be registered in the scene point cloud through this 

algorithm. The registration result is shown in the Figure 4.7. 
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Figure 4.7: Ideal matching result, red part is instance model located from scene. 
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From the matching results, we can see that all three sets of model point clouds can be 

correctly localized and matched in the scene. It should be noted that before we men-

tioned two feature point computation algorithms, SHOT descriptor and FPFH de-

scriptor. In the experiment, the two algorithms were tested separately, and it was found 

that after setting the algorithm parameters, both algorithms can complete the task, but 

the calculation time of the SHOT descriptor is faster than the time of the FPFH de-

scriptor. The specific computation time will be detailed in the following algorithm com-

putation time table. It can be concluded from the above experimental results that the 

algorithm has good accuracy and robustness in simple indoor scenes. 

Table 4.3: information in registration, amount and consumed time(s). 

 Model.1 Scene.1 Model.2 Scene.2 Model.3 Scene.3 

Key points  430 6771 227 1731 139 699 

Key points ex-

traction time 
25.6 8.4 3.2 

SHOT de-

scriptor 
56.2 14.3 5.6 

FPFH de-

scriptor 
62.1 19.1 9.4 

Correspondence  2288 1315 105 

Correspondence 

estimation time 
3.4 0.6 0.2 

Correspondence 

grouping time 
55.7 14.1 5.2 

ICP time 2.1 0.8 0.3 
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4.4 Experiment in complex indoor scene 

But how does the algorithm perform in complex scenes, such as indoor scenes with a 

large range, or there is more interference in the scene. In consideration of the robust-

ness of the test algorithm, we selected a more complex indoor scene, as shown in 

Figure 4.8. 

 

 

 

Figure 4.8: point cloud dataset with complex indoor scene. (a) is the scene, (b) is the target model in 

scene and (c) is the model. 
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Because scene(b) is too messy, it is difficult to see the target model from the image. 

For the convenience of the reader, we cut out the target model from the scene. The 

four chairs in (c) are the target models we want to match. It can be seen that the target 

model is very difficult to identify in the scene, such as the occlusion between the chair 

and the table, or the lack of some points of the chair point cloud in scene. So this is a 

big challenge for our algorithm. Unfortunately, the algorithm cannot handle the point 

cloud matching problem in complex scenes. Because there are too many interference 

items in the scene point cloud, the algorithm is greatly disturbed during feature de-

scriptor matching, resulting in a lot of false matches. The number of key points and 

correspondence found by the algorithm are shown in the Figure 4.9. The visualization 

of the matching results is shown in Figure 4.10. 

 

 

Figure 4.9: computation result of key point extraction, correspondence and grouping 

 

Figure 4.10: visualization of matching result with errors. 
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A total of 12 instance models were found in the scene point cloud, which is obviously 

unrealistic, indicating that the algorithm will produce large matching errors when deal-

ing with complex scenes.  

It can also be seen from the figure that a lot of key points are incorrectly matched. This 

is because there are variants similar parts and too many occlusions between objects 

in the scene, resulting in wrong feature descriptors of key points. And because of oc-

clusion, it is also difficult to assign appropriate sizes for Hough voting during corre-

spondence grouping, resulting in many false voting peaks in the Hough space. This 

also reflects the limitations of the algorithm, unable to handle more complex scenes. 

 

4.5 Influence of point cloud density 

According to the previous description, the three sets of point clouds used in the exper-

iment have the same resolution, so in order to validate the performance of algorithm in 

different resolution of point cloud, we use downsampling to artificially reduce the den-

sity of first set point clouds. We take Model.1 and Scene.1 as examples, and use 

downsampling to reduce the point cloud density. Table 4.4 introduce the density infor-

mation. 

Table 4.4: Point cloud datasets after downsampling 

  Downsampling 

0 1 2 3 4 5 6 7 8 

Model 

Points 7208 4319 2946 1983 1508 1143 936 717 610 

Resolution 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

Scene 

Points 177992 91470 55917 34371 28310 21322 16148 12820 9130 

Resolution 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

 

It can be seen from the above table that the density of the point cloud of the model and 

the scene is reduced in the same ratio while downsampling. In other word, it is neces-

sary to ensure that the density of the model is the same with the scene, in order to 

avoid the distribution caused by different densities. In order to intuitively reflect the 
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effect of downsampling, we intercepted a group of point clouds after downsampling, 

which is shown in Figure 4.11. 

 

 

 

Figure 4.11: point cloud visualization after downsampling, point cloud from above are the comparison 

between original chair and dowmsampling chair, point cloud from bottom are the original scene and 

downsampling scene. 
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From the figure, we can intuitively see that the density of the point cloud is lower than 

before. And through our test, after the density is reduced, the density of point cloud 

does not have a significant impact on the point cloud registration result. But it should 

be noted that we need to re-find the appropriate algorithm parameters according to the 

density of the new point cloud. It is not feasible to directly use the previous algorithm 

parameters. But since we only use the indoor environment scale, the point cloud den-

sity at this scale will roughly change within the range we set. If the scale is expanded 

to a building, the point cloud density at this scale can continue to decrease. Hence, do 

not rule out the possibility that too sparse point cloud will affect the computation results 

of the algorithm. The registration result of point cloud after downsampling is shown in 

Figure 4.12 and Figure 4.13. We selected one of results from all result for display. It is 

obvious from the figure that the key points are relatively sparse. And the data of time 

consumed is shown in Table 4.5. 

 

Figure 4.12: registration result of point cloud with sparse density. 

 

Figure 4.13: result about key points extraction, correspondence estimation and grouping 
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Table 4.5: Statistics about consumed time 
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5.1 Conclusion 

This thesis aimed to complete a workflow of point cloud registration with Point Cloud 

Library. A variety of algorithms were used in the registration process, and the perfor-

mance of some algorithms was tested. The models used are all point clouds of indoor 

environments. 

First, we preprocessed the point cloud, such as point cloud conversion, filtering and 

downsampling. Then we used SIFT Keypoint and 3D Voxelization algorithm to extract 

the key points from point cloud and compare the key points extracted by the two algo-

rithms. It is found that the key points extracted by the 3D Voxelization algorithm are 

more complete, the original shape of the point cloud is better preserved and less com-

putation time needed. In the test, we tried to achieve variable scale through the sift 

algorithm, that is, the scale of the model point cloud and the target model in the scene 

can be changed. However, this function has not been implemented. We still need to 

adjust the ratio of both model and target model to ensure the success of subsequent 

point cloud registration when processing the point cloud in the early stage. Then, we 

use the SHOT descriptor and FPFH descriptor to describe the feature information of 

the key points, and compare the two algorithms. Both algorithms are based on feature 

distribution histograms, so they all have very good robustness, but in terms of compu-

tational efficiency, the SHOT descriptor is better, and the SHOT descriptor has faster 

calculation speed and fewer computation resource occupation. Then we used the Kd-

tree data structure to take a rapid match the calculated feature descriptors between 

the model and the scene. Compared with the traditional brute force search, the Kd-tree 

data structure perform much more efficient. After getting the matching point pairs, we 

use the Hough voting algorithm to group these matching point pairs accordingly, so 

that the target model can be selected out of the scene and get the location information 

of the target model. However, sometimes because of the mutual occlusion and overlap 

between the models in the scene point cloud, and the presence of noise in the point 

cloud, sometimes the position information obtained is not accurate, so we next use the 

ICP algorithm. The position information obtained from Hough voting is used as the  

5 Conclusion and Outlook 



 65 
 

initial pose of ICP, the source model and target model can be accurately registered. 

Through this workflow, semantic registration between point clouds in simple indoor 

scene can be achieved. 

According to Huang’s summary [27]. The registration of point cloud faces many chal-

lenges, these challenges can be mainly divided into four fields:  

(1). Noise and outliers. Because the acquisition environment, sensor noise are different 

at different acquisition time, the captured point clouds will contain noise and outliers 

around the same 3D object. 

(2). Partial overlap. Because of different viewpoint and acquisition time, the captured 

point cloud is only partial overlapped. 

(3). Density difference. Due to different imaging mechanisms and different resolutions, 

the captured point clouds usually contain different density. 

(4). Scale variation. Since different imaging mechanisms may have different physical 

metrics, the captured point clouds may contain different scale. 

In order to test the performance of the algorithm facing these challenges, we selected 

point clouds in simple scenes, point clouds in complex scenes, and point clouds with 

different densities for testing. The accuracy and robustness of the algorithm in simple 

indoor scene are verified with different sets of point cloud, but many shortcomings of 

the algorithm are also found. 

 

5.2 Limitations 

When testing the registration algorithm, we found that the algorithm is very sensitive to 

parameters, and appropriate parameters need to be set for each experimental scenario. 

Therefore, a lot of attempts are required for each parameter before the registration. 

For instance, the computation radius in the SHOT descriptor algorithm determines how 

many adjacent points around each key point will be considered in the feature calcula-

tion. It should be enough large to include at least a few tens of points, but not too large 

not to include clutter in the description of key points close to the object border. And due 

to the influence of the boundary effect, the calculation of the feature points at the 

boundary will lose accuracy. In addition, the cluster size and threshold in Hough voting 

also have an great impact on the result of registration. It Should be enough large to 
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encompass oscillations due to noise of the 3D Hough votes but not too large to create 

spurious peaks in the Hough space.  

In addition, this algorithm is poor in processing complex indoor scenes. If the input 

scene has more point cloud objects, more noise, and more mutual occlusion between 

objects, the algorithm will produce larger errors. For example, in Chapter IV, we men-

tioned that in a very complex indoor point cloud environment, it is difficult to find suita-

ble algorithm parameters to make the point cloud registration successful. 

Finally, the algorithm cannot achieve scale variability. In the algorithm, we use the SIFT 

Keypoints algorithm, and strive to be able to register two point cloud models with dif-

ferent scale but not success. Scale Invariant Feature Transform(SIFT) is a scale-based 

Spatial image local feature description algorithm which is first introduced by Lowe[25], 

The algorithm was originally used to process images, for change of rotation, scale 

scaling, and brightness, it will maintain a certain degree of stability. PCL transplants it 

to process 3D point cloud data, and implements the SIFT key point extraction algorithm, 

but ignores the SIFT feature descriptor algorithm, which may cause the SIFT algorithm 

to be unable to achieve variable scale in the point cloud data. 

 

5.3 Recommendation for Further Development 

Based on the above experiments and analysis, as well as the current application sce-

narios for point clouds. The high accurate and robust registration should have the fast 

running speed with the guarantee of high accuracy. In this section, we suggest  future 

research directions. 

The point cloud is a record of the 3D environment. However, the real scene is much 

complicated because of the occlusion and overlap between objects, which makes 

noise and outliers variations. Firstly, the future direction could be robust to handle the 

challenging variations of noise and outliers in real-world point clouds. Our algorithm 

still requires a lot of pre-processing work before registering, to remove the noise and 

outliers manually, and does not realize the automation of the whole process. The point 

cloud noise removal algorithm in the existing PCL library still cannot effectively remove 

all point cloud noise, and the accuracy and speed are far behind the requirement of 

real applications.  
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Secondly, in the actual registration process, the scale of the two sets of point clouds is 

often inconsistent. It also takes time to adjust the scale of the two sets of point clouds. 

Although we have tried using the SIFT algorithm, because the SIFT algorithm is trans-

planted from 2D image processing, so further optimization is still needed. The use of 

more advanced OpenCV may solve this problem. 

Thirdly, the algorithm can be further optimized to be able to handle point clouds of 

complex large scenes. Since the point cloud of a large scene contains more noise and 

outliers, it often causes the algorithm to fail to correctly register the target model. Com-

bining with neural networks and deep learning may be a good research direction. Sev-

eral pieces of literature have already started research in this area, such as registration 

using PointNet[38], self-supervised learning[39] and feature-metric registration[40]. 

They are trying to merge the conventional mathematical theories and deep neural net-

work into the point cloud semantic registration workflow, in order to obtain both high 

accuracy and efficiency. This area is just the beginning, and there needs much re-

search to develop fantastic registration algorithms. 
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