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Abstract

Light has many properties that can be passively mea-
sured by vision sensors. Colour-band separated wavelength
and intensity are arguably the most commonly used ones for
monocular 6D object pose estimation. This paper explores
how complementary polarisation information, i.e. the ori-
entation of light wave oscillations, can influence the accu-
racy of pose predictions. A hybrid model that leverages
physical priors jointly with a data-driven learning strat-
egy is designed and carefully tested on objects with dif-
ferent amount of photometric complexity. Our design not
only significantly improves the pose accuracy in relation to
photometric state-of-the-art approaches, but also enables
object pose estimation for highly reflective and transparent
objects.

1. Introduction

“Fiat lux”.! Light has always fascinated mankind. It is
not only the inherent centre of attention for many of the
greatest scientific discoveries in the last century, but also
plays a crucial role for society and even sets the basis for
religions. Typical light sensors used in computer vision ei-
ther send or receive pulses and waves for which the wave-
length and energy are measured to retrieve colour and in-
tensity within a specified spectrum. However, intensity and
wavelength are not the only properties of an electromag-
netic (EM) wave. The oscillation direction of the EM-field
relative to the light ray defines its polarisation. Most nat-
ural light sources such as the sun, a lamp or a candle emit
unpolarised light, which means that the light wave oscil-
lates in a multitude of directions. When such a wave is re-
flected off an object, light becomes either perfectly or par-
tially polarised. Polarisation therefore carries information
on surface structure, material and reflection angle which can

* Equal contribution; Alphabetical order
ILatin for ”let there be light”.
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polarisation data provides cues to surface normals especially for
highly reflective (cutlery) and translucent (glass bottle) objects.
Our Polarimetric Pose Prediction Pipeline (right) leverages the in-
put of an RGBP camera and uniquely combines physical surface
cues from polarisation properties with a data-driven approach to
estimate accurate poses even for challenging objects which can-
not be accurately predicted by current state-of-the-art approaches
based on RGB and RGB-D.

complement passively retrieved texture information from a
scene [30]. These additional measurements can be partic-
ularly interesting for photometrically challenging objects
with metallic, reflective or transparent materials which all
pose challenges to vision pipelines effectively hampering
their use for automation.

While robust pipelines [23, 41, 10, 13] have been de-
signed for the task of 6D pose estimation and texture-
less [25, 14] objects have been successfully predicted, pho-
tometrically challenging objects with reflectance and par-
tial transparency have become the focus of research only
very recently [39]. These objects pose challenges to RGB-
D sensing and the field still lacks methods to cope with these
problems. We move beyond previous methods based on



Figure 2. PPP-Net Pipeline Overview.

After the initial detection of the object of interest, the RGBP image - a quadruple of four

differently polarised RGB images - is utilised to compute AOLP/DOLP and polarised normal maps through our physical model. The
polarised information and the physical cues are individually encoded and fused in our hybrid model. The decoder predicts an object mask,
normal map and NOCS, and finally the 6D object pose is predicted by Patch-PnP [53].

light intensity and exploit the polarisation property of light
as an additional prior for surface normals. This allows us to
build a hybrid method combining a physical model with a
data-driven learning approach to facilitate 6D pose estima-
tion. We show that this not only facilitates pose estimation
for photometrically challenging objects, but also improves
the pose accuracy for classical objects. To this end, our core
contributions are:

1. We propose polarisation as a new modality for ob-
ject pose estimation and explore its advantages over
previous modalities

2. We design a hybrid pipeline for pose estimation that
leverages polarisation cues through a combination of
physical model cues with learning.

3. Asaresult, we propose the first solution to estimate 6D
poses for photometrically challenging objects with
high reflectance and translucency using polarisation.

2. Related Work
2.1. Polarimetric Imaging

Polarisation for 2D. Polarisation cues provide comple-
mentary information useful for various tasks in 2D com-
puter vision that involve photometrically challenging ob-
jects. This has inspired a series of works on semantic [58]
and instance [30] segmentation for reflective and transpar-
ent objects. The absence of strong glare behind specific po-
larisation filters further helps to remove reflections from im-
ages [30]. While one polarisation camera can already pro-
vide significant improvements compared to photometric ac-
quisition setups, the use of multispectral polarimetric light
fields [28] boosts the performance even more.

Polarisation for 3D. Due to the inherent connection of po-
larisation with surface shape and texture, the natural field
of application seems to be 3D computer vision. Indeed,
previous works on shape from polarisation (SfP) investi-
gate the estimation of surface normals and depth from po-
larimetric data. However, intrinsic model ambiguities con-
straint setups in early works. Classical methods leverage an
orthographic camera model and restrict the investigations
to lab scenarios with very controlled environment condi-
tions [18, 4, 56, 48]. Yu et al. [56] mathematically con-
nect polarisation intensity with surface height and optimise
for depth in a controlled scenario, while Atkinson et al. [4]
recover surface orientation for fully diffuse surfaces. Oth-
ers [48] add shape from shading principles or investigate
the normal estimation using circular polarised light [18].
While these methods rely on monocular polarisation, more
than one view can be combined with physical models for
SfP [3, 11]. Some works also explore the use of com-
plementary photometric stereo [2] and hybrid RGB+P ap-
proaches [61] which complement each other and allow for
metrically accurate depth estimates if the light direction is
known. If an initial depth map (e.g. from RGB-D) exists,
polarimetric cues can further refine the measurements [29].
Furthermore, the polarimetric sensing model help estimate
the relative transformation of a moving polarisation sen-
sor [12] assuming the scene is fully diffuse. Data-driven
approaches can mitigate any assumptions on surface prop-
erties, light direction and object shapes. Ba et al. [5] esti-
mate surface normals by presenting a set of plausible cues
to a neural network which can use these ambiguous cues for
SfP. We take inspiration from this approach to complement
our pose estimation pipeline with physical priors. In con-
trast to these works, we are interested in the object poses in
an unconstrained setup without further assumption on the



reflection properties or lighting. The insights of previous
works enable, for the first time, the design of a pipeline to
address pose prediction for photometrically challenging ob-
jects made of transparent and highly reflective materials.

2.2. 6D Pose Prediction

Monocular RGB. Methods that predict 6D pose from a
single image can be separated into three main categories:
the ones that directly optimise for the pose, learn a pose
embedding or establish correspondences between the 3D
model and the 2D image. Works that leverage pose parame-
terisation either directly regress the 6D pose [55, 37,41, 35]
or discretise the regression task and solve for classifica-
tion [32, 10]. Networks trained this way directly pre-
dict pose parameters in the form of SE (3) elements given
the parameterisation used for training. Pose parameter-
isation can also be implicitly learned [60]. The second
branch of methods [54, 51, 50] utilises this to learn an
implicit space to encode the pose from which the predic-
tions can be decoded. Latest and also the currently best-
performing methods follow a two-stage approach. A net-
work is used to predict 2D-3D correspondences between
image and 3D model which are used by a consecutive
RANSAC/PnP pipeline that optimises the displacement ro-
bustly. Some methods in this field use sparse correspon-
dences [45, 43, 49, 27] while others establish dense 2D-
3D pairs [57, 42, 38, 24]. While these methods typically
learn the correspondences alone, some works managed to
learn the task end-to-end [26, 53, 13]. Inspired by the suc-
cess of this, we also structurally follow the design of GDR-
Net [53].

RGB-D and Refinement. Since the task of monocular
pose estimation from RGB is an inherently ill-posed prob-
lem, depth maps serve as a geometrical rescue. The spatial
cue given by the depth map can be leveraged to establish
point pairs for pose estimation [16] which can be further
improved with RGB [7]. In general, pose can be recovered
from depth or combined RGB-D and most RGB-only meth-
ods (e.g. [51, 38, 42, 35]) benefit from a depth-driven refine-
ment using ICP [6] or from indirect multi-view cues [35].
The complementary information of RGB and depth has
also inspired the seminal work DenseFusion [52] in which
deeply encoded features from both modalities are fused.
FFB6D [20] further improves this through a tight coupling
strategy with cross-modal information exchanges in multi-
ple feature layers combined with a keypoint extraction [21]
that leverages geometry and texture cues. These works
however, crucially depend on input quality and depth sens-
ing suffers in photometrically challenging regions, where
polarisation cues for depth could expedite the pose predic-
tion. However, to the best of our knowledge, this has not
been proposed, yet.

Photometric Challenges. The field of 6D pose estimation

usually tests on a set of well established dataset with RGB-
D input [23, 8, 55, 31]. Photometrically challenging objects
such as texture-less and reflective industrial parts are also
part of publically available dataset [25, 15]. While most of
these datasets are carefully annotated for the pose, polarisa-
tion input is not available. Transparency is a further chal-
lenge which has been addressed already in the pioneering
work of Saxena et al. [47] where the robotic grasp point of
objects is determined from RGB stereo without a 3D model.
Philipps et al. [44] demonstrate how transparent object with
rotation symmetry can be reconstructed from two views us-
ing an edge detector and contour fitting and more recently,
KeyPose [40] investigates instance and category level pose
prediction from RGB stereo. Since their depth sensor fails
on transparent objects, they leverage an opaque-transparent
object pair to establish ground truth depth. ClearGrasp [46]
constitutes an RGB-D method that can be used on trans-
parent objects. More recently, Liu et al. [39] presented the
extensive StereOBJ-1M dataset. It includes transparent, re-
flective and translucent objects with variations in illumina-
tion and symmetry using a binocular stereo RGB camera for
pose estimation. However, none of these dataset comprised
RGBP data.

To this end, the next natural step connects the shape cues
from polarisation to recover object geometry in challenging
environments. We further ask the question how to do so by
starting with a look into polarimetric image formation.

3. Polarimetric Pose Prediction

In contrast to RGBP sensors (see Fig. 3), RGB-D sensors
enjoy a wide use in the pose estimation field. Their cost-
efficiency and tight integration in many devices present a
lot of possibilities in the vision field, but their design also
comes with a few drawbacks.

3.1. Photometric Challenges for RGB-D

Commercial depth sensors typically use active illumi-
nation either by projecting a pattern (e.g. intel RealSense
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Figure 3. Polarisation Camera. Light from an unpolarised light
source reflects on an object surface. The refracted and reflected
part are partially polarised. A polarisation sensor captures the
light. In front of every pixel there are four polarisation filters (PF)
arranged at different angles (0°, 45°, 90°, 135°). The colour filter
array (CFA) separates lights into different wavebands.



Figure 4. Depth Artifacts. A depth sensor (RealSense L515)
miscalculates depth values for typical household objects. Reflec-
tive boundaries (1,3) invalidate pixels while strong reflections (2,3)
lead to incorrect values too far away. Semi-transparent objects
such as the vase (4) becomes partly invisible for the depth sensor
which measures the distance to the objects behind.

D series) or using time-of-flight (ToF) measurements (e.g.
Kinect v2 / Azure Kinect, intel RealSense L series). While
the former triangulate depth using stereo vision princi-
ples on projected or scene textures, the latter measures the
roundtrip time of a light pulse that reflects from the scene.
Since the measurement principle is photometric, both suffer
on photometrically challenging surfaces where reflections
artificially extend the roundtrip time of photons and translu-
cent objects deteriorate the projected pattern to an extent
that makes depth estimation infeasible. Fig 4 illustrates
such an example for a set of common household objects.
The semi-transparent vase becomes almost invisible for the
used ToF sensor (RealSense LL515) which measures the dis-
tance to the objects behind. The reflections on both cutlery
and can lead to incorrect depth estimates significantly fur-
ther than the correct value while strong reflections at bound-
aries invalidate pixel distances.

3.2. Surface Normals from Polarisation

Before working with RGBP data, we introduce some of
the physics behind polarimetric imaging. Natural light and
most artificially emitted light is unpolarised, meaning that
the electromagnetic wave oscillates along all planes perpen-
dicular to the direction of propagation of light [17]. When
unpolarised light passes through a linear polariser or is re-
flected at Brewster’s angle from a surface, it becomes per-
fectly polarised. How fast light travels through the mate-
rial, how much of it is reflected is determined by the re-
fractive index. It also determines the Brewster’s angle of
that medium. When light is reflected at the same angle to
the surface normal as the incident ray, we speak of spec-
ular reflection. The remaining part penetrates the object
as refracted light. As the light wave traverses through the
medium, it becomes partially polarised. Following this, it

Figure 5. DOLP. Polarisation changes for reflection of diffuse
light on a translucent surface. Note the indicated differences in the
polarimetric image quadruplet that directly relate to the surface
normal. The degree of linear polarisation (DOLP) for the translu-
cent and reflective surfaces are considerably higher than for the
rest of the image.

escapes from the object and creates diffuse reflection. For
all real physical objects, the resulting reflection is a com-
bination of specular and diffuse reflection, where the ratio
largely depends on the refractive index and the angle of in-
cident light as exemplified in Fig. 5

Light reaches the sensor with a specific intensity I and
wavelength \. The colour filter array (CFA) of the sensor
then separates the incoming light into RGB wavebands as
illustrated in Fig. 3. The incoming light also has a degree of
linear polarisation (DOLP) p and a direction (angle) of po-
larisation (AOLP) ¢. The measured intensity behind a po-
lariser with an angle ¢,, € {0°,45°,90°,135°} depends
on these parameters and the unpolarised intensity I,,,, [30]:

I@poz = Iyn - (1 +p COS(2(¢ - ‘Ppol)))‘ (1)
We find ¢ and p from the over-determined system of linear
equations in | using linear least squares. Depending on the
surface properties, AOLP is calculated as

for diffuse reflection
for specular reflection

2

2
where [r] indicates the m-ambiguity and « is the azimuth
angle of the surface normal n. We can further relate the
viewing angle 6 € [0,7/2] to the degree of polarisation
by considering Fresnel coefficients, thus DOLP is similarly
given by [4]

Py = (n—1/n)? sin®(9)
24212 —(n+1/n)2 sin?(0)+4 cos(a)\/n27sin2(6’)
3
2sin?(0) cos(8)+/n?—sin2(6)
Ps = 12 —sin?(0)—n2 sin?(0)+2 sin?(0)

with the refractive index of the observed object material
7. Solving equation 3 for 6, we retrieve three solutions
04,651,052, one for the diffuse case and two for the specular
case. For each of the cases, we can now find the 3D orien-
tation of the surface by calculating the surface normals:

n = (cos asin§, sin asin 6, cos 9)T @)



We use these plausible normals ng, ng;, nso as physical
priors per pixel to guide our neural network to estimate the
6D object pose.

3.3. Hybrid Polarimetric Pose Prediction Model

In this section, we present our Polarimetric Pose Predic-
tion Network, short PPP-Net. Given polarimetric images at
four different angles Iy, I45, Ioo, I135, together with the cal-
culated AOLP ¢, DOLP p, and normal maps Ny, N1, Ngo
as physical priors, we aim to utilise a network to learn the
pose P = [R]t] that can transform the target object from
the object frame to the camera frame given the 3D CAD
model of the object.

Network Architecture. Our network architecture is de-
picted in Fig. 2. The network has two encoders, which take
joint polarisation information from the native polarimetric
images and the calculated AOLP/DOLP maps as well as
the physical normals as priors with zoomed-in ROI of size
256 x 256 as inputs separately. The decoder takes the com-
bined encoded information from both encoders, together
with skip connections from different hierarchical levels of
the encoders, to decode the object mask, normal map, and a
3-channel dense correspondence map (NOCS) which maps
each pixel to its corresponding normalised 3D coordinate.
The predicted normal map together with the dense corre-
spondence map are consecutively fed into a pose estimator
as used in GDR-Net [53]. The pose estimator is composed
of convolution layers and fully connected layers, to output
the final estimated 3D rotation and translation.

Pose Parametrisation. Inspired by recent
works [60, s ], we parameterise our rotation as
allocentric continuous 6-dimensional representation, and
translation as scale-invariant representation [38, 53, 13].
The continuous 6-dimensional representation Rgy for
rotation comes from the first two columns of the original
rotation matrix R [60], and we further turn it into allo-
centric representation [53, 13], since our network only
perceives the ROI of the target object, which favors the
viewpoint-independant representation.

The zoomed-in ROI can help the network focus on more
relevant information in the image, i.e. our target object.
To overcome the limitations of direct translation vector
regression, we estimate the scale-invariant translation
composed of relative differences between projected object
centroids and the detected bounding box center location
with respect to the bounding box size. The latter is given
by dz, 9, and the relative zoomed-in depth, ¢, where

O — bx)/bw
0y — by)/bn )

S o
I

z = (
y = (oy
L=t /r

with (0g,0,) and (b, b,) being the projected object cen-

troids and bounding box center coordinates. The size of
the bounding box (b,,,bp,) is also used for calculating the
zoomed-in ratio r = Soy¢/Sin, Where s;, = max(by, by)
and s, 18 the size of the output. Note that we can recover
both the rotaion matrix and translation vector with known
camera intrinsics K [34, 38].

Object Normal Map. The surface normal map contains
the surface orientation at each discrete pixel coordinate and
thus ecodes the shape of the object. Inspired by the previ-
ous works in SfP, we also aim to retrieve the surface normal
map in a data-driven manner [5]. To better encode the ge-
ometric cue from the input physical priors apart from the
polarisation cue, we do not concatenate the physical nor-
mals with the polarised images as suggested by Ba et al. [5],
but encode them separately into two ResNet encoders. The
decoder then learns to produce object shape encoded by sur-
face normal map. The estimated normals are L2-normalised
to unit length. As shown in Tab. 1, with the given physical
normals as shape prior, we can achieve high quality normal
map prediction.

Dense Correspondence Map. The dense correspondence
map stores the normalised 3D object coordinates given as-
sociated poses. This explicitly models correspondences be-
tween object 3D coordinates and projected 2D pixel lo-
cations. As shown by Wang et al. [53], this representa-
tion helps the consecutive differentiable pose estimator to
achieve high accuracy in comparison with RANSAC/PnP.

3.4. Learning Objectives

The overall objective is composed of both geometrical
features learning and the pose optimisation [53] as:

L= ﬁpose + Egcov (6)

with
Epose = ER + Ecenter + Lz (7)
ﬁgeo = £mask + ‘C’nor’rnals + nyz (8)

Specifically, we employ separate loss terms for given
ground truth rotation R, (d,,d,) and ¢, as

Lr = avg |Rx — Rx||;

xeM R .
ﬁcenter = ||(5£ - 5wa 6y - 52/)”1 ®)
L. = ||5z*52H1

where e denotes prediction. For symmetrical objects, the
rotation loss will be calculated based on the smallest loss
from all possible ground-truth rotations under symmetry.
To learn the intermediate geometrical features, we em-
ploy L1 losses for mask and dense correspondences map



learning, and cosine similarity loss for normal estimation:

ACﬂ%ask = ||M_M”1
‘cl'yz =M © HM»Lyz - Mwyz”l (10)
Enormal =1- <Il, ﬁ>

where ©® indicates the Hadamard product of element-wise
multiplication, and (e, ) denotes the dot product.

4. Experimental Results

The motivation of our proposed pipeline is to show the
advantage of leveraging pixelwise physical priors from po-
larised light (a.k.a. RGBP) for accurate 6D pose estimation
of photometrically challenging objects - for which RGB-
only and RGB-D methods often fail. For this purpose, we
train and test PPP-Net with different modalities first on two
exemplary objects with very different level of photometric
complexity, i.e. a plastic cup, and a photometrically very
challenging, reflective and textureless stainless steel cutlery
knife. As detailed later, we find that polarimetric informa-
tion yields significant performance gain for photometrically
challenging objects.

4.1. Polarimetric Data Acquisition

To evaluate our pipeline we leverage 6 models from the
PhoCal [!] category-level pose estimation dataset which
comprises 60 household objects with high-quality 3D
models scanned by a structured light 3D stereo scanner
(EinScan-SP 3D Scanner, SHINING 3D Tech. Co., Ltd.,
Hangzhou, China). The scanning accuracy of the device is
< 0.05 mm which allows for highly accurate models. We
select the models cup, teapot, can, fork, knife, bottle with
increasing photometric complexity which we illustrate in
Fig. 6. The last three models do not include texture due to
their surface structure. The 3D scanning has been done with
a vanishing 3D scanning spray that made the surface tem-
porarily opaque. To acquire RGB-D images, we use a di-
rect Time-of-Flight (dToF) camera, intel RealSense LiDAR
Camera 1515 (intel, Santa Clara, California, USA), which
captures RGB and Depth data at 640x480 pixel resolution.

RGBP is acquired using the polarisation camera Phoenix
5.0 MP PHX050S1-QC comprising a Sony IMX264MYR
CMOS (Color) Polarsens sensor (LUCID Vision Labs, Inc.,
Richmond B.C, Canada) through a Universe Compact C-
Mount SMP 2/3” 6mm £/2.0 lens (Universe, New York,
USA) at 612x512 pixel resolution. Both cameras are
mounted jointly to a KUKA iiwa (KUKA Roboter GmbH,
Augsburg, Germany) 7 DoF robotic arm that guarantees a
positional reproducibility of +0.1 mm. Intrinsic and extrin-
sic calibration is performed following the standard pinhole
camera model [59] with five distortion coefficients [22]. For
pose annotation, we leverage the mechanical pose annota-
tion method proposed in PhoCal [1] where the robotic ma-

nipulator is used to tip the object of interest and extract a
point cloud. This point cloud is consecutively aligned to
the 3D model using ICP [6] to allow for highly accurate
pose labels even for photometrically challenging objects.
We plan a robot trajectory and use this setup to acquire four
scenes with four different trajectories each and utilise a total
of 8740 image sets for the dataset.

4.2. Experiments Setup

Implementation Details. We initially refine an off-the-
shelf detector Mask RCNN [19] directly on the polarised
images Iy to provide useful object crops on our data (as is
needed for the RGB-only benchmark and ours). We follow
similar training/testing split strategy as commonly used for
the public datasets [9], and employ =~ 10% of the RGBP
images for training and 90% for testing. We train our net-
work end-to-end with Adam optimiser [33] for 200 epochs.
The initial learning rate is set to le-4, which is halved ev-
ery 50 epochs. As the depth sensor has a different field
of view and is placed beneath the polarisation camera on a
customised camera rig, the RGB-D benchmark split differs
from the RGB training/testing split.

Evaluation Metrics. To establish our proposed novel 6D
pose estimation approach, we report the pose estimation ac-
curacy per object as the commonly used average distance
(ADD) and its equivalent for symmetrical objects (ADD-
S) [23] for different benchmarks. For the surface normal
estimation, we calculate the mean and median errors (in de-
grees) and the percentage of pixels where the estimated nor-
mals vary less than 11.25°, 22.5° and 30° from the ground
truth. We additionally give valuable insights into our pro-
posed pipeline by performing detailed ablations on the input
modalities, the fusion of complementary modalities, and the
effect of explicit learning of physically plausible geometric
information and its effect on pose prediction accuracy (see
Tab. 1), and discuss limitations of our proposed approach.

4.3. PPP-Net

Here, we perform a series of experiments to study the
influence of the input modality on the pose estimation ac-
curacy (compare Tab. 1), where we specifically analyse the
influence of polarimetric image information for the task of
6D object pose estimation. We demonstrate that our net-
work with RGBP input performs at the state-of-the-art level

Figure 6. 3D Models. Test objects with increasing photometric
complexity (left to right). Three objects have no texture in as they
are reflective (cutlery) or transparent (bottle).



Object Photo. Input Modalities Output Variants Normal Metrics Pose Metric
Chall. | RGB PolarRGB  Physical N | Normals NOCS | mean| med.] 11.25°1 | 22.5°1 | 30°% ADD
v v - - - - - 91.1
Cup v v - - - - - 91.3
v v v 7.3 5.5 86.2 96.1 97.9 91.3
v v v v 4.5 35 94.7 99.1 99.6 97.2
v v - - - - - 84.1
. v v - - - - - 88.0
Knife l v v v 122 | 80 68.7 88.5 | 924 89.4
v v v v 6.8 54 88.2 97.3 98.6 96.4

Table 1. PPP-Net Modalities Evaluation.

Different combinations of input and output modalities are used for training to study their

influence on pose estimation accuracy ADD for objects with different photometric complexity. Where applicable, metrics for estimated
normals are reported as well. Results for other objects in Supplementary Material.

for non-reflective, textured objects, which we define as less
photometrically challenging, e.g. plastic cup, and outper-
forms current models for photometrically complex objects,
e.g. stainless steel cutlery.

To identify the direct influence of polarisation imaging
for the task of accurate object pose estimation, we first es-
tablish an RGB-only baseline by neglecting our contribu-
tions of PPP-Net. To compute the unpolarised RGB image,
we average over polarimetric images at complementary an-
gles and use this as input for RGB-only. As shown in the
first two rows in Tab. 1 for each object (RGB against Po-
lar RGB), the polarisation modality yields larger accuracy
gains for the photometrically challenging object knife as
compared to cup. Auxiliary network predictions for nor-
mals and NOCS marginally enhance the performance as
the network is encouraged to explicitly encode this infor-
mation from the input modalities. The physically-induced
normals from polarisation images provide orthogonal infor-
mation that significantly boosts the pose prediction quality
and thus achieves best ADD performance across all experi-
ments. This behaviour is most promiment for the photomet-
rically challenging knife.

4.4. Comparison with established Benchmarks

The input modality experiments already demonstrate the
strong capabilities of polarimetric imaging inputs for PPP-
Net to successfully learn reliable 6D pose prediction with
high accuracy for photometrically challenging objects. The
depth map of an RGB-D sensor can also provide geomet-
ric information that can be utilised for the task of 6D ob-
ject pose estimation. FFB6D [20] is currently the best-
performing state-of-the-art learning pipeline which com-
bines RGB and geometric information from depth maps.
Hence, the design of FFB6D is motivated by similar prin-
ciples as our proposed method, since it leverages geomet-
ric information for the task of 6D pose estimation, and is
therefore chosen as a strong geometric benchmark for com-
parison. The unique Full-Flow-Bidirectional fusion net-
work [20] of FFB6D learns to combine appearance and
depth information as well as local and global information

from the two individual modalities.

We train FFB6D on our data for each object individu-
ally and report the best ADD(-S) metric for all objects in
Tab. 2. The photometric challenge that each object consti-
tutes is summarised in the Tab. 2 and detailed by its proper-
ties (compare with Fig. 6). The objects are categorised into
three classes based on the depth map quality for the depth
sensor (compare also Fig. 4). We can observe that objects
with good depth maps and minor photometric challenges
achieve high ADD values for FFB6D. For challenging ob-
jects, the increase in photometric complexity (and lower
depth map quality) correlates with a decrease in ADD. The
transparent Bottle object is an exception to this pattern.
The depth map is completely invalid (compare Fig. 4), but
FFB6D still achieves high ADD. Our hypothesis is that the
network successfully learns to ignore the depth map input
from early training onward (see Sec. 5 for details). PPP-Net
achieves comparable results for easy objects and outper-
forms the strong benchmark for photometrically complex
objects. Our method does not suffer from reduced ADD
due to noisy or inaccurate depth maps but rather leverages
the orthogonal surface information from RGBP data.

As PPP-Net profits vastly from physical priors from po-
larisation, we thoroughly investigate to which extent this ad-
ditional information impacts the improvement of estimated
poses, especially for photometrically challenging objects,
by comparing the results also against the monocular RGB-
only method GDR-Net [53]. We observe that while using
polarimetric information slightly improves pose estimation
accuracy for non-challenging objects, we can achieve su-
perior performance for items with inconsistent photometric
information due to reflection or transparency. In Tab. 2 the
accuracy gain of PPP-Net against GDR-Net increases pro-
portionally to the photometric complexity, since our physi-
cal priors provide additional information about the geome-
try of an object.

5. Discussion

Limitations of current geometric methods. As men-
tioned earlier, we postulate that the RGB-D method ignores



Object Photo. Properties Depth RGB-D Split RGB Split
Chall. | Reflective ~Metallic ~ Textureless  Transparent ~Symmetric | Quality | FFB6D  Ours || GDR  Ours
Cup (+) 994 98.1 96.7 97.2
Teapot t (*) ++ 86.8 94.2 99.0 99.9
Can 1 * * - 80.4 99.7 96.5 98.4
Fork it x * * - 370 | 724 | 86.6 | 959
Knife Tt * * * - 36.7 87.2 92.6 96.4
Botde | 1171 % % % None | 615 | 936 | 944 | 975
Mean 67.0 90.9 94.3 97.6

Table 2. Benchmark comparisons. We compare our method against recent RGB-D (FFB6D [20]) and RGB-only (GDR-Net [53]) methods
on a variety of objects with different level photometric challenges (t), and depth map quality (good: + to low:—) which serves as input for
FFB6D. RGB-D and RGB-only comparisons are trained and tested on different splits due to different field of view of depth camera (see

Sec. 4 for details). We report the Average Recall of ADD(-S).

invalid depth data already in early stages of training (e.g.
for the transparent bottle) and eventually learns to also ig-
nore noisy or corrupted depth information. To prove this as-
sumption, we perform adversarial attacks on the input depth
map for the FFB6D [20] encoder to analyse which parts
of input modalities the network relies on when making a
prediction. For this purpose we add small Gaussian noise
on the depth-related feature embedding in the bottleneck of
the network and compare the ADD under this attack. We
purposely “overfit” the model on objects of different pho-
tometric complexity and compute the relative decrease in
ADD under the attack. We observe that the relative de-
crease is smaller for photometrically challenging objects as
compared to objects with accurate depth maps (27% drop
in ADD for knife and 63% for cup). These findings suggest
that the network indeed relies on the RGB information only.

Benefits of Polarisation. ~We have shown that physical
priors from polarised light can significantly improve 6D
pose estimation results for photometrically challenging ob-
jects. RGB-only methods do not incorporate any geomet-
ric information and therefore show worse results in sce-
narios with reflective surfaces or objects of little texture.
Methods which try to leverage geometric priors from RGB-
D [20], often cannot reliably recover the 6D pose of such
objects as the depth map is usually degenerated and corrupt.
Our PPP-Net, as the first RGBP 6D object pose estimation
method, successfully achieves to learn accurate poses even
for very challenging objects by extracting geometric infor-
mation from physical priors. Qualitative results are shown
in Figs. 1, 2 and 7, and additionally in the supplementary
material. Another benefit of using RGBP lies in the sensor
itself: as the polarisation filter is directly integrated on the
same sensor as the Bayer filter, both modalities are intrin-
sically calibrated and the image can be acquired passively
paving the way to sensor-integration on low-energy and mo-
bile devices. RGB-D cameras, on the contrary, often require
energy-costly active illumination and extrinsic calibration,
which prevents simple integration and introduces additional
uncertainty to the final RGB-D image.

Limitations. Our physical model requires the refractive

index of the respective object to reliably compute the phys-
ical priors. To explore the potential of the physical model,
distinct to prior works [48, 5] which fix the refractive index
to n = 1.5 for all experiments, we use physically plausible
values according to the materials.” This means one would
need to manually choose such parameter, which limits the
performance of the physical model when encountering ob-
jects with unknown composite materials. Moreover, strong
changes in texture also affect the reflection of light and thus
DOLP calculation which, in turn, influences our physical
priors.

6. Conclusion

We have presented PPP-Net, the first learning-based 6D
object pose estimation pipeline which leverages geomet-
ric information from polarisation images through physi-
cal cues. Our method outperforms current state-of-the-art
RGB-D and RGB methods for photometrically challenging
objects and demonstrates at par performance for ordinary
objects. Extensive ablations show the importance of the
complementary polarisation information for accurate pose
estimation - specifically for objects without texture, reflec-
tive surfaces or transparency.

teapot |

>) 7\7? '.éi\ass ‘

knife fork
[

Figure 7. Qualitative Results. Input image with 2D detections
are shown. Predicted and GT 6D poses are illustrated by blue and
green bounding boxes, respectively.

2We approximate the refractive index by the look-up table provided by
https://refractiveindex.info/


https://refractiveindex.info/

A. Physical Priors

We use physical priors as inputs in our network to im-
prove the estimated 6D pose of an object. These priors form
relations between polarisation properties and azimuth and
zenith angle of the surface normal, which serves as geomet-
ric cues orthogonal to color information. We calculate the
physical priors under the assumption of either specular or
diffuse reflection.

To recover the azimuth and zenith angle of the surface
normal, we present the calculation for solving the unknowns
of Eq. Al.

A polarimetric camera registers intensity behind four
linear polarisers with angles 0°,45°,90°, 135°, which de-
pends on unpolarised intensity I,,, degree of polarisation
p, and angle of polarisation ¢:

Lppol = Iun : (1 +p COS(2<¢ - Qopol))) (Al)

Eq. Al can be re-written as:

T

1 I’LLTL
Iy, = | €08 2¢por p oS 20 (A2)
Sin 2y psin2¢
BT T

For all angles ¢,y € {0°,45°,90°,135°}, we get
a linear equation system for each pixel location with
I, € R, BeR¥™* and z € R®!. After solving
this over-determined linear equation system using least
squares, we find unpolarised intensity, degree of polarisa-
tion and angle of polarisation:

Iun =T

p=\/23+23 (A3)

¢ = 1 arctan i}
2 X9
The azimuth angle can be found using Eq.2. Then, we can
estimate the azimuth angle 6 from Eq.3 by linear interpola-
tion. Both models take in the same value for the refractive
index 7, since it is an intrinsic property of the material and
it does not depend on the reflection model. The values used
for our objects can be seen in Tab. Al.

Object Material Refractive Index
Teapot ceramic 1.54
Can aluminium composite 1.35
Fork stainless steel 2.75
Knife stainless steel 2.75
Bottle glass 1.52
Cup plastics 1.50

Table Al. Refractive Indices.

B. Additional Results

In Fig. Al, we visualise the 6D pose by overlaying the
image with the corresponding transformed 3D bounding
box. For better visualization we cropped the images and
zoomed into the area of interest. Tab. A2 is an extension
to Tab.1 in the main paper and summarises the quantitative
evaluation for different modalities for PPP-Net for all ob-
ject under consideration in the dataset.



Figure A1l. Qualitative Results. Predicted and GT 6D poses are illustrated by blue and green bounding boxes, respectively.

Object Photo. Input Modalities Output Variants Normal Metrics Pose Metric
Chall. | RGB PolarRGB  Physical N | Normals NOCS | mean| med.| 11.25°1 | 22.5°1 | 30°1 ADD(-S)
v v - - - - - 97.8
Teapot + v v - - - - - 99.5
v v v 7.9 5.4 82.5 94.5 97.1 99.2
v v v v 5.3 4.0 91.6 98.7 99.5 99.9
v v - - - - - 91.8
Can + v v - - - - - 93.2
v v v 5.7 39 90.0 97.0 98.6 96.7
v v v v 6.0 4.5 89.0 97.3 98.9 98.4
v v - - - - - 85.4
v v - - - - - 86.1
Fork it v v v 1.0 | 73 72.6 90.7 | 93.9 92.9
v v v v 6.5 4.3 87.6 95.9 97.6 95.9
v v - - - - - 90.5
v v - - - - - 93.5
Botle | 171 v v v 56 | 47 | 929 | 9.0 | 996 947
v v v v 54 4.5 92.1 99.0 99.6 97.5
Table A2. PPP-Net Modalities Evaluation. Different combinations of input and output modalities are used for training to study their

influence on pose estimation accuracy ADD(-S) for objects with different photometric complexity. Where applicable, metrics for estimated
normals are reported as well.
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