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a b s t r a c t

In recent years, predictive computational modeling has become a cornerstone for the
study of fundamental electronic, optical, and thermal properties in complex forms of
condensed matter, including Dirac and topological materials. The simulation of quantum
transport in realistic models calls for the development of linear scaling, or order-N ,
numerical methods, which then become enabling tools for guiding experimental research
and for supporting the interpretation of measurements. In this review, we describe and
compare different order-N computational methods that have been developed during the
past twenty years, and which have been used extensively to explore quantum transport
phenomena in disordered media. We place particular focus on the zero-frequency elec-
trical conductivities derived within the Kubo–Greenwood and Kubo–Streda formalisms,
and illustrate the capabilities of these methods to tackle the quasi-ballistic, diffusive, and
localization regimes of quantum transport in the noninteracting limit. The fundamental
issue of computational cost versus accuracy of various proposed numerical schemes is
addressed in depth. We then illustrate the usefulness of these methods with various
examples of transport in disordered materials, such as polycrystalline and defected
graphene models, 3D metals and Dirac semimetals, carbon nanotubes, and organic
semiconductors. Finally, we extend the review to the study of spin dynamics and
topological transport, for which efficient approaches for calculating charge, spin, and
valley Hall conductivities are described.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The study and development of new materials and devices often involves three complementary avenues of exploration
experiments, theory, and numerical simulations. Theory provides a framework to explain or predict material or

evice behavior, while numerical simulations are often needed to apply these theories to the complex situations that
re encountered in experiments. In electronic devices, understanding the flow of electrons in response to an electric field
s of central importance, and it is also a fundamental issue in condensed matter physics. The performance of devices in
any applications in electronics, thermoelectrics, spintronics, optoelectronics, and photovoltaics is intricately connected

o the material’s electrical conductivity or charge carrier mobility. To this end, there is a need for simulation tools that
2
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an accurately describe electronic transport in complex materials and devices, and do so in an efficient manner in order
o reach the length scales typically seen in experiments.

To study electronic transport in disordered materials and devices on experimental length scales, one often needs
o consider large systems consisting of many millions or billions of atoms. To simulate such systems accurately and
fficiently, two basic ingredients are needed. The first is a realistic description of the structure and electronic properties
f the material of interest. This can be achieved by using ab initio electronic structure methods such as density functional
heory (DFT) [1–4]. DFT has proven to be highly successful for describing the electronic, optical, and vibrational properties
f a large number of materials. However, the computational cost of ab initiomethods severely limits the size of the systems
hat can be studied. This limitation can be overcome with quasiparticle-based real-space tight-binding (TB) models, for
hich the Hamiltonian describing the electronic properties of the system becomes highly sparse, allowing for efficient
umerical simulation. Therefore, using ab initio methods as a basis for the construction of appropriate TB models is
urrently the most successful approach for describing electronic and transport properties of large-area, spatially complex
isordered or nanostructured materials.
The second ingredient needed to study large disordered systems is an efficient numerical method for simulating

lectronic transport. Ideally, to reach experimental length scales this method should be linear-scaling, i.e., its compu-
ational cost should be directly proportional to the number of atoms N . Such methods are also called order-N or O(N)
ethods. The development of stable O(N) algorithms for the calculation of spectral and transport quantities was initiated
y the seminal works of Roger Haydock [5–7], who first derived a real-space approach to compute spectral functions
n disordered materials using the so-called recursion and continued fraction expansion technique. This was followed by
he introduction of improved techniques for the computation of density of states, correlation functions, and transport
oefficients in disordered materials. Techniques employing orthogonal polynomials (such as Chebyshev expansion) [8–10]
nd the kernel polynomial method (KPM), have shown superior performance [11] and are experiencing growing popularity
or studying the dynamics of quantum systems [12,13]. Consequently, they find a considerable range of applications in
hemistry and physics, including the fields of disordered systems, electron–phonon interactions, quantum spin systems,
nd strongly correlated quantum systems [14–16].
A fully quantum treatment of charge transport is undoubtedly a great asset and marks a significant advance over

impler classical models. However, under the proper conditions electronic transport can be treated classically, with
lectrons in a material behaving as point particles that are scattered by various sources, such as lattice defects, impurities,
r phonons, which can have qualitative similarities to the regime of Variable-Range Hopping for disordered systems [17].
n this semiclassical picture, the electrical conductivity is proportional to the momentum relaxation time, σ ∝ τp, which
s the average time it takes for scattering processes to randomize an electron’s direction of motion. The conductivity is
lso independent of the system size in this regime. Each scattering process can be treated fully quantum mechanically,
ut between scattering events the electrons behave as point particles. This semiclassical picture is appropriate in the limit
Fle ≫ 1, where le is the average distance between scattering events, kF = 2π/λF, and λF is the Fermi wavelength of the
lectrons.
The limits of this semiclassical description are met when the wave nature of electrons starts to play a role, i.e., when λF

ecomes comparable to le. In this regime, quantum interference effects can become important. In particular, constructive
nterference in closed scattering loops can lead to the coherent localization of electrons, resulting in a decrease of the
onductivity compared to its semiclassical value. The calculation of quantum corrections to the semiclassical conductivity
as pioneered in 1979 by Abrahams et al. [18], who developed a scaling theory of localization in which the zero-
emperature conductivity of a disordered material depends universally on its length scale L, and transitions smoothly from
logarithmic or slower decay to an exponential decay with increasing L. At the same time, the leading quantum corrections
o the semiclassical conductivity were shown to be driven by coherent backscattering of electrons from momenta k to
k [19,20]. This phenomenon of weak localization (WL) has now been studied in many different materials and has been

he topic of extensive reviews [21–24].
An important consequence of localization is that the conductivity becomes dependent on the system size. Thus, in

ow-dimensional materials and devices where localization effects are more pronounced, an accurate treatment of the
mpact of quantum effects on electronic transport is crucial. Over the past several decades, this has been revealed by the
tudy of quantum interference in low-dimensional semiconductor systems, including quantum wells, superlattices, and
anowires, as well as in a wide variety of organic systems [25–28]. More recently, the growing interest in low-dimensional
aterials such as carbon nanotubes, graphene, and transition metal dichalcogenides [29–34], among many others, also
ighlights the need for efficient ways to calculate the electrical conductivity while fully accounting for quantum effects.
There are several common approaches for simulating electronic transport, including the Boltzmann transport equation,

he Landauer–Büttiker formalism, and the Kubo formula. The Boltzmann transport equation describes the dynamics of
he electron distribution function, and is traditionally applied to the semiclassical regime of transport described above.
owever, with appropriate extensions it can also describe quantum interference effects, for example through the use of
igner distribution functions [35,36] or by introducing nonlocal terms into the collision integral [37]. The Landauer–
üttiker formalism expresses the electrical conductance in terms of transmission probabilities, which are calculated
rom the full quantum mechanical scattering matrix, and thus naturally captures the impact of quantum effects on
lectron transport. Traditionally the Landauer–Büttiker formalism has been applied to devices with two or more electrical
ontacts [38–42], but with the proper choice of self energies it can also handle bulk systems [43–45], even at an ab-initio
3
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evel [46]. When implemented via the nonequilibrium Green’s function (NEGF) approach, LB methods can also naturally
apture nonequilibrium transport properties [47]. Such methods are typically O(N) when increasing the system length,
nd O(N3) with the cross-sectional area.
In this review, we focus on efficient numerical calculations of the Kubo and Kubo–Bastin formulas for the electrical

nd Hall conductivities. In its most general form, the Kubo formula describes the linear response of a system to a time-
ependent perturbation. It does so by connecting the linear response with time-dependent correlation functions in the
bsence of the perturbation [48,49]. In the case of electrical conductivity, it allows one to calculate the charge current
esponse to an electric field through the current–current correlation function in the absence of the electric field. We note
hat by making a connection between (i) the response of a system to an external perturbation, and (ii) its response to
pontaneous system fluctuations, the Kubo formula is a manifestation of the fluctuation–dissipation theorem [50,51]. It
s also known as the Kubo–Greenwood approach for non-interacting electrons.

The calculation of the Kubo conductivity using O(N) techniques was pioneered by Thouless and Kirkpatrick in their
study of a one-dimensional linear chain [52]. A subsequent attempt to perform real-space calculations of the Kubo formula
was made in higher-dimensional models [53], but an important step forward was accomplished by Mayou and Khanna
who extended recursion methods to compute the frequency-dependent conductivity [54,55]. Roche and Mayou further
combined real-space O(N) recursion techniques with time-propagation methods to evaluate the Kubo conductivity in its
zero-frequency version [56,57]. One of the main advantages of such approaches is the ability to identify different regimes
of quantum transport – ballistic, diffusive, and localized – by following the time-dependent spatial spreading of quantum
wavepackets. Similar types of methodology, as well as other algorithms using the KPM technique, have extended the
capability of these methods to the study of other quantities such as the Hall conductivity [58–62] , spin dynamics [63–65],
and lattice thermal conductivity in disordered systems [66–68].

In recent years, the predictive power of such methods has been demonstrated in a large variety of realistic models
of disordered graphene and two-dimensional materials [69–76], multilayer graphene [77,78], organic semiconductors
[79–83] and conducting polymers [84–86], quasicrystals and aperiodic systems [56,87–89], silicon nanowires [90,91],
carbon nanotubes [92–94] and three-dimensional models of topological insulators [95–97]. Charge, spin, and Hall
transport coefficients have been numerically computed in different transport regimes, including the quasi-ballistic,
diffusive, weak localization, weak antilocalization (WAL), and strong (Anderson) localization regimes, providing in-depth
quantitative analysis directly comparable with experimental data. Today these approaches have become a cornerstone for
the simulation of quantum transport in complex situations that are out of reach of analytical treatments and perturbative
methods, especially in the presence of weak magnetic fields and for experimentally relevant disordered systems containing
many millions of atoms.

This review covers more than twenty years of research dedicated to the numerical implementations of the Kubo
formula for the electrical conductivity. Its purpose is to provide a comprehensive description of the most efficient linear-
scaling algorithms for studying electronic transport in complex forms of disordered materials. The review is organized as
follows. In Section 2 we derive a few forms of the single-particle Kubo formula, emphasizing those that are based on the
velocity autocorrelation function and the mean-square displacement. Section 3 discusses the numerical implementations
that enable linear-scaling calculations of quantum transport using these formulas. Section 4 describes how the linear-
scaling techniques described in this review can be applied to the Landauer–Büttiker formalism. In Section 5 we provide
explicit examples of how these methods may be used to describe electrical transport in the ballistic, diffusive, and
localized regimes, and highlight similarities and differences between different approaches with respect to accuracy and
computational cost. Section 6 summarizes and illustrates a variety of applications of this methodology to charge transport
in disordered graphene, 3D metals and Dirac semimetals, carbon nanotubes, and organic semiconductors. Section 7
presents further extensions of this method to calculations of the Hall conductivity and to spin dynamics. Finally, a
summary and general conclusions are given in Section 8. This review is intended to communicate essential knowledge
about physics and algorithms on equal footing, and we hope it will serve as a valuable resource for future developers and
users of such methodologies, which can be applied to the large variety of materials of current interest for fundamental
science and advanced technologies. We mention that a companion website http://www.lsquant.org/ will host source
codes, as well as future extension of the computational methodologies described in this review.

2. Quantum linear response theory and Kubo formulas

A fundamental method for extracting information about the intrinsic properties of a system is to measure its response
to an external perturbation. A perturbation can be, e.g., an electric field or a temperature gradient, and the response can
be an electric current or a heat flux. In general, the response of a system can be very complex, but for perturbations
that are small enough, one intuitively expects that the response will be proportional to the perturbation. This is the
fundamental assumption of linear response theory, and is the starting point of the work of Ryogo Kubo [98], who showed
under general conditions that if the perturbation is applied sufficiently slowly such that the system always remains close
to its equilibrium, one can express the response of the system in terms of its equilibrium properties. This result, currently
known as the Kubo formula, is one of the pillars of modern quantum transport theory, and serves as the starting point
for the different linear scaling quantum transport (LSQT) methodologies discussed in this review.

Although the Kubo formula can be used to extract transport coefficients in the presence of many-body interactions
[99–101], we will focus only on its applications to non-interacting disordered systems. This choice is dictated by the fact
4
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hat the LSQT methodologies have been developed and optimized for these systems, and their full capabilities are thus
nly attained when used within this context. On the other hand, the treatment of disordered systems is necessary due
o the unavoidable presence of defects and disorder in real materials. In this section, we will first outline a derivation of
he general Kubo formula based on quantum linear response theory along the same lines as G. D. Mahan [102]. Then we
ill proceed to derive a non-interacting Kubo formula that allows for defining the single-particle density matrix, which

s useful for obtaining the expectation values of physical observables in systems out of equilibrium. After the general
erivations, we will focus on the specific case of electrical conductivity and derive different but equivalent representations
f the non-interacting Kubo formula, which will serve as the starting points for the different LSQT methodologies. Next
e will discuss the meaning of Green’s function regularization and its effect on the dissipative conductivity, as well as

ts relation to the different transport regimes. Such a discussion is crucial for understanding the numerical simulations
hat will appear in later sections. Finally, we will define time- and length- dependent forms of the electrical conductivity,
hich are needed to identify the ballistic, diffusive, and localized regimes of transport, and to make a proper comparison
o experiments.

.1. Quantum linear response theory and the many-body Kubo formula

The Kubo formula is derived under four fundamental assumptions [102,103]:

1. The system is at thermal equilibrium before the application of the perturbation.
2. The response is linear with respect to the perturbation strength.
3. The perturbation is turned on adiabatically.
4. The system is closed (although not isolated) and evolves under unitary Hamiltonian dynamics.

lthough these assumptions can be relaxed, for example, by employing the Keldysh formalism [104], they are sufficient
or the systems we are dealing with in this review and allow for a general and rigorous derivation of the Kubo formula.

A general way to describe the state of a quantum system is by specifying its density matrix ρ̂, which can then be used
o compute the expectation value ⟨Â⟩(t) of a general physical quantity, described by the quantum mechanical operator Â
t time t as [105]

⟨Â⟩(t) = Tr
[
Â ρ̂(t)

]
, (1)

where Tr[...] denotes the trace over a complete basis set. Therefore, in order to determine the evolution of a certain
observable, one must first determine the evolution of the density matrix ρ̂(t) after the perturbation is turned on. The
evolution of the density matrix can be described by the von Neumann equation, also called the quantum Liouville equation,

ih̄
∂ρ̂(t)
∂t
=

[
Ĥtot(t), ρ̂(t)

]
, (2)

where Ĥtot(t) is the total Hamiltonian of the system, generally time dependent, and the brackets represent a commutator.
Assumption 1 states that at some long time in the past, the electrons of the system are described by a Hamiltonian Ĥ

and are in thermal equilibrium with a reservoir at temperature T . Therefore, in a canonical ensemble, the density matrix
is given by

ρ̂eq =
e−Ĥ/kT

Tr[e−Ĥ/kT ]
. (3)

After some time, a perturbation Ĥ ′ is switched on adiabatically from t = −∞ to the present time t [102,103]. As long
s this process is sufficiently slow, the exact time dependence of the perturbation is not important and one can choose
n arbitrary function to describe it. Here we assume an exponential increase of the perturbation with a rate of 1/τφ and
dd the perturbation to the equilibrium Hamiltonian to define the total Hamiltonian of the system,

Ĥtot(t) = Ĥ + Ŵ (t), (4)

where

Ŵ (t) = lim
τφ→∞

et/τφ Ĥ ′ (5)

is the time-dependent perturbation that in the adiabatic limit (τφ →∞) converges to Ĥ ′ , in agreement with assumption
. At this point, it is convenient to point out the importance of the order of the limits; in order to agree with the assumption
hat the perturbation vanishes at t = −∞, one must take the limit t → −∞ before τφ → ∞, which is equivalent to
equiring that τφ go to infinity at a slower rate than the real time.

In this review we are interested in the zero-frequency electrical response, and therefore we will focus on the case
here the perturbation is a static electric field. Due to gauge invariance, there is no unique way to introduce the electric
5
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ield into the Hamiltonian. We choose to express the static electric field E0(r) in terms of a scalar potential φ(r) = −r ·E0,
nd write the perturbation as

Ĥ ′ =
∫

d3r n̂(r)φ(r), (6)

here n̂(r) is the charge density operator. This choice of gauge also implies that we are neglecting any induced magnetic
ield due to the change of the electric field, a condition which is justified by assumptions 2 and 3 above.

Solving the von Neumann equation in Eq. (2) for the Hamiltonian in Eq. (4) is generally a challenging task. However,
t can be carried out for weak perturbations in the limit of linear response. To do this, we first write the density matrix
s

ρ̂(t) = ρ̂eq + δρ̂(t), (7)

here δρ̂(t) defines the variation of the system with respect to the equilibrium state. In linear response, this perturbation
s proportional to the electric field. Also, due to the adiabatic evolution hypothesis, we make the ansatz that it will follow
similar time evolution as the Hamiltonian’s perturbation,

δρ̂(t) ≡ lim
τφ→∞

et/τφ E0 · χ̂, (8)

here χ̂ is a quantity we will determine in this section. To do this, let us insert Eq. (7) into Eq. (2), and neglect the terms
roportional to Ŵ (t)δρ̂(t) due to the linear response approximation. This yields

ih̄
∂δρ̂(t)
∂t
= [ Ĥ , δρ̂(t) ] + [ Ŵ (t) , ρ̂eq ], (9)

where we also exploit the fact that the equilibrium state is time-independent,

ih̄
∂ρ̂eq

∂t
= [ Ĥ , ρ̂eq ] = 0. (10)

o solve Eq. (9), we will define

δρ̂I (t) ≡ Û†(t)δρ̂(t)Û(t), (11)

here Û(t) = e−iĤt/h̄ is the time-evolution operator of the unperturbed system. This definition allows us to present the
dentity

ih̄Û(t)
∂ δρ̂I (t)
∂t

Û†(t) = −[Ĥ, δρ̂(t)] + ih̄
∂ δρ̂(t)
∂t

, (12)

hich is obtainable by direct differentiation of δρ̂I (t). Comparing Eqs. (9) and (12) allows us to express the latter as

ih̄
∂ δρ̂I (t)
∂t

= [ ŴI (t) , ρ̂eq ], (13)

here we have defined

ŴI (t) ≡ Û†(t)Ŵ (t)Û(t). (14)

he solution of Eq. (13) for δρ̂I (t) is straightforward because the right side does not depend on the integration variable,
and thus

δρ̂I (t) =
1
ih̄

∫ t

t0

dt ′[ŴI (t ′), ρ̂eq]. (15)

To find a solution for χ̂, let us use the unitarity of the time-evolution U†(t)U(t) = 1 to re-express the equation above in
terms of δρ̂(t) and replace it using Eqs. (5) and (8) to obtain

E0 · χ̂(t) = lim
τφ ,τ→∞

1
ih̄

∫ τ

0
dτ ′ e−τ

′/τφ [ Ĥ ′(−τ ′) , ρ̂eq ], (16)

where Ĥ ′(−τ ′) = U(τ )H ′U†(τ ), τ ′ ≡ t− t ′ and τ ≡ t− t0 for convenience and limτφ ,τ→∞ indicates that the τ limit should
be taken prior to the τφ limit. We now demonstrate that the right side of the equation is proportional to the electric field
E0. To do this, let us first present the identity

ρ̂eq

(∫ β

0
dβ ′

∂Ĥ ′(−τ ′ − ih̄β ′)
∂β ′

)
= [Ĥ ′(−τ ′), ρ̂eq], (17)

here β = 1/kT , and

Ĥ ′(−τ ′ − ihβ ′) ≡ eβĤU†(−τ )Ĥ ′U(−τ )e−βĤ . (18)
¯

6
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his identity stems from the fundamental theorem of calculus,∫ β

0
dβ ′

∂Ĥ ′(−τ ′ − ih̄β ′)
∂β ′

= eβĤ Ĥ ′(−τ ′)e−βĤ − Ĥ ′(−τ ′), (19)

and the density matrix in the canonical ensemble in Eq. (3). Moreover, the derivative with respect to β in Eq. (17), and
the derivative with respect to time, are related by the identity∫ β

0
dβ ′

∂Ĥ ′(−τ ′ − ih̄β ′)
∂β ′

= ih̄
∫ β

0
dβ ′

∂Ĥ ′(−τ ′ − ih̄β ′)
∂τ ′

, (20)

hich leads to the following form of Eq. (16):

E0 · χ̂(t) = lim
τφ ,τ→∞

∫ β

0
dβ ′

∫ τ

0
dτ ′ e−τ

′/τφ
∂Ĥ ′(−τ ′)
∂τ ′

ρ̂eq. (21)

ow, by using the continuity equation

∇ · Ĵ (r, t) = −
∂ n̂(r, t)
∂t

, (22)

ith

Ĵ (r, t) = Û†(t)Ĵ (r)Û(t), (23)

nd the relation ∇φ(r) = −E0, it is clear that the time-derivative of H ′(t) is proportional the electric field,

∂Ĥ ′(−τ ′ − ih̄β ′)
∂τ ′

=

∫
d3rE0 · Ĵ (r, τ ′ − ih̄β ′). (24)

Finally, by considering the spatially-averaged current density operator

Ĵ (τ ′ − ih̄β ′) =
1
Ω

∫
d3rĴ (r, τ ′ − ih̄β ′), (25)

ithΩ the volume of the sample, and solving Eq. (21) for the spatial component α = x, y, z we obtain the final expression

χ̂α(t) = Ω lim
τφ ,τ→∞

∫ β

0
dβ ′

∫ τ

0
dτ ′ e−τ/τφ Ĵα(−τ ′ − ih̄β ′). (26)

The nonequilibrium expectation value of operator Â is finally obtained by substituting Eq. (26) into Eq. (1) [102,103],

⟨Â⟩ = Ω lim
τφ ,τ→∞

∫ τ

0
dτ ′e−τ

′/τφ

∫ β

0
dβ ′ × Tr

[
ρ̂eqÂ(0) Ĵ (−τ ′ − ih̄β ′)

]
· E0. (27)

Eq. (27) is the direct-current (DC) Kubo formula for electrical response. This formula was first derived by Kubo for
omputing the dissipative electrical conductivity [98], for which Â is chosen as the current density Ĵα in the same direction
as the electric field. Eq. (27) then becomes

⟨Ĵα⟩ = E0,α

{
lim

τ ,τφ→∞

∫ τ

0
dτ ′e−τ

′/τφ

∫ β

0
dβ ′ × Tr

[
ρ̂eq Ĵα(τ ′ + ih̄β)Ĵα(0)

]}
, (28)

where E0,α is the component of the electric field E0 along the spatial direction α = x, y, z, and we used U†(τ )U(τ ) = 1
to change the sign of the time dependence . According to Ohm’s law, the expression in the braces is just the DC electrical
conductivity σ . The Kubo formula can also be interpreted as a manifestation of the fluctuation–dissipation theorem [50,51],
which states that the response of a system to a small external perturbation is equivalent to its spontaneous fluctuations
at equilibrium. In this case, the response of the electrical current to an electric field is equivalent to the spontaneous
fluctuations of the equilibrium current, captured by current–current correlation function [ρ̂eq Ĵα(0)Ĵα(t + ih̄β)].

2.2. Kubo formulas for noninteracting electrons

In many situations, many-body effects driven by electron–electron interactions remain weaker than the effects
of disorder. Therefore, it would be overkill and often impractical to use the general many-body Kubo formula. The
noninteracting problem of N particles is equivalent to solving a single-particle problem and occupying the single-particle
states with N particles with correct statistics. In the noninteracting approximation, all the many-body operators can be
conveniently represented in second quantization notation [102] using a complete set of orthonormal eigenvectors {|n⟩}
of the single-particle Hamiltonian Ĥ , Ĥ|n⟩ = En|n⟩. In this notation, any operator can be expressed as

Â =
∑

c†
mcn⟨m|Â|n⟩, (29)
m,n

7
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here c†
m and cn are the creation and annihilation operators of an electron in the single-particle eigenstates |m⟩ and

n⟩ respectively, and ⟨m|Â|n⟩ is the matrix element of the single-particle operator. The time-dependent current density
perator in Eq. (28) can then be expressed in second quantization notation as

Ĵα(t + ih̄β) =
∑
p,q

c†
p cq⟨p|Ĵα|q⟩e

i(Ep−Eq)(t+ih̄β)/h̄, (30)

where the exponential comes from the time evolution operator. Inserting Eqs. (29) and (30) into Eq. (27), making use of
the identity [106]

Tr[ρ̂eqc†
mcnc

†
p cq] = δmqδnpf (Em)[1− f (En)]

+ δmnδpqf (Em)f (Ep), (31)

nd performing the integration over β ′ and τ ′ , one obtains the single-particle Kubo formula

⟨Â(µ)⟩ = ih̄Ω lim
τφ→∞

∑
m,n

f (Em − µ)− f (En − µ)
(En − Em)(En − Em + ih̄/τφ)

× ⟨m|Â|n⟩⟨n| (Ĵ · E0) |m⟩, (32)

here

f (Em − µ) =
1

eβ(Em−µ) + 1
(33)

s the Fermi–Dirac distribution function, with µ being the chemical potential or Fermi level.
Eq. (32) expresses the conductivity in terms of the eigenvalues and eigenvectors of the Hamiltonian, which in general

re difficult to obtain. Therefore, it is desirable to find an expression that depends solely on Ĥ instead. This can be done
y using the definition of the trace as well as the following identities (F is a general function):∫

dE ′ F (E ′)δ(E ′ − En) = F (En),∑
n

F (En)|n⟩⟨n| = F (Ĥ). (34)

After some algebra, we can rewrite Eq. (32) as

⟨Â(µ)⟩ = lim
τφ→∞

−ih̄Ω
∫

dE ′f (E ′ − µ)× Tr
[
δ(E ′ − Ĥ)Â

1

(Ĥ − E ′)(Ĥ − E ′ − ih̄/τφ)
(Ĵ · E0)− h.c.

]
, (35)

where h.c. stands for the Hermitian conjugate of the preceding operator within the trace, and δ(E−Ĥ) is the projector onto
the eigenstates of the Hamiltonian with energy E. Furthermore, one can express Eq. (35) in terms of Green’s functions,
which will then allow its evaluation using Green’s function techniques. To this end, we first define the retarded (G+) and
advanced (G−) regularized Green’s functions,

G±(E; τφ, τ ) = ∓i
∫ τ

0

dτ ′

h̄
e±i(E−Ĥ±ih̄/τφ )τ

′/h̄, (36)

where τ > 0 and τφ > 0 are regularization parameters which can be interpreted as a finite evolution time and a finite
quasi-particle lifetime, respectively. These functions can be used to obtain the exact Green’s functions through the limits

G±(E) = lim
τφ ,τ→∞

G±(E; τφ, τ )

= lim
τφ→∞

1

E − Ĥ ± ih̄/τφ
, (37)

where the order of the limits should be respected. Finally, using the identity

lim
h→0

1
x(x+ h)

= − lim
h→0

d
dx

(
1

x+ h

)
, (38)

ne can replace the energy factor in Eq. (35) by the derivative of the retarded Green’s function, leading to the Kubo–Bastin
ormula [107]

⟨Â(µ)⟩ = ih̄Ω
∫

dE ′f (E ′ − µ)× Tr
[
δ(E ′ − Ĥ)Â

dG+(E ′)
dE ′

(Ĵ · E0)− h.c.
]
. (39)

he Kubo–Bastin formula is as general as the original Kubo formula in Eq. (27), but within the noninteracting approxima-
ion. It can be used to compute the electrical response of any operator, with the advantage that one only needs to know
he Hamiltonian and the Green’s functions of the system. The LSQT methods are primarily based on methodologies for
ffectively computing the Green functions and the energy projection operator, as we will show in the following sections.
8



Z. Fan, J.H. Garcia, A.W. Cummings et al. Physics Reports 903 (2021) 1–69

a
m
b
c
s

2

o
w
i
w
H

w
d

n

w
G

2

o
w
f
t
K

w
p
d

a
f

An important point here concerns the roles of τφ and τ . As can be seen from Eqs. (35) and (36), τφ can be interpreted as
finite quasi-particle lifetime, arising from interactions between the system and the external electric field that provide a
eans of exchanging energy inelastically at a rate of 1/τφ . Adiabatic evolution ensures that this rate is vanishingly small,
ut it is always nonzero in practical numerical calculations. A nonzero 1/τφ has an important effect on the transport
oefficients, and the interplay between τφ and the evolution time τ can affect the convergence of the results in numerical
imulations [52,108], as we will discuss in greater detail below.

.3. The dissipative conductivity

In this section we will focus on the dissipative conductivity, which is one of the main probes of the electronic properties
f materials. This section serves to prepare the reader for the numerical methods to be introduced in Section 3. Therefore,
e will clearly define the main quantities needed for calculating the dissipative conductivity. An important quantity here

s the current density which, in the single-particle approximation, is proportional to the velocity operator V̂ , Ĵ = qV̂/Ω ,
ith q being the charge of a single carrier (q = −e for electrons). The velocity operator can be calculated using the
eisenberg equation of motion,

V̂ =
i
h̄
[Ĥ, R̂], (40)

here R̂ ≡ (X̂, Ŷ , Ẑ) is the position operator. Eq. (40) is of limited use when working in momentum space, but for
isordered systems without translational invariance, it is more convenient to use a real-space basis set, {|R i⟩}, where
|R i⟩ is a state centered at site i of the system. Such a basis set can be, for example, formed by local atomic orbitals or
Wannier functions. Using a real-space basis set, the matrix element of the velocity operator can be expressed in terms of
the transfer integral tij =

⟨
R i
⏐⏐Ĥ⏐⏐R j

⟩
as⟨

R i
⏐⏐V̂ ⏐⏐R j

⟩
= −

i
h̄
tij(R i − R j), (41)

which is the expression used in all the LSQT methodologies discussed in this review. Additionally, from this point onward,
we will denote the velocity pointing in the same direction of the electric field as V̂ , which defines the diagonal elements
of the conductivity tensor. Finally, by inserting Ĵ = qV̂/Ω into the Kubo–Bastin formula (Eq. (39)), setting Â = Ĵ , and
oting that ⟨Ĵ⟩ ≡ σE0, the DC conductivity σ can be expressed in terms of the velocity operator as

σ (µ, T ) = −
2h̄e2

Ω

∫
dE ′f (E ′ − µ)× Tr

[
δ(E ′ − Ĥ)V̂

dImG+(E ′)
dE ′

V̂
]
. (42)

here the temperature dependence of σ is due to the Fermi–Dirac distribution and we have used 2i · ImG+(E ′) =
+(E ′)− G−(E ′).

.3.1. Kubo–Greenwood and Chester–Thellung formulas
According to standard transport theories [22,102], the dissipative conductivity should depend only on the properties

f the system around the Fermi level. However, the conductivity from the Kubo–Bastin formula seems to depend on the
hole set of occupied states, as indicated by the presence of the Fermi–Dirac distribution function in the integral. It was

irst shown by Streda [109] that this is indeed not the case and that the contribution from the occupied states (called the
opological or Fermi sea contribution) vanishes for the dissipative conductivity. To show this, let us first integrate the
ubo–Bastin formula by parts to obtain

σ (µ, T ) = −
h̄e2

Ω

∫
dE ′

[
−
∂ f (E ′ − µ)

∂E ′

]
× Tr

[
δ(E ′ − Ĥ)V̂ ImG+(E ′) V̂

]
, (43)

here the factor −∂ f (E ′−µ)/∂E ′ is known as the Fermi energy window, which selects the energies close to the chemical
otential. At zero temperature, the chemical potential µ equals the Fermi energy E and this factor transforms into a Dirac
elta function,

lim
T→0
−
∂ f (E ′ − µ)

∂E ′
= δ(E ′ − E), (44)

which allows us to identify

σ (E) = −
h̄e2

Ω
Tr
[
δ(E − Ĥ)V̂ ImG+(E) V̂

]
(45)

s the zero temperature conductivity. Another expression of the zero temperature conductivity is the Kubo–Greenwood
ormula [110]

σ (E) =
π h̄e2

Tr
[
δ(E − Ĥ)V̂ δ(E − Ĥ) V̂

]
, (46)
Ω

9
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hich is a consequence of the identity

ImG+(E ′) = −πδ(E − Ĥ) (47)

and is at the core of various numerical [56,76] and diagrammatic [22] methods for computing the conductivity.
Additionally, this expression and Eq. (43) demonstrate that the role of temperature is to smear the zero-temperature
conductivity across the Fermi window.

At this point, it is important to point out that the two seemingly equivalent Dirac delta functions in the Kubo–
Greenwood formula have different origins: one coming from the imaginary part of the Green’s function , and the other
as a true delta function arising from the identities of Eq. (34). This can be seen explicitly in Eq. (45). Therefore, in order
to use the Kubo–Greenwood formula for dissipative conductivity in numerical calculations, a regularization of one of the
Dirac delta functions should be performed. Typically, a Gaussian or Lorentzian regularization is considered [11,52]. If one
chooses a Lorentzian representation with width h̄/τφ (corresponding to the limit τ →∞),

δ(E − Ĥ) =
1
π

lim
τφ→∞

h̄/τφ
(E − Ĥ)2 + (h̄/τφ)2

, (48)

ne can immediately identify the regularization parameter τφ as a dephasing time, which can be attributed to the coupling
f the system to some external inelastic source such as a time-varying electric field , as we demonstrated in the derivation
f the Kubo formula, as well as electron–electron [111] or electron–phonon interactions [112] . Although such a source of
ephasing can be thought of as the effect of inelastic scattering at nonzero temperature in a real system, it must originate
rom uncorrelated random events, which is not entirely realistic [52]. Nevertheless, under this regularization one can
onsider the limit τφ →∞ as a convergence to the adiabatic limit.
An alternative regularization procedure can be done by using a finite time τ and a vanishingly small dephasing rate

/τφ . This process corresponds to time evolution towards the steady state. To show this, first replace one of the Dirac
elta functions by its Fourier representation,

δ(E − Ĥ) = lim
τ→∞

∫ τ

−τ

dt
2π h̄

ei(E−Ĥ)t/h̄, (49)

hich is equivalent to taking the limits in Eq. (36) in the order τφ →∞ and then τ →∞. Then, by using the identity,

−
∂ f (E − µ)

∂E
=
∂ f (E − µ)

∂µ
(50)

nd the identities in Eq. (34), we can obtain the following expression from Eq. (43):

σ (µ, T ) = lim
τ→∞

e2

2Ω

∫ τ

0
dtTr

[
∂ f (Ĥ − µ)

∂µ
{V̂ (t), V̂ (0)}

]
, (51)

here the braces represent the anti-commutator, and V̂ (t) ≡ eiĤt/h̄V̂e−iĤt/h̄ is the time-dependent velocity operator. This
xpression is known as the Chester–Thellung formula [113,114].
Next, one can define a single-particle density matrix as

ρ̂eq(µ, T ) =
1
Ω

1
ρ(µ, T )

∂ f (Ĥ − µ)
∂µ

, (52)

here

ρ(µ, T ) =
dn(µ, T )

dµ
=

1
Ω

Tr
[∂ f (Ĥ − µ)

∂µ

]
(53)

s the density of states (DOS), and n(µ, T ) = Tr[f (Ĥ − µ)]/Ω is the charge density. This definition of the single-particle
ensity matrix allows the conductivity to be expressed as

σ (µ, T ) = lim
τ→∞

e2ρ(µ)
∫ τ

0
dtCvv(µ, t), (54)

here we have defined the quantity

Cvv(µ, t) ≡
1
2
Tr
[
ρ̂eq{V̂ (t), V̂ (0)}

]
= Re

(
Tr
[
ρ̂eqV̂ (t)V̂ (0)

])
, (55)

hich is the velocity autocorrelation (VAC) function and the DOS in Eq. (54) appears as a consequence of multiple electrons
aking part in the transport at the Fermi level. At this point, it is important to discuss the definition of ρ̂eq(µ, T ) in
q. (52) as the single-particle density matrix. In Eq. (3) we presented the equilibrium many-body density matrix in the
10
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anonical assemble. Eq. (52) is formally equivalent although it was derived out of equilibrium. However, a key result of
he fluctuation–dissipation theorem is the connection between transport due to an external force and diffusion in the
bsence of it [51]. In fact, the diffusion constant in classical systems is computable via Eq. (54) by replacing ρ̂eq with a
lassical thermal distribution such as the Boltzmann factor. Therefore, our definition of density matrix is rooted in the fact
hat any transport calculation in the single-particle approximation can be thought of as an equilibrium diffusive process
ith a density matrix given by Eq. (52). In Section 2.3.2 we will see that indeed, one can recover many of the results from
lassical diffusive theory by making this identification.
Eq. (52) indicates that the temperature dependence is embedded in ρ̂eq(µ, T ) and that its role is to smear the zero-

emperature conductivity around the Fermi energy. Therefore, the temperature dependence can be included later provided
hat one knows the zero-temperature conductivity at all energies. Because of this, from this point forward we will focus
n explaining how to obtain the conductivity in this limit, and unless otherwise specified we will refer to the zero-
emperature conductivity simply as the conductivity. The zero-temperature limit is achieved simply by using Eq. (44),
hich allows the density matrix and the DOS to be expressed as

ρ̂eq(E) =
1
Ω

1
ρ(E)

δ(E − Ĥ), (56)

ρ(E) =
1
Ω

Tr
[
δ(E − Ĥ)

]
, (57)

hile the rest of the formalism remains unchanged.

.3.2. Relation between conductivity and diffusion
Starting from the Chester–Thellung formula, one can easily obtain the Einstein relation, which relates the conductivity

o the diffusion coefficient. To this end, we first define the mean-square displacement (MSD) as

∆X2(E, t) ≡ Tr
[
ρ̂eq(E)(X̂(t)− X̂(0))2

]
. (58)

sing the identity

d2∆X2(E, t)
dt2

= Tr
[
ρ̂eq(E){V̂ (t), V̂ (0)}

]
, (59)

we have

σ (E) = e2ρ(E) lim
t→∞

1
2
d∆X2(E, t)

dt
. (60)

f we define

D(E) = lim
t→∞

D(E, t) = lim
t→∞

1
2
d∆X2(E, t)

dt
, (61)

e have σ (E) = e2ρ(E)D(E). The quantity D(E) is called the diffusion coefficient and can be considered as one of
the diagonal entries of the diffusion tensor [115]. This result shows that choosing a regularization with time yields a
formulation that is formally equivalent to semiclassical theory in the diffusive regime.

If instead of the time regularization we use the regularization provided by the dephasing time τφ , we obtain a slightly
ifferent expression for D(E), which nevertheless provides the correct results for τφ →∞. Using the regularized retarded
reen’s function in Eq. (36) to represent one of the Dirac delta functions in Eq. (46), in a similar way as in the derivation of
he Chester–Thellung formula, yields a diffusion coefficient that depends on both the evolution time τ and the dephasing
ime τφ ,

D(E; τφ, τ ) =
∫ τ

0
dte−t/τφ

1
2
d2∆X2(E, t)

dt2
, (62)

hich when integrating by parts reduces to

D(E; τφ, τ ) =
1
2
e−t/τφ

[
d∆X2(E, t)

dt
+
∆X2(E, t)

τφ

]τ
t=0
+

1
2τ 2φ

∫ τ

0
dte−t/τφ∆X2(E, t). (63)

f the limit τφ →∞ is taken first, we recover Eq. (61). Otherwise, if the limit τ →∞ is taken first, we have

D(E) = lim
τφ→∞

D(E, τφ)

= lim
τφ→∞

1
2τ 2φ

∫
∞

0
dte−t/τφ∆X2(E, t). (64)

he last expression shows that when we incorporate a finite dephasing time, the diffusion coefficient becomes essentially
n average of ∆X2(E, t)/2τφ over the time scale defined by τφ . Eqs. (61) and (64), although formally different, produce the
ame result when τ and τφ are larger than the characteristic times of the system. This will be shown in the next section
here we discuss the different transport regimes and the possible outcomes of these formulas.
11
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Fig. 1. (a) The diffusion coefficient D(E, t) defined in Eq. (61) as a function of the evolution time t and the diffusion coefficient D(E, τφ ) defined in
q. (64) as a function of the dephasing time τφ . When there is no localization, the two diffusion coefficients converge to the same Dsc . (b) A closer
ook at the ballistic limit in (a), where both diffusion coefficients have a slope of v2F (E) at short times. (c) Similar to (a), but for a system with strong
ocalization. (d) The corresponding MSD as a function of t and 2τφD(E, τφ ) as a function of τφ . In the presence of strong localization they converge
o the same value π2ξ 2(E), where ξ (E) is the localization length.

.3.3. Transport regimes and length scales
So far we have derived different representations of the Kubo formula that can be used to obtain the conductivity at a

tationary state, i.e., in the limit of infinite time. However, these Kubo formulas can also be used to determine the behavior
f the system in different transport regimes that occur at finite time. This is one of the benefits of using time-dependent
pproaches for quantum transport. To show this, we start with a discussion of the different transport regimes and some
elevant physical quantities.

Consider a perfect crystal material, which by definition is a periodic array of atoms. An electron in this environment
ill be subjected to a periodic potential due to the Coulomb field of the atoms. By virtue of Bloch’s theorem, one can
escribe this system as a free electron gas whose components possess an effective mass accounting for the change in the
roup velocity due to a change in the crystal momentum. Therefore, under the action of a small external electric field, the
lectrons will move freely along the direction of the electric field at an average speed of the Fermi velocity vF(E), leading
o ballistic transport.

However, in disordered systems the electrons will be scattered by imperfections. After some time τp(E), which is known
s the momentum relaxation time, the system will have undergone many random scatterings that make it lose all memory
bout the initial conditions, leading to a steady state known as the diffusive regime. Finally, if the disorder is strong
nough, a phenomenon known as Anderson localization will take place. In this situation, the electron’s wave function is
o longer extended. Instead, due to quantum interference effects the wave function becomes localized within a volume
hose radius is usually defined as the localization length ξ (E). These are the canonical transport regimes, and in the

ollowing we will see how to identify each of these with quantum transport simulations. The first thing to address is how
o compute the characteristic parameters of each regime: the Fermi velocity, momentum relaxation time, and localization
ength.

For ballistic transport, ∆X2(E, t) grows quadratically as

∆X2(E, t) = v2F (E)t
2. (65)

nserting this into Eqs. (61) and (64) gives D(E) = v2F τ and D(E) = v2F τφ , respectively. This means that the conductivity
iverges linearly with time, as expected for ballistic transport. Therefore, in the ballistic regime both regularization
rocedures give the same result, as illustrated in Fig. 1(b).
At longer time or length scales, the electrons will be scattered by imperfections and will lose the memory of their

revious momenta after a time of order τp(E). In this limit the conductivity becomes independent of length and time,
hich implies that it can be expressed in terms of a constant diffusion coefficient Dsc(E), which is commonly referred
o as the semiclassical (sc) diffusion constant. This is a consequence of a linearly increasing MSD, which in the diffusive
egime is proportional to the diffusion constant

∆X2(E, t) = 2D (E)t. (66)
sc

12
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nserting this into Eq. (61) gives directly what we expect

D(E) = Dsc(E). (67)

s for Eq. (64), one can divide the integral into two contributions — before reaching the momentum relaxation time τp(E)
he system behaves ballistically, while after reaching τp(E) the system enters the diffusive regime. For simplicity, let us
ssume a sharp transition at t = τp and write the diffusion coefficient as

D(E) = lim
τφ→∞

1
2τ 2φ

(∫ τp

0
+

∫
∞

τp

)
dt e−t/τφ∆X2(E, t). (68)

The first integral goes to zero as τφ →∞ and the second integral gives the same expression as Eq. (67). This result can
also be derived by assuming an exponentially decaying VAC [116],

Cvv(E, t) =
1
2
v2F (E)e

−t/τp(E), (69)

which leads to a connection between the diffusion constant and the momentum relaxation time,

Dsc(E) =
1
2
v2F (E)τp(E). (70)

ne can also define a mean free path

le(E) = vF(E)τp(E) (71)

nd write Dsc(E) = vF(E)le(E)/2. We thus see that the semiclassical electrical conductivity has the same form as that
btained from the Boltzmann equation within the relaxation time approximation [117]. The equivalence between the
wo regularizations of the Green’s function in the diffusive limit is illustrated in Fig. 1(a).

Finally, in the weak and strong localization regimes the conductivity is expected to decay with increasing system
ength L [21]. The weak localization regime is characterized by a logarithmic decay of the conductivity, σ (E, L)− σsc(E) ∝
ln(L/le(E)), while the strong localization regime is associated with an exponential decay of the conductivity, σ (E, L) ∝
−L/ξ (E), where ξ (E) is the localization length.
In the strong localization regime, the MSD saturates to a constant value and Eq. (61) predicts a zero diffusion coefficient

nd conductivity. The convergence towards this limit is usually assumed to be exponential with respect to the system
ength, and from this scaling the localization length can be obtained. One can also establish a relation between the
ocalization length and the saturated value of the MSD [118], which was found quantitatively to be [119]

ξ (E) = lim
t→∞

√
∆X2(E, t)
π

. (72)

his definition of localization length conforms with the standard definition in terms of the length scaling of conduc-
ance [120] and is in accordance with the original definition of Anderson localization [121], namely, the absence of
iffusion.
Meanwhile, Eq. (64) gives a different convergence behavior. If we define τξ as the time after which strong localization

ominates and impose the condition τξ/τφ ≪ 1, we obtain a diffusion coefficient going to zero as the inverse dephasing
ime,

D(E) = lim
τφ→∞

D(E, τφ) = lim
τφ→∞

π2ξ (E)2

2τφ
. (73)

his difference in convergence behavior is demonstrated in Fig. 1(c). Despite their different scaling, 2τφD(E, τφ) and the
SD converge to the same value π2ξ 2(E) in the limit of infinite time, as illustrated in Fig. 1(d). Therefore, the two

egularizations of the Green’s function give the same results in the ballistic, diffusive, and localized regimes, when the
ppropriate limits are taken.

.3.4. Time- and length-dependent conductivity
In Eqs. (54) and (60), we have defined expressions for the electronic conductivity at infinite time and sample size.

owever, following the discussion in Section 2.3.3, it is crucial to define a conductivity that is explicitly dependent on
ime or length. This allows one to numerically track the evolution of a system through ballistic, diffusive, and localized
ransport and identify the relevant quantities associated with each regime. Defining a length-dependent conductivity is
lso necessary for comparison to experiments, which are always limited to measuring transport properties at a fixed
evice size.
We therefore define time-dependent versions of the conductivity by cutting off Eqs. (54) and (60) at finite correlation

ime (and taking the zero-temperature limit),

σ (E, t) ≡ e2ρ(E)
∫ t

dt ′Cvv(E, t ′), (74)

0
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and

σ (E, t) ≡ e2ρ(E)
1
2
d∆X2(E, t)

dt
. (75)

he length-dependent conductivity is then defined as

σ (E, L) ≡ σ (E, t)
⏐⏐⏐⏐
L=L(E,t)

(76)

where

L(E, t) ≡ 2
√
∆X2(E, t). (77)

ere we have defined the system size L as the propagation length associated with the MSD, and not the size of the
imulation cell. In the time-dependent LSQT methods, one then considers a sufficiently large simulation cell and calculates
he time-dependent conductivity σ (E, t) and propagation length L(E, t) to obtain the length-dependent conductivity
(E, L). To avoid finite size and edge effects, one should use periodic boundary conditions and ensure that L remains
maller than the size of the simulation cell.
This definition of L(E, t) can be justified by considering the ballistic regime of transport. In this regime, the conductivity

cales linearly with time, σ (E, t) = e2ρ(E)v2F (E)t , and thus diverges. However, the conductance g(E) is defined as

g(E) ≡
A

L(E, t)
σ (E, t), (78)

where A is the cross-sectional area through which the current flows. The conductance is a geometry-dependent quantity
and is therefore finite for finite systems. Using the definition of length in Eq. (77), we have L(E, t) = 2vF(E)t in the ballistic
regime and

g(E) =
A
2
e2ρ(E)vF(E), (79)

hich is independent of any length or time scale and is completely characterized by the DOS and Fermi velocity, consistent
ith the picture of ballistic transport. For a strictly one-dimensional system, the DOS is ρ(E) = 2/π h̄vF(E) and we finally
et g(E) = 2e2/h. This is the expected conductance quantum for ballistic transport, as has been measured in quantum
oint contacts [122,123] and carbon nanotubes [124]. The factor of two in Eq. (77) means that electrons propagate in two
pposite directions. In early works [125,126], this factor of two was not included, but the conductivity was defined by
ubstituting the derivative in Eq. (75) with division by t , which exactly reduces the conductivity by half in the ballistic
imit and results in the same ballistic conductance as in Eq. (79).

. Linear scaling numerical techniques

In Section 2, we have presented three different representations of the Kubo formula for non-interacting electrons: the
ubo–Greenwood formula in Eq. (46), the VAC-based formula in Eq. (74), and the MSD-based formula in Eq. (75). The aim
f this section is to review the various numerical techniques for efficiently evaluating these formulas. We will focus on
issipative transport in this section and discuss numerical evaluation of the Kubo–Bastin formula – Eq. (39) – in Section 7,
hich can be used to compute other transport properties [61].
The major concern in numerical implementations is the scaling of the computational cost with respect to the

amiltonian size N . A common feature of the above Kubo formulas is that the trace can be evaluated using any complete
et of single-particle wave functions that obey periodic boundary conditions [113,114]. An immediate choice would be
o use the set of eigenvectors of the Hamiltonian, but this requires full diagonalization, which is usually prohibitive for
arge systems due to its O(N3)-scaling computational cost with respect to the system size. To enable the study of large
ystems (e.g., N > 106), a linear scaling, or O(N) algorithm is mandatory. To achieve linear scaling, we avoid using the
amiltonian’s eigenspace and instead work with a real-space tight-binding representation, where the basis functions
re not eigenfunctions of the Hamiltonian but rather the electron orbitals around individual atoms. Because of this, the
ethods discussed in this review are usually referred to as real-space LSQT methods.
Before discussing the relevant numerical techniques for achieving linear scaling, we list the quantities to be calculated

or each implementation. A prominent quantity is the DOS defined in Eq. (57), which contains information about
he electronic structure of the system. In the Kubo–Greenwood representation, one directly evaluates the electrical
onductivity as given in Eq. (46), but needs to represent one of the Dirac delta functions as a regularized Green’s function.
n the VAC representation of conductivity given in Eq. (74), one first calculates the product of the DOS and the VAC,

ρ(E)Cvv(E, t) =
1
Ω

Re
[
Tr
(
Û(t)V̂δ(E − Ĥ)Û†(t)V̂

)]
, (80)

nd then performs a numerical time integration to obtain the time-dependent electrical conductivity σ (E, t). In the MSD
epresentation of Eq. (75), one first calculates the product of the DOS and the MSD,

ρ(E)∆X2(E, t) =
1
Tr
[
δ(E − Ĥ)(X̂(t)− X̂)2

]
, (81)
Ω

14
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nd then performs a numerical time derivative to obtain the time-dependent electrical conductivity σ (E, t). In periodic
ystems it is problematic to use the absolute position operator X̂ . Instead, one can use the identity X̂(t)−X̂ = Û†(t)[X̂, Û(t)]
o change the above equation to an equivalent one [127,128],

ρ(E)∆X2(E, t) =
1
Ω

Tr
[
[X̂, Û(t)]†δ(E − Ĥ)[X̂, Û(t)]

]
. (82)

After a polynomial expansion of the time evolution operator Û(t) (as discussed below), the commutator [X̂, Û(t)] only
depends on the velocity operator, which only depends on the difference between the positions of the orbitals and is well
defined in periodic systems.

There are some common features in these quantities: they are all represented as a trace and involve the quantum
projection operator δ(E− Ĥ), and the time evolution operator Û(t) appears in the VAC and MSD. Linear scaling techniques
have been developed to evaluate these operators and we will discuss them in detail below.

3.1. Evaluating the trace using a stochastic approach

Recall that the trace of an operator Â is defined as

Tr[Â] =
N∑

n=1

⟨n|Â|n⟩, (83)

where {|n⟩}Nn=1 is a complete basis set of the problem, which is taken as a real-space tight-binding basis set in this review.
The operator Â relevant to this review will be essentially polynomials formed by the Hamiltonian and other quantities
such as the velocity operator. What is important here is that even if Â is highly sparse, such that the operation Â|n⟩ scales
linearly, the total computation still has an O(N2) scaling, which is better than O(N3) for a non-sparse Â but is still usually
prohibitive. To achieve O(N) scaling, the trace must be approximated. A powerful method for approximating the trace of
large matrices is to use random vectors, a stochastic approach that was developed along with the methods of calculating
the spectral properties of large Hamiltonians [11,129–132].

In this stochastic method, one approximates the trace by using Nr random vectors {|φr⟩}
Nr
r=1,

Tr[Â] ≈
1
Nr

Nr∑
r=1

⟨φr |Â|φr⟩. (84)

ach random vector |φr⟩ is constructed from N random coefficients,

|φr⟩ =

N∑
n=1

ξrn|n⟩. (85)

ere, ξrn ∈ C are independent identically distributed random variables which have zero mean and unit variance, which
mplies that each vector is normalized to

√
N . It has been shown that [11,133] the statistical error for the trace is

roportional to 1/
√
NrN , with the proportionality constant being related to the properties of the matrix Â. The statistical

accuracy can be systematically improved by increasing Nr . In practice, for large N a small Nr on the order of unity is
sufficient to achieve a high statistical accuracy.

For simplicity, we only use a single random vector |φ⟩ to present the subsequent formulas. In practice, one needs to
check the convergence of the results with respect to Nr . Under the condition of sufficient average, in the following we
use the ‘‘=’’ sign instead of the ‘‘≈’’ sign as in Eq. (84). Using this, we can express the quantities that need to be calculated
as the following inner products:

ρ(E) =
1
Ω
⟨φ|δ(E − Ĥ)|φ⟩; (86)

σ (E) =
π h̄e2

Ω
⟨φ|δ(E − Ĥ)V̂δ(E − Ĥ)V̂ |φ⟩; (87)

ρ(E)Cvv(E, t) =
1
Ω

Re
[
⟨φvac

L (t)|δ(E − Ĥ)|φvac
R (t)⟩

]
; (88)

ρ(E)∆X2(E, t) =
1
Ω
⟨φmsd

L (t)|δ(E − Ĥ)|φmsd
R (t)⟩; (89)

here

|φvac
L (t)⟩ = V̂ Û(t)†|φ⟩; |φvac

R (t)⟩ = Û(t)†V̂ |φ⟩; (90)

|φmsd
L (t)⟩ = |φmsd

R (t)⟩ = [X̂, Û(t)]|φ⟩. (91)
15
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The remaining task is to evaluate these inner products in a linear scaling way. We will discuss linear scaling numerical
echniques related to the time evolution operator Û(t) in Section 3.3 and those related to the quantum projection operator
(E−Ĥ) in Section 3.4. Before doing these, we first review a crucial numerical technique, namely the Chebyshev polynomial
xpansion.

.2. Chebyshev Polynomial expansion

We have presented different theoretical frameworks that can be used to determine the conductivity. We saw that a
umerical evaluation of the conductivity requires one to compute functions of the Hamiltonian matrix such as the time
volution operator and the quantum projection operator. We also discussed the need to choose an appropriate basis set
o that the Hamiltonian can be represented as a sparse matrix. Finally, if we want to exploit this feature we need to find
way to avoid explicit evaluation of these quantities, because an arbitrary function of a sparse matrix is generally not a
parse matrix. The use of polynomial expansion provides a way to achieve the goal of linear scaling computation. Among
arious polynomials, the Chebyshev polynomials are usually the optimal choice [134].
The Chebyshev polynomials are a family of orthogonal polynomials which can be defined recursively. In this review

e are using the Chebyshev polynomials of the first kind, {Tm(x)}, which are defined as Tm(cos(x)) = cos(mx) and have
he recurrence relation

T0(x) = 1; T1(x) = x;

Tm(x) = 2x Tm−1(x) − Tm−2(x) (m ≥ 2). (92)

hese polynomials form a complete basis for functions defined on the real axis within the interval (−1, 1). As such, they
an be used to expand a function f (x) defined within the same interval in a polynomial series

f (x) =
∞∑

m=0

f̄mTm(x), (93)

here

f̄m = (2− δm0)
∫ 1

−1

f (x)Tm(x)

π
√
1− x2

dx (94)

re the expansion coefficients and δm0 is the Kronecker delta.
In general, one deals with functions of the Hamiltonian Ĥ , whose energy spectrum may exceed the (−1, 1) interval.

herefore, one must rescale the Hamiltonian before using a Chebyshev polynomial expansion. This can be done with the
ransformation

H̃ =
Ĥ − Ē
∆E

, (95)

here ∆E = (Emax − Emin)/2 and Ē = (Emax + Emin)/2, with Emax and Emin the maximum and minimum eigenvalues of
ˆ . Once the Hamiltonian is rescaled , any function of H̃ can be expanded in a manner similar to Eq. (93). To see this,
e assume that H̃ has the eigenvalues {̃En} and eigenvectors {|n⟩}. For a general function f (H̃), we have

f (H̃) =
∑
n

f (H̃)|n⟩⟨n| =
∑
n

f (̃En)|n⟩⟨n|

=

∑
n

∞∑
m=0

f mTm (̃En)|n⟩⟨n|

=

∑
n

∞∑
m=0

f mTm(H̃)|n⟩⟨n|

=

∞∑
m=0

f mTm(H̃). (96)

The inner products listed at the end of Section 3.1 are of the form

C F
m ≡ ⟨φL|f (H̃)|φR⟩, (97)

and are typically referred as the Chebyshev moments of the function f . These quantities can be evaluated iteratively by
exploiting the recurrence relation of the Chebyshev polynomials, and the whole computation thus reduces to a number
of sparse matrix–vector multiplications, which scale linearly with the vector length N .
16
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Fig. 2. Demonstration of the accuracy of the Chebyshev polynomial expansion of the time evolution operator using a simple function Û(∆t) =
exp(−ix∆t). (a) The real part cos(x∆t) and the imaginary part − sin(x∆t) of Û(∆t), calculated analytically (dashed lines) or by a numerical expansion
(markers) similar to that in Eq. (103). Here, x plays the role of the Hamiltonian in the time evolution operator and we choose x = 0.5 and ∆t = 100.
(b) The number of Chebyshev polynomials Np required for achieving a precision of 10−15 as a function of the time interval ∆t . In the large ∆t limit,
Np ∝ ∆t , as indicated by the dashed line.

3.2.1. Determination of the spectral bounds
The determination of∆E and Ē requires knowing in advance the spectral bounds (Emin, Emax). In a clean periodic system,

he spectral bounds are directly readable from the band structures along the high-symmetry points. Once disorder is
ncluded, one has to rely on other methods. A rigorous approach is to use the Gershgorin circle theorem [135], which
tates that all eigenvalues of a square matrix A with matrix elements aij will be contained in at least one disc centered at
ii with radius

Ri =
∑
i̸=j

|aij|. (98)

he eigenvalues of A will then be bounded by E− = min{aii − Ri} and E+ = max{aii + Ri}, with E− ≤ Emin and E+ ≥ Emin.
hese bounds can be directly calculated numerically, or can be estimated from the analytical form of the Hamiltonian.
As an example, consider the Hamiltonian of a disordered linear chain,

Hi,j = −t(δi,i+1 + δi,i−1)+ εiδii, (99)

here t is the hopping between nearest neighbors and εi are the onsite energies. In the absence of disorder, εi = 0 and
irect application of the circle theorem leads to −Emin = Emax = 2t , which is precisely the bandwidth of the linear chain.
n the presence of Anderson disorder, with εi a random variable uniformly distributed in (−U/2,U/2), the bounds may be
stimated as−E− = E+ = U/2+2t , or they may be determined numerically for a particular instance of H . Exact numerical
iagonalization of the Hamiltonian leads to the bounds (-2t- result is in agreement with early exact calculations [136].
In general, the circle theorem will overestimate the energy bounds, which will result in suboptimal energy broadening

or a given number of Chebyshev moments (see Section 3.4.3). However, if tighter bounds are required, one may use the
ircle theorem in a first-pass calculation of the DOS, from which tighter spectral bounds may be obtained.

.3. The time evolution operator and the regularized Green’s function

Both the VAC and MSD formalisms involve a time evolution operator Û(t), and one of the Dirac delta functions δ(E−Ĥ)
n the Kubo–Greenwood formula can be substituted by a regularized Green’s function. In this subsection, we discuss the
17
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xpansion of the time evolution operator and the regularized Green’s function in terms of the Chebyshev polynomials.
In the VAC and MSD formalisms, in addition to applying the random vector approximation for the trace we need to

valuate the application of the time evolution operator to a vector, as can be seen from Eqs. (90) and (91). Because we need
nformation at a discrete set of time points, we need to construct an iterative scheme for evaluating the time evolution.
he strategy is to divide the total simulation time into a number of steps. From time t to time t +∆t (the time steps ∆t
eed not to be uniform), we have the following iterative relations for the vectors defined in Eqs. (90) and (91):

V̂ Û†(t +∆t)|φ⟩ = V̂ Û†(∆t)Û†(t)|φ⟩; (100)

Û†(t +∆t)V̂ |φ⟩ = Û†(∆t)Û†(t)V̂ |φ⟩; (101)

[X̂, Û(t +∆t)]|φ⟩ = Û(∆t)[X̂, Û(t)]|φ⟩ + [X̂, Û(∆t)]Û(t)|φ⟩. (102)

Therefore, the task breaks down to evaluating the application of the operators Û(∆t) and [X̂, Û(∆t)] on some vectors.
The Chebyshev polynomial expansion is particularly efficient when the expanded function is regular and differentiable.

One of its first uses was the expansion of the time evolution operator Û(∆t). Solving the integral in Eq. (94) for this
perator leads to an expansion in the form of Eq. (96) [8],

Û(∆t) ≈
Np∑

m=0

Um(∆t)Tm(H̃), (103)

Um(∆t) = (2− δm0)(−i)mJm (ω0∆t) , (104)

where ω0 = ∆E/h̄ and Jm(x) is the mth-order Bessel function of first kind.
The operator [X̂, Û(∆t)] can be similarly expanded in terms of the Chebyshev polynomials,

[X̂, Û(∆t)] ≈
Np∑

m=0

Um(∆t)[X̂, Tm(H̃)], (105)

where the commutator [X̂, Tm(H̃)] can be calculated iteratively using the recurrence relation

[X̂, Tm(H̃)] = 2[X̂, H̃]Tm−1(H̃)

+ 2H̃[X̂, Tm−1(H̃)]

− [X̂, Tm−2(H̃)]. (106)

Algorithms 1 and 2 give explicit steps for evaluating |φout⟩ = Û(∆t)|φin⟩ and |φout⟩ = [X̂, Û(∆t)]|φin⟩. A demonstration
of the accuracy of the Chebyshev expansion of the time evolution operator can be seen in Fig. 2. Panel (a) shows how
Û(∆t) quickly converges to its expected value after a finite number of iteration steps. Panel (b) indicates the number
of Chebyshev polynomials Np needed to achieve a precision of 10−15 for a given time step ∆t . In the limit of large ∆t ,
Np ∝ ∆t , as indicated by the dashed line.

Algorithm 1: Evaluating |φout⟩ = Û(∆t)|φin⟩

1: |φ0⟩ ← |φin⟩

2: |φ1⟩ ← H̃|φin⟩

3: |φout⟩ ← J0 (ω0∆t) |φ0⟩ + 2(−i)J1 (ω0∆t) |φ1⟩

4: m← 2
5: while abs [Jm (ω0∆t)] > 10−15 do
6: |φ2⟩ ← 2H̃|φ1⟩ − |φ0⟩

7: |φout⟩ ← |φout⟩ + 2(−i)mJm (ω0∆t) |φ2⟩

8: |φ0⟩ ← |φ1⟩

9: |φ1⟩ ← |φ2⟩

10: m← m+ 1
11: end while
18
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Algorithm 2: Evaluating |φout⟩ = [X̂, Û(∆t)]|φin⟩

1: |φ0⟩ ← |φin⟩

2: |φx
0⟩ ← 0

3: |φ1⟩ ← H̃|φ0⟩

4: |φx
1⟩ ← [X̂, H̃]|φ0⟩

5: |φout⟩ ← 2(−i)J1 (ω0∆t) |φx
1⟩

6: m← 2
7: while abs [Jm (ω0∆t)] > 10−15 do
8: |φ2⟩ ← 2H̃|φ1⟩ − |φ0⟩

9: |φx
2⟩ ← 2[X̂, H̃]|φ1⟩ + 2H̃|φx

1⟩ − |φ
x
0⟩

0: |φout⟩ ← |φout⟩ + 2(−i)mJm (ω0∆t) |φx
2⟩

1: |φ0⟩ ← |φ1⟩

2: |φ1⟩ ← |φ2⟩

3: |φx
0⟩ ← |φ

x
1⟩

4: |φx
1⟩ ← |φ

x
2⟩

5: m← m+ 1
6: end while

The Green’s functions in Eq. (37) are spectral functions that, as we demonstrated in Section 3.2, can also be evaluated
using the Chebyshev polynomial expansion using the identities in Eq. (96). However, special care should be taken as they
have singularities which carry physical information of the system. In Section 2 we defined a regularized version of the
Green’s functions in Eq. (36), where we introduced an imaginary rate 1/τφ and a finite time τ . These parameters broaden
he singularities of the Green’s functions and serve as a mathematical regularization that enables the approximation of
he Green’s functions to a given precision using a finite Chebyshev polynomial expansion. In the limit τ → ∞, one can
pproximate the regularized retarded Green’s function as

G+(Ẽ; τφ) =
1
∆E

∑
m

Ḡ+mTm(H̃). (107)

Here, Ḡ+m are the Chebyshev coefficients defined in Eq. (94), which can be evaluated using a Laplace transform of the
Bessel function [137] as

Ḡ+m = (2− δm0)

(
z − i
√
1− z2

)m
i
√
1− z2

, (108)

where

z = (E + ih̄/τφ)/∆E (109)

is a complex energy due to the presence of dephasing. This expansion has been used by Vijay et al. [138] in the context
of spectral filters and by Braun and Schmitteckert [139] to determine the impurity Green’s function of the interacting
resonant level model. Recently, it was applied by Ferreira and Mucciolo for the first time to quantum transport, where it
was dubbed the Chebyshev-polynomial Green’s function (CPGF) method [76]. One can also use analytic continuation of
the logarithms to the complex plane to express Eq. (108) in terms of an exponential,

Ḡ+m = (2− δm0)
exp[−i m arccos(z)]

i
√
1− z2

. (110)

his shows that the CPGF method involves an analytic continuation of an expression previously obtained by other
uthors [11,61,140], where the singularities have been smoothed. In the limit of infinite τφ , these coefficients do not
ecay but oscillate with increasing m, and it is the presence of a finite dephasing time which provides a damping of the
oefficients and permits the convergence of the expansion.
In the next subsection, we discuss different approaches to deal with singular functions in the context of approximating

he quantum projection operator δ(E − Ĥ), a common factor in all the representations of the dissipative conductivity.

.4. Evaluating the quantum projection operator

We now discuss the evaluation of the quantum projection operator δ(E− Ĥ) involved in all the conductivity formulas.
here are several linear scaling techniques for approximating this operator, including the Lanczos recursion method
LRM) [5–7,10,141], the Fourier transform method (FTM) [142–144], the kernel polynomial method (KPM) [11,130,132,
45,146], and the maximum entropy method (MEM) [129,131,147]. We will only review the first three methods (LRM,
TM, and KPM), as the last one (MEM) has not been used in LSQT calculations. A comparison between the MEM and the
19
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PM can be found in a previous review [11]. All of these methods have been used recently to compute transport properties
n different systems [11,61,64,71,75,77,148,149]. Although we have a few different quantities to calculate, it suffices to
iscuss these methods in terms of the DOS as given in Eq. (86). Generalizations to other quantities are straightforward.

.4.1. The Lanczos recursion method
The LRM is based on the Lanczos algorithm for tridiagonalizing sparse Hermitian matrices [150]. The Lanczos algorithm

s usually used to obtain extremal eigenvalues and the corresponding eigenstates [151], but it can also be used to calculate
pectral properties [5–7,10].
The first step of the LRM is to project the Hamiltonian onto an orthogonal basis in a Krylov subspace, generating a

ridiagonal matrix

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 b2 0 · · · 0

b2 a2 b3
. . . 0

0
. . .

. . .
. . . 0

...
. . . bM−1 aM−1 bM

0 · · · 0 bM aM

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (111)

he dimension M of the tridiagonal matrix can be much smaller than the dimension N of the original matrix. The matrix
lements {an} and {bn} are obtained from a Lanczos algorithm. There are multiple versions of the Lanczos algorithm and
he most numerically stable one is given in Algorithm 3 [152]. The computational effort of the LRM is thus proportional
o NM , which is O(N) when M ≪ N . An advantage of the Lanczos algorithm over the KPM-based approaches is that one
oes not need to know the spectral bounds in advance. However, even its most stable implementations do not allow for
controlled approximation, which complicates its use for systematic studies.

Algorithm 3: Lanczos algorithm [152]

Require: |φ1⟩ = |φ⟩ is the normalized random vector
1: b1 ← 0
2: |φ0⟩ ← 0
3: for m = 1 to M do
4: |ψm⟩ ← H|φm⟩ − bm|φm−1⟩

5: am ← ⟨ψm|φm⟩

6: |ψm⟩ ← |ψm⟩ − am|φm⟩

7: bm+1 ←
√
⟨ψm|ψm⟩

8: |φm+1⟩ ← |ψm⟩/bm+1
9: end for

The second step of the LRM is to calculate the first element of the retarded Green’s function G+(E) = (E + iη − Ĥ)−1
n the Lanczos basis {|φm⟩} using the continued fraction

⟨φ|G+(E)|φ⟩ =
1

E + iη − a1 −
b22

E+iη−a2−···

. (112)

he DOS of Eq. (86) can then be calculated using the relation between the quantum projection operator and the Green’s
unction given in Eq. (47). The computation time for the second step is proportional to MNe, where Ne is the number
f energy points considered in the calculation. Usually, Ne ≪ N , and the computation time for the second step is thus
egligible compared to the first step. Because of this, the overall computational effort almost does not scale with respect
o Ne. We can thus say that the algorithm is parallel in energy, which is a common feature for all the methods presented
elow.
An important issue is the energy resolution δE achievable using a given number of recursion steps M . The energy

resolution is actually set by the imaginary energy iη in the Green’s function, i.e., δE = η. One should therefore make sure
that a sufficiently large M is used to ensure converged results. However, it is well known that in its basic forms such as
the one presented in Algorithm 3, the Lanczos algorithm can become numerically unstable when M is large, due to the
loss of orthogonality in the Lanczos basis vectors. The Lanczos basis vectors can be explicitly orthogonalized [152], but
this will increase the computational complexity of the algorithm, making it less efficient than other methods.

The Lanczos method has been also used for computing off-diagonal Green’s functions, which are key quantities
for computing correlation functions. A simple approach can be used when the Hamiltonian is symmetric; off-diagonal
Green’s function elements (such as ⟨Ψi|(z − Ĥ)−1|Ψj⟩) can be derived from linear combinations of on-diagonal elements
(⟨Ψ ± Ψ |(z − Ĥ)−1|Ψ ± Ψ ⟩) [10,14]. For non-symmetric matrices a procedure similar to the Lanczos method, based on
i j i j
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he construction of a bi-orthogonal expansion, has been proposed [153–155]. The construction of the bi-orthogonal basis
s calculated as

|ψn+1⟩ = Ĥ|ψn⟩ − an+1|ψn⟩ − bn|ψn−1⟩, (113)
⟨φn+1| = ⟨φn|Ĥ − ⟨φn|an+1 − ⟨φn−1|bn, (114)

with the initial conditions |ψ−1⟩= |φ−1⟩= 0, |ψ0⟩= |φ0⟩= |ψ⟩, and the bi-orthogonality condition ⟨φn|ψm⟩ = 0 if n ̸= m.
This last condition is equivalent to the following relations for an and bn:

an+1 =
⟨φn|Ĥ|ψn⟩

⟨φn|ψn⟩
, (115)

bn =
⟨φn−1|Ĥ|ψn⟩

⟨φn−1|ψn−1⟩
=
⟨φn|ψn⟩

⟨φn−1|ψn−1⟩
. (116)

n the basis {|ψn⟩}, Ĥ can be written as

Ĥ =

⎛⎜⎜⎜⎝
a1 b1
1 a2 b2

1 a3 b3
1 . .

. .

⎞⎟⎟⎟⎠ . (117)

The quantity ⟨ψ |G†(z = E ± i0+)|ψ⟩ = ⟨φ0|
1

z−Ĥ
|ψ0⟩ can then be computed by the continued fraction method. This

quantity is equal to the first diagonal element of (z− Ĥ)−1, where Ĥ is the tridiagonal matrix in Eq. (117). Let us call this
atrix element G0(z) and define Gn(z) to be the first diagonal element of the matrix (z − Ĥn)−1, with Ĥn the matrix Ĥ

without its n first lines and columns,

Ĥn =

⎛⎜⎜⎜⎝
an+1 bn+1
1 an+2 bn+2

1 an+3 bn+3
1 . .

. .

⎞⎟⎟⎟⎠ . (118)

From standard linear algebra, it can be shown that

G0(z) =
1

z − a1 − b1G1(z)
, (119)

nd repeating this algorithm leads to a continued fraction expansion of G0(z),

G0(z) =
1

z − a1 −
b1

z − a2 −
b2
...

. (120)

One should note that in contrast to the standard Lanczos recursion, the coefficients an and bn do not show any simple
ehavior for large n, but simple truncation of the continued fraction at sufficiently large n was found to yield reasonably
ood convergence. This method was implemented for developing an O(N) approach of the Landauer–Büttiker conductance
ormula [155] as further discussed in Section 4.

.4.2. The Fourier transform method
The FTM is very simple conceptually: it is based on the Fourier transform of the Dirac delta function as given in Eq. (49).

deally, the time integral is over the whole real axis, but in practice one can only reach a finite time with a finite time
tep ∆τ . Therefore, one should be satisfied with a truncated discrete Fourier transform,

δ(E − Ĥ) ≈
∆τ

2π h̄

M∑
m=−M

ei(E−Ĥ)m∆τ/h̄, (121)

here M∆τ represents the upper limit of the time integral in Eq. (49). A direct expansion in this way leads to Gibbs
scillations, and a window function is usually used to suppress them. A frequently used one is the Hann window,

wm =
1
2

[
1+ cos

(
πm

M + 1

)]
. (122)

Using the discrete Fourier transform, we can write the DOS in Eq. (86) as

ρ(E) ≈
∆τ

2π h̄Ω

M∑
eiEm∆τ/h̄wmFm, (123)
m=−M
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here

Fm = ⟨φ|e−iĤm∆τ/h̄
|φ⟩ = ⟨φ|Û(m∆τ )|φ⟩ (124)

s the mth Fourier moment.
Based on the formulas above, we can see that the FTM consists of the following two steps: (1) construct a set of Fourier

oments {Fm} as defined in Eq. (124), and (2) calculate physical properties such as the DOS from the Fourier moments
hrough a discrete Fourier transform as given by Eq. (123). Similar to the case of the LRM, the computation time for the
econd step is negligible compared to the first one and the algorithm is essentially parallel in energy.
As the Fourier moments are the expectation values of the time evolution operator, this method is also usually called the

quation of motion method [142] or the time-dependent Schrödinger equation method [143,144]. Note that we have used
τ here to distinguish it from the correlation time step∆t in the VAC and MSD formalisms. Based on the Nyquist sampling

heorem, which states that the sampling rate must be no less than the Nyquist rate 2fmax to perfectly reconstruct a signal
ith spectrum between 0 and fmax, the optimal value of ∆τ can be determined to be ∆τ = π h̄/∆E, giving ω0∆τ = π .
sing this ∆τ , the energy resolution is given by δE ∼ ∆E/M [143].

.4.3. The kernel polynomial method
In Section 3.2 we introduced the Chebyshev polynomial expansion as a useful tool for approximating regular functions

nd discussed additionally the problem of expanding a singular function such as the Green’s function using the CPGF
ethod [76]. There, the singularity in the Green’s function was regularized by introducing a small imaginary energy iη.
here is another widely used approach to handle the singularity in the function to be expanded in terms of Chebyshev
olynomials, which is called the kernel polynomial method (KPM) [11,130,132,145,146].
When the expansion in Eq. (93) is truncated to a finite order M , there will be Gibbs oscillations near the points where

he expanded function f (x) is not continuously differentiable. These can be damped by a convolution of the function with
kernel K (x) [11,132]. The advantage of the Chebyshev expansion is that this convolution can be included by multiplying
he Chebyshev coefficients with a damping factor gm, transforming Eq. (93) into

f (x) ≈
M∑

m=0

f̄mgmTm(x). (125)

To derive an expression for the DOS using the KPM, we start by exploiting the following scaling property of the delta
unction,

δ(E − Ĥ) =
1
∆E

δ(̃E − H̃), (126)

here H̃ is defined in Eq. (95) and Ẽ is defined similarly. Then, using the identity in Eq. (96), it is straightforward to
express the projection operator in the form of Eq. (125),

δ(̃E − H̃) =
M∑

m=0

δ̄m (̃E)gmTm(H̃), (127)

where

δ̄m (̃E) =
(2− δm0)Tm (̃E)

π
√
1− Ẽ2

(128)

re the Chebyshev coefficients computed as defined in Eq. (94). Finally, the DOS is obtained by computing the trace of
he projection operator as defined in Eq. (86),

ρ (̃E) =
1

∆E ·Ω

M∑
m=0

CDOS
m gmδ̄m (̃E), (129)

here

CDOS
m = ⟨φ|Tm(H̃)|φ⟩ (130)

re the Chebyshev moments for the DOS, as defined in Eq. (97).
Up to this point we have shown that the DOS can be approximated using Chebyshev polynomials, but we have not

pecified any choice for the kernel, which will vary with the specific application. For the expansion of the quantum
esolution operator, which is essentially a set of delta peaks, the Jackson kernel with the damping factor

g J
=

(M + 1−m) cos
(
πm
M+1

)
+ sin

(
πm
M+1

)
cot

(
π

M+1

)
(131)
m M + 1
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˜
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i˜
Fig. 3. Comparison between different damping factors and a window function, including the Jackson damping factor g J
m defined in Eq. (131), the

Lorentz damping factor gL
m(λ = 4) defined in Eq. (132), and the Hann window function wm defined in Eq. (122).

Fig. 4. Approximation of the Dirac delta function δ(x) using the KPM with the Jackson damping g J
m defined in Eq. (131), the Lorentz damping

gL
m(λ = 4) defined in Eq. (132), the CPGF method, and the FTM with the Hann window wm defined in Eq. (122). Here, M = 104 for the KPM and

M = 2000 for the FTM. Note that the x and y axes differ by a factor of 106 in magnitude.

has been found to be optimal, as it produces the smallest broadening for a given value of M . In particular, away from
E = ±1 it approximates a Gaussian broadening with a width of δE = π · ∆E/M [11,132]. If one considers the Green’s
function, the Lorentz kernel with the damping factor

gL
m(λ) =

sinh[λ(1−m/M)]
sinh(λ)

(132)

ay offer a better choice (λ is a free parameter which is usually chosen to be 3–5) due to the fact that it regularizes the
maginary part of the Green’s function into a Lorentzian with a broadening given by δE = λ · ∆E/M when away from
E = ±1, which is closer to physical reality.

In Fig. 3 we plot the Jackson and Lorentz damping factors along with the Hann window function, where the expansion
order is chosen as M = 104. To demonstrate the performance of the different damping factors and the window function,
we use them to approximate the function δ(x). The results obtained by using the KPM with different damping factors
are shown in Fig. 4. Also shown are the results obtained with the Fourier expansion and the CPGF method [76]. For the
same value of M = 104, the Jackson damping gives a narrower shape compared to the Lorentz damping and therefore
has finer resolution, while the CPGF method is essentially equivalent to the KPM with the Lorentz damping (λ = 4)
when the resolution parameter in the CPGF method is chosen as 4/M . Although CPGF and KPM with a Lorentz kernel
23
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ehave similarly near the band center (̃E = 0), it is important to note that CPGF provides a uniform energy resolution,
ontrary to KPM with a Lorentz kernel, whose resolution changes with energy, leading to overshooting away from the
and center [156,157]. Furthermore, CPGF allows for approximating the Green’s function up to an arbitrary precision,
nd is thus the ideal choice when the physical origin of the δ-function is a Green’s function. We also note that while the
ibbs oscillations can be effectively suppressed using the KPM, they persist in the case of the FTM. Apart from being less
ffective in suppressing Gibbs oscillations, the FTM has also been shown to be less computationally efficient as compared
o the KPM [149]. This comparison and the comparison between the KPM and the LRM [11,132] indicate that the KPM
ith the Jackson damping factor is the optimal approach for approximating the quantum projection operator δ(E − Ĥ).

Algorithm 4: Evaluating the Chebyshev moments Cm = ⟨φL|Tm(H̃)|φR⟩

1: |φ0⟩ ← |φR⟩

2: C0 ← ⟨φL|φ0⟩

3: |φ1⟩ ← H̃|φ0⟩

4: C1 ← ⟨φL|φ1⟩

5: for m = 2 to M do
6: |φ2⟩ ← 2H̃|φ1⟩ − |φ0⟩

7: Cm ← ⟨φL|φ2⟩

8: |φ0⟩ ← |φ1⟩

9: |φ1⟩ ← |φ2⟩

10: end for

We now summarize the procedure of the KPM: (1) construct a set of Chebyshev moments {Cm} (see Algorithm 4),
and (2) calculate physical properties such as the DOS from the Chebyshev moments through a finite-order Chebyshev
polynomial summation as given by Eq. (129). Similar to the case of the LRM and the FTM, the construction of the Chebyshev
moments dominates the computation time and the algorithm is parallel in energy. The energy resolution achieved in the
KPM is δE ∼ ∆E/M [11], similar to the case of the FTM.

4. Landauer–Büttiker quantum transport methodology

Transport properties at the nanoscale in open systems (with electrodes in a device geometry) are conveniently
described by the Landauer–Büttiker [38–40] and the nonequilibrium Green’s function formalisms [22,158–160]. The
Landauer–Büttiker formalism expresses the current response of a multi-port conductor in terms of transmission matrices,
and is also derivable straightforwardly from linear response theory [43,44].

In the Landauer–Büttiker (LB) formalism, efficient numerical methods based on recursive Green’s functions [161]
have been developed and are routinely used. As matrix inversion is at the heart of this approach, the computational
cost generally scales cubically with respect to the cross-sectional area of the system, making it computationally pro-
hibitive for large and disordered two-dimensional and three-dimensional systems. Despite this limitation, it is still
possible to implement density-functional methods in the nonequilibrium transport formalism [162], and to investigate
low-dimensional nanostructures such as disordered semiconducting nanowires [91,163] or chemically functionalized
nanotubes with lengths reaching the micrometer scale [164]. A recent study of quantum transport in carbon nanotubes
confirms for instance the universality of the single-parameter scaling Anderson localization for realistic models of
disordered systems [165]

In tight-binding calculations of the LB method, the recursive Green’s function formalism [42] is usually used. The
contacts are modeled as ballistic semi-infinite leads and the conductance g(E) is obtained from the transmission function
T (E),

g(E) =
2e2

h
T (E). (133)

or a single-mode system, the transmission function equals the probability of a charge carrier to transmit from one contact
o another. If there are several transport modes involved, the transmission function equals the sum of the transmission
robabilities for the different modes. There are many equivalent forms for the transmission function, and here we adopt
he Caroli form [166],

T (E) = Tr[G(E)ΓLG†(E)ΓR], (134)

here G(E) is the advanced Green’s function of the device, G†(E) is the retarded Green’s function, and ΓL/R describe the
coupling of the device to the left and right leads. The advanced Green’s function for a system attached to two leads is

G(E) =
1

, (135)

E − Ĥ −ΣL(EL)−ΣR(ER)
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here ΣL(EL) is the self-energy of the left lead at Fermi energy EL and ΣR(ER) is the self-energy of the right lead at Fermi
energy ER. The Fermi energies EL and ER of the leads can be set to the same value as in the device, E, or to an arbitrary
value. In the calculations in the rest of this review, we set EL = ER = E. The self-energy matrices can be obtained through
ifferent methods, e.g., using an iterative method [167]. The coupling matrices ΓL and ΓR are the imaginary part of the

self energies,

ΓL/R = i
(
ΣL/R −Σ

†
L/R

)
= −2Im

[
ΣL/R

]
. (136)

Beyond usual decimation techniques, the modified Lanczos algorithm to compute off-diagonal Green’s functions for
non-symmetric Hamiltonian matrices, described at the end of Section 3.4.1, can be used for the calculation of the
Landauer–Büttiker conductance [155]. In this situation, to cope with device geometries including open boundaries, the
Green’s function is obtained from an effective Hamiltonian Ĥ = Ĥ0 +ΣL +ΣR, where the effect of left and right leads is
introduced through the self-energy operators. The technical approach is to rewrite the transmission function of Eq. (134)
as

T (E) =
∑

α,β,α′,β ′

⟨β|ΓR|α⟩⟨α|G†
|α′⟩⟨α′|ΓL|β

′
⟩⟨β ′|G|β⟩, (137)

here α, β (α′, β ′) are the interface states that run over the orbitals coupled to the left (right) electrode. The self-energies
f the leads can be calculated efficiently using standard recursion techniques [167], while an O(N) method is needed for
valuating the Green’s functions. The off-diagonal elements of the Green’s functions can be expressed as a sum of three
iagonal elements

⟨α|G†
|α′⟩ =

1
2

[
(1+ i)⟨ψ+|G†

|ψ+⟩ + (i− 1)⟨ψ−|G†
|ψ−⟩ − 2i⟨ψi|G†

|ψi⟩
]
, (138)

here |ψ±⟩ =
(
|α⟩ ± |α′⟩

)
/
√
2 and |ψi⟩ =

(
|α⟩ + i|α′⟩

)
/
√
2. The problem thus reduces to the O(N) evaluation of

ψ |G†
|ψ⟩, described at the end of Section 3.4.1.

This method was tested on carbon nanotube-based heterojunctions [155], with perfect agreement with standard
ecimation techniques. As the computational cost of a single off-diagonal Green’s function element is O(N), this approach
s particularly well-suited for systems which have large transverse dimensions, since the conventional decimation or
ransfer matrix techniques require matrix inversion of a layer Hamiltonian. The number of Green’s function elements
o calculate for the conductance is NR × NL, where NR (NL) is the number of orbitals coupling the right (left) lead to
he channel. Usually the number of such Green’s function elements is relatively small, and the total numerical cost is
ssentially proportional to N , regardless of the geometry and topological complexity of the system [155].
It is appropriate at this point to mention a computationally efficient wave function formulation of the quantum

cattering problem in the Landauer–Büttiker formalism – available in the KWANT code (https://kwant-project.org/) –
hat can reduce the computational time compared to the recursive Green’s function approach, but at the cost of increased
emory footprint [168,169]. For nanostructures, the computational cost of this wave function matching method has been
hown to scale linearly with the number of sites Ns for large Ns (or more precisely with Ns×Nc, where Nc is the number
of open channels in the leads) [170]. Finally, Istas, Groth and Waintal have recently proposed an approach to cope with
‘‘mostly translationally invariant systems’’ [171], i.e., systems with weak disorder. With this method, systems of complex
geometries are decomposed into two parts; one fully periodic part that is stitched with another part containing the
disorder potential and electrodes. For weak disorder this approach becomes trulyO(N), which makes it promising to study,
in particular, quantum transport at the surfaces of large systems such as 3D topological insulators or Weyl semi-metals.

5. Numerical examples

In this section, we use some numerical examples to illustrate the formalisms and techniques discussed above. We
consider the Anderson model [121], implemented as a nearest-neighbor tight-binding model defined on a cubic lattice
with lattice constant a and dimension N = Nx × Ny × Nz . The Hamiltonian is written as

Ĥ =
∑
ij

(−γ )c†
i cj +

∑
i

Uic
†
i ci, (139)

where −γ is the hopping integral between neighboring sites and Ui are the on-site potentials. The on-site potentials are
uniformly distributed in the interval [−W/2,W/2], where W is called the Anderson disorder strength. Without loss of
generality, we consider transport in the x direction, which has periodic boundary conditions. The boundary conditions in
the other directions will be chosen according to the specific application. Note that the two-fold spin degeneracy in this
model is not included in the equations but is considered in the results shown in the relevant figures.
25
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Table 1
Summary of the explicit formulas and computational costs of different LSQT approaches for calculating the dissipative
electrical conductivity. N is the Hamiltonian size. For the VAC-KPM and MSD-KPM methods, M is the order of the
Chebyshev polynomial expansion of the quantum projection operator, tmax is the maximum evolution time with Nt
intervals (not necessarily uniform), and α is a numerical factor of the order of 1. In the KG-CGPF method, Ne is the
number of energy points, Nη is the number of energy resolution values chosen for each energy, and τφ is the dephasing
time.
LSQT method VAC-KPM MSD-KPM KG-CPGF

Explicit formulas Eqs. (74), (140), (141) Eqs. (75), (142), (143) Eqs. (147)–(149)
Computational cost ∼N(MNt + 3αω0tmax) ∼N(MNt + 3αω0tmax) ∼N(8NeNηω0τφ )

5.1. Formalisms to be compared

We compare three representations of the Kubo conductivity, including the VAC representation of Eq. (74), the MSD
epresentation of Eq. (75), and the Kubo–Greenwood representation of Eq. (46). See Table 1 for a summary of the explicit
ormulas and the computational cost for each method. For the VAC and MSD representations, we use the KPM with Jackson
amping for the quantum projection operator. The quantity to be calculated in the VAC representation is the product of
he DOS and the VAC

ρ(E)Cvv(E, t) =
1

πΩ∆E
√
1− Ẽ2

M∑
m=0

(2− δm0)× gmTm (̃E)Cvac
m (t), (140)

here

Cvac
m (t) = Re

[
⟨φvac

L (t)|Tm(H̃)|φvac
R (t)⟩

]
(141)

re the Chebyshev moments of ρ(E)Cvv(E, t). The quantity to be calculated in the MSD representation is the product of
the DOS and the MSD

ρ(E)∆X2(E, t) =
1

πΩ∆E
√
1− Ẽ2

M∑
m=0

(2− δm0)× gmTm (̃E)Cmsd
m (t), (142)

here

Cmsd
m (t) = ⟨φmsd

L (t)|Tm(H̃)|φmsd
R (t)⟩ (143)

re the Chebyshev moments of ρ(E)∆X2(E, t). The vectors |φvac
L,R (t)⟩ and |φ

msd
L,R (t)⟩ are defined in Eqs. (90) and (91),

respectively. We call these the VAC-KPM and MSD-KPM methods.
For the Kubo–Greenwood formalism, we consider a numerical implementation based on the Chebyshev polynomial

expansion of the Green’s function according to Eq. (107), which we call the KG-CPGF method [76]. Following Ferreira
and Mucciolo, we change both of the Dirac delta functions in the Kubo–Greenwood formula to the regularized Green’s
function and rewrite the Kubo–Greenwood conductivity in Eq. (87) as

σ (E, η) =
h̄e2

πΩ
⟨φ|V̂ Im[G+(E)]V̂ Im[G+(E)]|φ⟩, (144)

here z is the extension of the energy to the complex plane given in Eq. (109). Here we have highlighted the
-dependence (η = h̄/τφ) of the conductivity. Using the Chebyshev expansion of the Green’s function in Eq. (107), we
hen have

σ (E, η) =
h̄e2

πΩ(∆E)2

M∑
m=0

M∑
n=0

Im[Ḡ+m(z)]Im[Ḡ
+

n (z)]C
kg
mn (145)

here Ḡ+m(z) is given in Eq. (108) and

Ckg
mn = ⟨φ|V̂ Tm(H̃)V̂ Tn(H̃)|φ⟩, (146)

he Chebyshev moments. An efficient algorithm for evaluating this conductivity at a single energy has also been
erived [76]:

σ (E, η) =
h̄e2

πΩ(∆E)2
⟨φL|φR⟩, (147)

|φL⟩ =

M∑
Im[Ḡ+m(z)]Tm(H̃)V̂ |φ⟩, (148)
m=0
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Fig. 5. Electronic and transport properties of a disorder-free 2D square lattice (Nz = 1) ribbon with width Ny = 2 and periodic length Nx = 5× 106

n the transport direction. (a) VAC and (b) MSD at E = 0 as a function of correlation time. (c) DOS and (d) group velocity as a function of Fermi
nergy.

|φR⟩ =

M∑
n=0

Im[Ḡ+n (z)]V̂ Tn(H̃)|φ⟩. (149)

In addition to algorithmic improvements, increasing computing power has played an important role in advancing
uantum transport simulations. If computational nodes with a large amount of memory (≥ 16 GB RAM) are available,
igh-resolution spectral calculations of DOS and DC conductivity can be carried out in giant systems with N exceeding
09 [76]. This RAM-intensive approach inspired the recent open-source KITE initiative (https://quantum-kite.com/) for
ccurate real-space calculations of electronic structure and quantum transport with multibillions of orbitals [157]. Another
mplementation combining KPM and this RAM-intensive approach is available in the KWANT simulation package (https:
/kwant-project.org/) and TBTK (https://github.com/dafer45/TBTK) [172]. Finally, all algorithms presented in this review
ill be distributed open-source through a dedicated website (http://www.lsquant.org/).
In massively parallel computing, the use of graphics processing units (GPUs) is playing an increasingly important

ole in various simulation methods used in computational physics [173], and the linear scaling techniques presented
n this review perform particularly well on the GPU [61,149]. The LSQT calculations shown in this subsection were
btained by using an open source code named GPUQT [174], which is fully implemented on the GPU. Moreover, a
edagogical Python implementation of the VAC-KPM and MSD-KPM methods using a Jupyter notebook is also available
https://github.com/brucefan1983/LSQT-Jupyter).

Finally, in this section we compare the above LSQT methods with the LB method [47,161], when appropriate.

.2. Ballistic regime

As discussed in Section 2.3.3, the VAC and MSD formalisms capture the essential physics of ballistic transport. To
llustrate this, we consider a narrow ribbon with Ny = 2 and Nz = 1, and hard-wall boundary conditions in the y and z
irections. To achieve high accuracy in the random vector approximation, we set Nx = 5× 106 in the transport direction
nd average the results over Nr = 10 random vectors. The total number of tight binding orbitals is thus N = NxNyNz = 107.

We use the KPM with the Jackson kernel and M = 3000.
The VAC at the band center E = 0, calculated from Eq. (140) and dividing by the DOS ρ(E = 0), is a constant in time

with v2F = 3a2γ 2/h̄2, as shown in Fig. 5(a). Accordingly, the MSD in Fig. 5(b), calculated from Eq. (142) and dividing by
ρ(E = 0), is a quadratic function of the correlation time,∆X2(E, t) = v2F (E)t

2. In other words, the electrons are propagating
at a constant velocity without scattering. The DOS ρ(E) is shown Fig. 5(c), and the group velocity vF(E), which is the
square root of the VAC at t = 0, is shown in Fig. 5(d). From these we can calculate the ballistic conductance according to
Eq. (79), as given by the solid line in Fig. 6. For comparison, we also show the conductance calculated with the LB method,
which is represented by the dashed line. The VAC-KPM and MSD-KPM methods clearly produce the correct conductance
plateaus. Around the Van Hove singularity points at E = ±γ , however, these methods overshoot the conductance plateau,
as has been noticed in a variety of studies [27,90,149]. The overshooting originates from a mixing of the densities of
states from different bands around the band edges, which results in an overestimation of the group velocity, as clearly
demonstrated by Markussen et al. [90]. When the system contains some disorder, deviating the conduction regime from
27

https://quantum-kite.com/
https://kwant-project.org/
https://kwant-project.org/
https://kwant-project.org/
http://www.lsquant.org/
https://github.com/brucefan1983/LSQT-Jupyter
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Fig. 6. Ballistic conductance in a disorder-free 2D square lattice (Nz = 1) ribbon with width Ny = 2 and periodic length Nx = 5×106 in the transport
irection, obtained by using the VAC-KPM (or equivalently MSD-KPM) method (solid line) and the LB method (dashed line).

urely ballistic motion, the MSD formalism becomes extremely suitable for calculating length-dependent conductance, as
argely illustrated in applications to carbon nanotubes [27,125,126]. The KG-CPGF method has so far not been used in the
allistic regime.

.3. Diffusive regime

We next consider a disordered system and closely compare the different LSQT methods as well as the LB method in
he ballistic-to-diffusive crossover regime. As a generic case, and to make the computation feasible for the LB method,
e consider a 2D square lattice (Nz = 1) with width Ny = 50 and an Anderson disorder strength W = γ . In the LSQT
alculations, Nx = 2× 105, Nr = 10, and M = 3000. In the LB method, we increase the system length from L = a to 100a
nd calculate the conductance g(E, L) iteratively. We average over 100 disorder realizations in the LB calculations.
Results for the E = 0 energy point are shown in Fig. 7. As expected, the VAC decays exponentially with increasing

volution time t [Fig. 7(a)] and the MSD changes from a quadratic to a linear function of t [Fig. 7(b)]. The time-
ependent electrical conductivities calculated from the VAC (via a time integration) and the MSD (via a time derivative)
re equivalent, as can be seen in Fig. 7(c).
Fig. 7(c) also shows the evolution of the electrical conductivity calculated using the KG-CPGF method as a function of

he dephasing time τφ = h̄/η. As we have discussed in the previous section, the dephasing time τφ and the evolution time
are associated with different regularizations of the Green’s function, resulting in different time dependence, as shown
reviously in Fig. 1(a) and here in Fig. 7(c). For the VAC and MSD approaches, we define the semiclassical conductivity
sc(E) as the maximum value of the time-dependent electrical conductivity (shown as the dotted orange line), which
s the conductivity attained in the system before coherent backscattering and quantum interference come into play. In
ection 2.3.2, we demonstrated the equivalence of all the formalisms at infinite dephasing and real times. However, these
pproaches take on different physical meaning at finite times. In the VAC and MSD approaches, a finite real time is related
o the distance an electron has traveled in the solid, which thus allows one to investigate different transport regimes by
arying t . In the CPGF approach, on the other hand, a finite τφ is associated with the strength of coupling to a dephasing
ource such as phonons or time-dependent fields, and the approach averages over electrons at all different real times t
and thus averages over all transport regimes). As a consequence, in systems that exhibit localization it is not possible to
irectly obtain the semiclassical conductivity at finite dephasing time, as the maximum value of σ (E, τφ) from the CPGF
ethod will always be smaller than the maximum value of σ (E, t) from the VAC or MSD methods.
To overcome this difference, we propose a way to determine the semiclassical conductivity via connection with the

B method, where σsc(E) can be extracted from the ballistic-to-diffusive transition formula [47]
1

g(E, L)
=

1
σsc(E)

L
W
+

1
g0(E)

, (150)

here g0(E) is the ballistic conductance at energy E, and L and W are the length and width of the system. For the CPGF
ethod, we propose a formally equivalent formula in terms of the conductivity as

1
=

1
+

1
2 2 , (151)
σ (E) σsc(E) e ρ(E)vF (E)τφ
28
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Fig. 7. Diffusive transport at the E = 0 energy point in a 2D square lattice (Nz = 1) with width Ny = 50, periodic length Nx = 2 × 105 in the
transport direction, and disorder strength W = γ . (a) VAC, (b) MSD, and (c) time-dependent electrical conductivity as a function of the evolution
time t for the VAC-KPM and MSD-KPM methods or the dephasing time τφ = h̄/η for the KG-CPGF method. The dotted orange line indicates the
emiclassical conductivity, defined as the maximum of the time-dependent conductivity. The green line is a fit of the KG-CPGF method using the
allistic-to-diffusive crossover of Eq. (151). (d) Semiclassical conductivity σsc as a function of energy E from the various methods. Because the LB
ethod is not parallel in energy, only a few energy points were considered.

here the last term is the ballistic conductivity, which we obtained by combining Eqs. (64) and (65). In Fig. 7(c), it is
lear that the fit of the data obtained from the KG-CPGF method using Eq. (151) allows one to extrapolate to a good
stimate of the semiclassical conductivity. The fitting here is also necessary because the dephasing times needed to reach
he maximum value of σ (E, τφ) exceed by two orders of magnitude the real times needed to converge the VAC or MSD
ethods, and such calculations were beyond our computational capabilities. This slow convergence is a general feature
f the CPGF method, as also highlighted in Fig. 1, and thus in practice Eq. (151) should be a useful way to extract the
emiclassical conductivity.
In Fig. 7(d), we show that all methods, including LB combined with Eq. (150), lead to the same results, demonstrating

heir equivalence.

.4. Weak localization regime

We next analyze the behavior of the conductivity scaling in the 2D square lattice beyond the diffusive regime,
hen disorder is strong enough to induce weak localization effects. Standard weak localization theory predicts that the
onductivity will decay logarithmically with system size [18],

σ (L) = σsc −
2
π

e2

h
ln
(

L
le

)
, (152)

here σsc is the semiclassical conductivity, L is the system size, and le is the mean free path. In the derivation of Eq. (152),
−1
e is typically chosen as an upper cutoff in the momentum integration, because le is defined as the length when diffusive
ehavior sets in. However, it is generally known that several mean free paths are needed before a system leaves the
uasiballistic regime and enters the fully diffusive regime. Thus, in numerical simulations, le should be practically replaced
y a more general ‘‘semiclassical length’’ lsc,

σ (L) = σsc −
2
π

e2

h
ln
(

L
lsc

)
. (153)

By definition, lsc is the length at which the time-dependent conductivity reaches its maximum value σsc, which
dentifies the crossover from the diffusive to the localized regime. As seen in Fig. 8, the decay of the conductivity is
erfectly described by Eq. (153), without using any fitting parameters. As the system length L increases, the quantum
orrection will eventually grow to the order of the semiclassical conductivity; at this point the electronic system will
ndergo a transition to the strong (Anderson) localization regime, discussed in the next section.
29
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Fig. 8. Conductivity σ (E, L) as a function of length L for E = 0 and E = γ in a 2D square lattice (Nz = 1) with width Ny = 50, periodic length
x = 2× 105 in the transport direction, and disorder strength W = γ . The markers are numerical calculations with the MSD-KPM method (Nr = 6
nd M = 3000) and the solid and dashed lines represent the predictions from weak localization theory, Eq. (153), without any fitting parameters.
he black dashed lines show the definitions of σsc and lsc for E = γ .

.5. Strong localization regime

It is well known that any amount of disorder is sufficient to localize electrons in the low-dimensional Anderson
odel [121], so that for large enough sample size all electronic states will be exponentially localized. We study the

ransition to this regime by considering a square lattice with the same sample size as before (Nx = 2 × 105, Ny = 50,
z = 1), but with a much larger disorder strength, W = 5γ . This permits the simulations to enter the strong localization
egime within the chosen system size.

Among the different LSQT methods, only the MSD-KPM method has been compared quantitatively to the LB method
n the localized regime. Here we choose Nr = 10 and M = 3000 in the MSD-KPM method and convert the computed
onductivity to conductance using the standard definition given by Eq. (78). The length L is calculated using Eq. (77). In
he LB method, we average over 5000 disorder realizations to obtain the typical conductance [120]

gtyp(E, L) = exp[⟨ln g(E, L)⟩]. (154)

Fig. 9 shows the conductance at E = 0, which decays exponentially in the large length limit for both the MSD-KPM
nd the LB formalism. This provides a definition of the localization length ξ (E),

gtyp(E, L) ∝ exp[−L/ξ (E)]. (155)

he localization length at E = 0 is fitted to be ξ ≈ 16a. The conductance calculated from the MSD is equivalent to the
B conductance down to g ≈ 0.1e2/h, highlighting this method’s ability to capture the strong localization regime. As
hown in the inset of Fig. 9, the propagation length defined in Eq. (77) approaches 2πξ (E) at long times, as expected
rom Eq. (72). This definition has been discussed in Refs. [119,175] and shown to be equivalent to that given by Eq. (155).
ote that such saturation of the propagation length is expected from the absence of diffusion in the Anderson localization
egime [121].

In principle, the VAC-KPM method can also be used in the localized regime. However, it is less practical than the
SD-KPM method because the time integration in the VAC-KPM method requires small time intervals and thus a large
umber of time steps Nt . In contrast, the time derivative in the MSD-KPM method allows the use of large time intervals
n the localized regime. The method by Yuan et al. [71,75,77] is based on the VAC formalism and the Fourier transform
ethod for approximating both the quantum resolution operator and the time evolution operator. Therefore, a fixed time
tep of ∆t = π/ω0 (determined by the Nyquist sampling theorem) is chosen together with a certain value of Nt . However,
e note that using a fixed Nt for the whole spectrum might be insufficient for a quantitative study of quantum transport
hen different energy states exhibit different transport timescales. Finally, we note that a quantitative extraction of the

ocalization length has never been carried out with the KG-CPGF formalism.

.6. Convergence, computational cost, and method comparison

In this section we delve more deeply into some of the practical issues that are faced when using the LSQT methods
escribed above. In particular, we discuss aspects related to the numerical convergence and error associated with these
30
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Fig. 9. (Main panel) Conductance as a function of length for E = 0 in a 2D square lattice (Nz = 1) with width Ny = 50, length Nx = 2× 105 in the
transport direction, and disorder strength W = 5γ . In the MSD-KPM method, the conductance is determined from the conductivity using Eq. (78).
(Inset) Propagation length L defined in Eq. (77) as a function of the evolution time in the MSD-KPM method. The horizontal dashed line indicates
the value 2πξ (E), where ξ (E) is calculated from the LB conductance using Eq. (155). The propagation length approaches 2πξ (E) in the long-time
limit, in accordance with Eq. (72).

methods. We then address a couple of situations where the time-dependent methods give spurious results in the long-
time limit, and give guidelines for avoiding these pitfalls. Finally, we give an analysis of the computational cost of each
method, and then we briefly summarize and recap the similarities and differences between the various LSQT methods
presented in this review.

5.6.1. Convergence with the number of moments
In real-space numerical simulations of bulk materials, periodic boundary conditions are often used to avoid the effect of

edges. However, independent of the boundary conditions, all numerical simulations involve systems with a finite number
of atoms, meaning the Hamiltonian has a discrete set of eigenvalues at a discrete set of momenta. For example, in a 2D
lattice with

√
N×
√
N orbitals, the separation in momentum space of two consecutive states is proportional to 1/

√
N . For

systems with a linear energy dispersion near the band center, such as graphene, the energy spacing is also proportional
to 1/

√
N , while in systems with a parabolic dispersion it is proportional to 1/N . Therefore, when running numerical

simulations, one should always be aware of the energy resolution of the numerical method with respect to the energy
level spacing of the finite system.

In all the discussed methods based on the KPM, the energy resolution δE is inversely proportional to the number of
moments M , δE = α∆E/M , where ∆E is the half bandwidth of the energy spectrum and α ≈ 3− 5 is a factor depending
on the choice of kernel (see Section 3.4.3). Meanwhile, in the Lanczos and KG-CPGF methods, the resolution is fixed by
a user-defined parameter η, and a sufficient number of moments is then used to reach this level of broadening. For the
KG-CPGF method this is reached for M ≈ 4∆E/η, with η = h̄/τφ .

When simulating the properties of bulk materials in a finite system, it is important that the energy resolution of the
numerical method be larger than the discrete energy level spacing in order to avoid spurious effects. An example of this
is shown in Fig. 10(a), where we calculate the DOS of graphene using the KPM with the Jackson kernel and different
numbers of moments. This system has 2×106 atoms with a discrete energy spacing of 0.01γ0 near E = 0, where γ0 is the
hopping energy between nearest-neighbor carbon atoms. The DOS calculated with a relatively large energy resolution,
δE = 0.19γ0 is linear at large energies but becomes parabolic around E = 0, which is a consequence of the broadening of
states at positive and negative energies. For the finest resolution of 0.005γ0, the discrete energy level spacing is resolved,
resulting in a strongly oscillatory DOS. Finally, for an intermediate resolution of 0.019γ0, twice the discrete level spacing,
the system shows the expected linear dispersion for a broad range of energies and minimal broadening at E = 0.

This intermediate value indicates the existence of an optimal resolution. This is better illustrated in Fig. 10(b), where
we plot the quantity

∆ρM = max
E

⏐⏐⏐⏐ρM+1(E)− ρM (E)
ρM+1(E)

⏐⏐⏐⏐ , (156)

hich measures the relative difference between the DOS calculated with two successive numbers of moments M . The
aximum is taken over the energy range depicted in Fig. 10(a), and we consider this quantity for systems with different
31
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Fig. 10. (a) Density of states of the tight-binding model of graphene with 2×N1×N2 = 2× 106 atoms, approximated by the KPM with the Jackson
ernel for different energy resolutions of δE = 0.19γ0 (green line), 0.019γ0 (black line), and 0.005γ0 (red line). (b) Maximum relative difference
etween two consecutive approximations of the DOS as a function of the number of moments for different system sizes N1 = N2 = 100 (brown
ine), 300 (green line), 500 (blue line), 700 (red line), and 1000 (black line).

umbers of carbon atoms. The relative difference initially decreases with increasing M , which is a consequence of the
educed broadening around E = 0. Eventually, when M is large enough, ∆ρM exhibits a sharp increase owing to the
esolution of the discrete energy levels in the system. The optimal value of M , corresponding to the minimum value of
ρM , increases linearly with

√
N as expected from the discussion above. In general, the optimal value of M depends

n the energy spectrum of the system being studied, and the procedure outlined in Fig. 10 illustrates how this may be
etermined.

.6.2. Convergence of the stochastic trace approximation
In Section 3.1, we discussed a powerful tool for evaluating the trace of large matrices. Here we will discuss the error

ntroduced by this approximation and its convergence to zero. We will focus only on the random phase implementation,
here the elements of the random vector in Eq. (85) are given by ξrn = eiφrn , with φrn a random number homogeneously
istributed between 0 and 2π , but the analysis can be extended to any random vector satisfying the conditions given in
ection 3.1. Let us compute explicitly the right-hand side of Eq. (84) for this choice of random vectors,

1
Nr

Nr∑
r=1

⟨φr |Â|φr⟩ =
1
N
Tr[Â] +∆Er , (157)

here

∆Er =
1
N

N∑
i̸=j=1

Aij

(
1
Nr

Nr∑
r=1

χrij

)
(158)

s the error of the approximation, with χrij ≡ ei(φri−φrj). The first important result is that the error vanishes for diagonal
matrices with this choice of random vectors. This result guarantees that one has optimal convergence when choosing the
eigenvectors as the basis of the matrix. The quantity inside the parentheses is the average of a random variable χrij, which
has the probability distribution

ρχ (x) =
1

π
√
1− x2

, x ∈ (−1, 1) (159)

for both its real and imaginary parts. This distribution has vanishing mean, which guarantees the convergence of the
random phase approximation upon averaging over enough random vectors. For a system with homogeneous off-site terms
Aij = Aoff, the error converges to zero as

∆Er =
Aoff

Nr
. (160)

or a system with an arbitrary number of different off-site terms, the error becomes a sum of random variables with
ifferent weights, and converges to a Gaussian distribution via the central limit theorem. In this case, the error converges
32
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Fig. 11. Convergence of the graphene density of states with respect to the number of random vectors Nr and the system size N for a honeycomb
attice with different number of orbitals N = 2 × N1 × N2 with N1 = N2 = 1000 (black), 700 (red), 500 (blue), 300 (green), and 100 (yellow). All
ata follow the trend ∆ρR ∝ 1/

√
NNr .

to zero as

∆Er =
σA
√
NNr

, (161)

where N is the total number of orbitals, NNr is the number of observations of the random variable, and σA is the standard
deviation of these observations, which depends on the spectrum of the matrix.

Let us recall that the traces appearing in the Kubo formalism consist of a product of several operators and Green’s
functions, which means that they are typically neither diagonal nor regular. Therefore, one expects a convergence of the
traces following the central limit theorem, as in Eq. (161). In Fig. 11 we show this for the graphene DOS, where we
calculate the quantity

∆ρNr = max
E

⏐⏐⏐⏐ρNr+1 − ρNr

ρNr+1

⏐⏐⏐⏐ , (162)

hich, similar to ∆ρM above, is the relative difference between the DOS calculated with two successive numbers of
andom phase states. As before, the maximum is taken over the energy range in Fig. 10(a), and ∆ρNr is calculated for
different numbers of orbitals N . This quantity measures the convergence of the stochastic trace approximation with
respect to the number of random vectors and decays as the inverse of

√
NNr , as expected from the above discussion.

These results indicate that even in the simple case of the density of states, which consists only of the imaginary part
of the Green’s function, there are enough off-site elements to apply the central limit theorem. It is important to highlight
that except for the inhomogeneity of the off-site elements, the discussion above made no emphasis on any specific feature
of the matrix of which we are computing the trace, and the results presented here are applicable to any other transport
quantity.

From a practical point of view, in typical simulations we choose the product NNr such that the error is of the order of
% of the trace. For the case of the conductivity in a system with N ∼ 107, this convergence is sometimes achieved even
ith Nr = 1. Nevertheless, a convergence analysis should be performed for each system.

.6.3. Disorder and convergence
Until this point, we have discussed the convergence of the DOS of a system in the absence of disorder, with well-defined

nergy levels. Now we illustrate the convergence of the electrical conductivity in the presence of disorder. When disorder
s incorporated, the position of these energy levels is redistributed, with a different distribution for each realization of
isorder. This means that averaging over disorder configurations will induce a broadening which is related to the disorder’s
elf-energy, and can mask the discreteness of the spectrum. Under such conditions, the convergence of the conductivity
ith respect to the number of moments can occur more quickly than in clean systems, and can also exhibit saturation once
he numerical broadening becomes smaller than the disorder-induced broadening. To illustrate this effect, we consider a
D cubic lattice with periodic boundaries in all three directions. We set Nx = 250, Ny = Nz = 200 and consider transport

in the x direction. The Anderson disorder strength is chosen as W = 2γ . As we have demonstrated the equivalence of all
the LSQT methods for diffusive transport, we consider only the MSD-KPM with the Jackson kernel in this example.

Fig. 12(a) shows the semiclassical conductivity over the entire energy spectrum. We have performed Nr = 10
independent simulations (with M = 3000 moments), each with a different random vector and disorder configuration.
These independent simulations are shown by the gray lines, while the dashed line shows the average. In this figure it
is clear that the spread of results is quite small. This is quantified in Fig. 12(b), where we show the relative error of the
conductivity, averaged over the entire energy spectrum, as a function of the number of random vectors Nr . As in the
previous section this error scales as 1/

√
Nr . For this system size, N = 107, even one random vector is sufficient to achieve

n error of ∼1%.
In Fig. 12(c) we plot the relative change in the conductivity as a function of the number of moments M , calculated in

he same way as in Fig. 10(b) above. Here we see that the calculated conductivity converges rapidly with the increase
f M , saturating when M > 300. This quick saturation, despite the large system size, is a consequence of the presence
f disorder, as discussed above. In general, the convergence of the conductivity with M depends on the material and the
33
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Fig. 12. (a) Semiclassical conductivity σsc for the whole energy spectrum in a disordered (W = 2γ ) 3D cubic lattice. The gray lines represent results
rom ten independent calculations (each with a different random vector) and the dashed line is their average. Here, the number of Chebyshev
oments is M = 3000. (b) Relative error in σsc (averaged over the energy spectrum) shown in (a) as a function of the number of random vectors
r , which follows the expected scaling ∼ N−1/2r . (c) Convergence of the relative change in σsc with increasing M . In all the calculations, the number
f sites is N = 107 .

ype of disorder, and this should be performed for each system being studied. For relatively ‘‘smooth" systems such as this
ne, convergence can occur quickly. For systems showing singular behavior, such as for example graphene with vacancies,
umerical convergence becomes a much more challenging task, as will discussed further in Section 6.1.3.

.6.4. Spurious effects in the long-time limit
In this section we point out a couple of spurious effects that can arise in the time-dependent LSQT methods at long

imulation times, and we discuss how to control such unwanted artifacts. As mentioned above, it is customary in the
ransport simulations to use periodic boundary conditions to avoid edge effects, hence enabling the calculation of bulk
aterial properties. However, while this eliminates scattering off the edges, it permits the initial electronic state to
ropagate beyond the size of the simulation cell. When this happens, superperiodicity begins to play a role in transport,
eading to a divergence of the conductivity. This phenomenon is illustrated in Fig. 13, where we plot the diffusivity D(E, L)
s a function of the propagation length L for three polycrystalline graphene samples of different size. In each case, D follows
he expected transition through the ballistic, diffusive, and weakly-localized regimes. However, when the propagation
ength exceeds the sample size, the diffusivity diverges rapidly. The exact details of this divergence, such as when it
egins and the rate of divergence, depend on the details of the system, but in general simulation results extracted from
he time-dependent LSQT methods should only be considered valid when L is less than the diameter of the simulation
ell.
Next we discuss the calculation of the conductance in the strong localization regime of transport. As shown in Fig. 9,

he conductance g calculated from MSD-KPM exactly matches that from LB simulations, and the localization length ξ
xtracted from the exponential decay of g also matches the value of ξ derived from the saturated value of the MSD, via
q. (72). However, the calculation of g can become problematic numerically as L approaches 2πξ . This can be understood
rom the inset of Fig. 9. As the MSD saturates, even small fluctuations lead to large fluctuations in the conductivity, which
s calculated as the derivative of the MSD. The conductivity thus becomes incredibly noisy and can even become negative
ue to fluctuations in the MSD, as shown in Fig. 14(a) for a different system.
In this regime, a large number of averages over random phase states and disorder configurations is needed to achieve

converged value of g , but even so, spurious behavior can arise. This was seen for example in Uppstu et al. [119], where
n anomalous super-exponential decay of the typical conductance gtyp appeared when L approached 2πξ . This behavior

also appears if we extend the simulations of Fig. 9 to lower values of conductance. This is shown in Fig. 14(b): when
L is within ∼20% of its upper bound of 2πξ , the typical conductance transitions from the expected exponential decay
to a super-exponential decay. Because of these issues, extreme care must be taken when calculating conductivity and
conductance near the saturated value of the MSD, as their exact values can be overwhelmed by noise.

However, in the Anderson localization regime of transport, what is of more interest than the exact value of the
conductance is the localization length ξ , which describes the scaling of the conductance to any length scale. This quantity
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Fig. 13. Diffusion coefficient D(E = 0, L), as a function of transport length L, in three samples of polycrystalline graphene with different sizes. The
dashed vertical lines indicate the point where L equals the size of each sample, after which D diverges. The samples contain N = 1.4×105 , 5.6×105 ,
nd 1.26× 106 atoms, and D was calculated using MSD-KPM with the Lorentz kernel and M = 1000 moments.

Fig. 14. (a) Length-dependent conductance at E = 0 of an armchair graphene nanoribbbon with N = 9.4 × 106 atoms, a width of 20.1 nm and a
eriodic length of 125 µm, with Anderson disorder strength W = 4γ0 , calculated with MSD-KPM using the Lorentz kernel and M = 3400 polynomials.
he inset shows the saturating propagation length L. A single random-phase state and disorder configuration have been used to highlight the noise
resent in each individual simulation. The dashed line shows the trend g ∝ exp(−L/ξ ), with ξ given by Eq. (72). (b) Extension of Fig. 9 to smaller
onductances, highlighting the transition to superexponential behavior as L→ 2πξ .

an be calculated via the exponential decay of g prior to the onset of problems with noise. Additionally, if this exponential
ecay is difficult to obtain numerically, ξ is easily extracted from the MSD-KPM approach via the saturated value of the
SD. This is exemplified by the dashed line in Fig. 14(a), which shows the trend g ∝ exp(−L/ξ ), with ξ given by Eq. (72).
his approach provides an unambiguous calculation of the localization length, and is much more robust to the noise issues
entioned above.

.6.5. Computational cost
In the MSD-KPM method, the evaluations of the time evolution operator and the quantum projection operator are

ecoupled. According to Fig. 2(b), it takes about αω0tmax iterations to evaluate the time evolution operator [X,U(tmax)],
here tmax is the maximum correlation time and α is a numerical factor of the order of 1. According to Algorithm 2, the
umber of matrix–vector multiplies (MVMs) for each iteration is 3 and the number of MVMs for the time evolution part is
35
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hus 3αω0tmax. According to Algorithm 4, the number of MVMs for evaluating the quantum projection operator using the
PM is MNt , where Nt is the number of time intervals. Each MVM costs ∼WN multiplication operations, where W is the
umber of nonzero diagonals of the Hamiltonian. For simplicity, we omit the factor W that is common to all the methods.
hen the total computational cost of the MSD-KPM method can be written as ∼N(MNt + 3αω0tmax). The computational
ost in the VAC-KPM method can be shown to be the same. In the KG-CPGF method, the number of MVMs for a fixed
nergy E and a fixed energy resolution η is 2M . If one considers Ne energy points and Nη energy resolution values for each
nergy point (needed for checking the η-dependence of the conductivity), the overall computational cost is ∼N(2NeNηM).
ecause the maximum dephasing time τφ , or equivalently, the minimum energy resolution η = h̄/τφ achievable with a
iven M in the KG-CPGF method [76] is η = 4∆E/M , we can transform M to 4ω0τφ , where ω0 = ∆E/h̄, and write the
omputational cost in this method as ∼N(8NeNηω0τφ). The computational cost of each method is summarized in Table 1.

.6.6. Comparison of methods
At this point, it is important to point out the fundamental difference between the MSD-KPM (or VAC-KPM) method

nd the KG-CPGF method. In the MSD-KPM method, the two Dirac delta functions in the Kubo–Greenwood formula are
reated differently, owing to their different origins in Eq. (42). One is treated as a quantum projection operator expanded
sing the KPM, which fixes the energy resolution δE, and the other is treated as a Green’s function in the limit τφ →∞
nd regularized by time evolution, which controls the transport regime. Meanwhile, in the KG-CPGF method both Dirac
elta functions are treated on an equal footing: as a Green’s function in the limit t →∞ and regularized by the dephasing
ime, which thus controls simultaneously the transport regime via τφ and the energy resolution via η = h̄/τφ .

As illustrated in Fig. 1 in Section 2.3.3, and Fig. 7 in Section 5.3, this difference appears not to matter in most cases,
nd when taking the appropriate limits both methods can achieve equivalent results in the ballistic, diffusive, and strong
ocalization regimes. However, as will be discussed further in Section 6.1.3, a difference does appear for situations with
diverging DOS. In this case, the different regularization of the delta functions used in each method appear to make a
ualitative difference in the numerical results.
Finally, we would like to note that while the focus of this review is on the calculation of zero-frequency (DC) transport,

ne can also derive an expression for the AC electrical conductivity σ (ω) in the spirit of Section 2. Several works have
sed KPM or FTM methods to study optical conductivity numerically [176–178], and in principle it should reduce to the
C conductivity σDC in the limit ω → 0. To the best of our knowledge, to date there has been no direct comparison of
he numerical implementations of DC and AC conductivities using O(N) techniques, but one group has published two
ndependent papers in which they calculate these quantities for graphene with 0.4% of vacancy defects [76,178].

A comparison of these papers shows that the DC and AC implementations give identical results, but convergence
(ω→ 0) at the band center (E=0) can require a fine integration mesh. Meanwhile, in Figs. 6 and 9 we have shown good
greement between the time-dependent methods and the LB method, while early work by Weiße et al. demonstrated
ood agreement between LB calculations and calculations of σ (ω → 0) [179]. Altogether, these results indicate general
onsistency between O(N) calculations of σDC, O(N) calculations of σ (ω→ 0), and LB calculations.

. Applications to dissipative transport in disordered materials

After presenting the LSQT methodologies for dissipative electronic transport, we are now in a position to discuss various
pplications made during the last two decades. The LSQT method based on the MSD was first developed to study electronic
ransport in quasicrystals [56], structures with a fivefold symmetry in the absence of translational invariance [180]. In
uch aperiodic systems with additional weak disorder, it was demonstrated that the scaling behavior of the quantum
onductivity deviates significantly from that predicted using the semiclassical Bloch-Boltzmann approach [56]. After
his initial work, additional applications were focused on low-dimensional materials, such as silicon nanowires [90,91],
arbon nanotubes (CNTs) [27,92,125,126,128,181,182], and very extensively graphene-based materials [183]. We will first
llustrate applications of the LSQT methods to graphene-based materials with various types of static disorder, then we
ill discuss 3D metals and Dirac semimetals, and finally we will cover electronic transport in CNTs and crystalline organic
emiconductors considering electron–phonon scattering.

.1. Applications to disordered graphene

Ever since its discovery [184,185], graphene research has included an intense focus on the impact of disorder on
ts transport properties. Many studies have considered either realistic or simplified theoretical models, and have been
nspired by the plethora of observed defects generated during material fabrication and integration into practical devices.
tudying quantum transport in graphene and two-dimensional disordered materials is of particular interest given the large
ariety of physical scattering sources such as long-range charged impurities and screening effects (electron–hole puddle
ormation), short-range static defects, thermal disorder, as well as many-body effects. The quantum transport theory of
assless Dirac fermions in the presence of such disorder is extremely rich in novel phenomena such as Klein tunneling,

he minimum conductivity at the Dirac point, weak antilocalization, and the anomalous quantum Hall effect, all of which
ave been widely studied and presented in excellent reviews [29,30,186]. Here we will focus on a few representative
ases of defects and their implication for electrical transport. For further background and reviews on the electronic and
ransport properties of graphene, see [29,30,32,186–188].
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.1.1. Anderson Disorder
Anderson disorder [121], as introduced in the last section, is the canonical disorder model for studying quantum

ransport in different materials. Although this is not a very realistic disorder model for graphene, it is still of theoretical
mportance. One advantage of this disorder model is that analytical results [189,190] can be obtained in the weak-disorder
imit based on perturbation theory such as the self-consistent Born approximation (SCBA). LSQT calculations of the
ransport properties of graphene with Anderson disorder were first performed by Lherbier et al. [191]. With the presence
f Anderson disorder, the electronic DOS at the charge neutrality point is enhanced and the Van Hove singularities are
moothed, which is consistent with the prediction from SCBA [189]. The semiclassical conductivity from LSQT calculations
as a minimum at the charge neutrality point, which approaches the so-called minimum conductivity 4e2/πh in the
trong-disorder limit but remains generally larger in the weak-disorder limit. In the weak-disorder limit, the LSQT results
an be well fitted by the SCBA prediction [192]. Meanwhile, in the strong-disorder limit the SCBA fails to quantitatively
escribe the conductivity because of the neglect of quantum interference and hence localization effects. In both cases,
he semiclassical Boltzmann transport equation approach fails to capture the energy dependence of the conductivity.
his comparison highlights the necessity of employing fully quantum mechanical and nonperturbative calculations for a
omplete description of the transport physics of disordered graphene and related materials.
Beyond the diffusive regime, the conductivity decreases with increasing time or length [175,191], experiencing weak

nd strong localization effects consecutively. The weak localization regime is characterized by a logarithmic decay of
he conductivity with respect to the length L(E), according to Eq. (153). This has been confirmed numerically with LSQT
alculations [175]. In the scaling theory of Anderson localization [18,21], L(E) reaches the localization length ξ (E) when the
eak localization correction equals the semiclassical conductivity σsc(E). This gives an expression of the two-dimensional

ocalization length

ξ (E) = lsc(E) exp
[
πhσsc(E)

2e2

]
. (163)

t has been demonstrated [175] that the two-dimensional localization length calculated in this way is consistent with that
alculated based on the one-parameter scaling of localization in quasi-one-dimensional systems [193,194]. Graphene with
nderson disorder fully follows the one-parameter scaling theory of localization [18] and there is no extended state in
he absence of decoherence. However, as remarked initially, the Anderson disorder model is not a satisfactory description
f defects in real materials, and the study of more realistic disorder models is fundamental for any quantitative analysis
f experimental measurements.

.1.2. Charged impurities
One realistic disorder model is a long-range electrostatic potential accounting for the effects of charged impurities

rapped in the substrate beneath graphene. It has been argued [195] that the bare Coulomb potential is not suitable
or describing the potential induced by charged impurities. A standard model considering screening effects is obtained
y replacing the bare Coulomb potential with a smoother Gaussian function, although more complex charged impurity
odels have been studied using the LSQT approach [72,196]. Under this disorder model, the electrostatic potential energy
t position r is given in real space by

U(r) =
Nimp∑
k=1

Uk exp
[
−
|r − rk|2

2ξ 2

]
, (164)

here Nimp is the number of screened charge impurities, Uk is the strength of the kth impurity located at rk, and ξ is the
effective range of the potential (here we distinguish this from the localization length discussed in previous sections). The
ratio nimp = Nimp/N , with N being the number of atoms, defines the impurity concentration. The potential heights Uk are
assumed to be uniformly distributed in the interval [−W/2,W/2].W is the strength of the potential, which plays a similar
role as in the Anderson disorder model. Actually, this charged impurity model reduces to the Anderson disorder model
in the limit ξ → 0 and nimp → 1. By tuning the value of ξ across the lattice constant, both short-range and long-range
potentials can be realized. A dimensionless quantity which is frequently used to quantify the disorder strength when
nimp ≪ 1 is given by [195]

K0 ≈ 40.5× nimp

(
W
2γ0

)2 (
ξ

a

)4

, (165)

here a ≈ 2.46 Å is the lattice constant of graphene and γ0 ≈ 2.7 eV is the hopping energy between neighboring carbon
atoms.

Graphene with this type of disorder shows diverse transport regimes, as the Gaussian-shaped potential can induce
two kinds of scattering: intervalley scattering which mixes the states in the two valleys of reciprocal space, and
intravalley scattering which does not. The dependence of these two scatterings on the disorder strength has been studied
numerically [197]. To explore this transition between intervalley and intravalley dominated transport with the LSQT
methodology, one may investigate the energy-resolved momentum relaxation time τ (E), defined in Eq. (70), with D (E)
p sc
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R

Fig. 15. Energy-dependent momentum relaxation time in graphene, highlighting a transition between intervalley and intravalley dominated scattering.
esults were obtained for electrostatic impurities with a varying range ξ at a concentration nimp = 0.125% with constant K0 = 0.25. Simulations

were carried out using the Lanczos method with 1000 recursion steps and M = 125 Chebyshev polynomials for the time evolution in a sample of
N = 107 carbon atoms.

Fig. 16. Length-dependent conductivity σ (E, L) in graphene with Gaussian-shaped disorder, at Fermi energies from E = 20 to 100 meV. The impurity
concentration is fixed to nimp = 1%. Two disorder profiles are considered, one leading to strong valley mixing and weak localization (WL), the other
leading to weak valley mixing and weak antilocalization (WAL). Symbols are numerical simulations and dashed lines correspond to Eq. (153) or
(166). Simulations were performed using the MSD-KPM method with M = 3000 moments, Nr = 10 random vectors, and N = 4× 107 orbitals.

taken as the maximum value of the time-dependent diffusivity D(E, t). In Fig. 15 we plot τp(E) for varying impurity height
and width while fixing K0 = 0.25, with ξ varying from 1a to 3a.

At ξ = 3a, τp(E) strongly increases at low energies; this is a signature of transport limited to a single Dirac cone, where
pseudospin conservation prohibits back scattering near the Dirac point, yielding long scattering times. As ξ decreases to
1a, intervalley scattering begins to play a role, allowing for back scattering processes and a subsequent reduction of τp(E)
around the graphene Dirac point. Here we have tuned the impurity height and width simultaneously at a fixed K0, but
we will show in Fig. 17 that a similar transition can be induced by tuning only the potential height W .

When intervalley scattering is completely excluded by considering a single-valley Dirac Hamiltonian, the conductivity
follows a one-parameter scaling, either with [198] or without [199,200] an unstable fixed point. In this case, the β function
β(σ ) = d ln σ/d ln L is positive (metallic), indicating weak antilocalization [201]. On the other hand, when using a disorder
model that induces intervalley scattering, numerical simulations reveal that the conductivity follows a one-parameter
scaling with a negative β function [197], which is associated with the weak localization regime.

As shown in Section 5.4, the MSD-KPM approach fully captures weak localization in the square lattice with Anderson
disorder. Here we show that this approach can capture both weak localization and weak antilocalization in graphene,
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Fig. 17. Top panels: diffusion coefficient of graphene at the Dirac point for various magnetic fields and nimp = 0.125%, ξ =
√
3a, (a) W = 2γ0 , and

b) W = 1.5γ0 . Bottom panels: the corresponding ∆σ (B) for four different Fermi level positions (ECNP = 0 eV, EI = 0.049 eV, EI = 0.097 eV and
EIII = 0.146 eV). Dashed lines are fits as explained in the text. Simulations were run for a system size of 1.15× 107 carbon atoms.
Source: Adapted from [202].

with the transition driven by the disorder strength. These results are fully in agreement with the theory developed for
massless Dirac fermions [203–205].

Fig. 16 shows the length-dependent quantum conductivity σ (E, L) of graphene with Gaussian-shaped disorder. Two
ets of disorder parameters are considered, describing either a weak and relatively long-ranged disorder (ξ = 5a and
W = 0.33938 eV) that mainly induces intravalley scattering, or a strong and relatively short-ranged disorder (ξ = 1.5a
and W = 3.77136 eV) that induces significant intervalley scattering. In both cases the impurity concentration is fixed to
nimp = 1%, such that K0 = 1, and we consider Fermi energies ranging from E = 20 to 100 meV. For disorder large enough
to induce intervalley scattering, the conductivity first increases from zero to a plateau, corresponding to the ballistic-to-
diffusive transition, followed by a logarithmic decay given by Eq. (153), as already discussed for the disordered square
lattice. Similar results have been obtained for graphene with structural defects [206]. In contrast, when the disorder does
not mix the valleys, weak antilocalization appears with a change of sign of the quantum correction and thus an increase
of the conductivity with increasing propagation length, in full agreement with the theory developed for a single-valley
Dirac Hamiltonian [198–200],

σ (L) = σsc +
4
π

e2

h
ln
(

L
lsc

)
. (166)

imilar conductivity scaling in the presence of Gaussian-shaped disorder has also been obtained using the Landauer–
üttiker approach [207].
Experimentally, quantum corrections to the conductivity can be explored by measuring the low-temperature mag-

etoresistance, or equivalently ∆σ (B) = σ (B) − σ (B = 0), where σ (B) is the magnetoconductivity (B the external
agnetic field). A diagrammatic theory of quantum interference in disordered graphene [203–205] has been developed
nd provides a possible quantitative analysis of magnetoconductivity data. Both positive (weak localization) and negative
weak antilocalization) magnetoconductivity can be obtained, depending on the relative strength between the intravalley
cattering time, the intervalley scattering time, and the coherence time. A transition from localization to antilocalization
as been demonstrated experimentally [208].
Here we show that similar results can be obtained from numerical calculations based on the LSQT method in the MSD

ormalism [202]. As above, we use the Gaussian charged impurity model to tune the intervalley scattering strength. In
his case we fix the potential range at ξ =

√
3a and the impurity concentration at nimp = 0.125%, and we choose impurity

trengths of W = 1.5γ and 2γ (corresponding to K = 0.26 and 0.46). A summary of the results is shown in Fig. 17.
0 0 0
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Fig. 17(a) shows the time-dependent diffusion coefficient D(E, t) at the graphene Dirac point (E = 0) for W = 2γ0,
with the decay at long times indicating the presence of weak localization induced by the strong disorder. Turning on
the magnetic field in the millitesla range suppresses the localization, as indicated by the progressively slower decay of
D(E, t) with increasing B. Fig. 17(b) shows the case for weaker disorder, with W = 1.5γ0. This disorder is still strong
enough to induce weak localization at longer times, as seen for the black curve with B = 0. However, a small magnetic
field (B = 27 mT) is sufficient to completely suppress this localization in the simulated time scale, leaving behind pure
antilocalization behavior that is then suppressed by progressively higher magnetic fields. Figs. 17(c) and (d) show the
corresponding magnetoconductivities at different Fermi energies, where in all cases the value of σ (B) was taken at the
maximum simulation time (t = 9 ps). These figures highlight the pure WL behavior induced by the stronger disorder,
and a WL-WAL transition for the case of weaker disorder.

To interpret these results in terms of the Hikami–Larkin–Nagaoka model [203,209] the magnetoconductivity can be
expressed in a simplified form,

∆σ (B) =
e2

πh

[
F

(
τ−1B

τ−1ϕ

)
− 3F

(
τ−1B

τ−1ϕ + 2τ−1∗

)]
, (167)

here F(z) = ln z + ψ
( 1
2 + z−1

)
, ψ(x) is the digamma function, and the magnetic time scale τ−1B = 4D/l2B is defined

via the diffusion coefficient D and the magnetic length lB =
√
h̄/(eB). In addition to the magnetic time scale τB and the

oherence/dephasing time τϕ , this model assumes a phenomenological elastic scattering time τ∗ that contains both intra-
nd intervalley scattering [203]. The numerical data in Figs. 17(c) and (d) are fitted with Eq. (167) and clearly follow the
ependence on the magnetic field B for both the WL and the WAL regimes. For short intervalley scattering times, τiv < τϕ ,
or the lowest magnetic fields WL is described in full consistency with [203] and τ∗ ranging from 1.1 to 2.3 ps. In case of
AL the effective scattering time τ∗ is increased to 1.5 to 6.3 ps.
Despite the observation of WAL for W = 1.5γ0, which is more pronounced at energies away from the Dirac point

see Fig. 17(d)), experiments suggest an opposite behavior, namely that WAL is stronger close to the Dirac point [208].
his discrepancy in the interpretation of WAL may be caused by as-yet-unknown differences in the disorder potential
or the charged impurities between the model and the graphene in the experiments. A further step would be a better
nderstanding of the time scales for intra- and intervalley scattering as well as dephasing in the experiments, and further
umerical tests with different disorder models.

.1.3. Point-like defects
Point-like structural defects have also been observed in graphene and have been shown to greatly affect transport

roperties [192,210]. Beyond those induced by material and device fabrication, point-like defects can also be deliberately
reated using ion irradiation or chemical treatments for tailoring the conduction regime [211]. Chemical substitution of
arbon with nitrogen or boron atoms has been experimentally observed [212], and numerical studies using the LSQT
pproach have discovered the emergence of mobility gaps [69,213,214], which can help in fabricating p-type or n-type
raphene-based transistors [215].
A generic and common defect that is found in any material is the missing lattice atom. Single vacancies in graphene

ave been produced and characterized by transmission electron microscopy [216] and scanning tunneling microscopy
217]. This type of disorder has a dramatic impact on the electronic structure of graphene, with the formation of low-
nergy impurity resonances (also called zero-energy modes) which are localized at the Dirac point and which display
wavefunction decay following a power law [218]. The impact of such anomalous localization behavior on quantum

ransport at the graphene Dirac point has been the subject of an intense debate in the literature. Meanwhile, away from
he graphene Dirac point, all studies have found that electronic states are localized [73,76,89,175,219,220].

For a low density of vacancies distributed roughly equally on both sublattices in a random fashion, one expects short-
ange scattering and localization effects to emerge. This was numerically studied using linear scaling methods by Cresti
t al. [220], Fan et al. [175] and Ferreira et al. [76], and all simulations obtain localization for energies away from the
irac point. Fig. 18 shows the results of MSD-KPM simulations of graphene with 1% of randomly-distributed vacancies.
ere one can see an unambiguous exponential decay of the conductivity for a wide energy range away from the Dirac
oint, with extracted localization lengths in good agreement with Eq. (163) as well as the one-parameter scaling theory
f localization [193,194].
At the Dirac point, simulations from [175] and [73] also indicated the presence of Anderson localization, while the

uthors of [220] proposed an alternative conductivity scaling following σ ∝ 1/Lβ with β ≈ 2. However, the presence
f zero-energy modes means that at the Dirac point numerical results are extremely sensitive to the chosen parameters,
nd difficult to converge numerically. In contrast to these results, field-theoretical calculations predict the absence of
ocalization corrections at the band center of 2D disordered systems with chiral symmetry [221,222], suggesting that
he localization length diverges at E = 0 in chiral-symmetric disordered graphene (class BDI, which is the case of
raphene with vacancies) [190,223,224]. Such a critical point is predicted to yield a finite value of the Dirac point quantum
onductivity on the order of e2/h [190]. This behavior was numerically reproduced by Ferreira and Mucciolo, who used
he KG-CPGF method to obtain delocalized transport with a conductivity of 4e2/πh at the Dirac point over a wide range
f vacancy concentrations with energy resolutions down to 1 meV [76]. The appearance of a π factor in some observable

s however quite suspicious and physically questionable.
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Fig. 18. Length-dependent conductivity σ (E, L) in graphene with 1% of vacancy defects at Fermi energies from E = 0.02 eV to 0.18 eV. The inset shows
he localization lengths, as a function of Fermi energy, extracted from the exponential decay of conductivity data (triangles), from the perturbative
stimate using the mean free path and semiclassical conductivity (squares) [21], and from the one-parameter scaling method by MacKinnon and
ramer (solid line) [193,194]. The results were obtained from the MSD-KPM method with M = 3000 moments, Nr = 10 random vectors, and

N = 2× 107 orbitals.

As discussed in previous sections, the difference between the KG-CPGF and KPM-MSD methods is their treatment of
the two Dirac delta functions. In KG-CPGF both are treated as Green’s functions regularized by the dephasing time τφ .
When approaching the adiabatic limit this simultaneously modulates the transport regime (τφ → ∞) and the energy
esolution (η = h̄/τφ → 0). With this method the conductivity at the Dirac point is delocalized and equal to 4e2/πh
own to η = 1 meV. Meanwhile, in the KPM-MSD method the energy resolution is fixed by the KPM expansion of one
elta function, and the transport regime is then modulated by the time evolution expansion of the other delta function.
he best calculations with this methodology [175] showed identical Anderson localization for all energy resolutions down
o ∼1 meV in the KPM expansion for simulation times t > 1 ps (h̄/t < 0.7 meV). Achieving better energy resolution with
either method may yet reveal different behavior, but this is a highly demanding computational task, and at this point the
difference appears to depend on the numerical approximations of delta functions in the adiabatic limit. Importantly this
only becomes problematic in the presence of a highly diverging DOS, whereas in all other situations with smooth spectra,
all linear scaling methods lead to equivalent results and are able to accurately capture all regimes of quantum transport.

6.1.4. Large-scale structural defects
Beyond point-like or electrostatic disorder, the methods presented in this review are also readily applicable to large-

scale lattice defects such as grain boundaries (GBs) or graphene antidots [225–227]. Grain boundaries are a natural
result of chemical vapor deposition (CVD), which is the best approach for the large-scale production of graphene [228].
During the CVD growth process, graphene grains nucleate and grow at random positions and orientations, resulting in a
polycrystalline structure when growth is complete [229]. The grain boundaries that form at the interface of the graphene
grains typically consist of disordered arrays of carbon pentagons, heptagons, and octagons. Experiments based on scanning
tunneling microscopy or quantum transport have shown that GBs are strong charge scatterers, and can thus limit the
transport properties of large-area CVD-grown graphene [230].

A variety of numerical simulations, based on the methods presented in this review, have been carried out to quantify
the impact that GBs have on charge transport in CVD-grown graphene [231–235]. By applying Eq. (75) to realistic models
of polycrystalline graphene generated by molecular dynamics simulations, Van Tuan et al. showed that the semiclassical
conductivity σsc of these materials scales linearly with the average grain size [231]. Subsequent work quantified the impact
of GBs through the scaling relation [232]

Rs = RG
s + ρGB/lG, (168)

where Rs ≡ 1/σsc is the sheet resistance of the polycrystalline graphene, RG
s is the sheet resistance within the graphene

rains, lG is the average graphene grain size, and ρGB is the GB resistivity. By calculating Rs for polycrystalline samples
ith a variety of grain sizes and fitting to Eq. (168), Cummings et al. extracted an intrinsic GB resistivity of ρGB = 0.07
� µm [232]. This value is on the low end of those obtained experimentally. However, as shown in Fig. 19(a), the
alue of ρGB depends significantly on the measurement technique, doping level, material quality, and degree of chemical
unctionalization [230]. Indeed, the spread of simulation results indicates that ρGB can be tuned by more than one order
f magnitude by varying the concentration of chemical adsorbates on the GBs.
The impact of GBs on the electrical properties of CVD graphene can be seen in Fig. 19(b), where we show a summary of

he values of graphene sheet resistance, as a function of grain size, extracted from the experimental literature. Simulation
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Fig. 19. (a) Summary of the values of grain boundary resistivity (ρGB) extracted from the literature. Open circles are measurements at the charge
neutrality point, closed circles are measurements far from the charge neutrality point, and stars are for measurements where the position of the
Fermi level is unknown. (b) Summary of the values of graphene sheet resistance, as a function of grain size, extracted from the literature. The solid
gray line illustrates the scaling law of Eq. (168), assuming RG

s = 300 �/□ and ρGB = 0.3 k� µm. In both panels, the spread of simulation results
is due to the impact of chemical functionalization of the grain boundaries, as depicted in the insets. In the simulations, system sizes ranged from
∼140,000 to ∼280,000 atoms, the semiclassical conductivity was calculated using the Lanczos expansion of the MSD with 1000 moments and an
energy broadening of ∼100 meV, and the diffusive regime was reached after a simulation time of 0.1–0.3 ps.
Source: Adapted from [230].

results are shown as open squares, with the spread of values resulting from different degrees of chemical functionalization
of the GBs. Overall, the measurements follow the scaling trend described by Eq. (168), and the crossover between
GB-dominated and grain-dominated transport occurs for grain sizes in the range of 1–10 µm.

Apart from GBs, large-scale lattice defects can also be intentionally engineered. A graphene antidot lattice [226], also
called a graphene nanomesh [227], is a graphene sheet containing a pattern of nanometer-sized holes. These structures
have been proposed to create a band gap in otherwise gapless graphene. However, deviations from a perfect superlattice
structure are usually present in real experimental situations. The effects of geometrical disorder, modeled as fluctuations
in the antidot radius and location [236], have been studied using the LSQT method. It was shown that the band gap in a
perfect antidot lattice vanishes with the introduction of sufficiently strong geometrical disorder, and a transport gap can be
induced via Anderson localization [237], in accordance with experimental results [238–240]. The charge carrier mobilities
are found to be very small compared to values found in graphene without antidots, and quantitative agreement with
experiments has been obtained [240]. In a model of anisotropic geometrical disorder, a coexistence of ballistic conduction
and Anderson localization in different directions have also been predicted using the LSQT method [241].

Finally, interestingly the synthesis of wafer-scale two-dimensional amorphous carbon monolayers has been recently
demonstrated experimentally [242,243]. Such amorphous material presents unrivaled properties as coating of metals,
semiconductors or magnetic materials, and is expected to strongly improve atomic layer deposition of dielectrics, hence
fostering the development of ultracompact technologies. Theoretical studies using LSQT methods have shown that
localization lengths in such materials are no longer than a few nanometers, making them prototypes of two-dimensional
Anderson insulators [244,245], as confirmed experimentally [243].

6.2. 3D Metals and semimetals

6.2.1. Electrical conductivity in liquid transition metals
Early studies of electron transport in disordered metallic systems have been conducted for liquid phase 3d transition

metals such as Cr, Mn, Fe, Co and Ni with the so-called tight-binding linear muffin-tin orbital (TB-LMTO) recursion
method [53]. This method is an illustrative example of the connection between ab initio electronic structure approaches
and linear-scaling quantum transport methods.

The TB-LMTO method divides the simulation space into atomic and interstitial regions with muffin-tin spheres that
are centered at the atomic sites R. Within these spheres, orbitals are defined with a collective angular momentum index
L = (l,m) through which s, p and d orbitals are included. The TB parameters for these orbitals are obtained from DFT
calculations, thus providing a self-consistent description of the electronic properties at the Kohn–Sham level, which
describes the general wave functions by orbitals

χαRL(rR) = φRL(rR)+
∑

φ̇αR′L′ (rR)h
α
R′L′,RL (169)
R′L′
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w

Fig. 20. Momentum-resolved spectral functions nl
k(E) for the (a) s-orbitals and (b) d-orbitals in liquid Fe obtained with the TB-LMTO recursion

method. The k values range from zero to 2π/a, with a the lattice parameter of fcc Fe at the density of liquid Fe (0.0756/Å3). The results were
obtained for a cubic cluster with 600 particles.
Source: From [53].

in the TB representation α. Here φRL(rR) are reference wave functions inside a sphere of radius sR centered at R for a
particular reference energy EνRl. Inside the sphere the potential is calculated with DFT and additional functions φ̇αRL(rR)
related to the energy derivative of φRL(rR) at the reference energy enter with expansion coefficients hαR′L′,RL. These
expansion coefficients typically vanish for the second neighbor shell in close-packed structures. This short-range nature
makes the application of the Lanczos approach particularly efficient.

The geometry of the liquid metals was modeled by clusters with a size of 600 particles, which were generated with a
Monte Carlo method. This leads to a disordered configuration of the metal atoms deviating from their fcc or bcc crystal
structure. The strength and type of disorder are reflected in the matrix elements hαR′L′,RL that can intermix different angular
momentum components of the muffin-tin orbitals.

In a preliminary step towards calculating electronic transport, Bose et al. [53] analyzed the momentum and angular
momentum-resolved spectral functions as

nl
k(E) = −

1
π

lim
τφ→∞

Im

{∑
m

⟨ul,m
k |G(E + ih̄/τφ)|u

l,m
k ⟩

}
, (170)

ith |ul,m
k ⟩ =

∑
j e

ik·Rj |χαRj,l,m⟩ being the Fourier transform of the muffin-tin orbitals. In Fig. 20, the spectral function nl
k(E)

for liquid Fe obtained with the TB-LMTO recursion method is plotted. The spectral function is used to study residual
dispersion and the effect of disorder on the s, p, and d orbitals in the liquid phase.

A transport study applied to the 3d transition metals Cr, Mn, Fe, Co and Ni was done by determining the conductivity
from the purely diagonal s-, p-, and d-channels, as well as contributions due to the hybridization of the orbitals induced
by the off-diagonal matrix elements hαR′L′,RL. The calculations were performed following Eq. (46) at the Fermi energy. The
diffusivity of each channel D was obtained by exploiting the Einstein relation σ = e2ρ(E)D, where ρ(E) is the density of
states.

The analysis of the conductivity predicts that the conductivity due to the d-channel, dominates the contributions
s-channel and p-channel by a factor of five to six. Because its diffusivity was much smaller than for s and p (7–12 times),
this dominance is due to the higher weight in the DOS of the d-states. Additional mixed-channel contributions to the
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onductivity occur due to the hybridization of the s, p, and d orbitals. They turned out to be substantial for these liquid
metal systems, reaching the conductivities of the conventional channels but with opposite sign. Hence, the orbital mixing
strongly impacts the conductivity and impedes the conduction process.

Finally, electrical resistivities were compared to experimental results with good quantitative agreement (except for
liquid Ni), which validates the TB-LMTO recursion method. Further studies of the electrical conductivity with the Kubo–
Greenwood formula extended the application of the TB-LMTO recursion approach to a larger number of systems including
liquid La, Hg, and metallic glasses [246–248].

6.2.2. Localization transitions in disordered Dirac semimetals
In recent years O(N) approaches have also been used to study higher-dimensional materials such as three-dimensional

Dirac semimetals [249,250] or disordered Weyl fluids [251–253]. In general, a Dirac semimetal is a condensed matter
system where twofold Kramers-degenerate conduction and valence bands touch each other. These materials can be
described with a massless Dirac equation in the infrared limit. In the undoped case the Fermi level lies exactly at the
Dirac point where the bands touch each other. Examples of Dirac semimetals are Cd3As2, Na3Bi, Bi1−xSbx, BiTl(S1−xSex)2,
Bi1−xInx)2Se3, or Pb1−xSnxTe.

Dirac semimetals can be modeled by a massless Dirac Hamiltonian in its non-covariant form that additionally involves
disorder potential. The underlying Dirac Hamiltonian is defined by

H =
1
2

∑
r,µ̂

(
itψ†

r αµψr+eµ̂ + H.c.
)
+

∑
r

V (r)ψ†
r AWψr, (171)

where ψr = (cr,+,↑, cr,−,↑, cr,+,↓, cr,−,↓)T denotes the four components of a Dirac spinor referring to an electron at site
r with parity (±) and spin (↑/↓); eµ̂ (with µ̂ = x̂, ŷ, ẑ) refers to a unit vector pointing to the nearest neighbor; and
αµ = σµ ⊗ 12 are the 4 × 4 Dirac matrices that obey the anti-commutation relation

{
αµ, αν

}
= 2δµν14 according to the

anti-commutation relations of the 2 × 2 Pauli spin matrices σµ. The type of the disorder (symmetry of the disorder) is
given by AW . When it is diagonal in the spinor components (AW = 14), the disorder potential is just a scalar potential and
V (r) describes a random scalar potential at site r with strength V (r) ∈ [−W/2,W/2]. Off-diagonal terms are also studied,
e.g. with an axial chemical potential AW = γ5 = iα1α2α3.

The model study in [249] determined the quantum phase transition of a Dirac semimetal into a conventional diffusive
metal, and at larger disorder into an Anderson insulator. These quantum phase transitions can be determined by
comparing the average DOS, defined as

ρa(E) =

⟨
1

4Ns

Ns∑
i=1

4∑
α=1

ρiα(E)

⟩
, (172)

nd the typical DOS

ρt (E) = exp

(
1

4Ns

Ns∑
i=1

4∑
α=1

⟨log ρiα(E)⟩

)
, (173)

with

ρiα(E) =
∑
k

|⟨Ek |i, α⟩|2 δ(E − Ek) (174)

he local DOS of a site with index i and orbital index α, and |Ek⟩ the eigenvectors of H with eigenenergies Ek . Ns is the
size of the system and ⟨. . . ⟩ represents the average over several realizations of disorder. To understand how the typical
and average DOS can be used to study localization, let us consider the case where all eigenstates are plane waves and k
represents the wave vector. Under this assumption, the weights |⟨Ek |i, α⟩|2 would not depend on k and, at a given energy,
the local DOS would be equal to ρa, whereas in case of localized states, ρi varies between sites and disorder realizations
from its average ρa. In particular for disordered systems at energies close to the band tails, the localized states are not
equally distributed over the sites i. This variance in the ρi implies that the geometric mean (Πiρi)(1/4Ns) is different from
the arithmetic mean (1/4Ns)

∑
i ρi = ρa. Therefore, since the geometric mean is the basis for the typical DOS in Eq. (173),

a comparison between ρt and ρa allows for the identification of localized or extended states [156].
Both these quantities can be calculated using the KPM. For example, Weiße et al. used the KPM to demonstrate a

metal-to-insulating transition in the 3D Anderson model [11]. The above quantities for the average DOS and the typical
DOS were also calculated with the KPM. For a system size of Ns = 603, model simulations of the average DOS and the
typical DOS were performed with Np = 1028 Chebyshev polynomials for the average DOS and Np = 8192 Chebyshev
polynomials for the typical DOS (see Fig. 21).

Further analysis involved the evaluation of the inverse participation ratio of the wave function as an indicator of the
localization transition. The average participation ratio is defined as

Pavg =

⟨[∑
i,α |ψα(ri)|

2]2∑ 4

⟩
(175)
i,α |ψα(ri)|
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Fig. 21. Quantum phase transitions of a three-dimensional Dirac semimetal (DSM) to a conventional diffusive metal (CDM) and to an Anderson
insulator (AI). Left: average DOS ρa(0) and typical DOS ρt (0) for a cubic system of size Ns = 603 at the Dirac point E = 0 as a function of the
isorder strength W . For the average DOS the KPM was used with 1028 moments whereas the typical DOS required 8192 moments. Right: mobility
dge as a function of Fermi energy and disorder strength. The white region represents metallic behavior, the blue region localized behavior, and the
lank region is gapped.
ource: From [249].

nd was calculated for much smaller system sizes than used for the DOS calculation. From the inverse participation ratio
−1
avg the localization transition was obtained in full accordance with KPM-based results, which corroborates the approach.
n essence, the authors in [249] studied the transport properties of disordered Dirac semimetals via the density of states
nd compared the results to the inverse participation ratio, leading to the same findings for the localization transitions.
Subsequent publications were dedicated to further analyze localization transitions in Dirac semimetals [250] and Weyl

emimetals [252,253] as well as the investigation of spectral properties of disordered Weyl fluids [251] that could be
ested by appropriate ARPES or STM measurements in undoped compounds dominated by neutral defects. We note that
hese studies do not explicitly calculate transport quantities, but highlight the power of KPM techniques for efficiently
xamining the behavior of exotic topological materials. They also represent an opportunity for further study of transport
n these materials using the methods described in this review.

.3. Quantum transport in nanotubes and crystalline organic semiconductors with electron–phonon coupling

Electron–phonon coupling (EPC) [254] plays a crucial role in many transport properties, notably in conventional
uperconductivity [255] and temperature-dependent electrical resistivity. Although EPC and electrical conductivity can
e studied using first principles calculations combined with the Boltzmann transport equation, this method is computa-
ionally formidable for complex systems. EPC can also be rigorously taken into account in quantum transport calculations
ased on the LB method, but various approximations [256–258] have to be used in practical calculations and the
omputation is generally very expensive.
Phonons are lattice vibrations which are associated with deviations of the atom from their equilibrium positions R0

i . In
the TB formalism, the hopping integral γij between atoms i and j is affected by the variation of the bond length between
two atoms Rij(t) = |R j(t)− R i(t)|. A simple relation between γ (Rij) and Rij is γij ∝ 1/R2

ij [259], although more sophisticated
models [260] can be constructed in specific materials. Based on the idea of distance-dependent hopping integrals, Roche
et al. proposed a method to take the EPC into account in the MSD formalism [181,261]. In this approach, the EPC is
encoded in a time-dependent TB Hamiltonian H(R i(t)), where the time dependence of the atom positions R i(t) is treated
classically. The displacements from the equilibrium positions R0

i can be expanded with the complete set of normal modes
(labeled by the phonon branch ν and wave vector q) according to

R i(t) = R0
i +

∑
ν

Aν(q)eν(q) cos
(
q · R0

i + ων(q)t
)
. (176)

Here ων(q) is the phonon frequency, eiν(q) is the normalized polarization vector that diagonalizes the dynamical matrix for
each q, and mi the mass of atom i. Aν(q) is the vibration amplitude, which increases with temperature and was calculated
from the Bose–Einstein distribution at a given temperature. The total simulation time in the MSD formalism is divided
into a number of time intervals which are about one-tenth of the oscillation period of the considered phonon mode. The
electron Hamiltonian is kept constant during each time interval and is updated after each time interval according to the
updated atomic positions. In this way, the electron wave propagation is coupled to the phonons.

This dynamical off-diagonal disorder for electrons can also be modeled by combining the quantum evolution of
the electronic wave function and the classical evolution of the lattice sites [262]. An approach combining the MSD
approach and molecular dynamics (MD) simulations has also been developed [263,264], where the atomic positions are
updated according to interatomic forces from an empirical potential. Using these methods, the impact of EPC on quantum
decoherence in carbon nanotubes has been quantified [94,181,261,265].

While dynamical disorder from EPC is responsible for decoherence, a static disorder approximation can be used when
the purpose is to compute the phonon-limited electron mobility. Based on the Born–Oppenheimer approximation, the
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Fig. 22. (a) Surface plot of the conductivity σ (E, t) of a (14, 14)-CNT as a function of the Fermi energy E and simulation time t calculated using
he MSD-KPM method. A thickness of 0.335 nm for the carbon wall was assumed to calculate the volume of the CNT. (b) Simulated resistance of
he CNT as a function of length (circles) compared with the experimental data (crosses) [270]. A simulation cell 5 µm long (with 1.12× 106 carbon
toms) was chosen. First, a classical MD simulation was used to generate a relaxed configuration at 300 K. Then, the electronic Hamiltonian was
onstructed based on the relaxed configuration and the length-dependent hopping parameter, γij = γ0(R0/Rij)2 , where γ0 = −2.5 eV. The results
ere obtained by using the MSD-KPM method with M = 2000 moments and Nr = 10 random vectors.
ource: Adapted from [174].

lectrons essentially experience a static potential profile associated with an instantaneous atomic configuration. In this
pproximation, one only needs to use MD simulations to generate a few equilibrated configurations and calculate the
ransport properties for each one separately. When the simulation system is large, the results from different configurations
hould not differ significantly. This approach has been used to study the phonon-limited electrical conductivity and
obility in suspended single-layer graphene with large-scale ripples spontaneously formed at room temperature [266].

t was found that the semiclassical conductivity is a constant and the mobility is inversely proportional to the carrier
ensity, in good agreement with results obtained by using the many-body perturbative GW approximation [267]. A similar
tatic disorder approximation has been used in the LB approach, where harmonic lattice dynamics [268] or classical MD
imulations [163] are used to generate equilibrated configurations at a given temperature, and the electron transmissions
n these systems are then calculated by combining DFT and nonequilibrium Green’s function calculations. Instead of using
D simulations or stochastic sampling, Gunst et al. showed that a single ‘‘special thermal displacement’’ (STD) of the atoms

n a large supercell can give the correct thermal average of the LB conductance and phonon-assisted current [269]. This
TD method would be an optimal way to include EPC in linear scaling quantum transport methods for large systems.
As an example of the application of the static disorder approximation for EPC, we show results [174] for electron

ransport in a single-walled metallic (14, 14)-CNT with a diameter of about 1.8 nm, which is comparable to that reported
n prior experiments [270]. Fig. 22(a) shows σ (E, t) calculated using the MSD-KPM method. We see that for the entire
nergy spectrum, the conductivity converges well up to a simulation time of 3 ps. The ballistic-to-diffusive transition is
learly seen in Fig. 22(b), where the resistance (the inverse of the conductance defined in Eq. (79)) at E = 0 (corresponding
o the low-bias situation in the experiments) as a function of the channel length is shown. In the short-length limit,
he resistance approaches the ballistic value of 1/(2G0) = h/4e2 = 6.45 k� (there are two conducting channels at the
harge neutrality point). In the long-length limit, the resistance scales linearly with the channel length, which is the
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Fig. 23. Charge transport in a three-dimensional model of an organic crystal, calculated with the MSD-KPM method. (a) Typical time-dependent
diffusion coefficient for various strengths of the disorder W and temperatures T . Inset: three-dimensional crystal structure where system parameters
εMN and RMN are transfer integrals and distances to the nearest neighbors. (b) Polaron mean free path vs. energy for various disorder strengths.
Only positive energies are shown because of symmetry. The simulations were performed on a system of (0.24 × 0.22 × 0.14) µm3 , corresponding
o Ns = 4× 107 , with a simulation time of 61 ps, a time step of 5h̄/(40 meV) ≈ 82 fs and 88 Chebyshev polynomials for the time evolution.
Source: Adapted from [79].

expected diffusive behavior. The good agreement with experiments demonstrates the applicability of the static disorder
approximation in this case and the predictive power of the MSD-based LSQT method.

More complex systems where LSQT approaches have been applied are organic semiconductor crystals, which are used
for instance in organic transistors [271]. While charge transport in organic crystals has been studied extensively over the
last few decades, the microscopic picture of transport and the crossover between different mechanisms is still not fully
clear. The higher complexity in such systems compared to CNTs stems from the large number of molecular vibrations and
from the electronic anisotropy. The former influence the electronic properties in different ways depending on temperature,
while the latter induces an anisotropic transport behavior. To understand how EPC affects charge transport beyond simple
models is a key requirement for predicting the electrical conductivity of crystalline organic semiconductors, and the
efficiency of LSQT approaches makes them a useful tool for tackling such complexity in the limit of coherent electronic
transport.

Different theoretical approaches exist to include the EPC for intra- and intermolecular vibrational modes in the Kubo
transport framework based on the LSQT methods reviewed in this article. The EPC of high-frequency modes can be
treated within polaron theories [79,272] that take into account their full quantum mechanical nature with a non-adiabatic
approach, while other implementations of the EPC use a mixed classical–quantum mechanical description [262,273,274].
This mixed description is often referred to as the adiabatic limit as the nuclei are treated semiclassically.

The work of Ortmann and Roche [79] used a non-perturbative description of the EPC in organic crystals via a polaron
transformation that takes into account the transfer integrals in all directions. Similar to the original work of Holstein [275],
a coherent phonon dressing results in a renormalization of the electronic bandwidth that depends on temperature. By
considering the finite electronic bandwidth of the charge carriers, this theory overcomes the limitations of narrow-band
transport theories (see e.g. [276,277]). For instance, the MSD-KPMmethod allows studies of localization due to an interplay
of electronic transfer integrals and disorder [79]. By combining polaron dressing and disorder effects, this approach enables
access to transport parameters such as mean free paths or diffusion constants during the coherent propagation of polaronic
wave packets.

In Fig. 23 we show the time-dependent diffusion constant and the energy-resolved mean free path of a three-
dimensional cubic model of an organic crystal, parametrized as shown in the inset. At high enough temperature and
disorder strength, the transport regime changes from diffusive to localized, as seen in panel (a). The diffusion constant
depends on the polaronic bandwidth, and thus the carrier mobility varies with temperature through the temperature
dependence of the bandwidth. In addition, disorder-induced localization is apparent at low temperatures and is reduced
with increasing temperature. The combination of both of these effects may induce a transition of the transport regime
from band-like to hopping transport with increasing temperature.

Troisi et al. [262] have presented a transport approach based on a microscopic description of dynamical lattice disorder
within the adiabatic regime. In the adiabatic approximation, the electronic transfer integral is assumed to exceed typical
vibrational frequencies by one order of magnitude (or at least a large factor) and thus leads to a semiclassical treatment
of the vibrational modes and the EPC. The carrier’s MSD and the diffusion constant for a coherently-propagated electronic
wave packet can then be calculated based on a mixed quantum–classical description employing Ehrenfest equations.

A related numerical approach utilizing LSQT methods was applied to organic semiconductors by other authors [274],
where several transport scenarios were investigated in a pentacene model system including intra- and intermolecular EPC
as well as static disorder. Their numerical approach (referred to as time-dependent wave packet diffusion, TD-WPD) is
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n extension of an approach that was successfully applied to CNTs and graphene nanoribbons — during the propagation
f the electronic wave packet the system Hamiltonian is updated at each time step according to the molecular dynamics
f the vibrational modes. As described above the approach considers the modes dynamically, leading to polaronic effects
n the initial electronic wave packet. Additional static disorder effects and the interplay with the EPC were also studied
n this work.

In the same spirit, Ciuchi et al. [273] demonstrated that the lattice dynamics of low-frequency intermolecular modes
ead to a localization of the charge carriers on the time scale below a vibration period, at which the lattice is assumed to
e frozen. Here rubrene is taken as the reference system, which has been intensively studied as a prototype compound
n recent years [278–283]. The results from their LSQT-based method suggest that charge carriers (after an initial
ocalization) remain in a diffusive transport regime with diffusion constant D leading to finite carrier mobilities according
o µ(T ) = eD/kBT . Implementing this idea, they proposed an exponential decay of the velocity correlation function over
ime with an inelastic scattering time τin that is on the order of the vibrational period of a typical inter-molecular mode,
.e., τin ∝ ω−1inter.

This relaxation time approach is designed to counteract the localization phenomenon, which eventually results in
inite mobilities, in contrast to the semiclassical Ehrenfest method proposed earlier. Indeed, it has been shown that the
atter suffers from an increase of the velocity correlation function, leading to an increase of the time-dependent diffusion
onstant at time scales above the period of the inter-molecular vibrations, which results in diverging carrier mobilities.
mploying the relaxation time approach, the diffusion constant is obtained from the so called transient localization length
nd the inelastic scattering time via D = L2(τin)/2τin. Recently this approach has been applied to charge transport
roperties in two-dimensional herringbone structures [82]. The anisotropy of the electronic coupling (distribution of
ransfer integrals) was studied and connected to the localization behavior and the carrier mobility.

The emerging picture from these various studies using LSQT approaches is that there is a partial localization of charge
arriers induced by disorder that can have vibrational or static origin. The spatial extent, or localization length, is still
ifficult to predict, since it is influenced both by high-frequency molecular vibrations leading to polaronic effects and
y semiclassical dynamical disorder leading to localization. Since each can enhance the other, a combination of different
pproaches including those for high frequencies and low frequencies is desirable. The present success of the efficient
umerical approaches in these studies suggests that future developments might emerge based on similar methods [284]
nd that the material classes to which they are applied will be extended [285].

. Hall and spin transport

.1. Topological and Fermi surface contributions

In the previous sections, we explained how to combine different numerical techniques to compute the diagonal
onductivity from different representations of the Kubo–Greenwood formula in a linear scaling way. However, it is
ontrivial to extend this approach to study other transport properties such as the Hall conductivity. The reason is that the
ubo–Greenwood formula only captures the Fermi level properties of the system, but as shown by Thouless et al. in their
eminal work [286], some quantities are defined in terms of the topology of the electronic structure and therefore depend
n the whole energy spectrum. This means that in order to compute a general observable, one should first determine
hether the topological contributions are negligible and choose the appropriate methodology accordingly.
The Hall conductivity is a quantity for which topological effects are prominent. In Section 2 we demonstrated that

he Kubo–Bastin formula, Eq. (39), is the single-particle approximation of the general Kubo formula, and as such, should
ontain both the topological and the Fermi level contributions. Therefore, it is reasonable to assume that the electrical
esponse A ≡ ⟨Â⟩ of an arbitrary operator Â can be separated into two different contributions

A = AFS
+ AT. (177)

where AFS and AT representing the Fermi level and topological contribution respectively.
The first attempt of such decomposition was presented in the seminal work of Streda [109,287], which he developed for

the Hall conductivity and was later extended to an arbitrary operator [97]. He showed that by using algebraic manipulation
and Green’s function properties the Kubo–Bastin formula can be broken into two contributions

AI
= h̄Ω

∫
∞

−∞

dE ′
df (E ′ − µ)

dE ′
× Im

(
Tr
[
δ(Ĥ − E ′)Â G+(E ′) (Ĵ · E0)

])
(178)

nd

AII
=

h̄Ω
2π

Re
(∫

∞

−∞

dE ′f (E ′ − µ)Tr[B̂]
)

(179)

here

B̂ =
{
G+(E ′)Â

dG+(E ′)
′
−

dG+(E ′)
′

Â G+(E ′)
}
Ĵ · E0, (180)
dE dE
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Fig. 24. Comparison between the different decompositions of the spin Hall conductivity applied to the Kane–Mele model considering a SOC strength
λI = 0.178γ , where γ is the nearest-neighbor transfer integral. The full spin Hall conductivity obtained from the Kubo–Bastin formula (black solid
ine) matches inside the gap with both Streda’s second component σ z,II

xy (green solid line) and the topological contribution σ z,T
xy (yellow dashed line)

yielding to the same quantized value. However, outside the gap, σ z,II
xy differs from the Kubo–Bastin formula due to a finite contribution of σ z,I

xy which
is shown as in inset. We verified that summing both contributions in each decomposition lead to the full Kubo–Bastin result. The simulation was
performed on a system containing 4× 106 atoms, and the Green’s functions were approximated using the KPM with 2000 moments.

and later demonstrate that in the band-gap they correspond to the Fermi surface term AFS
= AI and the topological term

AT
= AII respectively. However, it was recently demonstrated by Bonbien & Manchon [288] that such separation fails

outside the band-gap due to an overlap between AI and AII. The same authors presented a new decomposition of the
Kubo–Bastin formula that fixes the overlap problem and also consist in two contributions, the first one

AFS
= −π h̄Ω

∫
∞

−∞

dE ′
df (E ′ − µ)

dE ′
× Re

(
Tr
[
δ(Ĥ − E ′)Âδ(Ĥ − E ′) (Ĵ · E0)

])
(181)

has exactly the same shape as the Kubo–Greenwood formula used for quantum transport calculations, allowing then for
exploiting all numerical artillery developed through this review. The second contribution

AT
= −h̄Ω

∫
∞

−∞

dE ′f (E ′ − µ)× Im
(
Tr
[
δ(Ĥ − E ′)Â

d(G+(E ′)+ G−(E ′))
dE ′

(Ĵ · E0)
])

(182)

s similar to AII in the sense that depends solely on the Fermi–Dirac distribution and contain derivatives of the Green’s
unctions.

To illustrate how such procedures allows to determine the quantized conductivity arising from the quantum Hall and
uantum spin Hall effects, in Fig. 24 we show the intrinsic spin Hall conductivity of the Kane–Mele model [289], this
uantity is expected to originate solely from the Berry curvature and should display negligible Fermi level contributions.
his model describes the electronic behavior of a system composed of a honeycomb lattice with nearest-neighbor
oppings and strong intrinsic spin–orbit coupling (SOC) characterized by a strength λI. This system is a topological
nsulator, with a bulk gap and topological edge states for |E| < λI, leading to a quantized spin Hall conductivity for the
ame range of Fermi energies. This calculation was performed using a system of 4×106 orbitals and the KPM, following the
ethodology developed by Garcia et al. [61], which will be discussed in detail in the next subsection. As one can see, both
ecomposition capture the topological contributions leading to a quantized conductivity in the band-gap. However, deep
n the conduction or valence bands, both components of the Streda decomposition yield to sizeable contributions, which
s not expected for this system, on the other hand, the decomposition by Bonbien & Manchon do yield to the expected
esult, i.e, a vanishing Fermi-level contribution. It should be noted that the both decompositions reduces to Aoki’s formula
hen used for the Hall conductivity [290,291],

σµν = − lim
η→0

ih̄
Ω

∑
m,n

f (Em)
⟨Em|Ĵµ|En⟩⟨En|Ĵν |Em⟩

Em − En + iη
+ h.c., (183)

hich is commonly used to compute the topological conductivity through exact diagonalization.

.2. Numerical implementations of the Kubo–Bastin formula

Previously, we showed how to use the KPM and the time evolution approaches for approximating the Dirac delta
unction and the Green’s function. These approximations can also be applied to the Kubo–Bastin formula. The simplest
pproach is to expand the Green’s function in terms of a polynomial series and regularize it by either using the KPM
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r by including a finite but small broadening η. The advantage of this approach is that the energy derivative, present
n the Kubo–Bastin formula, only affects the Chebyshev coefficients and therefore can be done analytically. Therefore,
y expanding the Green’s functions and the quantum projection operator in Eq. (39) as a function of the Chebyshev
olynomials, we obtain the expression [61]

⟨Â⟩ =
ih̄ΩEα
∆E2

∫
dEf (E ′µ)

∑
m,n

Γm,n (̃E)gmgnCα,Amn , (184)

here gm and gn are the Chebyshev kernels, H̃ and Ẽ are the rescaled Hamiltonian and energies as defined in Eq. (95),

Cα,Amn ≡ Tr
[
ĴαTm(H̃) Â Tn(H̃)

]
(185)

is multi-dimensional version of the Chebyshev moments defined in Eq. (97) [11], and

Γm,n (̃E) ≡
d G
−

n (̃E)
d̃E

δ̄m (̃E)+
d G
+

m (̃E)
d̃E

δ̄n (̃E). (186)

This last term is a product of the Chebyshev coefficients of the derivative of the Green’s functions (cf. Eq. (110) with
z = Ẽ),

d G
±

n (̃E)
d̃E

= (2− δn,0)
(̃E ∓ in

√
1− Ẽ)e±inarccos(̃E)

i(1− Ẽ2)2
, (187)

nd the quantum projection operator defined in Eq. (128).
The second approach is based on Lanczos recursion and the time-dependent Kubo–Bastin formula presented in Eq. (39),

nd has been called the time-evolution Kubo (TEK) approach. Although the simulation time for the transversal components
f the DC conductivity is increased compared to the simulation time for the longitudinal components (by a factor of about
00–5000 depending on the number of Lanczos vectors), the time evolution of the studied quantity usually provides more
hysical insight into the mechanism leading to the stationary state, as already discussed in Section 2. The core of this
ethod lies in the approximation of the completeness relation by random-phase vectors [59,62],

1 ≊
NR∑
j=1

|φj⟩⟨φj|, (188)

here NR is the number of Lanczos recursion steps and the set {|φj⟩} are random phase vectors as defined in Section 3.1.
his identity can then be inserted into Eq. (39) in order to obtain an alternative representation of Eq. (184),

⟨Â(µ)⟩ = 4E0Ω lim
η→0+

∫ tc

0

dt
2π

e−ηt/h̄
∫
∞

−∞

dEf (E, µ, T )×
NR∑
j=0

Im
[
κj(E)

]
Re
[
⟨φj|E0 · ĴG+(E)Â(t)|φ1⟩

]
, (189)

here

κj(E) = ⟨φj|G+(E)|φ1⟩ (190)

re the elements of the first column of the matrix-valued Green’s function. This numerical implementation avoids the
edious computation of the eigensystem by using a combination ofO(N) techniques. The conductivity can then be obtained
rom numerical simulations using the formerly introduced Lanczos algorithm and continued fraction expansion for the
alculation of the κj(E). The κj(E) are defined recursively with the initial element κ1(E) = ⟨φ1|G+(E)|φ1⟩ being related to
he DOS ρ(E) of the system via

−
1
π
Im [κ1(E)] = ρ(E). (191)

n the second step, κ2(E) is

κ2(E) =
1
b1
(−1+ (E − a1 + iη)κ1(E)) . (192)

or n > 2, we find the recursion relation

κn+1(E) =
1
bn
(−bn+1κn−1(E)+ (E − an + iη)κn(E)) . (193)

In Eqs. (192) and (193), the coefficients an and bn are the matrix elements of the tridiagonal matrix obtained from the
Lanczos algorithm for the initial random phase vector |φ1⟩. In addition, the Chebyshev polynomial expansion method is
used for the time evolution operator Û(t) as explained in Section 3. This approach will be illustrated in the next subsection
for calculations of the quantum Hall effect in graphene.
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Fig. 25. Hall conductivity of graphene with Anderson disorder (dashed curves, exact diagonalization; solid curves, TEK) at different magnetic fields
(main frame). Effect of increasing disorder for high field 964 T (upper inset) and intermediate field 45 T (lower inset). The simulation was performed
in a system of 10 million atoms, using one random vector and the Lanczos algorithm with a broadening of 0.002γ0 and at least 1000 Lanczos
recursion steps. Source: Adapted from [62].

7.3. Quantum Hall effect

One canonical example where the topological contribution plays a dominant role is the quantum Hall effect. When a
two-dimensional system is subjected to a perpendicular homogeneous magnetic field, under appropriate conditions the
electrons will move in degenerate orbitals which for certain Fermi energies will produce bulk insulating behavior and
quantized edge currents, both originating from the topology of the band structure. This effect, and the interaction of the
topological states with disorder, has been studied numerically using the two implementations of the Kubo–Bastin formula
presented in the above subsection [61,62].

As an example, we discuss the quantum Hall effect in disordered graphene. The Hamiltonian for this system is

Ĥ =
∑

i

Viĉ
†
i ĉi −

∑
ij

γ e−iφij ĉ†
i ĉj (194)

ith the nearest neighbor transfer integral γ = γ0 = 2.7 eV. To include disorder, we use an uncorrelated Anderson model
with matrix elements Vi taken at random from the interval [−Wγ0/2,Wγ0/2]. The strength of the disorder in units of
he nearest neighbor transfer integral is given by W .

The constant magnetic field B = ∇ × A is implemented via a Peierls phase [292], leading to an additional phase
volution φij that modifies the transfer integral between the sites i and j as

φij =
e
h̄

∫ r j

r i
dr · A. (195)

The numerical results for the Hall conductivity σxy, which is obtained by replacing Â = Ĵy in the Kubo–Bastin
ormula, are shown in Fig. 25. The quantization of the Hall conductivity, following the sequence of steps according to
xy = ±4

( 1
2 + n

) e2
h , reproduces experimental measurements [293,294]. The results are plotted for large and intermediate

magnetic field strengths. A comparison of our method with the results from exact diagonalization yields high quantitative
agreement.

Using LSQT methods, Ortmann et al. also examined the impact that sublattice-dependent disorder can have on the
quantum Hall effect in graphene [62]. This was done by including an additional sublattice-symmetry breaking potential
according to Vi → (Vi + VAB (δiA − δiB)) with VAB = 0.2γ0 and this modification applied randomly to p = 2.5% of the sites
n the sample. As shown in Fig. 26, a zero-energy Landau level splitting is clearly visible and corresponds to a plateau
nset energy of pVAB = 0.005γ0 (indicated by the dotted vertical line). Finally the emergence of quantum Hall effect
n polycrystalline graphene was shown to be strongly dependent on the ratio between the average grain size and the
agnetic length defined by the magnetic field [233].

.4. Quantum valley Hall effect

Another phenomenon where topology plays an important role is the quantum valley Hall effect. Certain honeycomb
tructures are characterized by a linear energy dispersion centered at two inequivalent Brillouin zone points, usually
enoted as K+ and K−, or equivalently, K and K ′. In graphene, these points are defined in reciprocal lattice vectors
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Fig. 26. Hall conductivity of graphene for p = 2.5% of AB sublattice-breaking defects (strength Vs = 0.2γ0) distributed randomly in space. The vertical
otted line indicates the nominal gap of a correspondingly homogeneous AB potential of strength pVAB = 0.005γ0 . The simulation was performed in
system of about 106 atoms, with one random vector and the Lanczos algorithm with a broadening of 0.0004γ0 and 3600 Lanczos recursion steps.
ource: Adapted from [62].

s K+ = (2/3, 1/3) and K− = (1/3, 2/3) . However, when these systems become massive an anomalous Hall effect is
redicted to occur, but with opposite sign in each valley as imposed by the system’s inversion symmetry [295]. Moreover,
imilarly to the previously discussed quantum Hall effect, a periodically strained system will behave as if it were subjected
o a pseudomagnetic field, producing Landau levels [296] and a valley quantum Hall effect [297]. Here we show that by
sing the Kubo–Bastin formula and an adequate definition of the valley current operator, one can obtain appropriate
ransport coefficients for graphene under uniform strain and propose an experimental way to detect valley polarized
urrents.
For modeling graphene under uniform strain we use a first-nearest-neighbor TB model where strain is included

hrough a modification of the hopping parameters, while the external magnetic field is added using the standard Peierls
ubstitution described in the previous subsection. In the Dirac approximation the strain is described by a gauge field
AS, where ± denote the two valleys. This gauge field is related to the strain tensor ϵij through AS ∝

(
ϵxx − ϵyy,−2ϵxy

)
298–300], and the pseudomagnetic field becomes BS = ∇ × AS. From this, it is straightforward to show that a triaxial
eformation u(x, y) = u0

(
2xy, x2 − y2

)
induces a constant pseudomagnetic field. Uniaxial tensile strain has also been

hown to generate a constant pseudomagnetic field [301].
In order to resolve each valley, one needs to remember that in linear response theory one is computing the average

f a microscopic operator, which for charge transport is the current operator. Therefore, we need to find an appropriate
icroscopic valley current operator. This can be achieved by taking inspiration from the spin current operator, which is

n general defined as

Ĵzα ≡
1
2
{Ĵα, sz}, (196)

where Ĵα is the single-particle current operator in the α direction as defined in Section 2, and sz is the spin operator in
he z direction. Then, by expressing sz in terms of its eigenvector projectors P±s = |±⟩⟨±|, we have

Ĵzα =
1
2
( P+s ĴαP+s − P−s ĴαP−s ), (197)

and from this expression we conclude that the spin current operator is nothing but the difference between the projections
of the current operator in each spin subspace. From here the extension is obvious; we define the valley projector operators
as P±v = |K

±
⟩⟨K±|, and define the valley current operator as

Ĵvα =
1
2
( P+v ĴαP+v − P−v ĴαP−v ). (198)

Different from the case of spin, there is no valley operator in the full tight-binding Hamiltonian, and therefore it is in
general impossible to find P± using the same approach. However, from a numerical perspective one can consider the
projector as a filter of electrons with momentum not belonging to the K± valley, or in explicit terms

P±v =
∑

θ (|k − K±| − R)|k⟩⟨k| (199)

k
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Fig. 27. DOS of graphene in presence of (a) an external magnetic field BM = B0 , (b) a strain-induced pseudomagnetic field BS = B0 , positive and
negative for the K and K ′ valleys respectively. (c) Valley polarized DOS for graphene with both a strain-induced pseudomagnetic field and external
magnetic field with BS = BM = B0 , thus canceling and doubling the field in the K ′ (Blue) and K (Red) points respectively. We take B0 = 50 T. The
imulation was performed in a system of 5 × 105 atoms, using 200 random vectors and the KPM for expanding the Green’s functions with 4000
oments.
ource: Adapted from [297].

Fig. 28. Transport in graphene with compensating pseudo- and real magnetic fields. When the strain pseudomagnetic field compensates with a
external magnetic field, the Hall conductivity shows the quantum Hall effect in one valley only, while it is suppressed in the other. Another
manifestation of such a cancellation is the valley polarized current density (computed as (σ K

xx − σ
K ′
xx )/σxx), which appears as a consequence of the

ifferent densities of states at each valley and is shown in the inset. The simulation was performed in a system of 5× 105 atoms, with 200 random
ectors and the KPM for expanding the Green’s functions with 4000 moments.
ource: Adapted from [297].

here θ (x) the Heaviside function and R is a valley cutoff which in general is defined by the disorder energy scale and can
e chosen to be for example R = |M − K±| , where M is the center of the Brillouin zone, given in the basis of reciprocal
attice vectors as M = (1/2, 1/2).

In the following, we present calculations using a 100 nm × 100 nm graphene sample (∼ 4 × 105 atoms) with a
aximum strain of ∆ ≈ 8% corresponding to a pseudomagnetic field of 50 T. The maximum strain is obtained along
m
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he edge of the sample, so all results can be rescaled such that by keeping ∆m = 8 % we find a pseudomagnetic field of
5 T for a 1 µm × 1 µm sample. The sample choice also implies that not all parts of the sample experience a uniform
pseudomagnetic field. This happens along the edge of the samples where nonuniformity of the pseudomagnetic field will
act as a scatterer that can mix valleys. The presented results are robust against this type of valley mixing as we only
consider a bulk effect in the part of the sample with a constant pseudomagnetic field. The results remain qualitatively
unchanged as long as a sufficiently large part of the sample experiences a uniform field.

In Fig. 27 we show the density of states of graphene for the cases with magnetic field, pseudomagnetic field, and a
combination of both with the same strength. We see the formation of Landau levels in the first two cases, and for the
third one we see a perfect cancellation of fields for one of the valleys, leading to the typical metallic state. This is because
due to inversion symmetry, the pseudomagnetic field has opposite sign in each valley and will add to or subtract from
the real magnetic field.

Next we compute the Hall conductivity in the situation where the pseudomagnetic field compensates the real magnetic
field. This is shown in Fig. 28. In this scenario, we can see that the system behaves exactly as expected for the quantum
Hall effect discussed previously, but with a Hall conductivity reduced by half because only one of the valleys is carrying
the current. Moreover, because the system is metallic the longitudinal current is fully valley polarized, which is key for
valleytronic applications.

7.5. Spin transport physics

Spintronics, or spin electronics, involves the study of spin information transfer as well as the manipulation of spin
degrees of freedom in solid-state systems [302]. Spin transport differs from charge transport in that spin is generally
a nonconserved quantity in solids due to spin–orbit and hyperfine coupling. An essential metric to characterize spin
transport is given by the upper limits of time or distance over which spin signals can be measured or manipulated. To
evaluate the corresponding spin lifetime (or relaxation time) and spin diffusion length in disordered materials, one can
either use a semiclassical spin Bloch transport equation [303], or compute numerically the time evolution of the spin
polarization of propagating wavepackets. As shown below, real-space O(N) methods provide a new tool for exploring
pin dynamics, spin relaxation and spin transport phenomena (such as the spin Hall effect) in complex materials.

.5.1. Spin relaxation time
To study spin dynamics and spin relaxation using the numerical methods presented above, it suffices to calculate the

nergy- and time-dependent spin polarization

S(E, t) =
1
2
⟨φ(t)| ŝδ(E − Ĥ) |φ(t)⟩ + h.c.

⟨φ(t)| δ(E − Ĥ) |φ(t)⟩
, (200)

here ŝ are the spin Pauli matrices, ‘‘h.c.’’ is the Hermitian conjugate, and |φ(t)⟩ = Û(t) |φ(0)⟩ is the time-evolved initial
state of the system. This initial state is spin polarized along axis j according to

|φ(0)⟩ =
1
2
(12N + j · ŝ) |φr⟩ , (201)

here 12N is the 2N × 2N identity matrix and |φr⟩ is the random-phase state defined in Eq. (85) with the replacement
→ 2N to account for spin.
With a bit of knowledge about spin relaxation mechanisms and the nature of the system under investigation, the

pin relaxation time can be extracted from the time-dependent spin polarization. For example, the typical Elliott–Yafet
EY) and D’yakonov–Perel’ (DP) spin relaxation mechanisms give S(t) = S(0) exp(−t/τs), where τs is the spin relaxation
ime [304–306]. When outside the motional narrowing regime or in the presence of a uniform magnetic field, the DP
echanism changes to S(t) = S(0) exp(−t/τs) cos(ωst), where ωs is the spin precession frequency [307]. Meanwhile,
ore complicated dephasing mechanisms can lead to different behaviors [63,308].
An example of spin dynamics and relaxation is shown in Fig. 29(a). Here we plot the time dependence of spins oriented

n (blue symbols) or out of (red symbols) the graphene plane, for graphene on a WSe2 substrate in the presence of weak
lectron–hole puddles [64]. Here we see that the in-plane spins undergo precession plus relaxation, while the out-of-plane
pins undergo simple exponential decay. Lines show the fits to these numerical results.
The methodology presented in Eqs. (200) and (201) has been applied to the study of spin dynamics and relaxation

n a wide variety of graphene-based systems. The first studies using this methodology revealed the role that spin–
seudospin entanglement has on spin relaxation in graphene with gold impurities [63], graphene on typical SiO2 or
BN substrates [308,309], or graphene functionalized with fluorine adatoms [310]. An example of this can be seen in
igs. 29(c) and (d), which show calculations of the spin lifetime in graphene on a SiO2 or hBN substrate for different
efect densities. For graphene on SiO2, the spin lifetime increases with increasing defect density, indicating the presence
f DP spin relaxation. Meanwhile, graphene on hBN shows the opposite scaling behavior, indicating a transition out of
he motional narrowing regime of spin dynamics due to the much weaker scattering induced by the hBN substrate. In
ll cases, a minimum in the spin lifetime at the charge neutrality point is a signature of spin–pseudospin entanglement
n graphene systems dominated by Rashba spin–orbit coupling [63,308,309]. We also mention that one can access the
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Fig. 29. (a) Example of spin dynamics and relaxation in graphene on a WSe2 substrate with weak electron–hole puddle disorder. The red (blue)
symbols are numerical simulations of the spin polarization along the z (x) axis, and the lines are fits. (b) Simulation of anisotropic spin relaxation
in graphene on a WSe2 substrate. Light (dark) purple curves show the spin lifetimes in the absence (presence) of intervalley scattering. The inset
shows the ratio of the out-of-plane and in-plane spin lifetimes. (c) Energy-dependent spin lifetime in graphene on a SiO2 substrate, which increases
with increasing defect density. Opposite scaling can be seen in panel (d), for graphene on an hBN substrate. Simulations of graphene on WSe2 were
done for a system size of 9.2 × 106 carbon atoms, and the spin polarization was calculated using KPM and the Lorentz kernel, with M = 3400
moments corresponding to an energy broadening of ∼20 meV. Simulations of graphene on SiO2 and hBN were done for a system size of 2 × 106

atoms, and the spin polarization was calculated using a Lanczos recursion with an energy broadening of 13.5 meV.
Source: Panels (a,b) are adapted from [64], while (c,d) are adapted from [309].

spin lifetime by studying the scaling behavior of nonlocal resistance using methods presented in 4. The advantage is a
possible direct comparison with experiments, and the exploration of spin transport in the crossover from diffusive to
ballistic motion [311].

Recent work investigated spin relaxation in graphene on transition metal dichalcogenide (TMDC) substrates, and
predicted the presence of giant spin lifetime anisotropy, with in-plane spins relaxing much faster than out-of-plane
spins [64]. This is depicted in Fig. 29(b), which shows the simulated spin lifetime in a graphene/WSe2 system. In the
presence of intervalley scattering the spin lifetime anisotropy can reach values of several tens, while for graphene on
typical SiO2 substrates this value is on the order of one [312]. These results have been supported and generalized using a
time-dependent perturbative treatment to derive the spin Bloch equations governing the spin dynamics at high electronic
density [313]. The predicted giant spin lifetime anisotropy has also been verified experimentally [314,315], confirming
the strong impact that TMDC substrates can have on spin transport in graphene.

Beyond the aforementioned examples, spin relaxation in graphene functionalized with thallium or hydrogen atoms
has also been studied with these methods [316,317], as has the impact of local magnetism coupled with electron–hole
puddles [65].

7.5.2. Spin Hall effect
The spin Hall effect (SHE) is another phenomenon where the Fermi sea contribution is highly relevant. It consists

of the generation of a spin current that is transverse to an applied electric field due to the presence of spin–orbit
coupling [306,318,319]. There are two mechanisms behind the emergence of SHE. The first is named the intrinsic SHE
since it occurs solely due to the spin–orbit coupling encoded in the band structure of the materials, whereas the extrinsic
SHE stems from an interplay between disorder and the states at the Fermi level [320]. In general, the spin Hall effect
measured experimentally is usually a combination of both, and there are even situations where these two effects exactly
cancel [319,321,322]. The intrinsic SHE can be considered as the time-reversal generalization of the quantum Hall effect,
in the sense that it is the sum of the Berry curvature of each band that determines the behavior of the system [320].

The Kubo formula for bulk conductivity allows one to define the main figure of merit of the SHE, namely the spin Hall
angle (SHA), which measures how much pure spin current is produced by a charge current, and is connected to transport
55



Z. Fan, J.H. Garcia, A.W. Cummings et al. Physics Reports 903 (2021) 1–69

w

f
c
t
H
S
g
a
s

d
i
n
r
h
o

o
i
a
l
t
i
t

Fig. 30. Spin Hall angle θsH for two cases of 15% gold adatoms distributed onto graphene: scattered (black) and clustered distributions (red), as
illustrated in the insets. The simulation was done in a system consisting of 4 million atoms, with one random vector and the KPM for expanding
the Green’s functions using 1500 moments and the Jackson kernel.
Source: Adapted from [324].

coefficients through [97]

θsH =
σ z
xy

σxx
, (202)

here σ z
xy is the SH conductivity and σxx is the longitudinal charge conductivity. The formal expression of the spin Hall

conductivity σsH used in numerical simulations is [320]

σsH = −2eh̄
∑
m,n

f (Em)− f (En)
Em − En

Im[
⟨
m
⏐⏐Jzx ⏐⏐ n⟩ ⟨n ⏐⏐vy⏐⏐m⟩]

Em − En + iη
, (203)

where Jzx =
h̄

2Ω {sz, vx} is the spin current operator and sz is the z-component of the spin Pauli matrices.2 This
ormula can be understood as a generalization of Aoki’s formula [290,291], presented in Eq. (183). This formula becomes
omputationally prohibitive for large systems given that it requires the full spectrum of eigenvalues and eigenvectors of
he Hamiltonian. However, the Kubo–Bastin formula and its variants remain valid given that it is derived for an arbitrary
ermitian operator, a condition that the spin current operator satisfies. This approach has been used to determine the
HA of spin–orbit-enhanced graphene in recent years [61,323–326]. One illustrative example of the SHA computed for
raphene with random adsorbed gold adatoms is shown in Fig. 30, where a large SHA is observed when gold adatoms
re deposited randomly on the graphene surface, while atomic segregation into clusters affects its energy dependence
ubstantially [324].
An additional example is shown in Fig. 31, where the intrinsic spin Hall conductivity is computed for graphene on

ifferent graphene/TMDC substrates. In this particular work it was shown that this methodology can capture both the
ntrinsic and extrinsic contributions, because the intrinsic SHE is effectively canceled by an opposite extrinsic SHE origi-
ating from disorder-induced intervalley scattering. This suppression was studied as a function of the intervalley scattering
ate in [327,328]. The recent experimental confirmation of the SHE induced by proximity effects in graphene/TMDC
eterostructures [329–331] or bilayer graphene/insulator [332] open a new playground to search for the upper limit
f SHE efficiency, a task which can be supported by the simulation methods presented here.
Others studies combining O(N) bulk Kubo approaches with multiterminal Landauer–Büttiker quantum transport meth-

ds have revealed more complexity in understanding the physics of the SHE than can be obtained from a simple theoretical
nterpretation of experimental data. For instance, Gregersen and coworkers have demonstrated how geometrical effects
llow finite samples to display transverse resistances that are reminiscent of the SHE, but which disappear in the bulk
imit [333]. Another important finding concerns the parasitic background contributions that appear when calculating
he nonlocal resistance of chemically functionalized graphene systems, which can mask spin effects or mislead the
nterpretation of experiments [324]. Importantly, this type of theoretical analysis has recently refuted the claim that
opological valley Hall currents [334,335] carried by the Fermi sea can explain large nonlocal resistance measured at the

2 The spin current density is sometime defined as Jz = − e
{s , v } which defines the spin Hall conductivity in units of e2/h.
x Ω z x
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Fig. 31. Spin Hall conductivity for pristine graphene on different TMDCs. The inset shows the scaling of the spin Hall angle with intervalley scattering
strength. The simulation was performed on a system containing 20× 106 atoms, using at least 10 random vectors and the KPM for expanding the
reen’s functions with 3000 moments and the Jackson kernel.
ource: Adapted from [328].

irac point for certain graphene/hBN interfaces [336]. A complete analysis of bulk and multiterminal quantum transport
eveals a limit of the direct connection between the valley Hall conductivity and nonlocal resistance, and shows that
on-topological dispersive edge states, resilient to (weak) disorder, give a more solid explanation for the large nonlocal
esistance [97,337].

.5.3. Quantum spin Hall effect
In 1988, Haldane [338] proposed a curious two-dimensional tight-binding lattice model exhibiting a nonzero quanti-

ation of the Hall conductance σxy in the absence of an external magnetic field. Many years after, Kane and Mele extended
the concept to the quantum spin Hall effect (QSHE) studying models of graphene nanoribbons with intrinsic spin–orbit
coupling [289]. In such model Sz-spin component is a conserved quantity and the simultaneous presence of SOC-induced
aps and well defined sample boundaries generate topologically robust spin-polarized edge states. As a result, a new state
f QSHE manifests as a quantized spin-Hall conductance and a vanishing charge-Hall conductance.
The very low micron eV bandgap of the original Kane–Mele model has impeded the observation of QSHE in clean

raphene, but the fundamental underlying mechanism has been further shown to be ubiquitous in condensed matter
339,340] and the family of two-dimensional topological insulators is being enriched regularly [341,342].

There have been several computational studies, using LSQT methods, exploring how QSHE could emerge by reinforcing
he spin–orbit coupling in monolayer graphene systems. The engineering of a robust QSHE in graphene via uniform heavy
d-atoms deposition was proposed theoretically [343,344]. However, the random distribution of ad-atoms and aggregation
ffects could be only investigated thoroughly using LSQT [316,345,346]. In Ref. [316] the change from homogeneous to
nhomogeneous distribution of Thallium ad-atoms on graphene surface was found to trigger multiple quantum Phases
rom QSHE to SHE or even some anomalous metallic states driven by cluster-to-cluster percolation transport mechanism,
obust to localization effects, and identified by a scale-independent quantum conductivity σxx ≃ 4e2/h. There is certainly
lenty of rooms to further analyze how complex and fluctuating spin–orbit coupling fields induce exotic quantum
ransport regimes in the wide variety of topological matter, and clearly LSQT stands as an enabling tool to unravel such
ascinating physical phenomena.

It is also worth mentioning the recent theoretical predictions of a canted SHE and QSHE in low-symmetry topological
aterials such as WeTe2 and MoTe2 [311,347], using LSQT for the calculation of spin Hall conductivities and spin Hall
ngles. Such unprecedented variation of the spin texture in topological states and pure spin currents has found favorable
choes in experimental data [329,348,349].

. Summary and conclusions

This paper has reviewed the development of linear-scaling numerical methods applied to quantum transport based
n the Kubo–Greenwood and Kubo–Streda formalisms. These methods provide insight into the transport physics in the
allistic, diffusive, and localized regimes, as well as in topological regimes such as the quantum Hall effect.
The fundamental issue of computational cost versus numerical accuracy of various proposed numerical schemes has

een addressed in detail, illustrating the capabilities and limitations of each. The supremacy of the time-propagation
ethods has been shown for the calculation of the dissipative conductivity, since it allows one to track the conduction
57
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egime in which the quantum conductivity is computed. This is actually critical for disordered systems since the onset of
anti)localization effects will reveal the (up)downscaling behavior of the conductivity. Meanwhile, the implementations
ased on KPM-type of polynomial expansions become much more practical in the presence of topological gaps when
ompared with time-propagation methods, and allow for a faster convergence of the results. Finally, we have illustrated
he applicability of such approaches to spin and valley Hall conductivities as well as to the time evolution of spin
ensities, while some references to the efforts to improve the scaling behavior of computational approaches for the
andauer–Büttiker conductance were also outlined.
Today, linear-scaling quantum transport methodologies stand as unique computational methodologies to explore

any emerging and complex quantum transport phenomena in modern condensed matter physics, including disordered
opological materials such as topological Anderson insulators [350–352], three-dimensional models of Dirac semimet-
ls [249,353–355], and topological insulators [95,354,356–360], which all display nontrivial transport features difficult to
ully tackle with perturbative approaches and simplified effective models.

We hope that interested readers will harness such enabling tools to investigate unexplored quantum transport
henomena in complex matter and quantum materials, and that the clarification of the capabilities of such methods,
s well as their dissemination through various dedicated open sources (see http://www.lsquant.org), will also promote
heir use in machine learning strategies [361], therefore taking part in the global efforts to bring materials simulation to
ts highest level of predictability, for the sake of scientific progress and technology innovation.
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