

Technical University of Munich

Department of Civil, Geo and Environmental Engineering

Chair of Computational Modelling and Simulation

Point Cloud Completion by Deep Learning

Master Thesis

for the Master of Science Degree in Civil Engineering

Author: Rocco Kossat

Matriculation Number: 03652566

1. Supervisor: Prof. Dr.-Ing. André Borrmann

2. Supervisor: Yuandong Pan

3. Supervisor: Florian Noichl

Date of Issue: 15. January 2021

Date of Submission: 15. July 2021

Abstract II

Today, measuring of buildings and rooms is still undertaken with tachymeters and

partly also with measuring tapes. However, in recent years the share of 3D laser scan-

ners has rapidly increased, since they are more accurate, less prone to human error

and faster in capturing a scene. When scanning a scene, some parts of the scene are

missing due to occlusions by objects. An example of this is a cabinet standing in front

of a wall. The 3D scanner then only captures a point cloud with the surface of the

cabinet and the surface information of the wall behind it is missing.

In order to predict these occluded points in a point cloud, this master thesis analyzes

the existing methods of scene completion and proposes a novel approach to convert

a point cloud into a truncated signed distance field. This truncated signed distance field

is then used on an existing volumetric scene completion network that is fully self-su-

pervised.

Additionally, the suitability of the LiDAR sensor of iPhones and iPads for generating a

dataset is examined.

Abstract

Zusammenfassung III

Die Vermessung von Gebäuden und Räumen wird heutzutage zum Großteil immer

noch mit Tachymetern und teilweise auch mit Maßbändern vorgenommen. In den letz-

ten Jahren hat jedoch der Anteil der 3D-Laserscanner rasant zugenommen, da sie

genauer, weniger anfällig für menschliche Fehler und schneller bei der Erfassung einer

Szene sind. Beim Scannen einer Szene fehlen einige Teile der Szene aufgrund von

Verdeckungen durch Objekte. Ein Beispiel hierfür ist ein Schrank, der vor einer Wand

steht. Der 3D-Scanner erfasst dann nur eine Punktwolke mit der Oberfläche des

Schranks und die Oberflächeninformation der dahinter liegenden Wand fehlt.

Um diese verdeckten Punkte in einer Punktwolke vorhersagen zu können, analysiert

diese Masterarbeit die bestehenden Methoden der Szenenvervollständigung und

schlägt einen neuartigen Ansatz vor, um eine Punktwolke in ein TSDF umzuwandeln.

Dieses TSDF wird dann auf ein bestehendes volumetrisches Szenenvervollständi-

gungsnetzwerk angewendet.

Zusätzlich wird die Eignung eines LiDAR-Sensors von iPhones und iPads zur Erzeu-

gung eines 3D Datensatzes untersucht.

Zusammenfassung

Content IV

Abstract II

Zusammenfassung III

List of Figures VI

List of Tables VIII

List of Abbreviations IX

1 Introduction 1

1.1 Motivation ...1

1.2 Research Objective ...2

1.3 Structure of This Master Thesis ..3

2 3D Representations 4

2.1 Point Cloud ...4

2.2 Depth Map ..4

2.3 Voxel Grid ...5

2.4 Mesh ...6

2.5 Implicit Surface ...6

3 Datasets 8

4 Segmentation 11

4.1 Context ... 11

4.2 3D Segmentation .. 11

5 Shape Completion 15

5.1 Object Completion .. 18

5.2 Scene Completion and Semantic Scene Completion.................................. 22

6 Methodology 30

6.1 Baseline Architecture: Sparse Generative Neural Network 31

6.1.1 Input .. 31

Content

Content V

6.1.2 Architecture ... 35

6.2 Point Cloud to TSDF ... 37

6.2.1 Requirements and challenges .. 37

6.2.2 Overview Method .. 39

6.2.3 Algorithm ... 40

6.3 Point Cloud to TDF ... 43

6.4 Generation of point cloud dataset. .. 44

7 Discussion 49

7.1 SG-NN .. 49

7.2 Point cloud to TSDF .. 53

7.3 Point cloud to TDF .. 56

7.4 Point cloud generation through a LiDAR sensor ... 57

7.5 Possible other approaches ... 57

8 Concluding Remarks 59

8.1 Conclusion .. 59

8.2 Recommendations for Further Work ... 60

References 61

List of Figures VI

Figure 1: 3D Data Representations .. 4

Figure 2: Point cloud of the Stanford’ bunny [26] .. 4

Figure 3: Chair in voxels [9] .. 5

Figure 4: Octree [53] ... 5

Figure 5: Mesh of the Stanford Bunny [26] ... 6

Figure 6: Signed distance field of a 2D polygon [70] .. 7

Figure 7: Types of Segmentation [25] ... 11

Figure 8: Architecture PointNet [42] .. 12

Figure 9: Architecture PointNet++ [43] ... 12

Figure 10: Point-based segmentation approaches [25] .. 13

Figure 11: Network architecture of 3D Encoder-Predictor Network [13] 19

Figure 12: Architecture of the high-resolution shape completion method of Han et al.

[23] .. 20

Figure 13: Point Completion Network: Architecture [66] ... 20

Figure 14: Training RL-GAN-Net [45] ... 21

Figure 15: Architecture SSCNet [51] .. 23

Figure 16: AM²FNet architecture [4] ... 23

Figure 17: SATNet [48] ... 24

Figure 18: Architecture of AMFNet [32] .. 25

Figure 19: U-Net design with octrees. [59] .. 25

Figure 20: A octree output-guided skip connection. [59] ... 26

Figure 21: EdgeNet architecture and fusion schemes [15] 27

Figure 22: Architecture with primal dual optimization [7] .. 27

Figure 23: Anisotropic convolution [30] .. 28

Figure 24: SPCNet architecture [47] ... 29

Figure 25: Input, Target and Prediction Scan ... 30

List of Figures

List of Figures VII

Figure 26: Camera poses are on average 2,25 meters apart in the Matterport3D

dataset [2]. .. 32

Figure 27: TSDF from one depth image ... 32

Figure 28: Two TSDFs from two depth images .. 33

Figure 29: Two depth images averaged into one TSDF ... 33

Figure 30: SG-NN architecture [12] .. 35

Figure 31: SG-NN: coarse-to-fine [12] .. 35

Figure 32: Detailed architecture of SG-NN [12] .. 36

Figure 33: Voxels of a TSDF represented as points. .. 38

Figure 34: TSDF to point cloud ... 39

Figure 35: Occupied voxel with its adjacent signed distance voxels. 40

Figure 36: Truncated distance field .. 43

Figure 37: Truncated distance field .. 44

Figure 38: Error of Kinect v1 and v2 [40] .. 45

Figure 39: Distortion of a point cloud by an image through a glass frame 47

Figure 40: Scanning error caused through a wrong registration process. 48

Figure 41: Input and prediction mesh ... 49

Figure 42: Known file with its different categories ... 50

Figure 43: Known file .. 51

Figure 44: Prediction with two target TSDFs .. 51

Figure 45: TSDF with rounded distances.. 52

Figure 46: Point cloud on the right with the corresponding TSDF on the left. 53

Figure 47: Prediction TSDF with truncation after 3 voxels .. 54

Figure 48: Prediction TSDF with truncation after 7 voxels .. 54

Figure 49: Multiple distances for one voxel ... 55

Figure 50: TDF with a truncation after 7 voxels .. 56

Figure 51: Point cloud to depth image [8] ... 58

List of Tables VIII

Table 1: Overview of datasets .. 8

Table 2: Overview of shape completion methods ... 16

Table 3: Data representation of a TSDF file in SG-NN ... 37

Table 4: Slope-error equations ... 41

Table 5: LiDAR sensor error ... 45

Table 6: Kinect error sensor ... 46

List of Tables

List of Abbreviations IX

2D

3D

3D-CNN

3D-EPN

CAD

CNN

DF

Two-Dimensional

Three-Dimensional

Three-Dimensional Convolutional Network

3D-Encoder Predictor Network

Computer-Aided Design

Convolutional Neural Network

Distance Field

DL

DoF

Deep Learning

Three Domains of Freedom

DNN

GAN

Deep Neural Network

Generative Adversarial Network

LiDAR

ML

OC

PCN

RGB

RGB-D

SC

SDF

SG-NN

SSC

TDF

TSD

Light Detection and Ranging

Machine Learning

Object Completion

Point Completion Network

Red-Blue-Green

Red-Blue-Green-Depth

Scene Completion

Signed Distance Function

Sparse Generative Neural Network

Semantic Scene Completion

Truncated Distance Field

Truncated Signed Distance Field

List of Abbreviations

Datasets 1

1.1 Motivation

Compared with other industries such as the automotive industry, the construction in-

dustry remains largely dominated by manual labor. One of the reasons is that each

project is unique, and it is difficult to realize them with traditional methods such as

robots in the automotive industry. However, with the rapid advance of artificial intelli-

gence in recent years, a major leap in efficiency in the design and construction phase

is expected in the next few years.

In other areas of our lives, machine learning has already become an increasingly im-

portant aspect and it is changing our future forever. It is now ubiquitous in areas such

as customer service automation, communications, cybersecurity, and object recogni-

tion.

The range of opportunities with machine learning in the field of the building industry is

immense. In the construction phase, the possibilities range from autonomous robots

that – for example – excavate foundations, erect walls and transport building materials

to construction monitoring with drones that automatically perform a cross-check with

the construction plans. In the planning phase, the possibilities range from simulations

of the expected construction costs through to automatic verification of compliance with

building regulations and automatic measurement of buildings.

This master thesis deals with the latter-mentioned topic, namely the measurement of

buildings. Tachymeters and even sometimes measuring tapes are still a widely used

method for measuring buildings today. However, in recent years 3D laser scanners

have become increasingly popular for measuring existing buildings. The laser scanner

outputs the environment as a point cloud. The advantage of the 3D laser scanner is

obvious, whereby they allow a much faster and completer capture of the scene. More-

over, it is also less prone to human error. Thus, 3D laser scanners are perfectly suited

for generating the digital models of buildings. Digital building models are needed for

renovation measures, but since the original models were often drawn by hand, they do

not exist. For example, in North America 90% of houses do not even have a digital

floor plan [34].

1 Introduction

Datasets 2

A persisting drawback of 3D scans is that the environment and scene cannot be cap-

tured completely due to occlusions by objects. An example of this is a cabinet standing

in front of a wall, whereby the 3D scanner then only captures a point cloud with the

surface of the cabinet and the surface information of the wall behind it is missing.

To complete the missing points caused by occlusion in a 3D scan, this master thesis

focuses on scene completion.

1.2 Research Objective

The main goal of this master thesis is to develop an algorithm for the completion of

point clouds. As a first step, existing methods are analyzed. There are numerous meth-

ods for the completion of scenes acquired with RGB-D sensors. However, unfortu-

nately there are only a few approaches for completion based on point clouds. To over-

come this issue, this master thesis aims to provide an approach that accomplishes this.

The main contributions are listed below.

Contributions:

- The source code of SG-NN [12] was updated from Pytorch 1.1.0 and Python

2.7 to run with Pytorch 1.8.1 and Python 3.8.

- A novel method for transforming a point cloud into a truncated signed distance

field (TSDF) was proposed.

- It was investigated whether a truncated distance field (TDF) could be used in-

stead of a TSDF.

- An analysis of the usability of LiDAR sensors from iPhones and iPads to gener-

ate a large-scale dataset was conducted.

Datasets 3

1.3 Structure of This Master Thesis

This master thesis is structured as follows.

- Chapter 2 provides an overview of the five different 3D data representations and

their advantages and disadvantages regarding machine learning.

- Chapter 3 describes the various 3D datasets available for training machine

learning models.

- Chapter 4 provides a brief overview of segmentation approaches.

- Chapter 5 offers a broad overview of shape completion and presents different

approaches with their advantages and disadvantages.

- Chapter 6 describes the chosen approach, including the architecture of the

Sparse Convolutional Neural Network, an approach to convert point clouds to a

TSDF, and the investigation of the usability of LiDAR sensors from an iPhone

to generate a large-scale dataset.

- Chapter 7 discusses the results of the chosen approach and proposes improve-

ments.

- Chapter 8 summarizes the main results and proposes approaches for further

development.

Datasets 4

This chapter describes the five main 3D data representations, as illustrated in

Figure 1.

Figure 1: 3D Data Representations

2.1 Point Cloud

Point cloud is the most well-known 3D data representation. It is described by a set of

unordered points with 3D coordinates (x, y, z). Only in a point cloud is the known space

represented, and free or unknown space is not saved. Because of this, there is no

information about neighboring points. This is why it is challenging to process point

clouds in machine learning tasks. Figure 2 represents the Stanford bunny as a point

cloud.

Figure 2: Point cloud of the Stanford’ bunny [27]

2.2 Depth Map

Depth maps are images in which each pixel is assigned a distance. The distance or

depth is the length between the camera and the object or scene. The most common of

these data representations involves linking an RGB image with a depth image. These

RGB-D images can easily be created with widely available sensors such as Microsoft

Kinect.

2 3D Representations

Datasets 5

2.3 Voxel Grid

A Voxel is a three-dimensional grid. Each cell of the grid is described either as occupied

or free. As shown in Figure 3, one of the problems with a voxel gird is that it needs a

high voxel resolution to represent a detailed scene. This results in a memory problem

as the memory need increases by a power of three.

Figure 3: Chair in voxels [9]

To combat this problem, octrees are often applied in which multiple resolutions of voxel

grids are used. Finer details can be represented by a finer voxel grid, as illustrated in

Figure 4. This enables a more efficient memory usage, but the implementation is more

difficult due to the multiple resolutions.

Figure 4: Octree [53]

Datasets 6

2.4 Mesh

Meshes explicitly represent surfaces using a set of polygons. Meshes are very adap-

tive since they can represent flat surfaces with just one face, and detailed structures

are represented with multiple faces. This makes them very efficient, but it is difficult to

implement machine learning algorithms for them. Figure 5 represents the Stanford

bunny as a mesh.

Figure 5: Mesh of the Stanford Bunny [27]

2.5 Implicit Surface

Implicit surfaces define the 3D object as a function. The function determines the prob-

ability that a point is inside or outside the object. Two very common implicit represen-

tations are the signed distance function (SDF) and the truncated signed distance func-

tion (TSDF). These both use voxels to support their implicit surface definitions.

The SDF is also called signed distance field as it provides the distance from each voxel

to the closest surface. If the voxel is inside the object shape the distance is signed

negative, otherwise it is signed positive. This is visualized in Figure 6.

Datasets 7

Figure 6: Signed distance field of a 2D polygon [70]

TDSF, also called truncated signed distance field, was first introduced by Curless and

Levoy [10]. The function is a combination of distance and weight functions retrieved

from depth images. The distance is measured by line of sight from the sensor. After a

defined voxel distance, the positive and negative distances are truncated.

Datasets 8

As the performance and robustness of a deep learning model heavily depends on its

training data, this chapter gives an overview of the common datasets used for shape

completion and segmentation. Table 1 lists these datasets and their distinctive fea-

tures.

Table 1: Overview of datasets

Dataset Year Data Type Type Nature Scenes

NYUv1 [50] 2011 RGB-D Real world Indoor scene 67

NYUv2 [51] 2012 RGB-D Real world Indoor scene 464

SUN3D[65] 2013 RGB-D Real world Indoor scene 254

UZH 3D[55] 2014 Point clouds Real world Indoor scene 40

SceneNet[24] 2015 CAD models Synthetic Indoor scene 57

ModelNet [64] 2015 CAD models Synthetic Objects -

ShapeNet[3] 2015 CAD models Synthetic Objects -

NYUCAD[17] 2016 CAD models Synthetic Indoor scene 462

SUNCG[52] 2016 CAD Synthetic Indoor scene 45,622

Matterport3D [2] 2017 RGB-D Real world Indoor scene 2,056

ScanNet[11] 2017 RGB-D Real world Indoor scene 1,513

2D-3D-S[26] 2017 RGB-D

Point clouds

Real world Indoor scene 270

FloorNet[34] 2018 RGB-D Real world Indoor scene 155

SemanticKITTI[1] 2019 Point clouds Real world Outdoor scene 22

3 Datasets

Datasets 9

Most datasets are acquired with RGB-D sensors since they are widely available and

cheap, but these lack accuracy compared to professional devices such as the Faro 3D

laser scanner. Since acquiring a good ground truth is one of the most difficult chal-

lenges, several synthetic datasets were created. Most datasets contain mainly com-

mercial and educational buildings since capturing private living spaces is problematic

due to privacy issues. The most important datasets for scene completion are described

in greater detail in the following. In Table 1 listed outdoor and object datasets are not

further described, since they are so relevant for this master thesis.

NYUv2 Dataset [51]: This is most frequently used real-world dataset for indoor scene

and semantic scene completion. It is an extension of the NYUv1 dataset with 464 in-

stead of 67 scenes. The dataset is composed of residential and commercial buildings.

Each pixel is labeled, and if there are multiple objects from the same object category

in a scene, they are each given a separate label. In [21], the ground truth was gener-

ated for scenes containing completed, detailed 3D models.

SUN3D [65]: This dataset covers 254 scenes with RGB-D videos. It also contains

camera poses, object segmentations and point clouds registered in a global coordinate

frame. It differs from the NYUv2 dataset in that it obtains the camera pose and global

alignment, and the scenes are less view based. This translates to a more complete

representation of a scene, and thus it is better suited for scene completion.

Matterport3D [2]: Matterport3D is the largest publicly available RGB-D dataset, with

2,054 rooms containing 10,800 panoramic views, each with 18 RGB-D images cover-

ing 46,561 sqm. All camera poses with panoramic views are provided and globally

registered. Since the panoramas were taken with three RGB-D cameras with their po-

sitions pointing slightly upwards, horizontal, and slightly downwards, the floor and ceil-

ing in the scenes were often not fully scanned.

ScanNet [11]: ScanNet is a large RGB-D dataset with 1,513 scenes captured by

2,492,518 RGB-D frames covering an area of 34,453 sqm. The dataset consists of

commercial buildings and apartments. The majority of rooms are hotel bedrooms. The

scans are annotated with camera poses, surface reconstructions and semantic seg-

mentations. For 107 scenes, aligned CAD models are additionally provided.

Datasets 10

SUNCG [52]: This dataset was used most when it came to semantic scene completion

It is a synthetic dataset containing over 45,000 scenes that were manually created

through the Planner5D platform. Unfortunately, this dataset is no longer available due

to legal matters between the company Planner5D and Princeton University.

2D-3D-S [26]: Six large-scale indoor areas with 270 rooms and 6,000 sqm are covered

in this dataset. The 70,000 RGB-D images were taken from an office and educational

environment. Point clouds were generated from this information and afterwards se-

mantically annotated and assigned the following 13 object classes on a per-point basis:

ceiling, floor, wall, beam, column, window, door, table, chair, sofa, bookcase, board

and clutter.

SceneNet [24]: Since the SUNCG dataset is no longer available an alternative syn-

thetic dataset is SceneNet. However, it is significantly smaller with only 57 rooms. Each

scene is composed of 15 to 250 objects. All models are available in the .obj format.

SceneNet RGB-D [29] builds on the SceneNet dataset by providing rendered RGB-D

images from over 15 trajectories with random but physically simulated object poses. It

also creates the pixel-perfect ground truth.

UZH 3D [55]: This dataset contains 40 point clouds of office rooms at the University of

Zurich. The point clouds are provided as ASCII PTX files with color (x, y, z, intensity,

r, g, b). This dataset is more relevant for civil engineering since it was acquired using

a Faro Focus 3D laser range scanner. This translates to much better precision com-

pared to other datasets, most of which were captured with consumer-level scanners

like Microsoft Kinect.

FloorNet [34]: Since the previously discussed datasets concentrate on semantic an-

notations and are not suited for vector-graphics reconstruction problems, Liu et al. [34]

introduced a dataset containing RGB-D videos from 155 residential units with full floor-

plan annotations. They also provided the associated point clouds with their annotations

and associations.

Segmentation 11

4.1 Context

3D segmentation is a well-researched topic and there exist numerous open-source

methods for point cloud segmentation. One possible approach to retrieve the layout of

a room would be to first use segmentation, and then use the segmented walls, floor

and ceiling to generate the 3D layout as, for example, in DeepPerimeter [43]. This

chapter gives a brief overview of 3D segmentation.

4.2 3D Segmentation

Segmentation is the assignment of voxels, points, pixels, etc. to a specific label. Thus,

the respective objects are filtered out. 3D segmentation can be subcategorized into

three types as shown in Figure 7, namely semantic, instance and part segmentation.

Figure 7: Types of Segmentation [25]

The semantic segmentation predicts labels for each object. For example, all chairs

have the label chair. Instance segmentation, on the other hand, not only predicts the

label of the object, but also separates instances with the same label. In the same ex-

ample with the chairs, the chairs would be assigned the label chair, but in addition a

distinction would be made between chair 1, chair 2, chair 3. In part segmentation, the

segmented object is further subdivided. For example, the armrest, the backrest, the

seat and the feet of a chair are labeled. Given that the field of 3D segmentation is very

large, and that the focus of this thesis is the completion of point clouds, point-based

segmentation is the most relevant segmentation method for the purposes of this paper.

A detailed overview was recently published by He et al.[25], in which all other methods,

such as voxel base segmentation and deep image segmentation, are also described.

4 Segmentation

Segmentation 12

The pioneering work of point-based segmentation was presented by Qi et al. [44] with

PointNet. Figure 8 illustrates the network architecture of PointNet. The network con-

sists of three main modules. To bundle the information of the points, the first module

is a max-pooling layer as a symmetric function. The second module contains local and

global information combination structure and to the align the input point and point fea-

tures the third module consists of two joint alignment networks.

Figure 8: Architecture PointNet [44]

After PointNet, numerous methods have been developed based on it. The most prom-

inent of these is PointNet++ [45]. PointNet++ is a hierachical feature learning network,

which addresses the limitations of PointNet, in capturing local features at different

scales. The PointNet++ architecture hierarchically groups points and gradually extracts

larger and larger local regions up the hierarchy. In Figure 9 the architecture of Point-

Net++ is illustrated.

Figure 9: Architecture PointNet++ [45]

Segmentation 13

He et al. [25] categorized the many methods developed based on PointNet and Point-

Net++ into three types: multiple layer perceptron based, point convolution based and

graph convolution based. These subcategories are split further into PointNet based

frameworks and PointNet++ based frameworks.

Figure 10: Point-based segmentation approaches [25]

Segmentation 14

Figure 10 visualizes the different frameworks in a very simplified way for a point- based

approach. Figure (a) and (b) show the previously described multiple layer perceptron-

based approach of PointNet and PointNet++. Figure (c) and (d) describe the point con-

volution-based approach. Framework (c) is based on PointNet and performs convolu-

tion on all neighboring points of each point in contrast to framework (d) which is based

on PointNet++ and performs convolution only on specific points. The last two figures

(e) and (f) represent the graph convolution-based networks. As can be seen in the

figure, in the PointNet (e) based approach, the graph spans the points globally and

performs convolution on all neighboring points from each point. The graph-based

PointNet++ (f) approaches, on the other hand, perform convolution only on local points

with a graph structure.

Shape Completion 15

As point cloud segmentation is already greatly developed, this master’s thesis focuses

more on 3D shape completion, which has been extensively researched, starting with

small hole-filling algorithms. These traditional approaches use symmetry to complete

the surface [40] or solve it with a sparse linear system [19]. Older methods use also

the Poisson equation for reconstructing surfaces [30, 38, 69]. Although these methods

can achieve good results with small holes, they fail to do so when applied to larger

regions. In the last years, many deep learning approaches for shape completion have

been developed. This chapter provides a broad overview of these methods. In general,

the methods can be subcategorized into object completion (OC), scene completion

(SC) and semantic scene completion (SSC). In OC, only one object is completed, in

contrast to SC where many objects and the scene are completed. SSC is a combina-

tion of completion and segmentation.

Table 2 gives an overview of the existing methods for shape completion, which is com-

prehensive with respect to indoor scene completion. Regarding OC and outdoor scene

completion, only the most prominent papers are shown as these are not so important

for this master’s thesis and are presented only to explain the general context. For each

method, Table 2 indicates the suitable type of completion (object, indoor scene, out-

door scene, semantics). It also shows whether the source code is publicly available for

further development, the input data representation of the algorithm and the datasets

used for training. In the architecture column, a distinction is made between volumetric,

view-volumetric and point-based approaches. A more detailed explanation of these

approaches can be found in Sections 5.1 and 5.2. In addition, the defining specification

is given for each architecture.

5 Shape Completion

Shape Completion 16

Table 2: Overview of shape completion methods

 M
e

th
o

d

O
b

je
c
t

S
c
e

n
e

In
d

o
o

r

O
u

td
o

o
r

S
e

m
a

n
ti
c
s

O
p

e
n

 s
o
u

rc
e

In
p

u
t

 A
rc

h
it
e

c
tu

re

 D
a

ta
s
e
t(

s
)

2015

3D ShapeNets[64] ✓ ✓ Occ. grid
Volumetric: Convolutional
DeepBelief Network

ModelNet
NYUv2

2016

SSCNet [52] ✓ ✓ ✓ ✓ f-TSDF Volumetric: 3D CNN
SUNCG
NYUv2

Nguyen et al.[41] ✓
Occ. grid
RGB image

Volumetric: Convolutional
DeepBelief Network (Markov
Random Field)

ModelNet
SUN
Own dataset

3D-EPN [13] ✓ ✓ TSDF
Volumetric: 3D-Encoder-Pre-
dictor

ShapeNet

2017

Varley et al.[56] ✓ ✓ Occ. grid Volumetric: 3D CNN Own dataset

Han et al[23] ✓ ✓ SDF
Volumetric: Global structure
and local geometry inference
3D-Encoder-Predictor

ShapeNet

Guedes et al. [20] ✓ ✓ ✓
f-TSDF
RGB image

Volumetric: 3D CNN NYUv2

VVNet [22] ✓ ✓ ✓ ✓
f-TSDF
Depth image

View-volumetric: 2D CNN + 3D
CNN

SUNCG
NYUv2

2018

Cherabier et al.[7] ✓ ✓ ✓ TSDF
Volumetric: Primal dual optimi-
zation

Own dataset
ScanNet

PCN[66] ✓ ✓ Point cloud
Point-based: Encoder-Decoder
architecture

ShapeNet

Scancomplete[14] ✓ ✓ ✓ ✓ TSDF Volumetric: 3D CNN
SUNCG
ScanNet

SGC [67] ✓ ✓ ✓ ✓ f-TSDF Volumetric: 3D sparse CNN
SUNCG
NYUv2

Wang et al.[61] ✓ ✓ ✓ ✓ Depth image
View-volumetric: Adversarial
learning

SUNCG
NYUv2

SATNet [49] ✓ ✓ ✓ ✓
RGB image
Depth image

View-volumetric: 2D CNN + 3D
CNN

SUNCG
NYUv2

Shape Completion 17

 M
e

th
o

d

O
b

je
c
t

S
c
e

n
e

In
d

o
o

r

O
u

td
o

o
r

S
e

m
a

n
ti
c
s

O
p

e
n

 s
o
u

rc
e

In
p

u
t

 A
rc

h
it
e

c
tu

re

 D
a

ta
s
e
t(

s
)

2019

Li et al [32] ✓ ✓ ✓ ✓
RGB image
Depth image

View-volumetric: 2D DDR
blocks + Atrous Spatial Pyramid
Pooling

NYUv2
NYUCAD

TopNet[54] ✓ ✓ Point cloud Point-based: Encoder-Decoder Shapenet

Garbade et al.
[18]

 ✓ ✓ ✓
RGB image
Voxel grid

View-volumetric: 2D CNN + 3D
CNN

NYUv2
NYUCAD

EdgeNet[15] ✓ ✓ ✓ ✓
f-TSDF
RGB image

Volumetric: 3D CNN
SUNCG
NYUv2

RL-GAN-Net[48] ✓ ✓ Point cloud
Point-based: Reinforcement
learning agent-controlled GAN
network

ShapeNet

AM²FNet[4] ✓ ✓ ✓
f-TSDF
RGB image

Volumetric: Multi-scale and
modality fusion

NYUv2
NYUCAD

Wang et al.[60] ✓ ✓ ✓ Octree
Volumetric: Primal-dual optimi-
zation

SUNCG
ScanNet

Chen et al.[6] ✓ ✓ ✓
TSDF
Depth image

View-volumetric: Adversarial
learning

SUNCG
NYUv2
NYUCAD

CCPNet[68] ✓ ✓ ✓ f-TSDF
Volumetric: Cascaded context
pyramid

SUNCG
NYUv2

ForkNet[62] ✓ ✓ ✓ ✓ SDF
Volumetric: Single encoder
→multiple generators

SUNCG
NYUv2

2020

GRFNet[35] ✓ ✓ ✓
RGB image
Depth image

View-volumetric: 2D DDR
blocks + Atrous Spatial Pyramid
Pooling

NYUv2
NYUCAD

SG-NN[12] ✓ ✓ ✓ TSDF Volumetric: Sparse convolution Matterport3D

3D Sketch[5] ✓ ✓ ✓ ✓
TSDF RGB
image

View-volumetric: DDR blocks
SUNCG
NYUv2
NYUCAD

AIC-Net [31] ✓ ✓ ✓ ✓
RGB image
Depth image

View-volumetric: Anisotropic
Convolutional Networks

NYUv2 NYU-
CAD

Wang et al.[58] ✓ ✓ ✓ ✓ Octree Volumetric: Octree-based CNN SUNCG

Dourado et al.[16] ✓ ✓ ✓
f-TSDF RGB
image

Volumetric: 3D CNN

SUNCG
NYUv2
2D-3D-S
own dataset

Shape Completion 18

 M
e

th
o

d

O
b

je
c
t

S
c
e

n
e

In
d

o
o

r

O
u

td
o

o
r

S
e

m
a

n
ti
c
s

O
p

e
n

 s
o
u

rc
e

In
p

u
t

 A
rc

h
it
e

c
tu

re

 D
a

ta
s
e
t(

s
)

2020

PALNet[36] ✓ ✓ ✓ ✓
TSDF
Depth image

View-volumetric: Position
awareness loss

NYUv2
NYUCAD

AMFNet[33] ✓ ✓ ✓
RGB image
Depth image

View-volumetric: 2D CNN + 3D
CNN

SUNCG
NYUv2

SPCNet[39] ✓ ✓ ✓
Point cloud
RBG image

Point-based: Encoder decoder
architecture

NYUv2
NYUCAD

SCFusion[63] ✓ ✓ ✓ Occ. grid Volumetric: 3D CNN
Scan2CAD
ScanNet

LMSCNet[47] ✓ ✓ ✓ ✓ Occ. grid
View-volumetric: 2D CNN +
Atrous Spatial Pyramid Pooling

SemanticKITTI

S3CNet[46] ✓ ✓ ✓
f- TSDF
Depth image

View-volumetric: Sparse con-
volution

SemanticKITTI

5.1 Object Completion

As mentioned in the introduction, a wide variety of traditional 3D shape completion

methods have been proposed, from minimizing surface areas to exploiting object sym-

metries, along with many more approaches. However, this thesis focuses only on the

deep learning methods. These can be further subcategorized into volumetric shape

completion and point-based shape completion. Volumetric-based shape completion

was introduced chronologically before point-based completion. The use of point-based

completion approaches surged greatly after the development of the PointNet encoder

and its successor PointNet++ for segmentation. In the last two years in particular, many

papers have adopted the point-based approach for completion as the method requires

much less computation and memory costs than a volumetric approach. Four of the

most relevant volumetric-based approaches and two of the most notable point-based

approaches are described below in order of their introduction.

With 3D ShapeNets Wu et al. [64] introduced the first 3D deep learning model for shape

completion; the model uses a single-view RGB-D image and converts the object into a

voxel grid with the probability distribution of binary variables. To achieve this, the au-

thors proposed a convolutional deep belief network. In contrast to normal convolutional

deep learning models, this one does not do any pooling in the hidden layers as it would

Shape Completion 19

lead to greater uncertainty for shape completion. For training purposes, the authors

introduced ModelNet, a 3D CAD model dataset.

Since 3D ShapeNets is trained on synthetic CAD models, it does not work well with

real-world data. Furthermore, it does not utilize the valuable color information from

RGB-D images. To exploit this unused potential, Nguyen et al. [41] built on the work of

3D ShapeNets and proposed a Markov Random Field model for the representation of

3D objects. The priors that capture the local geometric information are learned by a

convolutional deep belief network, and the respective completion reparation of an ob-

ject is formulated as a maximum a posteriori estimation.

A similar method to 3D ShapeNets was introduced by Dai et al. [13]: a 3D-encoder

predictor network (3D-EPN). But instead of using an occupancy grid, these authors

used a TSDF for the input and a distance field (DF) for the ground truth. The architec-

ture of 3D-EPN is shown in Figure 11. The 3D deep convolutional network uses the

partial input TSDF and predicts the distance field. This is accomplished by first com-

pressing the input TSDF with the 3D encoder and using a 3D-CNN shape classifier to

predict the semantic class in the hidden space volume. Two fully connected layers then

embed the semantic information of the scan into the latent space. Afterwards, the pre-

dicter uses 3D up-convolutions to output the distance field. Skip connections are em-

bedded between the encoder and decoder to counteract the information loss.

.

Figure 11: Network architecture of 3D Encoder-Predictor Network [13]

To generate a higher resolution output (256³ grid) compared to 3D-EPN (32³ grid) Han

et al. [23] proposed to learn a local encoder-predicter network to perform patch-level

surface inference. Figure 12 visualizes their approach. The architecture includes two

networks trained in conjunction with each other. The global structure inference network

predicts the global structure of the shape, while the local geometry refinement network

Shape Completion 20

further refines local patches in an iterative manner under the guidance of the global

structure inference network.

Figure 12: Architecture of the high-resolution shape completion method of Han et al. [23]

One of the pioneer works addressing point-based methods is that of Yuan et al [66].

Their proposed point completion network (PCN) formulates the solution as a genera-

tive model with an encoder-decoder network in a coarse-to-fine fashion, as presented

in Figure 13. The input point cloud is compressed to a feature vector v by the encoder.

This feature vector is then used by the decoder to first produce a coarse point cloud

and then a detailed output point cloud. To extract the global feature from a point cloud,

the encoder uses two PointNet layers and two shared multilayer perceptrons. PCN

outperforms the volumetric approach of 3D-EPN.

Figure 13: Point Completion Network: Architecture [66]

Shape Completion 21

TopNet [54] improved on the structure of the PCN [66] decoder with its rooted tree

architecture.

Sarmad et al. [48] introduced the first approach, combining reinforcement learning with

a generative adversarial network (GAN) to complete a point cloud in the work RL-GAN-

Net. As illustrated in Figure 14, RL-GAN-Net consists of three modules: the autoen-

coder (shown in green), a latent-space generative adversarial network (shown in blue)

and a reinforcement learning agent (shown in gray). In the first step, the autoencoder—

composed of an encoder and decoder—is trained. The encoder transfers the noisy

point cloud into a noisy global feature vector (shown in yellow). The reinforcement

learning agent then choses the right seed for the GAN generator. The generator then

creates a clean global feature vector, and the decoder predicts the completed point

cloud.

.

Figure 14: Training RL-GAN-Net [48]

Shape Completion 22

5.2 Scene Completion and Semantic Scene Completion

This section focuses on recent developments in scene completion (SC) and semantic

scene completion (SSC). SC has been achieved to a small degree by a variety of small

hole-filling algorithms, but in the last few years, new deep learning methods have be-

come available, and large datasets have emerged, representing a significant step for-

ward. Many SC methods also include segmentation, and since the architectures of SC

and SSC are very similar, they are summarized together in this section. Most methods

use a volumetric approach, which means they use a grid as input, for example an

occupancy grid or a truncated signed distance field, and the architecture often consists

of a 3D convolutional neural network (3D CNN). Another popular approach is the view-

volumetric network, first introduced by Guo et al.[22]. This architecture uses either 2D

input data or compresses 3D input data into 2D data. The most common method is

then to use a 2D CNN in combination with a 3D CNN. This can be advantageous since

2D CNNs are less computationally demanding. The third category is the point-based

approach, which, in contrast to OC, has not been very commonly used up to now. The

losses are mostly cross entropy; in the case of the occupancy grid, binary cross-en-

tropy loss is quite common. In the following, the most relevant methods are described

in greater detail to provide an overview of the existing approaches.

The first researcher to combine predicting the volumetric occupancy and object cate-

gory was Song in 2016 with SSCNet [52]. He referred to the combination of scene

completion and scene labeling as semantic scene completion. SSCNet uses a 3D con-

volutional network. As input, it takes a single depth image and constructs a view inde-

pendent TSDF by calculating the distance to the nearest point on the surface. The

network architecture is displayed in Figure 15. It consists of 3D convolutional layers for

learning the local geometry representation. To reduce the resolution of the input to a

quarter, convolutional layers with stride and pooling layers are employed. To gather

the higher interobject contextual information afterwards, a dilation-based module is uti-

lized. Then, the data is processed by two convolutional layers and one voxel-wise soft-

max layer.

Shape Completion 23

Figure 15: Architecture SSCNet [52]

Based on SSCNet, the work of Guedes [20] additionally uses the color information of

RGB-D images instead of using only the depth information. This additional color infor-

mation did not show better results when evaluating it using the NYUv2 dataset.

Another approach fusing the RGB and depth information is AM²FNet [4]. Figure 16

gives an overview of the structure of this network. In the depth branch, the information

is converted into a flipped TSDF. At the same time, the RGB image is projected onto

three volumetric data representations. Each representation contains areas of red,

green and blue. Then, the integration module fuses the representations together, and

the refinement module integrates high-level features into low-level features to retain

more local details.

Figure 16: AM²FNet architecture [4]

A different idea is approached by Guo et al. with VVNet [22], a view-volume convolu-

tional neural network. To reduce computational costs, the geometric features from a

depth image are obtained with a 2D-view CNN. Afterwards, the features are projected

into a 3D volume and processed with 3D CNN to learn the context information.

A similar approach is taken by SATNet [49], which first performs the semantic segmen-

tation with a 2D convolutional network and then projects the 2D semantic features onto

their corresponding 3D spatial positions. The approach completes the 3D scene using

Shape Completion 24

an architecture consisting of two residual blocks and performing two Atrous spatial

pyramid poolings and two 1*1 convolutions. The greatest benefit is that the completion

process can take advantage of the semantic scene surface. Figure 17 gives an over-

view of the general structure, consisting of an encoder-decoder architecture for 2D

segmentation, a 2D-3D reprojection layer for mapping the 2D semantic scene into a

3D volumetric voxel grid and a 3D convolutional network to complete the scene.

Figure 17: SATNet [49]

Garbade et al. [18] used a colored voxel grid in which the RGB image is first segmented

with a 2D CNN. Each pixel in the depth map corresponds to a pixel in the 2D semantic

segmentation map. Due to this, every class pixel can be projected into the 3D volume

at the location of its correlating depth value. This gives an incomplete 3D semantic

tensor that allocates to every surface voxel its corresponding class label. Afterwards

3D CNN completes the scene.

An approach to obtaining 3D SSC simultaneously from the 2D segmentation data was

proposed using AMFNet [33], which has a similar structure to SATNet, but the SSC

has a two-branch structure as shown in Figure 18: a 3D guidance branch and a 3D

SSC branch. After the 2D segmentation, which involves the encoder-decoder structure

and the 2D-3D projection layer that outputs a 3D semantic voxel grid, the 3D volume

network predicts the complete scene.

Shape Completion 25

Figure 18: Architecture of AMFNet [33]

To reduce memory cost and increase inference efficiency, Wang et al. [60] introduced

a semantic reconstruction method that uses octrees. The approach performs in a

coarse-to-fine fashion. It predicts a semantic class for each voxel in every octree level

and then decides which voxel is to be divided further to define the reconstruction. In

this way, a reconstruction in a higher resolution compared to binary voxel grids and

TSDFs is possible.

Another octree-based approach uses the O-CNN [57, 59] framework and was pro-

posed in [58]. The network structure is displayed in Figure 19. Here the network has a

U-Net design consisting of two deep residual networks for encoding and decoding.

Figure 19: U-Net design with octrees. [59]

Since the network completes the scene further, the octree resolutions differ in some

areas between input and output. To combat this, the authors proposed a novel output-

guided skip connection, as shown in Figure 20, that adds skip connections between

the created octree node and its corresponding octree node in the input. In Figure 20

Shape Completion 26

(a) is displayed the input shape with additional noise in the top right corner. The target

shape is represented by (b), and there are three skip connections: l1, l2 and l3. The

procedure can be summed up in four steps as shown in the figure. In step one, the

node’s status (empty, nonempty) is defined. In step two, the octree is categorized by

the node status. In the third step, the features of (a) are multiplied with the map of (e).

In the last step, (f) and (b) are summed up, and the result is presented in (d). Evident

in this example is the robustness toward noise.

Figure 20: A octree output-guided skip connection. [59]

EdgeNet [15] represents a new end-to-end 3D CNN architecture that combines and

represents information on color and depth. This contrasts to other methods that per-

form the 2D segmentation before training the 3D-CNN. EdgeNet use edge detection in

the image. This gives a 2D binary representation of the scene which can be used to

highlight objects that are hard to determine in depth maps. A picture on a wall is, for

example, expected to be invisible in a depth map. EdgeNet tests three fusion schemes

as shown in Figure 21: early fusion, middle fusion and late fusion.

Shape Completion 27

Figure 21: EdgeNet architecture and fusion schemes [15]

After testing the different fusion strategies, they concluded that a mid-level fusion strat-

egy performs best. Since memory requirements increase as fusion occurs later, the

batch size for training must be reduced. This in turn can negatively impact on learning.

Cherabier et al. [7] introduced a framework for multi-view 3D scene completion. Their

network architecture consists of a three-layer approach with an encoder, unrolled pri-

mary dual optimization layers, and a decoder. The primal-dual algorithm uses varia-

tional optimization for 3D reconstruction as a lightweight regularizer. The advantage of

the architecture is significantly reduced memory and computational need compared to

a high-capacity 3D CNN. Figure 22 gives an overview of the architecture.

Figure 22: Architecture with primal dual optimization [7]

Shape Completion 28

Another work addressing the problem of the cubical growth of the memory and com-

putation needs of 3D CNN is that of Zang et al. [67]. They used spatial group convolu-

tion in which voxels are grouped together, and then 3D sparse convolution was per-

formed on every group. The method cuts the computational effort considerably with

only a small loss of accuracy since the voxels are only accounted for during the con-

volution.

Wang et al. [61] proposed an adversarial learning-based method for SSC. They used

depth images directly as input and trained the depth information into the 3D volumetric

space with semantic labels using two discriminators. One discriminator compares the

reconstruction with the ground truth to optimize the overall architecture. The other dis-

criminator optimizes the learned latent features.

Chen et al. [6] tried to improve the generative adversarial network by using a TSDF as

input since Wang et al. discovered that the encoders discard too much information to

match the different representations, resulting in a substantial loss of information. This

results because the encoder of the depth image differs from the encoder of the

voxelized ground truth.

Since 3D convolution is so computationally expensive, Li et al. [31] introduced an ani-

sotropic convolutional network. Compared to normal 3D convolution, the introduced

anisotropic convolution in AIC-Net is less computationally demanding and has a higher

parameter efficiency. The proposed anisotropic convolution module allows 3D kernels

with changing sizes since it modifies voxel-wisely to the dimensional anisotropy prop-

erty. Figure 23 shows the structure of an anisotropic convolution module.

Figure 23: Anisotropic convolution [31]

Shape Completion 29

With SPCNet [39], an approach to point clouds and RGB pictures was proposed to

reduce memory consumption compared to grid-based solutions. SPCNet consists of

two modules: an observer point encoder and an observed-to-occluded point encoder.

The encoder projects the point cloud features stepwise into lower point resolution as

shown in the Figure 24. Afterwards, the decoder projects the features to the occluded

representation points and finally assigns semantic labels to every class. The texture of

the RGB images is segmented in 2D, and afterwards the semantic label is projected to

the corresponding point. This approach is promising in terms of efficiency but does not

offer more accurate results than grid-based methods.

Figure 24: SPCNet architecture [39]

Methodology 30

The evaluations presented in Chapter 5 show that all the publicly available methods

for 3D SC are based on a volumetric approach. Most methods use a TSDF as input

since it has the greatest descriptive potential in characterizing a scene. Thus, better

results can be achieved using a TSDF. Taking this into account, the goal of this thesis

is to transform a point cloud into a TSDF and then run it on an existing SC algorithm.

Most SC algorithms are trained on synthetic data as it is difficult to obtain complete

ground truth using real-world data. However, applying a model trained on synthetic

data to real-world scans has its limitations and leads to inaccurate results. To over-

come these limitations, this thesis uses an algorithm introduced by Dai et al. [12]. Their

sparse generative neural network (SG-NN) for self-supervised scene completion of

RGB-D scans is fully self-supervised and can be trained on real-world scans. It

achieves this by removing information from a real 3D scan, making the scan less com-

plete. In this way, the network can be trained on the differences between the less com-

plete input scan and the real scan. After being trained, the algorithm can complete the

scene even further than the real scan, thereby eliminating the gaps created by occlu-

sions. Figure 25 shows the three stages of completion: on the left, the less complete

input scan; in the middle, the real scan (also called the target scan); and on the right,

the completed prediction scan.

Figure 25: Input, Target and Prediction Scan

6 Methodology

Methodology 31

The first section in this chapter explains the architecture of an SG-NN. The next two

sections describe two approaches to implementing an SG-NN on a point cloud. In the

last section, data collection with a LiDAR sensor is described.

6.1 Baseline Architecture: Sparse Generative Neural Network

This section describes the SG-NN network. The input is explained in detail as this in-

formation is essential for the creation of TSDFs from point clouds described in Section

6.2. The code was developed using Pytorch 1.1.0 and Python 2.7, and it was updated

by the author to run with Pytorch 1.8.1 and Python 3.8.

6.1.1 Input

SG-NN uses a truncated signed distance field (TSDF) as input and output. TSDFs are

generated through volumetric fusion from RGB-D scans. The RGB-D scans were re-

trieved form the Matterport3D [2] dataset. The RGB-D camera system was mounted

on a stative and consisted of three RGB-D cameras pointing slightly upwards, horizon-

tally, and slightly downwards. The camera system was rotated on its vertical axis to

capture six images; in total, there were 18 RGB-D images in a panorama from one

camera standpoint. One RGB-D image had a resolution of 1280 × 1024. For an entire

room, a set of panoramas were taken with an average distance of 2.25 m. In Figure

26, the different camera standpoints for a scene are shown as green dots. For every

camera frame, 6-DoF camera poses are determined; 6-DoF indicates three domains

of freedom in translation and three domains of freedom in rotation along the x, y and z

axes. The camera poses are globally registered. In the Matterport3D dataset, the RGB-

D data of complete levels with many different rooms is saved in one sequence, as can

be seen in Figure 26. Since only one room is required at a time for training in SG-NN,

only the images with camera positions in the same room are used for volumetric fusion.

Methodology 32

Figure 26: Camera poses are on average 2,25 meters apart in the Matterport3D dataset [2].

SG-NN uses the fusion process introduced by Curless and Levoy [10] in 1996. As

discussed in Section 2.5 a SDF stores the signed distance to the closest surface at

each voxel. A TSDF is a SDF in which the voxels are truncated at a defined distance.

To retrieve the distance, from a depth image Curless and Levoy approximated it, by

using the distance along the sight of the camera. This is referred to in the literature as

a projective SDF or TSDF. Figure 27 shows the projective distance when a TSDF is

created from one depth image.

Figure 27: TSDF from one depth image

Methodology 33

In SG-NN the TSDFs are created from multiple depth images. When using multiple

depth maps the average of the distances is calculated. Figure 28 and Figure 29 visu-

alizes this in a simplified way.

Figure 28: Two TSDFs from two depth images

Figure 10 shows the calculation of the distance for both images. For each voxel with

two distances, in these two images, the average distance is calculated. This can be

seen in Figure 29.

Figure 29: Two depth images averaged into one TSDF

Methodology 34

The calculation of the fused distance, depicted in yellow in Figure 29, uses the following

equations (6.1) and (6.2).

𝐷(𝑥) =
∑ 𝑤𝑖(𝑥) 𝑑𝑖(𝑥)

∑ 𝑤𝑖(𝑥)

(6.1)

𝑊(𝑥) = ∑ 𝑤𝑖 (𝑥)

(6.2)

The weight of voxel x for camera i is described by 𝑤𝑖(𝑥). The weights are useful to

down weight the SDF values behind the surface. This is helpful since in front of the

surface the space is known, but behind the surface there is no information about the

space. The distance along the ray, depicted in the Figure 28 with green and blue ar-

rows., from voxel x for camera i is represented by 𝑑𝑖(𝑥). The fused weight and distance

are described by 𝐷(𝑥) and 𝑊(𝑥).

SG-NN uses a TSDF with a voxel size of 2 cm and a truncation of 3 voxels. As de-

scribed at the beginning of Chapter 6, the input consists of the real scan Starget and a

less complete input scan Sinput, as shown in Figure 25. The scan Sinput is created by

using approximately 50% of the frames for the volumetric fusion, and the scan Starget is

obtained using all the frames. To train the model more efficiently, the scans are

cropped to 64 × 64 × 128 voxels.

Methodology 35

6.1.2 Architecture

The architecture is an encoder-decoder convolutional neural network and works in a

cosrse-to-fine fashion generating a sparse TSDF prediction. Figure 30 visualizes the

architecture and in Figure 32 the architecture is shown in detail.

Figure 30: SG-NN architecture [12]

In the first step, the input scan, represented by a sparse TSDF, is encoded with several

3D sparse convolutions, depicted in Figure 32 as “SparseEncoder”. With each set of

3D convolutions, the spatial dimensions are reduced by half. After the encoding the

features are transformed into a dense occupancy grid (in Figure 32 SparseToDense),

to allow for a better prediction of the complete scene at a coarse level. The next step,

shown in Figure 32 as DenseGenerator, predicts the geometry of the complete scene

at a low resolution, by using several dense 3D convolutions. The output is a feature

map F0, the predicted coarse occupancy O0 and the predicted TSDF S0. Next, a sparse

representation is calculated based on the occupancy O0. These representations of F0,

O0 and S0 are then decoded using the SparseGenerator. In each step, the scene is

predicted with a higher resolution. This hierarchical process of predicting occupancy

and TSDF and continuously improving resolution is visualized in Figure 31.

Figure 31: SG-NN: coarse-to-fine [12]

Methodology 36

In the last step the final TSDF is predicted by module SurfacePrediction, as shown in

Figure 32. As input the last predicted Fn, On and Sn are used. The network also works

with sparse skip connections between the encoder and decoder. The features that are

the same in the target and input destination are connected and when a target destina-

tion is not present in the destination zero feature vectors are used.

SG-NN uses a binary cross entropy loss in every level for the occupancy On and a l1

loss with the target TSDF values.

Figure 32: Detailed architecture of SG-NN [12]

In Figure 32, the architecture of SG-NN is shown in detail with its convolutional param-

eters given as nf in, nf out, kernel size, stride and padding, stride and padding default-

ing to 1 and 0, respectively. An arrow indicates concatenation and a  addition.

Methodology 37

6.2 Point Cloud to TSDF

In this section, a novel method for transforming a point cloud into a TSDF is proposed.

The section is divided into three subsections. First, the requirements and challenges

are explained. Then, in the second and third subsections, the algorithm is described.

6.2.1 Requirements and challenges

The first step in developing an algorithm from point cloud to a TSDF was to find the

data representation of a TSDF and a .ply file. Table 3 shows the data representation

of a TSDF file in SG-NN. A TSDF is defined by the number of voxels and a 3D array

comprising the x, y and z coordinates as unsigned integers. The distance is stored as

a float. The point cloud is defined by the number of points, and the coordinates of the

points are saved as floats.

Table 3: Data representation of a TSDF file in SG-NN

Number of bytes Data type Meaning

Header data

8 unsigned long long dimx

8 unsigned long long dimy

8 unsigned long long dimz

4 float Voxelsize

64 = 4 x 4 x 4 array 4 x 4 float world2grid

Input data

8 unsigned long long num = number of voxels

4 x num x 3 unsigned int

input_locs = x,y,z coordinates of the

voxels

4 x num float input_sdfs: distance for every voxel

To obtain more insight into the sparsity of the TSDF in SG-NN a small algorithm was

written to visualize all voxels of a training TSDF as points. Figure 33 shows the input

TSDF from a bathroom. On the left all negative voxels are represented as points and

on the right all voxels are visible.

Methodology 38

Figure 33: Voxels of a TSDF represented as points.

From the left image in Figure 33, it is evident that the negative TSDF values are always

behind the scanned surface and are truncated after three voxels. The indication from

the right image is that there are more positive TSDF values than untruncated SDF

values. However, since the truncated voxels do not provide any additional important

information, it is better to create a TSDF with only the untruncated voxels for efficiency

reasons. Theoretically, the truncated voxels can be easily added if needed.

From the previous descriptions, it can be concluded that generating the sign of a TSDF

is the most difficult challenge. Unlike deep images, a point cloud gives no indication of

the location of a surface and which points are adjacent to each other. Above all, it is

not possible to identify the front and back of a surface. However, since point clouds

are usually scanned from a viewpoint in the center of a space (the coordinate origin),

this information can be used to determine the sign. If the point cloud is composed of

several point clouds, using point cloud registration and the origin coordinates of the

scan points is no longer possible; it is only possible to obtain a truncated distance field

(TDF). The approach for that scenario is elucidated in Section 6.3. Another point to

keep in mind when designing an algorithm from a point cloud to a TSDF is that the

coordinate system of the voxels contains only positive values.

Methodology 39

6.2.2 Overview Method

In this subsection, the general idea of the proposed algorithm for generating a TSDF

from a point cloud is presented. The following subsection explains the actual algorithm.

Figure 34 visualizes the approach. The illustrated room is not true to scale, and the

voxels are for illustrative reasons much larger than in reality. The point cloud was gen-

erated form one viewpoint K, which is also the coordinate origin. The positive voxels

are visualized in blue and the negative voxels in white. The green line represents the

occupied voxels that contain the point cloud.

Figure 34: TSDF to point cloud

The basic idea is to project a voxel grid over the point cloud and then to save the

occupied voxels. Afterwards, every voxel that lies on the line between K and an occu-

pied voxel and that has a maximum distance of 3 voxels to the occupied voxel is cal-

culated. This is illustrated in Figure 35. The occupied voxel has the distance 0, and the

voxels in front of the occupied voxel on the line toward K have positive distances. Be-

hind the occupied voxel, the voxels have negative distances. Euclidean distance is

used in the calculation.

Methodology 40

Figure 35: Occupied voxel with its adjacent signed distance voxels.

Instead of calculating the distance to the surface or in the case of a point cloud to the

points, the algorithm calculates the distance to the occupied voxel center. In this way,

the algorithm is more robust to noise and point density. At the same time, the level of

detail is reduced due to the voxel size of 2 cm.

6.2.3 Algorithm

This subsection describes the proposed algorithm in detail. It is possible to change the

voxel size, the number of voxels until truncation, whether the input point cloud should

be visualized and by how many voxels the dimension space should be increased.

In the following, the steps of the algorithm are explained.

1) The algorithm employs the Open3D library to read and down-sample the point cloud

to the desired voxel size.

2) If the input of show_visualization is set to true, the down-sampled voxel grid is vis-

ualized using the Open3D library.

3) The down-sampled voxel grid is converted to an array. The coordinates are saved

with the voxel distance, not the real distance.

4) After acquiring the voxels that are occupied, Algorithm 1 is used for every voxel.

It creates the voxels that lie on the line to K before and behind the occupied voxel.

To find these voxels, Bresenham’s line algorithm was adapted.

Methodology 41

The occupied voxel (loc) is the starting voxel, and the scan point K (origin) is the

target voxel. At first, a distance of 0 is saved for the occupied voxel in line 2. Then,

the driving axis is determined by the greatest absolute between the coordinates

(dx, dy, dz) of the starting and target voxels.

For the driving axis, the slope error is calculated using the equations in Table 4.

Afterwards, the algorithm always moves one voxel forward on the driving axis and

one voxel on the other axes if the slope error is greater than zero. In every step,

the new voxel is saved with its accompanying Euclidean distance (sdfs) and the

voxel that lies on the opposite side of the starting voxel with the same negative

distance.

Table 4: Slope-error equations

x-axis
y-axis z-axis

𝑝𝑥𝑦 = 2 × 𝑑𝑦 − 𝑑𝑥
𝑝𝑦𝑥 = 2 × 𝑑𝑥 − 𝑑𝑦 𝑝𝑧𝑥 = 2 × 𝑑𝑥 − 𝑑𝑧

𝑝𝑥𝑧 = 2 × 𝑑𝑧 − 𝑑𝑥
𝑝𝑦𝑧 = 2 × 𝑑𝑧 − 𝑑𝑦 𝑝𝑧𝑦 = 2 × 𝑑𝑦 − 𝑑𝑧

With every step, the Bresenham algorithm moves forward one voxel on the drive

axis and thus skips some voxels that lie on the projection line. In Figure 35, this

would be for example the voxel with the distance 2.24. Further methods to solve

this are discussed in Section 7.2.

5) Since the signed distances (sdfs) are calculated in voxels, they are multiplied by

the voxel size to be converted into meters.

6) The voxels are stored in SG-NN as unsigned integers, so the voxel grid is shifted

in this step. First, the maximum and minimum voxel coordinates are calculated, and

the defined additional_shift is added into the input for padding on each side. Then,

all voxels are shifted by the minimum coordinates of the voxel grid.

7) The dimensions are saved from the maximum coordinates in the voxel grid.

8) The array world2grid is created and filled.

9) With all necessary information in place, a TSDF file is generated with the structure

shown in Table 3.

10) The necessary known file is written, which contains all voxels of the dimension with

the value zero.

11) To verify the correctness of the data, all TSDF data is also written to a text file.

Methodology 42

Algorithm 1: Calculate voxels till truncation with distance

 Input: coordinate origin: origin,

coordinates occupied Voxel coordinates: loc,

number of voxels till truncation: number_of_voxels_front,

 Output: voxels: locs,

distance of voxel: sdfs

1 Save loc[x,y,z] in locs and distance 0.0 in sdfs

2 Store loc_start[x,y,z] = loc[x,y,z]

3 Calculate the constants dx,dy,dz = |origin[x,y,z]– loc[x,y,z]|

4 If origin[x] > loc[x] #function three times for x,y,z

5 xs = 1

6 Else

7 xs = -1

8 End

9 If dx > dy and dx > dy #function three times for x,y,z

10 p1 = 2 * dy - dx

11 p2 = 2 * dz - dx

12 While |loc[x]-loc_start[x]| < number_of_voxels_front

13 loc[x] = loc[x] + xs

14 If p1 ≥ 0

15 loc[y] = loc[y] + ys

16 p1 = p1 – 2 * dx

17 End

18 If p2 ≥ 0

19 loc[z] = loc[z] + zs

20 p2 = p2 – 2 * dz

21 End

22 p1 = p1 + 2 * dy

23 p2 = p2 + 2 * dz

24 Save loc_new[x,y,z] in locs

25 Save distance sdf = loc_new to loc in sdfs

26 Save loc_opposite_new[x,y,z] in locs

27 Save negative distance sdf in sdfs

28 End

29 End

Methodology 43

6.3 Point Cloud to TDF

The approach in Section 6.2 does not include point clouds taken from multiple viewing

angles as shown in Figure 36. Thus, this section describes an approach for converting

such a point cloud to a TDF.

Figure 36: Truncated distance field

The calculation of a TDF has one major advantage. Using multiple point clouds com-

bined with point cloud registration provides a more accurate ground truth for a scene.

Training a SC neural network with this additional information should result in better

prediction models. At the same time, there is less information about the fronts and

backs of objects. At the start of this thesis, it was not certain how well the completion

algorithms would work on a TDF compared to a TSDF.

The algorithm for a conversion to a TDF starts with the same steps as the proposed

algorithm for the conversion from a point cloud to a TSDF. First, the point cloud is read,

down-sampled and saved to an array. Here, the algorithm differs as it calculates all

voxels surrounding the occupied voxel until truncation. Figure 37 shows in green two

occupied voxels and the voxels with their distance until truncation at three voxels

Methodology 44

Figure 37: Truncated distance field

6.4 Generation of point cloud dataset.

Based on the review of datasets presented in Chapter 3, it is evident that a large-scale

dataset of private housing is still missing. To achieve this, the possibility of an iPhone

and iPad crowdsourced dataset is explored in this thesis.

Since 2020, new iPhones and iPads from the pro product line have included LiDAR

sensors since 2020. LiDAR stands for light detection and ranging and is in the category

of time-of-flight sensors. The sensor sends a light impulse and measures the time it

takes the light to return from the scanned object. The LiDAR sensor on the iPad is

suitable for distances up to 5 m. This is sufficient for most indoor spaces but is not

suited for large outdoor spaces.

There is little research yet on the accuracy of the LiDAR sensors on iPads and iPhones.

Vogt et al. [37] investigated the potential of LiDAR and TrueDepth by using different

Lego bricks and comparing the results with an industrial Artec Space Spider Handheld

3D scanner. The work concluded that the LiDAR sensors on iPads and iPhones are

not suitable for scanning small objects such as Lego bricks. However, there has been

no research on larger objects such as rooms. For this thesis, a small study was con-

ducted (portrayed in Table 5) that included measuring distances with the LiDAR sensor

on an iPhone 12 pro and comparing the measurements with the ground truth obtained

by tape measurement.

Methodology 45

Table 5: LiDAR sensor error

 Surface Surface

material

Ground

truth [mm]

LiDAR

distance

[mm]

Error in

distance

[mm]

Error in

percentage

[%]

1 White ceiling drywall 2534 2541 -7 0.28

2 White ceiling drywall 2612 2633 -21 0.80

3 White wall plaster 4234 4265 -31 0.73

4 White wall plaster 3945 3978 -33 0.84

5 White wall plaster 2817 2834 -17 0.60

6 White wall plaster 3486 3505 -19 0.55

7 Cupboard wood 565 570 -5 0.88

8 Table wood 721 728 -7 0.97

9 Couch fabric 2653 2667 -14 0.53

10 Carpet fabric 1870 1880 -10 0.53

To place these errors of the LiDAR sensor into perspective, Figure 38 shows the error

measured with Kinect sensors in the paper [42]. The figure illustrates that the Kinect

v1 sensor showed exponential growth and the Kinect v2 sensor linear growth with

higher accuracy.

Figure 38: Error of Kinect v1 and v2 [42]

Methodology 46

To better illustrate the errors of the Kinects sensors, Table 6 adopts the structure of

Table 5 and provides the error percentages, which are calculated from the distances

in Figure 38.

Table 6: Kinect error sensor

Distance Kinect v1

Error distance

[mm]

Kinect v1

Error in per-

cent [%]

Kinect v2

Error distance

[mm]

Kinect v2

Error in per-

cent [%]

4.0 0.180 4.5 0.020 0.5

3.5 0.127 3.6 0.017 0.5

3.0 0.092 3.1 0.016 0.5

2.5 0.063 2.5 0.015 0.6

2.0 0.035 1.8 0.013 0.7

1.5 0.018 1.2 0.010 0.7

The Kinect sensor was chosen for comparison since it produced several datasets, as

described in Chapter 3. The popular NYU dataset, for example, was created with a

Kinect v1 sensor. Through comparing the numbers in Table 5 and To better illustrate

the errors of the Kinects sensors, Table 6 adopts the structure of Table 5 and provides

the error percentages, which are calculated from the distances in Figure 38.

Table 6, it becomes obvious that the accuracy of the iPhone’s LiDAR sensor is suffi-

cient for creating a dataset; the sensor is almost as accurate as the Kinect v2 and by

far more accurate than the Kinect v1, especially when it comes to longer distances.

The range of the sensors are similar, with 4.5 m for the Kinect sensors and 5 m for the

LiDAR sensor.

After evaluating accuracy, the practicability of the scanning process was examined.

The Polycam LiDAR 3D scanner application was used for scanning. For the output of

meshes, the application supports the formats .obj, .glb, .dae, .stl and .usdz, and for

point clouds the formats .dxf, .ply, .laz, .xyz and .pts are supported. The application

allows a freehand scan that can be performed by walking around in a room.

During the extensive testing, some limitations became apparent. One of these was

mentioned earlier in the chapter, namely that small objects such as Lego bricks cannot

Methodology 47

be scanned accurately [37]. The other limitation results from the distortion caused by

reflective objects such as mirrors, windows, glass doors and pictures with glass frames.

These items must either be removed or covered up during the scanning process. In

Figure 39, a distortion is shown on the right that was caused by a picture with a glass

frame.

Figure 39: Distortion of a point cloud by an image through a glass frame

The original idea was that because an iPhone is mobile and small, it could be used to

create a higher quality dataset. An iPhone can scan under furniture like tables and

chairs, creating a more detailed dataset and more accurate ground truth for training.

Unfortunately, this was not confirmed in reality. The scan registration process, which

consists of aligning multiple scans on one iPhone, is not perfect. To capture all the

details in a room, the scanner—in this case the iPhone—must be moved around quite

a bit, thus increasing susceptibility to errors during the registration process. Especially

when scanning detailed elements, for instance when placing the sensor under a table,

distortions of the scan can occur. Such an error can be seen in Figure 40. After scan-

ning a corner behind a table, the sensor experienced an error in its registration process.

This caused the cupboard on the left side of Figure 40 to be distorted, thus making the

scan unusable.

Methodology 48

Figure 40: Scanning error caused through a wrong registration process.

Although a more detailed dataset with a more accurate ground truth is not possible,

the results when scanning from one viewpoint are good and can be improved by using

a tripod.

Discussion 49

This chapter first describes the difficulties with the SG-NN algorithm and then evalu-

ates the results of the point cloud completion. At the end, other possible approaches

are briefly discussed.

7.1 SG-NN

After debugging and adapting the algorithm of Dai et al. [12], it runs on Pytorch 1.8.1

and Python 3.8. The provided TSDFs, which were generated by RGB-D scans were

tested on the trained model. In Figure 41 the input can be seen on the right and the

predicted model on the left.

Figure 41: Input and prediction mesh

Since the source code of SG-NN is not documented, several short algorithms were

written to reengineer the needed files for training. SG-NN uses an input TSDF, a target

TSDF and a known file to train and complete scenes as already described in Subsec-

tion 6.1.2. The TSDF was explained in detail in Subsection 6.1.1 and will therefore not

be further discussed in this chapter. Much more problematic was the known file needed

to test and train the model. This file was not described in the corresponding paper nor

on GitHub. The known file contains all voxels of the voxel grid, compared to a TSDF

file, which only contains the voxels up until truncation. Additionally, there is an integer

from 0 to 5 for every voxel. To determine how this file was created, the source code

was analyzed in depth, and some small functions were written to display the binary

data as text files and point clouds. In Figure 42, the voxels of the known file are repre-

sented as yellow points, and the corresponding TSDF is shown as mesh in gray. Each

7 Discussion

Discussion 50

of the six images contains a category or, respectively, one of the assigned numbers of

the known file. The top three images show mainly but not exclusively voxels that are

outside the room. The image at the bottom left displays voxels located near the surface

both inside and outside the room, which are located near the surface. The pictures in

the middle and bottom right illustrate the rest of the voxel grid.

Figure 42: Known file with its different categories

Unfortunately, no clear scheme is visible from the images as to how the known file was

created and what purpose it could fulfill. After an unsuccessful deep analysis of the

source code and an attempt to adapt SG-NN to function without the known file, the

importance of the categories was tested by assigning only one category to the whole

known file. The result of the prediction is depicted in Figure 43. The image on the left

shows the prediction with its original known file and the image on the right represents

the completion with the modified known file with only one category. Since almost no

difference is visible in their completeness, further investigation into the purpose of the

Discussion 51

known file was not carried out. Thus, the created known files in this master thesis

consist only of all voxels from the space of a scene with one assigned category.

Figure 43: Known file

Since SG-NN uses an input and a target file to produce the predicted file, it was deter-

mined what happens if the already trained model only uses the target file for prediction.

In Figure 44 on the right side, the prediction is shown with only the target file and on

the left side with the input and target files. As can be seen in the figure, the results are

nearly equally accurate. Therefore, in the following sections, only the real scan is used

for the input and target file.

Figure 44: Prediction with two target TSDFs

Discussion 52

Since the algorithm proposed in Section 6.2 always calculates the distance between

two voxel centers, this results in an accumulation of equal distances. However, the

model of SG-NN was trained with the distances to the real surfaces. To test whether

this could lead to problems with the evaluation of the completion of point clouds in the

next chapter, all distances of the input TSDF are rounded. Figure 45 displays on the

left side the prediction with rounded numbers and on the right side the original predic-

tion. As can be seen from the figure, the prediction is significantly worse. Thus, for an

accurate completion the model must be retrained with the point cloud data. However,

the accuracy is sufficient for a first evaluation of the approach.

Figure 45: TSDF with rounded distances

Discussion 53

7.2 Point cloud to TSDF

Figure 46 shows on the left the input TSDF created from the point cloud on the right

using the proposed algorithm of this thesis. The point cloud, containing the authors

living room, was recorded with the LiDAR sensor on an iPhone. Unfortunately, only a

few spots are visible in the input TSDF due to the fact that the TSDF is exceptionally

sparse, and the marching-cubes algorithm that converts the TSDF into a mesh cannot

handle this well.

Figure 46: Point cloud on the right with the corresponding TSDF on the left.

When using this very sparse TSDF from Figure 46 as input for SG-NN, the prediction

result is not optimal, as can be seen in Figure 47. The scene has been significantly

more completed compared to the input TSDF, but it does not contain as much infor-

mation as the input point cloud. Moreover, it has defects at the four corners, in each of

which an area on the ground is indicated even though there is no actual surface there.

These areas on the ground extend to the respective end of the defined voxel space.

Since this complete voxel space is only defined in the headers of the TSDF file and the

known file, there is a strong assumption that this is related to the known file.

To optimize the completions, the input TSDF file must be less sparse. To verify this

hypothesis, the number of voxels was increased before truncation in Figure 48.

Discussion 54

Figure 47: Prediction TSDF with truncation after 3 voxels

Figure 48 shows the prediction TSDF with a truncation after seven voxels. Although

the algorithm is not optimized for this, a more complete picture is already visible.

Figure 48: Prediction TSDF with truncation after 7 voxels

Discussion 55

Since every step of the Bresenham algorithm moves one voxel on the driving axis

forward, some voxels that lie on the projection line are left out. To address this, the

algorithm entitled "A Fast Voxel Traversal Algorithm for Ray Tracing" by Amanatides

et al. [28] could be used. Another or additional possibility would be to adjust the algo-

rithm so that the voxels directly next to the line from the occupied voxel to K are also

saved and assigned the distance to the occupied voxel.

When following up on these approaches, it was found that the possibility of storing the

same voxel multiple times is high. To avoid this, the algorithm must sort out multiple

voxels and store only the voxels with the shortest distances. This problem is visualized

in Figure 49.

Figure 49: Multiple distances for one voxel

Based on the above discussion, the conclusion is that it is possible to convert a point

cloud to a TSDF and that this can be a successful approach for completion if further

adjustments are made.

Discussion 56

7.3 Point cloud to TDF

In order to perform a first investigation into whether a TDF is at all suitable for a com-

pletion, the same algorithm as described in Subsection 6.2.3 was used, with the ad-

justment that the negative values were stored as positive values. The result of the

completion is illustrated in Figure 50. It is obvious the result is worse compared to

Figure 48. However, the level of completion is already informative and with the pro-

posed approach of Chapter 6.3 the TDF would be much denser. Therefore, it can be

assumed that the approach with a TDF instead of a TSDF is to be preferred. On the

one hand, the low sparsity is eliminated; on the other hand, the point clouds for a TDF

can be recorded from multiple viewing angles, thus making available a more accurate

ground truth with which to train.

Figure 50: TDF with a truncation after 7 voxels

Discussion 57

7.4 Point cloud generation through a LiDAR sensor

As discussed in Section 6.4, there is potential for a dataset generated with a LiDAR

sensor on an iPhone or iPad. Especially, the widespread availability of iPhones and

iPads has made possible a large-scale real-world dataset that could rival synthetic da-

tasets, for example SUNCG with 45,000 scenes. Another issue that could be resolved

using a crowdsourced dataset is the scarcity of rooms in private apartments in existing

datasets. By having a dataset containing point clouds rather than RGB-D scans, the

privacy issues would be far less severe.

Currently, the LiDAR sensors in iPhones and iPads only provide good results from one

central scanning point. To obtain a more detailed point cloud dataset with fewer ob-

scured areas, further research must be done into the registration process of the scans.

In addition, the accuracy of the LiDAR sensor should be further tested since the results

in this thesis only went in one direction. However, even with these flaws, a large-scale

dataset from one standpoint would be an asset in training 3D deep learning models.

7.5 Possible other approaches

Other approaches were also considered in the context of this work but were not further

pursued. In the following, these two approaches are briefly presented, and it is ex-

plained why they were not further pursued.

The first idea involved converting a point cloud into a grey scale depth image and then

using the same volumetric fusion process as in SG-NN to create a TSDF. The depth

images are taken from the center of the room similar to in Subsection 6.2 and they

always contain the distance from the surface points to the viewpoint. Figure 51 visual-

izes this approach. For point clouds with color information, even an RGB-D image

would be possible, although this is not required for volumetric fusion. Chmelar et al. [8]

describes an approach for converting point clouds into depth images.

Discussion 58

Figure 51: Point cloud to depth image [8]

Ultimately this approach was not chosen because the conversion from a point cloud to

an RGB-D image to a TSDF requires additional computational need compared to the

direct transformation from a point cloud to a TSDF and more spatial information is lost

due to the additional transformations.

The second approach considered, was to rebuild the entire network and generate an

encoder based on the PointNet [44] architecture. For example, through max pooling

layers and convolution the input points could be compressed into a latent space vector,

which then be transformed into a distance field through 3D convolutions. This approach

would lie beyond the scope of this thesis.

Concluding Remarks 59

The objective for this master thesis was to develop an algorithm for the scene comple-

tion of point clouds. In Subsection 8.1 the methods developed and results are summa-

rized. Subsection 8.2 describes possibilities for further development.

8.1 Conclusion

In this thesis, the scene completion network SG-NN by Dai et al. [12] was first updated

to run on Pytorch 1.8.1 and Python 3.8. The results with the TSDFs from generated

RGB-D images are as expected very accurate.

Afterwards a novel approach was proposed and implemented that generates a TSDF

from a point cloud. Unfortunately, the approach was not entirely successful. It turned

out that the original idea of creating the TSDF as sparse as possible for computational

and memory reasons had a detrimental effect on the description of the scene. To ad-

dress this, improvements were proposed in Subsection 7.2. With the implementation

of these improvements and the training of SG-NN with a large-scale dataset of point

clouds, it should be possible to achieve the same results as with an RGB-D dataset.

In addition, the thesis briefly investigated whether a TDF can also provide the neces-

sary descriptive information to be considered as an input for a SC algorithm such as

SG-NN. This analysis was performed using the same algorithm that transforms a point

cloud into TSDF. The negative values of the TSDF were assigned positive values. This

implies that the TDF is not as dense represented as defined. However, even with this

sparse TDF, usable results could already be obtained. It can be assumed that when a

dense TDF is used for training, the results provide sufficient descriptive information for

a proper completion. The major advantage of a TDF is that it can also be generated

from a point cloud, which has been taken from several scan points and fused through

point cloud registration. Thus, this approach is more promising than the TSDF ap-

proach.

In the final step, the suitability of the LiDAR sensor of iPhones and iPads for generating

a dataset was examined. At present, the sensors are useful for capturing a point cloud

of a scene or room from one position. If a point cloud is to be created from many stand-

points – for example, to obtain a better ground truth – the iPhone or iPad is not suitable

8 Concluding Remarks

Concluding Remarks 60

at this time. The automatic point cloud registration does not yet function seamlessly on

the devices. When moving through the room to scan details such as hidden corners or

the floor under a table, errors occur that are characterized by double-scanned objects.

One way to fix this would be to manually register the point clouds. However, it is also

expected that automatic registration will improve in the next years. The potential to

generate large-scale crowd-source datasets is definitely existent.

8.2 Recommendations for Further Work

Recommendations for further development are provided below, ordered in decreasing

order of importance.

- Since the study in this thesis is based on the accuracy of the LiDAR sensor of

one device, a deeper analysis of the accuracy based on different devices would

be beneficial. Based on this information, a crowd-source dataset of point clouds

could be obtained. This would be extremely valuable for training deep learning

models.

- As described in Subsection 7.3, the conversion of point clouds to TDFs is very

promising when using volumetric scene completion methods. Further develop-

ment and implementation of the approach in chapter 6.3 is recommended. To

minimize the computational cost, the use of the rectilinear distance instead of

the Euclidean distance could also be considered.

- A purely point-based approach, as described in Subsection 7.5, would be also

suitable for further development. This would make it possible to draw a compar-

ison between a point-based method and a volumetric method where the point

cloud was previously converted into a TSDF or TDF.

References 61

[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill

Stachniss, and Juergen Gall. 2019. SemanticKITTI: A Dataset for Semantic

Scene Understanding of LiDAR Sequences.

[2] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias

Nießner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Mat-

terport3D: Learning from RGB-D Data in Indoor Environments.

[3] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D

Model Repository.

[4] Rong Chen, Zhiyong Huang, and Yuanlong Yu. 122019. AM 2 FNet: Attention-

based Multiscale & Multi-modality Fused Network. In 2019 IEEE International

Conference on Robotics and Biomimetics (ROBIO). IEEE, 1192–1197. DOI:

https://doi.org/10.1109/ROBIO49542.2019.8961556.

[5] Xiaokang Chen, Kwan-Yee Lin, Chen Qian, Gang Zeng, and Hongsheng Li.

2020. 3D Sketch-aware Semantic Scene Completion via Semi-supervised Struc-

ture Prior.

[6] Yueh-Tung Chen, Martin Garbade, and Juergen Gall. 2019. 3D Semantic Scene

Completion from a Single Depth Image using Adversarial Training.

[7] Ian F. Cherabier, Johannes L. Schönberger, Martin R. Oswald, Marc Pollefeys,

and Andreas Geiger. 2018. Learning Priors for Semantic 3D Reconstruction. In

2018 European Conference on Computer Vision, 314–330.

[8] Pavel Chmelar, Ladislav Beran, and Lubos Rejfek. 2016. The Depth Map Con-

struction from a 3D Point Cloud. MATEC Web Conf. 75, 3005. DOI:

https://doi.org/10.1051/matecconf/20167503005.

[9] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Sava-

rese. 2016. 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object

Reconstruction. In Computer Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu

References

References 62

Sebe and Max Welling, Eds. Lecture Notes in Computer Science. Springer Inter-

national Publishing, Cham, 628–644. DOI: https://doi.org/10.1007/978-3-319-

46484-8_38.

[10] Brian Curless and Marc Levoy. 1996. A volumetric method for building complex

models from range images. In Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques - SIGGRAPH '96. ACM Press,

New York, New York, USA, 303–312. DOI:

https://doi.org/10.1145/237170.237269.

[11] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funk-

houser, and Matthias Nießner. 2017. ScanNet: Richly-annotated 3D Reconstruc-

tions of Indoor Scenes.

[12] Angela Dai, Christian Diller, and Matthias Niessner. 62020. SG-NN: Sparse Gen-

erative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans.

In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, 846–855. DOI: https://doi.org/10.1109/CVPR42600.2020.00093.

[13] Angela Dai, Charles R. Qi, and Matthias Nießner. 2016. Shape Completion using

3D-Encoder-Predictor CNNs and Shape Synthesis.

[14] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen Sturm, and Mat-

thias Nießner. 2017. ScanComplete: Large-Scale Scene Completion and Seman-

tic Segmentation for 3D Scans.

[15] Aloisio Dourado, Teofilo E. d. Campos, Hansung Kim, and Adrian Hilton. 2019.

EdgeNet: Semantic Scene Completion from a Single RGB-D Image.

[16] Aloisio Dourado, Hansung Kim, Teofilo E. de Campos, and Adrian Hilton.

2272020. Semantic Scene Completion from a Single 360-Degree Image and

Depth Map. In Proceedings of the 15th International Joint Conference on Com-

puter Vision, Imaging and Computer Graphics Theory and Applications. SCITE-

PRESS - Science and Technology Publications, 36–46. DOI:

https://doi.org/10.5220/0008877700360046.

[17] Michael Firman, Oisin M. Aodha, Simon Julier, and Gabriel J. Brostow. 62016.

Structured Prediction of Unobserved Voxels from a Single Depth Image. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,

5431–5440. DOI: https://doi.org/10.1109/CVPR.2016.586.

References 63

[18] Martin Garbade, Yueh-Tung Chen, Johann Sawatzky, and Juergen Gall. 2018.

Two Stream 3D Semantic Scene Completion.

[19] Franca Giannini and Alexander Pasko. 2004. SMI 2004. Shape Modeling Inter-

national 2004 7-9 June 2004, Genova, Italy. IEEE Computer Society, Los Alami-

tos Calif.

[20] Andre B. S. Guedes, Teofilo E. d. Campos, and Adrian Hilton. 2018. Semantic

Scene Completion Combining Colour and Depth: preliminary experiments.

[21] Ruiqi Guo and Derek Hoiem. 122013. Support Surface Prediction in Indoor

Scenes. In 2013 IEEE International Conference on Computer Vision. IEEE,

2144–2151. DOI: https://doi.org/10.1109/ICCV.2013.266.

[22] Yu-Xiao Guo and Xin Tong. 2018. View-volume Network for Semantic Scene

Completion from a Single Depth Image.

[23] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos Kalogerakis, and Yizhou Yu.

2017. High-Resolution Shape Completion Using Deep Neural Networks for

Global Structure and Local Geometry Inference.

[24] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and Rob-

erto Cipolla. 2015. SceneNet: Understanding Real World Indoor Scenes With

Synthetic Data.

[25] Yong He, Hongshan Yu, Xiaoyan Liu, Zhengeng Yang, Wei Sun, Yaonan Wang,

Qiang Fu, Yanmei Zou, and Ajmal Mian. 2021. Deep Learning based 3D Seg-

mentation: A Survey.

[26] Iro Armeni, Sasha Sax, Amir R. Zamir, Silvio Savarese. 2017. Joint 2D-3D-Se-

mantic Data for Indoor Scene Understanding.

[27] Chiyu ". Jiang, Dequan Wang, Jingwei Huang, Philip Marcus, and Matthias

Nießner. 2019. Convolutional Neural Networks on non-uniform geometrical sig-

nals using Euclidean spectral transformation.

[28] John Amanatides, Andrew Woo. 1987. A Fast Voxel Traversal Algorithm A Fast

Voxel Traversal Algorithm for Ray Tracing.

[29] John McCormac, Ankur Handa, Stefan Leutenegger, Andrew J. Davison.

SceneNet RGB-D 5M Photorealistic Images of Synthetic Indoor Trajectories with

Ground Truth.

References 64

[30] Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface recon-

struction. ACM Trans. Graph. 32, 3, 1–13. DOI:

https://doi.org/10.1145/2487228.2487237.

[31] Jie Li, Kai Han, Peng Wang, Yu Liu, and Xia Yuan. 2020. Anisotropic Convolu-

tional Networks for 3D Semantic Scene Completion.

[32] Jie Li, Yu Liu, Dong Gong, Qinfeng Shi, Xia Yuan, Chunxia Zhao, and Ian Reid.

2019. RGBD Based Dimensional Decomposition Residual Network for 3D Se-

mantic Scene Completion.

[33] Siqi Li, Changqing Zou, Yipeng Li, Xibin Zhao, and Yue Gao. 2020. Attention-

based Multi-modal Fusion Network for Semantic Scene Completion.

[34] Chen Liu, Jiaye Wu, and Yasutaka Furukawa. 2018. FloorNet: A Unified Frame-

work for Floorplan Reconstruction from 3D Scans.

[35] Yu Liu, Jie Li, Qingsen Yan, Xia Yuan, Chunxia Zhao, Ian Reid, and Cesar Ca-

dena. 2020. 3D Gated Recurrent Fusion for Semantic Scene Completion.

[36] Yu Liu, Jie Li, Xia Yuan, Chunxia Zhao, Roland Siegwart, Ian Reid, and Cesar

Cadena. 2020. Depth Based Semantic Scene Completion with Position Im-

portance Aware Loss.

[37] Maximilian Vogt and Adrian Rips and Claus Emmelmann. Comparison of iPad

Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solu-

tion.

[38] Michael Kazhdan, Matthew Bolitho, Hugues Hoppe. Poisson surface reconstruc-

tion.

[39] Gang Z. Min Zhong. Semantic Point Completion Network for 3D Semantic Scene

Completion 2020.

[40] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. 2006. Partial and approxi-

mate symmetry detection for 3D geometry. In ACM SIGGRAPH 2006 Papers on

- SIGGRAPH '06. ACM Press, New York, New York, USA, 560. DOI:

https://doi.org/10.1145/1179352.1141924.

[41] Duc T. Nguyen, Binh-Son Hua, Minh-Khoi Tran, Quang-Hieu Pham, and Sai-Kit

Yeung. 62016. A Field Model for Repairing 3D Shapes. In 2016 IEEE Conference

References 65

on Computer Vision and Pattern Recognition (CVPR). IEEE, 5676–5684. DOI:

https://doi.org/10.1109/CVPR.2016.612.

[42] Diana Pagliari and Livio Pinto. 2015. Calibration of Kinect for Xbox One and Com-

parison between the Two Generations of Microsoft Sensors. Sensors (Basel,

Switzerland) 15, 11, 27569–27589. DOI: https://doi.org/10.3390/s151127569.

[43] Ameya Phalak, Zhao Chen, Darvin Yi, Khushi Gupta, Vijay Badrinarayanan, and

Andrew Rabinovich. 2019. DeepPerimeter: Indoor Boundary Estimation from

Posed Monocular Sequences.

[44] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016. PointNet:

Deep Learning on Point Sets for 3D Classification and Segmentation.

[45] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep

Hierarchical Feature Learning on Point Sets in a Metric Space.

[46] Ran Cheng, Christopher Agia, Yuan Ren, Xinhai Li, Liu Bingbing. S3CNet A

Sparse Semantic Scene Completion Network for LiDAR Point Clouds.

[47] Luis Roldão, Raoul d. Charette, and Anne Verroust-Blondet. 2020. LMSCNet:

Lightweight Multiscale 3D Semantic Completion.

[48] Muhammad Sarmad, Hyunjoo J. Lee, and Young M. Kim. 2019. RL-GAN-Net: A

Reinforcement Learning Agent Controlled GAN Network for Real-Time Point

Cloud Shape Completion.

[49] Shice Liu, YU HU, Yiming Zeng, Qiankun Tang, Beibei Jin, Yinhe Han, and Xiao-

wei Li. See and Think: Disentangling Semantic Scene Completion.

[50] Nathan Silberman and Rob Fergus. 112011. Indoor scene segmentation using a

structured light sensor. In 2011 IEEE International Conference on Computer Vi-

sion Workshops (ICCV Workshops). IEEE, 601–608. DOI:

https://doi.org/10.1109/ICCVW.2011.6130298.

[51] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor

Segmentation and Support Inference from RGBD Images. In Computer Vision –

ECCV 2012, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,

Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu

Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar,

Moshe Y. Vardi, Gerhard Weikum, Andrew Fitzgibbon, Svetlana Lazebnik, Pietro

References 66

Perona, Yoichi Sato and Cordelia Schmid, Eds. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, Berlin, Heidelberg, 746–760. DOI:

https://doi.org/10.1007/978-3-642-33715-4_54.

[52] Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang, Manolis Savva, and

Thomas Funkhouser. 2016. Semantic Scene Completion from a Single Depth

Image.

[53] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree Gen-

erating Networks: Efficient Convolutional Architectures for High-resolution 3D

Outputs.

[54] Lyne P. Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Sa-

varese. 62019. TopNet: Structural Point Cloud Decoder. In 2019 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 383–392.

DOI: https://doi.org/10.1109/CVPR.2019.00047.

[55] University of Zurich. 2014. UZH 3D dataset (2014). Retrieved March 8, 2021 from

https://www.ifi.uzh.ch/en/vmml/research/datasets.html.

[56] Jacob Varley, Chad DeChant, Adam Richardson, Joaquin Ruales, and Peter Al-

len. 92017. Shape completion enabled robotic grasping. In 2017 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS). IEEE, 2442–

2447. DOI: https://doi.org/10.1109/IROS.2017.8206060.

[57] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017.

O-CNN. ACM Trans. Graph. 36, 4, 1–11. DOI:

https://doi.org/10.1145/3072959.3073608.

[58] Peng-Shuai Wang, Yang Liu, and Xin Tong. 2020. Deep Octree-based CNNs

with Output-Guided Skip Connections for 3D Shape and Scene Completion.

[59] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2019. Adaptive O-

CNN: A Patch-based Deep Representation of 3D Shapes. ACM Trans. Graph.

37, 6, 1–11. DOI: https://doi.org/10.1145/3272127.3275050.

[60] Xiaojuan Wang, Martin R. Oswald, Ian Cherabier, and Marc Pollefeys. 2019.

Learning 3D Semantic Reconstruction on Octrees. In Pattern Recognition,

Gernot A. Fink, Simone Frintrop and Xiaoyi Jiang, Eds. Lecture Notes in Com-

puter Science. Springer International Publishing, Cham, 581–594. DOI:

https://doi.org/10.1007/978-3-030-33676-9_41.

References 67

[61] Yida Wang, David J. Tan, Nassir Navab, and Federico Tombari. 2018. Adversar-

ial Semantic Scene Completion from a Single Depth Image, 426–434. DOI:

https://doi.org/10.1109/3DV.2018.00056.

[62] Yida Wang, David J. Tan, Nassir Navab, and Federico Tombari. 2019. ForkNet:

Multi-branch Volumetric Semantic Completion from a Single Depth Image.

[63] Shun-Cheng Wu, Keisuke Tateno, Nassir Navab, and Federico Tombari. 2020.

SCFusion: Real-time Incremental Scene Reconstruction with Semantic Comple-

tion, 801–810. DOI: https://doi.org/10.1109/3DV50981.2020.00090.

[64] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, and Jianxiong Xiao. 62015. 3D ShapeNets: A deep representation for vol-

umetric shapes. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE, 1912–1920. DOI:

https://doi.org/10.1109/CVPR.2015.7298801.

[65] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. 122013. SUN3D: A Data-

base of Big Spaces Reconstructed Using SfM and Object Labels. In 2013 IEEE

International Conference on Computer Vision. IEEE, 1625–1632. DOI:

https://doi.org/10.1109/ICCV.2013.458.

[66] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert.

2018. PCN: Point Completion Network.

[67] Jiahui Zhang, Hao Zhao, Anbang Yao, Yurong Chen, Li Zhang, and Hongen Liao.

2018. Efficient Semantic Scene Completion Network with Spatial Group Convo-

lution. In Computer Vision – ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian

Sminchisescu and Yair Weiss, Eds. Lecture Notes in Computer Science. Springer

International Publishing, Cham, 749–765. DOI: https://doi.org/10.1007/978-3-

030-01258-8_45.

[68] Pingping Zhang, Wei Liu, Yinjie Lei, Huchuan Lu, and Xiaoyun Yang. 2019. Cas-

caded Context Pyramid for Full-Resolution 3D Semantic Scene Completion.

[69] Wei Zhao, Shuming Gao, and Hongwei Lin. 102007. A Robust Hole-Filling Algo-

rithm for Triangular Mesh. In 2007 10th IEEE International Conference on Com-

puter-Aided Design and Computer Graphics. IEEE, 22. DOI:

https://doi.org/10.1109/CADCG.2007.4407836.

References 68

[70] Matt Zucker, J. A. Bagnell, Christopher G. Atkeson, and James Kuffner. 052010.

An optimization approach to rough terrain locomotion. In 2010 IEEE International

Conference on Robotics and Automation. IEEE, 3589–3595. DOI:

https://doi.org/10.1109/ROBOT.2010.5509176.

Hiermit erkläre ich, dass ich die vorliegende Master-Thesis selbstständig angefertigt

habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel

benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches

kenntlich gemacht.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen Prü-

fungsverfahren zugrunde gelegen hat.

München, 16. Juli 2021

Vorname Nachname

Rocco Kossat

Menradstraße 15

80634 München

rocco.kossat@tum.de

Erklärung

