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InTRODUCTION

In many engineering problems the quantification of the reliability of a structural
facility subjected to random variability of its geometrical and material properties
as well as uncertain loads or other actions upon it is required. Let reliability
be measured in terms of a survival probability and each uncertain component
be denoted as a basic uncertainty variable. Then, the computation of sensitive
reliabilities for arbitrary structural problems in principle involves the evaluation
of an n-dimensional volume integral. If, e.g., X is a vector of time and space
independent basic variables with joint distribution function F(x), then the
probability of failure is one minus the reliability
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in which D = the domain in which the structure operates in safe states. The
surface that separates the safe and unsafe domain is called failure surface or
limit state function, which is taken to be associated with some given utility
loss. For example, different failure surfaces would have to be formulated for
structural collapse, yielding of a cross section, or exceedance of a given
deformation limit at a certain point in the structure. Those failure surfaces
must, at least implicitly, be expressed as functions of the basic uncertainty
vector. And, of course, different target reliabilities would have to be set for
each type of failure.

Note.—Discussion open until January 1, 1980. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Engineering Mechanics Division, Proceedings
of the American Society of Civil Engineers, Vol. 105, No. EM4, August, 1979. Manuscript
was submitted for review for possible publication on May 25, 1978.

"Research Asst., Institut fiir Massivbau, Technical Univ. of Munich, Munich, W.
Germany

‘Research Asst., Institut fur Massivbau, Technical Univ. of Munich, Munich, W.
Germany.

'Research Assoc., Institut fur Massivbau, Technical Univ. of Munich, Munich, W.
Germany

661



662 AUGUST 1979 EM4

Numerical integration over some arbitrary safe domain generally turns out
to be rather tedious if feasible at all. Also, simulation methods are much too
time-consuming to be applied generally so that simpler methods have been
developed.

This paper first reviews the state of development of some methods that avoid
explicit integration and examines their short-comings. In particular, the so-called
““first-order reliability method™ is studied. This method is. for the moment,
based on a linearization of the functional relationship describing the failure
surface. The method has been applied successfully to a number of engineering
problems. Despite its conceptual simplicity, practical examples usually require
the use of computers due to the complexity of the mechanical problem to be
dealt with.

Doubts have been raised as to the accuracy of its probability estimates mainly
because a linear approximation of the true failure surface appeared to be rather
crude. Only in a few cases have results been checked by numerical integration
displaying inaccurate results for some exceptional design situations. Therefore,
the main body of this paper is dedicated to a more accurate method that may
also be used to examine the accuracy of ‘‘first-order reliability methods.”

CamcaL Review ofF Present FirsT-Orper ReuaBiLITY APPROACHES

An effective alternative method to numerical integration has been proposed
by Hasofer and Lind (1) and others. In its original form it reports reliability
in terms of the safety index, B, and makes use only of the first and second
statistical moments of the uncertainty vector. It is a discrete point checking
method, measuring the minimum distance, 3, between the boundary of the safe
domain and the mean of the uncertainty vector in terms of standard deviations
of the function describing the limit state. Consequently, not more than Tcheby-
chev-type probability bounds can be derived which are not very useful in practice.

Even if the vector of uncertain variables, X, is an independent unit normal
vector obtained from a general first and second moment description by suitable
transformations, the safety index does not take proper account of the particular
shape of the safe domain (see Ref. 6 or Ref. 12). In this case, the relationship
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is normally used for the estimation of failure probabilities and is associated
with the simple tangential linearization of the limit state surface at the checking
point. The & () is the univariate standard normal integral. Thereby, the checking
point is the point x* on the limit state surface in the formulation g(x) = 0
which is nearest to the coordinate origin. The inequality sign in Eq. 2 is valid
for convex safe regions. Another equally elementary and fairly conservative
upper bound has been given as
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in which x2 () = the chi-squared distribution for n degrees-of-freedom (equals
the dimension of the random vector X). This bound corresponds to a supporting
hypersphere that substitutes the true failure surface. It is immediately recognized
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that in this case P, depends on n and, thus, the safety index, B, is no more
dimension-invariant (see also Ref. 12). Depending on the values of n and B,
both bounds are not always sufficiently close so that, in fact, the aforementioned
objections apparently are justified, at least as long as the range of application
of the simple reliability approach described before is not clearly defined. Several
improvements to the method have recently been suggested by various authors.

One of these generalizations can deal with any distributional representation
of the uncertainty vector in an approximate manner. Its particular form is now
known as the ‘“‘first-order reliability method”’ (9). In essence, it includes the
transformation of non-normal basic uncertainty vectors into standard uncorrelated
normal vectors and the linearization of the failure surface formulated in the
new space at the point nearest to the coordinate origin yielding a parametric
safety index, B. Various suitable algorithms have been proposed for the determi-
nation of that B (see, e.g., Refs. 1, 2, 7, and 9). Similarly, Eq. 2 is used to
produce a first estimate of the failure probability. Numerical evaluation of Eq.
I thus has been reduced to some transformation techniques and a problem
of mathematical programming.

Further generalizations are made with respect to higher-order expansions of
the limit state surface. Ditlevsen (1) developed sharper bounds for the true
failure probability by calculating the probability content of inscribing and
circumscribing rotational paraboloids. Those involve a convolution of a normal
with a chi-square variable and will be explained in more detail in the sequel.
Recently, the writers (7) investigated other approximating quadratic forms with
rotational symmetry and gave suitable tables. The additional forms investigated
are the hypersphere with the same (minimum or maximum) curvature in the
checking point leading to the evaluation of the noncentral chi-square distribution
and the rotational ellipsoid or hyperboloid both again involving operations with
noncentral chi-square variables. Simple numerical integration is likewise required
in the latter cases. Horne and Price (3) investigated the error in the failure
probability given in Eq. 2 by studying an approximating hypersphere with radius
corresponding to the mean curvature in the checking point.

If the safe domain is of a certain well-behaved shape, at least in the neighborhood
of the checking point, these rotational forms clearly yield sharper bounds for
the true failure probability. By taking the mean curvature one also arrives at
better estimates for the failure probability than those obtainable by use of Egs.
2 or 3. However, the limit state surface now must be continuous and twice
differentiable since the second derivatives are used as additional information
about the limit state surface. This is a more or less severe complication of
such approaches. Also, physical reasoning must be used to choose among the
parabolic, elliptical, or hyperbolic form.

The arbitrariness of the choice of suitable forms can be removed. In the
following it is shown that there exist exact nonrotational quadrics whose
probability content can be evaluated without undue difficulties. For convenience,
we denote the methods involving second-order derivatives by ‘‘second-order
reliability methods,” in contrast to their *“‘first-order’’ version, as outlined
previously, and exact reliability methods.

The results on quadratic forms in normal variables given herein are not novel
from a statistician’s point of view but appear to be applied here for the first
time in more detail to engineering problems.
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General Derivamion For Quapramic Forms

Assume that a given limit state surface is twice differentiable in the neighbor-
hood of the checking point, P*, in the standardized and normalized coordinate
system (X) of basic uncertain variables. Also, let the vector, X, be an independent
vector.

The standardization requires the operation X;: = (X, — E[X,])/D[X ],
whereas normalization is achieved by the transformation X = & : [F(X)]
for all components of X with E [X,) the mean, D [X,] the standard deviation,
and F(X,) the distribution function of X,. The direction cosines of the location
vector of P* are given by the vector « (see Fig. 1). Expand the limit state

FIG. 1.—Linear and Quadratic Approximations to Limit State Surface g(x) = 0

surface g(x) = 0 into a second-order Taylor series about P*. Thus
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or in matrix notation, after some rearrangements, gives:
g(x)=(x—x*)"-G (x — x*) + 2-g(x — x*) + 12 e T ) o

in which G, = the matrix of second and mixed derivatives; and g, = the
vector of first-order derivatives.

Eq. 5 constitutes a general quadric that can be brought into one of the standard
forms in a new coordinate system (Z) by certain linear transformations (see

Appendix I). If the n — m variables occurring only in linear terms are denoted
by Z, it is
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or > A\, (z a,;-’-+Zk,:j:ic,....._.. ....... 115k 4T
i=m+

in which A ,are the eigenvalues of the matrix, G, and 3, terms are the noncentralities
in the Z coordinate system, whereas the constants K, K,, and k,, respectively,
are determined by the transformation conditions (see Appendix I). If all A,/ K, ,
are greater than zero, the quadric is denoted by a positive definite. The positive
definite case of Eq. 6 clearly is an ellipsoid with origin at the point (3, &,,
..., 8,) and semi-axis [(K,/A)"% (K,/N\y)'%, ..., (K, /X,)'?]. If some of
the A values are zero, cylindrical forms are obtained. The indefinite case is
for A with different signs. Further detailed classifications are given in Appendix
I

Since the Z variables are standardized uncorrelated normal variables, new
stochastic variables, W and V, can be defined by

W:Z)\,(er—a,):.‘..... ,,,,, AT s e R
i=1

V:i)\;(z,--e‘mf{»ik,z, SRR e o #ri(9)
i=1
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Obviously, the variable, W, is a linear combination of noncentral chi-squared
distributed variables while the variable, ¥, additionally contains a linear combina-
tion of normally distributed variables. Therefore, the distribution function of
W is simply the probability content of a spherical normal distribution over
a region defined by Eq. 6. A similar interpretation holds for the variable, V.
It follows from the definition of the safe domain in either of the forms g(x)
= 0 or g(z) > 0 that the probability of failure is estimated by

P,=P(W>K,)=1-Fu(K)) SR in et s R g B T L

P,=P(V>K,) =1 — P i e . .

Thus, the probability distribution functions of W and F must be known.

DistriuTion ofF W anp V

Quadratic forms have received much less attention by statisticans than other
problems involving normal variables. The statistical literature on this topic is
exhaustively reviewed by Johnson /Kotz (5). However, only a few of the results
available are useful in the context of structural reliability. They require the
use of a computer, which in the light of its necessity in nontrivial engineering
applications, anyhow, appears to be no serious obstacle.

In analogy to the noncentral chi-square distribution that can be expressed
as mixtures of central chi-square distribution with weights given by the Poisson
density, Ruben (10,11) showed that in the positive definite case the distribution
of W can be given as an infinite mixture of chi-square probability functions.
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InpernTE Case ror W

Another quite general and useful expression for the indefinite case as well

has been derived by Imhof (4). Imhof’s solution is based on an inversion of

the characteristic function of W. It is shown in Ref. 4 that the distribution
function of W can be determined from
| I (" sin®(u)
P(W>x)=—+— —
2 w o up(u)

1 1
& G —t 2 2o A=l e
with B(u)——j E [tan ™ (A, u) + 8 A, u(l + N u’)'] ; e sN(l3)
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Eq. 12 must be evaluated by numerical quadrature. Finally, it is mentioned

that for small failure probabilities the formulas given by Press (8) may be preferred.

GeneraL Parasouc Case

From Egs. 9 or 11 it is seen that the variable, ¥, is the sum of a normal
variable, Z_, and a variable distributed like W but with fewer degrees-of-free-
dom, say m. Therefore, to obtain the distribution of ¥ it is necessary to convolute
a W variable with Z_. It is

—c

F(_v)=§ G S e e N WIU N S 4(15)

in which &(-) = the standard normal density; and F,.(-) = the distribution
according to the foregoing two sections. Eq. 15 generally must be evaluated
by an appropriate method of numerical integration.

SrpeciaL Forms with PreoeTermined PrincipaL Axis— GENERAL

It is possible to use other quadratic approximations to the boundary of the
safe domain, g(x) = 0, whose probability content can be calculated much easier
in some cases and, therefore, shall be studied in some detail. In essence. such
forms are set by preselecting the direction of their principal axis. Their curvatures
in a nodal point are chosen as such to comply with the curvatures of the original
limit state surface. But it should be clear that such forms may give an increasingly
worse approximation to the true failure surface as the distance from the nodal
point increases.

For example, let the original coordinate system (X) be rotated into a new
system (Y) with the same origin such that the point P* is on the Y ,-axis and
has coordinates (0, 0, ..., B) (see Fig. 2). Then, calculate the second-order
and mixed derivatives in P* and rotate the system (Y) about the Y ,-axis such
that the mixed derivatives vanish (see also Ref. 1). The new system has coordinates
Zy, Z3; ..., 2, = y,. Consequently, an approximating quadric derived from the
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remaining diagonal (n — 1) matrix of second-order derivatives has the same
principal curvatures in the point P* (for further details see Appendix II). Then,
either of the forms

n-1
zp::f-l-p"(':"r—ﬁﬂ)"'=l. ..... A o L bt T o F el (| ()
fw

or 2p,:f ------ (2 =80 el S R AR e T e e

can be set with the coefficients p, simply related to the curvatures in point
P* (see Appendix II). Analogically to the section for general quadratic forms
the left-hand part of Eqs. 16 and 17 represents a function of central or noncentral,
linear or squared standard normal variables. Since Eqs. 16 and 17 are possible
approximations to the true failure surface, the probability of failure is the

inear expansion
of g(x)=0
Quadratic appr

FIG. 2.—Derivation of Rotational Quadratic Forms

probability of a unit uncorrelated normal vector falling outside the domains
defined by Eqs. 16 or 17. Thus, the formulas of the preceding sections likewise
may be used to estimate the failure probability. It is noted that they simplify
to a certain extent since only the noncentrality parameter, §_, is retained. As
mentioned before, the choice of either a complete quadratic form or a paraboloid
is now somewhat arbitrary. Information on the connectiveness of the safe domain
and its convexity properties may be used to select the appropriate one.

HyrerspHERES AND RoTaTiONAL PARABOLOIDS

Major computational benefits are obtained when the forms, Eq. 16 or Eq.
17, are simplified towards rotational surfaces with the rotation axis being the
Z,-axis. The nodal curvature may be chosen as the mean of the principal
curvatures, and so probability calculations may produce reliable estimates for
the failure probability, or as the extreme curvatures to yield inscribing or
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circumscribing surfaces that result in upper and lower bounds for the failure
probability.

Although rotational ellipsoids or two-shelled hyperboloids can principally be
handled with the material presented herein, most gain is achieved if one
concentrates on two elementary forms, i.e., the hypersphere and the rotational
paraboloid, respectively. The former is obtained by taking the mean, maximum,
or minimum curvature so that the quadric, Eq. 16, becomes
-1
B L SRR RN R R 0 S
s :
which is a hypersphere with radius R and center at the point (0, 0, .... 0,
R + B). If the Z variables are unit uncorrelated normal variables, the left-hand
expression of Eq. 18 is known to be noncentral chi-square distributed with
noncentrality parameter 8 = [R + B]” and, thus

R R R L i L e s o (19)

which can easily be evaluated by using expansions given in Ref. 5. Similarly,
the rotational paraboloid receives the form

e,

= :fut:,_—[iizﬂ e i (20)
2R -

If the Z variables are unit uncorrelated normal variables, the first term is
chi-squared distributed and the latter is normal. Thus, the probability of failure
is the probability of a chi-square variable convoluted with a noncentral normal
variable being greater than zero. In using Eq. 15 one arrives after some elementary
manipulations at

= l \
P,=S©[~(fr+[3)]f‘__- - - (21)
= 2R '

in which ¢ [-] = the standard normal integral and; f,: (-) = the density of
a chi-square variable with v degrees-of-freedom. Though Eq. 21 must be evaluated
by numerical quadrature, accurate results generally can be obtained easily. Also,
some tables are available in Refs. 1 and 7.

Review ano ExampLes

A general view of the dependence of P, on the safety index, B, the curvature
in the checking point, and the dimension of the basic variable vector can be
gained when considering simple examples of rotational symmetry. In Fig. 3
a two-dimensional case is demonstrated for p = 3 showing the plane, spherical,
and parabolic approximations for various curvatures in the checking point. It
shows the relation between probability of failure calculated for hyperplanes,
rotational hyperparaboloids, and hyperspheres versus the dimension of the
uncertainty vector, X. Additionally, Fig. 4 expresses the sensitivity of the failure
probability versus the dimension of X and the curvature in the checking point
for two reliability levels as expressed by B = 3 and B = 7. It can be seen
that the differences between linear and quadratic approximations of the failure

STRUCTURAL RELIABILITY
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paraboloid

hypersphere

FIG. 3.—Failure Probability of Plane, Spherical, and Parabolic Approximations of g(x)
0 versus Problem Dimension (3 = 3)
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FIG. 4.—Failure Probability of Paraboloids for B = 3 and B = 7 versus Problem
Dimension
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surface increase with problem dimension and safety index and depend drastically
on the curvature in the checking point.

These results indicate that significant errors may exist when simply using
Eq. 1. However, from the writers’ experience, the curvature of g(x) = 0 exceeds
values of about [0.05| only in extreme practical cases.

The ideas outlined previously may be illustrated for the elementary example
of a tension bar with known load T, random diameter X, and yield strength
X,. The normal variables X, and X, are assumed to be uncorrelated with
parameters E [X,] = 29 mm, 4 mm, D [X,] = 3mm and E [X,] = 170 N/mm’,
D[X,] = 25 N/mm’, respectively. Fig. 5 shows three limit state curves
corresponding to T = 5 kN, 20 kN and 50 kN. They separate the failure domain

Gy
.
N,
-
S kN

T=20kN
T=50 kN
-
-

"

limit stole curve {“exoet”)
i — Eq (2)
=i I 0N
—————— Eg. (21)
Eq. (1)
i et bl W

FG. 5.—Limit State Function of Tensile Bar (First Example)

to the left of and below the curves from the safe area in the upper right-hand
corner. For T = 50 kN the approximations suggested are also drawn. These
are the tangential line, the rotational parabola and the circle with the same
curvature in the checking point P*, the circle with radius B, and the gquadratic
expansion that turns out to be of hyperbolic type in this case. In Table 1 the
numerical results are summarized. The “‘exact’’ value has been obtained by
numerical integration. It can be recognized that the bounds given by Egs. 2
and 3 include all results. In each case the various quadratic approximations
are quite close to the exact result. With the exception of the bound according
to Eq. 3 the differences are negligible from an engineering point of view.

EM4

As a second example an eccentrically loaded T-shaped steel column is studied.

STRUCTURAL RELIABILITY

Its simplified failure surface can be given by

1 .
g(x)-x,;x,(—-+j—)ﬂ
A W

with 4 = (x, + x) x; W = (x, + x5) X33 f = X, /(1 — x,/Pg); Py = x,

(x4 + x5) (x4/2) (w/L)* and the notation as presented in Fig. 6 and Table
2, respectively. The distributional assumptions are collected in Table 2 together
with the selected distribution parameters. The parameters of the load have been

TABLE 1.—Comparison of Different Approximations for Firet Example (See Fig. §)

Case T = 50 T=20 ] T=5
(1) (2) (3) | (4)
Checking point |
P* {x%,x%) 22.4, 127.1 17.25, 85.53 | 28.05, 8.09
Safety index p 2.902 5.273 6.492
Radius of
curvature R 8.81 6.05 45.30
Failure
probability
Eq. 2 1.86 x 107 6.7 x 10°° 43x 107"
Eq. 12 229 x 107 1.9 x 1077 50x 107"
Eq. 19 231 x 107 1.9 x 1077 45 x 107"
Eq. 21 2,290 x 1077 1.6 x 1077 " ox e s
“Exact”’ 232 x 107 20x 1077 5.5x 107"
Eq. 3 1.49 x 1072 9.2 x 1077 50x 107"
X2
1
I
’ X
' et
-~ § L~
—h? l >4 |
™
| >
Ty)
' l =<4

FIG. 6.—Notations for Second Exampie (Column Buckling)
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chosen such that the same safety index of B = 3.434is v alid for calch :‘lcndcr‘ncx.\
ratio. Note that in this case the standardization and normalization ‘opcr.um‘ns.
as described in the sections just preceding Eq. 4, have to be applied by introducing
further nonlinearities into the failure surface Eq. 22. Table 3 shows the ratio
of estimated to “‘exact’’ failure probabilities, the latter being s:omputh by Monte
Carlo simulation. In varying the slenderness ratio of the column l‘hl!\ example
covers a wide range of possibilities with respect to signs and \'zlllucs_ of curvatures.
The results obtained either by linear or quadratic approximations are fairly

TABLE 2—Distribution and Parameter Assumptions for Second Example (see Fig.
6)

e TR e i (R | Coefficient
| |
| Distribution Standgrd f of
Type of variable | type | Mean | deviation variation
(1 (2) | 3) - |- (6)
Yield strength, x,, in | |
Newtons per square | y
millimeter | Log-normal 320 30 U‘U‘?{
Load, x,, in Newtons | Gumbel | variable — 0.150
Column depth, x,, in | :
millimeters | Normal 160 1.5 0.009
Flange width, x,, x, -
in millimeters Log-normal | 7.8 . 0.4 0.051
Column breadth, x, ‘ | ]
in millimeters Normal { 82 0.8 0.010
Eccentricity, x,, in | | | :
millimeters | Normal 0 L/1770 —
Young's modulus, x,, i !
in Newtons per | | L ) e
square millimeter | Normal I 2.16 x 10° 5x10° | 0023

TABLE 3.—Ratios of Estimated to Exact Failure Probability P, /P, ... (Second
Example)

Slenderness ratio W ) B0 (120 | 160

(1) (2) (3) (4) & | (6)
PridPyscr = | f ]
"Eq. 2 1.14 097 | 136 | 1.67 | 2.50
Eq. 12 1.12 oL 1Lz LSt 1.18

Eq. 3 145.2 5184 | 7305 | 8928 | 1339

good whereas the lower bound corresponding to Eq. 3 appears to be too
conservative.

CoNCLUSIONS

In general, the probability estimate according to Eq. 2 is sufficiently accurate.
This conclusion holds for the majority of complex engineering problems in higher
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dimensions as long as the reliability level is not too high and the uncertainty
vector has distributions not too far from the normal. If the original uncertainty
vector has a distribution function that deviates significantly from the normal,
originally sufficiently smooth failure surfaces can become distinctively curved
in the normalized space. The curvature caused by the necessary probability
distribution transformation may actually overrule by far those given by the
mechanical problem and their effect increases with problem dimension. Only
then may the simple estimates following Eq. 2 be less adequate. The first and
third writers (9) have shown that adopting the foregoing ‘‘second-order’’ approach
in the space of normalized variables will yield accurate probability estimates
even in those cases. The use of quadratic forms appears even more appropriate
in parametric cases, e.g., for time-dependent reliability problems. It should,
however, be mentioned that the second-order reliability method as outlined
previously still remains a single point checking method. Like its ““first-order”
version it fails to give accurate results as soon as the location of the checking
point and the curvature of the failure surface in it is not sufficiently representative
for the entire shape of the safe domain. Then, other methods are in order
that obviously still have to be worked out, perhaps on the lines suggested in
Ref. 12. With this restriction a simplified second-order reliability method, e.g.,
a method on the basis of the noncentral chi-square distribution, that only takes
account of the mean curvature can be recommended to replace the simplier
methods.
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Arpenpix |.—Quapratic TavLor Expansions

Eq. 5 can be rewritten as follows:
EX)=x" -G, x+2x" (g, —~ G, x*") +x* (G, x*-2g)=0....... (3
In using the transformation G, = TAT', x = Tz and g, = T g., in which
T = the modal matrix of G, with T-T" = I (identity matrix) and A = ()

the diagonal matrix of the Eigenvalues of G_, one obtains the principal form
where all mixed terms vanish. Thus

X1

g@=z""Az+ 21'(;.-”—— Az*)+z*" A 2 Doty & SRS RINEGR AT )

If G, is regular, i.e.,, A\, # 0 for all i = 1, 2, ..., n, Eq. 24 represents a
complete quadric. After applying the linear translation z = z’ + & which implies

Bmgt o A g T T G e B RCER IR R

and, of course, A~' = (1/X,), the standard form is constructed:
|

(B= B) A= B =g AT pusd 50, 7Y i o el e e e)
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=1
with X, = g/ A ' g, and which is the same as Eq. 6.

If G, is singular, i.e., some of the A values equal zero [the case where
all A equals zero is of no further interest since g(x) = 0 is linear in c_ach
component of X] and the corresponding elements of g, vanish, too, then cylindrical
forms are obtained. Such forms are dealt with as complete quadrics but with
a smaller dimension.

but g, , # 0. In general, it is
L R T B S e N S A (28)

with K, similar to K, but without the terms where A, = 0 and z = the vector
of these components for which the foregoing conditions hold; and & contains
only the nonzero components for which the conditions are not valid, specifically
all components in which A, # 0. Finally, the standard form Eq. 28 can be
written in the form of Eq. 7:

ix,(z,ka,)uz 2 B I S w0l (29)

i=1 i=m+l

in which K, is given by the right-hand side of Eq. 28. For convenience, the
components of z in Eq. 29 have been ordered to include the m quadratic terms
in the first part and the n — m linear terms in the second part of the left-hand
side of Eq. 29.

Arpenpix ll.—PrincipaL CurvaTures N Checking Point P*

Let the checking point P* with the vector of direction cosines « be found
by a suitable algorithm in the (X) space. There always exists an orthogonal
rotation matrix, T, such that the Y -axis of the new coordinate system is parallel
to the vector «. Thus

oI e e R R S e i e A S (30)

Clearly, the last column vector of T is the vector . The other columns
may be found by one of the well-known orthogonalization procedures. In the
new system it is for the derivativesg, , = dg(y)/ay |,.. Thus

B etiotor el s .2 0l el b DnnsRa s T il o g Gy g, (31)

The matrix, G, of second and mixed derivatives in P* is a symmetrical matrix
with the nth column and row deleted. In applying elementary results of differential
geometry, e.g., the two Gaussian fundamental theorems for curves on n-dimen-
sional surfaces, the principal curvatures in P* are obtained from the roots of
the characteristic equation:

I
dc:(—c,—x-l)z ........................ 8D
8.

Then, the radius of curvature in P* with respect to the ith principal axis
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is R, = 1/k, In order to establish suitable quadratic forms with the same
principal curvatures we set

@RGP = B e A s e e pa Iaapiosl ov W39y

in which & = (0, 0, ..., 3,); and P = the diagonal matrix of coefficients indicating
the length of the semi-axis, a,, by the relation, p, = 1/a?. The semi-axis,
a,, depends on the curvatures by a° = a,/«,. The requirement that Eq. 34
has the same gradient in P* as the original form leads to p, = g,"‘ﬂ/4. whereas
the other elements p, can be calculated by using the aforementioned relationship
between semi-axis and curvatures in the nodal point. It is immediately deducted
that

Of course, the radius is given by R, = 1/x,. With these expressions Eq.
16 can easily be derived. Similarly, the relations between nodal curvatures and
coefficients p, are used in the parabolic case. Here, it is

Thus, also Eq. 17 of the main text may be set with the p values as given
by Eq. 35 and 3, = B.
For rotational forms the curvatures correspond to

% — ZK, or w=min{k,} of k'=max (K EEY BOUGE = N (36)
fom ]

1
m i=11 i=1

whatever type is selected, with m being the number of quadratic terms in Egs.
16 or 17.
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Arpenpix IV.—Notation

The following symbols are used in this paper:

A, A7 = matrix, transposed matrix;
a,a’ = column vector, row vector;
D(X) = standard deviation of X

E(X) = expectation (mean) of X;
F(-) = probability distribution function;
f(-) = probability density function;
g(x) = state function of x;

P = probability;
P, = probability of failure;

X,Z = random variables;
x* = location vector of checking point P*;
« = vector of direction cosines of checking point P*;
B = reliability index;

(-) = standard normal probability function;
@ '(-) = inverse standard normal probability function;
é(-) = standard normal density function;
x> = (central) chi-square distribution with n degrees-of-freedom; and
x%, = noncentral chi-square distribution with n degrees-of-freedom and

noncentrality parameter 8.
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ABSTRACT: Second-moment methods are widely applied in structural reliability
Recently, so-called first-order reliability methods have been developed that are capable
of producing reliable estimates of the failure probability for arbitrary design situations
and distributional assumptions for the uncertainity vector. In essence, nonlinear
functional relationships or probability distribution transformations are approximated by
linear Taylor expansions so that the simple second-moment calculus is retained. Failure
probabilities are obtained by evaluating the standard normal integral, which is the
probability content of a circular normal distribution in a domain bounded by a
hyperplane. In this paper second-order expansions are studied to approximate the
failure surface and some results of the statistical theory of quadratic forms in normal
variates are used to calculate improved estimates of the failure probability
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