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Abstract—In this paper, we investigate the adaptive output
tracking control for multi-input-multi-output piecewise affine
systems with prescribed performance. Both direct and indirect
adaptation approaches are studied. Given a desired trajectory,
both control approaches ensure the output tracking error to
be confined within a performance bound, which prescribes the
steady-state tracking error as well as the transient behavior such
as decaying rate and overshoot. We establish novel common
Lyapunov functions without solving the conventional Lyapunov
equations. Based on these common Lyapunov functions, the
stability of the closed-loop system under arbitrary switching is
established. Furthermore, the parameter convergence for both
direct and indirect approaches is proved under the persistently
exciting condition of the input signals. The dynamic gain ad-
justment technique is incorporated to counter the singularity
problem in the indirect adaptation case. Finally, the numerical
simulation validates the effectiveness and correctness of the
proposed approaches in both direct and indirect adaptation cases.

Index Terms—piecewise affine systems, hybrid systems, adap-
tive control, prescribed performance

I. INTRODUCTION

URING recent years, the analysis and controller design

of hybrid systems have attracted a lot of interest in the
research community. Piecewise affine (PWA) systems [1] are
proposed to model hybrid systems and to simplify the analysis.
The state space of a PWA system is divided into several convex
regions. In each region, the PWA system is governed by an as-
sociated linear subsystem dynamics. In practice, PWA systems
have been used to model switching circuits such as various
DC-DC converters[2, 3]. Another favorable application field is
mechanical systems with piecewise linear characteristics such
as friction[4], backlash[5], and saturation[6].

Considering the model uncertainties, changing environments
and external disturbances in the real world, the controller
with pre-tuned and static gains may not suffice to stabilize
the closed-loop systems. The adaptive control approach is
introduced such that the controller gains are adapted in real-
time and the desired system behavior can be maintained.

In the literature, various adaptive control algorithms for
PWA systems or piecewise linear (PWL) systems, which serve
as the modified version of PWA systems, are explored. The
direct model reference adaptive control (MRAC) approaches
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of PWL systems for state tracking and output tracking are
reported in [7] and [8], respectively. For PWA systems, a
hybrid MRAC approach based on minimal control synthesis is
proposed for the continuous case[9] and discrete case[10]. By
assuming the existence of a common Lyapunov function, the
stability of the controlled PWA system in control canonical
form without sliding mode is guaranteed. This approach is
extended in [11] such that the stability is ensured even when
the closed-loop system exhibits sliding mode. The work in
[12] generalizes the MRAC approach to multivariable PWA
systems. In particular, the indirect MRAC approach, which
is rarely studied for PWA systems before, is also discussed.
Given a persistently exciting (PE) reference signal, both the
tracking task and the estimation of subsystem parameters of
the PWA systems can be achieved.

The aforementioned MRAC approaches for PWA systems
ensure asymptotic tracking, namely, zero steady-state tracking
error. However, the transient behavior of the closed-loop
systems is not guaranteed and can only be improved by
manually tuning the adaptation gains or imposing additional
PE conditions, which is not always feasible. The analysis and
improvement of the transient behavior is an essential issue in
adaptive control[13], because an aggressive transient response
may result in saturation, oscillation, or even damage to the
physical plants in real applications. In this paper, we would
like to explore the adaptive control of PWA systems with
the performance guarantee of transient behavior and steady
tracking error.

Prescribed performance control, proposed in [14, 15], is a
popular tool to guarantee the element-wise performance of
adaptive systems. With this approach, the steady-state tracking
error and the transient response such as decaying rate as
well as overshoot are confined within a predefined bound.
This approach has been incorporated into different areas such
as multi-agent systems[16, 17, 18, 19], helicopter/satellite
attitude control[20, 21], underwater vehicles[22] and robot
manipulators[23]. Besides, it has also been introduced to the
field of switched systems [24, 25].

Despite the reviewed advances, the problem of designing the
adaptive control of uncertain PWA systems with a prescribed
performance guarantee is still challenging. Most of the existing
MRAC approaches of PWA systems proposed in [9]-[12]
achieve closed-loop stability under arbitrary switching by
constructing the common Lyapunov functions, whose exis-
tence relies on the solution of a set of Lyapunov equations
associated with the piecewise linear error dynamics. This is
not applicable to the systems with prescribed performance
technique due to its nonlinear error transform. Besides, the
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parameter convergence, a topic of major interest in the area of
adaptive control[26], has not been fully explored in the area of
prescribed performance control[14]-[25]. The nonlinear error
transform of the prescribed performance technique introduces
extra nonlinearity into the adaptive systems, which makes the
classical theorems of parameter convergence for linear and
PWA systems[27] not applicable. Furthermore, the loss of
controllability issue needs to be carefully treated for PWA
systems with uncertain input matrices. The classical solution
by using dynamic gain adjustment[12] needs the knowledge
of reference systems, which are not available in the context of
prescribed performance control.

Our main contribution lies in tackling the direct and indirect
adaptive output tracking control problem of uncertain PWA
systems with prescribed performance. Specifically, we cast
the dynamics of the transformed error metric into linear
form, where the nonlinearity and switching are captured as its
exogenous input. Based on that, we construct novel common
Lyapunov functions, which do not rely on the solution of the
conventional Lyapunov equations shown in [9]-[12], and prove
the closed-loop stability under arbitrary switching. We further
prove that the estimated controller and system parameters con-
verge to their nominal values under PE conditions. Moreover,
we propose a novel dynamic gain adjustment technique and
solve the loss of controllability issue in the indirect adaptation
case.

This paper is structured as follows: in Section II the PWA
system we study is defined and the prescribed performance
is revisited. The design of nominal control goes in Section
III, which is followed by direct adaptive control in Section IV
and indirect adaptive control in Section V. The approaches are
validated through numerical examples in Section VI. Finally,
we give the discussion and conclusion in Section VIIL.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Description

Consider the multi-input-multi-output (MIMO) PWA system
with strict relative degree v € N and s € N subsystems
described by

xY) =Lz + blu+ fuy

: (1)
) =alx +bhu+ fr, i=1,....s
Yy :[xla T, 7xp]T
where
(rn _ d'z; 5
T, g 2)
and z = [zq,- - ,a:gr_l), S Ty ,xz(,r_l)]T € R"™ denotes

the overall state vector with n = pr. u,y € RP represent the
control input and system output, respectively. The output y
and its derivatives up to order » — 1 constitute the state vector
x. They are available for the control design. aj; € R",b;; €
RP, f;; € R,j = 1,---,p denote the system parameters of

i-th subsystem. We write system (1) into compact form and
obtain

&= Ajx+ Biu+ fi,
y=Cu,

t=1,...,8

3)

where A; € R™*", B; € R"*P, C € RP*™ and f; € R" de-
note the system parameters of i-th subsystem. a;;, bj;, fji, 7 =
1,---,p,i = 1,---,s are contained in A;, B;, f; in the
corresponding positions, respectively and thus, A;, B;, C, f;
are in control canonical form. Since a large class of physical
systems can be modeled[28, 29] and transformed[30] into
canonical form, its control design is essential and attracts a
lot of interests such as [9, 10, 11]. In this paper, we focus on
the prescribed performance adaptive control of MIMO PWA
systems in control canonical form.
Since the system has strict relative degree r, we have

CB;=CAiB;=--- = CA;72BZ' =0, CAgilBi #0
Cfi=CAifi=-=CA 2 =0, CA"'f;£0
4)
for¢=1,---,s, which leads to
y=Cx
4)

Yy = CATx + CAT ' Bju + CAT7L f;.

In this paper, the system input and output have the same
dimension p and the system is a square system. Nevertheless,
this will not necessarily restrict our approach, since square sys-
tems cover broad applications[31]. Some non-square systems
can also be transformed into square systems[32, 33].

In PWA systems, the state space z € R"™ is partitioned by
switching hyperplanes into s polyhedral regions {{2;} with ¢ =
1,---,s. Among the regions there is no overlap, i.e., {;N); =
() for 4 # j. We use the indicator function to indicate in which
region the state locates, or equivalently, which subsystem is
activated

1, if .’E(t) eQ;
(1) = 6
xi(t) {0, otherwise ©

and Zle x: = 1. With the indicator functions, we can rewrite
the PWA system as

t=Ax+ Bu+ f
y=Cr,

where A =57 | x;Ai, B=>,_x;Biand f =>""_ xifi.
Remark 1. The state x in PWA system (1) is continuous,
also on the switching hyperplanes. This leads to the continuity
of y, g, - ,y"=Y according to the definition of y (see (1)).
This in turn, implies CA; = CA;, - - ,CAT1 = CA;*1 for
Vi,j =1,---,s. If the PWA system is not in control canonical
form, this property does not hold and the output derivative may
exhibit jump behavior on the switching hyperplanes.

)
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B. Prescribed Performance Technique

In this paper, we investigate the output tracking of the PWA
systems. We assume that the reference signals y; € R? and
its derivatives ygq, - - - ,y(([) € RP? are bounded and continuous.
To study the output tracking with prescribed performance, we
first introduce the definition performance function and study
its properties in control systems.

Definition (Performance function[14]). A smooth positive
function p : R™ — R is defined as the performance function
if it is decreasing and satisfies lim;_, o p(t) = poo > 0.

A commonly used performance function is

p(t) = (po — poc)e ™ + poo (8)

with po, peo,! € RT and py > poo. We see that p(t) is
decreasing with p(t = 0) = pg and p(t = 00) = pPoo-

Given the reference output y; and a vector performance
function p(t) € RP, let € = [e1,e2, - ,ep]T € RP be the
output tracking error y —yq, p;(t) be the performance function
of the j-th component of p, the control objective that the
tracking error is confined within a prescribed performance
bound can be expressed by the following inequalities

—05pj(t) < e;(t) <p;(t), if e;(0)>0
—p;i(t) < e;(t) <d;p;(t), if e;(0) <0

for j = 1,---,p, for §; € [0,1] and V¢t > 0. §; is a
design parameter. With smaller d;, the overshoot of the j-
th component of the tracking error can be reduced. This
overshoot becomes 0 if J; = 0.

The concept of prescribed performance control is to trans-
form the constrained error (9) into an unconstrained one, and
thus the classical stability theory can be applied to design
the controller for the unconstrained transformed error. Let
o; be the transformed error and define e; = p;(t)G,(0;),
where G;(o;) is a smooth and strictly increasing function
of transformed error o;. Note that inequalities in (9) are
equivalent to

—(5j<Gj(0'j><1, ifej(0)>0
_1<Gj(0j)<5j7 lfej(())<07
so the strictly increasing function G;(o;) needs to be designed

such that (10) holds for o; € (—o0,+c0). We choose the
following function as the most references suggested

exp(o;) — dexp(—o;)

©))

(10)

Gj(oj) = if ¢;(0) >0
) el Feney OO0
5. N — —0,
Gj(aj) — JeXp(O']) exp( U]), if ej(()) < 0.
exp(0;) +exp(—0;)
The transformed error ¢; can thus be solved by
— €j o 5]' Gj .
_ Gjl(pjgg)*lln1+c ;o ife;(0) >0 12
95 = —1/¢5(t) ln 1+G if . (0) < 0 (12)
j (pj(t)) G, if €;(0) <0,

from which we can see, if o; is bounded, then (10) holds,
which further implies that (9) holds. To relate the transformed
error o; with the tracking error e;, we take for instance the
time derivative of o; for e;(0) > 0 and it yields

&5 = qo € + a1 ;¢ (13)

with
@ = Pi 5_j +1
IT T (- 25, + 9
1 1 0; +1

q1,; = 5 € €\
197 20, (- 2)(6, + 9)

and similarly, the k-th derivative of o; is

oG 1
(’f) k—1y (1) J (k)

T ;. + e N\ _ &4 14

IR T AT

where ql’fj (pjs- -+ p?*l) represents a term depends on

Pjy ,p;-kil) for some given kand [ = 1,2, -- , k—1. Define
the error metric E;

r—1
Ej=0;+Y Ao, (15)

where A\, € R™ are parameters to be chosen, O'](»k) is the k-th
derivative of ¢;. Ej is utilized to describe the dynamics of the
transformed error system. The derivative of E; follows

r—1 r—1

k r
=3 3 nge e e
k=01l=k—1

with A_; = 0, Ay = 1. We can write the vector form
r—1
=y

k=01

 Epl”

r—1
MR e™ 4n, _ Rre™) (17)
=k—1

with E = [Ey, - - € RP and

R, = ) (18)
l

Since p(t) and y, are known, each component of their deriva-

tive up to r-th order can be calculated. The system state x

is assumed to be available and thus ¥, 7, -- -,y are also

available. Substituting e(") in (17) with (") —y((f) and inserting

(5) yields
r—1 r—1

E=Y" MR ® xRyl 4N, RICATz

k=01=k—1

=K
+ AN RICA™ ' Bu+ N\, RICA™ ! f.
(19)

This step associates the system input « with error metric F. If
the control input u is designed such that £ is bounded, then
the boundedness of a§k) are ensured fork=1,--- ,r—1,j =
1,---,p. This further implies the achievement of prescribed
performance described by the inequalities in (9).

For the purpose of clarity, we replace R with R and A\,_;
with X in the rest of this paper and express E as

E =K+ RCA"z + ARCA""'Bu + ARCA""'f. (20)
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C. Signal Properties

We revisit some signal properties, which are essential for
the analysis in this paper.

Definition (Persistence of Excitation (PE) [34]). A piecewise
continuous signal vector z : Rt — R” is PE with a level of
excitation « if there exist constants ay, 7y > 0 such that

1 t+To
ol > ?/ 2(1)2T (7)dr > apl, VYt >0
0J¢

The idea behind PE property is that some internal signals
should contain rich frequency components. A closely related
property is sufficiently rich property[34, Def. 5.2.1], namely,
a signal u : RT™ — R is called sufficiently rich of order 2n, if
it contains at least n distinct frequencies.

D. Problem Formulation

In multivariable adaptive control, a common assumption
is the prior knowledge of a matrix S; € RP*P such that
K.S; is symmetric and positive definite [26], where K, =
—(CA;~'B;)~! is the nominal control gain for i-th subsystem
(details will be given in Section III). The meaning of S;
becomes more intuitive for a scalar K¥;, where S; becomes
the sign of the nominal control gain sign[K};]. A known S;
describes that the control direction is known but the control
effectiveness (or magnitude) is unknown. This is quite often
the case in applications such as vehicles and aircraft[32, 35].
Interested readers may refer to [26, Sec. 4.2.6] for some
relaxation techniques of this assumption. The problem to be
addressed in this paper is formulated as follows:

Problem. Given a PWA system (3) with known subsystem
partitions §2;, unknown subsystem parameters A;, B;, f; and
known S;, design an adaptive control law u(t) to enforce the
output of the system y(t) to track the given reference signal
ya(t) with prescribed error performance (9). Besides, explore
the conditions, under which the estimated gains or estimated
parameters converge to their nominal or real values.

III. NOMINAL CONTROL

We start with the nominal control design, where the subsys-
tem parameters and switching hyperplanes are known exactly.

The following control law, which is suggested by the
Lyapunov stability analysis (will be shown in Theorem 1),
is proposed

u:K;x+K§£+K; (21)
where 1 1
= _R'E4+ R'K 22
§ \ + \ (22)
and
Kr =) xiKyi=—Y xi(C¥;)"'Co;
i=1 i=1
Kr = K== xa(Cv)™ (23)
i=1 i=1

K; =Y xiKj ==Y xi(C¥;)~'CY;
=1 =1

are nominal controller gains with

O, =A7, U, =AT'B;, T, =A7'f (24)

Note that C'¥; is assumed to be invertible for ¢ = 1,--- ,s.
The controller structure (21), the definition of £ (22) as well as
the nominal controllers (23) are determined by the Lyapunov-
based stability analysis. The performance analysis of the
proposed nominal control law and the closed-loop stability
are summarized in the following theorem.

Theorem 1. Given the reference signal y; and predefined
performance function p(t), let the PWA system (3) with
known partition regions (); and known subsystem parameters
Ay, By, f; be controlled by the feedback controller (21). Let p
be designed such that the inequality (9) holds at initial time
instant t = 0. The closed-loop system is stable and the output
tracking error satisfies the prescribed performance (9).

Proof. Substituting v in (20) with (21) and inserting (23), we
obtain

E =K+ ARC®z + A\RCUu+ ARCYT = —-E  (25)

where & = Zle X1(I)Z,\IJ = Zle qu/“T = Zle X1T1
capture the switching effect. This means that the closed-loop
dynamics of E can be described by the homogeneous system
E=-E by applying the nominal controller (21). Define the
following Lyapunov function

1
V= 5ETE, (26)
taking the derivative along the trajectory (20) yields
V=-ETE<Q0 (27)

From (27) it follows E € L, and £ — 0 as t — oo. This
further implies the boundedness of o, aj(-k) with o, oj(-k) —0
as t — 0o, Vj = 1,--- , p, which leads to y,y®) € Lo, k =
1,---,r—1, and thus x € L,. From the definition of K and
(22), we also have K € L, and £ € L. From (12) and the
boundedness of o; we can conclude that the tracking error is

within the performance bound, i.e., (9) holds. O

Remark 2. Asymptotic tracking can be achieved under certain
conditions. From Theorem 1 we have o; — 0. Given certain
d;, limy .o G; can be obtained by solving lim;_,.c0; = 0
according to (12). If §; = 1, then we obtain G; — 0 for
t — oo. Since G; = ;—j and p; # 0, the j-th component of
the tracking error ¢; — 0 as ¢t — oo.

Remark 3. The controller (21) shares the common structure
as the controller of MRAC, ie., u = K,z + K,r + Ky (see
(11) in [12]). The difference is that the reference signal r
of the MRAC is replaced by ¢ in this context. Unlike the
reference signal r, which is given as an external signal in
MRAC, ¢ also contains internal signals. As shown by (22), &
contains the error metric F and output tracking errors as well
as their higher-order derivatives (captured by K). Therefore,
its boundedness needs to be specially checked, as shown in
the proof of Theorem 1.

Remark 4. According to (15) we have that £ depends on
o; and its derivatives, which in turn relates to the tracking
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error e and its derivatives. Since yg and its derivatives as
well as y,9,---,y" 1) are continuous (see Remark 1), F
is also continuous even on switching hyperplanes. Therefore,
the Lyapunov function (26) is shared by all the subsystems
and it decreases independent of which subsystem is activated.
This implies that the Lyapunov function (26) is a common
Lypaunov function and the closed-loop stability can be con-
cluded even under arbitrary switching. As stated in Remark
1, y,9, -,y may exhibit jump behavior for generalized
PWA systems, this leads to discontinuous F and may ruin
the stability for fast switching. A possible way to extend the
approach to the generalized PWA systems might be defining
the error metric in terms of the state tracking error [35] to
avoid output derivatives with jumps.

IV. DIRECT ADAPTATION CASE

In this section, we study the direct prescribed performance
adaptive control for PWA systems with known state space
partition and unknown subsystem parameters.

A. Controller Design

The controller takes the same structure as in (21) but with

the estimated parameters
u= Kz + K. {+ K¢ (28)

where
Ky =Y xiKui, Ko=) xiln, Kr=Y xiKp
i—1 i—1 i—1

are estimated controller gains. We propose the following
adaptation law to update the estimated controller gains

K = xil2:ST RT Ex”
Kri = X'LFMS;FRT-EET
Kfi = XiFfiSiTRTE,

(29)

where T';, ', T'; € RT are positive scaling factors.
We define the estimation errors of the controller gains as

K=K~ K}y, Kpy = Kpi— K5,. (30)

0

x)

We insert (28) in (20) and obtain

E=K+Y Xxi(ARC®;z + ARCU;u+ ARCY)
=1

=K+ xi(ARC®;z + ARCY; K}, 31)
i=1

+ ARCY; K i + ARCU, K6 + ARCU, K i€

+ ARCY;K}; + ARCY,; Ky + ARCY;).

Inserting the nominal controller gains (23) yields

E=-E+ARY xiCV;(Kyix+ K.+ Kpi).  (32)
i=1
This equation describes the dynamics of the error metric
when the adaptive controller (28) is utilized. The estimation
errors of controller gains f(m,lz},f( + constitute the external
inputs of the dynamics. The state transition matrix of E is —I
and thus is not affected by switching.

B. Stability Analysis

We study the stability and the tracking performance of the
closed-loop system. The result is summarized in the following
theorem.

Theorem 2. Given the reference signal y; and predefined
performance function p(t), let the PWA system (3) with known
partition regions ); and unknown subsystem parameters be
controlled by the feedback controller (28) with the update law
(29). Let p be designed such that the inequality (9) holds at
initial time instant t = 0. The closed-loop system is stable and
the output tracking error satisfies the prescribed performance

(9).
Proof. We define the following Lyapunov-like function

ETE 1S~ h oy s

+ F;Z-ltI‘(KZ;MiKM) + F;iltr(f(};Mini)),

where M; = (K};S;)~* € RP*P_ Taking the time derivative of
V', inserting (32), (29) and doing some simplifications (details
can be seen in the supplementary material) yields

V=
(33)

V= —%ETE <0. (34)
The negative semidefiniteness of V confirms the stabil-
ity of the closed-loop adaptive system. More precisely,
E, K, Ky, Kpi € Lo Considering E € Lo, (12) and
(15), we have 0,0 e, e®) € £, which further indicates
y,y® e Lo, k=1,--- ,r—1, and thus = € L.

The boundedness of e(®) leads to R. € L, with k =
0,1,---,rnl=1,2,--- ,r, from which we can obtain K, £ €
L and hence, Kzi,Kn,Kfi € L. The boundedness of
f(m,K'mK'fi,x,f gives u € Lo and E € L. (34) also
implies that £ € L5, which together with FE, E € Lo
gives limy_,.o E — 0. This together with the boundedness
of ¢; implies that the tracking error e is confined within the
prescribed performance bound, i.e., (9) holds.

An essential issue in analyzing the stability of switched sys-
tems is that the closed-loop system may enter a sliding mode.
Namely, both the vector fields of two neighbouring subsystems
point towards the switching hyperplane and the trajectory of
the system cannot move across the regions. To analyse the
stability in sliding mode, we follow the concept in [11, 12] and
observe the derivative of V' along the sliding mode solutions,
which can be achieved by replacing the indicator function
xi € {0,1} with x; € [0,1], where >_7_, ¥; = 1. Specifically,
the transformed error dynamics (32) is convexified as

E=-E+ARY XiCUi(Kpz+ K+ Kpi).  (35)
i=1
Equation (35) holds due to the synchronous switching of the
plant and the controller. As a part of the closed-loop dynamics,
the adaptation gains during the sliding motion are
Kri = XzFTlS;TRTEgT
Kfi = )_(lFfZSITRTE

(36)
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Inserting (35) and (36) into V, we still obtain the same
expression as in (34), which implies the stability of the
controlled system also in sliding mode. [

Remark 5. Theorem 2 shows that the tracking error
stays within the prescribed performance bound. Note that
E,o,6®¥ — 0,k = 1,---,r —1 as t — oo, the time
limit of tracking error can thus be calculated by solving
(12). For §; = 1,j € {l,---,p}, we have the solution
limy o0 €;(t) = 0.

Remark 6. Benefit from the property that the state transition
matrix of F is independent of the switching (as shown in (32)),
the Lyapunov function (33) is a common Lypaunov function. It
ensures the closed-loop stability under arbitrary switching. A
similar concept to construct the common Lyapunov function
can be found in the adaptive control for switched systems
in Brunovsky form[36], where an error metric is constructed
based on the tracking error and its derivatives (see (11) in
[36]). When comparing to the approach in [36], the distinctive
feature of our approach is that the error metric F is expressed
in terms of the transformed error o; and thus the transient
behavior evolves within the prescribed performance bound if
E' is bounded.

Remark 7. The stability analysis of classical MRAC of PWA
systems in [9, 12] also relies on the common Lyapunov
function. It requires the existence and the knowledge of a
common Lyapunov matrix P such that the Lyapunov equation
AT P+ PA,,; <0 holds for all the state matrices A,,; of the
reference PWA system. Differing from this requirement, the
construction of the common Lyapunov function in our work
only requires the continuity of the reference signal and its
derivatives, which is less restrictive.

Remark 8. Theorem 2 shows that the tracking error e satisfies
the prescribed performance condition, i.e., (9) holds. If the
performance function is chosen as (8), the tracking error e
decays exponentially. In the classical direct MRAC of PWA
systems, the PE condition of the reference signals must be
introduced to ensure the exponential decaying of tracking
errors (see Theorem 2 in [7] and Theorem 2 in [12]). Besides,
the decaying rate depends on the excitation level of the ref-
erence signals. Expressing it explicitly is not straightforward
(see (26), (27) in [12]). In contrast, the exponential decaying
of the tracking error in our approach does not require PE
conditions and the decaying rate can be specified directly in
the performance function (8) by choosing the value of /.

C. Parameter Convergence

Theorem 2 shows the boundedness of the controller gains
K, K, Ky;. In this section, we discuss if the adaptive con-
troller gains converge to the nominal gains under the classical
PE conditions. First of all, we explore if the signal vector
z = [zT,¢7,1]7 is PE given a sufficiently rich reference signal
yg. This is summarized in the following lemma.

Lemma 1. Let the system (3) be controlled by the controller
(28). If the closed-loop system has F € L, £ — 0 for t —
00, if the reference signal y, is sufficiently rich of order 7+ 1,

and if 0; = 1,j = 1,--- , p, then the vector z = [z7, &7, 1]7
is PE.

The proof can be seen in the supplementary material.

Remark 9. For the case, where the adaptive systems have to
fulfill the desired tracking task y4, which does not contain a
sufficient amount of frequencies, the sufficiently rich condition
can be fulfilled by superposing some periodic signals with the
required amount of frequencies and small enough amplitudes
upon the desired trajectory. By doing so, the sufficiently rich
condition can be fulfilled without significantly disturbing the
primary tracking task. Further analysis of parameter conver-
gence relies on the PE condition of the closed-loop system
signal vector z.

Since a PWA system has multiple subsystems, the controller
gains of all the subsystems need to be estimated. To this end,
we require that the reference signal y, to be sufficiently rich
and repeatedly activate all the subsystems as also suggested
in other works of PWA systems[12, 27]. The conclusion is
depicted by the following theorem.

Theorem 3. Let the PWA system (3) with known partition
regions §); and unknown subsystem parameters be controlled
by the feedback controller (28) with the update law (29). Let
p be designed such that the inequality (9) holds at initial time
instant t = 0. Let the reference signals 4 be sufficiently rich of
order v+ 1 and cause repeated activation of all subsystems. If
the matrices CV; are invertible, and 6; =1 for j =1,--- ,p,
then f(“, f(m, f(ﬁ — 0 for t — oo.

Proof. According to Theorem 2, the closed-loop system is
stable under arbitrary switching. For clarity we first study
a single subsystem and suppose the i-th subsystem to be
a_ctivated during some time interval, i.e., x;(t) = 1. We rewrite

FE as
E = —E+ARCY,(Kpz + K6 + Kp),  (37)

which can be further simplified by using Kronecker product

E=—E+ \R="0, (38)
with
I ~ ~ ~ ~
E= & @1, 6,=vec(CY;[K,; K, Kyl), (39
1

where ® denotes the Kronecker product, I, € RP*? is an
identity matrix, the operator vec(-) represents the vectorization
of a matrix.

Note that

0;

vee(CU Ky Ky Kypi])
vec(CU; STRTE[zT €T 1))
Z - vec(CV,;STRTE)
—Z-W,RTE,

where W, = C\I!,-Mfl(C\Ili)T. We write E and 6; in a form
of a new dynamical system and obtain

E

0;

(40)

_Ip

ARET) [E
- [—EWZRT 0 } M “h)
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From Theorem 2 and §; = 1,5 =1,--- ,p we have e;(t) — 0.
This leads to R — R* as ¢ — oo, where R* € RP*P is
some constant diagonal matrix. R* can be calculated by going
through the derivation shown in Section II-B. Let r} denote
j-th diagonal element of R* and we have

) 1 §; +1

EAREYHT: e (1) e (1)
Pit) (1 4505 + £4)

with poo; = p;(t — o0) being the predefined static bound of

j-th error component. For R = R* we have the dynamical

system

= i (42)

Pooj

t—o0

E

0;

[ -, ARET[E
T_EWRT 0 | |6

which has the same structure as the one of Lemma 5.6.3 in
[34]. Applying this lemma with the PE property of 2 (obtained
by invoking Lemma 1) we have that £ — 0 and 6; — 0
exponentially for system (43), which together with R — R*
implies that £/ — 0 and 97 — 0 as t — oo for (41). Note that
the exponential convergence property of [E, él] in (43) is not
retained in (41) due to the time varying R. So [E, 6;] converges
towards zero asymptotically during the inverval, when i-th
subsystem is activated. Since all the subsystems are activated
repeatedly, we have 8; — 0,Vi € {1,---,s} as t = oo.

The convergence of f(m», f(m», K ¢ cannot be directly con-
cluded from the convergence of 6,. Further steps of analysis
are needed. Note that

0; = vec(Ci[Kyi — K3y Ky — Ky Kpi— )
= VCC([C\I/Z‘KIZ‘ — C(I)Z C\I/iK”‘ -1 C\I/inl‘ — CTZ]),

0; — 0 implies K,; — (C¥;)"1Cd;
(C\Ifi)_l = K:i’ and Kfi — (C\I/i)_lCTi = K}fi, be-
cause the matrices CV,;,i = 1,---,s are invertible. Hence,
f(ﬂ,f(n,f(ﬁ%Oast%oo. O

(43)

= K;r“ KTi —

V. INDIRECT ADAPTATION CASE

If the estimation of the system parameters is also a part of
the control objective, the indirect adaptation can be applied.

A. Controller Design

The indirect adaptive control use the same control structure
as (28). The concept of indirect adaptation suggests the
following update law

Kxi =
Kri = -
Kpi=—(C¥,)~'CT,

(44)

where (i%-, \ifl-, Yl denote the estimated ¢-th subsystem parame-
ters. The main difficulty by using this method is the singularity
of (C¥;)~!, which is also known as loss of controllability
issue. Since U, is updated by some adaptation law, it cannot
be ruled out that the smallest singular value of C; may go
across zero or become some small value around zero, which
leads to unbounded controller gains.

To solve this singularity problem, we use the dynamic gain
adjustment technique in this work. This concept is originally

introduced by [37] and extended to MRAC of PWA systems in
[12]. We extend this method to the context of adaptive control
of PWA systems with prescribed performance. Specifically,
the dynamic gain adjustment in MRAC starts with defining
the closed-loop estimation errors, which capture the matching
errors between the reference system and the controlled closed-
loop system with estimated parameters. Unlike the MRAC,
there exists no reference system in our context and thus we
propose the following novel closed-loop estimation errors

Edi ZC(i’i + C\i/iKm-
Ewq :C\i/iKm' +1
Efi :CTZ + C\i/lel

(45)

These closed-loop estimation errors are obtained by multiply-
ing both sides of (44) with C’\i/i and taking the difference
between the left and right-hand sides. The controller gains are
updated by using the closed-loop estimation errors

Km' = Xi].—‘m'SiTRTEZT -+ FmSZvT{:‘q)i

Kyi = xilviS] RTEET 4 T0iS] e (46)
Kfi = XirfiSiTRTE + FfiSiTé‘fi
and the estimated system parameters are updated by
®; = —T'9;CTeq;
\i/i = —]_—‘\yi(CT&piK;- + CTE\yZ'KZ; + CTEfiK};-) (G
Ti = —FT,-C’Tafi

with I'g;, ['ys, I'v; € RT being positive scaling factors. The
update laws (46) and (47) are derived based on the stability
analysis. We can see from (46) and (47) that the inverse
calculation shown in (44) is avoided through the utilization
of closed-loop estimation errors.

B. Stability Analysis

The stability of the closed-loop system by using the indirect
adaptive laws is characterized by the following theorem.

Theorem 4. Given the reference signal yq and predefined
performance function p(t), let the PWA system (3) with known
partition regions ); and unknown subsystem parameters be
controlled by the feedback controller (28) with the update laws
(45), (46) and (47). Let p be designed such that the inequality
(9) holds at initial time instant t = 0. The closed-loop system
is stable and the output tracking error satisfies the prescribed
performance (9).

Proof. For clarity and without loss of generality, we let
the scaling factors in (45) and (46) be 1 and propose the
Lyapunov-like function

_ETE LSS (@7 ) + w87, + u(FTT)
2 24 ¢ i P

+ tr(f(z;sz(“) + tr(f(Z;Mif(”‘) + tI‘([N(};le(fl))
(43)
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where i’i = (il — (bi, \ilz = \i/l — \Ili, TZ = Tz — TZ
Taking the derivative and inserting (45), (46) and (47) yields
ETE >
Ztr €3iEdi + 5\1,25\1,1 + EfZEfZ) <0. (49)
i=1

V:

Detailed derivations of this step can be seen in the supple-
mentary material. From the negative semidefiniteness of 1%4
it follows that E,®; W; T;, K, Ky, Kfi € Loo, Which
together with (45) implies €oi,cwi,efs8 € Loo. Thus,
we have <I>Z,\I/1,T € L. Moreover, (49) also indi-
cates E,epi,cwi, €50 € Lo. Following the same analysis
as in the direct adaptation case, one can conclude that
U,a(k),e,e(k) € L, which further results in y,y(k’) €
Lo,k = 1,--- r —1, and hence, z,{, K € L. This in
turn, implies Kw, Kmv, Kﬁ € L. The boundedness of u, E
can be concluded from the boundedness of K;, K,;, K¢;, 2, €.
Furthermore, £ € Lo as well as E € Lo N Lo results
in lim; ..o £ — 0 and thus O’j,O'](-k) — 0 ast — oo,
Vi=1,--- ,p,k=1,--- ,r — 1. Therefore, we conclude that
the tracking error e stays within the performance bound, i.e.,
inequalities in (9) hold.

Observe that the same expression as (49) can be obtained
by replacing x; with ¥; in the transformed error dynamics
(32) and in adaptation laws (46), we thus can conclude the
closed-loop stability even when the closed-loop system enters
sliding mode. O

Remark 10. Two other methods used to avoid singularity (or
loss of controllability) problem can be found in [14] and
[15], respectively. While calculating the inverse of a matrix
Fg using the formula F;' = adj(Fg)/det(Fg), the method
in [14] adds a positive desgin number dp € RT to the
denominator to prevent the division by zero (see (12) in [14]).
The method in [15] replaces the denominator with a positive
constant if its norm is smaller than a threshold (see (12)
in [15]). With these two methods, the transformed tracking
error and the parameter estimation error converge only to a
bounded set. Differing from these results, one key feature of
our approach is that the convergence of the tracking error
e; — 0 is achieved by specifying §; = 1. Furthermore,
the parameter estimation errors, as will be shown later, also
converge to 0 under PE conditions. Nevertheless, more prior
knowledge (S; matrix and the system structure) is required
compared to [15].

Remark 11. In the classical indirect MRAC of PWA systems
shown in [12], the utilization of the dynamic gain adjustment
technique has the disadvantage that the tracking error is not
exponentially convergent. This problem is not overcome even
when the PE condition of the reference signals is imposed.
This issue, however, could be bypassed in our approach by
choosing an exponentially decreasing performance function
(such as the performance function (8)).

C. Parameter Convergence

Theorem 4 shows the boundedness of the parameter esti-
mation error ®;, U;, T;. If one of the control objectives is
the estimation of the real system parameters, the PE property

of the reference signal yy; should be added to ensure the
convergence of the estimated parameter to their real values.
This is summarized as follows.

Theorem 5. Let the PWA system (3) with known partition
regions §); and unknown subsystem parameters be controlled
by the feedback controller (28) with the update laws (45), (46)
and (47). Let p be designed such that the inequality (9) holds
at initial time instant t = 0. Let the reference signals in yq be
sufficiently rich of order r+1 and cause repeated activation of
all subsystems If the matrices C'V; are invertible, and §; = 1
for j=1,---,p, then KM,KM,KJ% — 0 and A;, Z,fl —0
as t — oo.

Proof. Let 0, = vec(C’\Ili[f(mv, K, f(ﬂ]) From (46) we have

= (C‘I’v[f(m f(m‘ f(sz

vec(CU,ST(RTE[z" €T 1)+ [cai cwi e5i)))
E-v (C\I/iSTRTE)—kvec(C\I/iST[e@ Ewi E€fi))
—EWiRTE+Vec(C'\IJiST[5¢i Ewi  €fi))-

(50)

Combining it with (38), we have the dynamical systems with
the state [E, 6;]7

E
0;

_[ L ARET][E] [0
“[-EwWiRT 0 [ (6] T |a]

with ¢; = vec(C¥; ST [sqmaqmsﬁ]) Considering (45) and
the property <I>27 \I/Z, T“ Ky, Ky Kps € Lo, we have
€di,Ewi€fi € Loo, Which together with eg,ewi,ep €
Lo N Lo leads to a4, wi, €53 — 0 as t — oo. Therefore, the
convergence property can be shown through the homogeneous
part of (51).

It has already been shown in Theorem 3 that E,0; — 0
asymptotically if ¢; = 0 and all subsystems are activated re-
peatedly, from which one can conclude that K zi — 0, f(m- —
0, K i — 0 as t — oo, namely, the adaptive controller
gains converge to the nominal gains K, — K}, K, —
K7, Ky — K3, as t — oo. Considering ey; — 0 and the ex-
pression of ey; in (45), it follows v, — —(K:) P =Cv,.
Taking this into the expression of g; and €¢; in (45), we have
Cd; — C®; and CY; — CY; as t — oco.

&1y

Note that
Cd; = [a1; o api]
Oy = [by; b bil ", (52)
CYi = [flz fQi fpi]T,

where a;;, Bji, fii represent the estimated values of a;;, bji, fj;
in (1) for j = 1,---,p,i = 1,--- ,s. The convergence of
C’CIDl,C’\I/“CT 1mphes Qj; — aﬂ, bJZ — bj; and f]Z — fis
Considering that the system is in control canonical form, it
follows from the convergence of a;;, IA)ji and fji that Ai — A;,
Bi—>Biandﬁ—>fiast—>oo. [

The advantage of our indirect adaptive controller over the
direct adaptive controller is that the indirect adaptive controller
exhibits the capability to identify the subsystem parameters.
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This is, however, achieved at the expense of imposing more
complexity into the closed-loop system. Specifically, the up-
date law of the controller gains of the indirect adaptive
controller (46) is obtained by fusing the closed-loop estimation
errors to the update law of the direct adaptive controller (29).
Meanwhile, the subsystem parameters are updated through the
information of closed-loop estimation errors and the estimated
controller gains. Therefore, more computational costs must be
tolerable when applying the indirect adaptive controller.

Remark 12. (Parameter tuning guidelines) Larger adaptation
gains I'y;, 'y, T'p; and T'gg, I'yy, 'y speed up the parameter
adaptation while too large adaptation gains may lead to nu-
merical instability and high control effort. A is the coefficient
of J§T_1) and serves as the input gain of the dynamics of E
(see (32)). A larger A amplifies the sensibility introduced by
the higher order derivative and results in aggressive response
of E/, whereas a too small A\ leads to “stiff” descent of the
Lyapunov function (see (34) and (49)), which is numerically
difficult to solve.

Remark 13. When a PWA system is used to approximate
a nonlinear system, there exist approximation errors. If a
rigorous robustness analysis is desirable for this case, one can
impose robust modifications (such as projection) into adapta-
tion laws and add an auxiliary term v = 7, xiSIRTE to
the controller (28). This will lead to an inequality of Lyapunov
function in form of V < —2V + B with B being a bounded
term related to the maximal norm of approximation errors,
from which the stability can be concluded and the prescribed
performance is satisfied.

The concept to convert a constrained error into an uncon-
strained one to satisfy a prescribed performance requirement
has been studied for hybrid systems and switching systems in
[24, 25, 38, 39]. These approaches are based on backstepping
design and require either input gains to be completely known
[24, 25] or the control direction as well as lower bounds
of input gains to be known [38, 39]. Compared to these
approaches, only the control direction is assumed to be known
in our paper. Another feature that differentiates our paper from
these approaches is that the convergence of gain and parameter
estimation errors is achieved under PE conditions.

In prescribed performance control, there also exist
approximation-free control methods[20, 40, 41], where no
adaptation mechanism is introduced. Such approaches have
low controller complexity and computational costs. Compared
to these approximation-free methods, our approaches are based
on adaptations and can achieve unknown parameter estimation
in addition to the tracking task. This is especially useful
for monitoring systems with parameter drifts and component
aging as well as for joint control and identification tasks.

VI. NUMERICAL VALIDATION

In this section, the proposed adaptive approaches of PWA
systems with prescribed performance are validated through
two numerical examples.

Fe(p1,p2)

] ]
d P2 1h ) 7 s
N (b)

Fig. 1: (a) The mass-spring-damper system, (b) The aeroelastic
model of aircraft wings[29].

A. Mass-spring-damper system

The mass-spring-damper system of interest, taken from [12],
is shown in Fig.la. The two masses with m; = 5kg,my =
1kg are connected with each other by a damper with d =
1Ns/m and a spring with PWA stiffness F.(p1,p2). Let
F1, F> denote the forces acting on the two masses and p1, ps
represent the displacement of the two masses, respectively.
The PWA stiffness F.(p1,p2), which is determined by the
displacements of the two springs, is given by

01:10N/m, if \p27p1|§1m
F.(p1,p2) =< ca = 1N/m, if pp—p1>1m
c3 = 100N /m, if po —p1 < —1m.

(53)
The left mass is connected with the static environment by the
spring with ¢p = 1N/m and the damper with d = 1 Ns/m.
Given the state vector = = [p1, p1, 2, p2) . the output vector

y = [p1,p2]T and the input vector u = [Fy, F,]7, the system
dynamics can be written as a PWA system
0 1 0 0 0 0
co+ci 2d Ci d 1
s | T Tme om0y
0 0 0 1 0 0 !
i 4 _a  _d 0o L
mo mo mo mo m2
Ai Bi
(54)
with the affine terms f;,¢ = {1,2,3} being
0 0 0
O Cc1—Co €3—C1
— — ma — mi
=gl =17 | B=17 (55)
O C2—C1 C1—C3
mo m2

In the following simulation, the region partitions are as-
sumed to be known and the subsystem parameters are un-
known. Both direct and indirect adaptation cases are analyzed
as follows.

1) Direct Adaptation: Now we test the tracking perfor-
mance of the direct prescribed performance adaptive control
approach, abbreviated as PPAC. To compare this performance
with the one of MRAC [12], we let the desired trajectory yq
be the output of the reference system yq = W,,(s)r, where
Wi (s) = diag{ (0_251+1)2, (0_281+1)2} denotes the transfer ma-
trix of the reference system (see Sec.V in [12]), the input
signal r is chosen as r = [2sin(0.2t), 2sin(0.5¢)]7. We define
the performance bounds by specifying pg = [10,10]7 and
poo = [0.1,0.1)7 with the decaying rates | = [I1,ls]T =
1, 1]T. The error bounds in (9) are chosen to be symmetric
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by letting 4; = d = 1. A is selected to be 0.04. Besides,
we use unit scaling factors for controller gains adaptation,
Iyi = Iy = Iy = 1,Vi = 1,2,3 and we specify
Si=—1,Vi=1,2,3.

The output tracking performance of PPAC and MRAC are
shown in Fig.2. In Fig.2a and Fig.2c, the red regions represent
the prescribed performance bounds of the output. Blue solid
lines indicate the real system output of PPAC and the black
dashed lines depict the desired output. In Fig.2b and Fig.2d,
the tracking errors as well as the performance bound of
errors are displayed in blue lines and red regions, respectively.
Besides, the mode information is given in Fig.2e and the
common Lyapunov function in Fig.2f. The Lyapunov function
is continuous at each switching instant and strictly decreasing.
It can be seen from the figures that both components of the
output tracking error of the controlled system stay within the
prescribed performance bounds. For comparison purpose, the
tracking performance of the MRAC approach is displayed with
magenta lines. We observe that the transients of MRAC con-
verge slower than the one of PPAC and violate the prescribed
performance constraints.

i -PPAC

05 MRAC
0

05

0 10 20 30 40 50 10 20 30 40 50
time ¢ s time ¢ |5
(@) (b)
53 3 ~ref 3l -PPAC
ZR -PPAC | : = MRAC
RN oty 2| 02 VT
w o 2 /4\ § \/ P\ 0 5 10 15
g
[ _
0
| \'a
0 10 20 30 40 50 0 10 20 30 40 50
time ¢ |5 time ¢ [5
(© (d)
4
3 171210
25 1705
g 2 V17
g
15 1,695
1 1.69
0 10 20 30 40 50 0 10 20 30 40 50
time ¢ [5] time ¢ [3]
(e ®

Fig. 2: Output tracking performance of direct adaptation case.

To validate the convergence of the controller gains under
PE conditions, the desired output signal is chosen as yq =
[2sin(0.2¢) — 0.2sin(3t), 2sin(0.5¢) — 0.2sin(7¢)]. The relative
degree of the system is » = 2. According to Theorem 2,
yq should be sufficiently rich of order 3 to guarantee the
convergence of the controller gains to their nominal values.
Since each component of y,; contains 2 distinct frequencies,
the sufficiently rich condition is satisfied. Besides, the cho-
sen desired output signal ensures that all the subsystems
are activated repeatedly. The scaling factors are chosen as
Ipi =10 =T =5,Vi=1,2,3 and X\ is specified as 0.01.
The performance bounds are specified by po = [10,10]” and
poo = [0.15,0.15]7 with the decaying rates | = [I1,lo]T =

40 —
Y il
OL n L Il
0 0.5 1 15 2 25
20 T T T T —
I
lI%211 10 ikl
0 ‘ ‘
0 0.5 1 15 2 25
400 T T T T —
£
IKsleoo s
0 : ‘ ‘
0 0.5 1 1.5 2 25

time ¢ [10s]

Fig. 3: Convergence of estimation errors of controller gains of
direct adaptation case.

0.5,0.5]7.
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Fig. 4: Output tracking performance of indirect adaptation
case.

Fig.3 shows the convergence of the errors between esti-
mated controller gains and nominal controller gains. We use
K; on the vertical axis to represent the set of estimation
errors of the controller gains for i-th subsystem, i.e., K; =
{f{m,f(mfffi}. As we can conclude from the figure, the
estimated controller gains of all the subsystems converge to
their nominal values. This validates the theoretical results of
Theorem 3.

2) Indirect Adaptation: The tracking performance of the
indirect adaptation case is tested with the same parameters as
in the direct adaptation case. Fig.4a and Fig.4c display the
desired output in black dashed lines, the real output of PPAC
in blue solid lines as well as the performance bound of output
in red lines. The tracking errors, as well as the performance
bound of the errors, are presented in Fig.4b and Fig.4d with
blue and red colors, respectively. The switches are displayed
in Fig4e and the common Lyapunov function in Fig.4f,
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Fig. 5: Convergence of estimation errors of controller gains of
indirect adaptation case.
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Fig. 6: Convergence of estimated parameters of indirect adap-
tation case.

which is continuous at each switching instant and strictly
decreasing. As we can see, the output of the controlled system
is enclosed by the performance bound and the prescribed
transient performance is satisfied. In comparison to this, the
tracking performance of the MRAC approach, displayed with
magenta lines, violates the prescribed performance constraints.
The convergence of the controller gains and the estimated
parameters is tested by applying the same PE input signal with
the same setting of parameters as in the direct case. In addition,
Toi, Dy, Tys = 1,Vi = 1,2, 3. As Fig.5 shows, the estimation
error of the controller gains K Zis K}i, K fi converge to zero.
The parameter estimation of subsystem 2 is displayed in Fig.6.
Note that only the to be estimated components rather than
all the components in the parameter matrices are displayed,
see (52). The dashed lines represent the real values and the
solid lines depict the estimated values. As can be seen from
the figure, the estimated system parameters converge to the
real values. It can also be seen from Fig.3 and Fig.5 that
the estimated controller gains converge after 10000s. That
is because the parameter convergence is asymptotic instead
of exponential (see the analysis in Theorem 3). In practice,
properly choosing larger adaptation gains may be one possible
way to improve the rapidity of the parameter convergence.

B. Aeroelastic model

In this section, the proposed approaches are tested with an
engineering application example, the aeroelastic model of air-
craft wings [42, 29]. The wing fluctuation is simplified as the

mode 1 2 3 4
a; 10044 5992 2482.1 19.141
b; 2732.9 1377.8 422.78 2.8463
Region | [-0.38,-0.33] | [-0.33,-0.27] | [-0.27,-0.17] | [-0.17, 0.38]

TABLE I: Piecewise linear approximation of K«

dynamics of an airfoil with linear and torsional spring, which
is illustrated in Fig.1b. The airfoil has two degrees of freedom,
plunging and pitching. / denotes the plunging deflection and «
represents the pitch angle about the elastic axis. 3 = [31, f2]7
serves as the input signal and denotes the left and right flap
deflection angles, which are not distinguished from each other
in Fig.1b due to the side view. V denotes the constant airspeed.
Let y = [h,a]T be the system output. The motion of the
aeroelastic model can be described by the equation

Mij+Cy+ Ky +W, =B.5,

where M denotes the mass and inertia matrix, B, represents
the control gain. The structural damping effect, stiffness,
aerodynamic lift and moment effect are included in matrices
C and K. Their values are known and detailed derivations can
be seen in [42]. W, = [0, Ka]T constitutes the source of
uncertainties with & being the nonlinear torsional stiffness

(56)

K = 2.82 — 62.322a + 3709.71a2 — 24195.60° + 48756.954a*.

The characteristics of the nonlinear term Ko in the interval
a € [—0.38,0.38] can be divided into 4 regions and its piece-
wise linear approximation in form of @;a + b;,i = 1,--- ,4
is given in Tab. L. Let the state be z = [h,a,h,d]T. The
dynamics (56) can be approximated by the PWA system in
form of (3) with

0 0 1 0
| 0 0 0 1
PT | -293.27 —100.59 +0.66a; —5.9027 —0.40542
| 1885.9  743.79 - 19.65a;  34.728  2.4687
[0 0 0
0 0 0 .
Bi= | 76068 —7642.6] 7= | 066n [P
| 14250 9021.9 ~19.65b;
(57
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Fig. 7: Output tracking performance of direct and indirect
adaptation cases.
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Now we test the tracking performance of both direct and
indirect PPAC approaches on the nonlinear system (56), which
is equivalent to the PWA system (57) with approximation
errors as external disturbances. Gaussian noise with zero mean
and 0.001 variance is added to the state measurements. We
define the performance bounds by specifying pg = [5,7/6]
and poo = [0.1,0.04]7 with the decaying rates [ = [0.2,0.2]7.
The error bounds are symmetric with §; = do = 1. A is
selected to be 0.01. The adaptation gains are I'y; = I'y; =
1,T'; = 0.001,Vi = 1,--- ,4 and we specify the reference
signal as yq = [0, —0.4e~%%%sin(0.5¢+ 5 )] The initial state
of the system reads z(0) = [1,—0.35,0,0]7. The initial guess
of the parameters for each subsystem is specified by letting
a; = b; = 0 in (57). The following S; matrices are applied

0.7607  0.7643

Si=1_14950 —0.9022

WVi=1,--- 4. (58)
The output tracking performance of direct and indirect PPAC
are shown in Fig.7. In Fig.7a and Fig.7b, the blue lines and
magenta lines depict the output tracking errors of direct and
indirect approaches. The mode switches by using direct and
indirect PPAC are shown in Fig.7c and Fig.7d, respectively. It
can be seen from the figures that the output tracking errors of
both direct and indirect approaches stay within the prescribed
performance bounds. This also suggests some degree of ro-
bustness of our approaches against noise and disturbances.
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1B e
0.08 il
- 15+l
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0.04
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0
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time ¢ [s]

Fig. 8: Convergence of estimated controller gains of indirect
adaptation case.

The parameter convergence property is tested on the PWA
system (57) with indirect adaptation approach. The reference
signal is yq = [0.5sin(0.2¢) + 0.05sin(0.9¢), 0.2sin(0.5¢) +
0.05sin(1.2¢t)] without Gaussian noise. The adaptation gains,
the performance bound, and the initial guess of parameters
are chosen the same as those of the tracking case. Besides,
we specify A = 0.04.
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Fig. 9: Convergence of estimated parameters of indirect adap-
tation case.

Fig.8 shows the convergence of the estimation errors
of the controller gains of subsystem 4. The red line, the
green line and the blue line represent the estimation errors
(| Kzall, |1 K all, || K £al|, respectively. The figure validates the

convergence of the estimated controller gains to the nominal
ones.

Similarly, the componentwise convergence of the estimated
parameters of subsystem 4 by using the indirect PPAC ap-
proach is shown in Fig.9. As can be seen from the figure,
the estimated system parameters, displayed by solid lines,
converge to the real values (dashed lines).

VII. CONCLUSION

In this paper, we have investigated the adaptive control
approaches for MIMO PWA systems with prescribed per-
formance in terms of both direct and indirect adaptations,
respectively. For both control approaches, we have shown that
the output tracking errors stay within the prescribed perfor-
mance bounds. Based on novel common Lyapunov functions,
which do not rely on the solution of conventional Lyapunov
equations, closed-loop stability is achieved under arbitrary
switching. The controller gains and estimated subsystem pa-
rameters are proved to converge to their nominal and real
values if the desired trajectory is PE. The incorporation of the
dynamic gain adjustment technique prevents the singularity in
indirect adaptation. One limitation of our approaches is that the
PWA system with state jump or jump in the derivatives of the
state/output cannot be handled. Extending our approaches to
such cases can be our future work. While our methods ensure
the closed-loop stability under sliding mode (chattering Zeno),
the study of genuinely Zeno behavior (infinite switching events
within a finite time interval) in adaptive PWA systems remains
an open topic for future work.
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