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Abstract— Design and optimization of vibrotactile codecs
require precise measurements of the compressed signals’ per-
ceptual quality. In this paper, we present two computational
approaches for estimating vibrotactile signal quality. First, we
propose a novel full-reference vibrotactile quality metric called
Spectral Perceptual Quality Index (SPQI), which computes a
similarity score based on a computed perceptually weighted
error measure. Second, we use the concept of Multi-Method
Assessment Fusion (MAF) to predict the subjective quality.
MAF uses a Support Vector Machine regressor to fuse multiple
elementary metrics into a final quality score, which preserves
the strengths of the individual metrics. We evaluate both
proposed quality assessment methods on an extended subjective
dataset, which we introduce as part of this work. For two of
three tested vibrotactile codecs, the MSE between subjective
ratings and the SPQI is reduced by 64% and 92%, respectively
compared to the state of the art. With our MAF approach,
we obtain the only currently available metric that accurately
predicts real human user experiments for all three tested codecs.
The MAF estimations reduce the average MSE to the subjective
ratings over all three tested codecs by 59% compared to the
best performing elementary metric.

I. INTRODUCTION

Quality assessment methods are widely used in audio and
video compression algorithm development. In the context
of haptic codec development, quality assessment methods
are equally important to guarantee high fidelity signals [1].
Concerning the tactile domain, the ongoing standardization
efforts for Tactile Internet and haptic codecs [2] have come
to fruition in vibrotactile codec proposals such as [3]–[5],
which allow for compressing vibrotactile signals in a similar
way as acoustic and visual signals. A major goal of these
efforts is to deliver tactile experiences over communication
networks with the best possible perceptual quality. This
requires accurately and effectively measuring the perceptual
quality. Thus, considering the human perceptual limitations
in the process is essential [6], [7].
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So far, perceptual quality in the tactile domain has mainly
been measured with human experimental procedures [8].
However, these experiments are time-consuming and require
recruiting many participants. Ultimately, the goal is to avoid
human assessment studies by using computable perceptual
quality metrics. Similar to other domains, the use of different
compression techniques results in different types of coding
artifacts. This in turn leads to different performances of
elementary quality metrics with their own strengths and
weaknesses. The current perceptual metrics are unable to
reflect the human experimental results consistently.

In this paper, we address this problem by proposing
two new methods. First, we propose a novel full-reference
vibrotactile quality metric called Spectral Perceptual Quality
Index (SPQI). SPQI uses the absolute threshold of vibro-
tactile perception to compute a perceptual error measure.
This error measure is then mapped to a score strictly be-
tween 0 and 1 to reflect a similarity rating closely related
to human user studies [8]. Second, we use Multi-Method
Assessment Fusion (MAF) to combine multiple quality met-
rics. Our MAF approach, called Vibrotactile Multi-Method
Assessment Fusion (VibroMAF), is inspired by Video Multi-
Method Assessment Fusion (VMAF) [9] and assigns weights
to each elementary metric using a Support Vector Machine
(SVM) to fuse the weighted quality measures into a final
score. This allows for better preserving the strengths of the
individual metrics. Additionally, we introduce a new dataset
with subjective quality ratings for training and evaluating the
proposed metrics.

In summary, we have the following main contributions:
• We introduce a new dataset with subjective quality

ratings for the vibrotactile codec from [3].
• We propose a novel perceptual vibrotactile quality met-

ric called Spectral Perceptual Quality Index (SPQI).
• We adopt Multi-Method Assessment Fusion (MAF) to

predict the subjective quality by a weighted combination
of multiple individual quality metrics.

II. RELATED WORK

In the tactile domain, the three vibrotactile codecs de-
scribed in [3]–[5], [11] represent the state of the art (Table I).
The first codec named Vibrotactile Perceptual Codec using
DWT and SPIHT (VPC-DS) was introduced in [5]. It uses
a DWT, quantization and the SPIHT algorithm together
with a psychohaptic model, which steers the quantization
to compress signals with minimal perceptual impairments.
Therefore, impairments are mostly introduced in frequency
ranges where they are not perceivable. The second codec



VC-PWQ Vibrotactile Codec with Perceptual Wavelet Quantization [3]
PVC-SLP Perceptual Vibrotactile Codec with Sparse Linear Prediction [4]
VPC-DS Vibrotactile Perceptual Codec using DWT and SPIHT [5]
ST-SIM Spectral-Temporal SIMilarity [10]

SPQI Spectral Perceptual Quality Index
VibroMAF Vibrotactile Multi-Method Assessment Fusion

PC Pearson Correlation
MSE Mean Squared Error

TABLE I: Overview of the acronyms for the relevant codecs,
perceptual metrics and performance criteria.

named Perceptual Vibrotactile Codec with Sparse Linear
Prediction (PVC-SLP) [4] employs linear prediction with
a sparsity constraint to decompose the input signal into
coefficients and a residual. These coefficients and the residual
are then quantized independently. A so-called acceleration
sensitivity function, derived from the absolute threshold of
perception, quantizes the residual. The third codec named
Vibrotactile Codec with Perceptual Wavelet Quantization
(VC-PWQ) was introduced in [3] improving on the previous
codec from [5]. Specifically, the psychohaptic model was
refined, the quantization model was changed to preserve
more information and an added arithmetic coding stage
served to achieve higher compression.

So far, one relevant perceptual metric for vibrotactile
signals has been introduced, named the Spectral-Temporal
SIMilarity (ST-SIM) [10]. It uses spectral and temporal
properties of compressed signals to compute a score between
0 and 1. First, the absolute threshold is subtracted from
the spectra of original and compressed signals and the
results are then mapped to a range between 0 and 1 using
a sigmoid function. Then, the overlap between the two
resulting functions is calculated. This operation examines
only the overlap of perceivable frequencies and not the exact
difference. In time domain, the similarity score between two
signals is calculated through a formula similar to Pearson
Correlation (PC). The time component of this metric is
therefore not perceptual. Finally, spectral and temporal scores
are combined through weighted multiplication. A empirically
selected parameter determines how strongly the spectral and
temporal scores are considered. As in previous work, in this
paper we weigh the temporal score twice as strongly as the
spectral score, which is supported by [12].

In [8], we presented a subjective assessment method
based on perceptual similarity comparisons. The subjective
assessment is performed by displaying a pair of original and
compressed signal two times consecutively with different
orderings (i.e. original signal, then compressed signal and
the reverse) to human assessors. After that, the assessors
are asked to rate the similarity of the compressed signal
to the original signals on a scale from 0 to 10 with 10 as
the highest similarity. High similarity implies high signal
quality after compression here. The experiment includes
a hidden reference and two anchor signals. The hidden
reference resembles a catch trial in which the supposedly
compressed signal is actually the original signal. This hidden
reference should receive high ratings and assessors who rate
this very low can be excluded in the post-screening step. The

anchor signals are signals containing controlled perceptual
impairments. They serve to assess whether the rating scale
is appropriate. Using this method, we recorded ratings for the
PVC-SLP and VPC-DS codecs with 19 participants, which
are also presented in [8].

The area of image and video processing already provides
a large number of codecs and quality metrics with various
configuration options. Depending on the video content, in-
dividual quality metrics perform differently with respective
strengths and weaknesses. To achieve a meaningful per-
formance for a wide range of video contents and codecs,
fusion-based quality assessment methods such as Fusion-
based Video Quality Assessment index [13] and Ensemble-
learning-based Video Quality Assessment index [14] allow
for compensating the weaknesses of individual metrics. To-
gether with Netflix, the authors of [13], [14] proposed Video
Multi-Method Assessment Fusion (VMAF) [9] to estimate
the subjective quality. VMAF combines the strengths of
multiple elementary video quality metrics such as Peak
Signal-to-Noise Ratio, Structural Similarity Index, etc. by
fusing the individual metric scores using a SVM regressor.
This approach achieves more accurate results than traditional
methods and has become the defacto standard for video
quality assessment [15]. In this work, we follow the idea
of VMAF by fusing multiple elementary vibrotactile quality
metrics.

III. SUBJECTIVE EVALUATION DATA

In this section, we introduce a new dataset with subjective
quality ratings of vibrotactile signals compressed by the
VC-PWQ codec [3]. Using the assessment method from [8],
which is largely based on MUSHRA from the audio do-
main [16], we measured ratings with ten human participants
between 20 and 65 years old. All participants reported as
healthy with normal tactile perception capabilities.

For the assessment, we selected the same 8 signals (4
materials, recorded with the 3x3 tooltip, fast and slower
speeds) as in [8] from the database of [17]. As described in
[8], these materials, aluminium grid (Signal IDs: 117, 120),
cork (Signal IDs: 133, 136), polyester pad (Signal IDs: 146,
149) and rubber (Signal IDs: 150, 153), are chosen since
they cover a broad range of vibrotactile signal characteristics
from the 280-signal database. The ratings are measured at
nine different compression ratios (CRs), namely 5, 10, 15,
20, 25, 30, 35, 40 and 45.

To enable a comparison to the previously published data
in [8], we normalize all ratings using the hidden reference.
In theory, the hidden reference should receive a rating of 10
since it is exactly equal to the original signal. In reality the
mean rating for the hidden reference signal is around 8.5 to
9. In our data, we also observe that there is almost no mean
rating above that of the hidden reference. Thus, we normalize
all ratings for each signal individually by dividing through
the mean rating of the corresponding hidden reference. Thus,
the range of these normalized ratings is now between 0 and
1. We can justify this normalization with the fact that if a
signal receives a similar rating as the hidden reference, it can
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Fig. 1: Average quality score of the normalized and inter-
polated subjective quality ratings for the three vibrotactile
codecs VC-PWQ, PVC-SLP, and VPC-DS.

be regarded as perceptually equal to the original signal and
should therefore receive the highest possible rating.

The ratings for all signals are measured for 6 different CRs
for the PVC-SLP and VPC-DS in [8]. For the VC-PWQ,
we measure ratings at 9 different CRs. Originally available
were 17 different CR levels for all codecs [3]–[5]. Thus,
to make direct comparison of computed metrics and ratings
possible, rating data needs to be available for the 17 original
CRs. In short, the 6 or 9 CRs of each signal are a subset
of these original 17 CRs. This means, we can acquire the
rating data for all CRs by interpolating the measurements
from the 6 or 9 onto the 17 CRs. To do this interpolation,
we use the interp1 function in MATLAB and interpolate
the rating measurements for each signal individually. The
specific interpolation method used is makima, which is
similar to spline but has significantly less over- and
undershoots on the edges. We verify that the interpolation
causes no visible difference in ratings by visual inspection.

Fig. 1 visualizes the normalized and interpolated sub-
jective quality ratings for the three vibrotactile codecs
VC-PWQ, PVC-SLP, and VPC-DS. We show the mean
curves over all eight signals and the standard deviation
interval. We observe that the VC-PWQ now matches the
performance of PVC-SLP for lower CRs, while for higher
CRs the VC-PWQ is the best choice. The new measurements
show slightly more variation over the CR, which we attribute
to the fact that we have fewer human subjects for these
ratings.

IV. SPECTRAL PERCEPTUAL QUALITY INDEX

We propose a novel full-reference perceptual metric called
Spectral Perceptual Quality Index (SPQI) that is able to
reflect real-life experimental results accurately. Our goal is
to avoid some of the shortcomings of existing metrics and
produce more accurate results.

Fig. 2 depicts the process of computing the SPQI. To
compute the SPQI of a compressed signal c[n] with respect

to its original signal s[n], we first divide the signals into
blocks ci[n] and si[n]. The blocks are transformed with a
DCT transform to obtain Si[m] and Ci[m], respectively.

We first subtract the absolute threshold of perception T [m]
from Si[m] and Ci[m]. This threshold is calculated as a
function of frequency as described in [3]. This subtraction
in dB is a filtering operation, where the most perceivable
parts of each block are amplified. We receive the perceptually
weighted spectra Sw,i[m] and Cw,i[m], which are trans-
formed from dB to power. These two weighted spectra are
then subtracted from each other. This gives us a perceptually
weighted difference spectrum. Then, we calculate the sum
of all absolute values of the resulting difference spectrum
and normalize by the sum of the absolute values of Sw,i[m].
Since we have a power spectrum, the summation of all values
corresponds to the calculation of the energy of the difference
spectrum. After that we transform back to the dB domain.

The resulting value ep,i can be regarded as a measure for
the perceptual error, as it resembles a perceptually weighted,
normalized Mean Squared Error (MSE). In contrast to an
objective error measure, it contains information on the per-
ceptual relevance of the error, which was introduced into the
compressed signal.

We assume that humans tolerate a certain amount of this
perceptual error up to some threshold before it becomes
noticeable. This means that for a low value of ep,i the SPQI
should be close to 1 since perceptual signal quality is high.
Conversely, for ep,i being high, the SPQI should be close
to 0, since a high perceptual error means low signal quality.
In between, the SPQI value should be declining around the
threshold value τ . A mapping from ep,i to an SPQI score
that has the described properties is

SPQIi =
1

2
(1 − tanh(η(ep,i − τ))) =: Ξ(ep,i). (1)

Here, the parameter η controls the slope by which the
SPQI declines around τ . To the best of our knowledge, no
studies exist that would allow us to derive optimal values
for τ and η. Thus, we aim to find close-to-optimal values
for these two parameters by using the available data. We
describe the derivation of these parameters in Section VI-B.

Finally, we receive the SPQI value SPQIi for the i-th
block. The SPQI of c[n] is then calculated as the mean of
SPQIi over all i. This enables us to accurately measure the
vibrotactile signal quality reflecting human perception.

V. MULTI-METHOD ASSESSMENT FUSION

Next, we propose a Multi-Method Assessment Fusion
(MAF) approach for predicting the subjective quality called
VibroMAF. VibroMAF is inspired by VMAF [9], which is
the defacto standard for video quality assessment [15]. We
follow the idea of VMAF by fusing multiple elementary
vibrotactile quality metrics.

Every individual metric has its own strengths and weak-
nesses, depending on the source signal, the employed codec,
or the degree of distortion. Fusing the individual metrics into
a final score combines the strengths of all input metrics.
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Fig. 2: SPQI computation process.
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Fig. 3: Workflow of the proposed VibroMAF. The SVM
regressor determines the weight for each individual metric
score calculated from the compressed signal c[n] and original
signal s[n].

Similar to VMAF, we train a Support Vector Machine (SVM)
regressor to assign weights to the elementary metrics and
fuse them into a single quality score.

Fig. 3 visualizes the workflow of the proposed SVM based
metric fusion. VibroMAF considers the Normalized Signal-
to-Noise Ratio (NSNR), the ST-SIM, and the proposed
SPQI as input for the SVM. The NSNR is calculated by
normalizing all SNR values by 75 dB and restricting the
output to the range of 0 to 1. The SVM combines the
weighted metric scores into a final output. This results in
an accurate and comparable estimation of the signal quality
and allows for extending MAF with future elementary quality
metrics to further improve the estimation.

VI. EVALUATION AND RESULTS

In this section, we define the performance evaluation
criteria, discuss the experiments conducted to evaluate the
proposed approaches and present the results.

A. Performance Criteria

We first define the premise on which we evaluate the
suitability of perceptual metrics. We measure the MSE and
PC of the estimated quality scores compared to the scores of
the subjective experiments. We compute the two measures
using the ratings for all eight signals rather than just the
overall mean rating.

The PC provides insights how well the computed metric
values correlate with the real ratings. This is important be-
cause in quality assessment, we often are evaluating quality
by comparing. Therefore, we are interested to know if the
metric can discern differences in perceptual quality between
codecs and different CRs.

Metric VC-PWQ [3] PVC-SLP [4] VPC-DS [5]

min MSE SPQI 0.006 0.028 0.005

MSE ST-SIM [10] 0.017 0.009 0.064

max PC SPQI 0.843 0.876 0.960

PC ST-SIM [10] 0.837 0.964 0.921

TABLE II: Performance comparison of SPQI and ST-SIM for
the vibrotactile codecs VC-PWQ, PVC-SLP, and VPC-DS.

The MSE determines how close the metric values are to
the ratings. Intuitively, the best metric is the one that provides
scores that are equal to the experimental ratings. Thus, we
seek to achieve the smallest possible MSE.

B. SPQI

We evaluate the SPQI on the dataset of 8 signals described
in Section III by computing the PC and MSE as described in
Section VI-A. We do so by varying the parameters τ between
−5 dB and 0 dB with steps of 0.1 dB and η between 0 and
1 with steps of 0.05. The block length is 512 samples. Fig. 4
shows the resulting MSEs and PCs for all three codecs.

First, we see that the results for VC-PWQ and VPC-DS
are similar, whereas PVC-SLP leads to a different outcome.
In order to assess, whether the SPQI can outperform the
ST-SIM, we compute the minimum MSE and maximum PC
values over η and τ of the SPQI for all three codecs in
Table II. Comparing to the values of ST-SIM, we can see that
for the PVC-SLP the SPQI never achieves the performance
of ST-SIM. For the other two codecs however, it is possible
to achieve substantially better ratings with the SPQI.

To find the close-to-optimal set of parameters, we optimize
jointly for the VC-PWQ and VPC-DS. This is justified
since the plots in Fig. 4 for these two codecs are highly
similar. Maximizing the PC gives us τ = −3.1 dB and
η = 0.4. However, for these values the MSE is poor with
0.018 and 0.014 for the VC-PWQ and VPC-DS, respectively.
Minimizing the MSE results in τ = −2.0 dB and η = 0.3.
Using those parameters minimizes the MSE of VC-PWQ and
VPC-DS to 0.007 and 0.006, respectively. We achieve a PC
of 0.839 for VC-PWQ and 0.960 for VPC-DS. Thus, we see
that the PC is almost at the maximum value. Fig. 4 depicts
the chosen values of τ and η in red points.

In Fig. 5, we show the resulting mean curves of the ratings
from Fig. 1, the SPQI, and ST-SIM for all eight signals. For
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Fig. 4: MSE (first row) and PC (second row) as a function of τ and η for the three examined vibrotactile codecs averaged
over all test signals. The red dot highlights the chosen values of η = 0.3 and τ = −2.0.
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Fig. 5: Comparison of the SPQI (dashed) and ST-SIM
(dash-dotted) to the subjective ratings (solid) for the three
vibrotactile codecs VC-PWQ, PVC-SLP, and VPC-DS
.

the PVC-SLP, the ST-SIM matches the ratings closer, while
for the VC-PWQ and VPC-DS our new SPQI is superior.

C. VibroMAF

We train the SVM using the dataset with subjective
ratings introduced in Section III. We select six of the eight
signals for training and two remain for testing. The two
test signals selected are aluminium grid - fast (120) and
polyester pad - slower (149) as representative test signals of
different material classes and recording speeds. We configure
the SVM regressor with a Radial Basis Function kernel, a
regularization parameter of 3000, and an epsilon of 0.1. All
configurations we used were determined empirically.

We evaluate the performance of VibroMAF on the two

Metric All Codecs VC-PWQ [3] PVC-SLP [4] VPC-DS [5]

MSE VibroMAF 0.011 0.007 0.019 0.006

MSE SPQI 0.027 0.009 0.067 0.006

MSE ST-SIM [10] 0.037 0.019 0.012 0.080

MSE NSNR 0.440 0.452 0.526 0.341

PC VibroMAF 0.918 0.854 0.901 0.957

PC SPQI 0.800 0.807 0.741 0.982

PC ST-SIM [10] 0.775 0.831 0.945 0.918

PC NSNR 0.453 0.433 0.739 0.536

TABLE III: Performance comparison of VibroMAF with the
elementary quality metrics SPQI, ST-SIM, and NSNR for the
vibrotactile codecs VC-PWQ, PVC-SLP, and VPC-DS.

test signals with subjective ratings. We encode the signals at
different quality levels with the vibrotactile codecs VC-PWQ,
PVC-SLP, and VPC-DS. We measure the MSE and PC
of VibroMAF and the elementary quality metrics SPQI,
ST-SIM, and NSNR. Table III summarizes the resulting
quality scores for the individual codecs and the average of
all codecs.

On average, VibroMAF performs best with an MSE
of 0.011 and a PC of 0.915. For the individual codecs,
VibroMAF shows the best performance on VC-PWQ for both
MSE and PC. The proposed elementary metric SPQI shows
together with VibroMAF the lowest MSE for the VPC-DS
codec and the highest PC for this codec. For the PVC-SLP
codec, the ST-SIM achieves the best performance in terms of
MSE and PC. Notably, the MSE of the NSNR is significantly
higher than the other metrics.

While VibroMAF does not outperform ST-SIM for the
PVC-SLP codec, it benefits from the strengths of the other
metrics and hence shows the best performance on average.
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the vibrotactile codecs VC-PWQ, PVC-SLP, and VPC-DS.

Fig. 6 visualizes the VibroMAF scores estimated and the
subjective ratings for the individual codecs highlighting the
precise matches for all codecs. Contrarily, the performance
of the elementary metrics is highly correlated to the selected
codec. A possible explanation for the strong performance of
the metric-encoder pairs (VC-PWQ, SPQI) and (PVC-SLP,
ST-SIM) is that the metrics represent the strengths of the
respective codec. This demonstrates the ability of VibroMAF
to combine the strengths of all individual metrics. Further,
it enables a better comparability among the signal qualities
of different codecs. Additionally, VibroMAF can be further
improved with future quality metrics and vibrotactile codecs.

VII. CONCLUSION

In this paper, we proposed the novel metric SPQI to
accurately estimate the perceptual quality of compressed
vibrotactile signals. The SPQI computes the perceptually
weighted error measure and maps this error measure to a
similarity score between 0 and 1. Inspired by VMAF, we
developed the fusion method VibroMAF which combines
multiple elementary vibrotactile quality metrics. This allows
for combining the strengths of multiple elementary metrics.
We used a SVM to fuse the individual scores of SPQI,
ST-SIM, and NSNR into a final quality estimation. Addi-
tionally, we introduced a new dataset with subjective ratings
of vibrotactile signals which was used for training and the
evaluation of the proposed metrics.

With the SPQI, we reduced the MSE between the sub-
jective ratings and the computed metric by 64 % and 92 %
compared to the state of the art for two of the three latest
vibrotactile codecs, while for the third codec ST-SIM is
superior. With VibroMAF we reduce the average MSE to the
subjective ratings over all three codecs by 59 % compared to
best performing elementary metric.

While VibroMAF does not outperform all elementary
metrics for all vibrotactile codecs, the results demonstrate
that fusing individual metric scores allows for compensating
weaknesses of the elementary metrics for certain codecs.
Further, VibroMAF is well suited for generating accurate and
comparable quality ratings across all three codecs. For future

work, VibroMAF is extendable with new vibrotactile quality
metrics to further increase the resulting accuracy. We provide
VibroMAF as well as the elementary metrics as Open Source
Python implementation available on GitHub1 for a simple
usage and extension with future metrics.
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