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ABSTRACT

Breitung's asymptotic result for the crossing rate of stationary
Gaussian vector processes out of smooth, curved failure surfaces is
eneralized to non-—stationary processes and/or time—dependent
?ailurc surfaces. A suitable special solution for the corresponding
"Laplace" integral is given. It also performs the necessary time
integration for the mean number of outcrossings in a given time
interval. Thereby, one has to distinguish between the case where the
maximum outcrossing rate occurs in the interior of the time integrat-
ion interval and the case where it is at one of its boundaries.
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failure domain

state function depending on time 7

normal on dF at x

number of crossings through failure surface in [0,t
number of outcrossings through failure surface in [0.t]
probability of the event A

reliability for time interval [0,t]
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cross—covariance matrix of X( ) and X( r)

covariance matrix of X(7)

safe domain

critical time

reference time

standardized Gaussian vector process

>
=
{1 I

derivative process of X( 1)

critical point (minimum point)
?eomctrical safety index

ailure surface

n—dimensional standard normal density
standard normal integral

i~th main curvature of JF

outcrossing rate
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INTRODUCTION

The computation of the failure probability of structures subject-
ed to sequences of random seas is well—known provided that certain
idealizing assumptions are made. The most common approach is
based on the assumption of a stationary Gaussian sea in each sea
state. Also, load effects are related to the loads in a linear manner.
Approximations for the time—variant reliability of structural com-
ponents are then obtained by determining the mean number of
crossings of the load effect process into specified failure regions. Let
F be a failure set with boundary oF and X(7) a Gaussian vector
process with continuously differentiable sample paths. Also denote by
N*(t) the number of crossings into F in a time interval [{) t] snd px
mﬁ r) the outcrossing rate. Under suitable regularity cons qeuoge ph
following reliability bound can then be derived {Ceisu ascron

Leadbetter, 1967) sRiouz” ef
> unpeL of
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the mean number of outcrossings. R(0) is the prob:
X(0) € S(0) with S being the complement of F, i.e. the
the stationary case the integral simply is »*t. if X(7) is a )
mixing process, then the asymptotic approximation

R(t) ~ exp[— E[N*(t)]] (3)

is valid for rare crossing events or high reliability R(t) and this is
used most frequently in practical applications.

suq fpiz 12

If X(7) is a scalar process and, thus, the safe set is bounded by a
simple threshold function, exact formulae are available for the non-
stationary "upcrossing" rate in eq. (2). But an analytical solution for
E[N*(t)] is known only for a very special case (for a covariance
stationary process with linearly varying mean and/or threshold, see
Cramer and Leadbetter, 1967). Otherwise, one has to integrate
numerically over time. Guers and Rackwitz (1986) proposed a simple
approximation for the time integration in eq. (2) by using asymptotic




concepts for so—called Laplace integrals. They also gave a formulat-
on based on eq. (3) suitable for the numerical analysis when the
reliability problem contains non—ergodic variables such as random
but time—invariant parameters of the process X(t) or of the
threshold function. The latter formulation directly carries over to the
vectorial case. Therefore, we shall discuss only sufficiently mixing
processes in the sequel.

Non—stationary crossing rates for vector processes out of arbi-
trarily bounded failure domains are also of interest in several areas.
For example, the excitation of structures by earthquake—induced
ground motions are highly non—stationary and the failure criteria of
structural members frequently are given as so—called interaction
curves for the multidimensional response quantities. The non—sta-
tigpary case is of particular interest if the resistance properties are
criagding in time due to fatigue, aging, corrosion or other wear—out
zpincPmena. The non—stationary case is further of interest for the
Biom purpose to quantiy the effect of the commonly adopted sta-

oL {ity assumption for the sea states in marine engineering. Even
glowyfationary vector processes exact formulae for the outcrossing

“iare available only for some special cases with respect to the

t of the failure surface and the correlation structure of the
brocess (Veneziano et al., 1977). The only solution for the out-

~ ng rate of non—stationary vector processes known to the

irs is due to Ditlevsen (1983) for linearly bounded failure

W BiSine |t makes use of the fact that a linear combination of

™Il Plian processes is again Gaussian so that all results for the scalar

SUQ\Ccan be used. Otherwise serious computational difficulties are

{OUUN However, for smoothly bounded failure domains, Breitung

14, 1984a) derived a second—order approximation for the station-

witcrossing rate by using asymptotic concepts for Laplace

fo A;"ak which can be updated by importance sampling procedures
to yield numerically exact results (Fujta et al., 1987).

In this paper the concepts of asymptotic analysis are applied to
formula (2) by assuming non—stationarity of the vector process
and for time—varying smoothly bounded failure domains. The results
will be illustrated at a simple example. Suggestions for simplifications
in practical applications are made.

EXPECTED NUMBER OF CROSSINGS OF NON-STATIONARY
VECTOR PROCESSES

Let X(7) = (X(7).... Xa( 7))T be a n—dimensional non—station-
ary Gaussian process with differentiable sample paths and derivative

process X(r):()(,(r) ..... ¥ r]gT. Without loss of generality, we
suppose that for each 7 € [0,t] the process can be standardized such
that there is:

EX{ ] =EXi(r)] =0 i=1,... n)

CEJ\:‘X{ Xi(r)]=0 i#])
CoOviXi(nXinl=1 E=1,..l,n)

For later convenience, we also introduce the notations:

R= {ri} = {COVIX() X (o o =

R = {ris} = {COVIX() X o o

R = {rij} = {COVIXi(7).Xi(T)}ii=1,-- 1m

Let F = {g(x7) <0} be the failure set in the standard space with

bounda varying in time. This is assumed to be at least locally
twice differentiable in x and 7
F = F(x1)= {01 gx7) = 0} (4)

Following Bolotin (1981) the outcrossing rate of the process X(r)
through the hypersurface oF during the time interval At is defined
as:

y‘(gf;r) = |im %—;P(L’FJA'T) (5)
Ar—0 :

Pi(dF;Ar) is the probability of a crossing of oF by the process X( )
from the safe domain 5(7) = {%x 1) > 0} into the failure domain
F = {g(x.7) €0} during Ar. As usual, regularity of the point
process of crossings is assumed, i.e. there is P(N(A7) > 1) =

o Ar). Py(aF; A1) can be given by

X(t) € :_\.(_ dF)
P{dF;Ar) =P xn(:)> dF (x;¢) (6)
r€ts r+Ar

where Xq(t) = nYx) X(r) is the projection of X(t) on the normal
nY{x) of & at the point x, OF(x;t) the time—variation of the surface
ogF at x and A(JF) a thin layer enveloping JF with height
(Xa—&(x;7)) Ar. Introducing the joint density function
pn.;{x,a;n;r} of X and Xn allows to express P; by the following
integral:

Pi(F(7);A7) = J ; J,_om.(x,kn;r)axd;n
A(dF) Xu(r)>F(x;7)

The integral over A(JF) can be transformed into a surface integral
over ﬁ:)&rhe layer A(F) can be understood as the sum of infinitely

small cylinders with height (xo(7)~0F(x;7)) A7 and basis ds(x),
where ds(x) is a surface neighborhood of the crossing point. Hence.
integrating over x yields:

P dF;Ar)= J ' J (x,1 - a;_(x;v')) Poet( X, Xn;7) AT din ds(x)
Xo>F(x; 1)

Introducing now the density function of X, conditional on X = x,
proceeding to the limit according to eq. (5) and taking the integral
over 7in [0,t] as required in eq. ?2) leads to an integral representat-
ion for the mean number of outcrossings:

E[N*(oF;t)] =
t
lai [ Ga= #067) piGen X)) () dads(xr
Xa>F(x;7)
(72)

A similar reasoning leads to the expected number of incrossings:

EIN(OF;t)] =
t

_Jui . J (ln “al:(xif)} SPi(;(n|X(T)=x) wn(x) dxnds(x)d7
0 F Xn<dF(x;1)
(7b)

In combining the two contributions the expected number of crossing
can be given as:

E[N(tﬁF;t)} -
i AM | xa=GF ()| pi(m | XCr)=x) (x) da ds(x) d7
' (8)

By considering the fact that the above is achieved by fixing the time
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7, it is obvious that the time-variation AF(x; 7) of the surface OF
corresponds to the time—variation of the function g x7) and does
not involve the time variation of its gradients. The solution of the
integral (8) together with the obvious relation

E[NY(0F;t)] = 5 EINCHF;t)] + 5 (EIN(F;t)] — EIN(3F;0)])
(9)

where the second term can be evaluated in a simple manner (see
appendix 2) yields the reliability estimate eq. (3).

INTEGRATION OF EQ. (8) BY THE THEORY OF
LAPLACE-INTEGRALS

The integral eq.(8) has no analytical solution for arbitrary
non—stationary processes and failure surfaces. If the vector X( 1) has
six dimensions, for example, the stresses in a three—dimensional
body, the dimension of the integral is eight. But even in smaller
dimensions numerical integration would be time—consuming. How-
ever, a semi—analytical, approximate solution can be found by apply-
ing the concepts of asymptotic analysis to this integral which after
some manipulation is, in fact, a special type of the so—called Laplace
integrals. These integrals have the form

KU=£MﬂWUNﬂ%4ﬂmdy (10)

where D a simply connected domain in R® containing the origin. f{y)
is assumed to be at least twice differentiable and has a minimum at
the origin y = y* = 0. h(y) is a smoothly varying function around
the origin and h(0) # 0. k(y) is a function which can be zero at the
origin and has a linear expansion k(y) = cly + b around the origin. b
is admitted to become zero. For this integral analytical results can be
derived for A — co. They rest on the fact that the dominating part
of the integrand for larger A clearly comes from f(y) in the exponent.
Analytical results are possible because the function f(y) and, if
necessary, k(y) need to be represented only by their first— or second
order Taylor—expansion. Appendix 1 collects a few basic facts about
Laplace integrals in terms of a lemma and two theorems the second
of which has been derived for the purpose of our subject. In order to
apply those results to eq. (8) a number of intermediate steps have to
be taken. As the remainder of this section contains rather technical
details, the reader may omit it at first reading and proceed directly
to the results.

First of all, the mixture of a volume integral over time and x,
and a surface integral must be transformed into a simple volume
integral by using a suitable parameterization involving the time and
the %n—l) first coordinates of x as parameters and the n—th coordi-

nate xp as a function p(x,). Define:

x = (X.p(X.7))T with X = (x,..X01)TEW and T = [0.1]
Eq. (8) is rewritten as:

E[N(dF;t)] =

J [ | xa=0F05 7l pr(xa |XCPI=x) X3 ) TR, #) dxgdiidy
WxT R!

where Tr(X,7) is the absolute value of the transformation deter-
minant. Introducing the well—known scaling by a factor 8> 1
according to Breitung (1984b) and using the transformations

xi=Byi (i=1,..n=1), xo=p(X)=p(H. 5% r=289

leads to the scaled domain W =T, Hence:

ENFD = ,
8" [ [1xa- (Bl wi(asBhIX(B0)=12)
W|IT| ’
ol B5.0( B5. £9)) Tr( 5. 56) dxq dy dd (1)
Furthermore, the conditional density function of X4 can be given
explicitly by using the following formulae for the mean and variance.

Note that n{ 3y) = n(y).
EXo(7)|X(7)=Ay] =

n{y)R™3y = m(3;39) = Bm(y;#) = 3/ (122)
VAR[Xo(7) [ X(7)=Ry] =
() RRRjn(y) = oy, 9) = 7 (125)

Suppose now that in the time interval T = LO,Q& there exists a

critical time t* for which the distance 3 between the hypersurface &F

and the time axis is smallest. Let x* be the corresponding critical

point. The point (x*t*)T can be found by solving the fouo-;ng

optimization problem which is equivalent to minimizing the function
.)in eq. (10}

{re[O,t}
‘x,7€ {g(x7) =0}

For further notational convenience a suitable orthogonal trans-
formation (rotation) x—+y is performed such that x* = e, The
scaling of x* implies that y* has unit distance to the ongin. By a
simple translation it is also always possible to achisve # = (0.
Furthermore, the substitution

A= min{lxl} for (13)

pe = (B

: o
is introduced. Apart from some constants the normal densities in
q. (11) can then be written as:

32 n—1

eol=5 2+ 3 v+ oGO

if the function p(¥.d) is taken as an approximating paraboloid to
dF in the critical point and if the paraboloid is expanded to first
order the term in braces in the exponent can be taken as the
function f{.) in Laplace's theorems, the term in absolute signs in
eq. (11) as the function | k{.)| and the other terms are collected in
the function h{.). After some algebra concerning the term in
absolute signs, it remains to set A = 2 in order to obtain a form to
which theorem 2 in appendix 1 is applicable. Two cases need to be
considered. The critical point can be an interior point or a boundary
point of W xT,. The function p depends on the position of the critic-
al time t* in T (or of & in ‘F,) and on the geometry of the hyper-
surface at this point. If  is an interior point of T, the function pﬁ‘e)
can be chosen as a complete quadratic form depending only on t
second derivatives of the surface with respect to y; (i=1.....n) and &
All first derivatives of g(y; &) vanish at the critical point. In the case
where % is a boundary point of the time interval, the first derivative
of g(y; #) with respect to time has to be taken into account.

RESULTS FOR THE GENERAL NON-STATIONARY CASE

The results thus obtained can, of course, be given in terms of
the quantities in the original space by performing the inverse of the
orthogonal transformation which transformed x* into Be,. This
yields after some algebra the following approximations for the mean
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number of crossings of X(7) out of F = {g(x;7) < 0} given that the
critical point (x*;t*)T has been found according to eq. (13) and the
statistical properties of X(7) are defined as in the formulae just
above eq. (4). The two cases are illustrated in figure 1 and figure 2
for a two—dimensional stationary process and a time—variant failure
surface. For simplicity of presentation, t* = 0 is assumed in the
following.

Case |: t* s an interior point { non—Jinear failure surface)

-1/2 1/2
E[N(F:t)] =2 & 8) | )=l L [az(x‘:t‘} + u,%x’:t")]

with

J= = n¥x*) G, n{x®)

o2(x%:t%) = n{x=) (R —RT R) n{x*)

P(x*:t%) = nget o) Roet (E = Gx,) RoerT ngei(x®)

(14)

where G, is the (n+1)x(n+1}-matrix

saxy —1 Rg(x*;t*) - . .
Gr, =  {gi = | Vg(x;t*)l _ﬁ"—(,?) i
Binsl = ng(x*;P)l_l gg%:r_) i=1..n;

1 e
Enslnst = I‘i’g(x‘:t‘)l 2 _:. - }

Moei=  (n+1)—vector cbtained from n by adding a (n+1}—com-
ponent equal to 1

Rn.lz n41)x{n4+1 atrix obtained from R by adding a
n+1 xtn+1 omponent equal to — ga(x*;t*)l

k= (n41)x{n+1)}—matrix obtained from a nxn—unit matrix by
adding a zero—{n+1)—ow and a zero—{n+1)—column

C,= matrix of the cofactors of the matrix E — Gx,.

The factor J= can also be expressed in terms of the (n+1) main
curvatures in the point (x*;t*).

Case lI: t* is a boundary point (non—dinear failure surface)
E[N(F;T)] = [2¢(2) —2 + 22 ¥(a) | w(5)

-1/2 1/2
| g (x=;t=)l =1 g ; [az(x’;t‘) + wz(:‘jt‘)] /

with (15)
2= ﬂ%;ﬂ [G’Q(X'tt') + u.'z(x‘:t‘}l-bl/
J* = n¥{x*) Ce n(x*)

az(x*;t") = n¥{x*) (R —RT R) n{x*)
A(x=:t%) = nx*) R (1 - Gx) R n(x*)

Gx = { gij = Ws(x";t*)l -1 Q%%:_‘l IJ =il n}

I = (nxn)—unit matrix,
C, = matrix of the cofactors of the matrix | — Gy

2

LEIN*(F;t)] ~ E[N(IF;t)]

M the time derivative vanishes at the critical point the mean number
of crossings is just half of the number computed by eq. (14).

NON-STATIONARY CASE WITH LINEAR FAILURE SURFACE

When the failure surface is an hyperplane the above formulae
reduce to simpler forms.

Case |: t* is an interior point (linear failure surface)

5 ) 1/2
E[N(OF;t)] = 2 i B) [e"(x=it*) + o (x*;t*)]

with o

fr?‘(x‘:t") = n{(x*) (R —RTR) n¥x*)
.&‘2(1(‘;1‘) = nfei( x*) Rn.l R,MT Mot X%)

Case lI: t* is a boundary point (linear failure surface)
EIN(F;T)] 2[2¢a)—a + 22 ¥(a)] w(F)

1/2
st o) + )]

(17)

with

Al y X4 X -1/2
e ngf‘%%) [frg(x‘:t‘) - .»‘2(x‘:t’)] /
52(1‘:t‘) = n{x*) {R —RT R) nY{x*)
u‘g[x':t*) =n{x*)R RT n( x*)

This formula and in part the previous formulae can further be reduc-
ed but we will not do so herein.

EXPECTED NUMBER OF OUTCROSSINGS

The expected number of outcrossings can finally be obtained
from the expected number of crossings by using the relation (see
appendix 2)

[P(g(X;0) < 0) - P(g(X;t) < 0)]
(18)

with P(g(X;0) < 0) and P(g(X:t%( 02 computed as proposed in
appendix 2. The results in eq. (14) To (18) are believed to be given
here for the first time.

STATIONARY PROCESSES AND TIME-INVARIANT
FAILURE DOMAINS

In this case further significant simplifications occur. First of all,
since the integration over time is now an integration over a constant
crossing rate it is E[N*( dF;t)] = v*(F) t ang is suffices to give the
outcrossing rate. Secondly, there is no distinction between interior
and boundary points and the special version of theorem 2 in
appr_ndix? with k(0) =0 already obtained by Breitung (1984a)
applies.

, n— -1/2  -1f2 , 9, 112
v(F) ~ il B) _{jl(l -xif)  (27)  [(x) + (%))

I
for f= (20)
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where
ﬂzfx‘) = ax* }T(R - RTR) o x*)
wz(x") = o(x*)TRT G fl(’fa(x‘)
=\ gl x* ¢ 11
G = {fx + Vo)™ GEC) 5 ij=1..n).
As before, f is the minimal distance between the failure surface JF
and the origin, a(x*) = —n(x) the (normalized) gradient in the

minimum point x* and the ;'s are the main curvatures of JF in that
point.

If, furthermore, X and X are independent one can simplify this result
to (Breitung, 1983):

n—1 -1/2 Pt 1
v F) ~ e F) A (1 -Kih) [g&zw]
¥ fOf 3—‘ n (21}

If, finally, the failure domain is a half—space the wellknown result
referred to in Veneziano et al. (1977) is obtained by omitting the
product term involving the main curvatures x; of oF from eq. (20) or
(21).

DISCUSSION

According to Breitung (1984a) the term o x*;t*) is the

variance of the random variable n%{(x*)X(7) conditional on

X(7) = x*. The term w(x*;t*) is approximately the variance of the
mean in eq. (12a) of the same variable conditional on X(7) = x* if x
varies around x*. It is this second additional term why we first com-
puted E[N(Ef;t)% by eq.(8) via its asymptotic approximations in
eqs. (14) to (17) and then used eq.(9) for the mean number of
outcrossings. Direct application of theorem 1 in appendix 1 to
eq. (7a) would yield similar results but with «®(x*;t*) = 0. This
term, therefore, must be considered as a higher order but never-
theless asymptotically non—negligible correction. Geometrically, this
term takes account of those additional crossings through the failure
surface somewhat away from x* which are possible because there is

already n(x) # n(x*).

It islalso warth noting that the term o(x*) in eq. (20) s not
present in eq. (21) and the same applies to the terms «®(x*;t*) in
the previous formulae under the same circumstances. Therefore, if

X(t) and X(t) are independent the formulae simplify greatly. Since
the matrices R in general have entries which are small as compared

to the entries in R it is even concluded that neglecting the terms
W(x*t*) in eqs. (14) to (17) frequently is an acceptable
approximation. A cruder approximation is achieved by also neglecting
the term involving the R— or Ry, —matrix in the expression for
o%(x*;t*). A greater error usually is introduced if the curvature infor-
mation for the failure surface in the critical point is not used in
higher dimensional problems

NUMERICAL EXAMPLE

Consider the following limit—state function

gdx7) = ol r) = [ox( )2 + 3o M2

which corresponds to a two—dimensional v. Mises yield criterion
where the resistance o{ 1) is a function of time 7 and where oy(7)
and o 1) are the components of a two—dimensional process XE')
having the following parameters:
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MEAN COVARIANCE MATRIX
o 1) E[od 7)) 1940 7940 0 -2.4

?;( T) E[gt( )] —7940 32566 2.4 0
'_7"{ 7) E[g,( 7)] 0 22.4 114000 -403000
o 7) E[oe )] -22.4 0 —403000 1780000

E[ox(7)] and E[ox(7)] can be functions of the time r to be defined
later. sé 3 illustrates the non—stationary behavior of the failure
domain F defined as usual by:

F = {g(x7) <0} re (o

The variation of o{7) is described by a, for the purpose of illustrat-
ion very simple, yield stress function

)= ol +c(r=m)) r€[04]

The minimum of this function and, therefore, the maximum of the
outcrossing rate when X(7) is stationary is readily determined as
r =7o. We first assume [a‘(?} = E[a(7)] = 0 Due to the fact
that the mean—value vector and the correlation matrix of X{7) do
not depend on time, the critical time t* corresponds to the time
where the function o{7) takes its minimal value, i.e. t* = 75. We
define the following constants in appropriate units: op = 7 = 50

and c = 210+

i t = 7o, the critical point t* is a boundary point of the interval
[0.t). o(7) is a degrading function of r within [0.t]. The time
derivative of the function g{x;7) is zero at t*. Formula (14) and the
remark below eq. (15) furnishes:

E[N(F;t)] = 1.37 10

if t > 7o, the critical time t* is an interior point of the interval
[0.t]. i.e. t= = ro. The time derivative of the function g(x;) at the
critical point also vanishes. One obtains

E[N(F;t)] = 2.74 10-6
which is twice as much as the foregoing value.

f t < 7o, the critical point t* = t is certainly a boundary point
with non—vanishing time derivative. With eq. (15) and t = 45 one
determines:

E[N(dF;t)] = 1.1510°8
NextE[o(7)] and E[a{7)] are defined as the following

functions of time:

E[o(7)] = oax &xpl—cx (7= )]

E[o(r)] = o expbce (7= 7a)]

The critical time must now be determined numerically a¢

eq. (13). Depending on the parameters of the mean valu

and the yield stress function the critical point can be

interior or a boundary point. With ony = me = 2 102, ¢x

Ta =40 and t > ry the critical point is an interior ouomwg
t* = 40.03. Eq. (14) gives x

E[N(F:t)] = 3.5 103

In all cases the first—order and asymptotic second—o
coincide which is readily explained by the fact that the r
vatures of the failure surfaces are several orders of magn
than the B—values which are around 5.




CONCLUSIONS

The theory of asymptotic Laplace~integrals proved again to be a
suitable tool for the dervation of an important, asymptotically exact
generalization of the available results for the crossings of vector
processes out of given domains. Multidimensional integration is
reduced to a simple single constraint non—inear optimization
problem and some simple algebra. The results suggest certain
simplifications in practical applications, e.g. to neg‘icct the possible
cross—correlations between the process and its derivative and to
discard curvature information about the failure surface in the critical
point in the sense of a first—order approximation.

APPENDIX 1: ASYMPTOTIC LAPLACE INTEGRALS

Under the conditions mentioned for the integral (10) several
results can be derived valid for different cases. Here we summarize
two versions particularly relevant for the subject under study.he
basic results are given in terms of a lemma and two theorems with-
out proof, applicable to various forms of k(y) and D (see Bleistein
and Handelsman, 1975, Breitung, 1884a, 1984b, Breitung and
Hohenbichler, 1986, and the references therein for proofs andgsome
additional results).

LEMMA 1:

Define a small neighborhood V of y* = 0 such that the following
conditions are fulﬁllcd%Br:itung and Hohenbichler, 1986):

f(0) < sup{f(y): y € D\V} (a)
[ ) 1l expl=2 )l dy > 0 (b)
DIV
E )l expl= A f(y)] dy <= (©)
DUA
A) | _ s
following asymptotic relation can be proved:
0) <nl
{y)l exp[- A f{y)] dy ~
CouqIfiou:
of fpe g
LS 180 4 ()] exp[— A f(y)] dy
el O
e Y for A - m.

If 12 2pomi says that only a (small) neighborhood V of y* essentially
uc|ﬂyg:|:::s to I(A) when A -+ Usually it is proven by assuming a
neighborhood, for example, in the form of V(e) = {Iyl < €}. Then,
it is shown that:

|im§-§—'3—h¥&—‘}}=(}f@rc>0
A=m . ¢

The important implication of lemma 1 is that only the local behavior
of the functions h(y), k(y). f(y) and possibly of the bounding
functions gi(y) of D, ie. wgen D is given as D = {N gi(y) < 0} has
to be taken into account. For this 2 Taylor expansion up to and
including the first non—vanishing term is sufficient.

#

THEOREM 1:
Assume that K(0) =1 and k € {0....n}. The function f(y)

obtains its minimum within DN(RExR"k) at the origin. Further

assume that there is if#g)>@ for i =1,...

3 : LaMex) .
Hessian matrix S(O):{"‘( 3 ij=k+1,...n} of second

k and that the

derivatives of f(y) is positive definite. Then (Breitung and
Hohenbichler, 1986):

A) = h(y) exp[— A f(y)] dy ~
DN(RXxR"-K)
(n=k)/2
~ h(0) expl— A §0)] (22
A
k -1/2
(11240 | pesiopy ™

(22)

for A = . An important aspect in this theorem is that the contribut-
ion of the mixed derivatives for i=1..k j=k+1..n in the
expansion of f{y) can be shown to be negligible.

#

THEOREM 2:

Assume that there is for cnliimill il k and

#9) 5
k € {0.....n}. The function f(y) obtains its minimum at the origin

which s a

P vx) . .

50) = {i{k—(%} i.j=k+1,...n} of second derivatives of f(y) is
J1

positive definite. Further, the function k(y) has the following

boundary point and the Hessian matrix

approximate representation around y* = 0
- n “
% ::
Ky)=by) + 5 A0, _ )4 o5y
i=k41 *71

where y = (yy,....yk)T and ¥ = (Yko1,....yn)%. It can then be shown
that (Plantec and Rackwitz, 1988):

KA) = h(y) 1 K(y)l exp[— A f(y)] dy ~
DN(R¥:R k)
(n—k)/2
~h(0) expl~ A (0] (2L
A

k _1/2
(11 1200 -1y peys(0)) i

=1 ¥

£ 1/2 3 1/2
[20&(_%)+bg).'”—?b(,).”‘*i)(—%)]
Te Tc

(23)
for A = w with
i 43 a 1/2
5= (TS 0)E) =( £ cicisij)
i j=k41
and
bo = b(y = 0)

*

and where the s;;'s are the elements of the matrix S-1(0). wl.) 15
the univariate standard normal density and 4(.) the standard normal
integral. The last term is the result of an expectation operation for
the last n—k integration variables. Similar to theorem 1 it can be
roven that the mixed derivatives fori=1,...k; j=k + 1,..., n can
Ee omitted from the expansion of f(y) and for the expansion of k(y)
only the terms for i = k + 1,....n need to be retained. The special
case with k = 0 and k(0) = 0 has already been obtained by Breitung
(1984a).

APPENDIX 2: RELATION BETWEEN EXPECTED NUMBER OF
CROSSINGS AND EXPECTED NUMBER OF OUTCROSSINGS

In the stationary case the expected number of outcrossings can
be easily obtained by using the fact that it is just the half of the
expected number of crossings (see Cramer and Leadbetter, 1967). In
the non—stationary case however the relation is much more involved.
Cramer and Leadbetter proposed for the one—dimensional case the
following formula:

E[N*( oF;t)] — E[N(oF;t)] =
PIX(0)<u(0) N X(t)>u(t)] — P[X(0)>u(0) N X(t)<u(t)]
where u(7) is a time—variant threshold level. Hence, for the multi—di-

mensional case as defined previously we have in straightforward
generalization:

E[N*(dF;t)] — E[N-(F;t)] =
Plg(X;0), 0 n g(X;t)<0] — P{g(X:O}_‘_,U N g(X;t)50]
~ P(g(X;0) < 0) — P(g(X;t) < 0)
for a high—reliability problem.
According to our assumption of a sufficiently mixing process the
two events at time 0 and at time t, respectively, may be assumed

independent for large t. Therefore, following Breitung (1984b) it is
asymptotically

n—1 1
P(g()(;O)iO) ~ ®(— A0)) Ell[l - xi(O)iO)]_‘/Q

n—1 -1/2
P(g(X;t)<0) ~ &(— 1)) 1_11[1 — i )At)]

with A0) and At) the so—alled geometric safety indices defined by
A.) = min ()l for x{.) out of {g(x;.) < 0} at the times 0 and t
respectively and with xi(0) and xi(t) the i—~th main curvatures of the
surface in the B—points at the two times.

Thereafter, it remains to use
EINY(3F;t)] = 5 EINCOF;t)] + 5 (EIN(GF;t)] — EIN(aF;t)])

for the mean value of outcrossings provided that E[N(dF;t)] is
known.
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