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Abstract. Scveral widely used importance sampling methods for the estimation of [failure probabilities are
compared. The methods arc briefly reviewed, and a set of evaluation criteria for the comparison of the methods is
chosen. In order to perform a fair comparison the developers of the schemes were asked to solve a number of
problems sclected in view of the evaluation criteria. Their solutions are presented and discussed. Conclusions about

the performances of the schemes under different circumstances are given.

Key words: structural rcliability; probability intcgration; Monte Carlo methods; simulation; importance sampling.

1. Introduction

Let X=(X,. X5,..., X,) denote the vector of basic variables of a reliability problem with
continuous distribution function Fy(x) and g X) the state function defined in such a way that
failure occurs for & ={uU N g (x) <0). The failurc probability is calculated as:

», :[“ fy(x) dx (1a)

where f,(x) is the joint probability density function of X. Alternatively, if a probability
distribution transformation X = T(U) cxists where U is a standard normal independent vector,
the failurc probability can also be calculated in the so called standard space (u-space). If
denotes the failure region in the wu-space then:

I)‘:J; (Pu(u) du (‘lb)

where ¢, denotes the n-dimensional standard normal density. The necessary probability
integration in the u-space can be performed by FORM/SORM [1] which in essence locates
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numerically the so called most likely failure point (most important region, design point,
B-point). In this point the failure boundary is approximated by either a linear or quadratic form
whosc probability content can be determined analytically. If the distribution function of X is
not differentiable and/or the failure domain cannot be represented as before FORM / SORM
concepts are no more suitable for computing the integrals as eqns. (1).

The approximate calculation of failure probabilities of structural components and systems by
FORM/SORM is well known. Nevertheless, alternatives for cases where FORM /SORM does
not work satisfactorily and methods with which the error by these methods can be quantified
are desirable. One of the most attractive alternatives, no doubt, is by applying importance
sampling techniques first proposed in 1983 by Shinozuka [2]. Quite a number of variants have
been proposed since then each having its merits and disadvantages. A systematic comparison
has been missing up to now, except for a study by Fujita and Rackwitz [3] who compared three
special schemes. Therefore, the authors decided to arrange a benchmark study. In order to
avoid unnecessary bias a number of examples, most of which have been studied previously by
one or the other method, were set up covering a large area of applications and the most
important judgment criteria. These examples have been recomputed by a part of the develop-
crs. Their results form the basis of the comparisons to be made in the following.

2. Evaluation criteria

In order to judge the different importance sampling methods the following quality criteria

have been selected.

— Basic variable (x-) or standard («-) space formulation

- Robustness (against multiple critical points and noisy failure boundaries)
— Capabilities to handle equalities, unions and intersections

— Continuity of limit state function and/or joint distribution function of X
- Efficiency and accuracy (convergence properties) especially with respect to

— Space dimension

— Probability level

— Curvatures of limit state function
There is an ongoing debate about which of the alternative computation schemes in the x- or
u-space, respectively, is preferable. The u-space formulations appear to be more widely used at
present. They require a probability distribution transformation, which in some cases not only
must be performed numerically but also requires some additional programming effort. The
transformation can further increase or decrease the nonlinearity of the problem. The same, of
course, is true for importance sampling methods. x-space formulations have been put forward
in 1978 in the context for FORM (see Rackwitz and Fiessler [4]) and recently in the context of
SORM by Breitung [5]. They have been found to work equally well if certain scaling problems
can be solved. Importance sampling methods in either space are discussed below.

It is well known that a FORM /SORM analysis can fail when more than one B-point exists.
Furthermore, Liu and Der Kiureghian [6] have shown that some of the usual algorithms for
FORM /SORM have difficulties in locating the important region when the limit state function
contains numerical noise, which may arise from errors in complex state function routines. It is
therefore of interest to test whether importance sampling schemes offer an efficient alternative
for these special cases.
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Most importance sampling schemes have been developed for simple component reliability
problems. However, a large number of structural reliability problems involves unions and
intersections. Therefore, an important judgment criterion is the capability of a method to
handle these problems. The same is true for equalities occurring, for example, in applications
when reliabilities are to be updated by observations.

FORM /SORM require the failure function and the distribution functions of the stochastic
variables to be continuous. It will be investigated if importance sampling schemes are also
limited in this sense.

Taking into account that the evaluation of the failure function usually is the most time-con-
suming part of the analysis, the efficiency of the methods can be judged by the number of
g-function calls which are necessary in order to reach a given coefficient of variation of the
failure probability estimate. The number of g-function calls, which are necessary to perform
the simulation, includes the calls used to locate the important region and to perform the
sampling according the the chosen sampling density.

Structural reliability problems can involve a large number of stochastic variables. In
FORM /SORM the numerical effort increases with space dimension. Similarly, the efficiency
of various importance sampling schemes depends on the space dimension. Therefore, the
dimension of the uncertainty space may also be an important factor in evaluating importance
sampling schemes.

Importance sampling methods are used to estimate a wide range of probabilities (typically,
1073-10""'9 for structural reliability problems). It is, therefore, important that the efficiency of
the methods is insensitive against the probability level.

Finally, because problems with large curvatures of the failure surface in the design point can
only be calculated accurately by SORM which can require considerable more effort than
FORM it is of special interest to investigate the performance of the importance sampling
methods for failurc surfaces with extreme curvatures.

3. Importance sampling methods
3.1. Basic concepts

Equation (1) can be written in the following form:

fx(®) fx(v)
D= - hy(v)de=[ 1|g(y;) <0 ——=
2 fﬂ,h;«'(v) l( ) /R” [ ( ) ] hV(l/‘)
where £, (v) is the importance sampling density function and 1[-1is the indicator function for
Q,. If h, is nonzero over the failure region, an unbiased estimator for py is

1 4o
= £ 1) <0l 2

hy(v)de (2)

=F(p, 3
oy =) 3)
where N outcomes of V, v; are generated from the importance sampling density function h,,.
The variance of the estimator for the failure probability is:

L [1.& o),

Var(Ze) = ===\ 5 El 1[g(v;) <0] P - bi 4)
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From eqn. (4) it is clear that the variance of the estimator strongly depends on the importance
_samplmg distribution. The variance reduces to zero if the sampling density is chosen so that it
15 proportional to fy(x) over the failure region and zero elsewhere, This sampling density
howcver, depends on the exact solution to be estimated. Nevertheless, eqn. (3) and (4) offer’
important information about the ideal sampling distribution. By eqns. (4) it is also seen that the
coefficient of variation of the estimate of the failure probability is proportional to N~1/2,

At present more than forty different papers on importance sampling techniques are known
to the authors (for a review see Melchers [7]) covering about ten different schemes, some of
which differ only in details and implementation. It appeared appropriate to distinguish between
- Direct methods
— Updating methods
- Adaptive schemes
— Spherical schemes
which are briefly reviewed.

3.2. Direct methods

By the direct methods (also called static or nonadaptive methods) an important region is
found or preselected and the sampling density is centered in this region. The carliest proposal
for a sampling density is the uniform density [2]. But this choice does not lead to an unbiased
probability estimate. The sampling density can also be the original density centered on the
f:ailure boundary [8]. The n-dimensional normal distribution with the same covariance matrix as
fx centered in the retransformed design-point has also been suggested [9,10]. Melchers [11]
S}lggests to usc the n-dimensional normal distribution centered in the point of maximum
likelihood on the failure boundary with covariance not less than those of the respective X..
Fujita and Rackwitz [3] performed the simulation in the u-space and used an u-dimcnsionz{l
standard normal distribution with independent components centered in the design point. The
sampling density can also be constructed by excluding a part of the safe region [12,13].

The advantage of these methods as compared with simple Monte Carlo simulation is evident.
If the failure function is not extremely nonlinear, about one half of the simulations falls in the
failure region. Given that the important region can be located, the method is not sensitive
towards the existence of multiple B-points, because a wide region is included in the sampling
space [11]. Another important advantage of the direct methods is that the sampling can be
carried out in the x-space. These methods all depend on some search algorithm to locate the
important region. If the search fails, thc method fails. Gradient based algorithms imply that g
and Fy have to be continuous. The number of g-function calls which are necessary to perform
N simulations is

N=K(n+1)+N (5)

where K| is the number of iterations necessary to locate the important region.

A less intuitive approach is taken by Maes et al. [14] based on results of Breitung [5]. They
construct a sampling density which approaches the ideal sampling density (see eqn. (4)) as p,
approaches zero. A new coordinate system (y) is introduced with origin at the point of
maximum likelihood on the limit state surface and the first coordinate pointing towards the
direction of steepest descent of the state function and the other towards the direction of the
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principal curvatures. Let L = In f(x) denote the log-likelihood function of Y and let the point
of maximum likelihood be such that the matrix

L
0L oy | %
W= o e 4k (6)
ay’_ayj g ay,dy/
dy Isl=2san

has non-zero determinant. Then the first variable is stochastically independent from the other
(n — 1) variables and has approximately an exponentially distribution with mean 1/|VL|. The
remaining (n — 1) variables have a multivariate normal density with zero mean and covariance
matrix W~ !, This distribution is used as the importance sampling density. For each simulation it
is necessary to perform the transformation from x- to y-space. This is a simple linear
transformation.

For this method the computational effort increases rapidly with space dimension because it
is necessary to determine the Hessian matrix of the failure surface in the point of maximum
likelihood at least via a difference scheme. The total number of g-function calls is

N,=K(n+1)+n(n—1)/2+K,N (8)

where K, > 1 is the number of g-function calls necessary for each simulation.

3.3. Updating method

An updating method has been suggested by Hohenbichler and Rackwitz [15], setting out
from a SORM analysis but FORM can also be used as a basis. The basic variables are
transformed into independent, standard normal variables U and an estimate for the failure

probability is calculated as

P(y)
pr=1P(A) =P(A)C 9)

where P(.A4) is the approximate failure probability calculated by FORM or SORM. Sampling is
carried out on the tangent to the failure surface in the most likely failure point and the
correction factor, for example for a FORM analysis, is

P 1 X @(-|u* +bal) i

P(A) Ni:l q)(_B)
where u* is the most likely failure point, 8 the geometrical reliability index, e the unit vector
of u* and b, is the root of g(u; + b,a) = 0. For the FORM analysis the sampling density is the
standard normal density. A quite similar approach is used when updating a SORM estimate. In
that case the covariance of the sampling density is adjusted to the curvature of the failure
surface in the most likely failure point. This concept has been extended to intersections of
failure domains by Schall et al. [16] where the covariance of the sampling density is made
dependent on a representative angle between the limit state functions.

The estimate eqn. (10) should have small variance because part of the integral is evaluated

analytically. In this method an x- to u-space transformation is necessary for each g-function
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call and g and Fy have to be continuous. It is further necessary to perform a line search in
order to solve the equation g(u; + b,a;) = (. When updating a FORM estimate the number of
g-function calls is

N,=K,(n+1)+K;N (1)

where K; > 1 is the number of g-function calls in the mentioned line search (usually 4-6). If
the evaluation of P(A) is based on a SORM analysis additional g-function calls are necessary
in order to determine the curvatures of the limit state function in the design point but the line
searches require somewhat smaller effort. The number of g-function calls becomes

N,=K\(n+1)+n(n-1)/2+K;N (12)

3.4. Adaptive sampling

Adaptive sampling is based on the idea that the knowledge about the failure domain
increases as the number of simulations increases. At first the initial sampling density, an
n-dimensional normal density [17,18] or a density with the same form as the original [19], is
centered in a point of the failure region. A number of simulations are performed and the
sampling density is updated before a new sct of simulations is carried out. Wu [20] suggests a
scheme where the sampling domain is varied incrementally by changing the curvatures of
parabolic approximations of the failure surface in the most likely points of failure. The
efficiency of the adaptive methods depends to a large extent on the initial guess of the
important region. If the guess is bad, the method is not efficient. The starting point is often
determined by pre-sampling [17,21]. The total number of g-function calls is

N,=N*+N (13)
where N* is the number of pre-samplings. For this method continuity of F,(x) and differen-
tiability of g(x) are not required and its implementation can be done in either x- or u-space.

3.5. Spherical sampling

Let the region ), be such that every line starting at origin has only one intersection with the
failure surface then eqn. (2) can be written as:

Ix(v)
e e A fun}h [

sphere

[ I 1) dsfa) da (14)

Ha) hy(sa)

where a is a unit direction vector and r(a) is the distance to the region {1; in the direction a.
fr(s|a) is the density function of R given A4 =a, where R and A are given by:

V=R4 (15)

The spherical sampling can be performed in both x- and u-space (see Ditlevsen et al. [22]).
However, if the simulation is performed in the x-space, the integration in the direction a has to
be performed numerically. As sampling densities Ditlevsen, Melchers and Gluver [22] suggest
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to use Z-truncated p-centered standard Gaussian distributions where p is a position vector
and 2 a subset of R",

As for the updating method a contribution to /; is obtained for each finite value of r(a).
The efficiency is, nevertheless, expected to depend on the number of variables. For larger
number of variables a larger number of important directions exists. Several g-function calls for
cach simulation are necessary in order to solve the equation g(ra) =0. The total number of
g-function calls is

N, =K (n+1)+K,N (17)

In this case the number K5 > 1 must be expected to be slightly larger than for the updating
method because less good initial values for the line searches are available.

4. Discussion of results

Seventeen inquiries were sent out in autumn 1991 to inventors of importance sampling
schemes. In the questionnaire 10 examples covering a wide range of applications were included
six of which are discussed in some detail below. About one third of these inventors supplied
sufficiently complete answers analyses. They well represent the above mentioned different lines
of approach.

Method A1 The direct method where a gaussian distribution with the same covariance matrix
as f, is used as the sampling density [9-11].

Method A2 Same as Al but the covariance matrix is multiplied with a factor.

Method B The asymptotic method according to Maes et al. [14].

Method C  The updating method based on a FORM estimate [15].

Method D The asymptotic updating method based on a SORM estimate [15].

Method E  Spherical sampling [22,23].

For all examples the participants of the benchmark study were asked to determine the number

of g-function calls nccessary to reach a cocfficient of variation of V(p;) = 0.10. However, not

all participants have answered this question. The comparison of the efficiency of the methods,

therefore, in part has to be based on an estimate of the number of g-function calls. The

number can be estimated because it is known that the coefficient of variation is a linear

function of N™'/? and it is known how N depends on the number of g-function calls (the K,’s

are known).

Except for the adaptive sampling method a suitable algorithm must have first located the
most likely failure point although in many of the examples this point could have been
determined analytically. All the methods represented in this study use a gradient-based search
algorithm to locate the important region. f, and g have to be continuous. In order to allow for
a fair comparison of the numerical effort it was assumed that the location of the most likely
failure point required 4(n + 1) g-function calls throughout. All methods locate the important
region iteratively. It was suggested that the participants start their algorithm and the selection
procedure for the sampling density with least possible knowledge about the problem. Unfortu-
nately not all participants followed this suggestion. In fact, one can state that the participants
tried to make the best out of their method. In practical applications where this prior knowledge
usually is not available one or the other method must be expected to be considerably less
efficient than indicated in this study. In the following the most important results are presented.
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5. Examples

The examples are summarized in Table 1 for easy reference. Also the exact solutions are
given. The examples thus can be used as a set of standard tests for evaluating the performance
of an importance sampling method.

TABLE 1

Examples (N: Normal distribution, LN: Lognormal distribution, EXI: Gumbel distribution, EXP: Exponential
distribution)

No Limit state function Purpose Ref.

1 g =B na'r-yr U Number of variables,
U; ~N(, 1) Probability level
n=2n=10,n=>50
B=10,8=50,B=10.0
Pr=0.159,2.92-1077, 8.154- 10~ >

2 g=*X | X,FC Nonlinearity [3]
X, ~EXP(A) Probability level
C = 25.900, 31.856, 36.720,
41.050, 45.067, 48.932
—C =14.525,11.077, 8.951,
7.435, 6.277, 5.343
Pr=10""10"2 103107 1075, 10-°
3 8,=X,X,-PL Multiple B-points [24]
X, ~ N(78064.4, 11709.7)
X, ~N(0.0104, 1.56:107%)
P =14.614, L=10.0
Pr=1451-10"°
4 8o =min(ge;, &2, &43) Series system [11]
86 = X1 +2X3+2X, + X;-5X,-5X,
B2 =X, +2X, + X, + X, —5X,
8= Xo+2X+ X, —5X,
X, =X, =X, =X, ~ LN(60, 6.0)
X,~EXI(20,60),  X,~EXI25,7.5)
Pp=20-10"2
5 gg=max(8; -y U) Parallel system system [23]
U~N(O, 1)
B =25+0.25 cos(wi /n)
yij=lforj=iand j=i+1,0else
P;=2.087-10"*
6 Lw=XF2X,+2X;+ X, -5X; -5X, Noisy limit state function [6]

+0.001Z8_, sin(100.X,)
X,=X,=X,= X, ~LN(120, 12)
Xg~LN(50,15), X, ~ LN(40, 12)
P =123-10"2
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5.1. Example 1
The first example is a n-dimensional hyperplane:
g=B1 = LU, (17)

i=1

where U, i=1, 2,...,n arc independent standard normal distributed variables. The example
was to be calculated for 8 = 1.0, 8 =5.0 and B = 10.0 for n =2, n = 10 and n = 50. Its purpose
is to check the random number generator and to investigate the performance of the methods
for different probability levels and different numbers of stochastic variables.

In Fig. 1(a) the estimates of the failure probability relative to the exact value are shown as a
function of the number of simulations, N (for n =10 and B =5.0). The coefficients of
variations of these estimates are shown in Fig. 1(b). Since the limit state function is linear, the
updating methods (method C and D) determine the exact failure probability and the coefficient
of variation is zero. The random number generator cannot be judged by this example. However,
extensive previous testing has proven the fitness of the generator used for method C and D. For
all other methods a good estimate of the failure probability is obtained for N = 5000 (see Fig.
1(a)), and the coefficient of variation becomes smaller as the number of simulations increases
(see Fig. 1(b)). The other investigated combinations of n and B show essentially the same
behavior, It is concluded, that the random number generators implemented by the participants
are all sufficiently good.

In Fig. 2(a) the coefficient of variation of the failure probability estimate is shown for g = 5.0
and N =500 for different numbers of stochastic variables, n. Method C and D have zero
coefficient of variation. The spherical sampling (method E) has been conducted with a standard
n-dimensional normal distribution centered in the design point. The accuracy therefore
decreases as the number of dimensions increases, because a larger number of important

Relative failure probability 0“Coeﬂ‘iclent of variation
12— — - =

B 0,35
1 =
03
08
0,25
06 ‘ 0,2
. ‘ 0,15
o4
0,1}
0,2
0,05
AL ; L
A1 A2 B c B c D E
(a) Method (b) Method
Bl N-s0 [Nesoo [ IN-5000 Bl N-50 EZN-s00 [ Ne5000

Fig. 1(a). Relative failure probability, example 1 (n = Fig. 1(b). Accuracy, example 1 (n = 10, 8 = 5.0).

10, B = 5.0).
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Coefficient of variation

I 0,18 S
| ]
[ 0,18
0.12“
| | 0,14
01! 1
| | ‘ 0,12
o,oeg ‘ 0,1
|
0,06 ; | 0,08 [ ‘
1 1 0,06 i
0,04} |
] | 0,04
0 . e 2 —-—i \,,,J_ 2 0 2 | i ‘ A i
At A2 B Al A2 B E
(a) Method (b) Method
B2 En0 [ mes0 Bl Beta:1.0 [ Betas5.0 [ |Beta=10.0
Fig. 2(a). Scnsitivity towards dimension (8 = 5.0, N = Fig. 2(b). Sensitivity towards reliability level (n = 10,
500). N = 500).

directions exists. For all other methods the number of dimensions seems to have little or no
effect on the coefficient of variation.

Figure 2(b) shows, the coefficients of variation for n = 10 and N = 500 for different values of
B. The accuracy of the direct methods (methods Al and A2) decreases as 8 increases (see Fig.
2(b)). As B increases the volume of the region around the design point which gives a significant
contribution to p; decreases (the marked region in Fig. 3). Because the standard deviation of
the sampling density is independent of 3 fewer samples fall in the region which gives a
significant contribution to p; as B increases. The variance of p; therefore becomes larger with
increasing B. As expected the accuracy of method B (asymptotic sampling) increases as the
probability of failure decreases (see Fig. 2(b)). In method E (spherical sampling) the same
sampling density is used for all levels of B. The “spread” of the directions becomes smaller

Safe region Sampling density

Failure region

Fig. 3. Limit state surface for n = 2.

TABLE 2

Example 2, negative curvatures

-C 16.175 11.077 8.951 7435 6.277 5343
P, 0.20 102 103 10 103 155

B 0.841 2328 3.093 3722 4268 4765
", ~5.964 ~5.139 —4.748 —4.444 ~4.194 ~3.976

with larger values of 8. A larger number of the simulations then falls in the most important
directions, and the variance of j, becomes smaller as B increases (see Fig. 2(b)).

In this example the same covariance matrix has been used by method Al and A2 (the
covariance matrix for method A2 has been multiplied with a factor 1.0). It is seen, that
approximately the same coefficients of variation of the failure probability estimates are
obtained (see Figs. 1(a), 2(a) and 2(b)). The small differences can be ascribed to differences
between the random number generators and computer implementation.

5.2. Example 2

The limit state function in the second example is

n
&=+ LX,FC (19)
i=1
where X,, i=1,2,...,n are independent and exponentially distributed with the parameter A
[3]. The limit state function becomes highly non-linear in the u-space

n
g=+ YL In[®(-U)]/A+C (20)
i=1
where U, are independent and normally distributed, i =1, 2,...,n. The exact probability of
failure is Fg,(C; n; A), where Fg, denotes the gamma distribution. The example has been
calculated for A = 1.0 and n = 20 for the values of C shown in Table 2 and 3. In Table 2 and 3
also the radius of the curvatures of the limit state function in the design point is shown.

The coefficients of variation of p; are shown in Fig. 4(a) and 4(b) as a function of C for
N =500. The accuracy of the direct method (method Al) is quite sensitive towards the
curvature of the failure boundary. For negative curvatures the coefficient of variation of p;
increases with decreasing values of —C (see fig. 4(a)), i.e. Var( g;) increases with the curvatures
and the distance between origin and design point (except for C = —7.435). There are two
reasons for this behavior. First fewer samples fall in the important region when the distance

TABLE 3

Example 2, positive curvatures

C 25.900 31.856 36.720 41.050 45.067 48,932

Py 10! 102 1073 1074 1073 107°
1.282 2.328 3.093 3922 4.268 4.765

r; 1.725 7.975 8.506 8.954 9.351 9.720
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Coefficient of variation

Coefficient of variation
0,5 e 05/

il I
B Cc

i

Al A2

D E
Method (b) Method
Wl c--5.951 771 Ce-7.435 BN c-26.000 ZZ c-31858
L) ce-6.277 BN ¢--5.343 [ c-se.720 BN c.4r050

Fig. 4(a). Negative curvatures, Example 2. Fig. 4(b). Positive curvatures, Example 2,

between design point and origin increases, and secondly the important region becomes smaller
as the curvature increases and thereby fewer samples fall into the failure region. For positive
curvatures the coefficient of variation decreases as the curvature increases and the probability
of failure decreases (for decreasing values of C) because this implies that a larger number of
samples fall in the important region.

For negative curvatures of the limit state function, the results obtained by method A2 are
based on a covariance matrix of the sampling density which is a factor 0.88 smaller than by
method Al. For negative curvatures only a small region around the design point gives a
contribution to p, and therefore method A2 yields better results than method Al (sece Fig.
4(a)). For positive curvatures, the sampling has been conducted with a covariance matrix of the
sampling density which is a factor 1.2 larger than by method Al. For positive curvatures of the
limit state function, a significant contribution to p; comes from regions away from the design
point. This leads to better results than by method Al (see Fig. 4(b)). Method A2 seems to be
less sensitive towards the curvatures of the limit state function than method Al.

For method B the accuracy of p; increases as the failure probability decreases and the
negative curvatures increase (see Fig. 4(a)). This can be explained by the fact that the sampling
density improves as p; decreases (see also example 1). It should be expected that as p,
decreases and the positive curvatures decrease the coefficient of variation of p; decreases
because a better approximation to the ideal sampling density is obtained and less samples fall
in the safe region. This is, however, not the case (see Fig. 4(b)). For lower reliabilitics and
positive curvatures a larger number of samples fall into unimportant regions which causes a
decrease of the accuracy.

For method C the sampling density is independent of the reliability level and the curvature
of the failure surface in the design point. This means that for low reliability levels a large
number of simulations fall in unimportant regions. The coefficient of variation of the failure
probability estimate thereby increases for decreasing p; (see Figs. 4(a) and 4(b)). For positive
curvatures, the important region is considerably larger than for negative curvatures. Therefore,
the accuracy is generally better for positive curvatures (see Fig. 4(a) and 4(b)).
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Fig. 5(a). Efficiency, ncgative curvatures, Example 2. Fig. 5(b). Efficiency, Positive curvatures, Examplc 2.

In Fig. 4(a) and 4(b) it is scen that for method D the coefficient of variation of the failure
probability slightly increases with decreasing probability level, independent of the curvature of
the failure surface. This can be explained by the fact that the variance of the sampling density,
which is adjusted to the curvatures in the design point, does not depend on the probability
level. This causes the coefficient of variation to increase when the probability level decreases
because a larger number of the simulations falls into unimportant regions.

The spherical sampling has been performed with a standard normal density centered at the
design point. For method E the variance of j; is large for negative curvatures because only a
small number of the samples intersect with the failure surface (see Fig. 4(a)). As could be
expected the accuracy decreases with increasing negative curvatures. If the curvatures are
positive a large number of simulations are successful. The accuracy thereby increases with
increasing positive curvatures (see Fig. 4(b)).

In Fig. 5(a) and 5(b) the number of g-function calls necessary to obtain a coefficient of
variation, I/ = 0.10 is shown for the different methods. Figure 5(a) and S(b) does not lead to any
new conclusions about the sensitivity of the methods towards the curvature of the failure
surface or probability level. The most efficient methods are methods B and D. It is interesting
to notice that even though method C achieves a much better accuracy than method A for the
same number of simulations (see Figures 4(a) and 4(b)), method C may require more g-function
calls. For method E (not shown in Figs. 5(a) and 5(b)) the number of simulations to achieve
C.O.V(p;) = 0.1 for negative curvatures is in the order of 2000-3000. Since for each simulation
a number of g-function calls are necessary in order to perform a line search the total number
of g-function calls becomes rather large.

5.3. Example 3

In example 4 the limit state function is a hyperbola [24]:
g,=X,X,—PL (21)
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where P and L are deterministic parameters with values, 14.614 and 10.0, respectively. X, and
X, are normally distributed variables with means, 78064.4 and 0.0104, and standard deviations,
11709.7 and 0.00156, respectively. The example serves to evaluate the robustness of the
methods with respect to multiple 8-points. Here two minimum points and one maximum point
exist.

In Fig. 6(a) the estimates of the failure probability relative to the exact solution are shown
for N =50 and N = 500. The coefficients of variation of p; are shown in Fig. 6(b). The “cxact”
failure probability, p;=1.451-10"° has been determined by conditional integration [24].

For method A1l the coefficient of variation should decrease rather steadily as the number of
simulations increases and for N = 500 a good estimate of the failure probability is obtained (see
Figs. 6(a) and 6(b)). Because the sampling density covers a large area the method is not
sensitive towards the existence of multiple B-points. The results for method A2 has been
obtained on the basis of a sampling density with a smaller covariance matrix by a factor 0.8.
The spread of the samples then becomes smaller and the coefficient of variation of the failure
probability estimate larger (sce Fig. 6(b)). Method B appears to yield very good results for this
example. The sampling, however, has been performed with a stratified sampling density (see
example 4 for further explanation) and it is therefore not possibly to judge if the method is
sensitive towards the existence of multiple B-points.

For method C the sampling density is centered in the design point which is determined when
the search-algorithm is started in the mean value point. This point lies on the symmetry axis
(see Fig. 7) and is, in fact, no valid B-point. This implies that in ‘thc area a1:ou_nd the two other
B-points the relation fy/h, becomes large whereby the coefficient of variation also llvecomcs
large (see eqgn. (4)). The results (see Figs. 6(a) and 6(b)) show that for Nf 5.0 th‘c estimate of
the failure probability is biased and simultancously the coefficient of variation is small. This
indicates that for N =50 only few simulations have fallen in the vicinity of the two other
B-points. For N = 500 sufficiently many simulations fell in the impor_tant regions. aqd the failure
probability estimate is satisfactory, although with rather high coefficient of variation. The fact

ug

glu) =0

Safe region

Failure region
Fig. 7. Limit state surface, Example 4.

that the coefficient of variation actually incrcases as the number of simulations increases (see
Fig. 6(b)) proves that this method is sensitive towards the existence of multiple B-points. In Fig.
8 the coefficient of variation of the probability estimate and the relative failure probability are
shown as functions of the number of simulations. The jumps in the curves denote simulations
where an important region was hit. The general appearance of this figure also holds for the
majority of the other methods. Moreover, one can conclude that only a careful monitoring of
the coefficient of variation function can indicate the presence of multiple B-points, but only if
the sampling distribution is not too narrow. The example has not been calculated by method D
because a SORM analysis would have failed without prior knowledge about the actual shape of
the failure function.

The spherical sampling (method E) is conducted in the u-space and the sampling density is
standard gaussian centered at the origin. In Fig. 6(a) and 6(b) it is seen that j; approaches the
exact value as the number of simulations increases, and that the coefficient of variation of the
estimate is small. The method is very efficient since the number of dimensions is small. The
example has also been calculated with a sampling density located at one of the two most central
points (see Fig. 7). Also in that case the probability estimate rapidly approaches the exact value.
The coefficient of variation, however, is larger. The method, therefore, must also be viewed as
sensitive towards the existence of multiple B-points.
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Fig. 8. Cocfficient of variation for method C.
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TABLE 4

Stochastic variables for examplc 4

Variable Distribution Mean Stand. dev.
X, Lognormal 60.0 6.0
X, Lognormal 60.0 6.0
X5 Lognormal 60.0 6.0
X, Lognormal 60.0 0.0
X; Gumbel 20.0 6.0
X, Gumbel 25.0 %S

5.4. Example 4

Example 4 is a series system [11,25]. The failure functions are:

B =X, +2X,+2X,+X;-5X
‘g(,z:X1+2X2+X4+X5""5X(, (22)
B3 =X>+2X,+X,—5X,

All variables are independent and the parameters are given in Table 4. The purpose of this
example is to test whether the methods can handle series systems. The estimates of the failure
probability relative to the “exact” failure probability are shown in Fig. 9(a) and the coefficients
of variation in Fig. 9(b). The “exact” p,=2.0-10"% is calculated by direct Monte Carlo
simulation [25]. Simulations can be carried out without problems for cach of the three limit
state functions since none of the failure surfaces contains multiple S-points and none is highly

12Relative failure probability Coefficient of variation
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Fig. 9(a). Relative failure probability, Example 6. Fig. 9(b). Accuracy, Example 0.
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nonlinear. All the investigated methods deal with series systems by introducing a stratified
sampling density:

m

hy(v) = L wihy(v)

i=1

where m indicates the number of limit state functions and w, is a weight factor. The weight
factors are chosen such that w; > 0 and £" \w; = 1.0. Unfortunately, it is not quite obvious from
the reported results how the various methods introduced the weights for the different limit
state functions. All methods can handle series systems and good estimates of the failure
probability are obtained (see Fig. 9(a)). The best estimates and the smallest coefficients of
variation are obtained by methods B and C.

5.5. Example 5

Example 8 is a parallel system with four limit state functions:

841 = 2.677 — Ul — U2
g5 =2.500 - U, - U,

g =2323-U, - U,
s =2.250 — U, — Uy

(23)

where U, i=1, 2,...,5 are independent standard normally distributed variables. The purpose
of the example is to check whether the methods can handle parallel systems. The coefficients of
variation of the estimates of the failure probability and the failure probability estimates relative
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to the exact solution are shown in Fig. 10(b) and 10(a) respectively. The exact failure
probability, p;=2.087-10"* is determined by a FORM analysis, where the limit state
functions are linearized in the joint design point. In Fig. 10(a) it is seen that all methods can
handle parallel systems and that for N = 500 good estimates of p, are obtained.

The coefficient of variation which has been obtained by the direct method (Method A1) is
much larger than in example 1 under similar circumstances (the same distance to the design
point and the same number of variables). This can be explained by the fact that in example 1
about half of the simulations fell into the failure region. For this example only about 1/16 of
the simulations fall in the failure region. The coefficient of variation therefore becomes larger
(see eqn. (4)). The accuracy obtained by method A2 is better than for method Al because the
covariance matrix of the sampling density has been multiplied with a factor 0.8, whereby a
larger number of samples falls in the region around the design point.

For this example the accuracy of the failure probability estimate for method B is consider-
ably larger than for the other examples (see Fig. 10(b). This indicates that the asymptotic
sampling density fails to ‘provide a good fit to the ideal sampling density.

The updating method (method C and D) is very cfficient (see Fig. 10(b)) because the spread
of the sampling density is adjusted to the angle between the tangents of the failure surfaces in
the design point (see Schall et al. [16]). Most of the simulations therefore give a relatively large
contribution of A,.

The result of spherical sampling is based on stratified sampling density: the standard normal
distribution centered at origin and a simplex truncated normal distribution, respectively. The
simplex corresponds to all variables being non-negative. The weight factors are 0.2 and 0.8.
Because the angle between the failure surfaces is relatively small only few of the samples gives
a contribution to p;. The coefficient of variation of the estimate of the failure probability is

relatively high (see Fig. 10(b)).

5.6. Example 6

Example 10 (after Liu and Der Kiureghian [6]) was included in order to test the efficiency of

the methods with respect to noisy failure boundaries. The limit state function is:

6

g10=X, +2X,+2X, + X, — 5X; — 5X, +0.001 }_ sin(100X;) (24)
i=1

where all the six stochastic variables are log normally distributed. X, to X, have means 120,
and standard deviations 12.0. X has mean 50 and standard deviation 15, and X, has mean 40
and standard deviation 12. The results of the example are shown in Fig. 1. For all the methods
this example offers no special problems for the sampling schemes once the important region is
selected. For 500 simulations all methods achieve a coefficient of variation which is smaller
than 0.10 (see Fig. 11). As mentioned earlier the efficiency of the methods also depends on the
number of g-function calls which are necessary to locate the important region. For example, for
method C the design point can only be located if a very good initial guess is provided. Even in
that case it takes about 2000 g-function calls to find the most likely failure point. Mcthod A on
the other hand uses only 56 g-function calls to locate the important region. In this case method
A clearly is the superior method. Method C and D (not shown) have constructed their sampling
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densities by omitting the noisy term in eqn. (24). In this respect the results are of less
significance for the purpose of this example.

6. Summary and conclusion

It is not possible to identify onc of the methods as being the best under all circumstances.
Three criteria appear to be most important when judging an importance sampling method:

- accuracy and efficiency
— sensitivity against number of variables
— sensitivity against multiple important regions and noisy limit state functions

Simple components and series systems with smooth failure functions and continuous distri-
bution functions and not too high uncertainty spaces can be computed equally well by any
method with approximately the same numerical effort. From the example calculations one may
conclude that method A is always suitable if only moderate accuracy of the failure probability
estimate is required. Higher accuracies require comparatively more effort. In this case methods
C and E or even B and D should be used. Whenever the above mentioned ideal conditions do
not hold remarkable differences between the various methods with regard to efficiency and
robustness can be observed.

Methods B to E require precise knowledge of the most likely failure region(s). If this is
known the efficiency of all these methods is acceptable and is, with the exception of method E,
relatively insensitive to the space dimension. These methods fail or are inefficient whenever the
most likely failure region(s) cannot be identified by one of the available gradient based search
algorithms. Serious attempts to implement non-gradient based algorithms are not known but it
must be expected that any search for the most likely failure region will then be very expensive.
Part of the adaptive direct methods must just be viewed as one such non-gradient based search
algorithm. Method C appears to be best suited for computing intersection probabilities even
under extreme circumstances (very small cut sets).
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The direct methods furthermore impose only weak requirements on the smoothness of the
limit state functions and the distribution functions given an important region has been located.
Depending on the specific implementation direct methods also appear to be relatively robust
with respect to multiple failure regions, Of certain practical importance finally is the ease to
implement a direct method in the x- or the u-space. Direct methods are on the other hand less
cfficient and can be ineffective for limit state functions with large curvatures. As indicated by
the results of method A2 their performance can be improved by empirical adjustments to the
sampling density.

It has been demonstrated that the two methods B and D based on asymptotic considerations
and where curvature information is used when selecting the sample density are generally most
cfficient in spaces of smaller dimensions. There are small differences in efficiency between the
methods with some advantage to method B. As both are based on essentially the same concepts
the authors do not have a convincing cxplanation. In higher dimensions curvature based
methods must, however, be considered as inferior to method C because the numerical effort to
determine the Hessian(s) of the failure function(s) increases proportional to n%. Because
method B and D are using local information of the failure surface to adjust the sampling
density these methods can, of course be especially misleading if a wrong important region is
located. At a modified example 4 it can in fact be demonstrated that method B would exhibit
very soon a very small coefficient of variation of the probability estirr_lqte _for a wrong S-point
thus giving the impression of high accuracy whereas the true probability is by more than one
order of magnitude different. ) _

The spherical sampling method E appears less suited for the analysis of problems in high
dimensions. Morcover, it is sometimes difficult to select an appropriate sampling density when
no detailed knowledge of the failure function is available. N

Beyond those factors it is noticeable that not all methods have the same capal‘nll‘ues at least
not in their present implementations. For example, from the available literature it appears that
only methods C is able to handle equality constraints at present.

In Table 5 the authors have made an attempt to rate the different methods with respect to
the different criteria on the basis of the reported results. The ratings are
— excellent: 10

- good: 7.5
— average: S
— bad: 25
— unacceptable: 0
TABLE 5
Summary

A B G D E
X-, u-space 10 10 5 5 7.5
Efficiency 5 10 75 10 5
Robustness 10 25 75 25 7.5
Capabilities 7.5 5 10 75 75
Insensitivity against curvatures 5 10 S 10 5
Insensitivity against dimension 5 o) 7.5 5 25
Insensitivity against prop.level 7.5 10 75 10 5

Average 7.1 7.5 71 7.1 6.1
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If such a rating is admissible at all in remembering that the merits and disadvantages of the
various methods show up in different fields of application onec can conclude that methods A to
D are slightly preferable to method E. The differences are nevertheless small enough not to
discriminate any of the methods. If the possibility of using an x-space formulation is not
considered as advantageous method D is preferable to method B.

The selection of an importance sampling method for practical applications should be based
on the available knowledge about the specific problem. If little is known method A is likely to
be the most robust but not necessarily the most efficient. Method E as method A appear to be
particularly suited for non-differentiable convex safe domains. If some smoothness require-
ments for the state and distribution functions are met method C or even one of the asymptotic
methods (B or D) may be preferable. The final conclusion is this: In practical applications
intelligent use of either concepts should be made and no prior preference for a particular
method is justified which the authors admittedly had beforc this study.
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