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Computational techniques in stationary and non-stationary
load combination - A review and some extensions

Riidiger Rackwitz

Whereas the methods to compute time invariant reliabilities are well-known, the methods for time variant
reliabilities including their combination under vectorial process loading have not been developed beyond some
simple but practically important cases. One of the first proposals for stationary load combination is due to Turkstra'
which still is the basis of many codified combination rules despite of its limitations. Ferry Borges and Castanheta’
developed a scheme for random sequences for which a suitable computational algorithm was designed by Rackwitz
and Fiessler’. All those proposals still set out from the assumption that the load combination is a problem of finding
the maximum of a function in several time-variant variables. It turned out that solutions along this line are limited to
some special cases as regards the type of combination and the load models. Also, only stationary cases can be dealt
with. However, Veneziano et al.” for Gaussian processes, Breitung and Rackwitzs, for rectangular wave renewal
processes, Madsen6 for renewal processes with arbitrarily shaped pulses and Wen' for intermittent processes with
rectangular waves, adopted the more powerful outcrossing approach. Non-stationary load combination is dealt with
only occasionallyg'g. It appears that for quasi-static loading, the only general and computationally feasible approach
is through the outcrossing approach which, unfortunately, provides only asymptotically valid results or probability
bounds.

a probability distribution transformation into the standard
normal space will be performed so that with x = T(u), there

The methods to compute large scale time-invariant
reliabilities are well known. Let X = X, o X”)T be a
vector of random variables with continuously differentiable 1s:
joint distribution function Fy(x) and g(x), a twice differenti-

able state (performance) or failure function such that g(x) >
0 denotes the safe state, g(x) = 0, the limit state and g(x) <0
the failure state. g(x) = O will also be denoted by failure
surface. The failure probability is:

P,- = j dF(x) = JfX(,\') dx [€))
g(x)<0 g(x)<0

where the second formulation is valid if the probability den-
sity exists. The simplest problem of this kind is when failure
occurs if a demand S on a system exceeds its capacity R.
Then, the performance or state function is given by
g(x) = r - s. If capacity and/or demand are random, the
probability of failure is simply a volume integral extended
over the failure domain. Especially for large and compled
state function an exact evaluation by numerical integration
will require considerable computational effort. Therefore,
some special methods have been devised which can do the
integration efficiently and accurately. For all computations

P, = jfx(x) dx = I @, (1) du 2)
8 <0 g(Tu) <0

where u is an independent standard normal vector and @(u)
its probability density. Approximations to this integral have
been proposed by Hasofer and Lind'? for normal vectors X
and later extended to arbitrary distributions’ by Rackwitz
and Fiessler’. More general transformation methods exist!>
14 A first order probability estimate is then obtained from:

N

P, = ®(-B) 3)

where, B = Il

*

min "Il for {u: g(u) < 0} 4)

and, u

~ The main computational task is the location of the
u -point (or P-point) by a suitable search algorithm]D
known as FORM. Usually, the probability estimate is suffi-
ciently accurate for many practical purposes.
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Breilungl(’ extended FORM and gave it a sound
theoretical basis. By making use of asymptotic considera-
tions, put forward by Laplace in 1821, he arrived at

n-1
Po=® (PN (1-P)™; B e ®)
i=1

. The x; are the main curvatures in the solution point
u . The main curvatures are found from the Hessian matrix
of second derivatives of g(u) = 0 in u" after solving an
eigenvalue problem. It corresponds to fitting an approximat-
ing parabola in the B - point to g(u). The two formuale
given for the compution of B break down for Bl < 1 and
Bx; I>1 1. For small B’s one can nevertheless retain a quad-
ratic approximation of the fajlure surface. An exact formula
for the exact probability content of a parabo]a1 can be
used. However, a fitting of the limit state function in this
B-range by a paraboloid has no theoretical justification. It is
seen that the second order result (SORM) differs from the
first order result (FORM) by a factor involving the curva-
tures of the failure surface which generally is close to unity.
A full account of the underlying theory and some exten-
sions is given by Hohenbichler et al.’®.

THE NATURE OF TIME-VARIANT COMPONENT
RELIABILITY

Time-variant reliability is more difficult to compute than
time-invariant component reliability. In fact, one is hardly
interested in the time dependent failure probability function
Pf(t) where  is treated as a parameter except in quantities

like the probability of first passage into the failure domain,
the total duration of exceedances into the failure domain,
the duration fo individual exceedances and other related
criteria. The quantity

N = [ f ®

gl <0

will rather be denoted by non-availability so that
A(f) = 1 = N(1) is the availability. Both quantities are easi-
ly determined by fixing the time in a time-invariant ap-
proach. In principle, the basic formulation for first passage
problems then is:

P = P(T<) M

where T is the random time of exit into the failure domain
and [0,t] is the considered time interval. If the component
does not fail at time 1 = 0, failure occurs at a random time
and the distribution function of 7 must be known. Unfor-
tunately, this is rarely the case. Exceptions are the failure
times of non-structural components, where often rich statis-
tical data is available. Then, it is also possible to use the
time—invariant computation schemes because the limit state
function then simply is g(x) = T—t< 0. In all other cases
T must be inferred from the characteristics of the random
processes affecting the performance of the compontent. T
must be considered as a first passage time, i.e. is the time

when the component enters the failure domain for the first
time given that the component was in the safe state at
time T=0.

The oulcrossing approach is rather mandatory for
practical application as there are only five exact solutions
for the first passage time of scalar random processes all
belonging to the class of Markov processes (Cox and
Miller', for the first passage time of Brownian motion,
Darling and Siegen"o, for a stationary Gaussian process
with exponential auto—correlation function, Slepian.*l for a
stationary Gaussian process with triangular auto—correlation
function and for the first passage times of simple linear
oscillators by Lennox and Fraser®, and Ariaratnam and
Tam23, where the Fokker—Planck equation is used). Very
few other results are available for scalar processes and al-
most none for vector processes.

In the following, we briefly define a limited but for
many practical purposes already sufficiently rich set of ran-
dom process models for which a solution is possible via the
so—called outcrossing approach. Some of the available
results on the outcrossing approach will be reviewed and
some others will be further developed and combined. In
particular, upper and lower probability bounds will be given
and time dependent failure probabilities will be computed
based on so-called FORM/SORM!® , 1t will be shown how
results for rectangular wave renewal processes and for
Gaussian and Non—Gaussian differentiable processes can be
obtained in good approximation, making use of isolated
results in the literature. Emphasis is on non-stationary
processes and/or time-variant componential state functions
as they arise, for example, from structural deterioration or
ageing. Concepts of combining these two types of processes
will be outlined. A simple model for intermittent loading
will be described and applied to stationary and non-station-
ary combinations.

The results presented are primarily meant for load
combinations in quasi-static, not necessarily linear elastic
structural systems, i.e. where dynamic effects can be
neglected. The random variables or random process vari-
ables introduced may be interpreted either as basic variables
or as variables describing the state of a component in load-
effect space.

RANDOM PROCESS MODELS

Scalar Differentiable Normal (Gaussian) Processes

A scalar normal or Gaussian process with continuously dif-
ferentiable sample paths is completely defined by its mean
value and covariance functions, i.e. by mg(f) and Cyt, V1)
or, alternatively, by mg(z) , its variance function o%(t) and

its autocorrelation coefficient function Pt 1) =
Cylty 1,)/(0(1,) Olty)) .The covariance function must be
positive definite. The marginal distribution function is
Gaussian (normal) al any time and it is bivariate normal for

any two different points in time. If the process is stationary
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the argument in the covariance or the autocorrelation func-
tion may be replaced by T = |1, —t2|. Differentiability of
the sample paths implies that the crossings of a given level,
form a regular point process. It is assured if the covariance
(or autocorelation) function is twice differentiable at
t=1 = t:,_(Fig.l).

T S()

FIG.1 CONTINUOUSLY DIFFERENTIABLE PROCESS

Scalar Nataf and Hermite Processes

A special but important class of non-normal, scalar and
differentiable processes can be built by a memoryless trans-
formation from a normal process, i.e.

S(1) = hU®) ®)

where U(f) is a standard normal process and A(u) is an ar-
bitrary function. For S(z) any admissible unimodal distribu-
tion function can be chosen thus defining a certain class of
functions A(u). In addition the autocorrelation function
py(t; . 1,) has to be specified. However, there are some
restrictions .on the l.ype of autocorrelation function, i.e. the
transformed autocorrelation function p(f, ,1,) must be
positive definite. Many additional results for Nataf proces-
ses are given by Grigoriu24.

The Hermite process is a special casc of the Nataf
process. All marginal distributions must be of Hermite type.
For this process the solution of the integral equation occur-
ring for the autocorrelation function of the equivalent (or
better generating) standard normal process is analytic. The
standard Hermite process has the representation, i.e. a spe-
cial case of the function A(u).

= . 3
S() = «(U(H + hli(uo)2 - 1)+ hy (UG - 3U@))
(O]
For the coefficients depending on the first four mo-
ments of the marginal disribution of the non—normal
process we refer to Winterstein and Bjerager“, In addition,
the Hermite process requires specification of the autocor-
relation function of S(r). Again, there are certain restrictions
on the moments of the marginal distributions as well as on
the autocorrelation function.

Rectangular Wave Renewal Processes

Scalar rectangular wave renewal processes are useful
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models for processes changing their amplitude at random
renewal points in a random fashion. A scalar reclangular
wave renewal process is characterised by the jump rate A
and the distribution function of the amplitude. The renewals
occur independently of each other. No specific distribution
is assigned to the interarrival times in the following. Thus, it
is clear that such a model makes use of asymptotic and
ergodicity concepts. For example, a renewal process may
have arbitrary distribution function for the interarrival times
with existing expectation E[T]. Then, there isl?

HG_ 1 _
lim_, T S B A (10)

where H(t) is the so—called renewal function (=mean
number of renewals and A the renewal rate. Hence, we are
considering a renewal process in its asymptotic state mean-
ing that the number of renewals in a large time interval is
just inversely proportional to the mean interarrival time.
Therefore, the renewal process characterized only by a
jump rate captures only long term statistics. The mean dura-
tion of pulses is asymptotically equal to 1/A. For the special
cas of a Poisson rectangular wave process the interarrival
times and so the durations of the pulses are exponentially
distributed with parameter 1/A. In the special case of a Ferry
Borges—Castanheta process”, the durations are constant and
the repetition number r=(t; —1))/A with A the duration of

pulses is equal to A{r,—1;). Also, the sequence of

amplitudes is an independent sequence. The jump rate can
be a function of time as well as the parameters of the dis-
tribution function of the amplitudes (Fig.2).

FS[I)

—
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FIG.2 RECTABGULAR WAVE RENEWAL PROCESS

It is assumed that rectangular wave processes jump
from a random value S(f) to a new value T
with & — 0 at a renewal without returning to zero. Rectan-
gular wave renewal processes must be regular processes, i.c.
the occurrence of any two or more renewals in a small time
interval must be negligible. Non-stationary rectangular
wave renewal processes are processes which have either
time—dependent parameters of the amplitude distributions or
time—dependent jump rates.

Differentiable Vector Processes

The differentiable Gaussian vector processes S (1) are com-
pletely specified by the mean vector mg(r) and symmetric,

positive definite matrix of covariance functions.




Csltpty) = {o, (1) 50 j=1, n} (1

or alternatively, by the variance functions ciz(r) and the
autocorrelation coefficient functions pU(tl, )= cij(tl, L)/
(0,(t) o;(ty). If mg = my), o} =0%() and pym=
p,j(t‘, 1,) with = |r] - lzl, the process is said to be sta-
tionary. Differentiability of the sample paths is assured if

the covariance (or autocorrelation) functions are twice dif-
ferentiable att = 1| = &,

For vector processes of Nataf-and Hermite-type, the
same representation is valid. Additionally, the marginal dis-
tributions need o be specified. Again certain restriction
hold. Even if the inputted matrix of cross—correlation func-
tions is positiive definite, the resulting equivalent matrix of
Gaussian cross—correlation functions can be non-positive
definite. The model then is no more a valid model.

Rectangular Wave Renewal Vector Processes

A vector rectangular wave renewal process has marginally
exactly the same properties as the scalar rectangular wave
renewal process. Additionally, the renewals of each com-
ponents of the vector are independent and all amplitudes are
independent. Non-stationary rectangular wave renewal
processes are processes which have either time—dependent
parameters of the amplitude distributions or time—dependent
jump rates. Rectangular wave renewal processes must be
regular processes, i.e. the occurrence of any two or more
renewals in a small time interval must be negligible. A use-
ful generalization is when a sub—vector of rectangular wave
renewal processes has jump rates assigned to another com-
ponent of the rectangular wave renewal vector process in
which case jumps of that sub—vector occur simultaneously.

Intermittent processes

Intermittent processes are a practically important
generalization for all types of random processes. In the fol-
lowing only a special case will be discussed. The renewals
of times where the process is ‘‘on’’ follow a Poisson
renewal process with rate k (or mean inter arrival time 1/x
). At a renewal the process activates an ‘‘on’’-state (state
**1""). The *‘off”’-states are denoted by “‘0’’. Consequently,
the mean number of ‘‘on’’-states in the interval [#),4] is

E[M(12)] = x(t,~1) (12)

The initial durations of ‘‘on’’-states will have ex-
ponential distribution with mean 1/p independent of the
arrival times. However, we will assume that a ‘‘on"’-time is
also finished if a next renewal occurs so that the durations
have a truncated exponential distribution. By assuming ran-
dom initial conditions the probabilitics of the ‘‘on/off’’-
states can then be determined by making use of a standard
result from renewal theory.

e SR

—, exp [—(x+p)z]

b
o= S

gl = | L

K+M—K+uexr)[—(l<+u)t] (13)

We will assume that the *‘on/off”'—process is already
in its stationary state where the last terms in these equations
vanish. In contrast to normal rectangular wave renewal
processes where the duration of the rectangular pulse is
exactly same until the next renewal and the duration of the
rectangular pulse is exponentially distributed with mean
1/, for a Poissonian renewal process the ‘‘on’’times are
now truncated at the next renewal. It is easily shown that
the effective duration of the ‘‘on’’—times is also exponential
with mean 1/(x+p). The so—alled interarrival-duration
intensity is defined by p = k/W. For p = K/l — oo, the
processes are almost always active. For p = /|1 — 0, one
obtains spike-like processes. Figure 3 shows a simple
“‘onfoff>” process. Figure 4 shows an example of an inter-
mittent rectangular wave renewal process with multiple
jumps during an “‘on”’—time where the jump rate A of the
rectangular wave renewal process is larger than the interar-
rival rate K for the “‘on’’~times.

A s

FIG.3 POISSONIAN “ON-OFF"’-PROCESS WITH TRUNCATED
EXPONENTIAL DURATIONS

s@)

FIG.4 INTERMITTENT RECTANGULAR WAVE RENEWAL
PROCESS WITH SEVERAL JUMPS DURING *‘ON"-TIMES

Intermittencies can also be defined for differentiable
processes. If this is a dependent vector process then the
entire vector process must have a common p, that is all
components of the vector must have the same x and p.
Independent differentiable vector processes, however, can
have different p’s.

Ergodic Random Vector Sequences

The description of slowly varying random process vari-
ables, for example, for the modeling of the sequence of
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subsequent 10-minute mean wind velocities, can be done
by stationary and ergodic random vector sequences of ar-
bitrary joint distribution function. They will be dented by
Q-variables. The Q-variables can have arbitrary cross—de-
pendencies. In general, those sequences are auto—dependent
to some degree. However, it is not necessary to specify their
dependence structure which is a consequence of the er-
godicity assumption and the way how they are treated in the
reliability analysis. Usually, Q-variables define the
parameters of superimposed rapidly fluctuating random
process variables denoted by S-variables.

THE OUTCROSSING APPROACH FOR A WIDE
CLASS OF RANDOM PROCESSES

The outcrossing approach rests on a few basic assumption
which, however, are fulfilled in almost all practical cases.
According to Schall et al?* one can distinguish between
three types of variables, R, Q, S, respectively.

* Ris a vector of random variables as in time-invariant
reliability. Its distribution parameters can be deter-
ministic functions of time. This vector is used to model
resistance variables and/or uncertain parameters of 0—
or S-variables. The most important characteristics of
this type of variable is that they are non—ergodic.

*« ( is a vector of stationary and ergodic sequences.
Usually, it is used to model long term variations in time
(traffic states, sea states, wind velocity regimes, etc.).
These variables usually determine the fluctuating
parameters of the random process variables.

« . Sis a vector of (sufficiently mixing) not necessarily
stationary random process variables whose parameters
can depend on (2 and/or R. S can include a rectangular
wave renewal vector process and differentiable vectag
processes denoted by SR and SD, respectively.

+ The safe state of the component is defined for
g(rg.s (1),0) > 0, the limit state for g(r.g,s (1).7) = 0
and the failure state for g(r,q,s (t).1) < 0, respectively.
The state function can also contain time as a parameter,
and must be twice differentiable.

The presence of R— and Q—variables in the parameters
of the S—vector makes it stochastically dependent even if
the components of S are initially defined as independent.

The conditional (on R = r and Q = g, respectively)
rate of outcrossings into the failure domain conditional on ¢
and r can be defined as:

VE(F, Tl rg)=lim,_, i PeS@mn)>01rg,)
AlgSE+A)T+8)<0Ir gD (14)

F denotes the failure domain defined by
{g(r.g.s (10,1) < 0}. In order to compute outcrossing rate it
is necessary ‘that the limiting operation can be performed.
This excludes certain processes which fluctuate too rapidly
in time, that is: in a small time interval there is at most one
crossing. The probability of more than one crossing is negli-
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gibly small. Then, the point process of crossings is a regular
point process "~ As a consequence the mean number of
crossings in the time interval [f;,5,] conditional on ¢ and r
can be determined from

f

AN (uaar]=[v* Fagr) ds (15)

t
1

If crossings are rare and asymptotically independent,
an asymptotic rg}su]t for the failure probability (or the first
passage time) 526 i

Pty 1) =1~ Eg| exp -EQ EIN* (y tlgrll] - (16)

An upper bound to the time dependent probability of
failure in [f).t,] (t; > t;) can be derived as follows. Failure

occurs if there is failure at £; or if there is at least one
outcrossing from the safe setin [f),.5].

Prltpy) = PR Q.S 1) <0+ P (N (1) u1p) >0)
. P({g ®.0,5.1)<0} m{M (tty) >0}] an

where N* (1,
the safe into the unsafe domain. The last term is smaller
than any of the two first terms. Neglecting it.provides an
upper bound P(r,.1,) < P(g(RQ.S.t,) < 0) +P(N* (1 ,1,) > 0)
which is at most twice as large as the exact result. Further,
there is  PIN'(t,0) > 0) < By o[ EINry )] - with
ERQLE Nt (IH.tz) ]:| the mean number of outcross-
27

t,) is the random number of crossings from

ings and, hence

P <P (g (R.Q.5,0)<0)+ ERQ[ EIN' (i) | rg ]]'(18)
Pf(tl) =Pf(g (R, Q,8,1)<0) is generally small. It will be
computed as in time-invariant reliability. If it is guaranteed
that the processes start from the origin, then it is P(t;) = 0.

This upper bound cannot be improved easily28 . A simple
lower bound?? is also available indicating that it equals the
largest instantaneous failure probability.

Pf(tl,tz) > max, {Pj(r)}-for TS (19)

In the stationary case there is P, (7),1,) > P[r,). It is pos-
sible to improve this bound by taking the probability of a
union over a discrete set of failure events. If the union in-
cludes the event with maximum point-in-time failure prob-
ability, then, the following relationship holds:
FES o e
Prltpt) > P U {g(R,Q,S(x,), 1)< 0} > m’axt"{Pj(‘r) } >P(1)
i=1

(20)

Unfortunately, simple schemes to choose the inner time instants
ST < Ty <1 < <T,) <1, with P(g(R.Q.5("),r")< 0)




the largest local failure probability are only available’%3!,

for stationary processes. The lower bound is found to be
better in non-stationary cases as compared to the stationary
case.

Equations (18) and (19) are the basis for the considerations
to come. The quality of the upper and lower bound solu-
tions depends on the reliability level and on the dependence
structure of the outcrossings. It is assumed that for all com-
putations a probability distribution transformation into
standard space as in time—invariant reliability is performed.
It is further assumed that random processes start with ran-
dom initial conditions. Solutions will be sought such that
second order reliability methods can be employed as far as
possible. Since it has béen found that asymptotic solutions
are t0o inaccurate under non-asymptotic conditions and
pure first-order solutions are also not satisfying, a com-
promise between asymptotic solutions and somewhat more
exact solutions will generally be sought. This paticularly
concerns the time integration required in Eq.(16). In all
cases it is assured that the solutions sought, converge to the
asymptotic solutions under appropriate conditions.

Mean Number of Outcrossings and Failure Probabilities
for Rectangular Wave Renewal Vector Processes

Breitung and Rackwitz® have shown that under stationary

conditions the outcrossing rate can be calculated as the
product of the jump rate and the probability that a com-
ponent of the rectangular wave jumps from the safe domain
into the failure domain minus the probability that the jump
starts in the failure domain and ends in the failure domain,
summed up over all components of the vector of rectangular
wave renewal process. Ignoring for the moment all R-and
S-variables the mean outcrossing rate is:

v”(F.T)=;-J )"i[P({Si_E Fnls e F})]

i=1
n

=.-§| ki[P(S[e F)-P({S}“ ¢ F}n{sje F’IP
21)

2 .
‘where S is the vector of jumping components just before a

jump of the i~th component and .ST after a jump. It is as-

sumed that at a jump the component S; changes its posi-
tion from a random value to a new random value.
Alternatively, one could assume that the component S,
returns to zero (or mean or any other predefined fixed
value) before jumping to a new value. In this case the for-
mula has to be modififed appropriately because outcrossing
can .also occur when the component returns to that
predefined value. For linear failure surfaces oF =
,Ot:.s+[5= 0 the outcrossing rate can be given explicitly

as:
n

VED = E A, [q) B -0, (B-Bip)] @)
i=l

with @, (.,.,.) the two—dimensional normal integral which
can be easily evaluated. The correlation coefficient of the
two state variables before and after a jump equals
p;=1- otflu It is seen that the error in neglecting the prob-
ability of having jumps from one failure domain into other
can be studied in terms of the general parameters B and P

Brcitung22 proved that in the stationary case the asymptotic
outcrossing rate can be approximated by: ‘

n n -1
s

VE(FT) = x L N CORING! 43»:/)*'/2 (23)
i=1 J=l ’

Hence, the probability that jumps from one failure domain
into other can be neglected asymptotically and the failure
surface is approximated by a quadratic surface in the B—
point. As before the K}’S are the main curvatures in the
B-point. For small B-values it is slightly conservative®? and
it can be shown that the following formula represents an
improvement for small B-values,

ny ny-1
viFTD) = E N {m B) T (1= B~ (-, —p; Pi)}
=l =1
u.\-l 11}\ (])(—ﬁ, ‘ﬁQ )
= (—ﬁ)l_l(l—Bl\‘,.)J/z—— 7\,{ lA'TL
=1 I 5
. D) T1(1 - i)™
ji=1

i=

(24)

The last factor can be interpreted as a first—order correction
to the jump rates. Figure 5 shows the conservatism by
neglecting the probabilities of having jumps between the
failure domain versus f for various p. It displays the ratio of
the exact result and the asymptotic result. It is seen that this
,conservatism is quite considerable for large B and moderate
p (large a-values).

For brevity of notation we shall write only the
asymptotic result (Eqn.23) in the following but understand
that the improvement by Eqn. 24 is included. The expected
mean number of stationary outcrossings is (t,>1)):

lp=0.99

0.6]

v2|

FIG.5 RATIO OF EXACT TO APPROXIMATE RESULT VERSUS
SCALE PARAMETER f§
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LA n-1
E[N', )= A (B OB (- @5)
-

Note that B is now determined in the entire R—-Q-S-space
and similarly the curvature correction term.

The non-stationary case requires some additional
considerations’ . Non-stationarity can occur if the jump
rates are time—dependent, the distribution parameters of the
R-and S-variables depend deterministically on time and/or
the failure surface depends deterministically on time.

¢ If non-stationarity is only in the jump rates Ai(t), the
mean value of outcrossings is determined from:

bhn
] n-

1
E[Aﬁ(rl,rz)] | z W (@ dt D () ;Il(l - pry

i=
h

_ n-1
= RPN (1-pr)™ (1, - 1) (26)
=1

where the

Loy

integral can be cvaluated numerically.

Fy ﬁj i AI’ (1) dt is a mean jump rate.
27

i=l
’\
For more general forms of non-stationarity the mean num-
ber of outcrossings must be determined from:

lw

E[V ()= [ v (Foy de @n

1
1

where

n-1

FED=3 A O B0 1 (10 5©]" ep
=1 =

We now introduce the following additional approximations:

*  There is a critical point ¢ in time where the outcross-
ing rate becomes maximum, or, more precisely, where
the term ®(-B(1)) becomes maximum because it
dominates the time variations of the outcrossing rate.

»  The variations in time of the jump rates are smooth.
Therefore, it is sufficicnt to take the jump rates at the
critical point, i.c. A (") .

»  The second order correction is essentially independent

n-1 -lA
of time and can be taken as I1 (l—[}(f)x} (/‘))
J=1

*  The integration of the outcrossing rate with respect 1o
time can be approximated by applying the asvmptotic
Laplace integration method and can be performed inde-
pendent of probability integration with respect to the
other variables. Therefore, any interaction between
time and the other variables is neglected. Two cases
need to be considered, one where the critical point is an
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interior point and the other where the critical point is a
bounary point.

*  The integration with respect to the Q-variables can be
performed simultaneously with the integration for the
S—variables26. Also, it is admissible to integrate over
the R—variables together with the other variables.

. ok

The expected number of outcrossing then ‘must be deter-

mined® from:

Epo HN* (1)1 r,q:| ] o

n-1

@ o) (1 m)*'ﬁ“ a
=1

—

i=l 7"‘. B
1

1,
n-1 2

A i

=¥A T (I—B (z*)x‘(z*)) Jexplin@ (-Bry) de

i1 =1 :
1

@9
where the remaining integral over time is approximated by
Laplace’s integration method, ie. the function

A1) =In® (-B(1)) is expanded to first or second order
depending on the location of the critical point. Here, two
cases are distinguished:
O The critical point is an interior point of the considered

time interval: g

*y Y IVRY

or m: 0 and 286) >0

ot an?

*
'l<t <t2

s LE n-1 _ih
AN ()] = T h (IR 1 (I—B(z*mj(x‘))

%}
{ f,?:*)J (cb A @ @) - o AF (@) ¢-0) )

(30a)

¢ The critical point is the right boundary point of the
considered time interval:

t*=t2 or aj%g—l<0:
L) n-1 _ls

N () |= S A () D (B T 1-Be ("
N )] DEGLICH ));=|( S ))
1—exp (|7 (1)
If’(zz)

=)

(30b)

with f* (t) and f” (1) the first and second derivative of f{1)
with respect to time:

7= -y B0

%B(m)

7= B 32

where use is made of the well known asymptotic relation-




ship x = @@)/®P(-x). If at a point
oB(1)/9t= 0and 9> B(t)/> >0, the expected number of

outcrossings is one half of the interior point solution.

boundary

It should be observed that these approximations are
all of asymptotic nature 34 These equations are significantly
better than the true asymptotic relationships where the time
correction factor would be 1/7'(t") for boundary points

rts P i N . : .
and (2n/f (1"))/2 for interior points. The solutions break
down numerically if f’(t)andf” (t) are numerically too
small. In those cases the stationary results should be used.

The time integration schemes used can be shown to
be accurate enough for all practical purposes. For example,
for a problem in three dimensions with two time variant
jump loading and a limit state surface of the form
80) = b [upOp + (mp + by T + by (1=1)) = (4, 0
+ Mg+ Uy Og + Mg )] = 0 where we modify the reliability
level by multiplying the limit state function by a factor b > 1
and obtain the interior point solution with #* being in the
mid point of the time interval [0, 1]. Displayed is the ratio
of the proposed approximate solution and the exact result
obtained by numerical integration versus the parameters b
for various values of b, and b, = 0.

A little less accurate are the results for the boundary
point solution (right boundary point) with limit state func-
tion as before, now with b, = 0. It should be noted that

our approximations are always conservative.

Outcrossing Rates and Failure Probabilities for Scalar
Gaussian Processes

The determination of outcrossing rates for Gaussian proces-
ses is well known by Rice’s formula®>>S and extensions to
vector processes exist. The stutio'nary case is especially
simple. The vector case is complicated. Asymptotic con-
ceplsy’ help in both cases. The numerical effort can be
considerable. Therefore, the simple scalar case is inves-
tigated first and then the vector case is reduced to the
scalar case as explained below. The expected number of
crossings of the threshold function conditional on R
canbe written as:

{5

2
Ero[EWeIrg]=] | [ Jibeamse,
R RR 5 >b (tg) 1

(s1s) 9, (5) (pQ(q) dt ds dg dr 31

if the process S(t) is suitably standardized as well as the
threshold function

S(t) = (X(1) - m(1))/0(7); b(T.9,P) = (a(T.q.r) — m(T))/0(T)
(32)

so that g(t.5,q.r) = b(1,9,r) — S(T) (33)

b (t.q.r) is the time derivative of the threshold function.

The usual probability distribution transformation is per-
formed for all Q—variables (and also for R—variables). These
integrals are solved by Laplace’s method after the time de-
pendence of the threshold function has been expanded into
first order (if the critical point is a boundary point) or to
second order (if the critical point is an interior point). The
critical point is the usual B—point which has to be located by
an appropriate search algorithm. The conditional mean
number of outcrossings7‘5 for the differentiable Gaussian
process is:

b(tl IE
w(tlr.g)

It

'f

l{N*(t],tz)lr,q:l =J @, (t1rg) 9 (bxirg) v
13
1

(34)

where Y (x) =@ (x) —x® (—x) from which the subscquent
approximations for scalar Gaussian processes are derived.

We now introduce the following approximations:

¢ There is a critical point 1" in time where the outcross-
ing rate becomes maximum.

e The variations in time of the cycle rate ©(T) . are
smooth. Therefore, it is sufficient to take the cycling
rate at the critical point, i.e. w(").

«  The second order correction is essentially independent
of time.

*  The integration of the outcrossing rate with respect to
time can be approximated by applying the asymptotic
Laplace integration method and can be performed inde-
pendently of probability integration with respect to the
other variables. Therefore, no interaction between time
and the other variables is considered.

* The integration with respect to the Q-variables can be
performed simultaneously with the integration for the
S—variables. It is admissible to integrate over the R-
variables together with the other variables.

These assumptions are similar to those for rectangular
wave renewal processes. The stationary case is relatively
easy:

%)
( |
ER_Q[E IN*(r]‘tz)]] = %%1 (Hé[(?ﬂ] 0, (1) (35)

2

with of = p“-('tl,‘tz)h:”:,z the variance of the

32
gt on
derivative of the standardized process S(t) and H collecting
the second derivatives of the failure surface with respect to
the Q—and R—variables. If the upper bound solution is used
the R—variables are also involved in H and treated like O—
variables. If no R-Q-variables are present the last fac-
tor is unity. The stationary upcrossing rate for a scalar
process without presence of Q- or R-variables is

Vi) = @ (b) wg /2.
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For the non-stationary case three possibilities have to be
considered:

O Non-stationarity arises purely from auto-correlation
non-stationarity. Mean value, variance and threshold
functions of S(r) do not depend on time. Then,

1 b
_eB( 1
Eg[EIN(,)1]= x/ﬁ(| dm(H)l]‘ Joy@ar

1
1

0

| R

(-

5 3 7 ® 9 10

<
“
-

1 3
ij% [Idet(H)IJ 0 () (36)

where the integral over the time-dependent zero frequency

FIG.7 RATIO OF ASYMPTOTIC TO EXACT RESULT VERSUS
SCALE PARAMETER b (INERIOR POINT)

L

2
_[mo(t) dt is a
£
1

1
11,

is evaluated numerically and 50 =

mean zero frequency.

FIG.6 RATIO OF APPROXIMATE TO EXACT RESULT VERSUS
SCALE PARAMETER b (INTERIOR POINT)

¢ The critical point is an interior point. In this case the
second time derivative of the failure surface must be
positive while the first time derivative is zero. Time
integration is performed independently of the other
probability integrations.37'3 The corrected and ex-
tended version of Hagen’s result is:

@1 Y
EQ[E [V (’l.’z)}] = Vax (?det(H]I) @

i {m(xz L) -, Hﬁ}f%ﬂi@f lfil

Jote) @r, 1+P)-0m) 0 (x, 14

(37a)
where b=b(") the normalized threshold function and

bw=bﬂ(t*) the second derivative with respect to time in

the critical point, and
b (g 1

PP rg)= Gy
ke b(l‘,r*,q*) mg(twlrk‘qt)
1=V g b (g (1)

H collects the second derivatives with respect to Q and R.
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All quantities are evaluated in the critical point t*. Under
asymptotic conditions (large b(t*)) the last factor in braces
tends to (2m/(b(r*) b__ ()

0 The critical point is a boundary point. In this case the
first time derivative must be known. Time integration is
performed independently of other probability integra-
tions. The formula is .

1
4 ) D
EQ[E [N*(r],tz)]:\— %%‘t’(ldet(ml} (@, V2% (@)

1—exp (-b(t") 1 b (") 1 (1, — 1))
by b (1))

(37b)

where b(t*) the normalized threshold function in + and
b T(t") the derivative with respect to time in the critical point.
K contains the second order derivatives of the O— and R—
variables. The other quantities lik @, and K are also
evaluated in the critical point ¢* and there is a = bt(r*) /@,
and Y (x) =@ (x) - x® (—x). The time integration is per-
formed separately. Under asymptotic conditions the last fac-
tor tends to 1/(b(r") 1b.(£") ).

FIG.8 RATIO OF APPROXIMATE TO EXACT RESULT VERSUS
SCALE PARAMETER b (BOUNDARY POINT)

If at a boundary point db(t)/dT= 0and 3 b(1)/31>> 0,
the expected number of outcrossings is one half of the inte-
rior point solution.



Theoretically, the asymptotic results® which are given

Boundary Poi
below are recovered for large threshold levels. If the critical . SEACHY o
point is an interior point.
E [N’ (RS q)] =0, (', 1, q) D (b, 1, 9)) estimated E[N+)/exact E[N+]
\/ 1 L . rq) !
m(z)(t*, r,q) bﬂ(t*. rq) 13 g
\, k=1
resulting in \_" |; o 50) modified ZZI;
. + . (34B) [. =1
Pty 1317,4) < ® (-b(0, £, @) + <y(t’, 7, ) @ (b 7, ) li(:ﬂ ~L
I~
\/2_‘1__+_b(!'¢_r,q)_ G8a) | M|TT¥==oolC
R ra) b ra) =D
and if it is a boundary point
P/(t], Llrng)<® (-b(t", r.q) (38b)
0.3
The threshold function®® which is-used to test the accuracy i
of the approximate formulae is b(T) =b0+a(1' —I)". For “
large b(", r, g), @ and k > 1 both the approximate as well as
the asymptotic formulae are acceptable. It is generally :
o 5 3 4 s [ 7 []

Interior Point

% estimated E[N+Yexact E[N+]

% [ra G4 moditika |

~, ..,

ey

03

!
bk : ‘

b0

FIG.9 RATIO OF APPROXIMATE TO EXACT RESULT VERSUS
PARAMETER b” (INTERIOR POINT)

found for interior point solutions that Eq.(37) is a little
better than Eq.(38) (Figs. 9 and 10). The interior point result

is also acceptable for small b(:", r, q) and @ and is slightly
conservative for larger b(t*, r, ) and a as can be seen from

Figs. 11 and 12. In these equations @ (b(t", r, g)) should

only be replaced by ® (-b(", r, g)) b(t", 7, ¢) as is required
_for the asymptotic formula when asymptotic condi-

ip

b0

FIG.10 RATIO OF APPROXIMATE TO EXACT RESULT
VERSUS PARAMETER 5, (BOUNDARY POINT)

Interior Point

1
!
estimated E[N+)/exact E[N+]

1 £
i
03
7o F] ] 3 ® 10 12
a

FIG.1 RESTIMATED E[N*)/ EXACT E[N'] VERSUS CURVATURE

PARAMETER FOR DIFFERENT o, (INTERIOR POINT)
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tions are really approached. If, on the other hand,
O (-b(", 1, q)) b(t', 1, g) is used throughout the results are
slightly unconservative for small b(t",r,g) and a (Fig.13
where those two options are implemented). The asymptotic
formulae by Breitung appear to reflect the effect of varying

mo(t*, r,q) only insufficiently, especially in the boundary
point case (Fig.14),

oy

Interior Poin!

! I
estimated E[N "Vexact E[N") !

sults

o fp—mm
becaui

\
Boundary Point

"

{ estimated E[N+)/exact E[N+)

’ M s o |
j I s Al

FIG.14 ESTIMATED E[N']/ EXACT E[N') VERSUS CURVATURE
PARAMETER FOR a DIFFERENT @ (BOUNDARY POINT)

FIG.12 ESTIMATED E[N']/ EXACT E(N'] VERSUS CURVATURE
PARAMETER FOR DIFFERENT bO(INTERIOR POINT)

33 Boundary Point

estimated E[N + /exact E[N+]

c results ;

1 X1

X204

K P T

X116 X241)

L Kien |
__xa@oen |

|
X1(t) nd X2(1) on

FIG.15 COMBINATION OF AN INTERMITTENT
RECTANGULAR WAVE WITH A DIFFERNTIABLE PROCESS

FIG.13 ESTIMATED E[N"})/ EXACT E[N'] VERSUS CURVATURE
PARAMETER ¢ FOR [}IF:FERENTbn (BOUNDARY POINT)
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Combi
For Gaussian vector processes S(f) given by the mean vec-
tor mg(f) and symmetric, positive definite matrix

tion of G Vector Pr

Cty )= {0y (). 1) ij=1on} €))
of covariance functions the crossing rates are computed ac-
cording to the generalization®® of Rice’s formula. The cor-
responding FORM results® are nicely compact especially
after standardization by:

V() = (S, ()= m)/6, (1) (i=1,..m) (4b)



and subsequent diagonalization of the correlation coeffi-
cient matrix of V(1) by V(1) = A(r) U(r) where A(7) s a tri-
angular matrix, possibly depending on time, and U(f) a
vector of independent standard normal processes such that
V(r) and A(r) U(r) have the same cross correlation coeffi-
cient matrix for any time #. In particular, the coefficients in
Alt) 1,) are by Choleski’s decomposition scheme

ay(tp )= Py 1)
|
a1 = Py (et
: <i<n
i1 A
e )= 4t )= | Py “I"v)’xuyzl“l":) isn
i Tk
1 s i
afne)= { Py 1) = 2, (1 1) 2, (6 1) v e
£/ g ey k=1
; @1
and are to be evaluated during iteration for t =1, =1,. In this

case Py, (r,f)=1tfori=1,...,n, of course. The autocorrela-

tion coefficient functions of the independent processes 19(63)
are nothing else than the cocfficients a;; (7,.1;)

Asymptotic SORM results are also available® ¥ 4

but, unfortunately, involve relatively large numerical effort,
especially in the non-stationary case and in higher dimen-
sional spaces. Furthermore, integration over time can no
more be separated. However, an approximate scheme by
linear scalarization of the vector can be employed by
making use of the properties in the critical point and by
assuming that the curvatures of the failure surface in the
s—coordinates are negligible.

Consider a general, at least twice differentiable failure
function g(r, g, 5, 1) and S(1) is a Gaussian vector process
with given correlation function matrix. Also, denote by
4, s 1*) the critical point. Lincarization of the failure
function in the critical point yields

T

RO, gt % gLy
o, Tl

h(R,O.r g 1" - of s*
._(_Q____(Z__)—_L__ + W=0 (42)
e Il
s
where A(.) is a first— or second—order approximation of the
failure surface in the R— and Q—variables and where a linear
approximation is used for the S-variables. 0, is the gradient
vector of the s—variables normalized with respect to all vari-,
ables (r,q,s), i.e. by 9g(r, g, 8, t*)/as,, /v, s g(r g, s, ).
Then, W~ is a new zero mean and unit variance Gaussian
process variable.
T
o
wh=—Sg 3)
lHoxgll
If p s(’r’z) is the matrix of correlation functions of the
original vector process S(t) the autocorrelation function
Pyt (tl.t,) of the new scalar Gaussian process W(?) is:

2

T

Py (1) (@4)

Pt (1) = [ T

Il(xs IIOCSII

With this new autocorrelation function all results for

the scalar Gaussian case are applicable. The new autocor-

relation function py* (¢),5;) needs to be determined only in

the critical point 1. The central frequency of outcrossings is

obtained by twice differentiating the resulting autocorrela-
tion function with respect to time.

Outcrossing Rates and Failure Probabilities for Nataf
and Hermite Processes

All results for normal processes remain valid except that the
transformation X, (1) + h(U; ) needs to be performed.
This involves a transformation of the amplitudes but also
the computation of the equivalent autocorrelation function.

In the scalar case, the Nataf process S(7) is defined by
its marginal distribution function and its twice—differenti-
able autocorrelation function pg (#;,5). It is then necessary
to find the autocorrelation function py, (#;,1,) of the cor-
responding standard normal process. the autocorrelation
function py (r),,) must be obtained from the integral

equation
(1) - miny) | [ 56tp) = ity
rsvi=] 1) 7G5 | Tow
‘P(ZJ< L Py (’1"2))‘121 dzy (45)

with z, = @' [Fis.1)] and 2, = &' [F(s.1)]. This model
is valid for strictly increasing and continuous marginal dis-
tribution functions Fs(x)‘ The value p, (¢,.1,) obtained from
this equation must lic between -1 and 1. There is
ps(’l’tz) < Py tpty) and po(tpty) =Py, (tpty) = 0. It
follows that Nataf processes can only be used for a
restricted range of autocorrelation functions depending on
the marginal distributions and their parameters.

For the Hermite process the autocorrelation functions
of the original process and the equivalent normal process
are related by:

ps(tpty) = < (py () +h3 Py (1t + (1))

(46)
Here also certain restrictions about the moments of the
process and its autocorrelation function hold. For vector
processes each component of the processes and the cross—
dependencies have to be converted into equivalent normal
processes as described before, i.e. for the equivalent cross—
correlation functions by:

reels(r) = miey) || (1) - mft)
Ps’,sl (’rtz):I I o1 oty

0@y Py y (i) dydzy, @D
(]
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for Nataf—processes and by

Py 5 (1) = K.lJ Py L//.(’x”z) +hy Py g ('v'z)z +hy Py u, (rlv'z)])
L " L) ¥
(48)

for Hermite processes. Outcrossing rates will be determined
on the basis that the resulting scalar process S(¢) will have
an outcrossing of level b(z) when U(?) has an outcrossing of

level gil(b(r)).

Gaussian, Nataf and Hermite processes can be combined. It
is only necessary to define the Gaussian process as a special
case of the Nataf or the Hermite process.

Combination of Differentiable Processes and
Rectangular Wave Renewal Processes

Differentiable and rectangular wave renewal vector proces-
ses can be combined easily if they are independent of each
other. Due to regularity of the outcrossing process an out-
crossing can occur if a renewal process jumps or in between
the jumps if the differentiable process has an outcross-
ing“'“. When one of the processes has an outcrossing, the
other processes have values at their random point-in-time
distribution. Let SR.i(’) the i~th component of the rectan-

gular wave renewal jump process and S,() the (scalarized)
differentiable process. Then, the conditional mean number

of outcrossings due to jumps of the rectangular wave
renewal process is:

m

" M0 P(&(R. Q. Sy (7).
=1

r'.’.
E[N;(rl, n)irg, SD] =J'
)“

S, <0)dt “9)

m

!

27 n-1 -
=JEr @ BT (1-pow o) "

g = J=1

where Sy(r) and Sp(r) take on the values from their point—
in-time distribution. The Sp(f) —variables are treated like
Q-variables. The time integral is approximately solved as
described previously for rectangular wave renewal proces-
ses. The conditional mean number of outcrossings for the

(scalarized) differentiable processes for the times in be-
tween the jumps is:

f

E[Nf)(rl,zz)l r.q. .vR]= J W, (T17.a.55) @ (b(TIr q.5p)
1
1
b (tlr g s5p) W

W, (T17, 4, 55) idT G0
)

Here, the jump processes are treated as Q-variables. The
time integral is approximately solved as described pre-
viously for scalar Gaussian processes. Making use of the
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regularity of the stream of outcrossings, the sum of these
mean numbers of outcrossings is the exact result for the
mean number of outcrossings due to both types of proces-
ses.

E{;M(’]’ ) lr, Q]iﬁ{NE('l‘lZ) Ir.q, -Yujl'*'f{’v;)(‘lv n)lr.q, SR]
(51)

The conditions can be removed as previously described.

COMBINATION OF INTERMITTENT PROCESSES

The combination of intermittent processes can be performed
by the so—called load coincidence method. Only the station=
ary case of ‘‘on/off’’—states is considered. The probabilities
of the exhaustive, mutually exclusive set of events of
“‘off’’—and ‘‘on’’—states, i.e. that none, only the first
process, only the second process, ...,. and all combinations
of any two processes, all combinations of any three proces-
ses, etc. is “‘on’’, must first be computed. In this coin-
cidence model the sequence in which the different processes
occur makes no difference. These probabilities sum up to
unity. They are also the probabilities of the set {k} of
processes being ‘on’’ at an arbitrary point in time. using the
intermittency model of exponential interarrival times and
exponential durations truncated at the next renewal, these
probabilities are for p/ = x/l, being the inter arrival
duration imensity43 (not to be confused with correlation
coefficients) under stationary and ergodic conditions.

1

PoS
I +p,y
m=1
; P;
=7
(a+p,)
m=1
i P;P;
P = i5
na+p,)
m=1
i P;P;P,
Pt e ko isisk
na+p,)
m=1
A n
dii
pii
pm (52)
m(+p,)
1

m=
Secondly, the failure probability for any combination of

processes is determined. The asymptotic mean duration of
the total ‘‘on’’-time of the selection {k} of processes ‘‘on’

is p‘: “2”1) S L=t > Outcrossings can only

occur during this shorter time interval. The sum of the

13



individual time intervals p‘ ! , —1,) covers the total inter-

val [rI ,zz].

For stationary processes and stationary intermittencies, the
final failure probability is determined from

Pitty 1) < Pt + EIN'( )]

with

P (t)= Zp I-‘“ (t )+Z 2 Pl v/pz‘/ ). +p n,p;“j )

= jiv)

E{N* (rl.zz)] = ; L’T{p’l(tz—f])} +Z i“v’f*" {p"zf(rz—tl)}

3+ P
Fet Vi Pa

2 ) 53)

Here, vry denotes the outcrossing rate if the set {k} of loads
1
is ““on’".

The case of non-stationary processes but siationary
and ergodic **on/off”’ times is more difficult. Great care is
needed when modeling non-stationary behavior. The “‘on
probabilities remain as before, also at the critical time t*.
Therefore, in the interior point case

SRR
[ +7(f2-rj).12

it %UZ—']).&H}..»
pl2en
i (13—11),12”

(54)

L{N‘ (l,.rZ)]giJ I;{N'[ {yl,t 7—‘(12-1,)},min

o

l,.l = min
iy

('zfr,) \

i i [:l:l‘ffﬂ [max

=y
+I.{A,r+2+...+n{"“X%,l'llZ "

Note that each combination may have its own critical
time under general conditions. Further, it is assumed that
the total length of the ‘‘on’’-time of the set (k) is sym-
metric around 7* but, of course, truncated at the two bound-
ary times. For the boundary point case we have for the right

tmtmingfy ;o

boundary point case (' = 1y).

u oo

r{/\r* (tﬂﬂ}gi I-{N*« ~ i)t )]+ 33 AN,

i=l ]44“

(« “Vg (fz_ll)"*) }* + E|:]\‘T+2+...+u (l pn i (1 B )’ ) :'
(55)

For the left I)o:4r;dar)r point case @ = 1)

E{N*‘ ) t2)]<z NI 4Pty ))]+ N

=l =il
@+ it ))]" E{ Lozl +Pn‘~'m'n ’z_’l»] (56)

These results are upper bounds because the total

n’’ time for the selection {k} of simultaneously acting
processes is taken into account. A lower bound clearly
would be obtained if the individual mean ‘‘on’-times of the

14

selection {k}, i.e. the total *‘on’’:time divided by the mean *
number of individual *‘on’’-times, were taken. Asymptoti-

cally, however the influence of the length of the time inter-

val vanishes. Therefore, one can conservatively compute

only the upper bound. Under general conditions with

respect to the type of non-stationarity it may happen that

certain combinations produce interior point solutions while

others simultaneously produce boundary point solutions.

The initial failure probability is computed as in the
stationary case.

The lower bound is: P/(ll'[z) >
max Z Py P ] (t)+2 Zp" P"’ V+.+p, P]] Bty
W ow '-/P"’ )+ +p PRy
MAXe Z’] ”fl(’ “’22 P =t Py 1225
=10 i=|
; €7

A rigorous computation of the lower bound in the
non-stationary case requires considerable numerical effort.
Therefore, only a lower bound is estimated with trk) the

critical times when the sets {k} of processes are “‘on’’. In

the stationary caseP/(11.1) > P(1)).

For a larger number of loads this implies a very large
number of B - point determinations (precisely, 2"-1). For all
p;’s small only the few first terms contribute significantly.
For all p;/’s only the last terms contribute significantly.
However, it is difficult to derive a general rule because
usually the coincidence probabilities ‘decrease with the
number of processes but the conditional failure probabilities
(=expected number of outcrossings during ‘‘on’’-times) in-
crease.

Combination of intermittent differentiable and
intermittent rec lar wave r

al proces

The same formulae are valid as for non-intermittent proces-
ses except that care is taken of the shorter time interval for
the “‘on’’times. (Fig.16).

Combination of intermittent processes with non-
intermittent processes
This is a generalization of the foregoing options. Almost all
non-intermittent processes can be produced by choosing the
interarrival-duration intensity p large. More convenient and
involving less computational effort is to define certain
processes as non-intermittent, i.e. they are always “‘on”’. In
this case the initial probability P’(tl) involves an additional
term p, P,(rl)whereqs aJl other terms have to be computed
assuming “that the non-intermittent processes are always
on’’. Similarly, the lower bound involves an additional
term.

Concluding Remarks
The theory and computational methods outlined before are
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presented here for the first time in a consistent manner. The
considerations arc cssentially based on asymptotic SORM *
concepts but modifications are introduced in order to obtain
sufficiently accurate results also in non-asymptotic cases.
This requires that a unique critical point can be found in the
r-g-s-t-space'®. If this is not the case other methods must be
applied. As mentioned upper and lower bound are relatively
close to each other for non-stationary cases. The asymptotic
result (Eqn.16) is usually close to the upper bound. Both
types of solutions should only be used if failure prob-
abilities are less than 0.01, say, and local B-values are larger
than about 2.

For the non-stationary case, methods are developed
where any interaction of time and componential states is
neglected. The overall effect of this and certain other as-
sumptions is not easy to determine. However, for both rec-
tangular wave renewal processes and for Gaussian vector
processes importance sampling schemes tan be devised
which perform the necessary integrations quite efficiently
and arbitrarily exact, but nevertheless with considerably
more numerical effort. Suitable importance sampling
schemes are bxven in the appendix. More details can be
found in Rackwitz*®4 . Example calculations show that the
simplifications introduced above have negligible effect as
long as the failure surfaces are sufficiently smooth and the
time variations are not too large. Then, the interactions be-
tween time and states are in fact, small. In general, the
systematic error produced by those simplifications remain
well within the error bounds implied by importance sam-
pling. The largest systematic error appears to be produced
by the scalarization of differentiable processes when larger
curvatures exist in the critical point. Further work is neces-
sary. Here, the importance sampling alternative for vectorial -
processes is especially efficient.

Although it is believed that the load models and computa-
tional methods are already relatively rich, further practically
important issues of interest are:

*  Combination of non-rectangular pulse shapes

¢ More general intermittency models

¢ Occurrence clustering

¢ Trigger models

*  Cross-and auto-dependencies of rectangular wave
models.

Almost all of the mentioned problems have already
found special solutions. For example, Madsen® studied spe-
cial cases of sums of independent non-rectangular waves by
the so-called point crossing approach yielding upper
bounds under certain special conditions. But it appears very
difficult to extend the results to the general combination
framework outlined above. Clipped normal processes as a
model for loads has been proposed45 involving intermitten-
cies determined directly by the amplitude model. Other
models are possible for the ‘‘on/off’’ times, in particular,
with Erlang distributed renewals and truncated Erlang dura-
tions for the 1nd1v1dualg’>mwbscs which differ slightly from
the exponential one™

JOURNAL OF STRUCTURAL ENGINEERING VOL.25NO. | APRIL 1998

The general case is presently under study. It will then

" be possible to replace the simple model for coincidence

probabilities in Eq.(52) by more general and more flexible
models including the case with almost deterministic occur-
rences and deterministic pulse durations. A theoretically
quite different model for intermittencies has been put for-
ward by Madsen and Ditlevsen . In this model inde-
pendent, alternating “‘on’” and ‘‘off’’ times are defined.
Occurrence clustering models have been proposed by
wen*’ and Schrupp and Rackwitz*®. They become com-
putationally rather involved unless pulse durations are
rather short as demonstrated™. The special case of trigger
models, i.e. where the occurrence of a load triggers another
load, possmly after some delay time, has also been
studied® . Again, general trigger models are difficult to
compute. Various amplitude dependencies have been inves-
tigated, for example by Madsené, Rackwitz*® and Wen*®
Here again no general and practical method is available as
of yet. In fact, the methods proposed are either complicated,
not very accurate or can require enormous numerical effort.
While serial dependencies have to significant effect on the
results, at least not for high reliability problems, cross-de-
pendencies are known to influence the final results to a
large extent. An indirect way to model such cross-depend-
encies, however, is by making use of the proposed hierar-
chical load model.

The methods described above are of limited use for
dynamic systems. It is not only difficult to assess the auto-
and cross-correlation structure of the interesling output
quantities. Also the combination of rectangular waves as
well as of intermittencies as described above make little
sense if passed through a dynamic structure. The transient
phases of the system generally lead to an oscillatory be-
havior of system states. Therefore, the time integration
schemes with respect to time have to be modified.
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Several importance sampling schemes have been proposcd“‘sﬂ It is possible to estimate the mean number of outcrossings

directly and use the information that a critical poi
Belyaev39

itis:

nt and thus an important region is given by ", q“, s 0. Following
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where ds(s) means surface integration sy =g (r, ¢,5,7) 8 is the velocity of the scalarized vector process in the outwards

direction prependicular to the failure surface G and 96 is the time derivative of the failure surface. Note than n = — o

where is 0. the normalized gradient of the failure surface. By simple regression the parameters of the scalar velocity process

are

my = E[SNl S=x]= nTRTR s
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oF = Var[SN | 8= 5] = nT[}? -R'R7 R]n

possibly depending on time. It is noted that the variance of the velocity process does not depend on the position S = s but
only on the normal in 5. The expectation in the integral is analytic

E[max{o, Sy BG} | S=s:{ = 0,0 [a J+ (m—0G) ® [_

G—*ﬂlo

S 0

9G-m,
c

The surface integral can be converted into a volume integral using a suitable parameterization of the failure surface. The
mean number of outcrossings (or the numerator of the correction factor) is then given by:
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The functions f,(x) are appropriately chosen sampling densities centered at the critical point. At first, the variables R,Q ang
the time 7 are simulated followed by n -1 values of the S-vector. The last component of § is determined by solving

g(rgst) =0, ie. s, =g“ (ryq,8....s, ). Tr is the transformation determinant for the chosen parameterization. In the

non-stationary case the sampling density for the random times T have to be chosen as efficient as posible. It should be
different depending on whether the critical point is an interior or one of the two boundary points. Unfortunately, the process
or the limit state surface usually depend on time. Therefore, it is not possible to determine an optimum sampling distribution
for the specified times in advance so that it is proposed to sample the random times from a uniform distribution in the
reference time interval. When choosing the sampling distribution for the vector S one can take advantage of the fact that in
the critical point the curvatures can easily be computed.

\

APPENDIX B
Importance Sampling Appendix Update for Rectangular Wave R al Processes

We start from the assumption that the critical point (¥, g*, *, r*) already signifies the most important region. This then suggests
to use importance sampling. Following Rackwitz** and Hohenbichler and Rackwitz>* we only determine a correction factor to
the semi-analytical result making use of

Va0
4w ] = fN, (ll,lzJ]m = gN; ¢, )]c

where C is a correction factor close to one and which is to be evaluated by importance simulation. Fujita and Rackwitz5$
studied various importance sampling schemes. They came to the conclusion that axis-parallel sampling with line searches in
the direction of the critical points most efficient in smaller dimensions, especially if one sets out from quadratic approxima-
tions of the limit state surface. But these advantages are lost in higher dimensions of the uncertainty space. Therefore, the
general, simple sampling around the critical point will be used. More specifically, the correction factor is determined from:
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if the denominator is calculated semi-analytically and
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if the denominator is calculated by Monte Carlo. In those formulae there is:
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1) Indicator function being 1 if the event in (.} is true and O otherwise
I Identity matrix
r Length of the vector of R—and Q-variables
n Length of the vector of S—variables. m < n so that some components of § jump simultaneously
r
i i i i YD =T o0, yh1
o0 Vevtor of (R,Q)-variables with sampling density ¢ (v;y, 1) & ©0; 551
£ *
i i i D = ]

X The sampled value according to the sampling density ¢ (x; x", /) i1=—l| olx; 5 x;51)

: : e : ; 3
x* The sampled value according to the sampling density (pn(x ;x7, D) if the i-th component jmps from X to X

Ji

8(1) True state function

8,rxT) Approximate parabolic state function
* x*a?) Critical point
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CT('E*) Analytical time correction factor

h(1,1") Importance sampling density in time space. It should be different depending on whether the critical point is an
7]

interior or one of the two boundary points. For the interior point one may experiment with a truncated normal distribution

with density.
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For boundary points suitable sampling densities are:
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K sample size for very large K.
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Usually, we are interested only in the first corection factor. For simplicity, it is assumed that all calculations are performed
in standard space and, thereofre, the standard deviation of each component of the sampling density is close to 1. Very little
improvemet can be achieved if the standard deviation is adjusted according to the curvature of the failure surface at the
critical point. Thus, the vectors y; and x; are first generated together with T according to the sampling densities proposed
before, for both numerator and denominator. Next, for each component of the S-process m additional variables are
generated and added to the initial x,.-vector in the numerator as well as in the denominator. Then the indicator functions are
evaluated, multiplied with the relevant A s and summed up after which whole term is multiplied with the bias correction
factor, separately for numerator and denominator. Formally, T.= t* in the denominator. This is repeated until the coefficient
of variation of the correction factor is sufficiently small. It must, however, be mentioned that the importance sampling
scheme is probably not the most efficient one. In fact, dample sized of around 1000 are needed in order to keep the
coefficient of variation of the catimate below 0.2.
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