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Abstract II 
 

 

Today, measuring of buildings and rooms is still undertaken with tachymeters and 

partly also with measuring tapes. However, in recent years the share of 3D laser scan-

ners has rapidly increased, since they are more accurate, less prone to human error 

and faster in capturing a scene. When scanning a scene, some parts of the scene are 

missing due to occlusions by objects. An example of this is a cabinet standing in front 

of a wall. The 3D scanner then only captures a point cloud with the surface of the 

cabinet and the surface information of the wall behind it is missing.  

In order to predict these occluded points in a point cloud, this master thesis analyzes 

the existing methods of scene completion and proposes a novel approach to convert 

a point cloud into a truncated signed distance field. This truncated signed distance field 

is then used on an existing volumetric scene completion network that is fully self-su-

pervised. 

Additionally, the suitability of the LiDAR sensor of iPhones and iPads for generating a 

dataset is examined. 
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Zusammenfassung   III  
 

 

Die Vermessung von Gebäuden und Räumen wird heutzutage zum Großteil immer 

noch mit Tachymetern und teilweise auch mit Maßbändern vorgenommen. In den letz-

ten Jahren hat jedoch der Anteil der 3D-Laserscanner rasant zugenommen, da sie 

genauer, weniger anfällig für menschliche Fehler und schneller bei der Erfassung einer 

Szene sind. Beim Scannen einer Szene fehlen einige Teile der Szene aufgrund von 

Verdeckungen durch Objekte. Ein Beispiel hierfür ist ein Schrank, der vor einer Wand 

steht. Der 3D-Scanner erfasst dann nur eine Punktwolke mit der Oberfläche des 

Schranks und die Oberflächeninformation der dahinter liegenden Wand fehlt.  

Um diese verdeckten Punkte in einer Punktwolke vorhersagen zu können, analysiert 

diese Masterarbeit die bestehenden Methoden der Szenenvervollständigung und 

schlägt einen neuartigen Ansatz vor, um eine Punktwolke in ein TSDF umzuwandeln. 

Dieses TSDF wird dann auf ein bestehendes volumetrisches Szenenvervollständi-

gungsnetzwerk angewendet. 

Zusätzlich wird die Eignung eines LiDAR-Sensors von iPhones und iPads zur Erzeu-

gung eines 3D Datensatzes untersucht. 
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1.1 Motivation 

Compared with other industries such as the automotive industry, the construction in-

dustry remains largely dominated by manual labor. One of the reasons is that each 

project is unique, and it is difficult to realize them with traditional methods such as 

robots in the automotive industry. However, with the rapid advance of artificial intelli-

gence in recent years, a major leap in efficiency in the design and construction phase 

is expected in the next few years.  

In other areas of our lives, machine learning has already become an increasingly im-

portant aspect and it is changing our future forever. It is now ubiquitous in areas such 

as customer service automation, communications, cybersecurity, and object recogni-

tion.  

The range of opportunities with machine learning in the field of the building industry is 

immense. In the construction phase, the possibilities range from autonomous robots 

that – for example – excavate foundations, erect walls and transport building materials 

to construction monitoring with drones that automatically perform a cross-check with 

the construction plans. In the planning phase, the possibilities range from simulations 

of the expected construction costs through to automatic verification of compliance with 

building regulations and automatic measurement of buildings. 

This master thesis deals with the latter-mentioned topic, namely the measurement of 

buildings. Tachymeters and even sometimes measuring tapes are still a widely used 

method for measuring buildings today. However, in recent years 3D laser scanners 

have become increasingly popular for measuring existing buildings. The laser scanner 

outputs the environment as a point cloud. The advantage of the 3D laser scanner is 

obvious, whereby they allow a much faster and completer capture of the scene. More-

over, it is also less prone to human error. Thus, 3D laser scanners are perfectly suited 

for generating the digital models of buildings. Digital building models are needed for 

renovation measures, but since the original models were often drawn by hand, they do 

not exist. For example, in North America 90% of houses do not even have a digital 

floor plan [34].  

1 Introduction  
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A persisting drawback of 3D scans is that the environment and scene cannot be cap-

tured completely due to occlusions by objects. An example of this is a cabinet standing 

in front of a wall, whereby the 3D scanner then only captures a point cloud with the 

surface of the cabinet and the surface information of the wall behind it is missing. 

To complete the missing points caused by occlusion in a 3D scan, this master thesis 

focuses on scene completion.   

1.2 Research Objective 

The main goal of this master thesis is to develop an algorithm for the completion of 

point clouds. As a first step, existing methods are analyzed. There are numerous meth-

ods for the completion of scenes acquired with RGB-D sensors. However, unfortu-

nately there are only a few approaches for completion based on point clouds. To over-

come this issue, this master thesis aims to provide an approach that accomplishes this. 

The main contributions are listed below. 

 

Contributions: 

- The source code of SG-NN [12] was updated from Pytorch 1.1.0 and Python 

2.7 to run with Pytorch 1.8.1 and Python 3.8.  

 

- A novel method for transforming a point cloud into a truncated signed distance 

field (TSDF) was proposed. 

 

- It was investigated whether a truncated distance field (TDF) could be used in-

stead of a TSDF. 

 

- An analysis of the usability of LiDAR sensors from iPhones and iPads to gener-

ate a large-scale dataset was conducted. 
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1.3 Structure of This Master Thesis 

This master thesis is structured as follows. 

- Chapter 2 provides an overview of the five different 3D data representations and 

their advantages and disadvantages regarding machine learning. 

 

- Chapter 3 describes the various 3D datasets available for training machine 

learning models. 

 

- Chapter 4 provides a brief overview of segmentation approaches. 

 

- Chapter 5 offers a broad overview of shape completion and presents different 

approaches with their advantages and disadvantages. 

 

- Chapter 6 describes the chosen approach, including the architecture of the 

Sparse Convolutional Neural Network, an approach to convert point clouds to a 

TSDF, and the investigation of the usability of LiDAR sensors from an iPhone 

to generate a large-scale dataset. 

 

- Chapter 7 discusses the results of the chosen approach and proposes improve-

ments. 

 

- Chapter 8 summarizes the main results and proposes approaches for further 

development. 
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This chapter describes the five main 3D data representations, as illustrated in             

Figure 1. 

 

Figure 1: 3D Data Representations 

2.1 Point Cloud 

Point cloud is the most well-known 3D data representation. It is described by a set of 

unordered points with 3D coordinates (x, y, z). Only in a point cloud is the known space 

represented, and free or unknown space is not saved. Because of this, there is no 

information about neighboring points. This is why it is challenging to process point 

clouds in machine learning tasks. Figure 2 represents the Stanford bunny as a point 

cloud. 

 

Figure 2: Point cloud of the Stanford’ bunny [27] 

2.2 Depth Map 

Depth maps are images in which each pixel is assigned a distance. The distance or 

depth is the length between the camera and the object or scene. The most common of 

these data representations involves linking an RGB image with a depth image. These 

RGB-D images can easily be created with widely available sensors such as Microsoft 

Kinect.  

2 3D Representations 
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2.3 Voxel Grid 

A Voxel is a three-dimensional grid. Each cell of the grid is described either as occupied 

or free. As shown in Figure 3, one of the problems with a voxel gird is that it needs a 

high voxel resolution to represent a detailed scene. This results in a memory problem 

as the memory need increases by a power of three. 

 

Figure 3: Chair in voxels [9]  

To combat this problem, octrees are often applied in which multiple resolutions of voxel 

grids are used. Finer details can be represented by a finer voxel grid, as illustrated in 

Figure 4. This enables a more efficient memory usage, but the implementation is more 

difficult due to the multiple resolutions.  

 

 

Figure 4: Octree [53] 
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2.4 Mesh 

Meshes explicitly represent surfaces using a set of polygons. Meshes are very adap-

tive since they can represent flat surfaces with just one face, and detailed structures 

are represented with multiple faces. This makes them very efficient, but it is difficult to 

implement machine learning algorithms for them. Figure 5 represents the Stanford 

bunny as a mesh. 

 

Figure 5: Mesh of the Stanford Bunny [27]  

2.5 Implicit Surface 

Implicit surfaces define the 3D object as a function. The function determines the prob-

ability that a point is inside or outside the object. Two very common implicit represen-

tations are the signed distance function (SDF) and the truncated signed distance func-

tion (TSDF). These both use voxels to support their implicit surface definitions.  

The SDF is also called signed distance field as it provides the distance from each voxel 

to the closest surface. If the voxel is inside the object shape the distance is signed 

negative, otherwise it is signed positive. This is visualized in Figure 6. 
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Figure 6: Signed distance field of a 2D polygon [70] 

TDSF, also called truncated signed distance field, was first introduced by Curless and 

Levoy [10]. The function is a combination of distance and weight functions retrieved 

from depth images. The distance is measured by line of sight from the sensor. After a 

defined voxel distance, the positive and negative distances are truncated.  
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As the performance and robustness of a deep learning model heavily depends on its 

training data, this chapter gives an overview of the common datasets used for shape 

completion and segmentation. Table 1 lists these datasets and their distinctive fea-

tures.  

Table 1: Overview of datasets 

Dataset Year Data Type Type Nature Scenes 

NYUv1 [50]  2011 RGB-D Real world  Indoor scene 67 

NYUv2 [51] 2012 RGB-D Real world Indoor scene 464 

SUN3D[65]  2013 RGB-D Real world Indoor scene 254 

UZH 3D[55]  2014 Point clouds Real world  Indoor scene 40 

SceneNet[24]  2015 CAD models Synthetic  Indoor scene 57 

ModelNet [64] 2015 CAD models Synthetic Objects - 

ShapeNet[3]  2015 CAD models Synthetic Objects - 

NYUCAD[17] 2016 CAD models Synthetic Indoor scene 462 

SUNCG[52]  2016 CAD Synthetic  Indoor scene 45,622 

Matterport3D [2] 2017 RGB-D Real world Indoor scene 2,056 

ScanNet[11]  2017 RGB-D Real world Indoor scene 1,513 

2D-3D-S[26] 2017 RGB-D 

Point clouds 

Real world Indoor scene 270 

FloorNet[34] 2018 RGB-D Real world Indoor scene 155 

SemanticKITTI[1] 2019 Point clouds Real world Outdoor scene 22 

3 Datasets 
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Most datasets are acquired with RGB-D sensors since they are widely available and 

cheap, but these lack accuracy compared to professional devices such as the Faro 3D 

laser scanner. Since acquiring a good ground truth is one of the most difficult chal-

lenges, several synthetic datasets were created. Most datasets contain mainly com-

mercial and educational buildings since capturing private living spaces is problematic 

due to privacy issues. The most important datasets for scene completion are described 

in greater detail in the following.  In Table 1 listed outdoor and object datasets are not 

further described, since they are so relevant for this master thesis. 

NYUv2 Dataset [51]:  This is most frequently used real-world dataset for indoor scene 

and semantic scene completion. It is an extension of the NYUv1 dataset with 464 in-

stead of 67 scenes. The dataset is composed of residential and commercial buildings. 

Each pixel is labeled, and if there are multiple objects from the same object category 

in a scene, they are each given a separate label. In [21], the ground truth was gener-

ated for scenes containing completed, detailed 3D models.   

SUN3D [65]: This dataset covers 254 scenes with RGB-D videos. It also contains 

camera poses, object segmentations and point clouds registered in a global coordinate 

frame. It differs from the NYUv2 dataset in that it obtains the camera pose and global 

alignment, and the scenes are less view based. This translates to a more complete 

representation of a scene, and thus it is better suited for scene completion. 

Matterport3D [2]: Matterport3D is the largest publicly available RGB-D dataset, with 

2,054 rooms containing 10,800 panoramic views, each with 18 RGB-D images cover-

ing 46,561 sqm. All camera poses with panoramic views are provided and globally 

registered. Since the panoramas were taken with three RGB-D cameras with their po-

sitions pointing slightly upwards, horizontal, and slightly downwards, the floor and ceil-

ing in the scenes were often not fully scanned.  

ScanNet [11]: ScanNet is a large RGB-D dataset with 1,513 scenes captured by 

2,492,518 RGB-D frames covering an area of 34,453 sqm. The dataset consists of 

commercial buildings and apartments. The majority of rooms are hotel bedrooms. The 

scans are annotated with camera poses, surface reconstructions and semantic seg-

mentations. For 107 scenes, aligned CAD models are additionally provided.  
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SUNCG [52]: This dataset was used most when it came to semantic scene completion 

It is a synthetic dataset containing over 45,000 scenes that were manually created 

through the Planner5D platform. Unfortunately, this dataset is no longer available due 

to legal matters between the company Planner5D and Princeton University.  

2D-3D-S [26]: Six large-scale indoor areas with 270 rooms and 6,000 sqm are covered 

in this dataset. The 70,000 RGB-D images were taken from an office and educational 

environment. Point clouds were generated from this information and afterwards se-

mantically annotated and assigned the following 13 object classes on a per-point basis: 

ceiling, floor, wall, beam, column, window, door, table, chair, sofa, bookcase, board 

and clutter. 

SceneNet [24]: Since the SUNCG dataset is no longer available an alternative syn-

thetic dataset is SceneNet. However, it is significantly smaller with only 57 rooms. Each 

scene is composed of 15 to 250 objects. All models are available in the .obj format. 

SceneNet RGB-D [29] builds on the SceneNet dataset by providing rendered RGB-D 

images from over 15 trajectories with random but physically simulated object poses. It 

also creates the pixel-perfect ground truth.  

UZH 3D [55]: This dataset contains 40 point clouds of office rooms at the University of 

Zurich. The point clouds are provided as ASCII PTX files with color (x, y, z, intensity, 

r, g, b). This dataset is more relevant for civil engineering since it was acquired using 

a Faro Focus 3D laser range scanner. This translates to much better precision com-

pared to other datasets, most of which were captured with consumer-level scanners 

like Microsoft Kinect. 

FloorNet [34]: Since the previously discussed datasets concentrate on semantic an-

notations and are not suited for vector-graphics reconstruction problems, Liu et al. [34] 

introduced a dataset containing RGB-D videos from 155 residential units with full floor-

plan annotations. They also provided the associated point clouds with their annotations 

and associations.  
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4.1 Context 

3D segmentation is a well-researched topic and there exist numerous open-source 

methods for point cloud segmentation. One possible approach to retrieve the layout of 

a room would be to first use segmentation, and then use the segmented walls, floor 

and ceiling to generate the 3D layout as, for example, in DeepPerimeter [43]. This 

chapter gives a brief overview of 3D segmentation. 

4.2 3D Segmentation 

Segmentation is the assignment of voxels, points, pixels, etc. to a specific label. Thus, 

the respective objects are filtered out.  3D segmentation can be subcategorized into 

three types as shown in Figure 7, namely semantic, instance and part segmentation. 

 

Figure 7: Types of Segmentation [25] 

The semantic segmentation predicts labels for each object. For example, all chairs 

have the label chair. Instance segmentation, on the other hand, not only predicts the 

label of the object, but also separates instances with the same label. In the same ex-

ample with the chairs, the chairs would be assigned the label chair, but in addition a 

distinction would be made between chair 1, chair 2, chair 3. In part segmentation, the 

segmented object is further subdivided. For example, the armrest, the backrest, the 

seat and the feet of a chair are labeled. Given that the field of 3D segmentation is very 

large, and that the focus of this thesis is the completion of point clouds, point-based 

segmentation is the most relevant segmentation method for the purposes of this paper.   

A detailed overview was recently published by He et al.[25],  in which all other methods, 

such as voxel base segmentation and deep image segmentation, are also described. 

4 Segmentation 
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The pioneering work of point-based segmentation was presented by Qi et al. [44] with 

PointNet. Figure 8 illustrates the network architecture of PointNet. The network con-

sists of three main modules. To bundle the information of the points, the first module 

is a max-pooling layer as a symmetric function. The second module contains local and 

global information combination structure and to the align the input point and point fea-

tures the third module consists of two joint alignment networks.  

 

Figure 8: Architecture PointNet [44]  

After PointNet, numerous methods have been developed based on it. The most prom-

inent of these is PointNet++ [45]. PointNet++ is a hierachical feature learning network, 

which addresses the limitations of PointNet, in capturing local features at different 

scales. The PointNet++ architecture hierarchically groups points and gradually extracts 

larger and larger local regions up the hierarchy. In Figure 9 the architecture of Point-

Net++ is illustrated.  

 

Figure 9: Architecture PointNet++ [45]  



Segmentation 13 
 

 

He et al. [25] categorized the many methods developed based on PointNet and Point-

Net++ into three types: multiple layer perceptron based, point convolution based and 

graph convolution based. These subcategories are split further into PointNet based 

frameworks and PointNet++ based frameworks. 

 

Figure 10: Point-based segmentation approaches [25] 
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Figure 10 visualizes the different frameworks in a very simplified way for a point- based 

approach. Figure (a) and (b) show the previously described multiple layer perceptron-

based approach of PointNet and PointNet++. Figure (c) and (d) describe the point con-

volution-based approach. Framework (c) is based on PointNet and performs convolu-

tion on all neighboring points of each point in contrast to framework (d) which is based 

on PointNet++ and performs convolution only on specific points. The last two figures 

(e) and (f) represent the graph convolution-based networks. As can be seen in the 

figure, in the PointNet (e) based approach, the graph spans the points globally and 

performs convolution on all neighboring points from each point. The graph-based 

PointNet++ (f) approaches, on the other hand, perform convolution only on local points 

with a graph structure. 
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As point cloud segmentation is already greatly developed, this master’s thesis focuses 

more on 3D shape completion, which has been extensively researched, starting with 

small hole-filling algorithms. These traditional approaches use symmetry to complete 

the surface [40] or solve it with a sparse linear system [19]. Older methods use also 

the Poisson equation for reconstructing surfaces [30, 38, 69]. Although these methods 

can achieve good results with small holes, they fail to do so when applied to larger 

regions. In the last years, many deep learning approaches for shape completion have 

been developed. This chapter provides a broad overview of these methods. In general, 

the methods can be subcategorized into object completion (OC), scene completion 

(SC) and semantic scene completion (SSC). In OC, only one object is completed, in 

contrast to SC where many objects and the scene are completed. SSC is a combina-

tion of completion and segmentation. 

Table 2 gives an overview of the existing methods for shape completion, which is com-

prehensive with respect to indoor scene completion. Regarding OC and outdoor scene 

completion, only the most prominent papers are shown as these are not so important 

for this master’s thesis and are presented only to explain the general context. For each 

method, Table 2 indicates the suitable type of completion (object, indoor scene, out-

door scene, semantics). It also shows whether the source code is publicly available for 

further development, the input data representation of the algorithm and the datasets 

used for training. In the architecture column, a distinction is made between volumetric, 

view-volumetric and point-based approaches. A more detailed explanation of these 

approaches can be found in Sections 5.1 and 5.2. In addition, the defining specification 

is given for each architecture. 

 

 

 

 

 

 

5 Shape Completion 
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Table 2: Overview of shape completion methods 
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2015 

3D ShapeNets[64]   ✓          ✓ Occ. grid 
Volumetric: Convolutional 
DeepBelief Network 

ModelNet    
NYUv2 

2016 

SSCNet [52]      ✓   ✓      ✓ ✓ f-TSDF Volumetric: 3D CNN 
SUNCG       
NYUv2 

Nguyen et al.[41]  ✓           
Occ. grid          
RGB image 

Volumetric: Convolutional 
DeepBelief Network (Markov 
Random Field) 

ModelNet    
SUN            
Own dataset 

3D-EPN [13] ✓      ✓ TSDF 
Volumetric: 3D-Encoder-Pre-
dictor 

ShapeNet 

2017 

Varley et al.[56]  ✓          ✓ Occ. grid Volumetric: 3D CNN Own dataset 

Han et al[23] ✓      ✓ SDF 
Volumetric: Global structure 
and local geometry inference 
3D-Encoder-Predictor 

ShapeNet 

Guedes et al. [20]       ✓   ✓      ✓  
f-TSDF     
RGB image 

Volumetric: 3D CNN NYUv2 

VVNet [22]       ✓   ✓      ✓ ✓ 
f-TSDF     
Depth image 

View-volumetric: 2D CNN + 3D 
CNN 

SUNCG      
NYUv2 

2018 

Cherabier et al.[7]       ✓   ✓      ✓  TSDF 
Volumetric: Primal dual optimi-
zation 

Own dataset 
ScanNet 

PCN[66] ✓      ✓ Point cloud 
Point-based: Encoder-Decoder 
architecture 

ShapeNet   

Scancomplete[14]      ✓   ✓      ✓ ✓ TSDF Volumetric: 3D CNN 
SUNCG      
ScanNet 

SGC [67]      ✓   ✓      ✓ ✓ f-TSDF Volumetric: 3D sparse CNN 
SUNCG      
NYUv2 

Wang et al.[61]      ✓   ✓      ✓ ✓ Depth image 
View-volumetric: Adversarial 
learning 

SUNCG      
NYUv2 

SATNet [49]       ✓   ✓      ✓ ✓ 
RGB image 
Depth image 

View-volumetric: 2D CNN + 3D 
CNN 

SUNCG      
NYUv2 
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2019 

Li et al [32]      ✓   ✓      ✓ ✓ 
RGB image 
Depth image 

View-volumetric: 2D DDR 
blocks + Atrous Spatial Pyramid 
Pooling 

NYUv2         
NYUCAD 

TopNet[54] ✓      ✓ Point cloud Point-based: Encoder-Decoder Shapenet 

Garbade et al. 
[18] 

     ✓   ✓      ✓  
RGB image 
Voxel grid 

View-volumetric: 2D CNN + 3D 
CNN 

NYUv2        
NYUCAD 

EdgeNet[15]      ✓   ✓      ✓ ✓ 
f-TSDF      
RGB image 

Volumetric: 3D CNN 
SUNCG      
NYUv2 

RL-GAN-Net[48]  ✓      ✓ Point cloud 
Point-based: Reinforcement 
learning agent-controlled GAN 
network 

ShapeNet 

AM²FNet[4]      ✓   ✓      ✓  
f-TSDF     
RGB image 

Volumetric: Multi-scale and 
modality fusion 

NYUv2        
NYUCAD 

Wang et al.[60]      ✓   ✓      ✓  Octree 
Volumetric: Primal-dual optimi-
zation 

SUNCG    
ScanNet 

Chen et al.[6]      ✓   ✓      ✓  
TSDF      
Depth image 

View-volumetric: Adversarial 
learning 

SUNCG      
NYUv2         
NYUCAD 

CCPNet[68]       ✓   ✓      ✓  f-TSDF 
Volumetric: Cascaded context 
pyramid 

SUNCG      
NYUv2 

ForkNet[62]      ✓   ✓      ✓ ✓ SDF 
Volumetric: Single encoder 
→multiple generators 

SUNCG      
NYUv2 

2020 

GRFNet[35]       ✓   ✓      ✓  
RGB image 
Depth image 

View-volumetric: 2D DDR 
blocks + Atrous Spatial Pyramid 
Pooling 

NYUv2         
NYUCAD 

SG-NN[12]      ✓   ✓       ✓ TSDF   Volumetric: Sparse convolution Matterport3D 

3D Sketch[5]       ✓   ✓      ✓ ✓ 
TSDF       RGB 
image 

View-volumetric: DDR blocks 
SUNCG      
NYUv2          
NYUCAD 

AIC-Net [31]      ✓   ✓      ✓ ✓ 
RGB image 
Depth image 

View-volumetric: Anisotropic 
Convolutional Networks 

NYUv2    NYU-
CAD 

Wang et al.[58]       ✓   ✓      ✓ ✓ Octree Volumetric: Octree-based CNN SUNCG 

Dourado et al.[16]       ✓   ✓      ✓  
f-TSDF     RGB 
image 

Volumetric: 3D CNN 

SUNCG      
NYUv2            
2D-3D-S       
own dataset 
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2020      

PALNet[36]       ✓   ✓      ✓ ✓ 
TSDF      
Depth image 

View-volumetric: Position 
awareness loss 

NYUv2        
NYUCAD 

AMFNet[33]       ✓   ✓      ✓  
RGB image 
Depth image 

View-volumetric: 2D CNN + 3D 
CNN 

SUNCG      
NYUv2 

SPCNet[39]       ✓   ✓      ✓  
Point cloud 
RBG image 

Point-based: Encoder decoder 
architecture 

NYUv2          
NYUCAD 

SCFusion[63]      ✓   ✓      ✓  Occ. grid Volumetric: 3D CNN 
Scan2CAD  
ScanNet 

LMSCNet[47]       ✓       ✓  ✓ ✓ Occ. grid 
View-volumetric: 2D CNN + 
Atrous Spatial Pyramid Pooling 

SemanticKITTI 

S3CNet[46]       ✓       ✓  ✓  
f- TSDF      
Depth image 

View-volumetric: Sparse con-
volution 

SemanticKITTI 

      

5.1 Object Completion 

As mentioned in the introduction, a wide variety of traditional 3D shape completion 

methods have been proposed, from minimizing surface areas to exploiting object sym-

metries, along with many more approaches. However, this thesis focuses only on the 

deep learning methods. These can be further subcategorized into volumetric shape 

completion and point-based shape completion. Volumetric-based shape completion 

was introduced chronologically before point-based completion. The use of point-based 

completion approaches surged greatly after the development of the PointNet encoder 

and its successor PointNet++ for segmentation. In the last two years in particular, many 

papers have adopted the point-based approach for completion as the method requires 

much less computation and memory costs than a volumetric approach. Four of the 

most relevant volumetric-based approaches and two of the most notable point-based 

approaches are described below in order of their introduction.  

With 3D ShapeNets Wu et al. [64] introduced the first 3D deep learning model for shape 

completion; the model uses a single-view RGB-D image and converts the object into a 

voxel grid with the probability distribution of binary variables. To achieve this, the au-

thors proposed a convolutional deep belief network. In contrast to normal convolutional 

deep learning models, this one does not do any pooling in the hidden layers as it would 
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lead to greater uncertainty for shape completion. For training purposes, the authors 

introduced ModelNet, a 3D CAD model dataset. 

Since 3D ShapeNets is trained on synthetic CAD models, it does not work well with 

real-world data. Furthermore, it does not utilize the valuable color information from 

RGB-D images. To exploit this unused potential, Nguyen et al. [41] built on the work of 

3D ShapeNets and proposed a Markov Random Field model for the representation of 

3D objects. The priors that capture the local geometric information are learned by a 

convolutional deep belief network, and the respective completion reparation of an ob-

ject is formulated as a maximum a posteriori estimation. 

A similar method to 3D ShapeNets was introduced by Dai et al. [13]:  a 3D-encoder 

predictor network (3D-EPN). But instead of using an occupancy grid, these authors 

used a TSDF for the input and a distance field (DF) for the ground truth. The architec-

ture of 3D-EPN is shown in Figure 11. The 3D deep convolutional network uses the 

partial input TSDF and predicts the distance field. This is accomplished by first com-

pressing the input TSDF with the 3D encoder and using a 3D-CNN shape classifier to 

predict the semantic class in the hidden space volume. Two fully connected layers then 

embed the semantic information of the scan into the latent space. Afterwards, the pre-

dicter uses 3D up-convolutions to output the distance field. Skip connections are em-

bedded between the encoder and decoder to counteract the information loss.   

.   

 

Figure 11: Network architecture of 3D Encoder-Predictor Network [13] 

To generate a higher resolution output (256³ grid) compared to 3D-EPN (32³ grid) Han 

et al. [23] proposed to learn a local encoder-predicter network to perform patch-level 

surface inference. Figure 12 visualizes their approach. The architecture includes two 

networks trained in conjunction with each other. The global structure inference network 

predicts the global structure of the shape, while the local geometry refinement network 
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further refines local patches in an iterative manner under the guidance of the global 

structure inference network. 

 

 

Figure 12: Architecture of the high-resolution shape completion method of Han et al. [23] 

One of the pioneer works addressing point-based methods is that of Yuan et al [66]. 

Their proposed point completion network (PCN) formulates the solution as a genera-

tive model with an encoder-decoder network in a coarse-to-fine fashion, as presented 

in Figure 13. The input point cloud is compressed to a feature vector v by the encoder. 

This feature vector is then used by the decoder to first produce a coarse point cloud 

and then a detailed output point cloud. To extract the global feature from a point cloud, 

the encoder uses two PointNet layers and two shared multilayer perceptrons. PCN 

outperforms the volumetric approach of 3D-EPN. 

 

 

Figure 13: Point Completion Network: Architecture [66] 
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TopNet [54] improved on the structure of the PCN [66] decoder with its rooted tree 

architecture.   

Sarmad et al. [48] introduced the first approach, combining reinforcement learning with 

a generative adversarial network (GAN) to complete a point cloud in the work RL-GAN-

Net. As illustrated in Figure 14, RL-GAN-Net consists of three modules: the autoen-

coder (shown in green), a latent-space generative adversarial network (shown in blue) 

and a reinforcement learning agent (shown in gray). In the first step, the autoencoder—

composed of an encoder and decoder—is trained. The encoder transfers the noisy 

point cloud into a noisy global feature vector (shown in yellow). The reinforcement 

learning agent then choses the right seed for the GAN generator. The generator then 

creates a clean global feature vector, and the decoder predicts the completed point 

cloud. 

. 

 

 

Figure 14: Training RL-GAN-Net [48] 
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5.2 Scene Completion and Semantic Scene Completion  

This section focuses on recent developments in scene completion (SC) and semantic 

scene completion (SSC). SC has been achieved to a small degree by a variety of small 

hole-filling algorithms, but in the last few years, new deep learning methods have be-

come available, and large datasets have emerged, representing a significant step for-

ward. Many SC methods also include segmentation, and since the architectures of SC 

and SSC are very similar, they are summarized together in this section. Most methods 

use a volumetric approach, which means they use a grid as input, for example an 

occupancy grid or a truncated signed distance field, and the architecture often consists 

of a 3D convolutional neural network (3D CNN). Another popular approach is the view-

volumetric network, first introduced by Guo et al.[22]. This architecture uses either 2D 

input data or compresses 3D input data into 2D data. The most common method is 

then to use a 2D CNN in combination with a 3D CNN. This can be advantageous since 

2D CNNs are less computationally demanding. The third category is the point-based 

approach, which, in contrast to OC, has not been very commonly used up to now. The 

losses are mostly cross entropy; in the case of the occupancy grid, binary cross-en-

tropy loss is quite common. In the following, the most relevant methods are described 

in greater detail to provide an overview of the existing approaches. 

The first researcher to combine predicting the volumetric occupancy and object cate-

gory was Song in 2016 with SSCNet [52]. He referred to the combination of scene 

completion and scene labeling as semantic scene completion. SSCNet uses a 3D con-

volutional network. As input, it takes a single depth image and constructs a view inde-

pendent TSDF by calculating the distance to the nearest point on the surface. The 

network architecture is displayed in Figure 15. It consists of 3D convolutional layers for 

learning the local geometry representation. To reduce the resolution of the input to a 

quarter, convolutional layers with stride and pooling layers are employed. To gather 

the higher interobject contextual information afterwards, a dilation-based module is uti-

lized. Then, the data is processed by two convolutional layers and one voxel-wise soft-

max layer.  
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Figure 15: Architecture SSCNet [52]  

Based on SSCNet, the work of Guedes [20] additionally uses the color information of 

RGB-D images instead of using only the depth information. This additional color infor-

mation did not show better results when evaluating it using the NYUv2  dataset.  

Another approach fusing the RGB and depth information is AM²FNet [4]. Figure 16 

gives an overview of the structure of this network. In the depth branch, the information 

is converted into a flipped TSDF. At the same time, the RGB image is projected onto 

three volumetric data representations. Each representation contains areas of red, 

green and blue. Then, the integration module fuses the representations together, and 

the refinement module integrates high-level features into low-level features to retain 

more local details. 

 

Figure 16: AM²FNet architecture [4]   

 

A different idea is approached by Guo et al. with VVNet [22], a view-volume convolu-

tional neural network. To reduce computational costs, the geometric features from a 

depth image are obtained with a 2D-view CNN. Afterwards, the features are projected 

into a 3D volume and processed with 3D CNN to learn the context information. 

A similar approach is taken by SATNet [49], which first performs the semantic segmen-

tation with a 2D convolutional network and then projects the 2D semantic features onto 

their corresponding 3D spatial positions. The approach completes the 3D scene using 
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an architecture consisting of two residual blocks and performing two Atrous spatial 

pyramid poolings and two 1*1 convolutions. The greatest benefit is that the completion 

process can take advantage of the semantic scene surface. Figure 17 gives an over-

view of the general structure, consisting of an encoder-decoder architecture for 2D 

segmentation, a 2D-3D reprojection layer for mapping the 2D semantic scene into a 

3D volumetric voxel grid and a 3D convolutional network to complete the scene. 

 

Figure 17: SATNet [49]  

Garbade et al. [18] used a colored voxel grid in which the RGB image is first segmented 

with a 2D CNN. Each pixel in the depth map corresponds to a pixel in the 2D semantic 

segmentation map. Due to this, every class pixel can be projected into the 3D volume 

at the location of its correlating depth value. This gives an incomplete 3D semantic 

tensor that allocates to every surface voxel its corresponding class label. Afterwards 

3D CNN completes the scene.  

An approach to obtaining 3D SSC simultaneously from the 2D segmentation data was 

proposed using AMFNet [33], which has a similar structure to SATNet, but the SSC 

has a two-branch structure as shown in Figure 18: a 3D guidance branch and a 3D 

SSC branch. After the 2D segmentation, which involves the encoder-decoder structure 

and the 2D-3D projection layer that outputs a 3D semantic voxel grid, the 3D volume 

network predicts the complete scene.   
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Figure 18: Architecture of AMFNet [33]  

To reduce memory cost and increase inference efficiency, Wang et al. [60] introduced 

a semantic reconstruction method that uses octrees. The approach performs in a 

coarse-to-fine fashion. It predicts a semantic class for each voxel in every octree level 

and then decides which voxel is to be divided further to define the reconstruction. In 

this way, a reconstruction in a higher resolution compared to binary voxel grids and 

TSDFs is possible. 

Another octree-based approach uses the O-CNN [57, 59] framework and was pro-

posed in [58]. The network structure is displayed in Figure 19. Here the network has a 

U-Net design consisting of two deep residual networks for encoding and decoding. 

 

 

Figure 19: U-Net design with octrees. [59]  

Since the network completes the scene further, the octree resolutions differ in some 

areas between input and output. To combat this, the authors proposed a novel output-

guided skip connection, as shown in Figure 20, that adds skip connections between 

the created octree node and its corresponding octree node in the input. In Figure 20 
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(a) is displayed the input shape with additional noise in the top right corner. The target 

shape is represented by (b), and there are three skip connections: l1, l2 and l3. The 

procedure can be summed up in four steps as shown in the figure. In step one, the 

node’s status (empty, nonempty) is defined. In step two, the octree is categorized by 

the node status. In the third step, the features of (a) are multiplied with the map of (e). 

In the last step, (f) and (b) are summed up, and the result is presented in (d). Evident 

in this example is the robustness toward noise. 

 

 

Figure 20: A octree output-guided skip connection. [59]  

 

EdgeNet [15] represents a new end-to-end 3D CNN architecture that combines and 

represents information on color and depth. This contrasts to other methods that per-

form the 2D segmentation before training the 3D-CNN. EdgeNet use edge detection in 

the image. This gives a 2D binary representation of the scene which can be used to 

highlight objects that are hard to determine in depth maps. A picture on a wall is, for 

example, expected to be invisible in a depth map. EdgeNet tests three fusion schemes 

as shown in Figure 21: early fusion, middle fusion and late fusion. 
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Figure 21: EdgeNet architecture and fusion schemes [15]  

After testing the different fusion strategies, they concluded that a mid-level fusion strat-

egy performs best. Since memory requirements increase as fusion occurs later, the 

batch size for training must be reduced. This in turn can negatively impact on learning.  

Cherabier et al. [7] introduced a framework for multi-view 3D scene completion. Their 

network architecture consists of a three-layer approach with an encoder, unrolled pri-

mary dual optimization layers, and a decoder. The primal-dual algorithm uses varia-

tional optimization for 3D reconstruction as a lightweight regularizer. The advantage of 

the architecture is significantly reduced memory and computational need compared to 

a high-capacity 3D CNN. Figure 22 gives an overview of the architecture.  

 

Figure 22: Architecture with primal dual optimization [7] 
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Another work addressing the problem of the cubical growth of the memory and com-

putation needs of 3D CNN is that of Zang et al. [67]. They used spatial group convolu-

tion in which voxels are grouped together, and then 3D sparse convolution was per-

formed on every group. The method cuts the computational effort considerably with 

only a small loss of accuracy since the voxels are only accounted for during the con-

volution. 

Wang et al. [61] proposed an adversarial learning-based method for SSC. They used 

depth images directly as input and trained the depth information into the 3D volumetric 

space with semantic labels using two discriminators. One discriminator compares the 

reconstruction with the ground truth to optimize the overall architecture. The other dis-

criminator optimizes the learned latent features.  

Chen et al. [6] tried to improve the generative adversarial network by using a TSDF as 

input since Wang et al. discovered that the encoders discard too much information to 

match the different representations, resulting in a substantial loss of information. This 

results because the encoder of the depth image differs from the encoder of the 

voxelized ground truth. 

Since 3D convolution is so computationally expensive, Li et al. [31] introduced an ani-

sotropic convolutional network. Compared to normal 3D convolution, the introduced 

anisotropic convolution in AIC-Net is less computationally demanding and has a higher 

parameter efficiency. The proposed anisotropic convolution module allows 3D kernels 

with changing sizes since it modifies voxel-wisely to the dimensional anisotropy prop-

erty. Figure 23 shows the structure of an anisotropic convolution module. 

 

Figure 23: Anisotropic convolution  [31] 
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With SPCNet [39], an approach to point clouds and RGB pictures was proposed to 

reduce memory consumption compared to grid-based solutions. SPCNet consists of 

two modules: an observer point encoder and an observed-to-occluded point encoder. 

The encoder projects the point cloud features stepwise into lower point resolution as 

shown in the Figure 24. Afterwards, the decoder projects the features to the occluded 

representation points and finally assigns semantic labels to every class. The texture of 

the RGB images is segmented in 2D, and afterwards the semantic label is projected to 

the corresponding point. This approach is promising in terms of efficiency but does not 

offer more accurate results than grid-based methods. 

 

 

Figure 24: SPCNet architecture [39]  
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The evaluations presented in Chapter 5 show that all the publicly available methods 

for 3D SC are based on a volumetric approach. Most methods use a TSDF as input 

since it has the greatest descriptive potential in characterizing a scene. Thus, better 

results can be achieved using a TSDF. Taking this into account, the goal of this thesis 

is to transform a point cloud into a TSDF and then run it on an existing SC algorithm. 

Most SC algorithms are trained on synthetic data as it is difficult to obtain complete 

ground truth using real-world data. However, applying a model trained on synthetic 

data to real-world scans has its limitations and leads to inaccurate results. To over-

come these limitations, this thesis uses an algorithm introduced by Dai et al. [12]. Their 

sparse generative neural network (SG-NN) for self-supervised scene completion of 

RGB-D scans is fully self-supervised and can be trained on real-world scans. It 

achieves this by removing information from a real 3D scan, making the scan less com-

plete. In this way, the network can be trained on the differences between the less com-

plete input scan and the real scan. After being trained, the algorithm can complete the 

scene even further than the real scan, thereby eliminating the gaps created by occlu-

sions. Figure 25 shows the three stages of completion: on the left, the less complete 

input scan; in the middle, the real scan (also called the target scan); and on the right, 

the completed prediction scan. 

 

Figure 25: Input, Target and Prediction Scan 

 

 

6 Methodology 
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The first section in this chapter explains the architecture of an SG-NN. The next two 

sections describe two approaches to implementing an SG-NN on a point cloud. In the 

last section, data collection with a LiDAR sensor is described. 

6.1 Baseline Architecture: Sparse Generative Neural Network 

This section describes the SG-NN network. The input is explained in detail as this in-

formation is essential for the creation of TSDFs from point clouds described in Section 

6.2. The code was developed using Pytorch 1.1.0 and Python 2.7, and it was updated 

by the author to run with Pytorch 1.8.1 and Python 3.8.  

6.1.1 Input  

SG-NN uses a truncated signed distance field (TSDF) as input and output.  TSDFs are 

generated through volumetric fusion from RGB-D scans. The RGB-D scans were re-

trieved form the Matterport3D [2] dataset. The RGB-D camera system was mounted 

on a stative and consisted of three RGB-D cameras pointing slightly upwards, horizon-

tally, and slightly downwards. The camera system was rotated on its vertical axis to 

capture six images; in total, there were 18 RGB-D images in a panorama from one 

camera standpoint. One RGB-D image had a resolution of 1280 × 1024. For an entire 

room, a set of panoramas were taken with an average distance of 2.25 m. In Figure 

26, the different camera standpoints for a scene are shown as green dots. For every 

camera frame, 6-DoF camera poses are determined; 6-DoF indicates three domains 

of freedom in translation and three domains of freedom in rotation along the x, y and z 

axes. The camera poses are globally registered. In the Matterport3D dataset, the RGB-

D data of complete levels with many different rooms is saved in one sequence, as can 

be seen in Figure 26. Since only one room is required at a time for training in SG-NN, 

only the images with camera positions in the same room are used for volumetric fusion.  
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Figure 26: Camera poses are on average 2,25 meters apart in the Matterport3D dataset [2].  

SG-NN uses the fusion process introduced by Curless and Levoy [10] in 1996. As 

discussed in Section 2.5 a SDF stores the signed distance to the closest surface at 

each voxel. A TSDF is a SDF in which the voxels are truncated at a defined distance. 

To retrieve the distance, from a depth image Curless and Levoy approximated it, by 

using the distance along the sight of the camera. This is referred to in the literature as 

a projective SDF or TSDF. Figure 27 shows the projective distance when a TSDF is 

created from one depth image. 

 

 

Figure 27: TSDF from one depth image 
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In SG-NN the TSDFs are created from multiple depth images. When using multiple 

depth maps the average of the distances is calculated. Figure 28 and Figure 29  visu-

alizes this in a simplified way.  

 

Figure 28: Two TSDFs from two depth images  

 

Figure 10 shows the calculation of the distance for both images. For each voxel with 

two distances, in these two images, the average distance is calculated. This can be 

seen in Figure 29. 

 

Figure 29: Two depth images averaged into one TSDF 
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The calculation of the fused distance, depicted in yellow in Figure 29, uses the following 

equations (6.1) and (6.2).  

𝐷(𝑥) =  
∑ 𝑤𝑖(𝑥) 𝑑𝑖(𝑥)

∑ 𝑤𝑖(𝑥)
 

 

(6.1) 

 

𝑊(𝑥) =  ∑ 𝑤𝑖 (𝑥) 

 

(6.2) 

 

The weight of voxel x for camera i is described by 𝑤𝑖(𝑥). The weights are useful to 

down weight the SDF values behind the surface. This is helpful since in front of the 

surface the space is known, but behind the surface there is no information about the 

space. The distance along the ray, depicted in the Figure 28 with green and blue ar-

rows., from voxel x for camera i is represented by  𝑑𝑖(𝑥). The fused weight and distance 

are described by 𝐷(𝑥) and 𝑊(𝑥). 

SG-NN uses a TSDF with a voxel size of 2 cm and a truncation of 3 voxels. As de-

scribed at the beginning of Chapter 6, the input consists of the real scan Starget and a 

less complete input scan Sinput, as shown in Figure 25. The scan Sinput is created by 

using approximately 50% of the frames for the volumetric fusion, and the scan Starget is 

obtained using all the frames. To train the model more efficiently, the scans are 

cropped to 64 × 64 × 128 voxels.  
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6.1.2 Architecture 

The architecture is an encoder-decoder convolutional neural network and works in a 

cosrse-to-fine fashion generating a sparse TSDF prediction. Figure 30 visualizes the 

architecture and in Figure 32 the architecture is shown in detail.  

 

Figure 30: SG-NN architecture [12] 

In the first step, the input scan, represented by a sparse TSDF, is encoded with several 

3D sparse convolutions, depicted in Figure 32 as “SparseEncoder”. With each set of 

3D convolutions, the spatial dimensions are reduced by half. After the encoding the 

features are transformed into a dense occupancy grid (in Figure 32 SparseToDense), 

to allow for a better prediction of the complete scene at a coarse level. The next step, 

shown in Figure 32 as DenseGenerator, predicts the geometry of the complete scene 

at a low resolution, by using several dense 3D convolutions. The output is a feature 

map F0, the predicted coarse occupancy O0 and the predicted TSDF S0. Next, a sparse 

representation is calculated based on the occupancy O0. These representations of F0, 

O0 and S0 are then decoded using the SparseGenerator. In each step, the scene is 

predicted with a higher resolution. This hierarchical process of predicting occupancy 

and TSDF and continuously improving resolution is visualized in Figure 31.  

 

 

Figure 31: SG-NN: coarse-to-fine [12]  
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In the last step the final TSDF is predicted by module SurfacePrediction, as shown in 

Figure 32. As input the last predicted Fn, On and Sn are used. The network also works 

with sparse skip connections between the encoder and decoder. The features that are 

the same in the target and input destination are connected and when a target destina-

tion is not present in the destination zero feature vectors are used. 

SG-NN uses a binary cross entropy loss in every level for the occupancy On and a l1 

loss with the target TSDF values.  

 

Figure 32: Detailed architecture of SG-NN [12]  

In Figure 32, the architecture of SG-NN is shown in detail with its convolutional param-

eters given as nf in, nf out, kernel size, stride and padding, stride and padding default-

ing to 1 and 0, respectively. An arrow indicates concatenation and a  addition. 
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6.2 Point Cloud to TSDF 

In this section, a novel method for transforming a point cloud into a TSDF is proposed. 

The section is divided into three subsections. First, the requirements and challenges 

are explained. Then, in the second and third subsections, the algorithm is described. 

6.2.1  Requirements and challenges  

The first step in developing an algorithm from point cloud to a TSDF was to find the 

data representation of a TSDF and a .ply file. Table 3 shows the data representation 

of a TSDF file in SG-NN. A TSDF is defined by the number of voxels and a 3D array 

comprising the x, y and z coordinates as unsigned integers. The distance is stored as 

a float. The point cloud is defined by the number of points, and the coordinates of the 

points are saved as floats. 

Table 3: Data representation of a TSDF file in SG-NN 

Number of bytes Data type Meaning 

Header data                                                                                       

8 unsigned long long dimx 

8 unsigned long long dimy 

8 unsigned long long dimz 

4 float Voxelsize 

64 = 4 x 4 x 4 array 4 x 4 float world2grid 

Input data 

8 unsigned long long num = number of voxels 

4 x num x 3 unsigned int 

input_locs = x,y,z coordinates of the 

voxels 

4 x num float input_sdfs: distance for every voxel 

 

To obtain more insight into the sparsity of the TSDF in SG-NN a small algorithm was 

written to visualize all voxels of a training TSDF as points. Figure 33 shows the input 

TSDF from a bathroom. On the left all negative voxels are represented as points and 

on the right all voxels are visible.  
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Figure 33: Voxels of a TSDF represented as points. 

From the left image in Figure 33, it is evident that the negative TSDF values are always 

behind the scanned surface and are truncated after three voxels. The indication from 

the right image is that there are more positive TSDF values than untruncated SDF 

values. However, since the truncated voxels do not provide any additional important 

information, it is better to create a TSDF with only the untruncated voxels for efficiency 

reasons. Theoretically, the truncated voxels can be easily added if needed. 

From the previous descriptions, it can be concluded that generating the sign of a TSDF 

is the most difficult challenge. Unlike deep images, a point cloud gives no indication of 

the location of a surface and which points are adjacent to each other. Above all, it is 

not possible to identify the front and back of a surface. However, since point clouds 

are usually scanned from a viewpoint in the center of a space (the coordinate origin), 

this information can be used to determine the sign. If the point cloud is composed of 

several point clouds, using point cloud registration and the origin coordinates of the 

scan points is no longer possible; it is only possible to obtain a truncated distance field 

(TDF). The approach for that scenario is elucidated in Section 6.3. Another point to 

keep in mind when designing an algorithm from a point cloud to a TSDF is that the 

coordinate system of the voxels contains only positive values. 
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6.2.2 Overview Method 

In this subsection, the general idea of the proposed algorithm for generating a TSDF 

from a point cloud is presented. The following subsection explains the actual algorithm. 

Figure 34 visualizes the approach. The illustrated room is not true to scale, and the 

voxels are for illustrative reasons much larger than in reality. The point cloud was gen-

erated form one viewpoint K, which is also the coordinate origin. The positive voxels 

are visualized in blue and the negative voxels in white. The green line represents the 

occupied voxels that contain the point cloud.  

 

Figure 34: TSDF to point cloud 

The basic idea is to project a voxel grid over the point cloud and then to save the 

occupied voxels. Afterwards, every voxel that lies on the line between K and an occu-

pied voxel and that has a maximum distance of 3 voxels to the occupied voxel is cal-

culated. This is illustrated in Figure 35. The occupied voxel has the distance 0, and the 

voxels in front of the occupied voxel on the line toward K have positive distances. Be-

hind the occupied voxel, the voxels have negative distances. Euclidean distance is 

used in the calculation. 
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Figure 35: Occupied voxel with its adjacent signed distance voxels. 

 

Instead of calculating the distance to the surface or in the case of a point cloud to the 

points, the algorithm calculates the distance to the occupied voxel center. In this way, 

the algorithm is more robust to noise and point density. At the same time, the level of 

detail is reduced due to the voxel size of 2 cm. 

6.2.3 Algorithm  

This subsection describes the proposed algorithm in detail. It is possible to change the 

voxel size, the number of voxels until truncation, whether the input point cloud should 

be visualized and by how many voxels the dimension space should be increased. 

In the following, the steps of the algorithm are explained. 

1) The algorithm employs the Open3D library to read and down-sample the point cloud 

to the desired voxel size. 

2) If the input of show_visualization is set to true, the down-sampled voxel grid is vis-

ualized using the Open3D library. 

3) The down-sampled voxel grid is converted to an array. The coordinates are saved 

with the voxel distance, not the real distance. 

4) After acquiring the voxels that are occupied, Algorithm 1 is used for every voxel. 

It creates the voxels that lie on the line to K before and behind the occupied voxel. 

To find these voxels, Bresenham’s line algorithm was adapted.  
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The occupied voxel (loc) is the starting voxel, and the scan point K (origin) is the 

target voxel. At first, a distance of 0 is saved for the occupied voxel in line 2. Then, 

the driving axis is determined by the greatest absolute between the coordinates 

(dx, dy, dz) of the starting and target voxels.  

For the driving axis, the slope error is calculated using the equations in Table 4.  

Afterwards, the algorithm always moves one voxel forward on the driving axis and 

one voxel on the other axes if the slope error is greater than zero. In every step, 

the new voxel is saved with its accompanying Euclidean distance (sdfs) and the 

voxel that lies on the opposite side of the starting voxel with the same negative 

distance.  

Table 4: Slope-error equations 

x-axis 
y-axis z-axis 

𝑝𝑥𝑦 = 2 × 𝑑𝑦 −  𝑑𝑥 
𝑝𝑦𝑥 = 2 × 𝑑𝑥 − 𝑑𝑦 𝑝𝑧𝑥 = 2 ×  𝑑𝑥 −  𝑑𝑧 

𝑝𝑥𝑧 = 2 × 𝑑𝑧 − 𝑑𝑥 
𝑝𝑦𝑧 = 2 × 𝑑𝑧 −  𝑑𝑦 𝑝𝑧𝑦 = 2 ×  𝑑𝑦 − 𝑑𝑧 

 

With every step, the Bresenham algorithm moves forward one voxel on the drive 

axis and thus skips some voxels that lie on the projection line. In Figure 35, this 

would be for example the voxel with the distance 2.24. Further methods to solve 

this are discussed in Section 7.2. 

5) Since the signed distances (sdfs) are calculated in voxels, they are multiplied by 

the voxel size to be converted into meters. 

6) The voxels are stored in SG-NN as unsigned integers, so the voxel grid is shifted 

in this step. First, the maximum and minimum voxel coordinates are calculated, and 

the defined additional_shift is added into the input for padding on each side. Then, 

all voxels are shifted by the minimum coordinates of the voxel grid. 

7) The dimensions are saved from the maximum coordinates in the voxel grid. 

8) The array world2grid is created and filled.  

9) With all necessary information in place, a TSDF file is generated with the structure 

shown in Table 3. 

10)  The necessary known file is written, which contains all voxels of the dimension with 

the value zero. 

11)  To verify the correctness of the data, all TSDF data is also written to a text file. 
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Algorithm 1: Calculate voxels till truncation with distance  

 Input:  coordinate origin: origin, 

coordinates occupied Voxel coordinates: loc, 

number of voxels till truncation: number_of_voxels_front, 

 Output: voxels: locs, 

distance of voxel: sdfs 

1 Save loc[x,y,z] in locs and distance 0.0 in sdfs        

2 Store loc_start[x,y,z] = loc[x,y,z] 

3 Calculate the constants dx,dy,dz = |origin[x,y,z]– loc[x,y,z]| 

4 If origin[x] > loc[x]             #function three times for x,y,z 

5   xs = 1 

6 Else  

7   xs = -1 

8 End  

9 If dx > dy and dx > dy            #function three times for x,y,z 

10   p1 = 2 * dy - dx             

11   p2 = 2 * dz - dx             

12   While |loc[x]-loc_start[x]| < number_of_voxels_front 

13     loc[x] = loc[x] + xs 

14     If p1 ≥ 0   

15       loc[y] = loc[y] + ys 

16       p1 = p1 – 2 * dx  

17     End  

18     If p2 ≥ 0   

19       loc[z] = loc[z] + zs 

20       p2 = p2 – 2 * dz 

21     End 

22     p1 = p1 + 2 * dy             

23     p2 = p2 + 2 * dz            

24     Save loc_new[x,y,z] in locs 

25     Save distance sdf = loc_new to loc in sdfs 

26     Save loc_opposite_new[x,y,z] in locs 

27     Save negative distance sdf in sdfs 

28   End 

29 End 
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6.3 Point Cloud to TDF 

The approach in Section 6.2 does not include point clouds taken from multiple viewing 

angles as shown in Figure 36.  Thus, this section describes an approach for converting 

such a point cloud to a TDF.  

 

Figure 36: Truncated distance field 

The calculation of a TDF has one major advantage. Using multiple point clouds com-

bined with point cloud registration provides a more accurate ground truth for a scene. 

Training a SC neural network with this additional information should result in better 

prediction models. At the same time, there is less information about the fronts and 

backs of objects. At the start of this thesis, it was not certain how well the completion 

algorithms would work on a TDF compared to a TSDF.  

The algorithm for a conversion to a TDF starts with the same steps as the proposed 

algorithm for the conversion from a point cloud to a TSDF. First, the point cloud is read, 

down-sampled and saved to an array. Here, the algorithm differs as it calculates all 

voxels surrounding the occupied voxel until truncation. Figure 37 shows in green two 

occupied voxels and the voxels with their distance until truncation at three voxels 
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Figure 37: Truncated distance field  

 

6.4 Generation of point cloud dataset.  

Based on the review of datasets presented in Chapter 3, it is evident that a large-scale 

dataset of private housing is still missing. To achieve this, the possibility of an iPhone 

and iPad crowdsourced dataset is explored in this thesis. 

Since 2020, new iPhones and iPads from the pro product line have included LiDAR 

sensors since 2020. LiDAR stands for light detection and ranging and is in the category 

of time-of-flight sensors. The sensor sends a light impulse and measures the time it 

takes the light to return from the scanned object. The LiDAR sensor on the iPad is 

suitable for distances up to 5 m. This is sufficient for most indoor spaces but is not 

suited for large outdoor spaces.  

There is little research yet on the accuracy of the LiDAR sensors on iPads and iPhones. 

Vogt et al. [37] investigated the potential of LiDAR and TrueDepth by using different 

Lego bricks and comparing the results with an industrial Artec Space Spider Handheld 

3D scanner. The work concluded that the LiDAR sensors on iPads and iPhones are 

not suitable for scanning small objects such as Lego bricks. However, there has been 

no research on larger objects such as rooms. For this thesis, a small study was con-

ducted (portrayed in Table 5) that included measuring distances with the LiDAR sensor 

on an iPhone 12 pro and comparing the measurements with the ground truth obtained 

by tape measurement. 
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Table 5: LiDAR sensor error 

 Surface Surface 

material 

Ground 

truth [mm] 

LiDAR         

distance 

[mm] 

Error in       

distance 

[mm] 

Error in  

percentage 

[%] 

1 White ceiling drywall 2534 2541 -7 0.28 

2 White ceiling drywall 2612 2633 -21 0.80 

3 White wall plaster 4234 4265 -31 0.73 

4 White wall plaster 3945 3978 -33 0.84 

5 White wall plaster 2817 2834 -17 0.60 

6 White wall plaster 3486 3505 -19 0.55 

7 Cupboard wood 565 570 -5 0.88 

8 Table wood 721 728 -7 0.97 

9 Couch fabric 2653 2667 -14 0.53 

10 Carpet fabric 1870 1880 -10 0.53 

 

To place these errors of the LiDAR sensor into perspective, Figure 38 shows the error 

measured with Kinect sensors in the paper [42]. The figure illustrates that the Kinect 

v1 sensor showed exponential growth and the Kinect v2 sensor linear growth with 

higher accuracy. 

 

Figure 38: Error of Kinect v1 and v2 [42] 
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To better illustrate the errors of the Kinects sensors, Table 6 adopts the structure of 

Table 5 and provides the error percentages, which are calculated from the distances 

in Figure 38. 

Table 6: Kinect error sensor 

Distance  Kinect v1       

Error distance 

[mm] 

Kinect v1       

Error in per-

cent [%] 

Kinect v2       

Error distance 

[mm] 

Kinect v2     

Error in per-

cent [%]   

4.0 0.180 4.5 0.020 0.5 

3.5 0.127 3.6 0.017 0.5 

3.0 0.092 3.1 0.016 0.5 

2.5 0.063 2.5 0.015 0.6 

2.0 0.035 1.8 0.013 0.7 

1.5 0.018 1.2 0.010 0.7 

 

The Kinect sensor was chosen for comparison since it produced several datasets, as 

described in Chapter 3. The popular NYU dataset, for example, was created with a 

Kinect v1 sensor. Through comparing the numbers in Table 5 and To better illustrate 

the errors of the Kinects sensors, Table 6 adopts the structure of Table 5 and provides 

the error percentages, which are calculated from the distances in Figure 38. 

Table 6, it becomes obvious that the accuracy of the iPhone’s LiDAR sensor is suffi-

cient for creating a dataset; the sensor is almost as accurate as the Kinect v2 and by 

far more accurate than the Kinect v1, especially when it comes to longer distances. 

The range of the sensors are similar, with 4.5 m for the Kinect sensors and 5 m for the 

LiDAR sensor.     

After evaluating accuracy, the practicability of the scanning process was examined. 

The Polycam LiDAR 3D scanner application was used for scanning. For the output of 

meshes, the application supports the formats .obj, .glb, .dae, .stl and .usdz, and for 

point clouds the formats .dxf, .ply, .laz, .xyz and .pts are supported. The application 

allows a freehand scan that can be performed by walking around in a room. 

During the extensive testing, some limitations became apparent. One of these was 

mentioned earlier in the chapter, namely that small objects such as Lego bricks cannot 
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be scanned accurately [37]. The other limitation results from the distortion caused by 

reflective objects such as mirrors, windows, glass doors and pictures with glass frames. 

These items must either be removed or covered up during the scanning process. In 

Figure 39, a distortion is shown on the right that was caused by a picture with a glass 

frame.   

 

Figure 39: Distortion of a point cloud by an image through a glass frame 

The original idea was that because an iPhone is mobile and small, it could be used to 

create a higher quality dataset. An iPhone can scan under furniture like tables and 

chairs, creating a more detailed dataset and more accurate ground truth for training.  

Unfortunately, this was not confirmed in reality. The scan registration process, which 

consists of aligning multiple scans on one iPhone, is not perfect. To capture all the 

details in a room, the scanner—in this case the iPhone—must be moved around quite 

a bit, thus increasing susceptibility to errors during the registration process. Especially 

when scanning detailed elements, for instance when placing the sensor under a table, 

distortions of the scan can occur. Such an error can be seen in Figure 40. After scan-

ning a corner behind a table, the sensor experienced an error in its registration process. 

This caused the cupboard on the left side of Figure 40 to be distorted, thus making the 

scan unusable. 
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Figure 40: Scanning error caused through a wrong registration process. 

Although a more detailed dataset with a more accurate ground truth is not possible, 

the results when scanning from one viewpoint are good and can be improved by using 

a tripod.  
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This chapter first describes the difficulties with the SG-NN algorithm and then evalu-

ates the results of the point cloud completion. At the end, other possible approaches 

are briefly discussed. 

7.1 SG-NN 

After debugging and adapting the algorithm of Dai et al. [12],  it runs on Pytorch 1.8.1 

and Python 3.8. The provided TSDFs, which were generated by RGB-D scans were 

tested on the trained model. In Figure 41  the input can be seen on the right and the 

predicted model on the left.  

 

Figure 41: Input and prediction mesh 

Since the source code of SG-NN is not documented, several short algorithms were 

written to reengineer the needed files for training. SG-NN uses an input TSDF, a target 

TSDF and a known file to train and complete scenes as already described in Subsec-

tion 6.1.2. The TSDF was explained in detail in Subsection 6.1.1 and will therefore not 

be further discussed in this chapter. Much more problematic was the known file needed 

to test and train the model. This file was not described in the corresponding paper nor 

on GitHub. The known file contains all voxels of the voxel grid, compared to a TSDF 

file, which only contains the voxels up until truncation. Additionally, there is an integer 

from 0 to 5 for every voxel. To determine how this file was created, the source code 

was analyzed in depth, and some small functions were written to display the binary 

data as text files and point clouds. In Figure 42, the voxels of the known file are repre-

sented as yellow points, and the corresponding TSDF is shown as mesh in gray. Each 

7 Discussion 
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of the six images contains a category or, respectively, one of the assigned numbers of 

the known file. The top three images show mainly but not exclusively voxels that are 

outside the room. The image at the bottom left displays voxels located near the surface 

both inside and outside the room, which are located near the surface. The pictures in 

the middle and bottom right illustrate the rest of the voxel grid. 

 

Figure 42: Known file with its different categories 

Unfortunately, no clear scheme is visible from the images as to how the known file was 

created and what purpose it could fulfill. After an unsuccessful deep analysis of the 

source code and an attempt to adapt SG-NN to function without the known file, the 

importance of the categories was tested by assigning only one category to the whole 

known file.  The result of the prediction is depicted in Figure 43. The image on the left 

shows the prediction with its original known file and the image on the right represents 

the completion with the modified known file with only one category. Since almost no 

difference is visible in their completeness, further investigation into the purpose of the 
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known file was not carried out.  Thus, the created known files in this master thesis 

consist only of all voxels from the space of a scene with one assigned category. 

 

Figure 43: Known file 

Since SG-NN uses an input and a target file to produce the predicted file, it was deter-

mined what happens if the already trained model only uses the target file for prediction. 

In Figure 44 on the right side, the prediction is shown with only the target file and on 

the left side with the input and target files. As can be seen in the figure, the results are 

nearly equally accurate. Therefore, in the following sections, only the real scan is used 

for the input and target file. 

 

Figure 44: Prediction with two target TSDFs 
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Since the algorithm proposed in Section 6.2 always calculates the distance between 

two voxel centers, this results in an accumulation of equal distances. However, the 

model of SG-NN was trained with the distances to the real surfaces. To test whether 

this could lead to problems with the evaluation of the completion of point clouds in the 

next chapter, all distances of the input TSDF are rounded. Figure 45 displays on the 

left side the prediction with rounded numbers and on the right side the original predic-

tion. As can be seen from the figure, the prediction is significantly worse. Thus, for an 

accurate completion the model must be retrained with the point cloud data. However, 

the accuracy is sufficient for a first evaluation of the approach. 

 

Figure 45: TSDF with rounded distances 
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7.2 Point cloud to TSDF 

Figure 46 shows on the left the input TSDF created from the point cloud on the right 

using the proposed algorithm of this thesis. The point cloud, containing the authors 

living room, was recorded with the LiDAR sensor on an iPhone. Unfortunately, only a 

few spots are visible in the input TSDF due to the fact that the TSDF is exceptionally 

sparse, and the marching-cubes algorithm that converts the TSDF into a mesh cannot 

handle this well. 

 

Figure 46: Point cloud on the right with the corresponding TSDF on the left. 

When using this very sparse TSDF from Figure 46 as input for SG-NN, the prediction 

result is not optimal, as can be seen in Figure 47. The scene has been significantly 

more completed compared to the input TSDF, but it does not contain as much infor-

mation as the input point cloud. Moreover, it has defects at the four corners, in each of 

which an area on the ground is indicated even though there is no actual surface there. 

These areas on the ground extend to the respective end of the defined voxel space. 

Since this complete voxel space is only defined in the headers of the TSDF file and the 

known file, there is a strong assumption that this is related to the known file. 

To optimize the completions, the input TSDF file must be less sparse. To verify this 

hypothesis, the number of voxels was increased before truncation in Figure 48. 
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Figure 47: Prediction TSDF with truncation after 3 voxels 

Figure 48 shows the prediction TSDF with a truncation after seven voxels. Although 

the algorithm is not optimized for this, a more complete picture is already visible. 

 

Figure 48: Prediction TSDF with truncation after 7 voxels 
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Since every step of the Bresenham algorithm moves one voxel on the driving axis 

forward, some voxels that lie on the projection line are left out. To address this, the 

algorithm entitled "A Fast Voxel Traversal Algorithm for Ray Tracing" by Amanatides 

et al. [28]  could be used. Another or additional possibility would be to adjust the algo-

rithm so that the voxels directly next to the line from the occupied voxel to K are also 

saved and assigned the distance to the occupied voxel. 

When following up on these approaches, it was found that the possibility of storing the 

same voxel multiple times is high. To avoid this, the algorithm must sort out multiple 

voxels and store only the voxels with the shortest distances. This problem is visualized 

in Figure 49. 

 

Figure 49: Multiple distances for one voxel 

 

Based on the above discussion, the conclusion is that it is possible to convert a point 

cloud to a TSDF and that this can be a successful approach for completion if further 

adjustments are made. 
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7.3 Point cloud to TDF 

In order to perform a first investigation into whether a TDF is at all suitable for a com-

pletion, the same algorithm as described in Subsection 6.2.3 was used, with the ad-

justment that the negative values were stored as positive values. The result of the 

completion is illustrated in Figure 50.  It is obvious the result is worse compared to 

Figure 48. However, the level of completion is already informative and with the pro-

posed approach of Chapter 6.3  the TDF would be much denser. Therefore, it can be 

assumed that the approach with a TDF instead of a TSDF is to be preferred. On the 

one hand, the low sparsity is eliminated; on the other hand, the point clouds for a TDF 

can be recorded from multiple viewing angles, thus making available a more accurate 

ground truth with which to train. 

 

 

 

Figure 50: TDF with a truncation after 7 voxels 
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7.4 Point cloud generation through a LiDAR sensor 

As discussed in Section 6.4, there is potential for a dataset generated with a LiDAR 

sensor on an iPhone or iPad. Especially, the widespread availability of iPhones and 

iPads has made possible a large-scale real-world dataset that could rival synthetic da-

tasets, for example SUNCG with 45,000 scenes. Another issue that could be resolved 

using a crowdsourced dataset is the scarcity of rooms in private apartments in existing 

datasets. By having a dataset containing point clouds rather than RGB-D scans, the 

privacy issues would be far less severe.  

Currently, the LiDAR sensors in iPhones and iPads only provide good results from one 

central scanning point. To obtain a more detailed point cloud dataset with fewer ob-

scured areas, further research must be done into the registration process of the scans. 

In addition, the accuracy of the LiDAR sensor should be further tested since the results 

in this thesis only went in one direction. However, even with these flaws, a large-scale 

dataset from one standpoint would be an asset in training 3D deep learning models. 

 

7.5 Possible other approaches 

Other approaches were also considered in the context of this work but were not further 

pursued. In the following, these two approaches are briefly presented, and it is ex-

plained why they were not further pursued.   

The first idea involved converting a point cloud into a grey scale depth image and then 

using the same volumetric fusion process as in SG-NN to create a TSDF. The depth 

images are taken from the center of the room similar to in Subsection  6.2 and they 

always contain the distance from the surface points to the viewpoint. Figure 51 visual-

izes this approach. For point clouds with color information, even an RGB-D image 

would be possible, although this is not required for volumetric fusion. Chmelar et al. [8] 

describes an approach for converting point clouds into depth images.  
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Figure 51: Point cloud to depth image [8] 

Ultimately this approach was not chosen because the conversion from a point cloud to 

an RGB-D image to a TSDF requires additional computational need compared to the 

direct transformation from a point cloud to a TSDF and more spatial information is lost 

due to the additional transformations. 

The second approach considered, was to rebuild the entire network and generate an 

encoder based on the PointNet [44] architecture. For example, through max pooling 

layers and convolution the input points could be compressed into a latent space vector, 

which then be transformed into a distance field through 3D convolutions. This approach 

would lie beyond the scope of this thesis. 
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The objective for this master thesis was to develop an algorithm for the scene comple-

tion of point clouds. In Subsection 8.1 the methods developed and results are summa-

rized. Subsection 8.2 describes possibilities for further development. 

8.1 Conclusion 

In this thesis, the scene completion network SG-NN by Dai et al. [12] was first updated 

to run on Pytorch 1.8.1 and Python 3.8. The results with the TSDFs from generated 

RGB-D images are as expected very accurate.  

Afterwards a novel approach was proposed and implemented that generates a TSDF 

from a point cloud. Unfortunately, the approach was not entirely successful. It turned 

out that the original idea of creating the TSDF as sparse as possible for computational 

and memory reasons had a detrimental effect on the description of the scene. To ad-

dress this, improvements were proposed in Subsection 7.2. With the implementation 

of these improvements and the training of SG-NN with a large-scale dataset of point 

clouds, it should be possible to achieve the same results as with an RGB-D dataset. 

In addition, the thesis briefly investigated whether a TDF can also provide the neces-

sary descriptive information to be considered as an input for a SC algorithm such as 

SG-NN. This analysis was performed using the same algorithm that transforms a point 

cloud into TSDF. The negative values of the TSDF were assigned positive values. This 

implies that the TDF is not as dense represented as defined. However, even with this 

sparse TDF, usable results could already be obtained. It can be assumed that when a 

dense TDF is used for training, the results provide sufficient descriptive information for 

a proper completion. The major advantage of a TDF is that it can also be generated 

from a point cloud, which has been taken from several scan points and fused through 

point cloud registration. Thus, this approach is more promising than the TSDF ap-

proach. 

In the final step, the suitability of the LiDAR sensor of iPhones and iPads for generating 

a dataset was examined. At present, the sensors are useful for capturing a point cloud 

of a scene or room from one position. If a point cloud is to be created from many stand-

points – for example, to obtain a better ground truth – the iPhone or iPad is not suitable 

8 Concluding Remarks 
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at this time. The automatic point cloud registration does not yet function seamlessly on 

the devices. When moving through the room to scan details such as hidden corners or 

the floor under a table, errors occur that are characterized by double-scanned objects. 

One way to fix this would be to manually register the point clouds. However, it is also 

expected that automatic registration will improve in the next years. The potential to 

generate large-scale crowd-source datasets is definitely existent. 

8.2 Recommendations for Further Work 

Recommendations for further development are provided below, ordered in decreasing 

order of importance. 

 

- Since the study in this thesis is based on the accuracy of the LiDAR sensor of 

one device, a deeper analysis of the accuracy based on different devices would 

be beneficial. Based on this information, a crowd-source dataset of point clouds 

could be obtained. This would be extremely valuable for training deep learning 

models.   

 

- As described in Subsection 7.3, the conversion of point clouds to TDFs is very 

promising when using volumetric scene completion methods. Further develop-

ment and implementation of the approach in chapter 6.3 is recommended. To 

minimize the computational cost, the use of the rectilinear distance instead of 

the Euclidean distance could also be considered. 

 

- A purely point-based approach, as described in Subsection 7.5, would be also 

suitable for further development. This would make it possible to draw a compar-

ison between a point-based method and a volumetric method where the point 

cloud was previously converted into a TSDF or TDF. 
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