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Methods for calculating approximations of the first-passage probability of
differentiable non-narrow band processes based on higher-order threshold
crossings are discussed. Two of them use factorial moments of the number of
crossings into the failure region, including a new method based on a Gram-
Charlier series expansion of the distribution of the number of exits. Several
numerical schemes for the evaluation of factorial moments are investigated. The
methods are studied for three examples. The examples show that the Gram—
Charlier series expansion converges faster towards the exact solution than Rice’s
“in- and exclusion” series. However, it is difficult to quantify the error made by
the proposed method. Further, it is shown that for engineering applications, the
Poisson assumption as modified by Ditlevsen such that the initial conditions are

taken into account, provides excellent results in almost all cases.

1 INTRODUCTION

In many engineering applications it is necessary to
determine the reliability of structural components subject
to stochastic process loading. Let failure be defined by
F = {g(X(#),) < 0} where X(7) denotes a vector process,
and let dg(r) denote the failure surface defined by
g(X(1),1) = 0. The probability of failure in the interval
[0; T'] is then

Py(T)=1-PlgX(1),) <0, vee[o;T]] (1)

No simple analytical results exist for this problem. In
most cases the computation of the failure probability is
based on the outcrossing approach, together with the
assumption of independent outcrossings. Then the number
of outcrossings follows a Poisson distribution and

Py(T) ~ 1 —exp[-E[N"(T)]] (2)
where E[N'(T)] is the mean number of crossings of
X(1) into the failure domain F during the interval [0; T']
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for regular streams of crossings. In the stationary case
this is E[N"(T)] =v"T where v denotes the out-
crossing intensity [see also eqn (22)]. Cramer and
Leadbetter’ have shown that eqn (2) is asymptotically
correct whenever the stream of crossings can be thinned
out in a certain manner, e.g. by shifting the failure
boundary towards the exterior for sufficiently mixing
processes. However, for low levels the error made by
assuming independent crossings can be large, depend-
ing on the correlation structure of the process. Further,
it is not in general possible to quantify the error made
by the Poisson assumption. If time-independent vari-
ables R are also present the total failure probability
is

P/(T) = | P/(TI0 ey 6)

where R is defined in Q. Significant contributions to
P;(T) may come from large P;(T|r). It is, therefore,
important that the method for calculating P/(T|r) is
sufficiently accurate even for low reliability levels.
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Numerous improvements to eqn (2) exist. For the
stationary case Ditlevsen® suggests, on rather general
grounds, taking account of the initial conditions which
then leads to

Pr(t) = 1= (1= Pr(0)) exp [‘ 1%1’;@] &

In many cases this simple modification already provides
a remarkable improvement over eqn (2).

Particularly for narrow-band scalar processes, a number
of other approximations exist. Yang and Shinozuka®
obtained rather accurate results based on the assumption
that the extreme points follow a Markov process. They
also pointed out that the outcrossing intensity is reduced
because crossings tend to occur in clumps and proposed
certain approximations. Another successful method is to
consider the outcrossings of the envelope process rather
than those of the actual process. This approach also
involves considerations about clumps of crossings
(see, e.g. Ref. 4 for further discussion and additional
references). Madsen and Krenk® solve an integral
equation which governs the first passage probability
function. The equation contains an unknown kernel
which can be approximated in different ways but most
easily and efficiently for narrow band processes (see also
Refs 6 and 7). More recent studies for first-passage times
based on other concepts have been performed by
Lang]eyg and Ditlevsen and Lindgren.9 For vector pro-
cesses much less material is available. Veneziano,"’ for
example, showed that there is no unique definition of
envelope processes and, therefore, this approach is less
suitable. Additional more recent work on level crossings
for random processes is reviewed by Abrahams’
indicating that solutions to the specific problem of
first-passage time distribution, which are not based on
some Markov-like property or on Cramer and Lead-
betters asymptotic result’ are rather rare. If, however,
Markovian properties can be assumed for the under-
lying process, at least in approximation, it is sometimes
possible to determine directly the moments of first
passage times. Those can then be used to approximate
the distribution of first passage times, for example, by
maximum entropy distributions. One of the more
prominent results in this direction is due to Spencer
and Bergman.'?

The scope of this paper is to review and compare two
more general methods for the calculation of approxima-
tions for the first-passage probability based on higher-
order threshold crossings. It is beyond its scope to com-
pare the results with maximum entropy distributions
just mentioned.

2 BOUNDS ON FIRST-PASSAGE TIME

Let p, denote the probability of exactly k outcrossings in
the interval [0; T). It is then evident that the probability

of no outcrossings or the complementary first passage
probability is

S
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where m; denotes the ith factorial moment of the
number of outcrossings, i.e.

me=1

=5 kk-1)..
k=i
and where it is noted that
(k> =0 for i>k 7
i

Equation (5) is nothing else than Rice’s ‘in- and
exclusion’ series (see Ref. 13) cast into a somewhat
different form. Of course, the m;(i = 1,2...) must exist
and the series in eqn (5) must converge in order to make
eqn (5) a valid representation. The series provides lower
and upper bounds for the survival probability upon
truncation after an odd or even term, respectively. The
computational effort involved in evaluating P/(T) accord-
ing to this method, however, is extensive. Further, an
increasing number of terms have to be taken into
account for increasing E[N*(T)). Bolotin'* gave a similar
series based on the moments, E[N*(T)], E[(N*(T))}]. ..,
of the number of out-crossings. This series can be
regarded as a rearrangement of eqn (5) in terms of
moments. Bolotin performed a few numerical studies
indicating that the bounds are rather wide for large
values of E[NT(T)). Both Rice’s original in- and
exclusion series and Bolotin’s variant have been applied
only very rarely due to their computational complexity.

Lange'” instead considered the distribution function of
the discrete random variable N* directly. The distribution
function Fy (k) of N* is generally unknown, but a Gram—
Charlier series expansion (type B) can be used to approxi-
mate the unknown probabilities of a discrete random
variable with known factorial moments m; by a Poisson
distributed variable Y with parameter m, (see e.g. Ref. 16)

P = Wi Z%‘Q(iuk) ®)
i=0

Ak—i+1)p, for i>1 (6)
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where
ik
Wy —FCXP( m) 9)

are the probabilities w, = P(¥ = k). The so called
Gram-Charlier polynomials can be obtained from

0(0,k) =1 (10)

di it k\ mi
Ve = — iy -1
dm m} Z( D ( ) J!

Jj=i—k i—J

(1=1,2,..) (11)

and the coefficients ¢; are given by

my & .

4= szopkg(z,k) (12)

Equation (12) can be rearranged as

ol ) & )

4= 2 (P = wQU k) + e (1)

It can be shown that

mh & {l fori=0
=5 2 WOl k) =
:!k;, L Y (14)

Q(i,k) =

Then for i > 0

im—wﬁi( 1)/( ‘ )ﬂ
=0 ; i—j

lj=i—k f'
l'*]
ISR Bl
Jj=0 k=i-j o
i—1 i
:;(—])J%(m; R 1)( 5 (15)

It is further seen that Q(/,0) = (—

1)". From eqn (8) it
then follows kg

Po=exp(—m) 3 gi(~1 (16)
i=0

and th.e. following approximations for the survival
probability up to the fourth order are obtained

Po,1 = exp(—m;)

Po2 = exp(—m;) (l +%(m3 - m%))

1
Po3 = CXP("”!)(I +5(my — my)
1 2
s =)+ 5t s )

1
= (my —m)

1
Po4 = CXP(—ml)(] +35 (my — i) — 6(

m 1
+ 7(’"2 —m}) + ﬂ(lm —m})

m

2
| m
= (my —mj) + Tl(m; - mf))

If the outcrossings are mdependem that is, if pp = wy
for all k then m;=m| and eqn (16) reduces to
Py = exp(—m,). Equatlon (16), therefore, is correct in
the limit according to Cramer and Leadbetter! [see eqn
(2). From eqn (16), it is also seen that the out-
crossings approximately follow a Poisson distribution
when 1> m > m ... > m;, ie. the Poisson assump-

tion is dsymptctxcally correct for 7 — 0. Further, under
the condition

Iy 2 Guy+1 2 Guyia-.. >0 (17)

the error of approximation is
eXp(=11)] 1] for ny > 0 and

smaller than

2n
Po <exp(—m) Y g(~1)
i=1
are upper bounds for p, and
2n1+1

Po 2 exp(—m,) E a(=1)’

i=1

(2n > ny) (18)

2n+1>n) (19)

are lower bounds for py. Even if the condition eqn (17) is
not fulfilled, convergence of eqn ( 16) can be established
for a wide class of stochastic processes (see Ref. 15).

3 EVALUATION OF FACTORIAL MOMENTS

Belyaev'” has shown that factorial moments of the
number of crossings into a failure region of a stochastic
vector process X(7), of which derivative X(s) exists with
probability one or in mean square, are

T T T
SRR |
0 Jo 0 Jx(n)edg(nn) Jx(n) € bg(sy) x(t;) € (1))

E[ T max{0, ;1 X(1) = x(2),k = 1,2. ..i}J

j=I
Jx(0r),x(6) ... x(1))ds(x(1y))ds(x (1)) . ..
(x(1))dy,dty ... dy; (20)

where ds indicates surface integration, £[.] denotes the
expectation of [.] and

Sy = [%(t) = v(x (1)) "n(x(1))) (1)

where n is a normal to the failure surface and v is the
time-variation of the failure surface. In the general case,
analytical solutions of eqn (20) are unknown. However,
certain results for the moments of crossings of a
constant level up to the 4th order have been studied
by Gaganov'® for special Gaussian scalar processes, and
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Miros}llin an Zvetkow'? calculated moments of crossings
of a linear function by a Gaussian process. Lange'
evalugted the factorial moments by simulating the process
and simply counting the number of outcrossings. Such a
mcthoq, however, is not efficient for high levels. Simple
numgncal integration soon becomes prohibitive because
the d}mension of the integral in general is too large.
Wlthiln the field of reliability analysis, a number of
alternative methods for the evaluation of integrals of the
type eqn (20) have been suggested and have tentatively
been applied to eqn (20). The integral can be solved by
pested FORM/SORM (Hohenbichler®™), as a Laplace
mteglfal (Breitung?') or as the sensitivity measure of an
associated parallel system (Madsen®, Hagen®). All
these methods locate an important region where the
l:'mundary of the integral can be approximated by a
Im'ear or quadratic term. Unfortunately, if the corre-
lation function of the considered process has a periodic
lenn,.a large number of such important regions exist
(multiple 3-points) for i > 2. Therefore, these methods
can, at most, be used in special cases. For further
discussion it is convenient to rewrite eqn (20) as

T (T
m,=H”
0 Jo

where ‘u’(t,, 12,...1;) denotes the joint crossing intensity
following from eqn (20). The factorial moments can
then be evaluated by conditional sampling, where for
cach random sample of (#),1,,...1) the crossing
Intensity is determined by one of the three aforemen-
tlone.d methods (see, for example, Ref. 24). The multiple
B-points problem is thus avoided. It is then important
lhatrthe computational effort involved in the evaluation
of »" is small,

Unfortunately, serious problems have been met with
hothvmelhods, In order to determine the nth order
crossing intensity by the sensitivity method, it is
hecessary to determine the nth order derivatives of a
faxlure_ probability determined by a FORM/SORM
analysis, Derivatives of order higher than one are in
general difficult to calculate and are rarely sufficiently
accurate. The amount of effort involved in performing a
S_ORM z_malysis or evaluating a Laplace integral
directly, increases rapidly with the dimension of the
problem. In conclusion, conditional sampling, even if
pcrformed in an adaptive manner, does not offer an
efficient alternative. The most efficient numerical
method for evaluating the factorial moments is simple
!mportance sampling (see, for example, Ref. 25). This
method has the advantage that it is relatively insensitive
towards the number of dimensions (see Ref. 26). In
order to use importance sampling it is necessary to
rearrange the integral eqn (20). We introduce

X; = ra; (23)

T
.L Vit tyy L tp)dide L dy (22)

where a; iS. a unit direction vector and r; the distance
between origin and the failure surface in the direction a;.

Ttis asgumed that the failure region is starshaped, that is
every line starting at origin has only one intersection
with the failure surface. Further, the relation between
the infinitely small area ds(x;) on the failure surface and
the infinitely small area ds(a;) on the unit sphere is

r(a;)

ds(x;) = aln[r(a;)a;]

ds(a;) (24)

The factorial moments can now be evaluated as

j’l‘ J~T T
m; = T~
"o Jo .[0 Jum'f sphere Jum'l sphere IJumt sphere
;
E [Hmax{(), X | X (k) = x(t), k= 1,2 ‘,-}J
=¥

r(a)

X
i3l (a)ay]

S(r(ar)ay, r(ag)ay, ... r(a)a;)
ds(a;(1))ds(ay(1)) .. ds(ag(1))dnde, .. .dg;
(25)

4 INITIAL CONDITIONS

Following Ditlevsen,? it is important to take account of
t.he initial conditions. Consider a n-dimensional stochas-
tic process X (7). The probability that the process initiall
pelongs to the failure set F can be large. This is laker}:
into account by determining the failure probability as
Pr(T) =1~ po(TIX(0) € {R"\FDPX(0) € {R"\F})

(26)
where P(X(0) € {R"\F}) is the probability that the
process initially does not belong to the failure region
This is a simple time-invariant reliability problem whicﬁ
cap_be solved by a FORM/SORM analysis. The prob-
ability that no failure occurs given the process initially
belongs to the safe region, py(7'|X(0) € {R"\F}) is
determined by investigating the conditional process
For X(0) = x(0) the conditional probability density 0%
(X(11), X(12) . X(1), X(11), X (1), ... X(1)) s

(1), x(02) - x (1), (1), %(12), - X(8)|%(0)) =

S(0), x(11), X(12) . x(8:), %(11), X(t2), . .. %(1;))
S (x(0))

27

lThe factorial moments of the number of crossings
given X(0) € {R"\F} can now be determined as

mi(T|X(0) € {R°\F}) =

) _ . J(x(0)
J’{R"\F} m(T|X(0) = Xomd"o (28)
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Fig. 1. Failure probability and probability ratios for £/o = 1.0.

where m;(T |X(0) = x,) is evaluated by eqn (20) with the
distribution function given by eqn (27). The dimension
of the integral which has to be evaluated in order to
determine the factorial moment has now increased by n.
This, however, does not offer serious problems in view
of the method chosen to solve the integral.

5 SIMULATION

An estimate of the failure probability may also be
determined by repeatedly simulating the process until
failure occurs. On this basis, an empirical lifetime dis-
tribution can be obtained. For low levels and not too
small failure probabilities simulation might, in fact,
provide the most efficient computation scheme for the
problem of interest. Although this method would fail for
small probability levels, it will be used to check the
approximations and bounds described above. The simu-
lation results are obtained by the method suggested by
Shinozuka.'? By this method, the process is simulated by
decomposing the prescribed spectral density matrix and
performing a summation of a trigonometric series with
independent phase angles.

6 EXAMPLES

6.1 Example 1

In the first example, the first passage probability of a
scalar Gaussian process over the constant threshold &

Probability ratio

&
Rice Bounds

00800 B0G 1000 120.0
T/t

within the time interval [0, 7] is studied. The stochastic
process has mean value p(z) =0 and autocorrelation

function
p(r) = exp(—7* /1)
The standard deviation is o. The same process has

already been investigated by Bolotin and Lange. It is
convenient to introduce
_Pui

Po,1

The probability ratio ¢; expresses the relative differ-
ence between pg and the survival probability deter-
mined on the basis of the Poisson assumption with the
initial conditions taken into account. In Figs 1-3, the
approximations of the failure probability and the prob-
ability ratios are shown for /o0 =10, 2.0 and 3.0,
respectively.

At first it should be noted that the numerical results
reported by Bolotin'* and Lange'® could only in part be
reproduced. In Figs 1-3 it is seen that for small values of
T the probability ratios are close to unity for all methods.
This implies that for small 7 and/or small number of
exits, the Poisson assumption with the initial conditions
taken into account is very accurate. It is further
demonstrated that, as expected, the Poisson approxi-
mation leads to better results for increasing levels and
that consideration of the initial conditions according to
eqn (26), in fact, improves the results significantly for
larger failure probabilities. As T increases, Rice’s bounds
become very wide for all levels. For large values of 7' the
estimated failure probability obtained by eqn (16) is

Ci

0.40
----- 1 — Po)exp(—m,) cy
e e =i
020 i [Rl:‘u bounds

levsen
v+ eee Simulation

TreT T T

700 400 | 600 | 800 1000 120.0
o

Fig. 2. Failure probability and probability ratios for £/o = 2.0.
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Fig. 3. Failure probability and probability ratios for £/ = 3.0.

much closer to the ‘exact’ simulation results than Rice’s
bounds. For the method in eqn (16), the number of factorial
moments which are needed to obtain good estimates
of the failure probability increases with increasing 7.
Further, since the correction factors ¢; and ¢, both
become negative for large values of 7 it is evident that
the condition eqn (17) is not always fulfilled. This,
however, is only true for very low reliability levels.
Nevertheless, it is unfortunate that it is not possible to
determine whether ¢; and ¢4 are bounds because even
higher factorial moments would be required in order to
assess the validity of eqn (17). From the simulation,
(dots) it can be concluded that eqn (16) with the third or
fourth factorial moment included yield rather accurate
results, even slightly more accurate than eqn (4) for all
levels. It is finally noted that the Poisson assumption
becomes unconservative for all levels and times in this
example.

6.2 Example 2

Here, we consider a simple linear oscillator with Gaussian
white noise excitation. The response X(r) is a stationary
Gaussian process with zero mean and autocorrelation
function

p(7) = exp(—Cw, | 7|) COSLU,’T-I-LSiHLAJdT

(] /—] CZ
where w, denotes the eigenfrequency, 7 =1 — I,
wg =wey/1~¢* and ( is the damping. The standard
deviation is o. Failure is defined for g(x, (1) =¢—
x(t) <0 where ¢ is a constant. In Fig. 4 the failure

2,00 5 Probability ratio
175

1.50
1.25
1.00

0.75 §
e By

probability and the probability ratios are shown for
£/o =20, ¢ =005 and wy = 1-0. For this example the
outcrossings are highly correlated and occur in clusters.
Therefore, exp(—m,) is a lower bound for the survival
probability. All probability ratios are larger than one.
Clearly, this example exactly represents the case where
one of the narrow-band approximations would most
likely yield good results. For this example only the first
three factorial moments have been calculated. The same
conclusions as for the first example can be made. How-
ever, the example also demonstrates that it is difficult to
evaluate higher factorial moments if the correlation
function is not very well-behaved. For large values of T
in particular, the numerical effort is excessive.

6.3 Example 3

Let X(7) be a two-dimensional stochastic process with

mean values
My, =40, py, =30

and correlation functions
Kxx, (1) = exp(—7/13)
Kxyx (1) = exp(=7°/1F)
Ky x(r) =0

The failure region F is defined by the failure function

&(x(1)) = 10 = 4/x, (1) + 3y (1)?

The initial failure probability is P;(0) = 0-0136. The
failure probability as a function of 7 is shown in Fig. 5.

1.00 qFailure probabliity

e 1 = exp(-my) €2
1 = exp(-my) 3
Rice bouncs

E=el
050 """ Rlee bounds 50
0.25
0.00 . . - T X T T
0.0 2.0 4.0 6.0 0.0 00051 2.0 40 6.0 . 10.0

8.0
T/(2 pl)

8.0
/(2 p)

Fig. 4. Failure probability and probability ratios for Example 2.
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-------- 1 = (1 = Po)exp(-my) c;
12 Bjeeomd
—— Rice bounds

= = - Ditlevsen

Fig. 5. Failure probabilities and probability ratios for Example 3.

For all investigated values of T there is no difference
between py » and py 3. Good convergence has thus been
obtained even for rather high failure probabilities. It is
further seen that the Poisson assumption with the initial
conditions taken into account leads to better results
than for the one-dimensional case. It is, however,
expected that the quality of the Poisson assumption
decreases with increasing correlation between X| and
X>.

7 SUMMARY AND CONCLUSION

The bounding method by Rice and a Gram—Charlier
expansion for calculating approximations of the first-
passage probability for stochastic processes are reviewed.
Some problems in numerical implementation are dis-
cussed. For three examples, the results obtained by these
methods have been compared. The examples show that
the Gram-Charlier series expansion converges faster
towards the exact solution than Rice’s in- and exclusion
series. However, it is difficult to quantify the error made
by this method since this involves the calculation of even
higher factorial moments. The Gram-Charlier series
expansion works for scalar and vector processes as well
as for random fields. It has been verified that for
engineering purposes where the failure probability is
normally small, the consideration of the initial condition
already suggested by Ditlevsen? is a substantial improve-
ment over the simple Poissonian approach. Beyond that,
any improvement is difficult. Improvements based on
higher order moments of the number of crossings are
numerically rather involved. This also applies to the
suggested Gram—Charlier expansion.
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