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Summary 
How an organ attains different shapes and sizes at different developmental stages is 

an interesting question in biology. This study uses Arabidopsis ovules as a model 

organ to understand cellular patterns underlying organ morphogenesis in plants. The 

Arabidopsis ovule arises as a simple finger-like outgrowth from the placental surface, 

and undergoes complex morphogenesis to form a final curved structure at maturity. 

This study approaches the shape transformation that occurs during ovule development 

as a process that requires closer examination in three-dimensional space with detailed 

qualitative and quantitative cellular descriptions of the organ at different developmental 

stages using microscopic imaging. 

This study resulted in several major methodological improvements that allow precise 

microscopic imaging followed by instance cell segmentation for quantitative analysis 

of the 3D cellular architecture of the ovule. Despite the existence of several imaging 

techniques to follow Arabidopsis ovule development, no easy and straightforward 

method existed for examining the morphology of internal elements in the ovule at the 

cellular level. In a first step, I developed an improved method for precise microscopic 

imaging of the entire organ with fine cellular resolution. In a collaborative effort, the 

high-resolution images from this study were instrumental to form a convolutional neural 

network-based image segmentation pipeline “PlantSeg”. The pipeline resulted in a 

precise instance cell segmentation of the images, it allowed fast processing of image 

dataset that eventually resulted in a large dataset of Arabidopsis ovules for further 

analysis. This study also focused on 3D instance nuclei segmentation from challenging 

nuclei stain images. Applying a novel approach this study came up with significant 

improvements in available methods for nuclei segmentation using machine learning 

bases training performed on nuclei stain images. This study has additionally provided 

a new method for tissue classification using cell layers detection in ovule primordia 

which can be also applied in other layered organs. 

The 3D ovule dataset provided a baseline for further exploration of 3D organ 

morphogenesis. By being able to analyze the architecture of tissues in ovules with a 

proper 3D cellular resolution this study could identify previously undefined regions 

within the organ. Detailed investigation of ovule primordia development resulted in the 

identification of slanting, the first morphological manifestation of polarity in the early 

development of ovules and how the slant is translated into the final orientation of the 
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ovule with the micropyle pointing towards the apex of the pistil. The chalaza of the 

Arabidopsis ovule could be subdivided into two distinct groups of cells. 

This study has obtained a detailed description of different events and features of 

integument development and how these might be related to the formation of the final 

curved structure of the organ. A highlight feature is the polarity and differential growth 

of integument layers along the proximal-distal axis of the organ. Characteristic events 

during the differential outgrowth are described, most importantly, the outer integument 

outgrowing the inner integument, the distal enlargement of integument cells, and their 

differences in internal layers. These events suggest that the outer integument imposes 

curvature on internal tissues. The detailed 3D analysis identified the exposed cells of 

the inner layer of the outer integument with differential characteristics and how they 

are linked to the outer integument interacting with inner integument growth. 3D cell 

surface analysis of internal tissues reveals the morphological changes induced by 

contact friction. Quantitative analysis of growth and proliferation rates in integuments 

reveals different growth pulses during differential outgrowth of integuments and most 

of the growth pulses correlate with the described events of integument outgrowth. 

Overall, the study proposed several cellular features of the organ and suggest that the 

ovule curvature is a complicated multi-step process shaping cells to form these 

features and that happens in three-dimensional space and time. 

Finally, I played a central part in a collaborative effort that led to the establishment of 

3DCoordX, a computer pipeline implementing a spatial coordinate system for the 

annotation and analysis of 3D organ morphogenesis. 3DCoordX can be applied to 

various organs of different morphological complexity. The pipeline defines spatial 

coordinates or position of cells in the tissue, proximal-distal, and medial-lateral axis. 

Taking advantage of 3DCoordX I mapped mitotic cells from the young ovule primordia 

to the organ coordinates to understand their spatial distribution. I found that most cell 

divisions were located in the proximal half of the outgrowing primordium indicating the 

existence of a spatially restricted cell proliferation zone in the young primordium. 

Moreover, I established polar cell geometries for cells of the integuments. 

Overall, this study has contributed to valuable new tools and techniques for studying 

organ morphogenesis. It then used these tools to extensively understand 3D cellular 

organization in wild-type Arabidopsis ovule development with fine details. This now 

stands as a benchmark for understanding various features displayed by the organ at 
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different developmental stages and how that correlates with the tissue and organ 

shapes at their respective stages of development. 
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Zusammenfassung 

Wie ein Organ in verschiedenen Entwicklungsstadien unterschiedliche Formen und 

Größen annimmt, ist eine interessante Frage in der Biologie. In dieser Studie wird die 

Samenanlage oder Ovule von Arabidopsis als Modellorgan verwendet, um die 

zellulären Muster zu verstehen, die der Organmorphogenese in Pflanzen zugrunde 

liegen. Die Ovule von Arabidopsis entsteht als einfacher fingerartiger Auswuchs aus 

der Plazentaoberfläche und durchläuft eine komplexe Morphogenese, um 

schlussendlich eine endgültige gebogene Struktur zu bilden. Diese Studie betrachtet 

die Formveränderung während der Entwicklung der Samenanlage als einen Prozess, 

der eine genauere Untersuchung im dreidimensionalen Raum mit detaillierten 

qualitativen und quantitativen zellulären Beschreibungen des Organs in verschiedenen 

Entwicklungsstadien unter Verwendung mikroskopischer Bildgebung erfordert. 

Diese Arbeit führte zu mehreren wichtigen methodischen Verbesserungen, die eine 

quantitative Analyse der zellulären 3D-Architektur der Ovule ermöglichen. Obwohl es 

mehrere bildgebende Verfahren gibt, um die Entwicklung der Ovule zu verfolgen, gab 

es keine einfache und unkomplizierte Methode, um die Morphologie der inneren 

Elemente der Ovule auf zellulärer Ebene quantitativ zu untersuchen. In einem ersten 

Schritt habe ich eine verbesserte Methode zur präzisen mikroskopischen Abbildung 

des gesamten Organs mit feiner zellulärer Auflösung entwickelt. Die Segmentierung 

von Zellen in diesen mikroskopischen Bildern mit Zellkonturen ist eine weitere 

Herausforderung im Bereich der quantitativen Organmorphogenese. Die 

Verbesserung der mikroskopischen Bildgebung von Ovulen führte zu einer weiteren 

Möglichkeit, die Werkzeuge für die Nachbearbeitung der mikroskopischen Rohbilder 

zu erweitern, um die Zellsegmentierung zu verbessern. Diese Bilder dienten als 

wertvoller Trainingsdatensatz für das maschinelle Lernen. Schließlich wurde in einer 

interdisziplinären Kollaboration eine auf neuronalen Netzen basierende 

Bildsegmentierungspipeline "PlantSeg" eingerichtet, die die hochauflösenden Bilder 

aus dieser Studie nutzt. Diese Pipeline führte zu einer präzisen Segmentierung der 

Zellen und ermöglichte eine schnelle Verarbeitung der Bilddaten, was wiederum dazu 

beitrug, die Anzahl der Proben für die Analyse der Ovulen zu erhöhen. Ein weiterer 

Schwerpunkt dieser Studie war die 3D-Segmentierung von Zellkernen aus einfachen 

Kernfärbebildern. Dies war eine äußerst schwierige Aufgabe, da keine geeigneten 
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Werkzeuge für die Segmentierung solcher schwachen Kernfärbungen verfügbar 

waren. Durch die Anwendung eines neuartigen Ansatzes wurden in dieser Studie 

erhebliche Verbesserungen der verfügbaren Methoden zur Kernsegmentierung mit 

Hilfe von maschinellem Lernen erzielt, das auf Bildern von Kernfärbungen trainiert 

wurde. Diese Studie hat außerdem eine neue Methode zur schnellen Erkennung von 

Zellschichten in Ovulenprimordien geliefert, die auch bei anderen geschichteten 

Organen angewendet werden kann. 

Anschließend leistete ich wichtige Beiträge zu einem Datensatz, der eine 

Entwicklungsreihe von 3D-zellsegmentierten Ovulen von Arabidopsis enthält. Dieser 

Datensatz bildete die Grundlage für die weitere Erforschung der 3D-

Organmorphogenese. Durch die Möglichkeit, die Architektur der Gewebe in den 

Samenanlagen mit einer angemessenen zellulären 3D-Auflösung zu analysieren, 

konnten in dieser Studie bisher nicht definierte Regionen innerhalb des Organs 

identifiziert werden. Die detaillierte Untersuchung der Entwicklung des 

Ovulenprimordiums führte zur Identifizierung der Schrägstellung (slanting), der ersten 

morphologischen Manifestation der Polarität in der frühen Entwicklung der Ovule. Die 

Chalaza der Ovule konnte in zwei verschiedene Zellgruppen unterteilt werden. Die 

quantitative Analyse der zellulären Merkmale der digitalen 3D-Ovulen führte zu einem 

besseren Verständnis des unterschiedlichen Wachstums der Integumentgewebe und 

der Polarität im zellulären Muster entlang der proximal-distalen Achse des Organs. 

Diese Studie hat sich auch auf die 3D-Tiefenanalyse der Zellmorphologien an den 

Oberflächen der inneren Gewebe ausgeweitet und zeigt, wie diese mit der 

Kontaktreibung zwischen den Integumentgeweben und dem Nuzellus korreliert 

werden können. 

Schließlich war ich maßgeblich an der interdisziplinären Entwicklung von 3DCoordX 

beteiligt, einer Computerpipeline zur Implementierung eines räumlichen 

Koordinatensystems für die Annotation und Analyse der 3D-Organmorphogenese. 

3DCoordX kann auf verschiedene Organe unterschiedlicher morphologischer 

Komplexität angewendet werden. Die Pipeline ermöglicht eine umfassende Analyse 

des Organs in 3D mit einer räumlichen Auflösung von Zellen, die im Wesentlichen die 

Position der Zellen im Gewebe, die proximal-distale und die medial-laterale Achse 

definiert. Mit Hilfe von 3DCoordX habe ich mitotische Zellen aus den jungen 

Ovulenprimordien auf die Organ-Koordinaten abgebildet, um ihre räumliche Verteilung 
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zu verstehen. Ich fand heraus, dass die meisten Zellteilungen in der proximalen Hälfte 

des auswachsenden Primordiums stattfanden, was auf die Existenz einer räumlich 

begrenzten Zellproliferationszone im jungen Primordium hindeutet. Außerdem habe 

ich polare Zellgeometrien für die Zellen der Integumente ermittelt. 

Insgesamt hat diese Studie zu wertvollen neuen Werkzeugen und Techniken für die 

Untersuchung der Organmorphogenese beigetragen. Anschließend wurden diese 

Werkzeuge eingesetzt, um die zelluläre 3D-Organisation in der Entwicklung der 

Wildtyp-Arabidopsis-Eizelle bis ins kleinste Detail zu verstehen. Dies dient nun als 

Maßstab für das Verständnis der verschiedenen Merkmale, die das Organ in den 

verschiedenen Entwicklungsstadien aufweist, und wie diese mit den Gewebe- und 

Organformen in den jeweiligen Entwicklungsstadien korrelieren. 
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1 Introduction 

1.1 Organ Morphogenesis 

Cellular growth and division happen in space and time to form an organ. Organ 

morphogenesis is a complicated process that involves spatiotemporal coordination of 

cellular and tissue growth and proliferation that results in a multicellular organ of a 

specific shape and form. How organs of different architecture are formed by a group 

of initial cells and how they attain their required size and shape at different 

developmental phases in a reproducible fashion is the basic question in 

morphogenesis (Gibson et al., 2011; Coen and Rebocho, 2016; Coen et al., 2017; 

Vijayan et al., 2021) 

Unlike animal tissues where cells can move around in space, cells in plant organs are 

encased by the cell wall and are fixed in their position, preventing any movement (Coen 

et al., 2004; Coen et al., 2017). Due to the immobility of cells in plant tissues, a 

combination of key factors including cell cycle control, differential growth and 

proliferation of tissues and orientation of the division plane, is involved in defining 

cellular organization in space and time (Meyerowitz, 1997; Huang et al., 2018; Vijayan 

et al., 2021). 

1.2 Arabidopsis as a model organism 

Arabidopsis is widely used as a plant model organism; it is an angiosperm from the 

mustard family (Brassicaceae). It has a rapid life cycle (about 6 weeks from 

germination to mature seed) where it grows up to 20-25 cm at maturity, It can be easily 

grown at high density in a glasshouse or culture room. Self-pollination allows easy 

propagation, thus making it an attractive model organism for experiments. A single 

plant can produce thousands of seeds. It has several traits that make it a powerful 

model for understanding the molecular, genetic, and cellular biology of angiosperms. 

Thus Arabidopsis offers important advantages for basic research in genetics, 

molecular and developmental biology (Coen and Meyerowitz, 1991; Hülskamp et al., 

1994; Jürgens et al., 1991; Masson et al., 2002).   

The Arabidopsis thaliana life cycle can be divided into two phases: vegetative and 

reproductive (Kwiatkowska, 2008; Telfer et al., 1997) . During vegetative phase, the 

shoot apical meristem produces a compact spiral/ rosette of leaves, and the stem 

https://sciwheel.com/work/citation?ids=1642956,4540122&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1642956,4540122&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1642956,4540122&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1642956,4540122&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4540122&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1642956,4540122&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=385952&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6086320&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10258043&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10258043&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=385954&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1026266&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1026266&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11927070&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=435860&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7168334,3141885&pre=&pre=&suf=&suf=&sa=0,0
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elongates rapidly. In the subsequent period of growth, the SAM becomes a dome-like 

structure and produces flower buttresses at the periphery. As development proceeds, 

floral buttresses turn into a floral meristem which later forms the flower. This phase is 

known as the reproductive phase. These flowers have both female and male 

reproductive organs (Figure 1.1 A) hence, they can self-pollinate and self-fertilize to 

form seeds. Through artificial means, cross fertilization is also possible.  

Figure 1.1 Arabidopsis floral organs 
Figure representing an Arabidopsis flower containing both male and female 
reproductive organs (A). Different floral organs are labelled. Box highlights an area of 
carpel slit open to visualize ovules in (B). Ovules are arranged one below the other 
and on the two sides of the carpel. A SEM image of an Arabidopsis ovule post 
fertilization (C). Figure (C) adapted from (Chaudhary et al., 2018). Abbreviations; PT: 
pollen tube; M: Micropyle; F: Funiculus.  

The Arabidopsis flower is composed of four whorls of floral organs (Bowman et al., 

1991; Coen and Meyerowitz, 1991). The outermost whorl is composed of sepals and 

within this whorl are the petals, then the stamens (the male reproductive organs) and 

finally the innermost whorl is formed by the carpels or female reproductive organs in 

the center of the flower. Each carpel contains 50-60 ovules which later develop into 

seeds upon successful fertilization. After seed formation, the growth is terminated. The 

seed then undergoes dehydration until it gets into the dormant stage; under favorable 

conditions the seed germinates and the cycle continues.  

Arabidopsis thaliana is a suitable system to study organ morphogenesis in plants. Plant 

cells, being opaque in nature, do not deliver information from deeper tissue layers 

when subjected to confocal microscopy, resulting in quantitative analysis being limited 

to organ surfaces or few layers from the surface. Live and time lapse imaging of 

developing organs has been performed on organ surfaces to study morphogenesis 

(Barbier de Reuille et al., 2015; Hong et al., 2016; Sapala et al. 2018; Kierzkowski et 
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al., 2019; Silveira et al. 2021). It gives a good understanding of cellular growth patterns 

and divisions happening in real time and allows the quantification of growth directions 

and mapping of daughter cells to parents. This is often performed using a fluorescent 

reporter for cell outline or with cell wall or membrane stains. Plant organs such as leaf 

and shoot meristem have been well studied at the organ surfaces in a qualitative and 

quantitative manner from live time lapse imaging. 

1.3 Arabidopsis ovules as model systems for organ morphogenesis 

The ovules are the female reproductive organs in plants. In Arabidopsis, they provide 

an excellent model system to study organogenesis. The Arabidopsis ovule has been 

established as a model to study several important aspects of tissue morphogenesis. 

This mainly includes primordium formation, female germ line development and 

integument development (Schmidt et al., 2015; Chaudhary et al., 2018; Nakajima, 

2018; Gasser and Skinner, 2019; Hernandez-Lagana et al., 2020). Ovules show a 

highly stereotypic development with about 50 ovules per carpel. This allows a large 

sample size for quantitative or qualitative analysis. Ovule ontogenesis has been well 

described during the last decades of research (Mansfield et al., 1991; Robinson-Beers 

et al., 1992; Modrusan et al., 1994; Schneitz et al., 1995; Grossniklaus and Schneitz, 

1998; Schneitz et al., 1997; Drews et al., 1998; Schneitz et al., 1998; Gasser et al., 

1998; Schiefthaler et al., 1999; Truernit and Haseloff, 2008; Cucinotta et al., 2014). A 

morphology-based identification of different developmental stages of Arabidopsis 

ovules and their staging system has been proposed (Schneitz et al., 1995).  

Arabidopsis ovule is an organ of complex architecture. It undergoes several 

morphological changes during growth and development. Distinct processes are 

involved during its development: identity specification, initiation and outgrowth, pattern 

formation and morphogenesis. The ovule primordium is a simple and straight structure 

that grows out from the surface of the placenta. Integuments are lateral determinate 

organs that get initiated from the epidermis of late-stage ovule primordia. Ovule 

accommodates newly growing integuments and transforms into a more complex-

shaped organ. Integuments outgrow around the organ core in 3D, forming a mass of 

layered tissues that forms the final curved shape of the ovule. Ovule primordia, at a 

very early developmental stage can be observed as a radially symmetric structure. At 

maturity, ovule loosens radial symmetry and becomes close to a bilaterally symmetric 

organ (Vijayan et al., 2021). This transformation from a simple form to a curved 
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complex shape in a stereotypical manner makes the ovule a unique plant organ to 

study morphogenesis in 3D.  

1.4 Arabidopsis ovule developmental stages 

Morphological and qualitative descriptions of ovule development have been performed 

on 2D sections revealing the major changes happening during development of this 

organ (Robinson-Beers et al., 1992; Schneitz et al., 1995; Christensen et al., 1997). 

Ovule stages are also defined according to morphological events that happen during 

development (Schneitz et al., 1995) 

Figure 1.2 SEM images of different stages of Arabidopsis ovule development 
Different stages of Arabidopsis ovules (A). From left to right: ovule primordia during 
outgrowth at about stage 2-I with a typical finger like protruded structure. Stage 2-III of 
ovule development marked by the initiated outer and inner integument. A mature ovule 
at about stage 3-IV with integuments encapsulating the nucellus and embryo sac 
leaving the micropylar clef exposed. A mature ovule during fertilization at stage 4-I.  
Stages are indicated at bottom. Scale bar 20um. Figure adapted from (Chaudhary et 
al., 2018) 

Ovule primordia are initiated by periclinal divisions in the sub epidermal tissue of the 

placenta. Early-stage ovules (stage 1-I) become visible as they just bulge out from the 

placental surface. They can be found as prominent finger-like protrusions orthogonal 

to the placental surface at stage 1-II.  Megasporogenesis is initiated by the appearance 

of a large megaspore mother cell (MMC) at the L2 distal tip of the primordia; presence 

of an MMC defines stage 2-I of ovule development. After the emergence of the inner 

and outer integument (stages 2-II and 2-III), the megaspore mother cell undergoes 

meiosis (stage 2-IV). With the tetrad formation, MMC divides and generates four 

haploid gametes (stage 2-V) while the cells of the integuments are growing and 

extending towards the apex of the nucellus. Out of the four haploid gametes, only one 

survives and is the functional megaspore. 
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During stage 3, megagametogenesis takes place. During stage 3-I and 3-II, the 

integuments are almost enclosing the whole nucellus, leaving a clearly visible gap at 

the distal tip of the integuments, the micropyle. Stage 3-I is defined by a mono-nuclear 

embryo sac, which forms out of the functional megaspore. The haploid gamete then 

undergoes three nuclear divisions followed by cellularization. After the first nuclear 

division, a two nuclear embryo sac is generated (stage 3-II) and with the second one 

a four nuclear embryo sac that defines stage 3-IV. In between the first and second 

nuclear divisions, the vacuole appears that marks stage 3-III. With the third mitosis, 

the cells are taking special positions determined by their role: three antipodals gather 

at the chalazal end of the embryo sac, the two synergids together with the haploid egg 

cell assemble at the micropylar end of the ovule and the diploid central cell is 

positioned in the middle of the embryo sac (stage 3-V). With the fusion of the nuclei in 

the central cell and the degeneration of the antipodals, megagametogenesis is 

completed (stage 3-VI).  

During stage 4, the development carries on with double fertilization, embryo formation 

and endosperm development. Arabidopsis embryo sac is protected by two bilayered 

integuments, the outer and inner integuments, forming a four-layer tissue of cells 

around the nucellus containing the embryo sac. Fertilization happens within the ovule, 

where the pollen tube delivers the sperm cell to the embryo sac. Further, the fusion of 

the sperm with the egg cell contained in the embryo sac results in the formation of 

diploid embryo, which grows inside the ovule. Eventually the ovule develops into seeds 

and the integuments develop into a seed coat. 

1.5 Integument Development and ovule curvature 

Ovules arise as finger-like protrusions from the placental surface. A mature ovule 

consists of three functional domains along its proximal-distal axis: the proximal 

funiculus- a stalk-like structure that connects the ovule to the placenta, the central 

chalaza- from where the integuments initiate and the distal nucellus- which harbors the 

embryo sac or female gametophyte (Figure 1.3 A). 

Integument outgrowth around the nucellus-containing embryo sac is an interesting 

morphogenetic process during ovule development. A. thaliana carries bitegmic ovules, 

meaning that each ovule presents two distinct integuments, which originate from the 

chalaza (Jenik and Irish, 2000; Schneitz et al., 1995; Truernit and Haseloff, 2008). 

Each integument is composed of two cell layers, an inner or adaxial layer and an outer 
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or abaxial layer, and both are characterized by laminar planar growth. Integuments are 

arranged as layers of cells that form a curved hood-like outer structure. Inner layers of 

integuments can be approximated as curved cylinder-like structures (Vijayan et al., 

2021). The inner integument initiates earlier than the outer integument and grows as a 

radially symmetric structure. The outer integument undergoes asymmetric growth, 

growing more at the gynbasal or posterior side of the ovule, the side that faces the 

basal end of the carpel (Schneitz et al., 1995; Grossniklaus and Schneitz, 1998; 

Schneitz et al., 1997; Balasubramanian and Schneitz, 2000; Villanueva et al., 1999). 

At maturity, the integuments surround the nucellus and retain a small cleft called 

micropyle, through which the pollen tube reaches the female gametophyte for 

fertilization. The integuments develop into seed coat after fertilization. The Arabidopsis 

ovule is anatropous which means that the micropyle lies close towards funiculus 

resulting in a curvature at 180 degrees. 

Figure 1.3 Spatial arrangement of integuments in Arabidopsis ovules 
A cartoon depicting the mid-sagittal section view of an ovule at about stage 2-V. 
Integument cell layers are labelled in different colors (A). The central axis of the organ 
is depicted by a dotted black line; along the axis are the proximal funiculus, central 
chalaza and distal nucellus. Anterior side of the organ at the sagittal section view is 
shown with a shaded color. A similar sagittal section view from a 2D confocal 
microscopic image of an Arabidopsis ovule at a mature stage (B). Cell wall is stained 
using SR2200 cell wall stain. Integument tissues at the posterior side of the organ are 
labelled with false color. Abbreviations; oi2: outer layer of outer integument or the 
abaxial layer of outer integument; oi1: inner layer of outer integument or the adaxial 
layer of outer integument; ii2: outer layer of inner integument or the abaxial layer of 
inner integument; ii1: inner layer of inner integument or the adaxial layer of inner 
integument.   
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As mentioned before, unlike animal tissues where cells can move around in space, 

cells in plant organs are encased by the cell wall and are fixed in their position with 

connected neighbors, preventing any movement (Coen et al., 2004, 2017). The 

integument offers a complex tissue to study an exception to this connectivity between 

cells. Arabidopsis ovules are characterized by two layers of outer integument and two 

layers of inner integument which are initiated separately and there is no physical 

connection between these two tissues and between inner integument 

and nucellus (Robinson-Beers et al., 1992, Schneitz et al., 1995). But anatomically 

the walls between outer integument and inner integument or similarly 

inner integument and nucellus are in direct contact because they are positioned 

one on top of the other, but their cell walls are unconnected allowing them a 

freedom of growth or movement ideally irrespective of each other. This 

leads to an interesting phenomenon called contact friction. The contact 

between the tissues creates friction, a higher order friction would reduce the 

freedom for two tissues to grow independently, and at least friction allows simple 

slide over of one tissue on top of the other. 

Overall, ovule development is a prime example of complex cellular 

growth and development that forms asymmetrically initiated layered tissues to grow 

around in 3D space to build a final curved shape. All these features make the 

ovule and integuments fascinating organs to study morphogenesis in 3D and to 

understand how a 3D shape is formed.  

1.6 Whole-mount 3D microscopic imaging with cellular resolution 

Three-dimensional atlas of plant organs have been developed successfully for 

organs like shoot and root (Montenegro-Johnson et al., 2015; Hong et al., 

2018; Refahi et al., 2021; Willis et al., 2016). Generation of such atlases with 

cellular resolution is challenging but such atlases provide deep information 

from 3D microscopic images. A quantitative cellular characterization of individual 

ovule stages would be a much bigger advancement in understanding the 

cellular patterns in space and time. It gives us precise information of the number 

of cells or volume of organs and tissues at individual developmental stages and 

how they are changing over time. A prerequisite for such a high level of 

understanding whole-ovule development is to generate datasets of 3D 

microscopic images with z-stack acquisition with precise cellular resolution that 

allow us to look at the entire organ at different developmental stages.  
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Arabidopsis ovule morphogenesis has been traditionally studied from 2D imaging of 

organ sections. Key advances in microscopy have enabled a different extent of 

resolution to cellular microscopic images, ranging from widefield to confocal laser 

scanning microscopy to high resolution multiphoton microscopy. Researchers have 

shown that a full resolution 3D image is essential for complete representation of the 

organ structure of interest which is now possible with latest confocal and other 

advanced microscopes with a z-stack acquisition mode (Moreno et al., 2006; Truernit 

et al., 2008; Fernandez et al., 2010; Yoshida et al., 2014; Bassel et al., 2014; Tofanelli, 

Vijayan et al., 2019; Vijayan et al., 2021). Quantitative 3D image analysis is another 

key component of organ morphogenetic study. This involves digital representation of 

elements or cells in microscopic images as objects that can be used to form realistic 

3D models that allow accurate quantification of shape and size of cells or objects of 

interest in the image. A higher level of understanding growth and proliferation in 3D 

requires a whole mount and time lapse imaging of all cells of the organ. This is 

extremely challenging for ovules as no method has been established to perform such 

timelapse live imaging of ovules. For organs such as shoot, root and sepals, there are 

available methods that allow the growth of tissue in a growth medium and then 

subjected to microscopy at different time points. No such growth media for ovules have 

been previously published. Overall, an analysis of 3D growth over time provided a 

better understanding of cellular growth and development (Roeder et al., 2011). 

To gain better understanding of how ovules are shaped in 3D, it is essential to visualize 

the 3D surface and interior morphology, arrangement of constituent cells in 3D and 

different cellular properties. Accurate imaging of the whole 3D organ is still challenging 

due to tissue penetration in deeper layers. Previous research has shown that the 

application of various reagents for clearing the samples allows deeper tissue 

microscopic imaging by making samples transparent for laser transmission. Modified 

Pseudo-Schiff propidium iodide stain (mPS-PI) has been classically used with fixed 

and cleared tissues for precise microscopic z-stacks (Truernit and Haseloff, 2008; 

Truernit et al., 2008). Clearing is performed using Hoyer’s medium containing 

carcinogenic chloral hydrate and cell outlines are stained using propidium iodide 

according to the mPS-PI method. 3D architecture of simple organs such as roots can 

be relatively easily generated by this approach (Bassel et al., 2014; Montenegro-

Johnson et al., 2015). This method is time-consuming and also incompatible with 

fluorescent fusion proteins that limit the study to only understand organ structure. 
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Tissue clearing has also been performed using other reagents like TOMEI (Hasegawa 

et al., 2016; Musielak et al., 2016), PEA-CLARITY (Palmer et al., 2015) and ClearSee 

(Kurihara et al., 2015). These new methods promise similar deep imaging of plant 

tissues as mPS-PI and are compatible with any fluorescent protein or stains of interest. 

ClearSee is a well-studied reagent among these, it can be combined with various cell 

wall fluorescent stains; this would avoid the need for a fluorescent cell outline reporter 

to understand organ structure in 3D. ClearSee can also be combined with a fluorescent 

reporter for gene expression, which makes it a better candidate for tissue clearing 

purposes. It can thus be used to analyze the 3D architecture of entire plant organs with 

cellular resolution and to investigate gene expression patterns and subcellular protein 

localization using respective reporters. 

This study includes a 3D digital ovule atlas of whole organ development from initiation 

to maturity and that allows us to identify patterns inside and outside the organ which 

are never recognizable from 2D images. 

1.7 Transforming microscopic images into quantitative cellular descriptors 

Whole-mount microscopic imaging of different developmental timepoints of the organ 

provides a complete overview and qualitative understanding of the shape of the organ. 

This is limited to the organ surface and different 2D clipping planes or sections of 

interest. A quantitative analysis of these microscopic images is critical in many 

biological disciplines (Adams et al., 2004; Slice, 2007; Adams, Rohlf & Slice, 2013; 

Mitteroecker et al., 2013). For instance, the number of cells present in a developmental 

stage of an organ and the distribution of cells in different tissues and their cellular 

characteristics could be extracted from the microscopic images after they are 

subjected to a 3D image segmentation (Montenegro-Johnson et al. 2019). 3D cell 

segmentation involves creating digital reconstructions of the shape of a cell from its 

outline, which can then be used to quantify various features of the cell, such as their 

volume and shape index.  

Segmentation methods are broadly of two types, semantic segmentation, and instance 

segmentation. Semantic segmentation is the kind where each pixel within an image is 

associated with a category of the objects present in the image. For example, semantic 

segmentation of a cell outline image would result in the annotation of two object 

identities that are the cell boundaries and the background. Ideally, every pixel would 

have a probability map (PMAP) usually ranging from 0 to 1, indicating the probability 
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of this pixel belonging to the cell boundary or the background. A value close to 1 would 

refer to the pixel belonging to a cell boundary. The other segmentation method is called 

instance segmentation (Hafiz and Bhat, 2020); it is essential for bioimages as it further 

associates each pixel to an independent object within the image. For example, it 

groups all the pixels within a cell outline into an object label essentially separating 3D 

cells from one another and from the image background. This involves locating cell 

contours and cell interior to identify each cell and separate it from the other (Vicar et 

al., 2019). Bioimage analysis demands the need for high accuracy cell instance 

segmentation as it is essential to determine precise 3D cell volumes, shapes, 

geometry, neighbors and number of cells in regions or tissues (Lei et al., 2020). Like 

instance segmentation of cells, such segmentation can be also performed on nuclei, 

given the input nuclei images.  

Computational morphodynamics is an emerging field of multidisciplinary research 

where first whole organ microscopic images are acquired. Then images are segmented 

using computational software’s, and finally a deep biological understanding is 

comprehended from 3D quantitative image analysis. Further, this information is fed 

into a model that can be used to test several hypotheses related to growth and 

development (Roeder et al., 2011). 

MorphographX (Barbier de Reuille et al., 2015; Strauss et al., 2019) is an open source 

software platform that allows 3D visualization of raw microscopic images and also 

further watershed segmentation of the images using insight segmentation and 

registration toolkit (ITK) module (Yoo et al., 2002). A few other packages do exist for 

image segmentation (Fernandez et al., 2010; Stegmaier et al., 2016), but these 

methods do not take into consideration the latest improvements in the field of computer 

science for bioimage segmentation. 

3D instance segmentation of plant cells from microscopic images is a challenging task 

with available tools and techniques. This is mainly because of the high-quality 

demands of the raw microscopic images. Light scatters when imaging deep tissue 

layers and results in a low signal to noise ratio of the cell outline. Photobleaching and 

phototoxicity can also be other problematic factors. Additionally, acquisition 

parameters would also determine the final image quality. Moreover, the whole 

procedure up to final image segmentation requires enormous human input and manual 

corrections (Hallou et al., 2021; Tofanelli, Vijayan et al., 2019).  
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1.8 Application of deep learning tools for bioimage analysis 

AI or Artificial Intelligence is an interdisciplinary field of computer science that aims to 

develop intelligent machines. Machine learning (ML) is an important part of AI; it 

involves making accurate predictions from very large datasets with the minimum 

amount of human intervention. Deep learning (DL) is a subfamily of ML which contains 

models that have demonstrated impressive results with a variety of machine learning 

tasks, in particular with bioimages (Villoutreix, 2021). DL has revolutionized the 

bioimage analysis field since the last decade through its ability to reduce manual 

human inputs, repeat tasks in an automated fashion and reshape the input and final 

dataset for bioimage analysis (LeCun et al., 2015). A number of recent reviews have 

addressed the importance of DL and its application in bioimage analysis (Gupta et al., 

2019; Wang et al., 2019; Moen et al., 2019; Meijering, 2020; Hoffman et al., 2021; 

Esteva et al., 2021; Hallou et al., 2021). 

Machine learning (ML) allows software packages to perform accurate predictions of 

their outcome without being explicitly programmed to do so. It defines a broad range 

of statistical models and algorithms to perform such specific data analysis tasks. 

Examples of ML tasks include classification of objects, ranking, clustering, regression 

etc. There are three basic approaches for classical machine learning. They are 

supervised, unsupervised  and  reinforcement  learning (Murphy,  2012; Villoutreix, 

2021). The majority of bioimage analysis is based on supervised and unsupervised 

learning. In supervised learning, existing human knowledge is used to provide a ground 

truth reference dataset for every element in the dataset. For example, the ground truth 

for a cell segmentation would be an extensive hand-corrected segmentation of the 

existing images. The dataset is then split into two categories, training and testing 

datasets. Using the training dataset, the ML algorithms are trained to reproduce the 

provided ground truths or in another way, the training is to produce models that 

understand the relationship between the input data and the output data. The model is 

ideally trained for several iterations to have high performance. Once the training is 

completed, the trained model can be applied to a testing dataset to evaluate the 

performance. It can be also applied on a new unseen but related dataset to the input 

image for training the model. The expected result is that the model now predicts 

elements similar to the ones in the training dataset from the newly provided unseen 

dataset. Unsupervised learning on the other hand works with unlabeled data as input, 
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machine learning then identifies patterns in the data without the use of human-provided 

examples (Hallou et al., 2021).  

In bioimage analysis, DL is mainly used to perform three tasks: (1) image restoration, 

which involves transforming an input image into an enhanced output image; (2) image 

partitioning, which involves dividing an input image into regions and/or objects of 

interest; and (3) image quantification, which involves classifying, tracking, or counting 

objects. An example of image restoration using content-aware image restoration 

(CARE) (Weigert et al., 2018) on Drosophila wing disc has been demonstrated (Figure 

1.4-A). 

For cell segmentation from images of cell outlines or boundaries, the boundaries have 

to be detected as the first step for improvement. Convolutional Neural Networks 

(CNNs) are currently the most powerful border detectors (Kokkinos, 2015; Xie and Tu, 

2015; Shelhamer et al., 2017). The U-Net architecture (Ronneberger et al., 2015) in 

particular has shown good performance on 2D bioimages, and it has now been 

expanded to analyze 3D volumetric data (Çiçek  et al., 2016).  

Overall, the aim of this study is to make use of available machine learning tools or 

provide new tools to the community for an improved instance segmentation of 

bioimages. Additionally, the application of machine learning could improve the quality 

and quantity of realistic templates that can be then fed into computational modeling 

tasks.

Figure 1.4 Application of content-aware image restoration (CARE) in the 
developing Drosophila wing disc.  
Figure demonstrating the power of machine learning in bioimage analysis (A). From 
left to right: raw microscopic image of a 2D section of fly wing disc with outlines of cells 
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marked by Indy-GFP, the right image represents the results of the CARE (Weigert et 
al., 2018) image restoration after applying their trained model on a new dataset. The 
results of CARE indicate that the input image is severely improved for further bioimage 
analysis. Figure adapted from (Sui et al., 2018; Hallou et al., 2021)  

1.9 3D organ and tissue coordinates representing cellular position in space 

Even though 3D segmentation can be improved by the latest DL tools and techniques, 

the 3D segmentation of a whole organ of complex architecture is a challenging problem 

for further exploration. To gain insight into tissue morphogenesis, one must 

contextualize the cellular data by placing cells in a frame of reference relative to the 

developmental axes of the tissue or organ (Hejnowicz, 2014; Schmidt et al., 

2014; Montenegro-Johnson et al., 2015; Strauss et al. 2022). Before such a 

frame of reference can be made, more essentially, the tissues in the organ 

need to be represented by different object labels or identities such that the 

organ can be understood at tissue scale changes. MorphographX (Barbier de 

Reuille et al., 2015) provides tools for manually annotating tissue labels to the 3D 

segmented dataset with possible semi-manual tissue annotations in simple-layered 

tissue arrangements. 

Several computational pipelines such as iRoCS (Schmidt et al., 2014), 

3DCellAtlas (Montenegro-Johnson et al., 2015; Schmidt et al., 2014) and 

3DCellAtlas Meristem (Montenegro-Johnson et al., 2019) have been developed to 

provide a tissue-level frame of reference and enable semi-automatic labelling of 

3D cellular properties in plant tissue context at cellular resolution. These 

computational pipelines have been used successfully to label cells and tissues in 

the main root and hypocotyl, radially symmetric organs with limited curvature, or 

the SAM, a dome-shaped structure with moderate complexity. However, not all 

plant organs fall into these simple morphogenetic categories. For instance, 

curvature limits the usefulness of the analysis strategies implemented in iRoCS and 

3DCellAtlas, particularly in indexing the axial position of a cell and determining its 

absolute distance from a reference. Since ovules exhibit extreme curvature by 

forming a hood-like outer structure at maturity, the available tools are not 

applicable for ovules. Thus, new methods are required to contextualize cellular 

data along the developmental axis of the ovule. This study also includes the 

development of a new toolkit, 3DCoordX that can be applied on ovules and on 

other curved organs.  
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1.10 Objective 

Arabidopsis ovules are initiated as simple finger-like protrusions from the placental 

surface; they undergo complex morphogenesis to form a final hood-like curved 

structure. This study aims to understand the mechanism and key features of the ovule 

during the transformation from a simple form to a complex three-dimensional shape. 

To address this, this study focuses on confocal microscopic imaging and 3D digital 

reference atlas generation of wild-type Arabidopsis ovules from early to late stage of 

development before fertilization. An ideal reference atlas would be that with which 3D 

volumetric and quantitative analysis can be performed with cellular, tissue and spatial 

resolution.  

Generation of 3D digital atlas requires 3D deep imaging of ovules with reliable cellular 

resolution. This study aims to improve 3D microscopic ovule imaging and to generate 

a precise 3D digital atlas of ovule development. Different tools and techniques must 

be developed within the context of 3D digitization of microscopic images that carry 

cellular, tissue and spatial information. Finally, the digital models of the organ are to 

be explored in 3D, including quantitative analyses to understand the patterns 

associated with structural changes at different developmental stages. Overall, this 

study targets the identification of different phases of 3D tissue growth patterns and 

understanding of how different tissues or regions within the ovule grow and contribute 

to its intermediate and final 3D shape forms. The present study is a recapitulation, 

continuation, and extension of already published findings from Tofanelli, Vijayan et al., 

2019, Wolny et al., 2020, Vijayan et al., 2021, Strauss et al 2022 and Vijayan et 

al., 2021. 
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2 Materials and Methods 

2.1 Plant work, plant genetics, and plant transformation 

Arabidopsis thaliana (L.) Heynh. var. Columbia (Col-0) was used as wild-type strain. 

Plants were grown in pots containing soil at controlled environment plant chambers 

with 75% humidity, 130 µmol white light and at 22oC temperature with 16-hour day and 

8-hour night. Seeds were directly germinated on the soil after stratification if they need

not have to be selected for resistance. In other cases, seeds were sterilized with bleach

solution (3.5% bleach with 0.01% Triton x-100) for two minutes followed by another

two minutes of wash with 70% ethanol. Further, 4-5 washes with autoclaved water

were done for removing the residual ethanol and bleach from the seeds containing the

microcentrifuge tube. Seeds were spread onto an agar plate containing half MS. Care

was taken to place seeds a distance apart so that they will not be under stress. Seeds

were stratified at 4oC for 72hrs prior to incubation in growth cabinets. Seedlings of

about eight to ten days old were screened for antibiotic resistance and were transferred

to soil and further grown under a plant growth cabinet. Fluorescent reporters were also

passed through epifluorescence screening of the root whenever the reporter was

known to express in root tissues. Plants on pots were watered from below thrice in a

week and care was taken to give water only when the soil is becoming dry to avoid

stress. The light quality, temperature and day-night cycles of the chambers have to be

constantly checked for any variations that can affect the plant health.

Wild-type plants were transformed with different constructs using Agrobacterium strain 

GV3101/pMP90 (Koncz and Schell 1986) and the floral dip method (Clough and Bent 

1998). Transgenic T1 plants were selected on respective selection media (20 μg/ml) 

and transferred to soil for further inspection. 

2.2 Recombinant DNA work 

For DNA work, standard molecular biology techniques were used. PCR fragments 

used for cloning were obtained using Q5 high-fidelity DNA polymerase (New England 

Biolabs, Frankfurt, Germany). All PCR-based constructs were sequenced. 
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2.3 Live Imaging of ovules for quick preparation 

The whole inflorescence containing multiple flowers were cut out from the plant and 

placed under a dissecting microscope. The flower of the desired stage was selected 

and separated from the whole shoot and was stuck to a double sticky tape under the 

dissecting microscope. Floral organs were removed using fine needle syringes, 

retaining the pistil with stalk. A slit was made at both halves of the outer carpel wall 

using the syringe and ovules were exposed. The tissue was then transferred to a glass 

slide containing a drop of half MS liquid media at the middle for sample mounting. 

Ovules were harvested from the pistil and collected directly on the half MS media. In 

most cases, the funiculus was cut out from the placenta as we did not aim to image 

the whole organ attached to the placenta. A coverslip was placed on top of the sample 

and was ready for immediate use. Live dissected ovules were never stored for further 

use.  

2.4 Cleared sample preparation for confocal imaging 

A detailed protocol was recently published (Tofanelli, Vijayan et al., 2019). Fixing and 

clearing of dissected ovules in ClearSee were done essentially as described (Kurihara 

et al., 2015). Tissue was fixed in 4% paraformaldehyde in PBS followed by two rounds 

of washes in PBS before transfer into the ClearSee solution (xylitol (10%, w/v), sodium 

deoxycholate (15%, w/v), urea (25%, w/v), in H2O). The clearing was done at least 

overnight or for up to 2–3 days. Staining with SR2200 (Renaissance Chemicals, Selby, 

UK) was essentially performed as described in Musielak et al., 2015. Cleared tissue 

was washed in PBS and then put into a PBS solution containing 0.1% SR2200 and a 

1/1000 dilution of TO-PRO-3 iodide (Bink et al., 2001; Van Hooijdonk et al., 1994) 

(Thermo Fisher Scientific) for 20 min. The tissue was washed in PBS for one minute, 

transferred again to ClearSee for 20 min before mounting in Vectashield antifade agent 

(Florijn et al., 1995; Vectashield Laboratories, Burlingame, CA, USA). The detailed 

method follows below. A user protocol for the same is also available at section 2.20.  

2.4.1 Fixation and clearing 

A flower of the desired floral stage was selected, and other floral organs were removed 

as done for the live imaging experiment. Slit open the pistil wall and carefully expose 

the ovules. Care was taken not to damage any of the ovules. The tissue was attached 

to the double sticky tape, allowing the dissection to be easy. A sharp syringe was used 
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for making the slit. Don't harvest the ovules, rather just leave them exposed and still 

attached to the placenta. Try to remove most of the carpel wall. This would make the 

fixing and clearing more effective. The whole procedure has to be performed in not 

more than two minutes, else there are chances of the sample getting dried under the 

dissecting microscope. Quickly transfer the pistils to a microcentrifuge tube containing 

fixative (4% paraformaldehyde containing 1x PBS, pH 7.4). Don’t let the sample float 

on the fixative, make use of a rotating device to turn around the sample containing 

tubes so that the fixation is most effective. Fixation can be done for a minimum of 1.5hr 

at room temperature. It can be also extended to several days when performed at cold 

temperature, optimally at 4o celsius. In that case, the fixative solution should be 

exchanged every fourth day or so. Care was also taken not to overcrowd the 1.5ml 

tube with more than 5 pistils while fixation and clearing. The fixation is effective when 

the pistils sink to the bottom of the tube. If fixation was done at 4°C hold the samples 

at room temperature for at least 30 min before proceeding further. Carefully remove 

most of the fixative but make sure samples are still submerged. Wash twice the fixed 

tissues for 1 min in 1 x PBS. The washing step is very important to avoid the formation 

of precipitates that occur upon the addition of ClearSee to the fixative. Transfer the 

fixed and washed pistils to a 1.5 ml microcentrifuge tube containing 1 ml ClearSee 

solution and clear them at room temperature overnight on the rotating 

device. Overnight is usually sufficient. Slightly better results are obtained upon 2 to 3 

days of clearing or up to a week. Change the ClearSee solution after 2 days if 

samples are stored for extended periods of time. The carpels are stable in ClearSee 

for several weeks. After clearing proceed to the staining procedure 

2.4.2 Staining 

Cleared samples were stained with appropriate stains in 1x PBS solution. In the case 

of ovules, samples were stained with cell wall stain and nuclei stain at the same time. 

Cell wall stain SR2200 was used at a concentration of 0.1% and nuclei stain 

TO-PRO®-3 was titrated to a final concentration of 1µM (1:1,000 dilution of 1 mM 

stock solution). Stains were dissolved in 1x PBS. Stains were more effective 

when the staining was performed in 1x PBS solution rather than using the 

ClearSee solution. ClearSee containing samples were taken out of the rotor and 

checked for the extent of clearing, if the samples don't look transparent, they were 

further cleared. ClearSee was removed from the microcentrifuge tube using a pipette 

and the staining solution 
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containing both the stains were added to the microcentrifuge tube containing samples. 

Care was taken to remove the maximum amount of ClearSee from the tube before 

adding the staining solution. At this moment one can also do an additional wash with 

1ml of staining solution. Samples were stained at dark and on the rotating holder for 

the next twenty minutes. The stain solution was removed from the microcentrifuge tube 

without causing any damage to the samples. The staining solution was twice washed 

off from the tube with 1x PBS solution. The samples are further cleared for a minimum 

of 20 minutes before final mounting in the mounting media. 

2.4.3 Mounting 

Mounting was performed in a different way than regular sample preparation for other 

tissues or 2D imaging. Ovule imaging in 3D demands to preserve the sample intact, 

for this reason, two coverslips were glued on top of a microscopic glass slide using nail 

polish. A small distance of around 1.5cm was left between the two coverslips where 

the sample can be mounted. Care was taken to use a 170µm thick coverslip so that 

the working distance of the microscope objective is handled. In this case, the 

microscope working distance is 250µm, which would enable imaging up to 250µm 

deep from the inner surface of the sample coverslip. Ovules are generally 60µm deep 

structure, but because of their orientation in microscopic slides, one might have to 

acquire a z-stack of a maximum of around 120µm deep. Sample mounting was taken 

care that all this would be possible, and samples won't be squeezed. 

Place a drop of mounting media (VECTASHIELD® antifade mounting medium) in 

between the two coverslips. Gently pick up the pistil from the ClearSee solution and 

place it on the mounting media. Care was taken to not transfer any ClearSee solution 

to the mounting media. Dissect out the ovules from the pistil. Care was taken when the 

experiment requires the entire organ attached to the placenta. In that case, the carpel 

wall was first removed from the pistil and the whole pistil was torn apart leaving behind 

two halves of the pistil with ovules attached to the placenta. Further, the ovules were 

cut out, retaining their attachment to the placenta. Care was taken to not make any 

bubbles on the mounting media. A coverslip was placed gently on top of the two 

supporting coverslips and was stored in a glass slide book. The sample is ready for 

immediate use, it can be also stored at 4o Celsius for afterwards use. Nuclei stain might 

not be intact after a few days of storage, so it's not recommended to store for weeks if 

imaging the nuclei is also of interest. Sample dissection can be also done in a simple 



35 

manner when the whole organ attached to the placenta is not required. In that case, 

the ovules were just collected using a fine syringe and instead of retaining their 

attachment to the placenta. 

2.5 Microscopy and image acquisition 

Confocal laser scanning microscopy (CLSM) was performed on upright Leica TCS SP8 

X WLL2 HyVolution 2 (Leica Microsystems) equipped with two GaAsP (HyD) detectors 

and two photomultiplier (PMT) detectors. The system was equipped with an Argon 

laser which can be excited at five wavelengths. It also included a 405-diode laser and 

white laser. The white laser can be excited at a broad spectrum up to 670nm. Overall, 

the system provides four detectors and almost all excitation wavelength possibilities 

for regular fluorescent dyes or stains.  

A sample slide was mounted onto the CLSM and looked at first using a 10x objective. 

Ovules position inside the slide were marked using the XY grid in the microscope touch 

screen. This allows an easy switch between samples at a higher magnification. Sample 

quality was visually evaluated by looking at the epifluorescence channel of DAPI, which 

eventually fluoresces the SR2200 cell wall stain in the stained samples. Care was 

taken to evaluate the best oriented and stained samples and position them in the XY 

coordinates for further looking at them on higher magnification. Samples were again 

looked at 63x glycerol objective (HC PL APO CS2 63x/1.30 GLYC, CORR CS2) and 

aligned to the center. Ovule images were acquired at the same magnification using a 

HyD in most cases to increase the image quality. Signal intensity was first checked at 

a lower excitation power of 0.1% laser power and was gradually increased to a point 

where the signal is not oversaturated. Usually, the cell wall stain requires a maximum 

of about 1.5% laser power and a minimum of 0.1 when the samples are well stained. 

Cell wall stain was excited using the 405-diode laser and the emission was detected 

at 420-480nm wavelength with a minimum detector gain of 10 and maximum of 200. 

Nuclei stain was excited using the white laser 641 nm and the emission was detected 

at 655-670 nm wavelength. Laser power for white laser sometimes has to be increased 

up to 10% to image the faint nuclei stain. The white laser is overall weak compared to 

argon and diode lasers. 

3D z scan was done using the bidirectional scan to perform a fast acquisition and a 

scan speed of 400 Hz was used to compensate with the image quality, the pinhole was 

set to 0.8 Airy units to have a sharp image, line average between 2 and 4 to further 
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smooth the signal, and the digital zoom between 1 and 2 depending on the size of the 

sample. Z stacks were acquired with positioning the beginning and endpoints of the 

sample slice using the microscopic z joystick and the scan interval was sliced 

according to the system optimized format of 0.24µm in most cases. For fine images, 

the Z stack was never more than 0.35µm. Z scan was performed in XYZ mode where 

the XY format was chosen with the system optimized manner following the Nyquist 

criterion. A high-quality z stack used for 3D cell segmentation without any machine 

learning tools was of final voxel size 0.063µm x 0.063µm x 0.24µm in the XYZ axis. 

3D images were saved as 12 or 16bit instead of 8-bit images to increase the voxel 

information that would further improve the post-processing and segmentation of the 

image.  

With the advantage of machine learning for processing the raw images, the z stacks 

could be of less fine quality and the 3D cell segmentation can be achieved similar to 

the original method which demands high image quality. Z stacks were acquired with 

XYZ voxels 0.125µm x 0.125µm x 0.24µm where we took advantage of the PlantSeg-

trained model to generate equal standard cell segmentation as with images with fine 

voxels. This was possible because the PlantSeg model ‘generic_confocal_3d_unet’ 

was trained on down sampled original images and ground truths. The model now 

requires raw images whose voxels are scaled to the trained dataset so that it generates 

the best cell boundary predictions. Overall, raw images captured with 2x down sampled 

voxels were helpful in that they simplified the rescaling step in PlantSeg and allowed 

us to generate raw images in less time without compromising segmentation quality. 

A sequential scan was performed on the reporter line whenever needed to avoid any 

bleed through from different channels. Z stack was also optimized with z compensation 

either manually or programmed where the detector gain or the excitation power was 

adjusted to compensate for the scan in the z-direction. The z scan image can be looked 

at at the z begin and z end, the intensity at z end is always lower because of the laser 

penetration to deeper layers through the sample. Z compensation was applied to 

complement this lowering of signal intensity so that the cell wall channel is equally 

bright even at the z end position. This is also critical for further segmentation of the 

dataset.   
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Image acquisition parameters for the pCUC3::CFP line were the following: SR2200; 

405 diode laser 0.10%, HyD 420–480 nm, detector gain 10. CFP; 514 nm Argon laser 

2%, HyD 525-550 nm, detector gain 100. TO-PRO-3; 642 nm White Laser 2%, HyD 

660–720 nm, detector gain 100. Image acquisition parameters for 

pUBQ::H2B:tdTomato were the following: SR2200; 405 diode laser 0.10%, HyD 420–

480 nm, detector gain 10. tdTomato; 561 nm Argon laser 2%, HyD 575-625 nm, 

detector gain 100. TO-PRO-3; 642 nm White Laser 2%, HyD 660–720 nm, detector 

gain 100. In each case, the sequential scan was performed to avoid any cross talk.  

2.6 3D cell segmentation 

3D cell segmentation was performed using different methods. ITK segmentation was 

performed using MorphographX. PlantSeg is the platform where raw images are 

processed via machine learning to improve the image information and are further 

segmented using the GASP method. PlantSeg-MGX hybrid method is another method 

bridging the traditional ITK segmentation lifted by the cell boundary predictions from 

the machine learning training.  

2.6.1 ITK cell segmentation using MGX 

ITK segmentation can be performed on a raw cell wall or boundary image. It uses an 

auto seeded ITK watershed segmentation of cells in 3D giving labels to individual cells 

and the image background. The method is adapted from (Barbier de Reuille et al., 

2015). The major issue in cell segmentation is to have accurate labels of a cell without 

under or over segmenting it. Watershed is often prone to leaking in 3D because of faint 

walls that merge adjacent cells on segmentation resulting in under segmentation. One 

way to prevent watershed leaking is to blur the raw images that prevent watershed 

leaks. Finally, segmentation was done on the processed raw image where it was 

brightened (Stack/Filter/brighten darken) by a factor of two and gaussian blurred 

(Stack/Filter/gaussian blur stack) by a factor of 0.2 x 0.2 x 0.2 (xyx) for three to five 

times depending on raw image quality. The extent of blurring could be visualized in a 

clip plane mode. The blurred stack was segmented using the 

process Stack/ITK/Segmentation/ITK watershed Auto Seeded.
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2.6.2 Machine learning based boundary prediction and cell segmentation using 
PlantSeg pipeline 

PlantSeg (Wolny et al., 2020) is a machine learning-based cell segmentation pipeline. 

PlantSeg uses raw cell boundary image and passes it through the pipeline to give out 

3D segmented images. There are several intermediate steps in the PlantSeg pipeline. 

First, the raw image is optimized for the whole pipeline, for which the raw image has 

to be of a scale of right voxels such that the neural network model can understand it. 

There are several neural network trained models available in PlantSeg of different 

sizes. The optimal model is selected on the CNN prediction module of the PlantSeg 

graphical user interface (gui). “Generic_confocal_3d_unet” is the best performing 

neural network model which was trained on raw images of voxel size 0.15µm x 0.15µm 

x 0.235µm in xyz directions. 

For a raw image of equivalent size, rescaling the raw images to this size is optimal for 

best performance in cell segmentation and boundary probability map. This is done in 

the data preprocessing module of the PlantSeg gui. The module CNN prediction 

contains the parameters for generating the cell boundary probability map (b-pmap) or 

boundary predictions which are the output of a U-Net-based convolutional neural 

network (CNN). The b-pmap looks like an improved raw cell wall image which contains 

more information than just the raw image. Every pixel in the b-pmap image has a 

resultant value between 0 and 1 which indicates if this pixel belongs to a cell wall or 

background. This is the result from the neural network prediction of cell boundaries. 

Overall, the b-pmap looks just like a sharp cell wall image with a high signal to noise 

ratio. Generally, a patch size of 96 x 256 x 256 was used for generating b-pmap. This 

would make patches or individual 3D blocks or tiles within the 3D dataset, eventually 

making small subsets of the entire 3D image and generating predictions of the small 

areas, further all the patches or tiles are merged to form the final image in 3D. Stride 

parameter was set to Accurate, It involves extensive mirror padding on the patches. At 

the end generating a precise boundary prediction. 

3D cell segmentation is done directly on the b-pmap z stack. PlantSeg has several 

possibilities to perform cell segmentation. GASP (Bailoni et al. 2019) method is the 

best of them when there is only b-pmap as input image. GASP segmentation was run 

on the PlantSeg default parameter with watershed in 3D in prediction threshold 0.5. 

The segmentation and prediction outputs are saved as TIFF file format from PlantSeg 

using the post processing module in the PlantSeg gui. PlantSeg always uses H5 or 



HDF5 file format to run boundary prediction or segmentation. These files are part of 

the intermediate steps of the pipeline and could be also retrieved back from the pipeline 

folder.  

Figure 2.1 PlantSeg GUI and scheme of the pipeline.
Graphical user interface of PlantSeg (A). Different modules include Data Pre-
processing, CNN Prediction, Segmentation, Prediction Post-Processing 
and Segmentation Post-Processing. Users can click on different modules to activate 
them for the pipeline. Scheme of the pipeline for cell boundary segmentation from 
inputting the raw boundary image (B). The pipeline starts with the raw boundary 
image of the cell wall, which is scaled to form the preprocessed H5 file which is 
further used for the pipeline. The b-PMAP and segmentation is upscaled according to 
the factor of scaling done in the data preprocessing menu.  

This pipeline performs for near perfect 3D cell segmentation as only a small number 

of errors such as over segmented cells had to be corrected by visual inspection of the 

segmented stack in MGX. In critical cases, this included cross-checking the TO-PRO-

3 channel which included the stained nuclei. Image acquisition of mature ovules takes 

about 15 min for both channels (SR2200/cell contours; TO-PRO-3/nuclei), running the 

PlantSeg pipeline requires about 25 min on our computer hardware (1x Nvidia Quadro 

P5000 GPU), and manual correction of segmentation errors takes less than 5 min with 

the improved method lifted by machine learning. A schematic representation of the 

PlantSeg pipeline and the gui interface can be found in figure 2-1.  
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2.6.3 PlantSeg-MGX hybrid segmentation 

PlantSeg-MGX hybrid is as the name suggests a method bridging the PlantSeg b-

pmap and classical ITK segmentation with MGX from raw images. The hybrid method 

just back blends the b-pmap of PlantSeg with the raw boundary image to create a 

better raw image which can be further segmented with ITK watershed method in MGX. 

The b-pmap itself can be also used for ITK segmentation, but the b-pmap sometimes 

doesn't make faint walls which are present as a weak signal in the raw boundary image. 

Overall combining the b-pmap with the raw image makes sharp boundaries wherever 

the b-pmap is strong while retaining the weak signals of faint walls from the raw image. 

The z-stacks of raw cell wall images and PlantSeg b-pmaps were combined in MGX 

using the process Stack/Multistack/Combine Stack/Max to generate a merged image 

stack, which was further blurred twice with a radius of 0.3 × 0.3 × 0.3 using the process 

Stack/Filter/Gaussian Blur Stack. The processed image was further segmented in 

MGX by auto seeded ITK watershed with the default threshold of 1500 using 

Stack/ITK/Segmentation/ITK Watershed Auto Seeded. PlantSeg-MGX hybrid 

segmentation was time consuming, but the results were comparable to the graph-

partitioning-based 3D segmentation of PlantSeg.  

2.7 3D nuclei segmentation 

3D segmentation of nuclei can be performed using different methods. Cellpose is 

now a wide accepted machine learning based method for nuclei segmentation. 

PlantSeg also provides a possibility for generating a nuclei probability map. Here 

are a few methods used in the study for comparison.  

2.7.1 Cellpose nuclei segmentation 

Nuclei segmentation using CellPose (Stringer et al., 2021) was performed using the 

default parameters. Tiff files of raw nuclei images were loaded in CellPose and 3D 

nuclei segmentation was performed with the CellPose nuclei model. Segmentation 

was saved as a tiff file from CellPose and was loaded in MGX for 3D visualization and 

further correction or processing. 

2.7.2 StarDist nuclei segmentation 

StarDist nuclei segmentation was performed using the ovule trained StarDist model. 

Parameters were set as default. Raw images were 2x down sampled to perform the 
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StarDist segmentation. StarDist segmentation results were saved as H5 file format. H5 

files were opened in ImageJ Fiji and using HDF5 viewer and were exported as tiff files 

from Fiji with right voxel information in the image metadata. Tiff files were then loaded 

in MGX for 3D visualization and further correction or processing. 

2.7.3 PlantSeg-Cellpose hybrid method of Nuclei segmentation 

PlantSeg-Cellpose hybrid method uses nuclei probability map (n-pmap) or nuclei 

predictions as an input for CellPose nuclei segmentation. Nuclei probability maps or 

semantic segmentation are generated in PlantSeg using the same tools as in the 

PlantSeg cell segmentation pipeline but uses a nuclei model instead of the cell 

boundary model on the CNN prediction module. Nuclei model was a result of 

convolutional neural network training of nuclei stain images and their respective nuclei 

segmentation images from ovule datasets. Nuclei trained model 

(confocal_unet_bce_dice_nuclei_stain_ds1x) understands raw images of voxel size 

0.1µm x 0.1µm x 0.35µm. Nuclei stain or reporter images were the input images of 

PlantSeg. n-pmap were generated with the PlantSeg pipeline module CNN predictions. 

The results of PlantSeg nuclei prediction was saved as a tiff file and was further 

imported to CellPose for final segmentation. n-pmap also contains the probability map 

of nuclei ranging from 0 to 1 with 0 being the background and 1 being the nuclei. Nuclei 

prediction greatly improves the signal to noise ratio on the raw images and allows to 

3D segment even any faint nuclei image stack. Based on simple thresholding, nuclei 

can be also segmented within the PlantSeg after generating the n-pmap, this 

segmentation could adversely affect the size and shape of nuclei. Whereas the 

CellPose segmentation of n-pmap is more accurate in terms of size and shape of 

nuclei.  

2.8 Method for improved cell segmentation based on nuclei seeds 

Improving the cell segmentation based on the presence of a nucleus inside the cell 

was done in mainly three methods for comparison of the best. The first method was 

just to proofread an existing segmentation. This is a script on PlantSeg tools 

(https://github.com/hci-unihd/plant-seg-tools). The script requires the boundary 

prediction file and segmented image along with nuclei probability map or nuclei 

segmentation. The script would export a modified segmentation file where the 

correction is done only on the cells where there were more than one nucleus inside 

the segmented cell. Essentially, the script maintains the original label of the stack while 



correcting the labels which had errors. The script can be found under the useful scripts 

of PlantSeg tools “fix_over_under_from_nuclei.py”.  

Figure 2.2 Scheme of Lifted multicut segmentation of cell boundary images. 
Scheme of lifted multicut where the n-pmaps are used for nuclei seeds (A). The 
method requires running PlantSeg three times. The first PlantSeg is for generating the 
n-pmap, second one for b-pmap and the third one for running lifted multicut with the
results of n-pmap and b-pmap. Scheme of lifted multicut where the nuclei
segmentation is used as seeds for cell segmentation (B). This pipeline can be also
divided into three parts, the first part involved generating StarDist nuclei
segmentation images. The second part involves cell b-pmap generation with
PlantSeg. The final step involves running lifted multicut from the results of nuclei
segmentation and b-pmap.

The second method is the lifted multicut method (Pape et al., 2019; Horňáková et al., 

2017). Lifted multicut can be done using the n-pmap or nuclei segmentation as seeds 

for the cells. Lifted multicut can be done using PlantSeg with three steps. The first 

step is to generate cell boundary predictions, the second step is to generate n-pmap 

and the third step is to run the lifted multicut with the results of the b-pmap and n-

pmap. pmap is generated as explained in section 2.6.2 and 2.7.3. They are saved as 

H5 files instead of tiff files. The third round of PlantSeg runs with both the n-pmap and 

b-pmap as input images. Lifted multicut can be performed only in the command line

PlantSeg

where one has to enter the parameters in the YAML file. These parameters include 

the path to n-pmap, path to b-pmap, parameters for segmentation and 

postprocessing module. An example YAML file can be found on 

PlantSeg GitHub (https://github.com/athulrv/3D-Ovule-Atlas.gitl). A scheme of 

lifted multicut can be found in figure 2.2-A.  

The third method is like the second one but uses the nuclei segmentation instead of n-

pmap. This still requires the first step of lifted multicut, where the b-pmap is generated 

in PlantSeg. Precise nuclei segmentation can be exported from the StarDist model. 
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Further, the path to the nuclei segmentation is added to the YAML file and the third 

step of lifted multicut is performed like the one in method two. This method is more 

robust because it uses the nuclei segmentation instead of n-pmap. A scheme of lifted 

multicut can be found from the figure 2.2-B.  

2.9 Generation of 3D and surface cell meshes 

3D meshes were generated on the proofread segmented stack. Error in segmentation 

can’t be corrected in the mesh. 3D cell meshes were generated in MGX using the 

segmented image stacks using the process "Mesh/Creation/Marching Cube 3D" with 

a cube size of 1. A cube size of 0.8 was sometimes used for fine corners. All the cell 

annotation was performed on the 3D cell meshes in MGX. 3D cell mesh can be saved 

as an MGXM mesh file or can be also exported as .obj, .stl etc. The 3D mesh file can 

be directly used for volumetric analysis of cells or organs or tissues once there are 

specific labels to the tissues or regions. 

Organ surface mesh or surface mesh refers to a mesh made on the outer surface of 

the organ, which is used for surface estimation and further measurements for various 

feature extraction as part of different workflows. Surface mesh can be also segmented, 

and the cell area can be quantified from such a surface mesh. The surface mesh is 

mainly used as a bridge between 3D cell mesh and organ surface. The 3D cell mesh 

doesn’t contain positional information. MGX can be used with two meshes at the same 

time. 3D cell mesh in mesh 1 and surface mesh in mesh 2. This allows further definition 

for cells of the cell mesh which is intrinsically absent in them. Other features like 

distance to the surface for inner cells and cell axis are also relying on organ surface 

mesh. Surface mesh is mainly required for the method of semi-automatic cell type 

labelling of the mature ovule. The organ surface mesh is generated from the 

segmented stack. The segmented stack was first gaussian blurred using the process 

Stack/Filter/Gaussian Blur Stack with a radius of 0.3 in xyz. The smooth stack was 

used to generate organ surface mesh using Mesh/Creation/Marching Cube Surface 

with a cube size of 1 and threshold 1. The generated surface mesh was then smoothed 

several times using the process Mesh/Structure/Smooth mesh with 10 passes. 3D cell 

mesh for further data extraction requires several parameters to be quantified. MGX 

process Mesh/heatmap/analysis/cell analysis 3D was performed on the 3D cell mesh, 

this adds more information to the raw mesh. It includes cell volume, area, neighbors 

cell label, number of cell neighbors, cell centroid and other attributes. This is also a 



requirement for other processes that do several annotations or quantification like tissue 

labelling or distance coordinates.  

2.10 Classification of tissue types 

MGX allows to cluster or group cells while retaining their identity or cell label. Grouped 

cells come under the “parent label” in MGX. Parents or parent labels were originally 

part of a two time point mesh dataset where the daughter cells get the ID of the parent 

cell. The same tools are used here in a different manner where there is just one time 

point and cells that belong to the same tissue are grouped under the parent ID. 

For young ovules, the cell layers L1, L2 and L3 are annotated by a semi-automatic 

method where the 3D mesh of ovule primordia and the respective segmented stack is 

used for performing the classification. Classification is done using the process 

Mesh/cell atlas 3D/ovule/detect cell layer stack with the parameter for the number of 

layers as 3 in the case of primordia. The detect cell layer process requires the 

segmented stack in working stack and 3D cell mesh in working mesh. The outcome of 

the process is L1, L2 and L3 labelled ovule primordia. To further subcluster different 

organs in the image, another process called label ovules was run (Mesh/cell atlas 

3D/ovule/label ovule). This requires a user input which marks the distal end of the 

organ. As a last step, these two labels are merged using the process Mesh/Lineage 

tracking/Unique parents from attributes. 3D Mesh tools in MGX were used for 

proofreading the labelled mesh before exploring any of the valuable attributes. Overall, 

the semi-automatic method used the stack labels on top of the 3D cell mesh and first 

quantifies the outside wall area ratio. This is used as a criterion for cell classification. 

The outer cells of ovule primordia have a significantly higher outside wall area ratio 

because of the outer exposed wall. This feature is used to first cluster them as L1 cells. 

Further a distance parameter is quantified by the process, and it looks for the distance 

of all cells to the selected L1 cells. This would allow the subclassification of L2 and L3 

layers in the primordial dataset based on the distance threshold. This saves a lot of 

time in annotating the cell types which is otherwise done manually. 

Mature ovule cell type annotation is more complicated as it must include different 

layered integuments and other internal and external tissues. The pattern is obvious by 

eye, but there exists no precise tool for such a classification of cell types in this 

complicated organ. The 3D mesh of the ovules was annotated with labels for cell type 

(abaxial outer integument, adaxial outer integument, abaxial inner integument, adaxial
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inner integument, nucellus, chalaza, subepidermal outer integument, funiculus, 

embryo sac). With the existing tools, we can just achieve about 60% true labels. The 

rest is manually proofread. For mature ovules cell type annotation, we used the MGX 

process Mesh/Cell Atlas 3D/Ovule/Detect Cell Layer (a modified 3DCellAtlas Meristem 

tool [Montenegro-Johnson et al., 2019]) with the 3D cell meshes in the mesh 1 

workspace and the tissue surface mesh in the mesh 2 workspace using a cone angle 

parameter of 1.2. We manually corrected mis-annotations and labeled the rest of the 

cells by using the mesh tools in MGX. We used the "Select Connected Area" tool to 

select individual cells of different layers in 3D and proofread the cell type labeling with 

Mesh/Cell Types/Classification/Set Cell Type. Each cell layer of the integuments was 

consecutively shaved off and proofreading was performed using 3D surface view. We 

further used the processes Mesh/Cell Types/Classification to save all labels, load 

labels and select cell types as required. The saved cell types csv file was reloaded 

onto the original 3D cell mesh and final proofreading was performed in the section 

view.  

Figure 2.3 Method for classification of cell types in mature ovules. 
Input dataset for the workflow include the 3D cell mesh and organ surface mesh (A). 
Detect cell layer stack function uses a cone angle parameter for identifying individual 
cell layers (B). Images represent the 2D section view on top and the 3D view at bottom. 
A transverse section shows how effective the tool is working on just three layer 
detection. The results from the automatic detect cell layer are further taken for user 
interactive proofreading of individual tissue types with the help of mesh tools (C). The 
mesh tools used for interactive tissue annotation are also included.   



46 

2.11 Annotation and data extraction from 3D cell meshes using MorphographX 

Different annotations and quantifications were done on 3D cell mesh using MGX. The 

quantifications are always exported as a csv attribute file from mesh/attributes/save to 

csv. Annotations include tissue labels or labelling several regions within the organ or 

tissue. All such labels were exported as an attribute and saved to the 3D cell mesh 

too. Overall, the 3D cell mesh contains several attributes of a label or cell. All the 

attributes were exported at the same time and a long file format excel file was made 

from different cell meshes with information containing the ovule ID or image ID, ovule 

stage, volume of cells, tissue identity label, anterior-posterior label, distance 

coordinates and many more. Cells less than 30µm3 in volume was excluded from any 

analysis as it would be part of segmentation errors or artefacts in cell mesh creation or 

void spaces between cells.  

Several quantifiable measures were also exported to attributes. The “Neighbor Voxel 

Stack” command was used to differentiate cells with the exposed outer surface. 

Lobyness measures including sphericity, convexity, compactness, and solidity were 

quantified using the process mesh/3D cell atlas/lobyness 3D. For OI2 cell geometry 

measurement, depth of cells was first quantified by creating cell depth axis from the 

organ surface mesh and segmented stack using the process Mesh/Cell axis 

3D/Custom/Create Surface Directions (Custom X: None; Custom Y: Surface Normal; 

Custom Z: None). Cell Length was quantified by creating a length axis, essentially the 

proximal-distal axis of the cell using a bezier curve. A bezier was first made from the 

selected central file of OI2 cells with Misc/bezier/Bezier from Cell File. Cell length 

directions were generated using the process Mesh/Cell axis 3D/Custom/Create Bezier 

grid direction (Custom X: Bezier X; None; None). Lastly, cell width or the medial-lateral 

length of a cell was quantified from the cell width directions. Cell width directions were 

generated using the process Mesh/Cell axis 3D/Custom/Create Orthogonal Direction 

(Primary Axis: X; Secondary Axis: Y; Change Secondary Axis: Yes). To add the 

measurements to the other extractable attributes the “Cell Length Custom” process 

was used. 

2.12 3D organ coordinate system 

Organ coordinates in 3D were performed in different methods to identify the best 

method for a curved organ like an ovule. Organ coordinates require a coordinate origin. 

For straight organs, a bezier curve was placed at the centre of the organ and that acted 
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as an origin. Organ coordinates were quantified using the process 

mesh/heatmap/measure3D/location/bezier coord. Organ coordinates where a group of 

cells act as the origin were quantified using the process 

mesh/heatmap/measure3D/location/cell distance. The cell distance process can 

quantify distances (in µm) of all cells to the origin cells through the shortest path, this 

can be done with the parameter Euclidean. The same process can be run to quantify 

the shortest path between cells to the origin cell where it quantifies how many numbers 

of cells is the gives cell apart from the nearest origin cell. It also has a parameter to 

restrict or not the measurement within the parents or tissue labels provided in the mesh 

while running this process.   

Distance coordinates for ovules were quantified using a new process. For the 

primordia, the coordinate origin was placed at the distal tip of the organ. The coordinate 

process requires only a cell mesh and bezier ring. Bezier ring was made by the process 

Misc/bezier/new bezier ring from selected cells (radius xy 3x3) after selecting a 

distalmost cell of primordia. This places the ring approximately at the distal end of the 

primordia. The position of the ring can be also adjusted in an interactive manner using 

the control key interaction set to “cut surface” in MGX. Once the ring is placed at the 

distal end of the primordia, the distance coordinates can be extracted using the 

process Mesh/heatmap/measure 3D/location/cell distance bezier ring. This process 

contains several parameters, firstly the type of coordinates, distance coordinates or 

cell coordinates. Secondly, if the measurement has to be restricted within the parent 

labels or tissues. When the distance is restricted within the parents, the “direct distance 

limit” parameter can be used to assign the cells where the distance seeds are first 

assigned. The direct distance limit first finds the cells within this limit to the origin, then 

it finds how far are they. Once the distances are assigned to these direct cells, they 

act as distance seeds for the remaining cells within their tissue. The distance 

coordinate of another cell far from the direct distance limit is quantified by finding its 

distance to the nearest neighbour cell which was within the direct distance limit and 

within the same tissue type. Essentially the cells within the direct distance limit act as 

distance seeds to the remaining cells within their tissue. “Selected as direct” allows to 

include any manually selected cell to the direct distance limit which might not be within 

the distance limit. The direct distance limit for ovule primordia was set to a minimum 

value of 7µm. The “Consider ring orientation” parameter allows to include a positive 

and negative direction to the cell coordinates across the 2D plane of the ring. This is 

irrelevant for the ovule primordia where the bezier ring is positioned at the distal end. 
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For primordia coordinates, the 3D mesh where the cell distance bezier ring was 

quantified has the tissue labels of anterior and posterior L1, L2 and L3 cells. This allows 

to restrict the distance measurement within the anterior or posterior halves of the organ 

and not just within the layers.  

For mature ovules, tissue labels were subdivided to anterior and posterior integument 

layers. OI2 was grouped into also lateral cells and a central group of cells for tissue 

restriction. Mesh/heatmap/measure 3D/location/cell distance bezier ring was again 

used for the mature ovules, where the ring is placed at the proximal end of integument 

initiation at the surface of OI1. Placing the ring was already a two-step process. First, 

a 3D mesh was loaded, the OI2 layer was removed from the mesh to visually select 

the proximal OI1 cells where the ring must be placed. The ring was made using the 

same process as in the primordia Misc/bezier/new bezier ring from selected cells (but 

with a higher radius of 15 x 15 xy). The bezier ring in ovule primordia was of a small 

radius, such that it can act as a point origin, here the ring acts as a wide origin. Once 

the ring was made, it was saved using File/Save-as. The original 3D mesh with 

appropriate tissue labels for the coordinates was loaded to mesh 1 for running the “cell 

distance bezier ring” process. The direct distance limit for the mature ovule was set to 

15 µm. Consider ring orientation was set to yes. This generated the coordinates below 

the ring (proximal region of ovule including funiculus and proximal OI2) with negative 

values and coordinates above the ring with positive values allowing. 

2.13 Primordia length and slanting 

Length along the surface of the anterior and posterior sides of primordia was quantified 

for individual ovule primordia. A file of surface cells at the mid-section of two halves of 

the ovule was extracted and a bezier grid of size 3 x 3 (xy) was placed on the distal tip 

of the primordia surface. MGX process Mesh/Heatmap/Measure 3D/Distance to Bezier 

was used to quantify the length. The measured values are the distance from the Bezier 

grid to individual cell centroids through the file of connected cells. Primordia height was 

quantified by averaging the two values. Slanting was quantified by obtaining the 

difference of the maximal values at the anterior and posterior sides, respectively (MM-

FIG 2). After the advancement of the ovule coordinate system, the primordia slanting 

can be also directly inferred from the coordinate values at the proximal end of anterior 

and posterior L1 cells.  
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Figure 2.4 Primordium length and slant measurement. 
3D surface view of primordia displaying the method for length measurement. 3D vew 
displays the anterior and posterior half of ovule primordia. L1 cells at the mid file are 
selected and extracted for slant measurement. The heatmap on the extracted cells 
depicts the quantified distance value between individual measured cells to the 
distal tip of primordia. Figure from Vijayan et al., 2021. 

2.14 Statistical analysis and visualization 

The distribution of cell attributes along the distance coordinates was visualized in 

RStudio with the ggplot function, these plots were mainly used to detect interesting 

differences which were then analyzed further with Tukey's post-hoc test through anova 

and Tukey HSD. For each analyzed group the mean attribute value of all cells 

belonging to that group was calculated for each ovule, since 5 ovules were analyzed 

per stage the population size was therefore always 5. Results with a p-value < 0.05 

were accepted as significant. GraphPad PRISM was used to visualize the results with 

graphs. 

2.15 Growth and proliferation rate calculation 

Growth and proliferation rates for integuments was calculated as a normalized value 

with respect to the overall growth of only the integument tissues. For proliferation rates, 

the increase in total number of integument cells from one stage to the next was 

calculated as a ratio. For example, the increase in total number of integument cells 

from 100 to 140 is 1.4 times increase. Similarly, the increase in the number of cells in 

individual tissues was calculated. For example, if the oi2 cells increase from 40 to 60, 

which makes it 1.5 times increase. Finally, a ratio between these two values was 

plotted as a heatmap. In this case, it would be the (1.5/1.4= 1.07). The resulting 

value indicates if the tissue is growing at a higher rate compared to the increase in 

the overall growth of integuments. Similarly, the growth rates were also calculated 

where the overall increase in all integument tissue volume is compared over the 

increase in the different integument tissues. Essentially, the final values on the 

heatmap above one
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represent if the tissue is growing at a higher rate than the overall growth of 

integuments. A value equal to one indicates that the tissue grows at the same rate to 

that of overall growth of integuments. A value below one indicates that it is slow 

growing with respect to overall growth of integuments. The principle is the same for 

proliferation and growth rate calculations.  

2.16 Datasets 

The dataset encompassing the segmented wild-type 3D digital ovules was described 

earlier (Vijayan et al. 2021). The z-stack of the Utricularia gibba trap was obtained 

from the fixed and modified pseudo-Schiff-stained (Truernit et al. 2008) specimen 

presented in Fig. 3C in (Lee et al. 2019). Dataset including 3D cemm meshes and 

images used in this study are available in a biostudies public repository. 

Additionally, the analysis excel files are also available in the below biostudies 

repository.  

Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A, Strohmeier J, Kreshuk 

A, Hamprecht FA, Smith RS, Schneitz K (2020) BioStudies ID S-BSST475. 

WT Arabidopsis ovule atlas: A 3D digital cell atlas of wild-type Arabidopsis 

ovule development with cellular and tissue resolution. 

https://www.ebi.ac.uk/biostudies/studies/S-BSST475 

Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A, Strohmeier J, Kreshuk A, 

Hamprecht FA, Smith RS, Schneitz K (2020) BioStudies ID S-BSST513. 3D 

qualitative attribute dataset of Arabidopsis ovule atlas. 

https://www.ebi.ac.uk/biostudies/studies/S-BSST513 

2.17. Artificial templates of cells 

Artificial templates of radial cell layers were created in MorphoDynamX (MDX, 

https://morphographx.org/morphodynamx/). MDX plugin “cell make” was used to 

generate radial cell layers of straight and bent tissue. Tissue annotations to radial cell 

layers were performed manually. 

2.18 Media and solutions 

Half Murashige-Skoog medium (for plant tissue culture): 
Dissolve the following in distilled water and autoclave for solid media (w/v). Liquid 

media can be made without agar.  
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- 0.22g MS medium powder

- 1% sucrose

- 0.9% Agar (plant cell culture tested)

10x PBS: 
Dissolve the following in 800ml distilled H2O. 

- 80g NaCl (1.37 M)

- 2.0g KCl (27 mM)

- 14.4g Na2HPO4 (100 mM)

- 2.4g KH2PO4 (18 mM)

- Adjust pH to 7.4

- Adjust volume to 1L with additional distilled H2O

- Sterilize by autoclaving

- Prepare 1x PBS solution by diluting 10x PBS stock solution 1:10 in distilled

H2O and adjust pH to 7.4

Paraformaldehyde fixative 
1. Prepare 4% paraformaldehyde in 1x PBS solution to a final volume of 100 ml.

2. Heat and stir the solution to approximately 60°C. Take care that the solution

does not boil! Don’t go over 70°C!

3. The powder will not immediately dissolve. Slowly raise the pH by adding NaOH

or KOH dropwise from a pipette until the solution clears

4. Once the paraformaldehyde is dissolved, recheck the pH, and adjust it with

small amounts of HCl to approximately 6.9 pH

5. Cooldown the solution before use

Note: The fixative can be aliquoted and kept at +4ºC or - 20Cº. Always use fresh PFA 

to prepare the fixative. The fixative can be stored for up to one week (4°C) or two 

weeks (-20°C)! 

ClearSee solution 
Dissolve the following in distilled H2O (w/v) 

- Xylitol [final 10% (w/v)]

- Sodium Deoxycholate [final 15% (w/v)]

- Urea [final 25% (w/v)]

- Water to the final volume



52 

Note: Sodium Deoxycholate is volatile. One has to weigh this in a chemical hood. Ideal 

when urea and xylitol are first dissolved in water. Care has to be taken to mix the 

chemicals in a minimum amount of water as the chemicals themselves weighs 50 % (w/

v). Stir the solution until all the chemicals are dissolved and the solution looks 

transparent.  

2.19 User guide for annotation and analysis of complex 3D plant organs using 
3DCoordX 

This user guide will follow a step-by-step procedure to analyze and annotate organ 

coordinates for complex 3D plant organs using 3DCoordX toolbox in MorphographX 

(MGX, www.morphographx.org). 3DCoordX is an add-on for the MGX platform 

(Barbier de Reuille et al., 2015; Strauss et al., 2021). For general MGX questions such 

as installation or usage please refer to the user guide of the software (available online 

or from the MGX user interface via Help-User Guide).

2.19.1 Ovule sample datasets 

3DCoordX can be used for creating organ-centric coordinate systems of any 3D organ. 

This guide uses two data sets of young and mature ovules of A. thaliana, respectively. 

Each data set consists of different 3D stack tif files (SR2200 cell wall signal (Tofanelli, 

Vijayan et al., 2019), PlantSeg CNN predictions of the cell wall and the 3D 

instance segmentation using GASP method in PlantSeg (Wolny et al., 2020)), mesh files 

(for the analysis in MGX), csv files (with stored cellular data) and a mgxv file to load 

the necessary files for this user guide. 

The young ovule dataset (“dataset_598”) consists of four multiple stage ovule 

primordia. Mature ovule dataset (“dataset_401”) consists of one stage 3-IV mature 

ovule. To load a sample data set, either drag and drop the corresponding file 

into MGX or open the mgxv file. The attributes .csv files containing heatmap 

values have to be

loaded using the MGX process (Mesh/Heat Map/Heat Map Load). 

Attributes .csv file containing cell type information can be loaded using 

process in MGX (Mesh/Cell Types/Load Cell Types).
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2.19.2 Quantification of general cellular attributes and data export

MGX allows the quantification of 3D cellular properties, such as geometry or 

location. For a complete list of measures and methods we refer to the MGX 

user guide or (Strauss et al., 2021). Basic attributes of 3D cells such as cell 

volume, area, neighbours, outside wall area ratio etc can be 

automatically quantified using the ñMesh/CoordX/A Cell Analysis 3Dò 

process. More advanced geometric features such as cell length along a 

custom direction can be quantified by first assigning a cell axis that 

represents the measurement and then using the process ñMesh/Cell 

Axis 3D/Shape Analysis/Compute Shape Analysis 3Dò. For cell 

length, a Bezier curve was placed along the central axis of the cell and a 

measure of length along the central axis was quantified as a 

next step using the cell axis 3D process. (Cell Axis 3D/

Custom/Create Bezier Line direction). Any computed

cellular property can then be exported, together with the organ coordinates 

created using this  guide, using the process Mesh/Attributes/Save to CSV. 

2.19.3 The 3D CoordX AddOn 

Within MGX, the 3D CoordX toolbox is a collection of processes that can be found 

in the “Process” tab and “Mesh” subtab in the “CoordX'' folder. The goal of the 

3D CoordX pipeline is the creation of organ-centric coordinate systems for 3D 

segmented organs of different complexities. In the following section, this process 

is described using the example of young and mature ovules. 
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Figure 2.5 MorphographX process sidebar displaying the 3DCoordX add-
on under the mesh section. 3DCoordX associated new processes are 
listed. Listing A-D are the processes for layer detection in organs. Processes 
for bezier ring origin creation and to measure the 3DCoordX organ 
coordinates are listed below. Other processes mentioned in this user guide are 
already existing ones and can be found in their specific locations as mentioned in 
the MGX user guide.

2.19.3.1 Workflow for young ovules data set using 3DCoordX 

Young ovules are connected and are finger-shaped organs extruded from the 

placenta. The sample data set consists of 4 ovules which will be labeled by 

cell type and organ. For each of the ovules, cell layer labeling and a proximal-

distal coordinate system can be created. 

1. Download and open the “Young_ovules” folder. Load the file 

“Analysis_young_ovules.mgxv” into MGX.

2. 3D cell layer detection

a. Layer detection is working best when the segmented image stack is 

also provided. When opening the mgxv file as described in step 1, 

it is already loaded in Stack1/Main. Alternatively, it can also be loaded 

using
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the Stack1->Open menu. It is also possible to perform the layer 

detection with just the 3D cell mesh as an input in mesh1. 

b. Run the process “Mesh/CoordX/A Cell Analysis 3D” to obtain 

general cellular attributes and the connectivity map.

c. Run the process: “Mesh/CoordX/B Detect Cell

Layers”. Set the parameter “Use Stack” depending on 

whether you are using the stack or not. The other parameters 

typically can be left on the default values. Results of cell layer 

detection can be visualized on the cell mesh by enabling the 

parent label view of the cell mesh. (Mesh/labels, Parents/on, hide 

the stack from display). The number of layers to be detected 

can be also altered in the parameter field.

d. Note that MGX saves cell types such as the layers in the “parent

label” which acts as a secondary cell label. Only one set of parent labels 

can be active for visualization, but additional ones can be saved in 

attribute maps.

3. 3D Organ detection

a. Select a cell at the distal tip of each organ primordia. In a case with 

multiple ovules attached to the same fragment, one can select the 

distal-most cell in all the ovules together.

b. Run the process: “Mesh/CoordX/C Label Organs” with a 

parameter defining the number of cells along the proximal-distal axis of 

the ovule. For this sample data, 8 is a good value.

c. Results of ovule ID detection can be visualized on the cell mesh by 

enabling the parent label view of the cell mesh.(Mesh/labels, 

Parents/on, hide the stack from display).
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Figure 2.6: MorphographX GUI loaded with the young ovule data set. 
Different colors indicate the results of organ detection and separation into 
different IDs as in step 3 of 3.1. 

4. Combination of layer and organ detection to create unique layer labels

a. In the previous steps we created labelings for cell layers (step

2) and ovule IDs (step 3). Both labels were saved in attribute maps 

with names that were provided as parameters (by 

default:”Layers” and “Ovule”). In this step both labeling maps are 

merged to create a new labeling with unique ID for cell layer/

ovule labels.

b. Use the process: “Mesh/CoordX/D Unique Parents”. Before 

running the process make sure the names of the “Parent Attr” 

parameters are matching the names of the previously generated 

label maps. In our case set them to “Layers” and “Ovule”, then run 

the process. The result of the unique parent labels can then be 

displayed again by enabling the parent view of the mesh.

c. At this stage it is a good time to perform proofreading of the unique 

label results to optimise the dataset for further analysis.

d. Any cell type or ID label can be exported to attribute maps or saved 

separately as a .csv file using the process “Mesh/Cell Types/Save Cell 

Types”.



5. Separation of the anterior and posterior region

a. Anterior and posterior separation can be done by manually subgrouping 

the existing labels of the primordia from the previous step. For the 

sample data this has been done already and saved to a csv-file containing 

the cell type labels. Nevertheless, the next step explains how to do this.

b. To assign cell type labels to individual cells or groups of cells, they need 

to be selected using the mesh tools “Add label to selection” or “Select 

connected component”. After selecting cells their parent/cell type label 

can be set using the process “Mesh/Cell Types/Set Cell 

Type”. Different tissues are annotated one after the other.

6. Creation of CoordX PD organ coordinates for a young ovule. (Note that the 

following steps create the coordinates for a single ovule. If you are interested in 

creating the coordinates for multiple organs in the same mesh, as it is the case 

for the sample data, then the steps need to be executed for each organ.)

a. Run the process: ”Mesh/CoordX/Create Point Origin” 

which creates a small point-like Bezier ring. The Bezier needs to be 

placed at the distal tip of the ovule primordia of interest. The Bezier is 

located in the “Cutting Surface” and can be moved by two different 

methods: 1) Go to the “View” tab and activate “CutSurf” in the 

“Control-Key-Interaction” menu. Now the Bezier can be moved and 

rotated when holding the “Ctrl”-key together with pressing the left or 

right mouse button and moving it. 2) The Bezier points (in yellow) can 

be selected using the “Select Points in Mesh” mesh tool. Once selected 

they turn red and can be moved with the “Alt” and right mouse key held. 

Please see the MGX user guide for more details about the general 

controls.
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b. To create the PD-coordinates of the organ use the process: Mesh/CoordX/

Measure 3DCoordX. This process contains several parameters. Firstly. 

the type of coordinates must be defined, such as distance coordinates (parameter 

wall weight = Euclidian) or cell coordinate parameter (wall weight = 1). 

Secondly, decide if the measurement has to be restricted within the parent 

labels or tissues. When the distance is restricted within the parents, the “direct 

distance limit” parameter can be used to assign the cells where the distance 

seeds are first assigned. The direct distance limit first finds the cells within 

this limit to the origin, then it determines their distances to the Bezier ring. 

Once the distances are assigned to these direct cells, they act as distance seeds 

for the remaining cells within their tissue. The distance coordinate of another 

cell far from the direct distance limit is quantified by finding its distance to the 

nearest neighbour cell which was within the direct distance limit and within 

the same tissue type. Essentially the cells within the direct distance limit act 

as distance seeds to the remaining cells within their tissue. “Selected as direct” 

allows to include any additional manually selected cell to the direct distance 

limit which might not be within the direct distance limit. The direct distance limit 

for ovule primordia was set to a minimum value of 7µm. The “Consider ring 

orientation” parameter allows to include a positive and negative 

direction to the cell coordinates across the 2D plane of the ring. This is 

irrelevant for the ovule primordia where the Bezier ring is positioned at the 

distal end. For primordia coordinates, the 3D mesh where the cell distance 

Bezier ring was quantified has the tissue labels of anterior and posterior L1, L2 

and L3 cells. This allows to restrict the distance measurement to the 

anterior or posterior halves of the organ, respectively, and not just within the 

layers.

c.The distance coordinates heatmap can then be exported as an attribute using 

the process: “Mesh/Heat Map/Operators/Export Heatmap to 

Attribute Map”.

d.The same Bezier ring is then moved to the distal tip of the other ovule primordia 

of interest to annotate the distance coordinates of this ovule..
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a. Run process: “Mesh/Attributes/Export to CSV”. A collection

of all the attributes is then exported as a .csv file. (See also the 

section “Quantification of general cellular attributes and data export”).

2.19.3.2 Workflow for mature ovule data set using 3DCoordX  

1. Download and open the “Mature_ovule” folder and load the file 

“Analysis_mature_ovule.mgxv” into MGX.

2. Cell type assignment

a. For mature ovules, tissue labels were manually performed by 

mesh selection tools. Integument tissues were labelled as 

adaxial or abaxial layers (oi1, oi2, ii1, ii2) (Vijayan et al., 2021). For 

the sample data set a cell type labeling is already provided, 

which can be used for the following steps. Alternatively, 

cell types can be manually assigned by selecting cells and using 

the process: “Mesh/Cell Type/Set Cell Type” or using the 

cell type classification tools (see the MGX user guide and Strauss et 

al. 2021).

3. Creation of CoordX medial-lateral (ML) organ coordinates

a. A thin clipped plane of about 5 µm was enabled at the mid-

sagittal section of the ovule to restrict the mesh vertice 

selection for the ML coordinate annotation.

7. Further data export (e.g. volume or signal quantification)
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Figure 2.7: A sagittal section of mature ovule dataset 
displaying the cell types with mesh view. A clip 
plane is enabled to restrict the origin selection for ML 
organ coordinates to the central group of cells at the 
midline cells.  

b. Mesh vertex selection: The lasso selection tool for mesh vertices is used 

to select the vertices of the cells of the central file along the posterior 

midline of the ovule. Selection is done only on the midline cells of all 

four layers of integuments.

c. Extend connectivity: The midline selection was then extended to entire 

cells using the process: “Mesh/Selection/Extend by 

connectivity”.

d. Run the process: “Mesh/CoordX/Measure 3D Cell 

Distance” to create the ML coordinates: Selected cells are used as 

origins of the ML coordinate system and the coordinate values of the 

number of cells are measured from the cell distance process. The 

parameter “Restrict connectivity to the same cell 

type” must be enabled and the wall weight parameter is set to 1 as the 

distances in terms of the number of cells are quantified here.

4. Creation of CoordX proximal-distal (PD) organ coordinates
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a. Run process: “Mesh/CoordX/Generate Bezier Ring” with a radius 

of 15μm (parameter “Radius X” and “Radius Y”). The Bezier ring was 

semi-automatically placed at the proximal end of integument initiation by 

selecting the appropriate cells and setting the parameter “Place Ring at 

Selection” to “Yes”.

b. Placing the ring was already a two-step process. First, a 3D mesh was 

loaded and the OI2 layer was removed from the mesh to visually select 

the group of ring-like proximal OI1 cells where the Bezier ring has to be 

placed. Unlike in the young ovules, here the Bezier ring is larger and 

acts as a wide origin and is placed inside the organ. Once the Bezier ring 

is placed, it is saved with the mgxv file using File/Save-as. The original 

3D mesh with appropriate tissue labels for the coordinates was reloaded 

to mesh 1 to obtain the organ coordinates in the next step.

c. Run the process: “Mesh/CoordX/Measure 3DCoordX”. The 

direct distance limit for the mature ovule was set to 15 µm. “Consider 

Ring Orientation” was set to yes. Other parameters were set the 

same to that with ovule primordia. This generated the coordinates below 

the ring (proximal region of ovule including funiculus and proximal 

OI2) with negative values and coordinates above the ring with positive 

values allowing.

5. Further data export (e.g. volume or signal quantification)

a. Run process: “Attributes/Export To CSV”. A collection of all the 

attributes is then exported as a .csv file. (See also the section 

“Quantification of general cellular attributes and data export”).

2.20 Detailed protocol to sample preparation and microscopy of Arabidopsis 
ovules (Adapted from Tofanelli, Vijayan et al., 2019) 

2.20.1 SOLUTIONS AND MATERIALS 

- Fixative solution

- Clearsee solution

- Washing solution (1x PBS)
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- Coverslips 22x22 mm, 0.17 mm thickness (No. 1.5H, Paul Marienfeld GmbH

& Ko. KG, Lauda-Königshofen, Germany, CAT No: 0107052)

- Insulin Syringes U-40 (1 ml/40 I.U.) (B. Braun Melsungen AG, Melsungen,

Germany, CAT No: Inject® 40 Duo)

- Microscope Glass Slides 76x26x1 mm (Paul Marienfeld GmbH & Ko. KG,

Lauda-Königshofen, Germany, CAT No: 1000000)

- Petri dish large 94/16 mm (Zefa, CAT No: 10029880)

- Petri dish small 35/10 mm (Opti-Lab GmbH, Munich, Germany, Petri dishes,

CAT No: 6055567)

- Double sticky tape (Kaut-Bullinger, München, Germany, CAT No: 055446)

2.20.2 STAINING SOLUTION: SR2200 and TO-PRO®-3 

Prepare a combined staining solution containing 0.1% SR2200 and 1µM TO-PRO®-3 

(1:1,000 dilution of 1 mM stock solution) in fresh 1x PBS. 

NOTE: Avoid exposure to light. For best results, prepare a fresh solution. SR2200 

stock solution should be allotted to avoid repetitive handling of the original stock. The 

solution showed a tendency to crystallize. Staining could be also done for individual 

stains rather than combined.  

2.20.3 PROTOCOL FOR FIXATION AND CLEARING 

1. Check the inflorescence and select the flowers at the proper stage.

2. Harvest the flower and place it under the stereomicroscope on a double-sided

tape on the bottom of an inverted petri dish. Excise the carpel by using

tweezers. With the help of a needle slightly open the carpels to expose the

ovules.

3. Quickly transfer the pistils to a small petri dish with a double-sided tape fixed

at the bottom and containing fixative. If necessary, pistils can be attached to

the double-sided tape to prevent them from floating. The fixation is effective

when the pistils sink to the bottom of the petri dish.

4. Fix for at least 1 to 2 hours at room temperature with gentle agitation or

overnight at 4°C.
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5. Samples should be transferred to 1.5 ml microcentrifuge tubes containing

fixative for overnight or long-term storage (up to one month).

6. If fixation was done at 4°C put the samples at room temperature for at least

30 min before proceeding

7. Carefully remove most of the fixative but make sure samples are still

submerged. Don’t let samples dry out!

8. Wash twice the fixed tissues for 1 min in 1 x PBS. The washing step is very

important to avoid the formation of precipitates that occur upon addition of

ClearSee to the fixative!

9. Transfer the fixed and washed carpels to a 1.5 ml microcentrifuge tube

containing 1 ml ClearSee solution and clear them at room temperature

overnight with gentle agitation. Overnight is usually sufficient. Slightly better

results are obtained upon 2 to 3 days of clearing. Change the ClearSee

solution after 2 days if samples are stored for extended periods of time. The

carpels are stable in ClearSee for several weeks. After clearing, proceed to

the staining procedure.

2.20.4 PROTOCOL FOR STAINING 

1. Wash the cleared tissue for 1 minute in 1x PBS solution containing 0.1%

SR2200 stain.

2. Transfer the pistils to another small petri dish filled with 1 ml of combined

staining solution (0.1% SR2200 and TO-PRO®-3 (final dilution of 1:1,000)).

3. Stain at room temperature with gentle agitation for 20 minutes.

4. Wash the stained tissues for 1 minute in 1 x PBS.

5. Transfer the pistils into ClearSee solution for 20 minutes with gentle agitation

for final clearing.

6. Proceed immediately with mounting.

NOTE: Use tweezers to transfer the pistil from one solution to another. Avoid mixing 

the solutions.  

2.20.5 PROTOCOL FOR SAMPLE MOUNTING 
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1. Stick two coverslips with transparent nail polish on a microscopy slide leaving

around 1.5 cm between them.

2. Place a drop of VECTASHIELD® antifade mounting medium on the slide.

3. Gently pick up a pistil from the ClearSee solution and place it on the slide with a

minimum of ClearSee solution transferred.

4. Dissect the ovule from the pistil with the help of syringe needles.

5. Gently place a coverslip onto the sample and store the slide in a slide box at 4 °C.

6. Let the samples settle for 1 to 2 hours before imaging.

NOTE: For best results, imaging should be done 1 to 2 hours after mounting and on 

the same day. However, slides with samples mounted in VECTASHIELD® can be 

stored for up to a week with minor reduction in image quality. 

2.20.6 GENERAL NOTES 

- It is important to carry out every step under the stereomicroscope with

minimal light exposure to avoid drying and shrinkage of ovules.

- Tissue in fixative can be stored for several weeks.

- Prior to staining samples can be stored in ClearSee solution for several days

to optimize clearing.

- Do not store stained tissue in ClearSee solution for more than 2 hours prior to

mounting in VECTASHIELD®) to avoid degradation of image quality.

- The protocol can be combined with fluorescent reporters. However, in such a

case it is recommended to fix the samples for only 1 or 2 hours and perform

clearing only overnight. Otherwise, the fluorescent signal is weaker or lost

completely.

- The support coverslips prevent the mounted ovules from squeezing. The

coverslip thickness may not exceed the working distance of the objective used

for imaging.
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3 Results 

3.1 Method development for generating 3D Arabidopsis ovule 
atlas with cellular and tissue resolution

Arabidopsis ovules have long been established as a model system for the study of 

organogenesis in plants. Different imaging methods allow to follow the development of 

Arabidopsis ovules, but there exists no precise method for straightforward investigation 

of 3D cellular morphology of the whole organ including the internal tissue architecture 

with cellular resolution. This chapter focuses on method development for generating 

reliable 3D digital images of Arabidopsis ovules. Improvements are made in different 

directions. With advancement in method for sample preparation and microscopy for 

whole mount organ imaging, machine-learning-based image improvement and 

instance cell segmentation (Tofanelli, Vijayan et al., 2019, Wolny et al., 2020, Vijayan 

et al., 2021), this study was able to generate precise 3D models of Arabidopsis ovules 

which can be used for further detailed investigation. Additionally, nuclei segmentation 

was also optimized for a faint nuclei channel that has application in further proofreading 

cell segmentation.     

3.1.1 3D whole organ microscopic imaging 

Investigation of 3D organ architecture with cellular resolution requires precise imaging 

of cells in 3D. This section is based on the publication from this study (Tofanelli, Vijayan 

et al., 2019). I initially focused on mature ovules with a live imaging approach. A plasma 

membrane-localized FP (pSUB::SUB:EGFP) STRUBBELIG (SUB) which encodes a 

receptor kinase involved in tissue morphogenesis was used for visualization of the cell 

membrane (Chevalier et al. 2005; Vaddepalli et al. 2011). The outer surface of the 

organ can be clearly visualized with the 3D surface view of reporter images, but this 

approach lacks cellular resolution as one goes deep inside the organ (Figure 3.1-A). 

The approach following live imaging was to image the same sample at multiple angles 

to attain full 3D reconstruction (results not shown). The overall method seems more 

complicated as it might need to involve stitching from multiple angle images and the 

results are also not promising full 3D resolution with precise cell boundaries that can 

be used for further processing. 
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The second approach was to devise a method that allows imaging the whole 

organ from just one direction and that avoids any image stitching. Tissue clearing is 

widely used on different samples to make them transparent such that laser 

penetration at deeper layers is possible. TDE based clearing is one such approach 

for organ imaging as has been shown in (Aoyagi et al. 2015). TDE clearing first 

involves sample fixing in fixative (4% Paraformaldehyde containing 1x PBS 

solution) followed by clearing in TDE and further staining and mounting. However, 

TDE clearing was not satisfying for Arabidopsis ovules (Figure 3.1-B). TDE clearing 

improved the surface visualization of ovules compared to the live images, but the 

internal cellular architecture can’t be detailed with TDE cleared samples which are 

stained with any fluorescent dyes. For the study, a widely used bright fluorescent 

stain SR2200 (Musielak et al. 2015) was used. The results from TDE cleared 

images still indicated that fixing the samples helped in improving the whole 

procedure than a live tissue. 

Modified Pseudo-Schiff propidium iodide (mPS-PI) method is a classical method for 

cleared tissue imaging that involves clearing with Hoyer’s medium (which 

includes carcinogenic chloral hydrate as a clearing agent) (Berleth and 

Jürgens 1993; Grossniklaus et al. 1998). The method is promising and was 

successful in imaging the whole Arabidopsis ovule at a mature stage (Figure 3.1-C). 

The method involves fixation with paraformaldehyde and further washing and 

clearing with multiple solutions that takes almost a week-long procedure. mPS-PI 

method severely improved the image quality for morphological studies, but it's 

incompatible with fluorescent stains and fluorescent reporters. This restricts the 

usefulness of this method for any gene expression analysis or reporter activity 

analysis in 3D. 

ClearSee is another method for clearing plant tissues for confocal imaging. ClearSee 

is essentially a clearing solution with three components. Detailed information in the 

materials and methods (Section 2.4, 2.18). ClearSee has been proven to be 

compatible with any fluorescent reporter-based line. ClearSee clearing of Arabidopsis 

ovules was excellent compared to TDE or live images.

This study found that the original ClearSee method described in (Kurihara et al., 2015) 

is not optimal for precise whole organ imaging of Arabidopsis ovules. It could be 

because the protocol uses ClearSee solution for dissolving fluorescent cell wall 
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Figure 3.1 Improving 3D whole-mount confocal imaging of Arabidopsis ovules  
3D surface view and 2D orthogonal section view of XZ plane from multiple imaging 
approaches (A-D). Live ovule image (A), Fixed and TDE cleared ovule (B), Classical 
m-PS PI method (C), ClearSee original method (D). A 3D bounding box is projected



on the left images displaying the 3D surface view. Right image represents an xz section 
view within a box, white solid arrow indicates the z direction and with declined signal 
intensity in all these methods except the mPS-PI method. 2D midsagittal section view 
of a DAPI stained mature Arabidopsis ovule (E). Arrows indicate the embryo sac nuclei. 
2D midsagittal section view of a TO-PRO3 stained sample (F). Highlighted boxes 
indicate the embryo sac nuclei and mitotic nuclei. Different views of ovule stained with 
the improved method from this study (G, H, I). Results demonstrating the application 
of fluorescent reporter imaging along with cell wall and nuclei stain in the improved 
method (G). Cell wall stain in white, nuclei stain in magenta, fluorescent reporter 
activity in green. (H) From left to right, 3D rendered image at multiple viewing angles 
from the z stack obtained from one-directional imaging using the advanced imaging 
method, a 2D section of an orthogonal XZ plane displaying less variable signal intensity 
along the z direction indicated by solid whote arrow, a 2D section displaying the overlay 
of cell wall stain with the nuclei stain. The method has wide applicability, it can be 
applied on Arabidopsis inflorescence meristem and Arabidopsis roots as an example 
(I). Scalebar 20 µm. Some images of the figure are modified from Vijayan et al., 2021 
and Tofanelli, Vijayan et al., 2019.  

stains. The issue is with consistent stain penetration to deeper tissues. Visual analysis 

of ovules imaged with the original ClearSee method displays a variable cell wall 

stain quality and highly reduced signal intensity along the z direction (Figure 3.1 D). 

This is expected due to z scanning in one direction.  

Essentially, the laser penetration through the sample is a little improved in the original 

method such that at least a weak signal can be detected at the bottom z direction of 

the sample. But such weak signals don't help when it comes to whole organ 

image segmentation. For precise 3D reconstruction and further segmentation of the 

organ, the signal intensity throughout the sample has to be optimal.  

Original ClearSee methods describe samples to be mounted in ClearSee for final 

imaging. This study found that there is severe photobleaching when samples 

are mounted in ClearSee. Only one ovule could be images from a microscopic 

slide containing about forty ovules from the same carpel for this reason. Overall the 

method is much more reliable than other described imaging methods, but it 

needs further  optimization for imaging ovules with fine quality requirements. 

3.1.1.1 Improving 3D confocal imaging of the whole organ for cell segmentation 

The below section describes the improvement in microscopic imaging of Arabidopsis 

ovules based on this study and the publication from the same study (Tofanelli, Vijayan 
et al., 2019). This study focuses on the ClearSee method and in improving the same 
for precise microscopic imaging. The issue with cell wall stain penetration is of priority. 
This study proposes 1x PBS as the staining solution instead of ClearSee for 
staining procedure. Results indicate significant improvement in image quality 
(Figure 3.1 H). 

68 
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The signal to noise ratio is highly improved and the faintly stained walls observed 

with staining in ClearSee solution was improved when the staining was performed in 

1xPBS containing stains.  

Arabidopsis mature ovules from stage 3-I to 3-VI are staged according to the number 

of nuclei at the embryo sac. This makes it complicated that a nuclei stain must be 

included in the staining method always. Also, a nuclei stain can be used to 

confirm the presence of an enclosed cell in 3D when the cell wall stain is 

faint to distinguish between cells. DAPI nuclei stain was performed on ClearSee 

cleared samples, the stain works well, and the embryo sac nuclei can be also 

identified with DAPI (Figure 3.1-E). Nevertheless, the widely used bright cell wall 

stain SR2200 can't be combined with DAPI stain as they come under the same 

excitation and emission spectra. Another fluorescent nuclear stain TO-PRO-3 iodide 

(TO-PRO-3) was also a good alternative for ovule tissues. It can be used as a 

counterstain with the cell wall stain SR2200 as its excitation is at 641 nm. TO-

PRO-3 can be also used to identify mitotic cells that show a different pattern 

compared to regular nuclei (Figure 3.1-F). Nevertheless, TO-PRO-3 stain was 

sensitive to ClearSee mounting and that resulted in the rapid disappearance 

of the stain after mounting and in a failure to image the complete 3D structure of 

ovules simultaneously co-stained with SR2200 and TO-PRO-3. 

To further improve the method for precise 3D imaging of ovules where the 

signal from both the channels are preserved, the mounting media was altered. 

Vectashield is an antifade mounting media that is widely used in fluorescent 

imaging. Finally, ovules were fixed in paraformaldehyde fixative, cleared in 

ClearSee, stained with SR2200 and TO-PRO-3 in 1xPBS solution, recleared in 

ClearSee and mounted in vectashield. Detailed protocol for the improved whole 

imaging procedure can be found under materials and methods section 2.4 

and 2.20. Vectashield mounting also helped in avoiding any mismatch in 

refractive index as the sample mounting and microscope objective 

immersion are both glycerol-based. Vectashield mounting has additionally 

improved the resolution in the z-direction, overall image quality and retained both 

the cell wall stain and nuclei stain intact after mounting. The antifade 

property of the mounting media now allowed to image multiple ovules from the 

same slide. Overall, the resulting images were sharp and they passed the quality 

requirements for further 3D morphological analysis with cellular resolution. 
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Prepared samples can be also stored in vectashield for a few days where the nuclei 

stain would be retained, samples could be stored for up to eight months or more 

when only cell wall stain is required.  As a final refinement, the image quality was 

set to a maximum possible threshold with only a little oversampling. This 

included imaging the samples using a HyD detector and acquiring 12 bit or 16bit 

images instead of 8-bit images and with a line average of 2-4. The voxel size of 

images used in the dataset was according to the Nyquist criterion. This was 

about 0.063 x 0.063 x 0.24 µm3 XYZ directions. Overall, all these factors 

have significantly contributed to the full refinement of images in 3D and its 

usability for further processing.  

Moreover, we could confirm that this method has wide applicability in 

other plant tissues and all stages of Arabidopsis ovules could be imaged 

precisely with this improved ClearSee method. Arabidopsis shoot apical meristem 

is widely studied at the epidermis or up to two to three layers deep. With this 

advanced method, this organ can be now studied in much more detail. The same 

applies to Arabidopsis root, using this method, the root can be imaged through 

and whole 3D morphological analysis could be made rapidly (Figure 3.1 I). The 

method is also proved to be applicable with ovules from other organisms like 

Tomato, Lotus, Cardamine etc (Results not shown).  
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3.1.2 3D whole organ instance cell segmentation 

This section focuses on methods developed for transforming microscopic images into 

quantitative cellular descriptors. In other terms, this section aims to optimize 

the 3D instance cell segmentation from raw microscopic images obtained from 

section 3.1.1. This section is adapted based on the publication from this study (Wolny 

et al., 2020, Vijayan et al., 2021).  

A 3D dataset of microscopic images is a great descriptor for the overall morphology 

and shape of the organ, but a 3D volumetric and quantitative analysis 

can’t be performed on raw images. 3D cell segmentation is critical 

for quantitative understanding of the 3D volumetric information in the 

images. Instance cell segmentation is achieved when the pixels enclosed by 

the 3D cell boundaries or cell wall are assigned by an object identity label, called a 

segmentation label (Figure 3.2-A). Segmentation involves locating the cell 

contours and cell interiors such that each cell within the image may be identified 

as an independent entity (Vicar et al. 2019). This is usually performed in the 

whole 3D image stack in an automatic manner where the results would be 

another image stack with segmented cells (Figure 3.2-B). This segmented image 

is used for creating 3D cell mesh around each labelled object or cells (Figure 

3.2-A). 3D mesh would reproduce the cell boundaries and the whole organ 

with connected cells through mesh vertices. 3D cell mesh is more advanced than 

a segmented image stack in that it can handle more pieces of information and 

annotations which can be easily exported for quantitative analysis. Accurate 

cell segmentation is essential for quantifying significant biological and 

morphological information from 3D microscopic images including cell 

volume, shape, geometry, tissue features, growth rates etc.  

3D cell segmentation of plant tissues is classically performed using 

ITK watershed segmentation algorithm integrated into MorphographX (Barbier de 

Reuille et al., 2015; Strauss et al., 2019). Raw cell boundary image itself is not 

used for segmentation, but a few images processing is performed to enhance 

the cell boundary connectivity at the pixel level (Figure 3.2-B). The image 

processing includes several rounds of Gaussian blurring and brightening the pixels 

such that any watershed leaks are prevented in 3D (Detained method can be found 

under materials and methods 2.6.1). The processed image is auto seeded, 

and watershed segmented with a threshold for under or over-
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segmentation. The resulting segmentation requires laborious hand correction of errors 

in segmentation. 

Figure 3.2 Classical ITK 3D cell segmentation of Arabidopsis ovule images 
Segmentation and mesh creation from a raw cell boundary image (A). From left to right, 
raw cell wall image clipped from a 3D image stack zoomed into a single cell, the same 
cell with instance segmentation, the same cell with mesh view highlighting the vertices 
around the segmented label, zoomed view of few mesh vertices, 3D view of a single 
segmented cell mesh with an overlay of fine mesh vertices in yellow color. MGX ITK 
3D segmentation of a processed cell boundary image (B). From left to right, raw 3d 
outer view of the image, raw 2D section view, processed 2D section view, segmented 
3D outer view and segmented 2D section view. Image highlighting typical errors in 
segmentation (C). Under Segmentation error in an early-stage ovule where few cells 
are missing from the organ surface. Arrows point to regions or cells with these 
segmentation errors from MGX ITK segmentation method.   
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Despite the improvement in microscopic image acquisition, the possibility to precisely 

segment the images is largely dependent on final image quality. This is largely due to 

an unavoidable faint signal of the cell wall at some regions of the image. A typical error 

includes a missing cell, or several cells merged or a faint wall causing a boundary 

between two cells less intact. All these result in incorrect segmentation of cells which 

can’t be used for further quantifications. Over segmentation error in 3D can be 

corrected, but under segmentation can't be corrected. Overall, segmentation of the 

whole organ with good precision is a challenge without any other modern machine 

learning tools. 

3.1.2.1 PlantSeg deep learning based pipeline for precise 3D instance cell 
segmentation 

The workflow of digital atlas generation is partially achieved at this stage with a 

high level of manual proofreading on the ITK cell segmented images of high-

resolution microscopy. To further optimize and uplift the segmentation pipeline, a 

machine-learning-based approach is used. This study has extensively contributed 

datasets to set up PlantSeg, a deep learning-based pipeline for volumetric instance 

segmentation of dense plant tissues at single-cell resolution (Wolny et al., 2020). 

PlantSeg CNN (Convolutional neural network) pipeline has three modules: CNN 

training, CNN prediction, and 3D cell segmentation (Figure 3.3 A). The CNN 

training module is the beginning of the whole pipeline, this has to be ideally performed 

once, which generates a trained model. The model is then applied in the CNN 

prediction module to run on any new dataset. PlantSeg CNN prediction module 

processes raw microscopic images with a powerful boundary detector that is 

based on Convolutional Neural Networks (CNNs) (Long et al., 2015; Kokkinos, 

2015; Xie and Tu, 2015). The results from the CNN prediction module are taken 

for 3D instance cell segmentation using the 3D segmentation module.  

Once a trained model is generated, the PlantSeg pipeline is a two-step process, it 

takes raw images as input and produces a semantic segmentation of cell boundaries 

which can be instance segmented within the same pipeline (Figure 3.3 A). Semantic 

segmentation is visually represented as predictions or probability map of the input 

image (Figure 3.3 B). Here, it’s called b-pmap (boundary probability map) or boundary 

predictions and is generated from the PlantSeg pipeline. Visually the predictions look 

like an improved cell boundary image of the provided input, but it contains information 
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about pixels in the image if it belongs to a boundary or background, hence called 

semantic segmentation. Instance 3D cell segmentation is when the pixels inside the 

enclosed semantic segmentation are further grouped into objects labels. This is 

performed using the GASP instance cell segmentation method (Bailoni et al., 2019). 

This allows performing any volumetric 3D quantification with cellular resolution. 

3.1.2.2 Establishing PlantSeg pipeline and CNN network trained models 

This study has improved microscopic imaging to a greater extent that now allows to 

produce a near-perfect cell segmentation from microscopic images after extensive 

manual correction. A highly proofread gold standard dataset of Arabidopsis ovules 

generated from this study was used as a major input for PlantSeg CNN model training 

using the CNN training module. First establishing the CNN training requires high-

end computer knowledge and was not part of this study, this was performed by 

group of computer scientists in a collaborative manner (Wolny et al., 2020). This 

study is rather the data bank for establishing the whole pipeline. The performance of 

such a pipeline is greatly dependent on the trained model. An ideal model is when it 

can understand every pixel from the provided raw image in an accurate manner. For 

the same reason, a large number of input images are required for training a good-

performing model. The training dataset included raw cell boundary images and their 

respective ground truths or instance cell segmentation. 48 volumetric confocal 

images stacks of Arabidopsis ovules were provided from this study. Additionally, 

27 images of developing lateral roots from light-sheet microscopy was provided for 

training from another study. This combination has generated a 

versatile trained CNN model “generic_confocal_3d_unet” with good 

performance. Additionally, different models are generated with a combination of 

these datasets that allow users to perform PlantSeg predictions on input images of 

different voxel resolutions. The pipeline is available for public download under the 

PlantSeg GitHub page (Wolny et al., 2020). Detailed workflow for this 

PlantSeg machine-learning-based boundary prediction and segmentation can 

be found under materials and methods section 2.6.2.  

Currently, the PlantSeg model “generic_confocal_3d_unet” is of high performance for 

ovule image datasets. PlantSeg boundary predictions heavily uplifted the quality 

of final instance cell segmentation and adapted the whole procedure from raw image 

to cell segmentation in an automated manner (Figure 3.3 B, C). Overall, the 

PlantSeg pipeline is a huge success for instance cell segmentation from cell outline 

images. This study has valuably contributed to the different phases of establishing 

the PlantSeg 
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pipeline mainly by performing quality control and by providing datasets for training. 

PlantSeg now serves as a benchmark for a deep learning-based plant cell 

segmentation pipeline using the latest advancements in computer science 

Figure 3.3 PlantSeg - Machine-learning-based image segmentation pipeline 
Schematic outline of the PlantSeg cell segmentation workflow (A). The pipeline 
includes three modules, CNN training, CNN prediction and segmentation. Training is 
performed to create a model. The trained model is then used to generate b-pmap using 
the CNN prediction module. The resulting b-pmap is then further processed to obtain 
the final instance segmentation in the segmentation module. 2D orthogonal XZ section 
of raw image and the corresponding b-pmap and segmentation using the PlantSeg 
pipeline (B). A mature Arabidopsis ovule at multiple viewing angles after 3D GASP 
segmented using the PlantSeg pipeline. 

Even after extensive optimizations and uplifting the raw image with PlantSeg machine 

learning-based segmentation, the procedure still resulted in a few mistakes in 

segmentation. In young ovules, the MMC and its direct lateral neighbors at stage 2 is 

the main source of error. In mature ovules, the embryo sac cell boundaries to the 

nucellus tissue are weak and that results in few cell errors in this region. The errors 
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are mainly due to the extremely poor staining of cell boundaries at these regions. It 

could be also due to the cell walls being particularly thin or of a different biochemical 

composition allowing less binding to the cell wall stain which is not detected by the 

PlantSeg model. Minor segmentation errors were partially corrected and were taken 

for further analysis.  

3.1.2.3 PlantSeg-MGX hybrid method as an alternative instance cell 
segmentation method 

PlantSeg b-pmap predicted accurate boundaries from the provided raw image. This 

study took that as an advantage to formulate another method for instance cell 

segmentation. This is a PlantSeg-MGX hybrid method for segmentation. The hybrid 

method uses the b-pmap from PlantSeg and blends it to the raw boundary image 

before ITK segmenting in MGX. The PlantSeg GASP segmentation requires a precise 

b-pmap. For some images, the generated b-pmap might not be accurate because of

the anisotropy in raw image quality and acquisition parameters. A less accurate b-

pmap doesn't perform well with GASP segmentation, whereas the b-pmap, in this

case, can be merged back to the raw image and can be further segmented using the

MGX-ITK segmentation. This was also performed similarly to the classical method of

MGX ITK watershed segmentation where the input image is gaussian blurred to

prevent any watershed leaks. The segmentation results were similar to the GASP

segmentation, only that this workflow requires manual loading of the dataset from

PlantSeg to MGX and processing’s have to be performed in a user-selected manner.

A detailed protocol of the PlantSeg MGX hybrid segmentation can be found under

materials and methods section 2.6.3. The detailed method is also available to public

after the publication from this study (Vijayan et al., 2021)

3.1.2.4 PlantSeg allows instance cell segmentation from low resolution 
microscopic images  

The extensive improvement in the machine-learning-based cell segmentation pipeline 

now provides some additional benefits such that the quality requirements for raw 

images are less demanding. Several models were created by neural network training 

on datasets of different input sizes, this was possible because the training datasets 

could be down sampled to generate a low-resolution raw image and its segmentation. 

The best trained model “generic_confocal_3d_unet” was trained on 2.4 times low 
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resolution image dataset than the original image requirements for segmentation 

without any machine-learning-based inputs. Now, with the advancement of PlantSeg, 

the model requires raw images equivalent to its down sampled training dataset of voxel 

size 0.150µm x 0.150µm x 0.235µm in xyz axis. Whereas the original image 

requirement without PlantSeg was of voxel size 0.063µm x 0.063µm x 0.234µm (xyz). 

To the end, new images were acquired with a compromised voxel size of 0.12µm x 

0.12µm x 0.234µm in the xyz axis with a minimum line average of 3. This helped in 

fast imaging of a less fine raw input image processed via PlantSeg. The resulting 

segmentation was as good as with the original imaging requirements using the 

PlantSeg pipeline. Detailed protocol for the improved imaging could be found under 

materials and methods section 2.5. Overall, using PlantSeg pipeline, ovule imaging is 

now quick, and this has significantly helped in increasing the number of image datasets 

for the study. 
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3.1.3 3D Instance nuclei segmentation and its application 

3.1.3.1 3D nuclei instance segmentation of the nuclei stain and fluorescent 
tdTomato signal 

The 3D ovule image dataset includes a nuclei stain channel (To-PRO-3). To-PRO-3 

detects double-stranded nucleic acids and hence can be a useful tool for nuclear 

DNA quantification and nuclei volume extraction from the dataset. This stain is faint 

and is sensitive to photobleaching. The signal intensity is extremely weak such that 

the raw image fails to precise nuclei segment with any available tools like Cellpose  

(Stringer et al. 2020) (Figure 3.4-A). Major issues include erroneously fused nuclei, 

this is mainly because of these nuclei being close in 3D and the faint signal on 

their background connecting them fused. Nuclei stain is absent in the nucleolus 

resulting in an uneven nuclei surface and its segmentation looking like a hole 

extruded from the surface of nuclei (Figure 3.4-B). Overall, the challenges are in 

fixing the size, shape and the exact number of nuclei. This study also focuses 

on improving the faint nuclei stain segmentation and its further application. 

Segmenting this nuclei stain is extremely challenging for any available tools and 

available trained neural network models. Whereas a nuclei 

reporter pUBQ:H2B:tdTomato produces strong fluorescence that can be 

segmented using most of the available tools. Cellpose was used here for 

nuclei segmenting the tdTomato signals from the H2B reporter images. The raw 

H2B reporter images were processed before segmenting them in Cellpose (Figure 

3.4-C). This enhanced the segmentation quality by size, shape, and number of 

individual nuclei in the 3D image (Figure 3.4-E). Overall, the H2B nuclei reporter 

segmentation could be used to quantify nuclei volume and other nuclear 

morphological features of interest, but for any comparison, the reporter line must 

be generated in separate genotypes such that the nuclei are segmentable. But it 

can’t be used for direct nuclear DNA content estimation as the reporter represents 

H2B signals. All these add several complications when it comes to mutant 

genotypes, additionally, the nuclei reporter is prone to create any plant phenotypes 

depending on where it gets integrated into the genome (Troadec et al. 2019). To 

avoid all these, the nuclei stain segmentation can be improved with any new tools 

such that they are also segmentable. 
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Figure 3.4 Nuclei stain and fluorescent tdTomato nuclei segmentation  
2D section view of To-PRO-3 nuclei image, raw nuclei segmentation in 3D and a 
zoomed view displaying the erroneous segmentation (A). Typical segmentation error 
in the nuclei stains segmentation resulting in improper size, shape and number of 
nuclei (B). Fluorescent tdTomato raw image processing (C). Top row: displaying the 
raw image, bottom row: processed image (brightened and gaussian blurred with a 
small radius of 0.2 in xyz). 3D view of the processed tdTomato signal (D). 3D outer 
view and zoomed view of Cellpose segmentation of the bright tdTomato nuclei 
fluorescence (E).  

3.1.3.2 Machine-learning-based nuclei instance segmentation for precise nuclei 
identification in CLSM dataset 

Like the approach used for improving cell segmentation, machine-learning-based new 

methods or for further optimization of available methods requires 3D image datasets 

for training an ideal model which can be used for the method. The aim here is to 

generate a new variant of a convolutional neural network trained model (like the 

PlantSeg cell boundary prediction model) to be able to predict the nuclei from the faint 

nuclei stain images. The key requirement to the nuclei 3D U-Net training is the dataset 

of nuclei segmentation representing the faint nuclei stain images. Since the nuclei stain 

image segmentation was not precise (Figure 3.4 A), this can’t be used to generate a 

ground truth segmentation for training. The possibility to segment 

pUBQ:H2B:tdTomato (Figure 3.4 C, D, E) fluorescence is taken as an advantage here. 
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Figure 3.5 Dataset for 3D nuclei training 
The training dataset includes SR2200 cell wall stain channel (A), H2B:tdTomato 
channel (B) and To-Pro3 nuclei stain channel (C). Cell boundary image was processed 
through PlantSeg (D). 2D image of the section of raw image was fractionated with the 
view from PlantSeg boundary prediction, the other half representing the PlantSeg 
GASP segmentation. Nuclei segmentation of the tdTomato channel using Cellpose 
(E). Scheme for the training the CNN model where the segmentation from tdTomato is 
used as a proxy for the nuclei stain image segmentation (F). 

This study proposes a novel training dataset composed of three different image 

channels: SR2200 cell wall stain, H2B:tdTomato nuclei reporter and To-PRO-3 nuclei 

stain. SR2200 cell wall stain was processed with the PlantSeg pipeline to generate a 

cell boundary prediction and segmentation. tdTomato nuclei reporter signal was 

segmented using Cellpose as described in section 3.1.3.1 and 2.7.1 (Figure 3.5 A-E). 

Nuclei segmentation from the tdTomato channel could pseudo-sketch the ideal nuclei 

segmentation of the nuclei stain channel. Hence, the segmentation from tdTomato 

fluorescence was used as a proxy for the original nuclei stain segmentation. The 

training dataset includes four 3D image stacks encompassing 8833 nuclei. Only the 

raw images of To-Pro-3 nuclei stain and the segmentation from the tdTomato channel 

was required for the 3D U-Net model training. The available cell segmentation was 

used as a piece of additional information contained within the dataset that can be used 

for further application after having a precise nuclei segmentation. The training dataset 
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was set up from an otherwise not segmentable dataset of faint nuclei images making 

the model an exceptional one than the models available with other tools. Training 

was performed using the PlantSeg module “Training on New Data”. More details 

of the method used for training can be found in Wolny et al., 2020. A successful 

trained nuclei model can be now found under the general list of PlantSeg models, 

and it’s named “confocal_unet_bce_dice_nuclei_stain_ds1”. Again, this study has 

not performed the training, it has generated the reporter line and provided image 

stacks for training and performed quality control for the whole workflow. 

The trained nuclei model was then applied on raw nuclei stain images unseen by the 

trained network using the same CNN prediction module of PlantSeg (Figure 3.6 A, 

B). The resulting nuclei probability map (n-pmap), otherwise called 

foreground-background probability image, has really improved the signal to noise 

identification (Figure 3.6-B). For instance segmentation of the n-pmap, 

simple hysteresis thresholding can be also performed in PlantSeg, but the 

results were not precise segmentation. Finally, the n-pmap images were instance 

segmented in 3D using Cellpose (Figure 3.6-C,E), where every nucleus is provided 

with an object label. The method is hence a PlantSeg-Cellpose hybrid method for 

nuclei segmentation as it uses PlantSeg nuclei model 

“confocal_unet_bce_dice_nuclei_stain_ds1” to generate n-pmap which is further 

exported to Cellpose for instance nuclei segmentation. The faint nuclei were greatly 

recovered with the newly trained model. The nucleoli issue is also solved as the 

segmented nuclei surface is devoid of any artefacts like an extruded hole as in the 

raw nuclei image segmentation. Overall, the trained model performs excellently 

on the raw images of nuclei stains. 

For comparison of the best performing model, another CNN training was 

performed using StarDist (Schmidt et al. 2018; Weigert et al. 2020). The StarDist 3D 

model was trained on the same training dataset as with the PlantSeg nuclei U-

Net model as described before. StarDist uses a neural network to predict the 

shape representing star-convex polyhedra for 3D nuclei. It identifies distance to 

the object boundaries along several radial directions (Star-Convex distances) and 

additionally an object probability map to determine which pixel is part of the nucleus.  
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Figure 3.6 Machine-learning-based precise nuclei segmentation for fain nuclei 
stain images 
2D section image from a raw To-Pro-3 3D nuclei stains z stack (A). Nuclei probability 
map (n-pmap) generated using the PlantSeg nuclei model (B). Nuclei segmentation of 
the n-pmap from PlantSeg using Cellpose (C, E). Comparison of raw image to instance 
segmentation results from the proposed two methods (D, E, F). Top row is a 2D clip 
plane section image from the bottom 3D image. PlantSeg-Cellpose hybrid method 
uses PlantSeg for n-pmap generation, further, it uses Cellpose for instance 
segmenting them (E). StarDist segmentation results are using the StarDist trained 
model generated using the dataset from this study (F). Magnified view of a clip plane 
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in 3D along the orthogonal axis of the images (G). From left to right: raw nuclei stain 
image, n-pmap image, PlantSeg-Cellpose hybrid segmentation and StarDist 
segmentation. Scale Bar 20µm 

Final instance segmentation is performed by non-maximum suppression of these 

values. The StarDist trained model using the dataset from this study performed equally 

well compared to the results from the PlantSeg-Cellpose hybrid method where it uses 

the PlantSeg trained model. Both these methods now allow precise nuclei 

segmentation from the faint nuclei stain images (Figure 3.6 G). Detailed protocol for 

these two improved methods of nuclei segmentation can be found under materials and 

methods section 2.7. Overall, this study has significantly contributed to an 

exceptionally good training dataset which could be a baseline for next generation 

improvement in very faint signals from nuclei stains and its application on different 

images.  

3.1.3.3 Uplifting the cell segmentation based on nuclei domain knowledge 

Despite the heavy improvement in the cell boundary segmentation pipeline with 

PlantSeg CNN boundary predictions, the final image segmentation still includes some 

error in specific regions of the images where the cell wall stain is poor. An example is 

the faint walls around the MMC in young ovules. From the raw cell wall stain images, 

it’s almost impossible to identify the presence of these faint walls (Figure 3.7 A). The 

processed raw images (brightened) along with the nuclei stain clearly displays the faint 

wall and the presence of multiple nuclei in this region (Figure 3.7 B, C). PlantSeg b-

pmap fails to detect boundaries on these poorly stained regions of the images (Figure 

3.7 D) and the PlantSeg GASP cell segmentation results in a false merge error (Figure 

3.7 E). The presence of multiple nuclei in this cell confirms that this is a segmentation 

error and is largely due to PlantSeg not being able to detect these poorly stained walls. 

Figure 3.7 PlantSeg boundary detection fails on poorly stained walls 
2D section image of raw SR2200 cell wall stain image of a young ovule from a 3D 
image stack (A). Processed cell wall stain image (B). Processed cell wall stain image 
overlaid with the nuclei stain image (C). PlantSeg boundary prediction from raw cell 
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wall stain image and its segmentation using GASP method (D, E). Arrows indicate the 
faint wall and the segmentation error. Scale Bar 5µm 

This study proposed a new workflow to make use of the available nuclei segmentation 

to auto proofread cell instance segmentation. This is available as a script for 

proofreading the cell segmentation based on the presence of nuclei. Its currently 

available on public repository in GitHub under PlantSeg-tools (https://github.com/hci-

unihd/plant-seg-tools). This script takes the cell b-pmap, cell segmentation and nuclei 

segmentation as input images (Figure 3.8 A-C). It automatically finds the erroneous 

cell segmentation by first quantifying the number of nuclei within a cell. When it finds 

more than one nucleus, a bounding box is approximated in 3D around this cell. Further 

corrections are only made within the bounding box. Corrections are made by 

resegmenting the erroneous cell using watershed segmentation with nuclei as seeds. 

This method now proofreads the segmentation error in most cases and leaves other 

cells without segmentation errors untouched. This method doesn’t perform when the 

segmentation error is a missing cell instead of an under segmented cell. This study 

didn’t involve in generating this script for correction of these segmentation errors, it has 

only performed quality control in the workflow and adapted it after identifying the 

usability in the dataset. Final instance segmentation is performed by non-maximum 

suppression of these values. The StarDist trained model using the dataset from this 

study performed equally well compared to the results from the PlantSeg-Cellpose 

hybrid method where it uses the PlantSeg trained model. Both these methods now 

allow precise nuclei segmentation from the faint nuclei stain images (Figure 3.6 G). 

Detailed protocol for these two improved methods of nuclei segmentation can be found 

under materials and methods section 2.7. Overall, this study has significantly 

contributed to an exceptionally good training dataset which could be a baseline for next 

generation improvement in very faint signals from nuclei stains and its application on 

different images. Final instance segmentation is performed by non-maximum 

suppression of these values. The StarDist trained model using the dataset from this 

study performed equally well compared to the results from the PlantSeg-Cellpose 

hybrid method where it uses the PlantSeg trained model. Both these methods now 

allow precise nuclei segmentation from the faint nuclei stain images (Figure 3.6 G). 

Detailed protocol for these two improved methods of nuclei segmentation can be found 

under materials and methods section 2.7. Overall, this study has significantly 

contributed to an exceptionally good training dataset which could be a baseline for next 
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generation improvement in very faint signals from nuclei stains and its application on 

different images.  

Figure 3.8 Uplifting cell segmentation based on nuclei domain knowledge 
PlantSeg tools script proofread cell segmentation (A). From left to right: GASP cell 
segmentation from PlantSeg with error in the MMC region, brightened cell boundary 
image, cell boundary image outlined with segmented nuclei mesh and script corrected 
nuclei segmentation. Arrow indicates the region of interest. Input images for Lifted 
multicut cell segmentation (B, C). Left image is the raw image, the right image is the 
result of the PlantSeg boundary or nuclei prediction.  Raw cell boundary image is used 
to generate cell boundary predictions (b-pmap) (B). Raw nuclei image is used to 
generate nuclei prediction (n-pmap) (C). Lifted multicut is performed in PlantSeg, the 
results of LMC (D). Left image is the 3D surface view, the right image is the sagittal 
section view. Figure demonstrating the pipeline of LMC cell segmentation that involves 
generating boundary and nuclei prediction at first step which is then used for cell 
segmented (E).  

A second method was also proposed to perform the cell segmentation from scratch 

where the segmentation algorithm uses the information of nuclei segmentation or 

nuclei probability map to perform the cell segmentation in the first place. The method 

takes raw cell boundary images and nuclei images as input and processes them 

through the corresponding boundary and nuclei CNN model to generate the pmap of 

nuclei and boundary (Figure 3.8-E). Further, the segmentation is performed using the 
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Lifted multicut approach (LMC) (Horňáková et al., 2017; Pape et al. 2019) where the 

nodes in the graph corresponding to different nuclei segmentation are used as domain 

knowledge to introduce additional repulsive edges for cell boundary segmentation. 

Essentially, the nuclei pmap or nuclei segmentation serves as a basis to force each 

cell segmentation to only contain one nucleus. Lifted multicut can be also performed 

with nuclei segmentation from other sources like StarDist nuclei segmentation. This 

study did not implement anything new on lifted multicut pipeline, only that it applied the 

lifted multicut on this new available dataset for comparison of results. Results suggest 

that some improvements are necessary for lifted multicut segmentation using nuclei 

and cell predictions as the segmentation is not optimal (Figure 3.8 D). Overall, the 

improvement in nuclei detection and segmentation with the proposed new nuclei 

segmentation methods for the nuclei stain now allows a possible application in 

improving the cell segmentation using the nuclei domain knowledge but would require 

further optimization when it comes to LMC. The PlantSeg script would still perform well 

on this dataset. The whole procedure for nuclei segmentation or lifted multicut has 

wide applicability in different image datasets from other organs too (results not shown). 

This study has not scored the results of the segmentation from these two methods, 

only qualitative study is performed. 
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3.1.4 Whole organ tissue annotation 
3D cell meshes are quantitatively informative with all geometric attributes and regular 

features that can be studied, but to further look inside the organ, cells must be 

clustered or annotated to different labels representing their tissue type. A surface 

visualization of internal tissues is essential to understand any pattern of cell volumes 

as can be seen at the surface of the organ. Tissue annotation can be performed 

manually, where one must select all cells from one tissue and annotate it with a 

common label representing the tissue. This is labor intensive as one has to manually 

select all cells from the mesh view. An automatic method was well described for other 

organs like root and shoot meristems (Montenegro-Johnson et al., 2015; Montenegro-

Johnson et al., 2019; Schmidt et al., 2014). Tissue classification method in shoot 

meristem (3D cell atlas meristem tools) is simple as it contains a proper layered 

arrangement of cells into L1, L2 and L3.  

3.1.4.1. A semi-automatic method for ovule primordia cell layer detection 

The ovule is a composite of three clonally distinct radial layers (Jenik and Irish, 2000; 

Schneitz et al., 1995). Ovules follow a general principle of plant organ architecture to 

organize itself into L1 (epidermis), L2 (subepidermal layer beneath L1) and L3 layers 

(innermost layer) (Satina et al., 1940). The available automatic method can be applied 

on the ovule primordia, but the challenge is that it requires an organ surface mesh for 

performing the cell type classification. Organ surface mesh is a 2.5D curved mesh at 

the surface of the organ, it wouldn’t have a cell segmentation. It’s used for surface 

estimation of all cells in the organ and thereby cluster them into different tissues. It first 

quantifies the shortest path from individual cell centroids to the nearest vertices on the 

organ surface mesh, then it approximates a cone angle from the cell centroid to the 

surface mesh and quantifies how many cell centroids are inside the proposed cone of 

a cell. When a cell has no other cell centroid in its cone, it’s a cell at the outer surface 

or L1 (Figure 3.9-A, B). An approximated cone for a cell in L2 would contain just one 

centroid of the cell above it. When it contains two cell centroids, it belongs to L3. This 

method works well when a perfect organ surface mesh is available, but occasionally, 

the surface of the organ could have cells that are in contact with the outgrowing organ 

primordia. The resulting surface meshes fail to outline the surface of the cells that are 

in contact (Figure 3.9-B). It's labor intensive to recreate a surface mesh that outlines 

the organ surface in such cases. The same issue exists for ovule primordia as most 
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primordia are attached to one another and a perfect organ surface mesh for layer 

detection requires it to be all around the 3D surface of the organ. 

Figure 3.9 Semi-automatic method for L1, l2 and L3 layer detection 
Illustration of surface distance estimation and cone angle of a layered structure using 
3D cell atlas meristem tools(A) (Illustration adapted from Montenegro-Johnson et al., 
2019). Red dots indicate cell centroid, dotted lines indicate organ surface mesh, angle 
indicate the cone angle. Results of 3D cell atlas meristem layer detection in a shoot 
apical meristem dataset (B). Arrows indicate the surface mesh. Green, blue and yellow 
colors in cells represent the L1, L2 and L3 annotations provided to the 3d cells. Top 
image represents an ideal case where the layer detection works well. Bottom image 
represents a case where the surface cells are in contact with the outgrowing organ 
primordia, which results in improper surface mesh creation and layer detection. Dotted 
black and white lines represent the outline of the continuation of L1 and L2 cells 
respectively which are erroneously detected as L3 cells using the 3D cell atlas 
meristem tools. The new generalized tool used in the study doesn't involve a surface 
mesh creation (C, D). Figure C from left to right: heatmap of outside wall area ratio, 
heatmap of cell distances from the L1 cells and the results of L1,L2 and l3 layer 
detection using the new proposed method. Heatmap of outside wall area ratio ranges 
from 0 to 0.7, the values represent the ratio of unshared wall area to shared wall area 
of individual cells. Heat values of cell distance represent how many cells away is an 
individual cell from the L1 cells. L1 cells are selected (marked red) to detect the cell 
distances. The usability of the new proposed method (D). From left to right: unlabelled 
3D cell mesh as an input, layer detected mesh using the new method, organ detection 
by selecting the distal tip of the organ, unique labels of individual ovules. Arrows 
represent the user selected distalmost cell that is used for organ separation. Box 
represents a transverse section view representing the radial layers and organ identity 
labels. Scale Bar 20μm. 

In this study, a new generalized method is proposed that clusters cells into L1, l2 and 

L3, but without a need for a surface mesh. The method is very simple, as a first step, 

L1 cells are clustered by a cell feature that is distinct for them. An obvious feature is 

that the cells at the outer surface of the organ don’t have a neighboring cell at the outer 

surface, in other words, it would have a high outside cell wall area unshared with any 
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neighboring cell (outside wall area ratio) (Figure 3.9-C). This is used to identify and 

cluster L1 cells. Once the L1 cells are clustered, L2 and L3 cells are found by their 

relative distances to the L1 cells. A network of cell centroids is established and 

the shortest number of centroids a cell must cross to reach to the nearest L1 

cell is estimated with the cell distance measurement. Essentially, the results of cell 

distance for a cell of interest would be how many cells it is away from L1. This can be 

directly used to cluster these cells to L2 and L3 as L2 is one cell away from L1 and 

L3 is more than 1 cell away from L1.  

Finally, all these features mentioned above were made into a user-friendly tool in the 

MGX “Detect Cell Layer Stack” that performs layer detection in just one click (Figure 

3.9-D). This method uses the segmented stack for quantifying the cells with voxels on 

the surface or in other words, unshared outside wall area in the first place. As a 

second step for ovule primordia tissue labelling, individual ovules must be separately 

marked such that attributes of an organ can be compared to another. For organ 

separation, another semi-automatic method was used. The user must select a cell at 

the distal end of the organ and from different ovules at the same time to run another 

process (“Label Ovules”) that clusters all cells from the organ into one class. Further 

another process was used for unique label creation of individual ovules that 

contains the L1, L2, L3 information and the ovule identity information. The 

proposed method does not completely solve the issue when the surface cells are 

in full contact, but when there is partial contact that still leaves behind a significant 

outside unshared cell wall area, the process works well. A detailed protocol for the 

method can be found under materials and methods section 2.10. Overall, the 

proposed new method for layer detection is easy and fast as it does not require 

surface mesh generation and the results are near perfect layer detection with 

minimum user input. The method also has wide applicability in other organs.  

3.1.4.2. Mature ovule cell type identification 

3D cell mesh was partially annotated for tissue labels using cell atlas meristem tools. 

Automatic identification resulted in labelling around 60% of the population of cells. 

Further, the corrections were made using interactive mesh tools in MGX. Overall, the 

whole procedure was performed in a combined effort of a semi-automatic and manual 

method. Cell types were identified by mainly looking at the positional layer depth of the 

cell of interest, additional factors like 3D cell morphology and cellular connectivity with 
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neighbors were also used as hints to identify and cluster them. Detailed protocol for 

tissue labelling can be found under materials and methods section 2.10.  

Figure 3.10 3D Cellular organization of different tissues in a mature Arabidopsis 
ovule 
Mid sagittal section view of a mature ovule at stage 3-IV (A). 3D surface view of tissues 
extracted from the cell mesh using MGX mesh tools (B). Top left: outer surface of the 
organ, basically the outer surface of OI2 and funiculus are the visible tissues from 
outside. Top right: surface view after removing the OI2 layer of cells and the anterior 
chalaza, visualizing the surface of OI1, p-chalaza and funiculus. Bottom left: surface 
view after removing the OI2, OI1 layer of cells and the anterior chalaza, visualizing the 
surface of II2, p-chalaza and funiculus. Bottom right: surface view after removing the 
OI2, OI1, II2 layer of cells and the anterior chalaza, visualizing the surface of II1, p-
chalaza, funiculus and partially extruded embryo sac. Different colors indicate different 
tissues labels annotated to the organ. Abbreviations es: embryo sac, nu:nucellus, OI2: 
outer layer of outer integument, OI1: inner layer of outer integument, II2:outer layer of 
inner integument, II1:inner layer of inner integument, fu:funiculus, a-ch:anterior 
chalaza, p-ch:posterior chalaza. Scale bar 20µm. 

A fully automated method for mature ovule cell labeling is extremely challenging, 

mainly because of the complex organization of tissues in 3D. The core of the organ is 

composed of embryo sac (es) and nucellus (nu) (Figure 3.10-A). The embryo sac or 

female gametophyte contains the egg cell and it later develops into the embryo upon 

successful fertilization. There are two sheet-like lateral determinate organs of 

epidermal origin surrounding the nucellus and embryo sac, the outer and inner 

integument (OI and II). Each of the two integuments forms a bilayered structure, 

essentially forming four layers of cells surrounding the nucellus and embryo sac. Two 

layers of outer integument (OI1, OI2) and two layers of inner integuments (II1, II2). 

Eventually, the inner integument forms a third layer (ii1’). Chalaza is the central region 

of the ovule from where the integuments are initiated at an early stage. Chalaza can 
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be subdivided into anterior (a-ch) and posterior chalaza (p-ch). Funiculus (fu) is the 

stalk-like structure that connects the ovule to the placenta (Figure 3.10-A).  

Tissue labeling now allows extensive morphological examination of the organ in 3D. 

MGX mesh tools allow to remove or separate tissues from the 3D cell mesh view, this 

opens more freedom to understand the shape of individual tissues at their surface view 

(Figure 3.10-B). This was never possible with any traditional or high-end microscopic 

approach like electron microscopy, but now with the advanced digital model of 

microscopic images. The outer layer of outer integument (OI2) is a hood-like structure 

surrounding the inner tissues. OI2 has proximal regions unshared with other 

integument layers. OI1, II2 and II1 form a curved cylinder-like shape from the outside 

surface. There is a visible bent in the central axis of inner tissues suggesting that the 

inner tissue follows the shape observed on the outer surface but does not extend as 

long as the outer surface of OI2. 
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3.2 Stage-specific 3D digital ovules atlas with cellular and 
tissue resolution 

After all the refinement with the imaging method and machine-learning-based image 

improvement and segmentation, the wild-type 3D Arabidopsis ovule dataset was 

generated that is composed of images of ovules from different developmental stages 

which are finally processed to 3D segmented cell meshes with cellular resolution. This 

study mainly focused on methods development for generating these precise models 

from raw microscopic images on section 3.1. Section 3.2 focuses on further exploration 

of the dataset and quantitative analysis with tissue resolution.  

A full length understanding of the whole series of development can be explored from 

this dataset and in 3D. This 3D digital model serves as a next generation basic 3D 

atlas of the organ. Moreover, several models from the same developmental stage were 

generated to increase the sample number for general quantitative and qualitative 

analysis (Figure 3.11 A). Number of 3D digital ovules scored: 10 (stages 2-III, 2-IV, 2-

V, 3-I, 3-II, 3-IV, 3-VI), 11 (3-III, 3-V), 13 (stage 2-II), 23 (stage 1-I), 49 (stage 2-I), 66 

(stage 1-II).  

Figure 3.11 Stage specific 3D digital models of wild type Arabidopsis ovules 
Mid-sagittal section of ovules from stages 1-I to 3-VI showing the cell type organization 
in wild-type ovules. Stages 1-I to 2-II includes radial L1, L2, L3 labeling. From stage 2-
III, individual cell type labels are assigned according to the specific tissue. 
Abbreviations: fu:funiculus, ch: chalaza, nu:nucellus, es: embryo sac, OI2: outer layer 
of outer integument, OI1: inner layer of outer integument, II2:outer layer of inner 
integument, II1:inner layer of inner integument. Scale bar 20µm. Figure modified from 
Vijayan et al ., 2021 eLife. 

3.2.1 3D wild-type Arabidopsis ovule dataset 

The atlas covers all stages from early primordium outgrowth to the mature pre-

fertilization ovule. The high-quality dataset includes 158 wild-type 3D digital ovules 

across stage 1-I to 3-VI. The additional dataset contains another 85 early-stage 3D 
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digital ovules with potentially a few segmentation errors. Overall, the improvement in 

nuclei segmentation and its based uplifting of cell segmentation was a later 

development such that the wild-type Arabidopsis ovule dataset used in this study still 

contains a few segmentation errors but that of an acceptable number of errors. The 

high-quality dataset was extremely proofread manually for segmentation errors from 

stages 1 to 2-II and 3-I to 3-IV. For stages 2-III to 2-V, ovules containing no more than 

five under-segmented were included for analysis. From stage 3-I to 3-IV, ovules devoid 

of segmentation error in the sporophytic tissue were used for the study.  

3.2.2 3D morphological overview of Arabidopsis ovule development 

Improved ovule imaging method now allows to capture every stage of Arabidopsis 

ovule development with cellular resolution. Ovule development in Arabidopsis thaliana 

is well described at the gross-morphological and cellular levels (Robinson-Beers et al. 

1992; Schneitz et al. 1995; Hernandez-Lagana et al. 2021; Vijayan et al. 2021) (Figure 

3.12). The earliest ovule stage 1 is when they appear to be initiated as finger-like 

protrusions from the placental surface. (Staging according to (Schneitz et al. 1995; 

Vijayan et al. 2021). As soon as they grow into a straight structure, three pattern 

elements can be recognized along the proximal-distal (PD) axis of the primordia: 

proximal funiculus, central chalaza and distal nucellus. The funiculus is a stalk-like 

structure, harbors the vascular strand and that connects the ovule to the placenta. 

Central chalaza is where the integuments are initiated from its flanks during stage 2.  
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Figure 3.12 3D morphological overview of Arabidopsis ovule development 
3D rendered image of the outer surface of Arabidopsis ovules from microscopic z 
stacks imaged with the improved ClearSee method (A). The figure represents ovules 
at different developmental progression starting from stage 1-I to stage 3-VI. 
Abbreviations fu:funiculus, nu:nucellus, ii:inner integument, oi:outer integument. Scale 
bar 20µm. Figure modified from Vijayan et al., 2021. 

The outer integument represents a bilayered structure while the inner integument 

eventually consists of three cell layers. Nucellus generates a large megaspore mother 

cell (MMC) in the L2 that will undergo meiosis during stage 2. During stage 3 one of 

the meiotic products eventually develops into the haploid embryo sac or female 

gametophyte carrying the egg cell proper. The chalaza is characterized by two 

epidermally-derived integuments, determinate laminar tissues that initiate from its 

flanks during stage 2. The two integuments grow around the nucellus at later stages 

of development, and they leave open a small cleft, the micropyle, through which the 

pollen tube can reach the embryo sac. Finally, the curved shape of the mature 

Arabidopsis ovule represents a prominent aspect of its morphology. It is caused in part 

by the integuments bending around the nucellus during stage 3 until their tips 
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eventually locate next to the funiculus (anatropy). In addition, differential growth 

causes the funiculus to bend as well. Overall, the mature ovule exhibits a characteristic 

doubly curved structure (Figure 3.12). 

3.2.3 Polarity and overall assessment of ovule development 

Arabidopsis ovule developmental stages were defined using the morphological 

features from Schneitz et al., 1995. 3D ovules were looked at at the organ surface with 

a heatmap for cell volumes. Overall, the organ undergoes a high amount of growth as 

the early ovule primordia are particularly tiny compared to a mature ovule at stage 3-

VI before fertilization. The fundamental question here is if the growth is mainly by cell 

divisions or enlargements or combined action of both. 

The heatmap of cell volumes (Figure 3.13-A) illustrates that cell enlargement is 

happening as the organ grows from the young to mature stages. Young stage ovules 

are composed of cells of comparatively smaller size than older stages. Attributes from 

the 3D cell mesh now allow performing a general quantitative analysis on the total 

count of cells in the organ and cell volumes of individual cells in the organ which can 

be further used to quantify the total size or volume of the organ in 3D. The early ovule 

primordia consist of nearly a few cells of around 40 numbers. At stage 3-VI, the 

numbers gradually rise to an average of about 1900 cells (1897 ± 179.9 (mean ± SD)) 

(Table 1). The volume of the organ increases about 100 times from 0.5 x 104 μm3 (0.5 

x 104 ± 0.09) at stage 1-I to about 50 × 104 μm3 (49.4 × 104 ± 7.2 × 104). This suggests 

that the observed growth is imparted because of the combined effort of cell divisions 

and enlargement of individual cells. Attributes of cells also included mitotic cell 

information by manual annotations from the nuclei stain channel. The number of mitotic 

cells was not constant throughout the development, but the overall percentage of 

mitotic cells was on average always less than 1.8 %.  
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Figure 3.13 3D overall assessment of wild-type Arabidopsis ovule development 
Surface view of the organ at different developmental stages displaying heatmaps of 
cell volumes from the 3D segmented cell mesh. Heat values ranging from 0 to 1200 
µm3 (A). Ovule central axis: proximal, distal, anterior, posterior (B). Heatmap of cell 
volumes of a mature ovule at different views (C). From left to right: 3D outer view 
illustrating the different planes of the organ, mid-sagittal section view, 3D clip plane 
section on a transverse plane and 3D clip plane section on a frontal plane. White lines 
indicate the 3D radial axis from the organ center (D, E) Plots depicting the total number 
of cells and total volume of individual ovules from early to late stages of development, 
respectively. Number of 3D digital ovules scored: 10 (stages 2-III, 2-IV, 2-V, 3-I, 3-II, 
3-IV, 3-VI), 11 (3-III, 3-V), 13 (stage 2-II), 23 (stage 1-I), 49 (stage 2-I), 66 (stage 1-II).
Mean ± SD is shown. Scale bar: 20 μm. Figure modified from Vijayan et al., 2021.

Stage* N Cells Volume 
(x104 μm3) 

N Mitotic cells % Mitotic cells 

1-I 39.6 ± 5.3 0.5 ± 0.09 1.0 ± 0.0 0.7 ± 1.2 

1-II 74.0 ± 17.1 1.0 ± 0.2 1.3 ± 0.5 0.7 ± 0.9 

2-I 176.9 ± 31.5 2.5 ± 0.4 3.1 ± 2.1 1.8 ± 1.2 

2-II 220.6 ± 24.9 2.7 ± 0.6 2.7 ± 1.6 1.1 ± 0.7 

2-III 324.1 ± 32.9 4.1 ± 0.7 3.6 ± 1.7 1.0 ± 0.7 

2-IV 447.1 ± 30.7 5.9 ± 0.6 4.1 ± 1.7 0.9 ± 0.4 
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2-V 648.7 ± 81.5 9.7 ± 1.6 7.3 ± 3.0 1.1 ± 0.5 

3-I 948.1 ± 92.5 18.1 ± 2.7 6.4 ± 3.0 0.7 ± 0.3 

3-II 1178.0 ± 58.0 27.0 ± 2.5 10.4 ± 4.4 0.9 ± 0.4 

3-III 1276.0 ± 97.7 28.9 ± 3.8 10.7 ± 2.8 0.9 ± 0.2 

3-IV 1387 ± 111.9 34.0 ± 3.3 5.36 ± 1.8 0.4 ± 0.1 

3-V 1580.0 ± 150.7 39.4 ± 3.5 7.9 ± 5.3 0.5± 0.3 

3-VI 1897.0 ± 179.9 49.4 ± 7.2 11.1 ± 2.7 0.6 ± 0.2 

Table 1. Cell numbers and total volumes of ovules at different stages 

aNumber of 3D digital ovules scored: 10 (stages 2-II- 3-II, 3-IV, 3-VI), 11 (stages 2-I, 
3-III, 3-V), 13 (stage 2-II), 14 (stage 1-I), 28 (stage 1-II).
Values represent mean ± SD. Table modified from Vijayan et al., 2021.

Studying ovules in 3D now allows to properly define the different planes and axes of 

the organ in 3D. Ovule has a primary proximal-distal axis and an anterior and posterior 

axis (Figure 3.13-B, C). The organ can be also looked at in different 3D planes: sagittal 

plane, transverse plain and the frontal plane (Figure 3.13-C). Interestingly, cell 

volumes at the mature organ surface follow a spatial pattern, cells at the proximal 

region are composed of small cells whereas the distal region is composed of enlarged 

cells (Figure 3.13-C). This suggests that there might be proximal distal polarity in the 

cell volume pattern on the organ surface at maturity. 3D clip plane allows further 

understanding of the cell volumes of internal tissues at the section (Figure 3.13-C). 

Heatmap from the section views illustrates that the cell volumes of internal tissues are 

not as enlarged as the outer layer. Essentially, the polarity is observed on the outer 

layer of outer integument cells which are located at the organ surface. The funiculus 

doesn’t seem to be part of this polarity in cell volumes. Although the section analysis 

gives a good hint of what is occurring inside the organ, the full picture of the pattern is 

not clear. To further understand the pattern in fine details, the 3D cell mesh has to be 

annotated for tissue labels. A tissue label would allow further extraction of cell volumes 

from individual tissues with cellular resolution. 

3.2.4 Continuous growth of early ovule development 

Ovules arise as finger-like protrusions from the placental surface. The ovule primordia 

were staged as early stages 1-I, 1-II, 2-I and 2-II (Schneitz et al., 1995) (Figure 3.14-

A). Ovules are initiated by periclinal divisions on the sub epidermal tissue of the 
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placenta (Hill and Lored, 1994). Stage 1-I is marked by a small bulge on the surface of 

the placenta. Stage 1-II is when the bulge forms a protrusion-like elongated finger-like 

structure. Stage 2-I is marked by the presence of MMC in the L2. Stage 2-II is when 

the inner integument initiation happens. Morphologically, all these landmarks were 

used for staging the young ovules. But, with the advancement of 3D digital models, we 

could now quantify several features of the primordia like the total number of cells in the 

primordia and in individual cell layers, the proximal distal (P-D) extension of the 

primordia etc. It was unknown if the primordia have distinct growth phases or pulses 

where it grows from one stage to another or if it undergoes a continuous growth.  

To better understand the primordial development, total volume of the primordia was 

quantified for all primordia dataset, also total number of cells and the P-D extension 

(Figure 3.14- D, E, F). The values were ranked in an increasing order to evaluate the 

presence of any growth pulses. Results from overall primordia volume (size), total 

number of cells and P-D extension indicate that there is no growth pulse between 

different stages and ovules grow in a more continuous fashion (Figure 3.14- D, E, F). 

A steady and continuous rise in the values indicate that there are no major fluctuations 

happening to the primordia growth. 

The primordia grow in a continuous manner making it challenging to define proper 

quantitative landmarks for separation of different stages. However, one can rank 

ovules based on the three features used here (size, total number of cells, P-D 

extension) and identify or compare ovules as young or old to each other. To further 

demonstrate the stage classification, a gene expression pattern could be used. Vijayan 

et al., 2021 demonstrates the WUS expression in young ovules. WUS expression was 

first observed in ovule primordia with a total number of 50 cells. The proposed criterion 

is to cluster all ovules with less than 50 total number of cells as stage 1-I. Stage 2-I is 

defined by the emergence of the large L2-derived MMC at the distal tip of the 

primordium (Schneitz et al., 1995), it was easy to identify MMC based on their position 

and size. After detailed visual and quantitative examination of the L2 cell volumes the 

proposed definition of a stage 2-I is when the MMC has a minimal cell volume of 335 

μm3. At stage 2-I, an average MMC volume was quantified 543 μm3 (543.3 ± 120.6). 

Later this was used to define a stage 2-I ovule. A stage 1-II ovule never has a distinct 

enlarged distal cell, a maximum volume of L2 cells at stage 1-II was observed 297.6 

μm3 and visual inspection revealed that this cell wasn't at the distal end of L2. That 

makes it easy to cluster stage 1-II ovules as they have more than 50 cells in total and 
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no distal enlarged L2 cell with a volume more than 335 μm3. Taking these 

considerations into account, ovule primordia grow to a volume of about 1.8 × 104 μm3, 

or a cell number range of approximately 125–135 total cells, and to a height range of 

about 41– 43 μm when they enter stage 2-I. For each of the three parameters, a small 

number of ovules fell into the range of overlap: five for the PD extension and seven 

each for total volume of primordium and total cell number per primordium. These 

numbers account for 3.6% and 5.1% of the total of 138 scored ovules, respectively. 

The results indicate that ovule primordia reach a size threshold before they transition 

from stage 1-II to stage 2-I.  

Figure 3.14 Ovule primordia grows in a continuous manner 
2D mid sagittal section view of 3D digital ovules with L1, L2 L3 tissue labels in green, 
blue and yellow colors respectively (A). Figure Illustrating quantification of proximal-
distal extension of three different ovules from the same placental surface (B). Heatmap 
indicates the P-D distance values quantified. 3D ovules of different P-D length 
extracted from the dataset to demonstrate continuous growth of primordia (C). Graph 
representing the continuous growth of primordia from the quantitative measures of P-
D extension (D), overall size or volume of the primordia (E) and total number of cells 
per primordia (F). Scale bar 20µm. 
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3.2.5 Tissue specific analysis of ovule primordia 

Overall size of an organ is influenced by two main factors, cell proliferation and cell 

expansion. Plot of continuous volume increase and cell increase (Figure 3.14 E, F) 

indicate that the organ size increases during growth, and it also involves cell 

proliferation as the total number of cells increases. But these graphs do not infer 

anything about individual cell volumes. Is there cell enlargement happening along with 

cell proliferation during the growth? To further investigate this, a quantitative study was 

performed by grouping ovules into stage 1-I, 1-II and 2-I with the criterions mentioned 

before.  

Figure 3.15 Tissue specific quantitative analysis of cell expansion and 
proliferation in ovule primordia 
Quantification of overall mean cell volumes of stage 1-I, 1-II and 2-I (A). Quantification 
of cell volumes in L1, L2 and L3 layers from stage 1-I, 1-II and 2-I (B). Quantification 
of total number of cells per primordia at different stages (C). Quantification of number 
of cells in different tissue layers (D). Heatmap depicting the percentage of proliferation 
caused by individual tissues during growth from one stage to the next (E). 



101 

Results indicate that there is no statistically significant increase in cell volume from 

stage 1-I to 1-II, whereas there is a significant increase from stage 1-II to 2-I (Figure 

3.15- A). Mean cell volume of primordia increases just 1.1 times from stage 1-I to 2-I 

(128.4 ± 44.6 to 141.3 ± 58.2 μm3). The significant increase could be mainly because 

of the presence of an enlarged MMC cell in L2 during stage 2-I. To evaluate this 

hypothesis, similar quantitative analysis was performed by grouping the cells based on 

L1, L2 and L3 (Figure 3.15- B). As expected, results indicate that there is a significant 

increase in L2 cell volume from stage 1-II to 2-I. Interestingly, L1 cell volume was also 

significant between stage 1-II and 2-I. There was no significant increase in cell volumes 

of the L3 layer of cells. Overall, the results indicate that there is a small, but significant 

increase in mean cell volume between stage 1-II and 2-I and is caused because of cell 

volume increase in the L1 and L2 layer of cells. Additionally, cell volumes of L1, L2 and 

L3 at the same stage were compared to identify if there are any volumetric differences 

between cells of these tissues. Results indicate that L1 is composed of cells of 

significantly low volumes compared to L2. This is true for stages 1-I and 1-II (Figure 

3.15- B).  

Total volume increase of the organ or the organ size from one stage to the next is 

influenced by an increase in total number of cells by proliferation and or by an increase 

in individual cell volumes. Quantitative analysis of the total number of cells at different 

stages reveals that there is a significant increase in the number of cells and hence cell 

proliferation is happening (Figure 3.15- C). Further, analysis of the same with tissue 

layer resolutions indicate that L1 and L2 undergoes proliferation while the organ grows 

from stage 1-I to 2-I (Figure 3.15- D). L3 from stage 1-I to 1-II had no significant 

increase in cell numbers. Additionally, the results were analyzed as a form of heat 

percentages indicating which of the tissues are undergoing active divisions (Figure 

3.15- E). The heat values indicate the percentage of cell proliferation caused by the 

tissue of interest compared to the overall cell proliferation. Essentially, the increase in 

number of cells was quantified between stages and with tissue resolution to calculate 

the percentages. As an example, a ratio of increase in number of L1 cells to the overall 

increase in the number of cells gives the percentage of proliferation caused by the 

divisions in L1 cells. Results indicate that the organ grows mainly by divisions in the 

L1 cell layer and partly by L2 cell layer. L3 is least involved in cell proliferation. Overall, 

L3 maintains the cell volume and undergoes less divisions compared to L1 and L2. 

Cell volume analysis also revealed that L1 cells are significantly lower in size than L2 

layer cells. Overall, the results also infer that L1 is composed of actively dividing small 
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cells compared to L2 and L3 and hence L1 is composed of many cells compared to L2 

and L3. 

A summary of both cell volume analysis and proliferation indicates that most of the 

growth happening from stage 1-I to 2-I is by cell proliferation, while we can’t exclude a 

small factor of growth caused by a significant increase in L1 and L2 cell volumes from 

stage 1-II to 2-I. 

3.2.6 Synchrony and variability in ovule primordia development 

Ovule development in Arabidopsis thaliana has been described to follow a 

stereotypical pattern (Robinson-Beers et al., 1992; Schneitz et al., 1995). However, it 

is unclear if ovules within a pistil develop in a synchronous fashion. Taking advantage 

of the 3D ovule atlas, an initial assessment of the regularity of primordia formation 

between ovules developing within a given pistil was visually identified (Figure 3.16-A). 

Spacing between primordia was observed to be not uniform (Figure 3.16-A). 

Quantitative analysis of the P-D extension of these primordia reveals that there is a 

maximum of about two times difference in these primordia from the same pistil 

fragment (Figure 3.16-B). Six out of the eight analyzed stage 1 primordia showed a 

comparable number of cells (140.5 ± 10.84, mean ± SD, ovules 1–5, 7) (Figure 3.16-

C). However, two primordia exhibited a smaller number of cells with ovule #6 being 

composed of 91 and ovule #8 of 57 cells, respectively. Interestingly, the cell number 

of a primordium does not necessarily translate into its respective height or proximal-

distal (PD) extension. For example, ovule #2, which is composed of 150 cells and thus 

of the second largest number of cells of the analyzed specimen, represents the second 

shortest of the eight primordia with a height of 26.5μm (Figure 3.16-C). Its comparably 

large number of cells relates to a wide base of the primordium. Taken together, this 

analysis indicates that ovule primordium formation within a pistil is relatively uniform, 

however, some fluctuation can be observed. 

Additionally, the variability in ovules was tested by looking at ovules composed of 

relatively few cell differences. Eight ovules composed of a total number of cells 57 to 

62 were extracted from the dataset and the total volume difference was quantified 

(Figure 3.16-D). These ovules are not necessarily from the same pistil fragment. 

Results illustrate that there is a maximum of 1.27 times difference in total volumes of 

these ovules (7787 ± 712.6, mean ± SD) (Figure 3.16-D). A violin plot of individual cell 

volumes from these eight ovules illustrates that there is no same pattern of cell 
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volumes (Figure 3.16-E). There is fluctuation in the pattern observed on different 

ovules. One can’t exclude that the cells quantified here are at different cell cycle 

phases and the enlarged ones are the cells prior to division. Overall, the quantification 

indicates that there are differences in overall and individual cell volumes between 

ovules composed of the similar total number of cells. 

Figure 3.16 Synchrony and variability in ovule primordia development 
Multiple ovule primordia from the same pistil fragment illustrating the fluctuation in 
synchronous development and spacing between primordia (A) (Figure modified from 
Wolny et al., 2020). Numbers indicate the ovule identity used to explain the differences. 
Plot illustrating P-D extension of the primordia (B). Plot illustrating the total number of 
cells per primordia (C). Plot depicting the total volumes of the ovule primordia used for 
variability study (D). Violin plot depicting the variability in individual cell volumes of 
these eight ovules (E). Scale bar 20µm. 

3.2.7 First morphological manifestation of polarity in the young ovule 

A mature ovule has a final orientation along the pistil axis where it orients its micropyle 

towards the apex of the pistil (Figure 3.17-A). This is termed gynapical-gynbasal 

orientation as it denotes the ovule orientation with the apical-basal axis of the 

gynoecium (Simon et al., 2012). The study here aims to understand when and how  
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Figure 3.17 Ovule primordia slanting 
Figure illustrating the final gynapical-gynbasal orientation of mature ovules (A). a 3D 
bounding box with ovules indicates the final orientation of the ovules inside the 
gynoecium with the micropyle facing the apex (stigma) of the gynoecium. The posterior 
and anterior sides of the ovules are oriented gynbasally and gynapically, respectively. 
The white arrow indicates the pistil axis. Figure illustrating the three primary planes of 
ovule primordia: sagittal, transverse and frontal (B). Proximal distal axis on the anterior 
side of the organ is marked, additionally the Medial (M) lateral (L) axis is marked on 
the rightmost ovule primordia by M, L, M. 3D meshes with multiple ovules from the 
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same carpel attached to the placenta showing unslanted ovules at stage 1-I and 
slanted ovules at stage 2-I (C). The 2D grid represents the surface of the placenta. 
Color labels depict the anterior and posterior cells, respectively. The pistil axis is 
indicated with an arrow. Plot depicting the extent of slanting, quantified by the 
difference in maximal length on the anterior and posterior sides of the ovule at stages 
1-I, 1-II, and 2-I (D). Data points indicate individual ovules. Mean ± SD are represented
as bars. 2D mid sagittal section views of 3D cell meshes from early ovules depicting
the quantified distances on both halves of the organ (E). Stages are indicated. The
heatmap on the surface cells of posterior and anterior halves depicts the quantified
distance value between individual measured cells to the distal tip of primordia. Number
of 3D digital ovules scored for slanting: 23 (stage 1-I), 49 (stage 2-I), 66 (stage 1-II).
Expression pattern of KAN1:GFP in a young ovule primordia (F, G). Signal
quantification of the KAN1:GFP from the surface segmented mesh. Heatmap is max
min normalized according to signal intensity for simplicity. Number of ovule primordia
scored for KAN1 signal- 9. Scale bars: 20 μm.

this orientation is set up during the development. 3D meshes of the early primordia is 

a good starting point for better understanding this patterning. 

Ovule primordia can be looked at three primary planes: sagittal, transverse, and frontal 

plane (Figure 3.17-B). Frontal plane is identified by the plane on which adjacent ovule 

primordia can be found on the same plane. The sagittal plane is orthogonal to the 

frontal plane and is the plane mostly used for representation of mature ovules. 

Transverse plane is identified by the plane parallel to the placental surface and 

orthogonal to both the transverse and frontal plane. Upon careful examination of the 

meshes containing multiple ovules from the same pistil fragment, I found that ovule 

primordia at stage 1-II were positioned at a hitherto undescribed slant relative to the 

placenta surface (Figure 3.17-C). The frontal plane separates the slanted halves of the 

organ, a longer half, and a shorter half. 

Even though the slant was morphologically cogent, a quantitative analysis was 

performed to better evaluate the extent of slant at different developmental stages. For 

quantitative analysis, the PD distance along the surface of the organ was extracted 

from the meshes using cell distance tools (Detailed method for this analysis is 

explained in materials and methods section 2.13). Essentially, the distances along the 

surface of the shorter and longer side of the slant was used for quantification. Results 

from quantitative analysis support qualitative morphological analysis. Slant was barely 

detected at stage 1-I, became more tangible during stage 1-II, and was prominent by 

stage 2-I (Figure 3.17-D, E). 
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Detailed examination of the orientation of slant illustrates that the primordia slanting is 

along an axis orthogonal to the apical-basal axis of the gynoecium, where the short 

side of the slant faces the developing septum. Since this axis showed a different spatial 

arrangement to the future gynapical-gynbasal orientation, I defined the short half of the 

primordium slant as the posterior and the opposite half as the anterior sides of the 

primordium. The three PD pattern elements are supported by gene expression 

patterns. For example, the homeobox genes WUSCHEL (WUS) and BELL1 (BEL1), 

are specifically expressed in the nucellus and chalaza, respectively (Reiser et al. 1995; 

Gross-Hardt et al. 2002; Vijayan et al. 2021). Slant formation coincides with anterior 

expression of PHABULOSA (PHB) during stage 1 (Sieber et al., 2004). In emerging 

lateral organs, members of the class III HD-ZIP and KANADI gene family are typically 

expressed in neighboring domains (Emery et al. 2003; Kerstetter et al. 2001; 

McConnell et al. 2001; Yadav et al. 2013). Spatial signal distribution of 

pKAN1::KAN1:2xGFP, a well-characterized reporter for KANADI1 (KAN1) expression 

(Caggiano et al. 2017) was found to be always at the posterior half of the ovule 

primordia (Figure 3.17-E, F). The results indicate that expression of 

pKAN1::KAN1:2xGFP serves as a marker for the posterior domain. 

Slanting represents the first morphological manifestation of polarity in the young ovule 

primordium that separated the organ along the frontal plane. Overall, slanting has 

turned the organ from a more radial symmetric initial structure to a bilateral symmetric 

structure. Morphological examination of slanted ovules indicate that they don't align 

with the final orientation of the organ along the gynapical-gynbasal axis, instead, it was 

found that slant is along an axis perpendicular to the final orientation of the organ. 

3.2.8 Post slanting reorientation of anterior-posterior axis 

Since, the slant orients the organ orthogonal to the final gynapical-gynbasal orientation 

along the pistil axis, the hypothesis here is that the organ might undergo a turn of about 

90 degrees from its slanted orientation such that the slant translates to the final 

gynapical-gynbasal orientation. Otherwise, the final orientation would be established 

with a different mechanism irrespective of the slant. 

To further understand how the organ orient along the final gynapical-gynbasal axis, 

stages followed by slanting was carefully analyzed for any changes in the orientation 

of the central axis of the organ and any changes due to the integument initiation. Outer 

integument was found to be always initiated at the posterior side of the organ. 



107 

Following the outer integument initiation, the organ tends to have a slightly turned 

orientation towards the pistil apex (Figure 3.18-A). The alignment of sagittal plane is a 

good estimate of the orientation of the organ. Overall, it seems to be a series of events 

starting from early-stage ovules where they first form the slant that defines the anterior 

and posterior side of the organ. Further, outer integument initiation occurs at the 

posterior side and at the same time or afterwards, the ovule undergoes a slight turn 

that finally orients the organ along the gynapical-gynbasal axis.  

To further clarify and evaluate this statement, a qualitative study was performed on 40 

stage 2-III and 2-IV 3D digital ovules attached to placenta. Orientation of the sagittal 

plane relative to the pistil central axis was scored in every case (Figure 3.18-  

Figure 3.18 Reorienting the ovule central axis after integument initiation 
Reorientation of the anterior-posterior axis relative to the apical-basal axis of the 
gynoecium after outer integument initiation (A). From left to right: 3D mesh of slanted 
ovules of early stage 2, stage 2-III ovules with a slight turn in the orientation and stage 
2-IV/2-V ovules with a more pronounced turn in their orientation. Dotted lines indicate
the direction of orientation of the organ with respect to the pistil axis (arrows in green
box). Box highlights the top view of the rightmost image with arrows pointing the
direction of orientation of the organ. Images represent multiple ovules from the same
pistil fragment. Grid at the base of the organ represents the surface of the placenta.
3D mesh of a pistil fragment with multiple ovules illustrating the orientation of the ovule
central axis after integument initiation (B). Rectangular red grid at the distal tip of
primordia represents the orientation of the sagittal plane of the organ. Arrow on the
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green bounding box points the pistil central axis to the apex. While dotted lines 
represent an ideal orthogonal direction from the pistil axis at which the slanting occurs 
at stage 1-II and later. Red arrows at an angle to the white dotted line illustrate the 
extent of anterior posterior orientation of the organ with respect to the perpendicular 
orientation of slant that occurs at a previous stage. Essentially, the degree of turn made 
by the organ. Cartoon depicting transverse sections of stage 2 ovules and summarizing 
the orientations of the anterior and posterior halves of the ovule during the turn along 
the PD funicular axis (C-F). The relative numbers of ovules per degree of turn are given 
as ratios to the overall number of organs scored. The dotted red line indicates the mid-
sagittal plane. The horizontal white arrow on the green bounding box marks the pistil 
axis. Colors represent anterior and posterior half of the organ as marked in figure A. A 
red arc around the anterior half of the cartoon illustrates the extent of outer integument 
outgrowth. White arrows indicate the direction of turn in the orientation. Cartoon 
illustrating the perpendicular orientation of the sagittal plane to the pistil axis after 
slanting (C). Cartoon illustrating the early stage 2-III ovules where the outer integument 
has just initiated and that has an orientation similar to slanted ovules (D). Cartoon 
illustrating the advanced grown outer integument and the organ orientation with a slight 
angle parallel to the pistil central axis (E). Cartoon illustrating a more pronounced outer 
integument growth as in stage 2-IV ovules and with the orientation nearly parallel to 
the pistil axis (F).  Number of 3D digital ovules scored for degree of turn: 8 (stage 2-
IV), 32 (stage 2-III). Scale bars: 20 μm. 

C-F). Figure 3.18-B illustrates an example analysis of the orientation of eight stage 2-

III ovules from a pistil fragment. Results from the analysis of 40 ovules indicate that

ovules exhibiting slightly more advanced outer integument undergoes an advanced

turn of the central axis compared to ovules just after integument initiation. A cartoon

model was framed to score the orientation of the organ and correlate it to the

advancement in integument growth. Results suggest that most of the ovules at early

integument initiation don't orient with a slight angle parallel to the pistil axis, rather they

were observed more like the slanted ovules indicating that the turn in orientation might

be triggered only after posterior initiation of outer integument at early stage 2-III (Figure

3.18-D). Most of the later stage 2-III and 2-IV ovules undergo a slight turn (Figure 3.18-

E) supporting the above statement. None of the wild-type ovules were observed with

a slight angle opposite to the final orientation of the organ along the gynapical-

gynbasal. Among the few late stage 2-IV ovules with advanced outer integument

growth, the ovule orientation was nearly parallel to the pistil axis indicating that the

ovule at around late stage 2-IV already achieved the final orientation along the

gynapical-gynbasal axis (Figure 3.18-F). Thus, the study proposes that the final

gynapical-gynbasal orientation of the ovule is the result of a multi-step morphogenetic

process involving the early establishment of an anterior-posterior axis oriented

normally to the long axis of the gynoecium followed by outer integument initiation and

a turn in the central axis of the organ.
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3.2.9 Morphologically discernible polarity within funiculus and embryo sac 

Slanting and the posterior initiation of the outer integument provide anatomically 

recognizable signs of anterior-posterior polarity in the ovule. Expression analysis of 

KANADI confirms the early establishment of anterior posterior polarity in ovules. 

Further exploration of the 3D dataset reveals two new findings regarding similar 

polarity in mature ovules (Vijayan et al. 2021). Firstly, the posterior placement of the 

phloem in the funiculus (Figure 3.19-A). The vascular tissue reporter line (pPD1::GFP, 

Bauby et al., 2007) confirms that it is located throughout on the posterior half of the 

funiculus. Secondly, the embryo sac nuclei were observed to follow a different 

positioning of its nuclei. A four nuclear embryo sac has two nuclei at the chalazal pole 

and two at the micropylar pole. The chalazal nuclei were aligned along the proximal-

distal axis, whereas the micropylar nuclei were aligned along the anterior posterior axis 

of the organ (Figure 3.19-B, C). Overall, the anterior posterior polarity seems to be 

central in creating noise to the original radial symmetry of the organ and further 

establishing bilateral symmetry.  

Figure 3.19 Morphologically discernible polarity within funiculus and embryo 
sac 
Stage 3-IV wild-type ovule representing the polarity in vascular tissue (A). Expression 
pattern of the sieve element marker pPD1::GFP (blue signals) (Bauby et al., 2007). 
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The anterior-posterior polarity in the funiculus is indicated and marked by two colors. 
Note the posterior position of the pPD1::GFP signal. Number of 3D pPD1::GFP digital 
ovules scored: 8 (stage 3-IV). Stage 3-IV 3D digital wild-type ovule representing the 
polarity in embryo sac nuclei (B). The different polarities are indicated. Embryo sac 
extracted from the 3D mesh for visualization (C). Nuclei are marked by an artificial 
sphere on top of the image for better visualization of the faint embryo sac nuclei. The 
central vacuole is omitted. The two distal nuclei near the micropylar pole are usually 
located on top of each other (7/10 embryo sacs scored) and at a right angle to the PD 
axis. A slight tilt is frequently observed (5/7). The two proximal nuclei next to the 
chalaza are always arranged along the PD axis (10/10). Number of 3D embryo sacs 
scored: 10 (stage 3-IV). Abbreviation: es, embryo sac. Scale bars: 20 μm. 

3.2.10 Cellular architecture of internal central region 

With the advantage of the 3D cell meshes, it's now possible to extract individual cells 

or tissues from inside the organ and to make endless 2D sections of the planes of 

interest. This study aims to identify any polarity within any group of cells inside the 

organ. To define the internal regions, it's essential to better understand the outside 

structure and tissues in 3D. Mature ovule have a central proximal distal axis as 

described before, a medial lateral axis and a typical curved sagittal plane that 

separates the organ into two halves (Figure 3.20-A). A sagittal section image provides 

a good understanding of the overall structure in 2D but lacks the entire 3D information. 

A clipping plane through the transverse section of the organ gives a clear picture of 

the central region (Figure 3.20-B). Chalaza is the central region just above the 

funiculus. The proximal chalaza is surrounded by cells of the oi2 layer of the outer 

integument. Another clip section on the frontal plane just above the chalaza cuts 

through the four layers of integument and nucellus displaying the symmetric 

organization of integument tissues around the nucellus in 3D (Figure 3.20-B).  

This study has identified chalaza or the internal central region with two groups of 

visually differentiated cells which was previously unreported. Previous genetic results 

as well as evolutionary considerations implied that the central region or chalaza can 

be subdivided into distal and proximal tiers flanked by the inner and outer integuments, 

respectively (Baker et al., 1997; Endress, 2011; Gasser and Skinner, 2019; Sieber et 

al., 2004). This study has further divided this into anterior and posterior chalaza based 

on morphological evidence. Anterior chalaza is here defined by the region mainly 

delineated anteriorly and medio-laterally by the oi1 at the proximal region and partly 

by the oi2 layers of outer integument at the distal region. 
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Figure 3.20 Anterior posterior polarity of central chalaza region 
Different views of a 3D stage 2-V ovule representing the outer polarities of the organ 
(A). From left to right: Medial lateral axis (M-L), proximal distal axis (P-D), curved mid 
sagittal section on the 3D frontal view and a 2D sagittal section image displaying the 
internal tissues in 2D. A 3D clip section image breaks open the 3D ovule to three pieces 
to display the transverse section with anterior and posterior chalaza (bottom image), 
frontal plane with symmetric integuments and nucellus tissue (middle image) and the 
distal region of the organ (top image) (B). 2D sagittal section and clip plane transverse 
section image of a mature stage 3-IV ovule representing the two tissue groups of the 
chalaza, anterior and posterior chalaza (C). 3D view of anterior and posterior chalaza 
with the white background representing the 2D sagittal plane with cell outlines, image 
on the right is a zoomed view from a posterior camera (D). White lines inside every 
chalazal cell represent the major axis of the cell extracted with principal component 
analysis in MGX. Alignment of the major axis indicates the orientation of the cell and 
essentially the tissue. White dotted line inside the bounding box of respective chalazal 
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tissue represents the visually observed general orientation of outer cells of chalaza. 
Progressive removal of outer tissues to visualize the central region of the ovule (E-H). 
3D clip section view of a mature stage 3-IV ovule displaying the posterior oi2 cells 
(highlighted in dark green color) (E). Removing the posterior oi2 cells leaves the 
surface of oi1 exposed (F). Other inner tissues are removed to visualize the anterior 
and posterior oi1 layer of cells (anterior oi1 cells are highlighted with dark blue color). 
Anterior oi1 cells in contact with the anterior chalaza are extracted from the mesh for 
visualization of chalaza before and after separating the anterior oi1 cells (G). After 
separating the anterior oi1 cells which were in contact with anterior chalaza, the 
surface of anterior chalaza is first seen (right image). Anterior and posterior chalaza 
are extracted from the whole organ and separately visualized in contact with each other 
and separated (H). Arrowhead indicates the wing-like lateral extension of the anterior 
chalaza which were in contact with the tube-like oi1 cells. Abbreviation: L- lateral, M-
Medial, P-Proximal, D-Distal, oi2-outer layer of outer integument, poi1-posterior oi1, 
aoi1-anterior oi1, ac-anterior chalaza, pc-posterior chalaza. Scale bars: 20 μm. 

Posterior chalaza was defined as bounded medio-laterally and posteriorly by the 

proximal oi2 layers of cells and distally by the anterior oi1 layer of cells. The central 

difference in these two groups of cells is in their tissue shape. The anterior chalaza 

has a wing-like lateral extension probably to accommodate the tube-like oi1 layer of 

cells on top of this tissue (Figure 3.20-H). There is no typical posterior chalazal cell 

and typical anterior chalazal cells because they have differences relative to where they 

are in space. Nevertheless, most of the outside visible anterior chalazal cells seem to 

have their long axis along the anterior posterior axis of the organ, whereas most of the 

outside visible posterior chalazal cells seem to have their long axis parallel to the PD 

axis of the organ (Figure 3.20-D). This study has only approached this in a qualitative 

manner, a detailed quantitative analysis is relevant in this case when spatial 

information is also available. Essentially, the qualitative analysis indicates that not all 

cells follow the same pattern, the extent of pattern depends on the spatial position of 

cells, hence an analysis including spatial coordinates are more relevant here than just 

a quantitative analysis of all cells within the tissue group. Overall, the internal central 

region of the ovule is different from the outside integument cells in terms of not 

following a filar and layer wise or bundled arrangement, but rather what appears to be 

a random packing of cells when looking at them with naked eyes.  



Stage Mean number of 

anterior cells  

Mean anterior tissue volume 

(μm3) 

Anterior Cell density 

(Cells per 1000 μm3) 

2-IV 9.20 ± 2.25 1470.00 ± 343.30 6.26 

2-V 13.80 ± 5.98 3125.00 ± 1309.00 4.42 

3-I 32.50 ± 8.64 8787.00 ± 2266.00 3.70 

3-II 50.10 ± 8.21 14918.00 ± 1743.00 3.36 

3-III 50.82 ± 12.89 16167.00 ± 3522.00 3.14 

3-IV 51.50 ± 10.63 17898.00 ± 3693.00 2.88 

3-V 60.73 ± 13.48 20455.00 ± 4104.00 2.97 

3-VI 59.50 ± 6.10 25508.00 ± 4013.00 2.33 

Stage Mean number of 

posterior cells 

Mean posterior tissue 

volume (μm3) 

Posterior Cell density 

(Cells per 1000 μm3) 

2-IV 48.40 ± 9.00 5283.00 ± 1087.00 9.16 

2-V 71.20 ± 10.43 8543.00 ± 1074.00 8.33 

3-I 86.40 ± 20.42 10431.00 ± 2499.00 8.28 

3-II 108.00 ± 19.34 13772.00 ± 2750.00 7.84 

3-III 121.40 ± 23.92 15043.00 ± 3163.00 8.07 

3-IV 138.00 ± 18.29 17646.00 ± 2786.00 7.82 

3-V 148.50 ± 27.47 18671.00 ± 3728.00 7.95 

3-VI 209.00 ± 31.46 27675.00 ± 4636.00 7.55 

Table 2. Total number of cell, total volume and cell density of anterior chalaza at 
different stages. Number of 3D digital ovules scored: 10 (stages 2-III- 3-II, 3-IV, 3-VI), 11 (stages 
3-III, 3-V). Values represent mean ± SD.
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Table 3. Total number of cell, total volume and cell density of posterior chalaza at 
different stages. Number of 3D digital ovules scored: 10 (stages 2-III- 3-II, 3-IV, 3-VI), 11 (stages 
3-III, 3-V). Values represent mean ± SD.
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Figure 3.21 Cell shape, size, and neighbors of anterior and posterior chalaza 3D 
cells of anterior and posterior chalaza isolated from the tissue group (A). White border 
lines are the PlantSeg boundary predictions projected on the surface of cell meshes 
for visualization of cell faces shared with neighboring cells. Cell color represents the 
tissue groups. Heatmap of cell volumes on the isolated cells (B). Quantitative analysis 
of cell volumes and cell neighbors of stage 3-IV anterior and posterior chalaza (C, D) 
Number of 3D digital ovules scored for cell volume and neighbor analysis: 10 stage 3-
IV ovules. 
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The packing of these cells is observed to follow a pattern that probably have a major 

motif on filling the internal space and holding the structure intact while the integument 

tissues along with embryo sac are outgrowing. Anterior chalaza is composed of bigger 

cells compared to posterior chalaza (Figure 3.21-B, C). The mean cell volume of 

anterior chalaza is about 2.5 times higher than the posterior chalaza. For the same 

reason, there are differences in the packing of these cells. Posterior chalaza is a 

densely packed tissue compared to anterior chalaza. Table 2 summarizes the mean 

number of anterior cells, anterior tissue volume and their cell density calculated by 

estimating how many cells are present per 1000 μm3 volume and same for the posterior 

chalaza. Values indicate that there is 2.7 times increase in cell density on the posterior 

chalaza at stage 3-IV compared to anterior chalaza. Any functional relevance of the 

packing of these cells has to be further explored and is beyond the scope of this study. 

Cell shapes of these two groups of chalazal cells also seem to have visual differences 

(Figure 3.21-A). Cell size difference is one main factor that can also influence the 

shape of the cell. Bigger cells have large outside surface area. When it's surrounded 

by smaller cells, the outside surface area of the cell is shared with several cells 

whereas it would be only a few cell neighbors when it's surrounded by large cells. 

Essentially, the number of cell neighbor’s influences the shape of the cell by adding 

different faces to the surface of the cell and such complex cell shapes could generate 

high level packing of cells in 3D. 

3D morphological analysis of these isolated single cells from the tissue groups creates 

a notion that the anterior chalaza has more complex cell shapes than the posterior 

chalaza (Figure 3.21-A). Using MGX 3D cell meshes, a measure of number of cell 

neighbors or cell degree for a given cell was quantified (Figure 3.21-D). Results 

indicate that posterior chalazal cells have a similar number of cell neighbors compared 

to anterior chalazal cells. This correlates to posterior chalaza composed of small cells 

and surrounded by other small cells, whereas the anterior chalaza is composed of 

bigger cells. Every neighbor of a cell shares a surface with the cell of interest, creating 

individual cell faces. Essentially, the number of cell neighbor is an indirect measure of 

how many faces a cell has. A combination of cell volumes and cell neighbors is hence 

an estimate of how complex is the shape of a cell. Overall, the results support the initial 

notion that the posterior chalaza have complex cell shapes compared to anterior 

chalaza. Other quantitative measures of cell shapes like convexity, compactness, 

solidity, anisotropy elongation etc. were also performed on these tissue groups (results 
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not shown), but the complex shapes of these cells suggest that it might require any 

new tools to define its precise shapes. 

3.2.11 Differential growth of integument tissues 

Wild type Arabidopsis ovule development involves coordinated growth of different 

tissues. Integuments are one of the major tissues in the ovule, two layers of the outer 

integument (oi1 and oi2) and two layers of the inner integument (ii1 and ii2). 

Integuments grow around the nucellus containing embryo sac in an asymmetric 

fashion to form the final curved shape for the ovule. Stage 2-III of ovule development 

is characterized by a slightly protruded oi on the posterior side of the organ (Figure 

3.22 A). Inner integuments are already initiated at stage 2-II. One major finding by 

looking at the 2D images is that there is differential growth of integument layers apart 

from the differential initiation of the two integument tissues. The outgrowing outer 

integument grows at a higher rate than the inner integument. Eventually, the outer 

integument two layers grow past the inner integument at around early-stage 3-I. This 

is an interesting morphological event that might have importance in the ovule 

curvature.  

Analysis of this differential growth by looking at the tissue labelled section reveals 

different events. First, slow-growing but already initiated inner integument at stage 2-

III undergoes a minimum outgrow before the outer integument gets initiated. The P-D 

extension of the inner integument is hence higher than the oi at stage 2-III. Once the 

outer integument starts to outgrow, there is a small phase where the oi is growing, but 

not able to completely extend till the distal tip of the ii as the ii started to grow already 

at an early stage and is also continuously growing. At the next step, the oi outgrows 

the ii, oi then continues to grow further, probably until a rough outer curved structure 

is made. Further events include the ii enclosing the nucellus completely and both the 

ii and nucellus growing within the structure or space made by the outer integument.  

In summary, the sequence of events can be classified into three main phases. Phase 

one, where the oi is approaching the ii. Phase two, where the oi has outgrown ii and 

phase three where the ii has enclosed the nucellus completely.  
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Figure 3.22 Differential growth of integument tissues. 
The figure highlights the changes in the mid-sagittal section during different 
developmental stages of Wild type Arabidopsis ovules. Different stages are indicated. 
White solid line with arrows from stages 2-III to 3-I indicate the extent of outgrowth of 
inner and outer integuments. The white solid line at the distal end of the posterior side 
indicates the extent of outgrowth of the outer integument ahead of the inner integument 
at the indicated stages. Dotted line on black background inside the nucellus represents 
the extent of posterior inner integuments compared to the overall PD extension of the 
nucellus. The dotted lines are just to understand the different stages based on the 
extent of integuments or nucellus. Scale Bar 20μm. 

3.2.12 Quantitative analysis of integument growth and proliferation patterns 

A quantitative analysis was performed on the dataset exported from the meshes. Total 

tissue volume and the total number of cells per integument tissue layers were 

separately analyzed from stages 2-III to 3-VI. Results of tissue volume indicate that all 

four layers of integuments increase in volume during growth (Figure 3.23 A). Oi2 

seems to have a higher increase in tissue volume compared to inner layers of tissues. 

Results of total number of cells per tissue indicate that there is active cell proliferation 

happening in all four layers of integuments (Figure 3.23 C). At stage 2-IV, the total 

number of cells and tissue volume of ii2 is slightly higher than the other tissues (Figure 

3.23 B, D). This represents the early phase of integument outgrowth where the oi is 

still approaching the ii, a higher tissue volume and cell number of the ii2 indicates that 

ii2 is volumetrically huge than oi at this stage of development, it might be also growing 

at a higher rate. From stage 2-IV to 3-I, there is a comparatively higher increase in the 
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growth and proliferation of the oi1 layer of cells (Figure 3.23 A, B, C, D). Essentially, 

the oi1 growth and proliferation outcompete the ii2. This reflects the phase where the 

oi approaches and outgrows the ii and that the oi grows at a higher rate than the ii. 

From Stage 3-IV to 3-VI, results indicate that oi2 continues its volume increase as 

previous stages compared to oi1 (Figure 3.23 A). Interestingly, the cell proliferation 

pattern is different, oi1 displays a slightly higher cell proliferation compared to the oi2 

layer, essentially, the outer integument inner layer has more cells than the outer layer 

at this phase. It might also indicate that the oi2 cells are undergoing more cell 

expansion at this growth phase as they increase in volume, but less in cell proliferation 

compared to the oi1 layer of cells. 

To better understand the growth and proliferation of these tissues in a comparative 

manner, growth and proliferation normalized to the overall integument growth and 

proliferation was calculated. Detailed explanations about the growth and proliferation 

rate calculation can be found under the materials and methods section 2.15. Values 

above one indicates the preferential growth or proliferation of this tissue during the 

stage transition (Figure 3.23-E). Values below one indicates a lower rate with respect 

to overall rate of growth or proliferation of integuments. Interestingly, one can correlate 

these graphs to few events of the differential growth of integument tissues. Growth and 

proliferation heatmap of ii2 infers three main phases, firstly the initial hype in the growth 

and proliferation just after initiation at stage 2-III to 2-IV transition, then a sudden 

decrease from stage 2-IV to 2-V and an increase thereafter to equal growth with 

respect to overall growth of integuments. Interestingly, oi1 also has some growth and 

proliferation dynamics at the same growth phase. oi1 increases in growth and 

proliferation to maximum at stage 2-IV to 3-I transition when the ii2 decreases in growth 

and proliferation. Results suggest that ii have a growth phase with reduced growth and 

proliferation, at the same phase, oi have a higher growth and proliferation. This 

supports the initial observation that the outer integument outgrows and grow past the 

inner integument. It's still unclear if this is essential for forming the final shape of the 

organ.  

Cell proliferation patterns indicate that oi2 always undergo less proliferation 

compared to overall proliferation of integument cells. Whereas oi2 is undergoing 

almost equal growth with respect to overall growth of integuments. Interestingly, oi2 

has a higher growth and proliferation from stage 2-IV to 2-V transition. This suggests 

that the oi1 and oi2 have a hype at the same point of development that might be  



Figure 3.23 Quantitative analysis of integument growth and proliferation 
patterns 
Graph representing the total tissue volume and total number of cells of integument 
tissues at different stages of development (A-D). A zoomed view of early stages from 
figure A and C (B, D). Colors represent different tissues indicated in the legends (A-
D). Heatmap of tissue growth and proliferation patterns normalized to overall growth 
and proliferation of integument tissues respectively (E, D). Transition of different stages 
are indicated. Value = 1, represents growth or proliferation in the tissue happening 
equally to the overall growth or proliferation of the four layer of integuments. Value <1 
represents proliferation or growth performance of the tissue low compared to  overall 
growth or proliferation. 
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essential to grow past the inner integument. At a later stage, mainly at the transition 

between stage 3-II to 3-III one can also notice a phase where all the integument layers 

grow or proliferate at the same rate. During the stage transition 3-III to 3-VI, most of 

the cell proliferation occurs in the ii1 layer. The heat map calculations take into 

consideration the entire length of oi2 (includes the proximal region), hence the 

normalized heat values doesn't reflect the growth or proliferation contribution of oi2 

to overall growth of integuments, but other three layers can be compared. The heat 

values (Figure 3.23 E, F) of oi2 has to be ignored. This analysis also excludes the 

radial growth factor. Outer layer being outside the radial structure, have to grow more 

to reach to same point in radial vector as to inner tissues. Unfortunately, there isn't a 

precise way to calculate this ratio of radial growth for integuments.

3.2.13 Friction due to contact on the surfaces 

Integuments are initiated from the chalaza, and they grow around the nucellus, 

forming two layers of outer and two layers of inner integuments in wild type 

Arabidopsis. The two layers of outer integuments share a common wall between 

them, similarly, the two layers of inner integument share a common wall 

between them keeping them connected, but the inner and outer integument are 

separate tissues, and they don't share any common wall between them or in another 

way, they aren't physically joined. But due to the positioning and growth of these 

tissues one on top of the other, the inner surface of oi1 and the outer surface of ii2 

are in direct contact. Essentially there is no shared wall between the inner and 

outer integument, but the surfaces are in direct contact that leads to friction on 

contact surfaces, otherwise called contact friction (Figure 3.24). Similar contact 

friction also exists between the inner integument and nucellus.  

Integuments undergo differential initiation and outgrowth during development. 

Contact friction comes to play mainly during differential outgrowth. An imaginary 

smooth surface between the outer and inner integument would allow uncontrolled 

slide over between them when one tissue has a higher growth rate, whereas a 

rough surface would provide friction that limits slide over or that enables a 

controlled slide over depending on the friction at the surface. Overall, these results 

validate that there is an unshared wall between inner and outer integument and 

that could act as a system where the slide over could be controlled by providing 

controlled friction at the surfaces between the tissues. To further understand if the 

surface between the inner and outer integuments are smooth or rough, one requires 

a detailed analysis of the cell surfaces from the 3D mesh.  



Figure 3.24 Contact friction in mature Arabidopsis ovules 
A sagittal section of a stage 3-II ovule (A). A cartoon of integument and nucellus from 
the same section in A (B). Colors: Yellow represents inner integument, green 
represents outer integument and cyan represents nucellus. Right image: A zoomed 
view from the bounding box in the cartoon highlighting the surfaces of interest for 
contact friction. A zoomed view displaying the two highlighted regions in figure A (C, 
D). Anterior region (C) and posterior region (D). Colored arrows indicate the gaps 
between the indicated tissue layers indicating that they don't have a shared cell wall. 
Essentially, between inner integument and outer integument and between nucellus 
and inner integument. Scale Bar 20μm. 

3.2.14 Cell Morphological changes due to contact friction 

Having said about contact friction between the outer and inner integument, a detailed 

investigation of these tissue surfaces indicates that there are cellular morphological 
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changes at surfaces that are in contact between the inner and outer integument. ino-4 

mutant is a good candidate to visualize these morphological changes as they have 

only partially grown outer integument (Fig. 3.25). The outer integument partially covers 

the inner integument, the surface of the inner integument can be separated into two 

regions. Proximal region covered and the distal region uncovered by the outer 

integument. The tissue outer surface is smooth when it is uncovered by the outer 

integument, whereas the inner integument has a rough surface with small faces when 

they are in contact with the outer integument. Essentially, the contact friction introduces 

different faces on an otherwise smooth surface corresponding to cell faces of the inner 

layer of the outer integument with which the contact between the surfaces occurs.   

Overall, the results indicate that the surfaces are rough upon contact between the inner 

and outer integument, which suggest that for the tissues to differentially outgrow, they 

have to surpass the contact friction at the rough surface. Alternatively, the outer layer 

must drag the underlying layer. The tissue does not have the freedom to free float on 

the surface. Additionally, the rough surface that is observed might also have another 

advantage in holding the outer integument tight to the inner integument compared to 

an otherwise smooth surface, overall making the organ tightly packed. Despite the 

unshared wall between the inner and outer integument, one couldn't find a loose 

connected cell junction or gap at junctions indicating that the contact friction enables 

tight packing of these two tissues which don't have a shared wall. The smooth outer 

surfaces of the distal ii2 uncovered by outer integument indicates that the contact 

friction imposes cell morphological changes of the tissues after contact.  
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Figure 3.25 Cell morphological changes due to contact friction 
Figure representing a 3D ino-4 mutant ovule (A). From left to right; first: A 3D ino-4 
ovule with tissues labelled in the mesh; second: the outer integument tissues are 
removed from the mesh view, but the cell boundary predictions image stack is overlaid 
to display the two regions of ii2 tissue; third: a zoomed view of the ovule in the same 
orientation as before; fourth: same zoomed image but displaying the projected cell 
boundary signal onto the 3D mesh. Same ino-4 ovule in different rotations to display 
the morphological changes due to the surface of ii2 covered by oi1 (B). The surface of 
ii2 covered by oi1 is labelled in orange color for visualization. The uncovered cells are 
marked by yellow color. Signal projection onto the 3D mesh view displayed the small 
faces of cells made by surface contact. Scale Bar 20μm. 

3.2.15 Morphological changes in OI1 during differential outgrowth of 
integuments 

At a mature stage of ovule development, the differential outgrowth of integument 

tissues results in geometric changes in the oi1 layer of the outer integument. Once the 

outer integument grows past the inner integument, it leaves behind the inner layer of 

the outer integument with no internal tissue layers touching them, essentially cells 
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growing in space. The oi1 layer can hence be separated into two regions, a proximal 

region where it touches the inner integument and a distal region where its inner surface 

isn't in contact with any tissues, otherwise called exposed cells of oi1 (Figure 3.26 A, 

B). The morphology of oi1 tissue looks close to a bent cylinder, but upon estimating 

the diameter of the tissue, results indicate that it resembles a conical cylinder with the 

radius becoming small as it tends to be distally located (Figure 3.26 B). This indicates 

that as soon as the outer integument outgrows the inner integument, they shrink such 

that they form only a small opening called the micropyle. A hypothesis here is that the 

outgrown outer integument additionally blocks the further P-D extension of the inner 

integument by performing the shrink.  

A heatmap of cell depth of the oi1 layer indicates that it has non-uniform cell depth 

along the P-D axis. Interestingly, the exposed cells seem to have a higher cell depth 

compared to proximal cells of oi1. Additionally, one interesting observation was that 

some cells of the oi1 layer which are in contact with the distal-most ii2 cells have very 

low cell depth (Figure 3.26 C). The 2D sagittal section image also indicates that the 

oi1 cells at this position are shrunk and there might be forces between the ii2 distal 

cells and these oi1 cells. The reduced cell depth could be a result of these forces. It 

seems to be also supporting the previous hypothesis that radial shrink in the outgrown 

oi1 tissue blocks the inner integument outgrowth.  

Heatmap of cell volume indicates that distal exposed cells are higher in volume (Figure 

3.26 D). Heatmap of cell flatness defined by the ratio of mid to min cell axis indicates 

that the oi2 cells at the central posterior region are highly flat (Figure 3.26 E). 

Essentially, the highly flat regions are those where the inner integument distal tip is or 

was in contact with the oi1 layer during the differential outgrowth of integuments. A 

quantitative analysis was also performed on the exposed and unexposed cells at 

different developmental stages (Figure 3.26 F, G) to understand differences in cell 

volume and depth of these cells. Results indicate that exposed cells gain in volume 

and depth from stage 3-I onwards. There is a further significant increase in cell depth 

and volume of exposed cells from stages 3-I to 3-II. However, from 3-II to 3-III, there 

is no significant increase in the exposed cell geometry, but they remain higher in 

volume and depth compared to non-exposed cells. Overall, this is a great example of 

tissue growth and how different a tissue could grow when in the absence of a 

neighboring tissue or cells. 
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Figure 3.26 Morphological changes in OI1 during differential outgrowth 
3D outside view and a sagittal section view of a mature ovule at stage 3-III displaying 
the exposed cells of oi1 in white color (A). 3D view of oi1 still attached to chalaza clearly 
displaying the two regions in oi1 (B). Arrows indicate the three regions from left to right 
on a transverse section displaying the radius of the conical cylinder-like oi1 tissue at 
the section. Heatmap of oi1 cell depth at the sagittal section view overlaid with the cell 
boundary prediction to indicate the squeezed region of the oi1 that is in contact with 
the distal ii2 cells. The right image represents the same heatmap of cell depth, but with 
a 3D view of only the oi1 cells showing the heat colors. Arrows indicate the squeezed 
region with low cell depth and the distal region with high cell depth. Solid white line 
inside the cell represents the cell depth axis. Heatmap of cell volume of the oi1 tissue 
after removing the outside tissues for better visualization (D). Heatmap of measure of 
flatness of cell is displayed (E). Solid black lines inside the cell represent the max, mid 
and mix axis of cells. Graph representing the cell volumes and cell depth of exposed 
and unexposed oi1 cells from different developmental stages (F, G). Scale Bar 20μm. 

3.2.16 Proximal distal growth gradient 

Integument tissues form layered arrangements of cells, one tissue on top of the other. 

Moreover, within a tissue, there are filar or bundled arrangements of cells. Cell files 

can be long and continuous from the proximal to the distal end. Sometimes they are 

not continuous throughout, but they still follow a filar arrangement of at least a few cells 

along the proximal-distal (P-D) axis indicating the divisions are mainly along the P-D 
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axis (Figure 3.27- A, B). A heatmap of cell volume reveals that there are distally located 

enlarged cells in the oi2 layer of cells. Proximal cells are relatively small in size, there 

seems to have a gradient increase (Figure 3.27- A). Similarly, a heatmap cell volume 

of inner layers also displays a higher volume at the distal end, but at a different scale 

compared to the oi2 (Figure 3.27- B). Further quantitative analysis has to be performed 

to better understand the pattern, one requires spatial coordinates to map the cell 

volume along the central organ axis. 

Figure 3.27 Proximal distal growth gradient in Arabidopsis integuments 
3D surface view of oi2 from multiple viewing angles (A). Proximal distal axis is labeled, 
heatmap represents 3D cell volume, cell files are labelled in the top left image. 3D 
surface view of oi1, ii2 and ii1 layer representing the heatmap of cell volumes in the 
bottom row and the filar arrangement of cells in the top row (B). Scale Bar 20μm. 
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3.3 Spatial coordinate system for 3D Arabidopsis ovules 
using 3DCoordX 

3.3.1 Curvature-induced complications in the assignment of axial position 

Based on the structure of the tissue under study, different analytic strategies for 

identifying the position of individual cells are employed. iRoCs and 3DCellAtlas are two 

well-known approaches for annotating positions to plant organs. These tools work well 

for straight structures or slightly bent structures (Figure 3.28 A). For example, an 

Arabidopsis root or hypocotyl is a simple structure to annotate positions along its 

central axis. When it comes to highly curved structures of interest, this method fails to 

index axial positions in space (Figure 3.28 B). These approaches result in cells of the 

same indexed position having different absolute axial distances to a common 

reference (Figure 3.28 B).  

Figure 3.28. Axial cell distance determination in curved tissue.  
Section through an artificial template of a tube-like and straight tissue consisting of 
multiple concentric cell layers (A). The heatmap indicates distance from the origin (red 
line at bottom). The dashed line outlines the central axis. Note that the two cells (a,b) 
at the same cell index position also show the same absolute axial distance to the origin 
(B) Same structure as in (A) but curved. Note that cells a and b differ in their axial
distances to the origin. (C) Same structure as in (B). The separate cell layers are
distinguished by their different colors. Two cells in different layers are highlighted (c,
b). Dashed lines indicate shortest distances to the origin ignoring tissue layers. Sold
lines mark the shortest distances to the origin that are restricted to tissue layers.
Confining the shortest distance to a given layer reduces axial distance errors. The red
line at the bottom highlights the origin. The arrowhead marks the origin cells outlined
in red. (D) 3D representation of (C) revealing how the AP boundary further minimizes
the axial distance error for a cell in the posterior half of the structure.

Thus, a different strategy was devised in this study to minimize such axial distance 

errors when assigning positional annotation to cells in for example the slanted 

primordium or the strongly curved funiculus and integuments. The new approach is 

based on tissue restriction that includes distinction of radial layers, subdivision into two 



AP or ML domains. The coordinate system would have an origin or common reference 

at a favorable end of the structure or inside the structure of interest. Further, distances 

could be mapped to cells based on the shortest path through the connected tissue and 

the coordinate origin. Essentially, the approach annotates positional coordinates as 

distance from the origin to the cell through the tissue connections of the cell of interest. 

For example, a cell within the yellow layer at the anterior region has its distance from 

the origin as its shortest path from the origin to this cell through the yellow layer of cells 

at the anterior position (Figure 3.28 C, D). The coordinate origin can be a small point 

like bezier ring that fits into the tip of a cone shaped structure or a wide bezier ring that 

can be approximated as an origin for the integuments. As a next step, these principles 

must be applied on real templates of ovule primordia and integuments to have spatial 

coordinates for cells.  

3.3.2 Assignment of PD position to individual cells in 3D ovule primordia 

To apply this method of tissue restricted spatial coordinates in 3D digital ovule 

primordia, the dataset was first annotated with radial and AP domains (Figure 3.29 A). 

The method was implemented in MGX as a package called “3DCoordX” referring to 

3D cell distance coordinates. 3DCoordX annotates PD positions of individual cells 

based on its position from the origin of the coordinates. The coordinate origin in case 

of an ovule primordia was placed at the distal tip of the organ, further different 

parameters like cell neighbor’s and its tissue connectivity is automatically determined 

and is used for providing an accurate coordinate value.  

Positioning the coordinate origin (Bezier ring) at the distal tip correlates with a 

biologically relevant auxin maximum at the tip as inferred from the expression of the 

auxin response reporter pDR5::GFP (Benková et al. 2003), the spatial signal of the 

auxin sensor R2D2 (Liao et al. 2015) , and the finding that polar auxin transport 

mediated by PINFORMED1 (PIN1) is required for ovule primordium formation 

(Bencivenga et al. 2012; Galbiati et al. 2013). 

The coordinate value in this case is the shortest distance from the origin of the 

coordinates to the cell through its respective tissue label (Figure 3.29 B). For individual 

tissues to first have a seed to propagate the coordinate values of other cells within the 

tissue, a group of origin cells are first defined with a parameter referring to its direct 3D 

distance to the coordinate origin. Once the origin cells have their coordinate values, 

other cells within the tissue find its shortest path between its cell centroids to the 
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nearest direct cell centroid and get the entire stretch to the coordinate origin as a value 

of distance, similarly origin cells are provided to all tissues and a possibility for adding 

an additionally selected cell as origin cell is included as a parameter. Alternatively, 

3DCoordX also provides the value of the cell index from the coordinate origin (Figure 

3.29 C). Thus, following radial and AP tissue annotation and placing a bezier point like 

ring at the distal end of the ovule primordia, 3DCoordX automatically determines the 

PD position of each cell, either in terms of cell index or absolute or relative distance to 

an origin. A detailed method is described as a user manual (See under section 2.19). 

Figure 3.29 Principle of 3DCoordX organ coordinates and its application in 
ovule primordia 
Anterior-Posterior L1 tissue labelled Arabidopsis ovule primordia (A). Left image is a 
3D side view, the right image is the sagittal section displaying the interior tissue layers. 
Distance coordinate map for the same ovule in A (B). Heatmap indicates distance in 
μm from the origin. Distances along the anterior and posterior sides are indicated. Cell 
coordinate map for the same ovule in A (C). Heat values indicate the number of cells 
an individual cell of interest is away from the origin of the coordinates. Cells along the 
anterior and posterior sides are indicated. Scale bar 20 μm. Cartoon illustrating the 
principle of 3DCoordX organ coordinate annotation in a cone-shaped structure (D-F). 
As a first step, the coordinate origin (small ring which is a point-like origin) is placed at 
the distal tip of a cell type annotated structure. Colors represent the tissue groups (A). 
In a second step, direct distance measurement finds cells within the provided limit and 
annotates coordinates values to those cells as the shortest path to the cells from the 
origin (B). This direct distance measurement does not take different tissue types into 
account. The white dotted line represents the direct connection from the coordinate 
origin to these cells. In a third step, these direct cells act as seeds for the coordinate 
values for other cells within their tissue groups (C). Essentially, for the rest of the cells 
in the organ, their distance is restricted within the tissue groups labeled in (D) and their 



shortest distance to any of the direct cells within their cell type is measured using the 
Measure 3DCoordX process. The gradient from yellow to green in figure F represents 
the ideal coordinates to be obtained. All these three steps are performed in just one 
click using the process: Mesh/CoordX/Measure 3DCoordX 

In case of the mature funiculus, essentially a curved cylinder, a larger Bezier ring is 

placed at its proximal end. Origin cells are then defined by their close user-

specified distance to the Bezier ring in 3D (usually 5-15 µm) (Figure 3.28 C,D). 

Importantly, distances to other cells from the origin cell confined to a given tissue 

layer and may not cross the AP boundary. The restriction to the tissue layers a 

cell belongs to removes a large part of the axial distance error as the shortest path 

through the tissue layers cannot extend through interior tissues (Figure 3.28 C). On 

top of this restriction, prohibiting the shortest path from passing the AP boundary 

minimizes the error further (Figure 3.28 D). It should be noted that with this approach 

small axial distance errors still occur within the anterior or posterior domains 

depending on the number of laterally arranged cell files within these areas. The 

remaining errors are typically in the range of a few microns but can be eliminated 

when taking individual cell files into account. The software can do so, however, 

the procedure involves cumbersome manual annotation of all cell files for each cell 

layer. Moreover, the gain of resolution is minimal.

3.3.3 A coordinate system for integuments 

Integuments have a more complex architecture compared to the structures 

discussed above. Outer integument grows into a hood-like shell whereas the inner 

integument resembles more like a curved cylinder, forming four layers of integument 

tissues one on top of the other. Integuments can be also subdivided into medial and 

lateral cells based on the cell position close to posterior central midline and anterior 

central midline respectively. Overall, the morphological complexity of the shape of 

integuments makes it challenging to apply any spatial coordinates on them. 

However, the 3DCoordX principle used for ovule primordia could be also applied 

on integuments. In an initial step, the integumentary tissues are labelled manually, 

and its medial and lateral cells need to be defined. Cells can be grouped into medial 

and lateral groups of cells if one has an existing medial lateral coordinate.  

The medio-lateral (ML) and proximal distal (PD) coordinates of all integument cells 

are established in this study by a semi-automatic manner. For medial lateral 

coordinates, the user first selects a file of midline cells in each cell layer at the 

posterior half of the organ (Figure 3.30 A). 130 
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Next, the process “Cell distance” is applied which calculates how many cells 

separate a given cell from the midline (Figure 3.30 B). Cells along theML axis were 

further subdivided medial and lateral domains, and this is taken as the final tissue 

label for organ coordinates. In the following step, PD distance coordinates are 

assigned for all integument cells. A Bezier ring is first placed at the proximal end of 

the inner side of the outer integument (next to oi1 layer) facing the ii2 layer (Fig. 3.30 

D). This circular origin is in the same plane as the ring-shaped expression pattern of 

the pCUC3::CUC3:CFP reporter which marks the proximal base of the ii1 and 

ii1’ layers of the inner integument, respectively (Figure 3.30 E). Members of the CUC 

gene family are generally required for primordium initiation and organ boundary 

formation (Aida et al. 1997; Ishida et al. 2000; Takada et al. 2001; Breuil-Broyer 

et al. 2004; Sieber et al. 2007; Galbiati et al. 2013; Gonçalves et al. 2015). Origin 

cells are then defined by their close user-specified distance to the Bezier ring in 3D 

(about 5-15 µm). As a direct result of the placement of the Bezier ring, cells of the 

oi2 layer that are in direct contact with the subepidermal proximal chalaza are 

assigned a negative value for the PD position (Figure 3.30 F). This feature can be 

used to separately cluster and analyze those cells. Finally, PD distance 

coordinates of the integument cells are obtained by searching for the shortest path 

through the cell centroids to the centroid of an origin cell using the tool “3D Cell 

Distance Coordinates” (Figure 3.30 F, G). The search is again restricted to a given 

tissue layer and may not cross the ML boundary. Taken together, the tools “Cell 

Distance” and “3D Cell Distance Coordinates” assign ML and PD positions for all 

cells of the integuments. A detailed method for 3DCoordX is described as a user 

manual (See under section 2.19). 
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Figure 3.30.  Integument coordinate system using 3DCoordX toolbox.  
Mid-sagittal section highlighting the selected medial cells on the posterior side of the 
four layers of integument tissues for medio-lateral coordinate annotation (A). Colors 
represent tissue annotations similar to Figure 3.12. (B) Heatmap of medio-lateral cell 
coordinates. Heat values indicate the lateral position in terms of the number of cells 
from the median file of cells. Different integument tissues are extracted from the 3D 
mesh to display the medio-lateral coordinates at their tissue surface. (C) 3D surface 
view of integument tissues similar to (B). Medial and lateral cells are distinguished. 
Solid white line represents the tissue restricted coordinate direction along the medial 
group of cells. White dashed line represents the tissue restricted coordinate direction 
along the lateral group of cells. Black dotted line on oi2 represents the coordinate origin 
projected on the surface which separates the proximal oi2 cells with negative 
coordinate values (D) Semi-transparent view of a mature 3D ovule displaying the 
coordinate origin as a ring inside the organ. (E)  3D clipping view of a transverse 
section of an ovule highlighting the ring-like expression of the pCUC3::CUC3:CFP 
reporter in yellow. (F) Left panel: sagittal section of a mature ovule displaying the 
coordinate directions of the medial and lateral group of cells in solid and white lines, 
respectively. Solid red line indicates the origin of the coordinate system. Right panel: 
Sagittal section displaying the heatmap of distance coordinates. Solid red line indicates 
the origin of the coordinate system. (G) 3D surface view of integument tissues similar 
to (B) displaying the distance coordinates at the surface of internal tissues. Scale bars: 
20 µm. 



3.3.4 Spatial mitotic distribution in Ovule Primordia 

Taking advantage of the ovule primordia coordinate system, mitotic cells were mapped 

to the cell such that their spatial arrangement could be studied. Cells that exhibit mitotic 

figures were manually selected and labelled on the 3D mesh (Figure 3.31 A). A total 

of 52 mitotic cells were found from 52 ovule primordia. Radial analysis indicates that 

33 mitotic cells are in L1, 18 in the L2, and 1 in the L3. This result is in line with the 

observed differences in cell numbers between the three layers. Mitotic cells from the 

L1 were further looked at if they are in the anterior or posterior side of the organ. 

Results indicate that more cell divisions occur in the L1 anterior domain (23 L1 anterior 

mitotic cells and 10 L1 posterior mitotic cells).  

Figure 3.31 Mitotic patterns in the ovule primordium.          
Different stages of wild-type (Col-0) early ovule primordia are analyzed. (A) 3D 
frontal plane view of ovule primordia displaying the To-PRO-3 nuclear stain. Cells 
undergoing mitosis are outlined in red and marked by arrows. (B) Same section in (A) 
with an overlay of 3D labelled meshes. Arrows indicate mitotic figures. Plot showing 
the relative distance along the proximal-distal axis of mitotic cells in a primordium. 
Relative distance was calculated by the following formula: relative disance = 1 
- distance coordinate/mean length. Scale bar 20 µm. 

To the end, the spatial mitotic distribution song the P-D axis of the organs as quantified. 

Results indicate that about 80 to 85 percent of scored mitotic cells were in the proximal 

half of the developing ovule primordia (Figure 3.31 C). Taken together with radial 

analysis of cell numbers and volumes (Section 3.2.2, Figure 3.15), the data indicate 
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that primordium outgrowth is preferentially driven by an increase in cell number, not 

cell volume (Figure 3.15 A-E, Figure 3.31 C). In addition, they suggest unequal spatial 

distribution of mitoses between cell layers and along the AP and PD axes. A higher 

number of mitoses in the anterior domain could explain primordium slanting. The data 

further indicate that a cell proliferation zone located in the bottom half of the developing 

primordium contributes significantly to its outgrowth. 

3.3.5 Funiculus curvature correlates with differences in cell number and cell 
volume along the AP and PD axes 

This study aims to understand any spatial pattern of cells along the central axis of the 

funiculus using 14 3D digital ovules of stage 3-IV (Figure 3.32 A-E). By this stage 

growth of the funiculus has ceased (Vijayan et al. 2021). Again, like the ovule 

primordia, the funiculus tissue was subdivided into radial layers and with anterior or 

posterior subdivision. Patterns along the L1 anterior and posterior domain indicate that 

the maximal extension and number of cells along the anterior side is higher compared 

to the posterior side.  

Figure 3.32. Cellular features of funiculus curvature.  
Wild-type (Col-0) ovules of stage 3-V are analyzed. (A) Left panel: Tilted side-
view of a 3D cell mesh. Right panel: Semitransparent 3D mesh 
view of funiculus extracted from the 3D mesh of the organ. The Bezier ring serving 
as origin is placed at the proximal base of the funiculus. The dashed arrow lines 



 indicate the coordinate direction along the anterior and posterior midlines. (B, C) Same 
specimen as in (A). The anterior and posterior sides are marked. (B) Heatmap of cell 
numbers along the PD axis of the funiculus. (C) Heatmap of cell distances along the 
PD axis of the funiculus. White dotted line indicates the coordinate origin as a ring. (D) 
Graph depicting cell volumes of anterior and posterior L1 cells in relation to the relative 
PD position. The inset in the bottom right corner shows a heat map of cell volume in 
the L1 of the funiculus. 14 3D digital ovules were analyzed. Number of cells xx ≤ n ≤ 
yy (E) Similar graph as in (D) revealing cell volumes of anterior and posterior L2 cells. 
Scale bars: 20 µm

Results of cell volume along the organ coordinates indicate that there is a 

gradient along the proximal-distal axis of the anterior L1 and L2 cell volumes. 

Additionally, the anterior distal-most cells feature nearly 1.5 to 2 times the volume of 

cells located at the anterior proximal end (Figure 3.32 D, E). The posterior side of 

the organ was not observed with any similar volume increase. In summary, the 

data suggest that a combination of differential cell proliferation along the AP axis 

and unequal cell growth along the PD axis of the anterior domain contributes to the 

curvature of the funiculus. 

3.3.6 Proximal-distal growth gradient in Arabidopsis integuments 

Genetic data indicate that asymmetric growth of the outer integument contributes 

significantly to the anatropous shape of the ovule (Baker et al. 1997; Schneitz et 

al. 1997; Vijayan et al. 2021). With the advancement of 3D digital ovule atlas 

(Vijayan et al. 2021), 3D quantitative cellular features can be studied and visualized 

as heatmaps and such features could be analyzed with tissue clusters from the 

dataset (Figure 3.33, A, B). Several of the analyses with tissue clustering gives a good 

idea of how the tissue growth happens. Additionally, the heatmap 

visualization enabled the first understanding by visual quantitative values in 

space. Further data exploration that aims at comparing multiple samples or 

different tissues from the same sample was impossible without a proper spatial 

coordinate system. The current coordinate system allows to perform such analysis 

of tissues and understand the changes in the same platform.  Analysis of 3D cell 

volumes of integument tissues from a single ovule along the proximal-distal axis 

reveals that the cell volumes of outer layers, especially the oi2 layer is higher 

compared to inner layers and they undergo a gradient increase from proximal to 

the distal end (Figure 3.33, C). Proximal cells exhibited small cell volumes while, 

except for small cells at the tip of the integument, distal cells were characterized 

by larger sizes.   
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The gradient increase is observed in all four layers of integuments, but the slope of 

the gradient is reduced when it comes to inner layers. Additionally, as a proof of 

concept for mapping a single cell feature from multiple samples, cell length to cell 

position along the PD axis in the medial domain of the oi1 layer across five different 

specimens was compared (Figure 3.33, D). Results indicate that cell length 

increased along the PD axis. Essentially, the data identified patterns from different 

tissues inside an organ that can be qualitatively looked at the same platform with 

spatial resolution. Results suggest that preferential cell elongation along the PD 

axis is an important factor underlying differential growth of the outer integument and 

ovule curvature. 

Figure 3.33. 3D spatial analysis of integument cell geometry 
Wild-type (Col-0) ovules of stage 3-IV are analyzed. (A) Heatmap of oi2 cell volumes. 
Panels depict a tilted frontal view (left), side view (center), and tilted back view (right). 
The PD axis is indicated. The arrowhead marks a small tip cell. (B) Side views of the 
same specimen as in (A) showing the 3D surface view of internal tissues. Heatmaps 
of the oi1, ii2, and ii1 layers, respectively. (C) Graph showing cell volume in relation to 
PD distance for the four integument layers of a representative ovule. The respective 
nonlinear Gaussian regression curves are indicated. 95 ≤ n ≤ 172. (D) Cell lengths in 
relation to normalized PD distance. Cells in the median oi1 layer of five ovules were 
analyzed. The respective nonlinear Gaussian regression curves are indicated. 126 ≤ n 
≤ 133. Note the increase in cell length towards the distal end. Scale bars: (A, B) 20 
µm. Abbreviations: p, proximal; d, distal; m, medial; l, lateral. 
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3.4 3D Nuclei atlas within the context of cells

After all the advancements in microscopic imaging of cell boundaries and nuclei stains, 

this study demonstrated the power of deep learning algorithms in image segmentation 

of cells and nuclei. With the application of 3DcoordX, organ coordinates can be also 

obtained. Combining all these features, a 3D digital atlas can be now looked at where 

the cellular features can be linked to the features from the nuclei and they can be 

studied at the same time. For example, one can investigate the nuclear size, shape 

and other features and compare over the size and shape of the cell in which the 

nucleus of interest is located. This is quite an advancement in 3D analysis of cellular 

whole organs. Additionally, since the cells and nuclei are now linked, tissue labels from 

the cells can be now applied on nuclei and tissue specific nuclei analysis could be also 

performed (Figure 3.34 D). The organ coordinates obtained from the cells can be also 

performed with just the nuclei or the nuclei can be now looked at spatial resolution with 

3DCoordX. Overall, this study has increased the possibility to extract hidden 

information from a complex 3D microscopic image of cell boundary and nuclei of the 

whole organ.  

Figure 3.34 3D Nuclei atlas within the context of cells 
Figure demonstrating the application of cell segmentation and nuclei segmentation 
from microscopic images. Mid sagittal section of a mature Arabidopsis ovule displaying 
raw microscopic image of nuclei stain (A). Transverse section of the same ovule 
displaying the overlay of cell wall stain and nuclei raw images (B). Figure displaying 
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the 3D segmented nuclei with the heatmap displaying the nuclei volumes in 3D (C). 
Figure displaying the application of cell-based tissue labels to nuclei mesh, essentially 
the tissue labels from cell segmentation is transferred to nuclei for visualizing the nuclei 
from different tissues that in turn allows the extraction and analysis of nuclei from 
different tissues separately (D). 3D view of multiple ovule primordia displaying cell and 
nuclei segmentation that can be now used to extract information regarding the nuclei 
size and cell size or its ratio in different ovules of the same stage (E). Figure 
demonstrating the different shapes of nuclei in Arabidopsis ovules (F). These nuclei 
linked to cells now allows to look at the cell shapes when the nuclei are shaped 
differently. Figure demonstrating the differences in cell volume and nuclei volume from 
all cells in a mature Arabidopsis ovule (G). Ellipse represents different tissues within 
the organ.   
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4 Discussion 

4.1 Method development for generating 3D Arabidopsis ovule 
atlas with cellular and tissue resolution 

This study aims to understand qualitative and quantitative cellular patterns from 

microscopic instance segmented images of Arabidopsis ovules. The prerequisite for 

generating a precise 3D digital model of an organ is very high. It starts from optimized 

microscopy with a good signal to noise ratio, high image resolution in the xy and z axis 

of imaging, image processing and instance cell segmentation. The requirements are 

mainly to obtain a good image that can be instance cell segmented  

hours of manual correction, tissue annotation, and finally, the procedure repeated for 

all developmental stages with a good number of samples. Essentially, the whole 

procedure requires inputs for improvements from multiple angles that could make the 

task easy and results reliable. This section of the study has reliably come up with 

several improvements for the whole atlas generation for Arabidopsis ovules which is 

now also applicable for other organs. 

4.1.1 Improvements in sample preparation and microscopic 
imaging for instance cell segmentation 

This study has identified that tissue clearing is essential to attain a high-quality atlas of 

organs with cellular resolution. A novel protocol for rapid, reliable, and simple imaging 

of fixed and cleared Arabidopsis ovules is out from this study (Tofanelli, Vijayan et al., 

2019). The strategy combines two recently depicted methods for clearing and cell wall 

staining, ClearSee and SR2200 staining, and incorporates several modifications and 

additional improvements for sample preparation that highly improved the final results 

of microscopic images and that now allows instance cell segmentation of such images 

when acquired at a high resolution. Also, the methods using fixed and cleared samples 

stained with a cell wall stain are compatible with an FP-based reporter line that can be 

now imaged along with cell outlines from the cell wall stain reliably. Additionally, this 

high-performance cell wall stain eliminated the need for a cell outline reporter line for 

performing a whole organ cell segmentation, this further expands the project to 

examine several genotypes and mutant phenotypes without generating a cell outline 

reporter line in its background. 
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Nuclear staining with TO-PRO-3 is another important adaptation in the above-

mentioned method. TO-PRO-3 allows detection of all nuclei in Arabidopsis ovules, 

even those of the developing gametophytes that allow identifying mature ovule 

developmental stages based on gametophytic nuclei. Moreover, it is compatible with 

SR2200, the emission spectra of which do not overlap. Overall, the nuclei stain can be 

imaged without any hassle and allows to confirm the presence of a cell. This is 

especially useful when the cell outlines are weak and it’s hard to distinguish between 

cells in any regions.  

Stains have reduced tissue penetration, additionally, nuclei stain had a rapid loss of 

signal intensity when applied with the original ClearSee method for sample 

preparation, this study has made a slight modification in staining solution (staining in 

PBS solution) and sample mounting in Vectashield that retains the nuclei stain signal 

and also allows deeper stain penetration. This slight modification was critical as it now 

allowed better sample preservation for long-term observation up to six months in 

current understanding. Multiple numbers of ovules can be images from the same 

microscopic slide with full 3D resolution and without significant phototoxicity to the 

sample due to the adapted sample mounting in Vectaschield. Overall, Vectaschield 

mounting has allowed more freedom on time and helped in a rapid increase in samples 

that can be imaged or stored for future imaging. 

Deep imaging was another challenge as light scatters in deeper tissue layers. Here, 

the issue was solved using just a confocal microscope and without going into a more 

advanced multiphoton microscope that allows deeper tissue penetration. The 

mentioned depth of the tissues is in the range of 50-80 μm. This study uses a 63× 

glycerol objective with a numerical aperture of 1.30, sample mounting in Vectashield 

makes maximum compatibility with the glycerol immersion and objective as it has the 

refractive index similar to glycerol. A consequence of z scanning, the signal intensity 

reduces as one goes into deeper tissue layers. This was homogenized with an 

automated z compensation in the microscope that increased the laser power and 

detector gain in a gradient fashion when the scanning was performed along the z 

direction. These improvements are initially developed for Arabidopsis ovules, but they 

are also applicable for other plant organs. Overall, this study has made critical changes 

to the sample preparation using the ClearSee method that valuably added to several 

improvements of the final microscopic image. 
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Digital 3D models with cellular resolution are crucial for the quantitative analysis of 

organ morphogenesis. These images generated by improved methods are instance 

cell segmentable as they were acquired with high image resolution. The demands for 

initial image resolution were kept very high because there weren’t any existing machine 

learning tools and the tools used required high image quality as it was just based on 

ITK watershed. Overall, the existing tools require higher-level human input in 

correcting image segmentation, and it is not ideal when the whole procedure needs to 

be applied on hundreds of samples from various developmental stages. Further work 

must be done to improve the rapid, and ideally automated, generation of 3D digital 

ovule models, for example by improving image analysis of ovules and the 

segmentation algorithm, through deep learning approaches. 

4.1.2 PlantSeg deep learning-based image improvement for precise 
instance 3D cell segmentation 

PlantSeg is a simple, powerful, and versatile tool for plant cell segmentation that came 

to form based on the images provided from this study. PlantSeg uses the latest 

development in machine learning and computer science to perform the image 

improvement task, to start the whole pipeline from scratch, computer scientists require 

ground truth images or segmentation of the provided raw images for training purposes. 

Training is performed to create a model that could ideally generate reliable predictions 

of new raw input images. This study provided hand-curated high-resolution images, 

which are resampled with several factors of downsampling to perform PlantSeg 

training of different resolutions. 

PlantSeg resulted in current best and automated instance cell segmentation of 

provided images. It went down from almost 30 minutes to 5 minutes of human input 

needed to correct a segmentation from a mature Arabidopsis ovule containing about 

2000 cells in 3D. Nevertheless, the segmentation results produced by PlantSeg on 

new ovule datasets are not fully perfect and still require some human proof-reading to 

reach 100% accuracy. PlantSeg advancement has also generated images of cell 

boundary predictions, this is now a good representation of the raw images for 

visualization purposes that helped in better understanding the morphology of the 

structure with less background noise. 

Thus, this study has provided a new benchmark dataset of large number of high-quality 

images of Arabidopsis ovules with gold standard ground truth labels for machine 
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learning-based image segmentation that is applied for PlantSeg training. Additionally, 

the training was also performed on reduced dimensions of 2x and 3x which now allows 

to segment images from even low resolution. Essentially for previously unaccepted 

image quality standards for 3D cell segmentation, PlantSeg now offers the possibility 

to perform 3D cell segmentation in those images in a good manner.  

4.1.3 Deep learning-based 3D nuclei instance segmentation using 
a novel training dataset for faint images of nuclei 

The image dataset of Arabidopsis ovules includes a nuclei image stack which was 

initially used to identify gametophytic nuclei stages and for validating the presence of 

nuclei when it comes to proofreading the cell segmentation. Perfect instance 

segmentation for such faint nuclei channels is nearly impossible with any possible 

machine learning tools. This study has broken the conventions and generated a new 

training dataset that provides ground truth images for those faint nuclei channels using 

the nuclei segmentation of a bright nuclei reporter as a pseudo segmentation. This 

approach has greatly improved the results of nuclei segmentation. Now the To-PRO3 

faint nuclei stain images can be segmented, nuclei sizes and shapes can be quantified 

from those segmentations. Signal intensity of the nuclei stain and any reporter activity 

can be also quantified in 3D with these nuclei segmentation. 

Additionally, the first steps for further improvement in cell segmentation based on 

nuclei domain knowledge were also applied in this case here. This would require a 

further improvement in the computer scripts to develop further to a higher level of 

precision. This study did not perform a scored comparison of the results of nuclei 

segmentation and the methods for improving cell segmentation based on nuclei 

domain knowledge, but a qualitative and morphological analysis was only performed 

on the results. 

 4.1.4 Whole organ tissue annotation in 3D digital atlas 

A 3D digital organ with full cellular resolution has an unprecedented analytical 

capability. Examination of 3D digital ovules revealed new insights that could have only 

been obtained by studying the morphogenesis of the organ in 3D with cellular 

resolution imaging and cell segmentation. Tissues were labelled from early to late 

stages of development. The 3D tissue annotation of different tissues in the organ 

resulted in gaining few previously unobserved morphological features of the organ 
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including defining different regions of the organ with proper cellular resolution. 

Additionally, this has added a valuable clustering feature of the organ, without tissue 

annotation the possibility of the study was limited to understanding the total number of 

cells in the organ and other morphological features. Now with tissue annotations, there 

is a possibility for tissue specific quantification and analysis of cellular features. Surface 

rendering the internal tissues was another advanced tissue structure analysis that was 

possible after tissue annotations to the digital models. This now allows a better 

understanding of the shapes of internal tissues by itself and how this is different in 

different genotypes and at different developmental stages. 

4.2 Stage-specific 3D digital ovules atlas with cellular and 
tissue resolution   

Several characteristic features of the organ were identified based on the tissue labels 

annotated to the 3D digital images after cell segmentation. Also, a quantitative analysis 

was performed on growth and proliferation of tissues at different stages. This study 

has provided a benchmark with a lot of possible information on wild-type Arabidopsis 

ovule development. A few of the highlights are mentioned below.  

4.2.1 Growth patterns forming ovule primordia 

The dataset of Arabidopsis ovules comprises early to late stages of development. 

Global analysis of early development reveals that the ovules follow a continuous 

growth or continuous increase in cell number and overall volume. This confirms that 

there are no specific growth pulses or phases of early development, but rather a 

continuous growth and proliferation of cells. Additionally, the PD extension of the 

primordia was also quantified for all these ovule primordia to obtain continuous growth. 

Tissue specific analysis reveals further details on what tissue is composed of the most 

number of cells and their relative growth and proliferation rates. Results indicate that 

L1 is composed of more cells and L1 undergoes more proliferation. This is also 

essential as L1 forms the outer surface of the organ, for layered cone shaped structure, 

the surface area of the outer layer has to be higher than inner layers, thus the L1 is 

composed of a large number of cells that makes sense. But interestingly, L1 is 

composed of small cells. Overall, these tissue specific analysis indicate that the pattern 

in different tissue layers are not the same, cellular divisions and growth in different 

tissues within ovule primordia are different. 
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Ovule synchrony was also looked at by quantifying the number of cells, total volume, 

PD extension and cell volumes from ovules within a pistil fragment. Variations do occur 

within ovules of the same pistil; the analysis reveals that these ovules don’t have the 

same characteristic developmental stage and a slight variation is to be expected. But 

here the variation is quantified with cellular resolution, allowing the possibility to 

characterize and compare the synchrony in any mutant genotype of interest. 

4.2.2 Slanting and polarity in ovule primordia formation 

The results provide a new understanding of the establishment of ovule polarity. It was 

previously observed that ovules are oriented relative to the long axis of the gynoecium 

(Simon et al., 2012). The gynapical (micropylar) side is pointing to the stigma and the 

gynbasal (chalazal) side toward the base of the gynoecium. It remained unclear, 

however, when this polarity became established and whether it could be recognized 

throughout the internal tissues of the ovule. Results indicate that the final orientation 

of the ovule does not correspond to how the polarity is established. The emergence of 

a slant in the ovule primordium represents the earliest morphological manifestation of 

polarity in the ovule. Importantly, this early anterior-posterior-axis was initiated at a 

right angle to the long axis of the gynoecium. Anatomical and marker gene expression 

data further suggest that the anterior-posterior polarity is maintained during 

subsequent development and throughout all major tissues along the PD axis of the 

ovule. This is indicated by the polar distribution of the distal two nuclei of the four-

nuclear embryo sac, the morphological differences between the anterior and posterior 

chalaza in the proximal central region, and the posterior placement of the phloem 

within the funiculus (Vijayan et al., 2021). The gynbasal-gynapical orientation of the 

ovule is eventually achieved by a turn in the funiculus. Thus, the alignment of the ovule 

with the apical-basal axis of the gynoecium does not directly correspond to the 

establishment of anterior-posterior polarity in the primordium but rather depends on a 

subsequent morphogenetic process in the funiculus. A basic molecular framework 

underlying primordium outgrowth and integument formation has been established 

(Chaudhary et al., 2018; Cucinotta et al., 2014; Gasser and Skinner, 2019). However, 

it is not known what regulates anterior-posterior polarity, slanting, and funiculus 

twisting. The mechanism may involve PHB and cues from the replum-septum 

boundary that is positioned in the medial plane of the gynoecium (Reyes-Olalde and 

de Folter, 2019; Roeder and Yanofsky, 2006). 



4.2.3 Polarity in the internal central region of Arabidopsis ovule 

The internal central region of chalaza was less studied previously mainly because of 

no 3D data availability. The cellular architecture of the internal central region indicated 

that it’s composed of two different groups of cells. Anterior and posterior chalaza. 

These two groups of cells display differences in the shape and size of cells. They 

display morphological differences in cellular packing compared to other cells in the 

organ which is visible by a qualitative analysis. The shape formed by these two tissue 

groups is very complex. A hypothesis here is that the cells of anterior chalaza are 

composed of loosely packed large cells, whereas the cells of posterior chalaza might 

be composed of tightly packed small cells. This hypothesis is mainly derived by looking 

at the shapes and sizes and how they are packed in 3D. Unfortunately, less tools are 

developed to study the cellular packing of these tissues and shapes of cells formed by 

these two tissues. 

4.2.4 Mapping characteristic cellular feature to ovule curvature formation 

This study has identified differential growth of integument tissue layers as a highlight 

feature of Arabidopsis ovule development. A detailed morphological analysis of the 

integument growth at the sagittal section revealed characteristic events during 

integument outgrowth and curvature. Results strongly suggest that differential initiation 

and outgrowth have a major role in forming the curved shape of the ovule. A major 

event in this differential outgrowth is when the outer integument two layers outcross 

the inner integument tissues. One hypothesis is that once the outer integument 

outcrosses the inner integument, it has gained control in the development of the inner 

integument. In an exaggerated manner, the outer integument might be able a stop to 

the PD growth and extension of the inner integument and allow the inner integument 

to only follow the outer integument. This was considered as the outer integument was 

found to be encroaching the area where the inner integument has to eventually grow 

out. This area is filled with cells of adaxial oi (oi1) with expanded cells in the depth axis, 

called exposed cells of oi1 in this study.  

Additionally, there are contact frictions between the inner and outer integument. 

The outer two layers grow together and they would ideally be able to slide over the 

inner integument surface as they does not share a wall between them. Neverthelss, 

the walls between inner and outer integuments are in direct contact. But the extent of 

contact and the resulting friction might be also able to control the amount
146 
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of sliding over between the inner and outer integument. Control of contact friction might 

be another mechanism behind ovule development and curvature. 

There are several features displayed by the integuments during its differential 

outgrowth. Contact friction is one advanced feature of this organ. The morphology of 

cell surfaces changes when they are covered by cells. This study shows a prime 

example of outer integument outcrossing the inner integument and the cell shapes of 

the surface cells of the inner integument are altered. The otherwise smooth surface of 

ii2 is now rough with faces of cells of oi1 projected on its surface due to contact 

between these two layers as the oi outcrosses the ii. 

A global and tissue-specific analysis of integument tissues was performed. 

Quantitative analysis of integument growth and proliferation revealed different patterns 

in integument tissues. The growth and proliferation rates of integument tissues 

correlate with the different phases of integument outgrowth. The early phase of 

integument outgrowth where there is a pulse in oi growth that leads to the oi 

outcrossing the ii is clearly visualized by the growth and proliferation rates of oi1. In 

contrast, the values from oi2 don’t say much. This could be because all the oi2 cells 

are included in this analysis. An analysis excluding the proximal oi2 cells covered by 

the chalazal cells might have made more sense. This can be now performed by just 

clustering the cells with positive coordinate values in the 3DCoordX attribute. Due to 

time constraints, this is not included in this study. 

Results also indicate that the inner integument undergoes high growth and proliferation 

at its early growth, this can be taken as a mechanism for ii to already attain sufficient 

growth before the oi starts to grow. Essentially, if the oi starts to initiate at the same 

time to ii, the shape of the organ might have been different. This can be a debatable 

statement as it’s not supported by experimental evidence. Current knowledge is that 

before the oi outgrows, the ii has to perform some sufficient growth that allows oi to 

grow on the surface of ii along the PD axis, further there is preferential growth of oi that 

leads them to outcross ii, then there is a phase where all these tissues grow at almost 

the same rate. Quantification strongly suggests that there are growth pulses in oi cells 

that help them to grow faster than ii and outcross. Ovule curvature and these growth 

pulses can be related, but any statement doesn’t not stand without proper experimental 

evidence. Nevertheless, the results suggest that oi outcrossing ii might be essential to 

form the final curved structure. Also, ii initiations before oi and outgrow already at a 
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higher rate until oi starts to outgrow might be an essential feature of the organ to form 

the curved shape.  

Differential growth and proliferation rates say much about tissue growth, having cellular 

level information adds more details to the quantifications. Results from surface 

rendered heatmaps of cell volumes of integument layers indicate that there is a 

prominent gradient increase in cell volumes of integument cells. Essentially, the cells 

at the distal end are composed of big cells compared to the cells at the proximal end. 

Correlating this to the differential growth indicated further about the organ structure 

formation. Ovule integument cells are attached to one end, growth is possible along 

the curved axis and growth pushes the cells to more distal positions. Essentially the 

growth is favourable at the distal end compared to the proximal end. Considering 

differential growth of integuments as an essential feature of the organ, for the organ to 

attain differential growth, the easiest mechanism would be to pattern the cells at the 

distal end with higher cell volumes, this is what we observe as a polarity or gradient 

increase in cell volume along the proximal-distal axis of the organ. Considering if the 

organ decided to produce larger cells at the proximal pole, this would require higher-

level coordination and cells might end up protruding from the surface, instead of when 

the distal cells are enlarged, only a few cells distal to the cell of interest have to be 

taken care of. Overall the pattern of cell enlargement in integument cells might be an 

additive mechanism to generate differential growth of integument. 

Differential outgrowth resulted in the differential cellular property to distal exposed cells 

of oi1. This is another observed feature that can be also correlated to the final shape 

formation. Quantification of cellular features of these cells indicate that they expand in 

depth. This is an interesting morphological feature and can be correlated as a 

competition between oi and ii. Once the oi outcrosses the ii, these exposed cells 

appear or in other terms, the cells are exposed and they display such characteristic 

higher cell depth. This can be a simple event irrelevant to the shape of the organ, but 

on the other hand it can also be a highly relevant feature. A hypothesis here is that the 

higher depth cells might be able to make a stop to the ii outgrowth by making physical 

contact with the distal growing end of ii. This makes ii to a point that it can now grow 

by only following the oi. Also, if the curvature of the organ is looked at, this feature is 

almost at the last stage to form the final bending. The problem can be also looked at 

differently. If the oi1 cells might have not increased in-depth, the inner integument 

would be still able to grow slightly following the shape made by oi, but the ii would have 
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been able to grow with few constrictions in its path. Having said this, the shape of the 

ovule might have been more straight at the distal end. Overall it’s still a debatable 

feature, but a valuable pattern found from 3D digital ovule images. Additionally, the oi1 

shape is featured as a cylinder with its closing end smaller than the opening end. 

Shapewise, this indicates that the oi1 shrinks the ii cells as it comes to the distal end. 

In other words, the oi1 physically occupies the space for ii to outgrow, resulting in the 

ii to grow slowly or to produce smaller cells or push back hard the oi1 cells. This is now 

direct evidence of interaction between these tissue layers during outgrowth. 

The ovule curvature is a complex morphogenesis, this study has tried to identify the 

key features of the organ that could have direct or indirect link to forming the curved 

shape. It could be also that some of the features are a resultant of different 

characteristic pattern established in the organ. To answer this in a clear manner, 

different mutant genotypes have to be established with differences in each of the 

feature mentioned in this study. For example, what happens in a mutant which doesn’t 

make distal enlarged cells? what happens when the outer integument gets initiated at 

the same time to inner integument? What happens if the inner integument prolongs to 

grow at a higher rate than outer integument? Validating the importance of all these 

characteristic features is time consuming and out of the scope of the current study.  

4.3 Spatial coordinate system for 3D Arabidopsis ovules 

Analysis of the organ with tissue resolution revealed several features of the organ. 

Most of these features follows differences along the central axis of the organ. Spatial 

patterns can be morphologically studied by visual analysis of the 3D digital organs, but 

they lack any quantitative analysis that can be linked to the spatial resolution. This 

study has come with a toolbox 3DCoordX, that allows annotation and analysis of 3D 

digital organ coordinates. It’s a user-interactive open-source toolbox that assigns to 

each cell 3D positional information relative to the major axes of the organ or tissue 

under study. 

Essentially, the toolbox is an advancement for a spatial resolution to the dataset, the 

novelty of this toolbox is that it can be applied on simple and also complex-shaped 

organs. Arabidopsis ovules form a highly curved shape at maturity, 3DCoordX allows 

tissue-restricted coordinate annotation to these cells positioned at the curved central 

proximal-distal axis. In the end, a quantitative feature of the organ can be mapped to 
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the spatial coordinate value of the cell, and a high-end spatial and tissue-specific 

quantitative analysis can be performed. 

With the 3DCoordX coordinates, one can now map multiple specimens or can 

understand variations within a sample with spatial resolution. 3DCoordX toolbox is a 

simple approach using tissue annotations to build spatial coordinates that follow the 

tissue patterns. Coordinates have an origin, the origin used here is a 2D ring. The ring 

can be as small as a point or can we a wide origin. For ovule primordia, the point like 

ring is used to form coordinate origin. The approach is to first annotate direct cells from 

the origin. Further distances to cells within individual cells and direct cells are 

measured, thus for a selected cell, its distance coordinate is its distance to its nearest 

direct cell plus the distance coordinate of the direct cell, indirectly providing the 

distance between the cell to the ring origin. These direct cells are applicable since the 

measurements are performed in a tissue-restricted manner. Direct cells act as seeds 

to individual tissues. Essentially, the coordinate values follow tissue restriction. This 

novel method for coordinate annotation provides accurate coordinates for simple and 

even complex plant organs. The same principle is used for integuments. Integuments 

follow a curved structure, its coordinate origin is placed inside the organ where the 

integuments are initiated. Following the anterior and posterior tissue annotations within 

the tissue layer, the 3DCoordX will search for the distance between the direct cells and 

all cells within the individual tissues and provide the added coordinate value between 

the cell and the coordinate origin. Additionally, the package also allows defining 

medial-lateral coordinates for such complex organs. The same principle can be applied 

to other organs like Utricularia, which is a curved leaf, Marchantia, which is an 

archegonia. Overall, the principle is now widely applicable in other organs and spatial 

resolution is now not a complicated task for 3D digital organs. 

3DCoordX also includes an automated tissue annotation approach for simple layered 

tissue structure. It takes a segmented image stack and the respective 3D mesh as 

input and automatically clusters mesh cells into tissue layers. This is done in multiple 

steps combined to a single click process. Firstly the surface cells are figured out by 

their outside exposed surface area or if the segmented cell has voxels exposed to air. 

Once the surface cells are clustered as L1, they are used to define the inner tissue 

layers in terms of distances from L1. This is user-friendly as it doesn’t use surface 

mesh to do the clustering. Surface mesh generation is critical and is often time-

consuming. This approach is fast and reliable for simple layered organs. 



151 

Having the 3DCoordX values for ovules, different findings are now defined in a 

quantitative manner. Mitotic cells in ovule primordia are now mapped to the 

coordinates, this allows to define of the spatial pattern of mitotic cells from multiple 

samples of ovule primordia and come with a general pattern of mitotic cells in early 

ovules. Funiculus is a curved structure within the ovule, 3DCoordX can be also applied 

in the funiculus to understand the spatial patterns in the anterior and posterior half of 

the organs and along the proximal-distal axis. The differential growth of integuments 

is now defined with spatial resolution. Detailed analysis indicates that there are severe 

changes in cellular features along the central curved axis of the organ and many of 

them might have influence in shaping the structure to a curved form at maturity. 

Although these patterns are now defined with spatial resolution, the science behind 

the patterns is still unclear. If the observed pattern is a resultant pattern or the pattern 

is inherent? Do these patterns really have an influence on the final organ shape or it’s 

a passive observable pattern that doesn’t have a major role in shaping the structure? 

A strong pattern like differential growth of integuments is observed, but what happens 

when the differential growth of integument tissues is altered? Several of such questions 

are unanswered in this study due to time constraints and limitations. 

4.4 3D Nuclei atlas within the context of cells 

This section includes a final refinement in the tools and techniques used in the study 

to make the best use of them. 3D cell segmentation and nuclei segmentations are 

available from this study. Tissue annotations and 3DCoordX spatial coordinates are 

also available. All this information can be used at the same platform to perform a 

combined analysis of cells and nuclei within the organ. Tools are finally developed for 

linking cells to nuclei within the 3D meshes in MGX. The result is that one can now 

quantify cellular patterns and nuclei patterns at the same platform. An example is one 

can look at the ratio of cell volume and nuclei volumes in different tissues and with 

spatial resolution. One can understand the position of nuclei within the cell and ask 

questions like if the shapes of nuclei follow a pattern that is also visible from the cell 

segmentation? Tissue annotations from cells are now applicable for nuclei, one can 

extract nuclei from different tissues and perform any global analysis. Also, nuclei from 

different stages of development and genotypes can be now looked at with spatial and 

tissue resolution. Overall, the final package for 3D nuclei atlas provides an extended 
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version of the most possible information to be extracted from the 3D cell segmentation 

and nuclei segmentation of the microscopic images. 
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5 Conclusion 
This study has taken ovules as a model system to understand deed into 3D cellular 

patterns shaping an organ. The study initially focused on developing proper tools and 

techniques for 3D cell outline image analysis. Several advanced methods were 

developed as part of the study that have valuable helped the plant science 

community. Starts with advancements in microscopic imaging, machine learning-

based PlantSeg pipeline for accurate image segmentation, and 3DCoordX, a toolbox 

for coordinate annotation in simple and complex plant organs. This study made use 

of the developed methods to further understand the organ with fine details.  

Several features of the organ were identified from this study. A few highlights include 

firstly the slanting in ovule primordia. Slanting forms the first observable polarity in the 

organ that is further translated into the anterior-posterior organ axis, posterior 

initiation of integuments and finally orienting along the pistil axis with the micropyle 

pointed towards the pistil apex, called the gynapical-gynbasal orientation of the organ 

at maturity. Integuments are fascinating structure that grows around the organ. This 

study has identified differential growth of integuments and related events and 

features of the organ. Exposed cells, distal enlargement of integument cells, and 

contact friction are the currently observed highlights that can be used to explain the 

differential growth of the organs and how that translates to the final shape of the 

organ. Quantitative analysis of growth and proliferation in integument tissues resulted 

in advanced interpretation of the cellular patterns and features observed.  

Finally, 3DcoordX, a spatial coordinate system for annotation and analysis of 3D 

organ morphogenesis was setup for this complex shaped organ which can be also 

applied on various other organs. 3DcoordX allowed extensive analysis that 

includes spatial coordinates to the system which was previously missing. Spatial 

resolution helped to define integuments proximal-distal growth gradient in a 

quantitative manner. Identified that mitotic cells appear at proximal 65% of the organ 

body in early development by mapping mitotic cells to organ coordinates from 

multiple sample normalization. 3DCoordX is an advanced toolbox that it can be 

applied on various simple and complicated shaped structures. Overall, this study 

has extensively defined the cellular organization in wild type Arabidopsis ovule 

development with fine details that now stands as a benchmark dataset for 

understanding various features of the organ at 
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different developmental stages and how that correlates with the tissue and organ 

shapes at their respective stages of development. 
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7 Supplementary Data 

7.1 Supplementary table 1- Arabidopsis ovule developmental stages 

(Table adapted from Schneitz et al., 1995) 

Ovule 
stages 

Ovule development Flower development 

Embryo sac 
and 
endosperm 
development 

Sporophytic tissue 
development 

Gynoecium 
development 

Floral landmarks of 
corresponding floral 
stages 

1. Early phase of ovule development

1-I Protrusions arise Open cylinder Locules appear in long 
stamens (floral stage 8) 

1-II Protrusions 
elongated 

Cylinder 
constricted at 
apex 

Petal primordia stalked 
at base (floral stage 9) 

2. Megasporogenesis

2-I Megaspore 
mother cell 
enlarges 

Cylinder closed Petals level with short 
stamens (floral stage 
10) 

2-II Inner integument 
initiates 

2-III Outer integument 
initiates, chalazal 
nucellus divides 

2-IV Meiosis Chalazal nucellus 
enlarges 

First immature 
papillar cells 
which do not 
cover all of the 
stigma yet, lateral 
vasculature 
visible as lighter 
strip 

Filaments start to 
elongate, anthers green 
(floral stage 11) 
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2-V Tetrad 
formation 

Integuments extend 
toward the apex of 
the nucellus 

3. Megametogenesis

3-I Degenerating 
tetrad with 
mono-nuclear 
embryo sac 

Outer integument 
envelops the nucellus 
and the inner 
integument, funiculus 
and the nucellus 
curve 

3-II Two-nuclear 
embryo sac 

Outer integument 
surrounds nucellus, 
micropylar end 
pointing more than 
90° away from 
funiculus, further 
differential growth of 
integuments 

Papillar cells 
small and 
covering all the 
stigma, style 
recognizable, 
valves almost 
visible as distinct 
structures 

Petals level with long 
stamens, anthers turn 
yellow (flower stage 12) 

3-III Vacuole 
appears 

Micropylar end points 
away about 90° from 
funiculus 

Papillar cells 
grow longer 

3-IV Four-nuclear 
embryo sac 

Inner integument 
surrounds nucellus, 
endothelium 
differentiates 

Valves more 
pronounced 

3-V Eight-nuclear 
embryo sac, 
cellularization 

3-IV Central cell 
nuclei fuse, 
antipodal 
cells 
degenerate 

Additional cell layer 
initiated in inner 
integument 

Well-extended 
papillar cells, 
prominent style 
and valves 

4. Postfertilization development
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7.2 Supplementary table 2 - Cells type labels and abbreviations of tissues. 

Cell type Morphological definition of cell type Standardize
d cell type 
label 

Radial organization of early-stage ovule tissue 

L1 Outermost cell layer (epidermis). L1 

L2 First sub-epidermal cell layer. L2 

L3 Innermost cell layer. L3 

MMC Single large L2 cell in distal end of 
nucellus, eventually undergoing meiosis, 
volume ≥ 350 µm3. 

mmc 

Tissues organization of late-stage ovule 

Nucellus Distal region, harbors the mmc, proximally 
delineated by adaxial inner integument . 

nu 

Chalaza Central region, flanked by the two 
integuments, distal end marked by adaxial 
inner integument, proximal end marked by 
abaxial outer integument, does not include 
epidermis. 

ch 

Anterior chalaza Group chalazal cells, positioned at the 
anterior side, underlying the epidermal 
cells forming the frontal base of the hood-
like structure generated by the epidermis-
derived outer integument. 

ac 

Posterior chalaza Group of proximal chalazal cells, 
positioned opposite to the cells of the 
anterior chalaza. 

pc 
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Funiculus Proximal region, stalk-like structure, 
carrying the vascular strand, distal end 
marked by chalaza, proximal end marked 
by placenta. 

fu 

Embryo sac Haploid female gametophyte 
encompasses all stages up to but not 
including fertilization. 

es 

Integument tissues 

Abaxial outer 
integument 

Outermost single cell layer of outer 
integument, entirely made of epidermal 
cells, proximal end marked by chalaza. 

oi2 

Adaxial outer 
integument 

Innermost (dorsal) single cell layer of 
outer integument, proximal end marked by 
chalaza. 

oi1 

Abaxial inner 
integument 

Outer (ventral) single cell layer of inner 
integument, entirely made of epidermal 
cells, proximal end marked by chalaza. 

ii2 

Adaxial inner 
integument 

Inner (dorsal) single cell layer of inner 
integument, entirely made of epidermal 
cells, proximal end marked by chalaza. 

ii1 

Parenchymatic inner 
integument 

Cell layer derived from adaxial inner 
integument, proximal end marked by 
chalaza. 

ii1’ 

Integument coordinate system annotation 

Anterior Anterior region of the integument layer. Ant 

Posterior Posterior region of the integument layer. Post 

Proximal Proximal half of the integument layer. 
Relative PD distance values form 0 to 50. 

P 

Distal Distal half of the integument layer. 
Relative PD distance values form 50 to 
100. 

D 



169 

Negative oi2 Region of the outer integument placed 
behind the Bezier ring and characterized 
by relative PD distance negative values. 

Neg oi2 

Medio-lateral oi2 Medio-lateral region of the abaxial outer 
integument. 

MED-LAT 

Frontal oi2 Frontal region of the abaxial outer 
integument. 

FRONT 

Cell cycle 

M-phase Mitotic figures (metaphase, anaphase). M 

Interphase Cells in G0, S, or G2 phase. I 
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8 Appendix 
8.1 Broad applicability of 3DCoordX spatial coordinates in other organs 

The approach for an organ-intrinsic coordinate system, 3DCoordX was useful beyond 

the Arabidopsis ovule and could be of value to provide spatial context to cellular growth 

patterns in different organs of various plant species. Several 3D digital plants can be 

analysed using this method. As an example, the cup-shaped trap of the aquatic 

carnivorous plant Utricularia gibba is used here. The traps represent a highly curved 

3D leaf form (Płachno et al. 2015; Reifenrath et al. 2006). Quantitative growth analysis 

at the tissue level combined with computer modeling indicated that the complex shape 

transformations occurring during trap development are associated with differential 

rates and orientations of growth (Lee et al. 2019; Whitewoods et al. 2020). However, 

a quantitative analysis of cellular parameters has not yet been performed. To obtain 

first insight into the cellular basis of the growth patterns shaping the Utricularia trap a 

3D digital representation with cellular resolution of an intermediate-stage trap collected 

6 days after initiation was generated from the available dataset (Lee et al. 2019). By 

this stage an invagination in the near-spherical young trap had occurred, followed by 

the formation of further folds and tissue broadening, and resulting in the emergence of 

the interior trap door and threshold (Fig. 8.1 A-C). Various tissues were manually 

labelled, including the the abaxial and adaxial cells of the wall, the threshold, and the 

trap door, and distinguished between medial and lateral domains of the adaxial and 

abaxial wall, respectively. To define an origin of the distance coordinate system, an 

ellipsoid Bezier ring was placed at the boundary between the base of the threshold 

and the wall of the trap (Fig. 8.1 D). A basic spatial analysis of the patterns of cell 

volumes were performed (Fig. 8.1 E-G). Results indicate that cell volume varied along 

the measured distances. For example, a sudden increase in cell volume was observed 

in an interval from 240 µm to 320 µm for cells of the abaxial wall (Fig. 8.1 F). This 

region precedes a prominent kink in the abaxial wall (Fig. 8.1 E). By contrast, cell 

volumes of the adaxial wall dropped towards the end. The decrease in cell volume was 

likely associated with the tapering of the adaxial wall that could be observed in this 

area. Volumes of threshold cells positioned within a range of 80 to about 150 µm from 

the origin showed relatively small volumes in comparison to the cells flanking this 

interval (Fig. 8.1 G). The 80-150 µm zone corresponded to a section of the threshold 

which was only moderately curved and provided a large surface exposed to the lumen 

of the trap (Fig. 8.1 E). Taken together, the data revealed spatial differences in cell 
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volume for all three examined tissues of this specimen and support the notion that 

differential cell growth contributes to the morphogenesis of the Utricularia trap. 

Figure 8.1. 3D digital Utricularia trap. A specimen 6 days after initiation is shown. 
(A) Side view of the 3D cell mesh with annotation of various tissues. (B) Tilted view of
(A) with part of the wall removed by a tangential clipping plane. The dashed line
indicates the mid-sagittal section shown in (C). (C) Mid-sagittal section. (D) Slanted 3D
view of (A) with half of the trap cut off at the mid-sagittal plane shown in (B). The trap
door was removed. The position of the Bezier ellipsoid is indicated. (E) Left panel:
arrows indicate the direction of the distance coordinates through the epidermis of the
abaxial and adaxial tissue of the wall and the threshold, respectively. Right panel: Heat
map indicating distances. Wall and threshold are treated separately. Triangles mark
the 240-320 µm interval of the abaxial wall. Arrows highlight the tapering end of the
adaxial wall. Asterisks indicate the 80-150 µm intervall of the threshold. (F) Graph
displaying cell volume of epidermal trap cells in relation to their position. Values for the
abaxial and adaxial wall are superimposed. The respective nonlinear regression
curves with fourth order polynomial fitting are indicated. ab wall: n = 786, ad wall: n =
231. (G). Graph displaying cell volume of threshold cells in relation to their position.
The line marks a nonlinear regression curve. n = 533. Scale bars: 20 µm.
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