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Abstract 
The two main categories in aircraft noise modeling are fully empiric and semi-empiric approaches. In terms of 
conventional aircraft noise questions of best practices for noise modeling have been largely clarified. Despite, 
unmanned aerial vehicle (UAV) systems exhibit a greater variety of mission types and configurations and, thus, 
UAV noise modeling requires further research. In this work a fully empiric and a semi-empiric noise model of 
a cargo UAV in horizontal flight are created and compared regarding model accuracy, modeling effort and 
noise data requirements. The problem of noise fluctuations in turning flight that originate from interaction noise 
is addressed by introducing bank angle dependent confidence bounds to both models. Subsequently, a dis-
cussion of possible noise model applications and an outlook to future noise modeling work of multirotor sys-
tems conclude this work. 
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1. MOTIVATION OF UAV NOISE MODELING 

In the field of measurement data-based aircraft noise 
modeling two basic approaches are found: Semi-em-
piric models include a priori knowledge about sound 
generation and propagation into a model ansatz 
which is usually determined by means of system iden-
tification. In contrast, fully empiric models are solely 
data based. 
Aircraft noise modeling of conventional aircraft has 
been intensively researched in the last decades [1] [2] 
usually focusing on noise emitted during arrival and 
departure in a vicinity around an airport. Questions of 
best practices for noise modeling have been largely 
clarified. Tools based on fully empirical models have 
a high prediction accuracy for long-term scenarios. 
Due to this capability such tools are frequently used 
for application in air-traffic management and legisla-
tion processes. Despite, scientific tools that aim to 
predict single flight events with high accuracy are 
usually semi-empiric in nature [1, p. 1]. Unmanned 
aerial vehicle (UAV) systems exhibit a greater variety 
of mission types and configurations and in urban air 
mobility (UAM) applications they operate in much 
smaller distances to urban areas. Thus, optimal ap-
proaches to general UAM noise modeling are requir-
ing further research. 
In this work a fully empiric as well as a semi-empiric 
UAV noise model are created based on an identical 
flight noise measurement data set. The target is to 
clarify how fully empiric and semi-empiric UAV noise 
models compare to each other with regards to model 
accuracy and modeling effort. 
 

2. NOISE MODEL CREATION 

2.1. Noise Data Pre-Processing 

During project “Raumbezogene Modellierung zur 
Lärmreduktion elektrischer Senkrechtstarter” 
(RAUMOLES) inflight noise measurements of the 
cargo UAV Manta Ray by Phoenix-Wings were con-
ducted, see Figure 1. The narrow band noise data 
was synchronized with the flight measurement data 
and the synchronized data set was then used to com-
pute semi-empiric noise models. That work was pub-
lished in [3] and [4]. Compared to the RAUMOLES 
data pre-processing, two additional processing steps 
are added in this work. The effects of atmospheric 
damping and the Doppler frequency shift are elimi-
nated in the data set. This treatment makes the 
source noise data independent of the microphone lo-
cations and, thus, increases the maximum achievable 
noise model accuracy. 
 

 
Figure 1: eVTOL UAV Manta Ray by Phoenix-Wings 



2.2. Noise Data Analysis 

All noise modeling approaches require model input 
parameters. Meaningful parameters can be identified 
through a correlation analysis between UAV states 
like e.g. propeller speed and the sound pressure level 
(SPL) recorded by the microphones. Figure 2 dis-
plays the result of such a correlation analyses be-
tween UAV ground speed v, pusher propeller rotation 
rate N, electric power consumption Pel, distance be-
tween UAV and microphones and measured SPL for 
the Manta Ray UAV. N as well as Pel show a similar 
correlation with SPL. If N is chosen as model param-
eter then the air speed has to be included as a model 
parameter, too, as the advance ratio and therefore 
also thrust and noise emission of a propeller at con-
stant rotation rate vary with varying air speed. As the 
air speed data of the UAV is unavailable and for the 
sake of simplicity Pel is chosen as the only model in-
put parameter in this work. 
 

 
Figure 2: correlation matrix 

2.3. Fully Empiric Noise Modeling 

The sound prediction of a fully empiric noise model is 
based on noise emission surface data that represent 
the SPL at a specific azimuthal and polar noise emis-
sion angle relative to the UAV. Such noise emission 
surfaces exist for a number of discrete model input 
parameter values. The model is evaluated by, firstly, 
interpolating the SPL for a distinct emission angle in 
each noise emission surface and, secondly, by inter-
polating the final SPL of the model input parameter 
value under consideration from these SPL values. Fi-
nally, the SPL is converted from the reference dis-
tance of the noise emission surfaces to the actual 
UAV observer distance using geometric spreading. 
In order to compute these noise emission surfaces for 
the Manta Ray UAV the synchronized noise data is 
sorted according Pel and three intervals are defined. 
The Pel mean values within these three intervals con-
stitute the model input parameter vector for interpola-
tion between the noise emission surfaces. Finally, the 
noise emission surfaces are computed based on a 

modified ridge estimator [5], see Figure 3. The aver-
aged offset between surface 1 and 2 respectively be-
tween surface 2 and 3 is 1.0 dB(A) which means that 
increasing the non-dimensionalized electric power 
consumption by circa 0.2 increases the noise emis-
sion by circa 1.0 dB(A). 

 
Figure 3: noise emission surfaces at Pel,1=1.002, Pel,2=1.179, 

Pel,3=1.386; azimuth = 0 rad corresponds to flight direction; po-

lar = -π/2 corresponds to downwards direction; left/right sym-

metry is assumed 

[4] points out the fact that the SPL fluctuations during 
turning flight are significantly higher than ones during 
straight flight and assumes that these fluctuations are 
caused by interaction phenomena. In order to ac-
count for this effect bank angle dependent confidence 
bounds are computed. Figure 4 displays the residual 
of the noise measurement data and the fully empiric 
model result over the UAV bank angle as well as the 
corresponding upper and lower confidence bound. It 
can be seen that the confidence bounds are most nar-
row during straight flight where bank angles tend to 
zero. 
 

 
Figure 4: SPL empiric model deviation over bank angle and 80 

% confidence bounds 



The computation of noise emission surfaces and con-
fidence bounds is repeated for turning flight and for 
straight flight data in order to compare the accuracy 
of the model types and model variants in the following 
chapters in more detail. Figure 5 shows the confi-
dence bound corridor heights of all three model vari-
ants (all data, straight flight data only, turning flight 
data only) which is a direct measure for the model ac-
curacy. It can be seen that the variant using turning 
flight data exhibits the narrowest corridor heights at 
bank angles higher than 0.15 rad. This finding 
demonstrates that splitting the model into a turning 
flight and into a straight flight model part has the po-
tential to increase the overall noise model accuracy. 
 

 
Figure 5: confidence bound corridor height for all three model-

ings and a confidence of 80 %; corridor height = upper bound – 

lower bound 

2.4. Semi-empiric Noise Modeling 

The semi-empiric noise model approach applied in 
this work was proposed for the first time in [6] and is 
adapted to the Manta Ray noise data in [4]. It can be 
characterized as a grey box model which combines 
formula describing sound generation and propagation 
and free model input parameters. The model param-
eters are to be computed by means of time domain 
system identification from noise measurement data. 
The shape of the semi-empiric model ansatz function 
is identical to [4]: 
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𝐿𝑖 corresponds to the SPL observed at observer po-
sition i which depends on the distance between ob-
server and UAV 𝑑, azimuth 𝜑 and polar angle 𝜗 of the 
UAV noise emission, the UAV electric power con-
sumption Pel and the model input parameter vector 𝑝. 
The term representing thrust and directivity is refor-
mulated in this work in (2) and (3) which enhances the 
independence of thrust and the directivity contribution 
to the overall SPL result. Additionally, term (4), which 
models geometric spreading, is made parameterless 
as the effect of atmospheric damping is removed from 
the noise data underlying this work. 
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(5)   𝐿 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑝) = 𝑝6 

 

The non-diagonal elements of the parameter error co-
variance matrix (PECM) indicate weather model input 
parameters yield linear dependencies among each 
other. Linear independence, which leads to a non-di-
agonal element entry of zero, is to be achieved in a 
meaningful grey box model ansatz [7, p. 377]. Ac-
cording to Figure 6 the PECM indicates linear de-
pendency of parameters 1 and 5 [7, p. 111]. The situ-
ation is still acceptable as all relative standard devia-
tions of the parameter estimates are smaller than 1 % 
(see Figure 7) but this indicates that the number of 
parameters in the current directivity function (3) 
should not be further increased. 
 

 
Figure 6: parameter error covariance matrix 

 
Figure 7: relative standard deviation of parameter estimates 



The parameter estimates for all three model variants 
(all data, straight flight data only, turning flight data 
only) can be found in the table below. Selecting dif-
ferent parts of the noise data for system identification 
mainly affects parameters 2 to 5 which are input to 
the directivity function. Background noise (𝑝6) and the 

influence of Pel on sound generation (𝑝1) hardly 
change when selecting other parts of the noise data 
as input. 
 

parameter all data straight 
flight data 

turning 
flight data 

𝑝1 21.851 21.428 21.666 

𝑝2 0.230 0.243 0.182 

𝑝3 -0.211 -0.180 -0.296 

𝑝4 -0.283 -0.549 -0.344 

𝑝5 1.028 0.885 1.316 

𝑝6 39.57 39.41 39.62 

Table 1: model parameters depending on modeling data source 

By evaluating the semi-empiric model at constant Pel 

‘quasi’ noise emission surfaces can be computed, 
see Figure 8. The averaged offset between surface 1 
and 2 respectively between surface 2 and 3 is 0.9 
dB(A) which is close to the value of the fully empiric 
model. 
 

 
Figure 8: quasi noise emission surfaces at Pel,1=1.002, 

Pel,2=1.179, Pel,3=1.386; 

In the case of the semi-empiric model the straight 
flight and the turning flight model variant do not in-
crease the model accuracy as the ‘all data’ confi-
dence bound corridor height exhibits a comparably 
low value at any bank angle, see Figure 9. 
 

 
Figure 9: confidence bound corridor height for all three model-

ings and a confidence of 80 %; corridor height = upper bound – 

lower bound 

3. COMPARATIVE ANALYSIS OF THE EMPIRIC 
NOISE MODELING APPROACHES 

3.1. Comparison of Noise Emission Surfaces 

A meaningful noise model comparison starts with a 
comparison of the noise emission surfaces, because 
this is where the model’s noise prediction is based 
upon. Thus, the accuracy of the noise emission sur-
faces limits the overall achievable model accuracy. 
Figure 10 and Figure 11 show a comparison of the 
(quasi) noise emission surfaces of the two noise 
model types deployed in this work and the respective 
noise measurement data points for the ‘all data’ and 
for the ‘turning flight’ variant. The surfaces of the fully 
empiric model are overall closer to the noise data. As 
these surfaces are not bound to a parametrization 
they are capable of resolving local extrema like the 
one at polar = -0.5 rad and azimuth = 0 rad. Never-
theless, the quasi noise emission surface of the semi-
empiric model also manages to resolve the global 
trend of the noise data. In the case of the fully empiric 
modeling the standard deviation between the noise 
emission surfaces and the noise measurement points 
is 1.9 dB and in the case of the semi-empiric modeling 
it is 2.6 dB. The semi-empiric modeling’s weaker ac-
cordance of the noise emission surfaces with the 
noise data confirms the observations described in this 
chapter. 
 



 
Figure 10: noise emission surface comparison with measure-

ment data; all data; Pel=1.179 

 
Figure 11: noise emission surface comparison with measure-

ment data; turning flight data; Pel=1.354 

3.2. Comparison of Mission Noise Curves 

A comparison of noise model results and noise meas-
urement data can be seen in Figure 12 and Figure 13. 
For both model types the following holds: During 
straight flights segments the confidence bounds are 
tightest (see e.g. flyover between t = 7160 – 7175 s) 
and during turning flights, where the highest SPL fluc-
tuations occur, the confidence bounds are compara-
bly loose (see e.g. turning flight between t = 7130 – 
7155 s). This finding agrees with Figure 5 and Figure 
9. 
The smooth (quasi) noise emission surfaces of the 
semi-empiric noise model consequently lead to a SPL 
curve which is smoother than the one obtained from 
the fully empiric model. Though the fully empiric 
model’s surfaces have more freedom to adjust to the 

underlying noise data this does not lead to an in-
crease in the overall model accuracy compared to the 
semi-empiric model, see Table 2. Furthermore Table 
2 shows that splitting the models in a turning flight 
model and a straight flight model does not signifi-
cantly affect the model accuracy (compare lines 1 and 
3 to 2 and 4). 
Adding confidence bounds to the noise model predic-
tion can be seen as a major progress compared to [4]. 
In case maximum allowable SPLs at observer loca-
tions exist, this feature allows a model-based predic-
tion of the minimum allowable UAV/observer distance 
for a given probability. 
 

 
Figure 12: fully empiric model mission noise curve with 80 % 

confidence bounds and corresponding microphone data (mic 1) 

 
Figure 13: semi-empiric model mission noise curve with 80 % 

confidence bounds and corresponding microphone data (mic 1) 

model (mo-
del data) 

σ (all 
data) 

σ (turning 
flight data) 

σ (straight 
flight data) 

semi-emp. 
(single 
model) 

 
1.9 

 
2.0 

 
1.7 

semi-emp. 
(splitted 
model) 

 
1.9 

 
2.0 

 
1.6 

fully emp. 
(single 
model) 

 
1.9 

 
2.2 

 
1.6 

fully emp. 
(splitted 
model) 

 
2.0 

 
2.2 

 
1.6 

Table 2: standard deviation σ of residual between model result 

and microphone data depending on model type, model variant 

(rows) and noise data for σ computation (columns) in dB 

 

 

 

 



3.3. Comparison of Data Requirements and 
Modeling Effort 

Though fully empiric and semi-empiric noise model-
ing show a similar model accuracy in the comparison 
compiled in this work, their data requirements are dif-
ferent. For a fully empiric modeling the noise meas-
urement data must cover the whole UAV noise emis-
sion angle space that is to be modeled. This is e.g. 

the case in Figure 10. If no data exists for bigger parts 

of the noise emission angle space, the resulting noise 
emission surfaces will be highly dependent on the 
surface calculation method and therefore decrease 
the reliability of the resulting noise model. Semi-em-
piric modelings have lower noise data requirements. 
In case a valid model ansatz exists, which contains a 
priori knowledge about the UAV noise emission, full 
coverage of the noise emission angle space by the 
noise data is not mandatory. Moreover, semi-empiric 
modelings are of advantage in case of a low signal to 
noise ratio of the underlying noise data. If the model 
ansatz includes an estimation of the acoustic data’s 
background noise, like it is the case in this work, then 
background noise is not misinterpreted as UAV noise 
which would lead to a noise overestimation of the 
noise model. 
While creating a fully empiric modeling is straight for-
ward finding a valid ansatz function for a semi-empiric 
modeling can be significantly more laborious. Accord-
ing to the author’s experience it is an iterative process 
of defining and refining parametric ansatz functions, 
performing system identification computations und 
judging the resulting model quality. 
 

4. DISCUSSION OF RESULTS 

Possible noise model applications of the two ap-
proaches are pre-flight mission planning, flight con-
troller integration for noise optimal onboard naviga-
tion purposes or integration into a geoinformation sys-
tem for urban planning purposes. 
For onboard use real-time capability is required. Eval-
uation of the fully empiric noise model involves sev-
eral interpolation operations which can, depending on 
the model size and the computational capacity of the 
onboard hardware, lead to limitations. This, in turn, 
would give preference to a semi-empiric model with a 
compact analytical ansatz. 
In case trajectory optimization and optimal navigation 
are targeted, continuously differentiable noise emis-
sion surfaces are of advantage as they enable effi-
cient use of gradient-based optimization algorithms. 
In case of a fully empiric modeling this requirement 
needs to be considered in the noise emission surface 
computation. 
 

5. OUTLOOK 

In many cases the noise measurement data quality 
might be sufficient and the accuracy of the noise 

model predictions might be the only requirement. Un-
der such circumstances neither fully empiric nor semi-
empiric noise modeling has a dominating advantage, 
at least in cases where the sound generation com-
plexity is low.  
If rotorcraft or electric vertical take-off and landing ve-
hicles (eVTOLs) are modeled, the sound generation 
is more complex. This added complexity is likely to 
give favor to semi-empiric modeling approaches 
which can e.g. explicitly consider effects like interfer-
ence from multiple propellers. 
A potential of semi-empiric noise modeling ap-
proaches is to include noise emission surface data 
from hybrid computational fluid dynamics 
(CFD)/Ffowcs Williams-Hawkings (FW-H) computa-
tions into the ansatz function definition to enhance ac-
curacy of future modelings. 
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