
Technische Universität München
Fakultät für Informatik

Earthquake and Tsunami Simulation with
high-order ADER-DG methods

Leonhard Andreas Rannabauer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Francisco Javier Esparza Estaun

Prüfer der Dissertation: 1. Prof. Dr. Michael Georg Bader

2. Prof. Dr. Michael Dumbser

Die Dissertation wurde am 19.01.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 16.05.2022 angenommen.

I do not know what I may
appear to the world, but to
myself I seem to have been only
like a boy playing on the
seashore, and diverting myself
in now and then finding a
smoother pebble or a prettier
shell than ordinary, whilst the
great ocean of truth lay all
undiscovered before me.

Isaac Newton

iii

Acknowledgments

I want to thank Michael Bader for giving me the opportunity to do this
exciting journey, for his support, guidance and for throwing me in cold
water at the right moments.

My gratitude goes to Kenneth Duru, for the long hours we worked to-
gether on our joint project, for his patience and mentoring.

I thank the whole ExaHyPE crew Alice, Anne, Ben, Dominic, Duo, Jean-
Matthieu, Maurizo, Michael, Philipp and Tobias, for making the project not
only a success but also enjoyable.

My friend Carsten for the four years in our office that we spent with
creative discussions and joint cursing. I owe you a lot.

My friend Lukas for his support, ideas and book recommendations, who
especially made the last year more enjoyable.

Thanks go to my school mates, without which I probably would have
finished this thesis one year earlier, but with way less fun.

My parents for their unconditional support and food supply.
And finally and most important Mirjam, for going with me through the

ups and downs of the past five years. Without you this whole work would
not haven been possible.

What I enjoyed most about my time in academia was the collaboration
with motivated and inspiring people, who understand the importance of
good scientific work and dedicate their careers to that cause.

- Thanks to all of you.

iv

Abstract

Automated, efficient codes are the key to enable novel approaches in earth-
quake and tsunami science as urgent computing, probabilistic seismic and
tsunami analysis or uncertainty quantification.

In this work I introduce numerical solvers based on the ADER discon-
tinuous Galerkin (DG) method to model earthquakes and tsunamis. The
characterizing feature of the ADER-DG method is its element local time-
integration, that easily allows to reach high convergence orders in time.
High arithmetic intensity of its main kernels, which lead to high perfor-
mance on current supercomputing architectures and a reduced communica-
tion overhead are additional advantages of the method.

I present the realization of an ADER-DG method and a Runge-Kutta
DG method of second order for the shallow water equations in the dynamic
adaptive mesh framework sam(oa)2. I render the a posterior finite vol-
ume limiter of the ADER-DG scheme to be well-balanced and positivity
preserving. In a time-to-solution comparison for hardware optimized im-
plementations of both schemes, I break down their performance in several
factors based on the meshing infrastructure, on hardware optimizations and
on characteristics of the simulated problem.

In order to enable the sourcing of tsunamis with the computed displace-
ments from seismic simulations, I introduce a pipeline for linked simulations.
The pipeline includes a novel Fourier filter to erase fast traveling seismic
waves from the earthquake output that cannot be represented properly in
the tsunami model.

I introduce the ExaSeis framework for dynamic rupture earthquake si-
mulations with the ExaHyPE-Engine on dynamically refined curvilinear
meshes. As the established artificial boundary conditions produce spurious
reflections, ExaSeis provides an implementation of the first discontinuous
Galerkin method with perfectly matched layers. Finally, I introduce a new
automated meshing approach, based on the transfinite interpolation to rep-
resent faults and topographies with curvilinear meshes.

v

Contents

1. Introduction 1

2. High order discontinuous Galerkin methods for tsunamis 6
2.1. Introduction . 6
2.2. The sam(oa)2 framework . 8
2.3. The shallow water equations 12
2.4. Nonlinear DG for the SWE on triangular meshes 16
2.5. The sam(oa)2-flash code . 26
2.6. An ADER-DG method for the SWE 29

3. Verification of the tsunami methods 39
3.1. Introduction . 39
3.2. The resting lake scenario . 39
3.3. A single wave on a sloping beach 42
3.4. The radial dam break scenario 43
3.5. The oscillating lake scenario 47
3.6. Okushiri: Wave on a complex bathymetry 49
3.7. The Sumatra-Andaman tsunami 53

4. Comparing time-to-solution for Runge-Kutta and ADER-DG
methods. 57
4.1. Introduction . 57
4.2. A memory-bandwidth model for sam(oa)2 59
4.3. The roofline model for sam(oa)2 65
4.4. Node level optimizations . 67
4.5. Degrees of freedom per second 70
4.6. Time to solution . 77
4.7. Conclusion . 80

vi

Contents

5. Linking of earthquake and tsunami codes 81
5.1. Sourcing tsunamis with the shallow water equations 83
5.2. The method of Tanioka and Satake 85
5.3. A Fourier filter to erase fast seismic waves 87
5.4. Conclusion and discussion 100

6. The ASCETE framework 102
6.1. Introduction . 102
6.2. Metrics and nomenclature 103
6.3. Set-up for the tsunami models 105
6.4. Earthquake-tsunami models 105
6.5. Subduction-earthquake-tsunami models 112
6.6. Time dependent vs. time independent source 118

7. ExaSeis: A curvilinear ADER-DG method for earthquakes 122
7.1. Introduction . 122
7.2. Elastodynamics in first order formulation 123
7.3. Perfectly Matched Layers in a nutshell 131
7.4. Cauchy-Kovalevskaya scheme on curvilinear meshes 136
7.5. A physically motivated numerical flux 144
7.6. Curvi: An automated mesh generator 147

8. Verification and applications of ExaSeis 165
8.1. Introduction . 165
8.2. Kinematic point sources . 166
8.3. Dynamic rupture . 170
8.4. The Zugspitze scenario . 183
8.5. The Húsav́ık-Flatey fault . 191

9. Conclusion and discussion 196

Appendices 199

A. Fourier transformation of displacements 199

B. The three dimensional transfinite interpolation 202

Bibliography 204

vii

CHAPTER

1
Introduction

The origin of computer simulations lies in the second world war and its
aftermath: The first Turing-complete, digital computer ENIAC was used
by the allied forces for the optimization of ballistic curves and computer
simulations on the MANIAC system played a fundamental role in the Man-
hattan project for the development of the atom and the H-Bomb [52]. Since
the second world war, computer hardware and numerical methods have con-
siderably evolved and have become a decisive element in the assessment of
natural disasters and the prevention of destruction. Large scale simula-
tions forecast the weather, model climate change, and assess the hazard of
tsunamis and earthquakes [14, 31, 78, 87].

Compared to the early simulations of the US-military, the available com-
puting power has exponentially increased, closely following the predictions
of Moore’s law. While the ENIAC system could perform approximately 500
floating point operations per second in 1946 [62], the upcoming high perfor-
mance computing (HPC) system El Capitan reaches a theoretical 2.0× 1018

floating point operations per second [125]. In this early stage of the exascale
area, forward models can be simulated in very high detail and with complex
physical models [106, 132].

In this work, we consider the simulation of linked earthquake-tsunami
events. For example, the devastating Indian Ocean tsunami was seismically
triggered by the Sumatra-Andaman earthquake that occurred on Decem-
ber 26th 2004. The tsunami caused more than 283,000 deaths in densely
populated, poor areas at the coasts of Indonesia, Thailand, Sri Lanka and

1

1. Introduction

11 other countries [85]. Alongside the enormous size of the event, the high
number of casualties was caused by unpreparedness and the lack of a work-
ing early-warning system, which did not exist as earthquakes and tsunamis
in this magnitude were not expected in the Indian ocean [114].

The need for large-scale simulations originates in the highly varying spa-
tial scales that earthquake and tsunami forward simulations have to in-
corporate: In case of earthquake simulations, fracture mechanics on faults
have to be resolved in meters [79]. Additionally, a high spatial resolution is
required to represent the high frequency content of emerging seismic waves.
In contrast, the study region usually includes several countries and is in
the range of thousands of kilometers. For the simulation of tsunamis the
inundation process at a coast has to be resolved as detailed as possible,
while the modeled tsunami can travel hundreds of kilometers before reach-
ing it. To handle the resulting large number of unknowns large-scale, high
performance codes are required.

While earthquake and tsunami prediction using computers is still out of
reach [16], exascale computing facilitates plausible hazard assessment due
to earthquake and tsunami events: For example, in urgent computing a
dedicated infrastructure of monitoring facilities and HPC resources is build
to automatically reproduce earthquakes or tsunamis, based on measured
initial conditions, within hours after an event happened [102].

The available computing power allows to look at events in a wider angle:
In Probabilistic Seismic Hazard Analysis (PSHA) and Probabilistic Tsunami
Hazard Analysis (PTHA), the goal is to estimate the probability1 that an
area is destructed by earthquakes or tsunamis [16, 61, 65, 116].

Closely related to PTHA and PSHA is the field of uncertainty quantifica-
tion (UQ): As the exact parameters of models are usually based on assump-
tions, they come with a certain degree of uncertainty. In UQ we produce
a probability distribution of event outcomes, based on the uncertainty of
model parameters [115].

In PTHA, PSHA and UQ the continuous space of possible events or
parameters has to be discretized, which leads to the necessity to run up
to millions of simulations, as for example required for Bayesian and Monte
Carlo methods [58, 115].

In this work we address several requirements that urgent computing,
PTHA, PTSA, and UQ share: First, the numerical codes must provide an
accurate solution as quickly as possible, which means that the numerical
scheme and its implementation have to optimize time-to-solution, while

1ie. the probability distribution to a so called intensity measure

2

including all available data. In case of earthquake simulations, this includes
that the scheme is able to represent the topography and fault structures
accurately, as the structure of a fault has a direct influence on the rupture
mechanics of the earthquake and the topography influences seismic waves
on the surface with wave-scattering and amplification effects [10, 56]. For
tsunami simulations, inundation at the coast has to be resolved properly
and tsunamis have to be initialized with accurate sources [15, 141]. Second,
the set-up of initial conditions and meshes for single simulations should be
done with minimal effort and preferably be automated. In case of urgent
computing this aspect is required by design, in UQ, PTHA and PSHA the
set-up of millions of single simulations quickly multiplies to a considerable
effort.

The earthquake and tsunami model are both based on hyperbolic partial
differential equations: We use the linear elastic wave equation with sponta-
neous dynamic rupture for the simulation of earthquakes [3, 86]. Tsunamis
are modeled with the non-linear shallow water equations [86, 137].

To solve both hyperbolic partial differential equations (PDEs), our choice
falls on the high order discontinuous Galerkin (DG) methods. Their ele-
ment local high order approximation leads to high convergence orders and
a high arithmetic intensity of the main kernels, compared to low order finite
volume (FV) methods [18, 48, 131]. Compared to finite-difference methods,
it is easy to include topography [39]. As only the adjacent neighbors are
considered in the update of an element, the method is well suitable to be
parallelized with a domain decomposition approach.

We focus on a subset of the discontinuous Galerkin method, the arbitrary
high order discontinuous Galerkin (ADER-DG) method [33, 55, 126]. The
unique characteristic of ADER-DG is the integration in time, which is solved
element-locally in a single predictor step. The convergence order of the
ADER-DG method is determined by a one-dimensional interpolation rule
in time, such that we can easily reach higher orders in space and time by
increasing the element-local polynomial representation. However, in case
of non-linear PDEs the element-local solution of the scheme is prone to
instabilities caused by emerging shocks. In order to address this problem
an a posteriori sub-cell finite volume limiter is provided for the scheme
[36, 38].

For applications in computational seismology, linear high order ADER-
DG improves time-to-solution [20]. As we cannot translate this result to
ADER-DG for the non-linear SWE, we perform an extensive analysis in
time-to-solution as part of this work. In order to see how well the method
compares to established approaches, we provide a second order Runge-Kutta

3

1. Introduction

DG method as reference [135, 136]. In case of the ADER-DG method we
resolve inundation with the a posteriori sub-cell finite volume limiter, the
Runge-Kutta method a priori applies a Barth Jespersen typed limiter. To
show the whole spectrum of time-to-solution, we decompose it into factors
attributed to the underlying meshing-infrastructure, factors of the numeri-
cal schemes and factors of their hardware optimization.

While wetting and drying is a solved problem for finite volume methods
[57, 127], only tailored DG methods based on RK time-stepping exist [59,
117, 118, 142]. The original version of the finite volume limiter of the
ADER-DG scheme is not positivity preserving nor well-balanced, such that
we have to render to fulfill these constraints.

To numerically solve the elastic wave equation, we introduce the linear
ADER-DG method on curvilinear meshes. With curvilinear meshes, we can
represent structures and topography accurately with splines of high order
polynomials [43]. As the common absorbing boundary conditions cause
reflections and disturb the solution, we introduce a novel perfectly matched
layers approach [42]. Finally we automate the generation of meshes with
an inductive domain splitting approach.

We implement the non-linear ADER-DG method, for the simulation of
tsunamis with the SWE, in the dynamic adaptive mesh framework sam(oa)2

[95, 96, 103]. In order to simulate earthquakes, we implement the linear
ADER-DG method in the ExaHyPE-Engine to solve for the linear elastic
wave equation in its first order formulation [104, 126].

sam(oa)2 as well as the ExaHyPE-Engine are frameworks for the solution
of hyperbolic partial differential equations in two (sam(oa)2 and ExaHyPE-
Engine) and three dimensions (ExaHyPE-Engine only) [95, 96, 104]. The
frameworks come with finished parallelization and load-balancing strategies
for shared and distributed memory, based on OpenMP (sam(oa)2), TBB
(ExaHyPE-Engine) and MPI (both). In order to highly resolve significant
features of a solution, as tsunami fronts or rupture mechanics on a fault,
both frameworks enable the simulation on dynamically refined meshes.

In order to generate realistic sources for tsunami simulations, we intro-
duce a linking pipeline. The pipeline transforms the displacements gener-
ated by an earthquake simulation, into a compatible source for the subse-
quent tsunami. As the earthquake simulation contains waves, we can not
represent in the tsunami simulation, we develop a novel Fourier filtering
approach.

This thesis is organized in three main parts: Chapter 2 to Chapter 4
consider the simulation of tsunamis with high order DG methods in the
sam(oa)2 framework. The linking of earthquake and tsunami methods is

4

the content of Chapter 5 to Chapter 6. ADER-DG methods to simulate
earthquakes with the ExaHyPE-Engine and the introduction of ExaSeis
are presented in Chapter 7 and Chapter 8.

In Chapter 2, we give a brief introduction to the shallow water equations
and the challenges for their numerical solution. We then introduce the
sam(oa)2-framework and a Runge-Kutta DG method of second order with
Barth-Jespersen typed limiting and an ADER-DG methods with our version
of a posteriori finite volume limiting. In Chapter 3 we verify both meth-
ods against a series of established benchmarks and reproduce the tsunamis
subsequent to the Sumatra-Andaman earthquake. A comparison in time-
to-solution for both methods follows in Chapter 4.

The linking pipeline to transform results from earthquake simulations
into tsunami sources is presented Chapter 5. Our novel filtering approach
to remove fast seismic waves is introduced in Section 5.3. The ASCETE
Framework in Chapter 6 applies the developed techniques in a series of
benchmarks.

We introduce an ADER-DG method for the simulation of dynamic rup-
ture events, using the ExaHyPE-Engine as back-end, in Chapter 7. Here
we introduce perfectly matched layers in order to avoid reflections form
boundaries and present an automated meshing approach. The method is
finally verified in a series of community benchmarks in Chapter 8.

5

CHAPTER

2
High order discontinuous Galerkin methods for

the simulation of tsunamis

2.1 Introduction
In this first chapter, we want to look into two discontinuous Galerkin
schemes for the shallow water equations to simulate tsunamis, that we re-
alized in sam(oa)2. Both methods have successfully been applied for the
simulation of tsunami events [4, 92, 103].

First we want to put our schemes in the right context and highlight
their main characteristics. For that reason, we enumerate some of the most
established codes and approaches for the SWE: One of the most notable
codes to simulate tsunamis is the geoclaw package. The SWE are discretized
by a second order finite volume REA (Reconstruct-Evolve-Average) scheme
on Cartesian meshes [86]. Wetting and drying are treated by advanced
Riemann solvers, e.g. with the augmented Riemann solver by George [57].
In order to avoid oscillations, slopes in the reconstruction step are limited
with TVD (Total Variation Diminishing) limiters [29]. To track wave fronts
and inundated regions with high resolution, the mesh can be dynamically
refined with a block structured approach.

Similar to geoclaw is the Tsunami-HySEA code. Tsunami-HySEA em-
ploys a second order finite volume Polynomial Viscosity Matrix (PVM)
scheme [48] to solve the two-layer SWE [48]. Here, well-balancedness and
positivity are achieved by a special Roe linearization. In addition to the

6

http://www.clawpack.org/geoclaw
https://edanya.uma.es/hysea/index.php/models/tsunami-hysea

2.1. Introduction

simulation of tsunamis generated by earthquakes, Tsunami-HySEA can
model landslide-tsunamis. Domains are discretized with statically struc-
tured Cartesian meshes, where refinement is acquired by nesting grids. This
approach does not allow dynamically refined meshes and regions that need
high resolution have to be estimated a priori. However its regularity suites
current GPU architectures [7].

Both codes are based on low-order finite volume schemes, which usually
show a very high robustness against oscillations and allow the resolution wet
and dry fronts easily. However, their low-order approximation leads to low
arithmetic intensity of the main kernels which usually is doomed to remain
memory bound on current CPU architectures. In contrast, we know that
high order discontinuous Galerkin methods can reach the compute bound
regime, from several examples in other fields [20, 131].

High order DG methods for the SWE are usually a variation of Runge-
Kutta discontinuous Galerkin (RK-DG) methods [59, 117, 118, 142]. While
the high order representation allows us to reach high arithmetic inten-
sity, it comes with several disadvantages: The intra-element high order
polynomial representation is sensitive to oscillations caused by Gibb’s phe-
nomenon. Modeling wetting and drying cells becomes more complicated, as
inner element nodes have to be treated separately. For convergence orders
above four, the number of RK stages grows super-linear, which is known as
Butcher barrier [23, 24]. To encounter the problems arising for inundation
and oscillations, RK-DG schemes are combined with some type of slope
limiting [142]. As these limiters work with the solution after a RK stage,
the whole mesh has to be iterated a second time.

In this work we introduce two discontinuous Galerkin methods that follow
new, alternative approaches to limit solutions. The first method is a second
order RK-DG method that resolves oscillations with a newly developed
Barth Jespersen typed limiter [135, 136]. The second is an arbitrary high
oder discontinuous Galerkin (ADER-DG) method with a posteriori finite
volume limiting [33, 36, 103].

In this chapter, we first introduce the sam(oa)2 framework in Section 2.2,
which is the base for both methods. After we introduced the shallow water
equations in Section 2.3, we derive the numerical schemes in Section 2.4,
and look at the different time integration methods in Section 2.4.2. The
Barth-Jespersen typed limiter used in the RK-DG method is introduced
in Section 2.5.2, our modifications for the a posteriori limiter to suite the
SWE in Section 2.6.2.

7

2. High order discontinuous Galerkin methods for tsunamis

2.2 The sam(oa)2 framework
sam(oa)2 is a framework designed for the simulation of hyperbolic partial
differential equations on dynamically refined triangular meshes in two di-
mensions, created by Oliver Meister and Kaveh Rahnema [95, 96]. The
basic geometrical element in sam(oa)2 is a right triangle, which is refined
by newest vertex bisection.

sam(oa)2 acts as an all-in-one solution to several problems: It manages
dynamic adaptive mesh refinement on the cell level, where it ensures that
no hanging nodes are generated and the mesh remains conforming. The
framework acts as memory manager. Cells, edges and nodes of the mesh
are stored and loaded by a stack and stream approach. Dynamic load
balancing over MPI ranks and OpenMP threads is accomplished on a subset
of cells, called a section. Load weights are determined by a chains on chains
approach which recently has been extended to a work stealing approach by
Samfass et al. [112].

Compared to frameworks such as p4est [22], which provides no memory
management, or Dune [12, 13], where several grid implementations are al-
lowed, sam(oa)2 unifies these concepts for a single application set. For the
price of less flexibility, all concepts are tailored particularly for the underly-
ing triangular mesh. A similar approach for Cartesian meshes can be found
in the Peano framework [138].

To separate the underlying concepts from an actual numerical algorithm,
a hook layer for data types and operations on elements is provided.

2.2.1 Space filling curve and stack and stream approach
To recapture the properties and advantages of the Sierpinski space fill-
ing curve (SSFC) and the underlying memory management, we look at an
example adaptive refined mesh in Figure 2.1 (a). Starting at two trian-
gles forming a square, each of the cells in the mesh is the result of several
newest vertex bisections of coarser triangles. The color of the cells indicates
the number of refinements that have been performed, between two (white
cells) and five times (black cells). We can represent the mesh as a binary
refinement graph, if we interpret every bisected coarse triangle as a node
and the two resulting refined triangles as its children (b). In the resulting
graph, triangles that are present in the mesh appear as leaves, inner nodes
implicitly represent bisected triangles and the two roots correspond to the
two initial level triangles.

8

2.2. The sam(oa)2 framework

(a) (b)

(c)

1

23

4
5

6
7

8

9 10

11

12
13

14

15

16

17

18

(d)

18
17
16
15
14
13
12
11
10

9
Element Operations

8
7
6
5
4
3
2
1

Stream In Stream Out

Figure 2.1.: (a) An example triangular mesh in sam(oa)2. The grayscale
indicates the refinement depth of the cell. (b) Corresponding
binary tree. Inner nodes correspond to a bisected triangle.
Depth first search results in the Sierpinski space filling curve
in (c). The ordered cells are stored in streams, from which
they are processed and stored in output streams (d).

If we apply depth first search on the graph, we impose a one dimensional
ordering on its leaves, which is equivalent to mapping all triangles of the
mesh on the SSFC (c). The biggest advantage of this method is that we
can find such an SSFC for every arbitrary mesh that has been constructed
by newest vertex bisection.

Having a one dimensional ordering allows us to store all triangles in a

9

2. High order discontinuous Galerkin methods for tsunamis

cell stream (d), which can be realized as an array. Besides metadata for its
geometry, each triangle holds information that we have to store persistently
for the numerical scheme we want to realize, like degrees of freedom or
material parameters.

To process the data stored in each triangle, we traverse through the cell
stream. Each triangle we take from the cell stream is loaded from memory,
updated with an element operator and stored back on an output stream.
The output stream, storing triangles in reverse order, is then used as in-
put stream of the next traversal. The cell stream approach avoids direct,
possibly non-contiguous, memory accesses between elements.

In order to update cells, we require data from neighboring elements, as
for example in the computation of fluctuations. For this reason sam(oa)2

provides an interface to project data from triangles on adjacent edges and
to merge them to a cell update afterwards. Illustrated in Figure 2.2 is the
SSFC of the previous example with a focus on the order of edge accesses. In
case edges are crossed by the SSFC (black line), both adjacent triangles are
loaded contiguously, which allows us to directly perform projections onto
the edge and compute an element update.

All edges that are not crossed by the SSFC are either located on the right
(red) or left (green) side of the curve. For both types sam(oa)2 introduces
two additional input streams. On all colored edges we persistently keep up-
dated projected solutions of both adjacent triangles. On edges of the same
color, the SSFC imposes a stack-like access pattern: An edge is loaded the
first time, when the first of its adjacent triangles is traversed (Figure 2.2 a).
The edge holds the projected solution of both adjacent triangles, stored in
the previous traversal, from which we compute an update for both triangles
(Figure 2.2 b). We can directly apply the update to the first adjacent cell
and store it for the second on the edge. Finally, we project the updated
solution of the first cell onto the edge. After all operations have been per-
formed on the first adjacent triangle the edge is pushed on an edge-stack.
The stack-property of the SSFC ensures that it is the top element of the
stack when its second adjacent triangle is traversed (Figure 2.2 c). With
the traversal of the second triangle, we pop the edge from the stack and
apply the stored element update (Figure 2.2 d). After that, we project the
updated solution of the second cell onto the edge, such that it now stores
projections of both updated solutions. Finally, the edge is pushed on an
edge output-stream, which is used as the input-stream of the next traversal.

This update scheme matches the element and edge operators for finite
volume and discontinuous Galerkin methods and allow us to realise the
discontinuous Galerkin methods in chapter Section 2.5 and Section 2.6.

10

2.2. The sam(oa)2 framework

(a)

1

23

4

(b)

1
2
3

4

5
Stream In Stack Stream Out

1. Compute Element Updates
2. Update Element
3. Project Element

(c)

1

23

4

5

(d)

5
3
41

2

Stream In Stack Stream Out

1. Update Element
2. Project Element

Figure 2.2.: Edge traversal and stack in sam(oa)2. (a) When the first tri-
angle adjacent to a colored edge is loaded, the edge is loaded
from an input stream. (b) We compute an element update
for both adjacent triangles, with the cell projections form the
last iteration. The triangle is updated and its projection on
the edge updated. We push the edge onto a stack. (c) When
the second adjacent triangle is loaded the edge is now on top
of the stack. (d) We can pull it and update the second ad-
jacent triangle with the element update we computed in (b).
Finally, we project the second triangle onto the edge and store
it on an output stream.

11

2. High order discontinuous Galerkin methods for tsunamis

b > 0

p = ρg(H − z)
h

H

b
hu

Figure 2.3.: Illustration of the shallow water equations and its physical
quantities.

2.3 The shallow water equations
In order to model tsunamis, we introduce the shallow water equations.
An overview of their most important characteristics can be found in [86]
and a detailed derivation from the incompressible Navier Stokes equations
(NSE) are presented in [137]. In this chapter we shortly summarize the key
ingredients of this approach.

Sea-water is modeled as incompressible Newtonian fluid for which we
assume that the density ρ is constant.1 We look at the continuity equation
and the conservation of momentum, with velocity components u, v, w in x,
y and z, and the pressure p [137]:

ux + vy + wz = 0 (2.1)
ρut + ρ(u2)x + ρ(uv)y + ρ(uw)z + px = 0 (2.2)
ρvt + ρ(uv)x + ρ(v2)y + ρ(vw)z + py = 0 (2.3)
ρwt + ρ(uw)x + ρ(vw)y + ρw2

z + pz = gρ. (2.4)

Here we neglect all acting external forces, such as friction or wind, and all
body forces except the gravitational acceleration g in vertical direction.

The fundamental idea of the shallow water equations, illustrated in Fig-
ure 2.3, is that in case of tsunamis vertical scales are significantly smaller
compared to horizontal scales. With this constraint, we can neglect all terms
depending on the vertical velocity w in Equation (2.2) to Equation (2.4)
and average all other components in depth.

The vertical boundaries of the sea-water are defined by the sea floor,
1This implies that we assume that salinity and temperature of the sea-water are con-

stant.

12

2.3. The shallow water equations

also called bathymetry b(x, y, t) and the vertical water height or water level
H(x, y, t). The height of the water column h is defined as their difference,

h(x, y, t) := H(x, y, t)− b(x, y, t). (2.5)

Within the water column, we can compute the averaged horizontal velocities
u(x, y, t), v(x, y, t),

u := 1
h

∫ H

b
u(x, y, z, t) dz , v := 1

h

∫ H

b
v(x, y, z, t) dz . (2.6)

No particles can cross the vertical boundaries of the fluid, such that we
get kinematic boundary conditions at the surface and the sea floor

ubx + vby = −bt + w, at z = b(x, y, t) and (2.7)
uHx + vHy = Ht + w, at z = H(x, y, t). (2.8)

If we neglect all vertical velocities in the vertical momentum conservation
Equation (2.4), we can describe the pressure distribution in the vertical
direction z with

pz = ρg. (2.9)

Here the change of pressure in z only depends on the gravitational accel-
eration and the density ρ. Knowing that the atmospheric pressure at the
surface is approximately zero, we can compute the pressure at depth z0

p(x, y, z0, t) =
∫ H(x,z,t)

z0
pz dz = ρg(H(x, y, t)− z0) (2.10)

and find the derivatives of the pressure in the horizontal directions x and y,

px(x, y, z0, t) = ρgHx(x, y, t), py(x, y, z0, t) = ρgHy(x, y, t). (2.11)

By integrating the derivatives in depth we end up with:

px(x, y, t) =
∫ H

b
px(x, y, z0, t) dz0 = ρgHx(x, y, t)(H(x, y, t)− b(x, y, t)) =

ρg
(1

2h(x, y, t)2
)
x
− ρgh(x, y, t)b(x, y, t)x, (2.12)

which we perform similarly in y.
In order to derive the shallow water equations, we replace the velocity

13

2. High order discontinuous Galerkin methods for tsunamis

components in Equation (2.2) and Equation (2.3) with their averages and
integrate all three terms in depth. For the horizontal conservation of mo-
mentum (Equation (2.2), Equation (2.3)) we get:

ρ(hu)t + ρ(hu2)x + ρ(huv)y + px =0 (2.13)
ρ(hv)t + ρ(huv)x + ρ(hv2)y + py =0. (2.14)

The pressure terms are replaced with Equation (2.12) and we cancel out
the density. Finally we integrate the continuity equation in depth,∫ H(x,y,t)

b(x,y,t)
ux + vy + wz dz . (2.15)

Using Leibniz rule we can rewrite the integrals of the horizontal velocities
as ∫ H(x,y,t)

b(x,y,t)
ux dz = u|HHx − u|bbx + ∂

∂x

∫ H(x,y,t)

b(x,y,t)
u dz (2.16)

= u|HHx − u|bbx + (hu)x, (2.17)

∫ H(x,y,t)

b(x,y,t)
vy dz = v|HHy − v|bby + ∂

∂y

∫ H(x,y,t)

b(x,y,t)
v dz (2.18)

= v|HHy − v|bby + (hu)y. (2.19)

We take Equation (2.16) and Equation (2.18) to get

∫ H(x,y,t)

b(x,y,t)
ux + vy + wz dz =

u|HHx − u|bbx + (hu)x + v|HHy − v|bby + (hu)y + w|H − w|b =
Ht − bt + (hu)x + (hu)y = 0, (2.20)

where we used the kinematic conditions Equation (2.7) and Equation (2.8)
in the last step.

The depth averaged continuity equation Equation (2.20), and the depth
averaged conservation of momentum Equation (2.13) and Equation (2.14),

14

2.3. The shallow water equations

define the shallow water equations, as illustrated in Figure 2.3:

ht = (hu)x + (hv)y (2.21)

hut =
(1

2gh
2 + hu2

)
x

+ (huv)y − gbxh (2.22)

hvt = (huv)x +
(1

2gh
2 + hv2

)
y
− gbyh. (2.23)

We dropped the notation for the average, such that h is the height of the wa-
ter column, hu and hv are the depth-averaged flow-rates of sea-water (also
called discharge) b is the bathymetry, and g the gravitational acceleration.

The eigenvalues of the resulting system Equation (2.21) to Equation (2.23)
are

λi ∈
{
u±

√
gh, u, v, v ±

√
gh
}
. (2.24)

In contrast to the common definition of the SWE, we included a time-
dependent bathymetry b(x, y, t). This is crucial for the sourcing of tsunamis
from earthquakes, which we introduce in Section 5.1.

We can rewrite Equation (2.21) to Equation (2.23) in terms of flux F (Q)
and source S (Q) terms,

∂

∂t
Q +∇ · F (Q) = S (Q) , (2.25)

where the divergence operator is defined by

∇ · F (Q) = ∂

∂x
F1 (Q) + ∂

∂y
F2 (Q) . (2.26)

Finally, the physical quantities of the SWE are stored in the vector Q and
the flux and source term are defined with

Q =

 h
hu
hv

 , S (q) =

 0
−gbxh
−gbyh

 (2.27)

F1 (Q) =

 hu
1
2gh

2 + hu2

huv

 , F2 (Q) =

 hv
huv

1
2gh

2 + hv2

 .

15

2. High order discontinuous Galerkin methods for tsunamis

2.4 Nonlinear DG for the SWE on triangular meshes
The ADER-DG and Runge-Kutta DG schemes that we present in this chap-
ter are variations of the discontinuous Galerkin method. Base of both
schemes are the SWE as we introduced them in Section 2.3,

∂

∂t
Q +∇ · F (Q) = S (Q) . (2.25)

The first step to discretize Equation (2.25) into an iterative scheme is the
construction of the semi-discrete scheme. We discretize Equation (2.25) in
space only to obtain an ordinary differential equation (ODE) in time. The
way the ODE is numerically solved is the characterizing difference between
both DG methods.

2.4.1 The semi-discrete scheme

The sub-steps to obtain the semi-discrete scheme have been extensively
worked out in literature (a very detailed introduction is given in [70]). In
our case we can summarize them with:

1. Following the triangular meshes in sam(oa)2, we divide the domain Ω
into M distinct triangles Ω(m), m ∈ [0, 1, ...,M] .

2. On each triangle we use a polynomial basis to approximate Q locally.

3. We solve the PDE on a set of element local test functions.

4. In order to couple elements with their neighbors, we introduce fluctu-
ations.

5. Using integration by substitution, we transform the local integrals
from each element onto a reference element. The transformation al-
lows us to express element local operators with a set of general oper-
ators defined on the reference element.

6. Operators on the reference element are precomputed, which results in
a set of small dense matrix kernels.

16

2.4. Nonlinear DG for the SWE on triangular meshes

Local polynomial interpolation

For a set of interpolation points (x(m)
i , y

(m)
i), i = 1 . . .M placed on a triangle

Ω(m), we create the interpolatory basis φ(m)
i (x, y) such that:

φ
(m)
i

(
x

(m)
j , y

(m)
j

)
= δij, ∀i, j ∈ 0, ...,M . (2.28)

We approximate Q with the polynomial interpolation rule :

Q|Ω(m) ≈
M∑
i=0

φ
(m)
i (x, y)q(m)

i (t) =: φ(m)
i (x, y)q(m)

i (t). (2.29)

Here we introduced the famous Einstein notation: Indices that appear twice
in a multiplication are summed up afterwards [44]. The time-dependent
coefficients are denoted with:

q(m)
i (t) =

(
h

(m)
i (t), hu(m)

i (t), hv(m)
i (t)

)
(2.30)

and correspond to the basis function φ(m)
i . The coefficients are called degrees

of freedom (dofs), in which we store the nodal values of all three physical
quantities. In order to represent a polynomial of degree N on a triangle,
we require M = (N + 1)(N + 2)/2 interpolation points. With the same
interpolation rule we can approximate the nonlinear flux and source term,

φ
(m)
i

∂

∂t
q(m)
i +

(
∇dφ

(m)
i

)
Fd
(
q(m)
i

)
− φ(m)

i S
(
q(m)
i

)
= 0. (2.31)

In Equation (2.31) we reinterpreted the divergence operator as tensor con-
traction

∇ ·
(
φ

(m)
i F

(
q(m)
i

))
=:
(
∇dφ

(m)
i

)
Fd
(
q(m)
i

)
, (2.32)

where ∇d is the gradient and d ∈ 1, 2 corresponds to the two spatial dimen-
sions.

For a spatial approximation with polynomials of degree N , we can expect
a convergence of N + 1 [33, 73, 105].

The weak solution

If we knew that the solution was smooth, the spatial discretization would be
finished at this point. Unfortunately, one of the core characteristics of non-
linear hyperbolic PDEs is that discontinuities can evolve in the solution
even when the initial and boundary conditions are smooth [86]. Sobolev

17

2. High order discontinuous Galerkin methods for tsunamis

spaces are the mathematical tool to capture this aspect, as they introduce
weak-derivatives for discontinuous functions [2]. The details of Sobolev
spaces are out of this work’s scope, for us it is important that in a Sobolev
space we look for the weak-solution of Equation (2.31). The weak-solution
is defined as the integral over Ω(m) of Equation (2.31) and a set of arbitrary
smooth test functions with compact support on Ω(m). The DG ansatz in
particular considers the weak-solution only on the reduced subset of basis
functions φ(m)

j . Under the assumption that the solution is differentiable
over elements, this leads to the integral form of the semi-discrete scheme

∀j = 0, ..,M :
(∫

Ω(m)
φ

(m)
j φ

(m)
i dΩ(m)

)
∂

∂t
q(m)
i +(∫

Ω(m)
φ

(m)
j

(
∇dφ

(m)
i

)
dΩ(m)

)
Fd
(
q(m)
i

)
− (2.33)(∫

Ω(m)
φ

(m)
j φ

(m)
i dΩ(m)

)
S
(
q(m)
i

)
= 0.

Fluctuations

Equation (2.33) is only valid for solutions that are differentiable in the
whole domain. However, after the elementwise discretization, we have to
address discontinuities that occur on the interfaces of elements. In terms
of hyperbolic PDEs these discontinuities state a Riemann problem on each
interface, leading to fluctuations between adjacent elements [86]. We incor-
porate those fluctuations in Equation (2.33) by introducing face integrals
over a numerical flux F (·, ·)·~n. The numerical flux is computed on the three
edges Γ (m,k) of a triangle, between the solution on the element φ(m)

i q(m)
i and

the solution of the adjacent neighbor φ(mk)
i q(mk)

i

3∑
k=1

∫
Γ (m,k)

φ
(m)
j F

(
φ

(m)
i q(m)

i , φ
(mk)
i q(mk)

i

)
· ~n dΓ (m,k) , (2.34)

where we denote the index of the adjacent neighbor on the edge k-th edge
with mk and the index of the edge in the neighboring element with ek. In
order to approximate Equation (2.34) we use a one-dimensional polynomial
interpolation rule which we transform on the edge, such that it corresponds
to interpolation points (x(m,k)

l , y
(m,k)
l) on the k-th edge.

The projection matrices P(m,k)
il are used to evaluate the basis functions

on the k-th edge
P(m,k)
il := φ

(m)
i

(
x

(m,k)
l , y

(m,k)
l

)
. (2.35)

18

2.4. Nonlinear DG for the SWE on triangular meshes

By denoting the transformed interpolation polynomial with ϕ
(m,k)
i (x, y)

we get

3∑
k=1

∫
Γ (m,k)

φ
(m)
j ϕ

(m,k)
i F

(
P(m,k)
il qkl ,P

(mk,ek)
il ql(mk)

)
· ~n dΓ (m,k) . (2.36)

There is a vast number of approaches to compute numerical fluctuations
[32, 57, 86, 126]. The most common ones are based on an approximate
solution to the Riemann problem on the interface. For the SWE we mostly
rely on the Rusanov flux, which be briefly introduce in Section 2.4.3. We
finally end up with the strong formulation of the semi-discrete scheme [70]

∀j :
(∫

Ω(m)
φ

(m)
j φ

(m)
i dΩ(m)

)
∂

∂t
q(m)
i +(∫

Ω(m)
φ

(m)
j

(
∇dφ

(m)
i

)
dΩ(m)

)
Fd
(
q(m)
i

)
+ (2.37)

3∑
k=1

(∫
Γ (m,k)

φ
(m)
j ϕ

(m,k)
i dΓ (m,k)

)
F
(
P(m,k)
il q(m)

l ,P(mk,k)
il q(mk)

l

)
· ~n−(∫

Ω(m)
φ

(m)
j φ

(m)
i dΩ(m)

)
S
(
q(m)
i

)
= 0,∀j = 0, ..,M .

The only contribution to Equation (2.37) from neighboring elements is in
the numerical flux. Hence, the only exchange of information between ele-
ments happens through fluctuations.

Matrix kernels and integration by substitution

At this point, all unknowns remain as functions in time and independent
from the spatial dimensions, which allows us to solve all integrals in advance:
Instead of computing all matrices for each single element in the mesh, we
can use integration by substitution to transform all basis functions to the
reference triangle Ω = {(x, y) : (x, y) ∈ [0, 1]2, y ≤ x}. Due to the mesh
structure of sam(oa)2, all transformations τ (m) : Ω(m) → Ω are purely
affine,

φ(m)(x, y) = φ(τ (m)(x, y)) (2.38)

τ (m)
r (x, y) = ∆x(m)A

(m)
rd

(
x
y

)
d

+ ~t
(m)
d , for d, r ∈ {0, 1}. (2.39)

19

2. High order discontinuous Galerkin methods for tsunamis

The transformation from Ω(m) is defined by the length of its catheti ∆x(m),
the rotation matrix A

(m)
lk (for meshes in sam(oa)2 only the angles α =

kπ
4 , k = 0, ..., 7 appear), and the transposition ~t (m)

l .
In order to compute derivatives using the operator of the reference ele-

ment, we change the variables of the derivative to the reference coordinates
ξ, η on Ω,

∇d =
(
∂

∂η
,
∂

∂ξ

)
r

(
Dτ (m)

)
rd

=: ∇̄r∆x
(m)A

(m)
rd . (2.40)

Here we introduced the derivative on the reference element ∇̄r.
We define the spatial mass Mji, stiffness Kji, boundary Bimj and projec-

tion matrices P(k)
il on the reference element,

Mji :=
∫
Ω
φjφi dΩ Kjri :=

∫
Ω
φj
(
∇̄rφi

)
dΩ

B(k)
ji :=

∫
Γ (k)

φjϕ
(k)
i dΓ (k) P(k)

il := φi
(
x

(k)
l , y

(k)
l

)
. (2.41)

By substituting Ω(m) with Ω in Equation (2.37), we construct the matrix
form of the semi-discrete scheme,

∀j :∆x(m)Mji
∂

∂t
q(m)
i + KjriA

(m)
rd Fd

(
q(m)
i

)
+ (2.42)

3∑
k=1

B(k)
ji F

(
P(k)
il q(m)

l ,P(ek)
il q(mk)

l

)
· ~n−MjiS

(
q(m)
i

)
= 0.

For the sake of brevity, we summarize the semi-discrete scheme with a
volume Vol (·) and a boundary ∑3

k=1 Bnd (·) operator,

∂

∂t
q(m)
i = 1

∆x(m)

(
Vol

(
q(m)
i

)
+

3∑
k=1

Bnd
(
q(m)
i , q(mk)

i

))
. (2.43)

2.4.2 Integration in time

Integration in time is the most significant difference between our numerical
methods.

20

2.4. Nonlinear DG for the SWE on triangular meshes

Runge-Kutta DG

The most common approach to integrate Equation (2.43) in time are given
by explicit Runge-Kutta (RK) methods, where the ODE is evaluated at
several intermediate time-steps [107]. In case of a second order RK method
the dofs q(n,m)

i at tn are updated in two stages, for a time-step size of
∆t = tn+1 − tn,

∗q(n,m)
i =q(n,m)

i + ∆t

2∆x

(
Vol

(
q(n,m)
i

)
+

3∑
k=1

Bnd
(
q(n,m)
i , q(n,mk)

i

))

q(n+1,m)
i =1

2q(n,m)
i + (2.44)

1
2

(
∗q(n,m)
i + ∆t

∆x

(
Vol

(
∗q(n,m)
i

)
+

3∑
k=1

Bnd
(
∗q(n,m)
i , ∗q(n,mk)

i

)))
.

This approach is comparably easy to realize as the same implementation
of Equation (2.43) can be used in every stage. However RK methods come
with two significant downsides:

• The Butcher barrier lets the number of stages, that are required to
reach high order convergence, grow superlinear [23, 24].

• As we have to compute numerical fluctuations at every stage, we have
to traverse the whole mesh for each stage.

ADER-DG

The Butcher barrier is one of the main reasons for the development of the
Arbitrary High Order Derivative DG method (ADER-DG) [33, 126]. In-
stead of directly solving Equation (2.43), we find an element-local prediction
of the evolution of q(m)

i

q(m)
i (t) ≈ ϕ

(n)
l (t)p(n,m)

il , (2.45)

with a one-dimensional quadrature rule ϕ(n)
l at N time-steps tl ∈ [tn, tn+1],

such that t0 = tn and tN = tn+1. The coefficients pil are independent
from space and time. The Predictor represents the solution in an element
under the assumption that the global solution is smooth across boundaries.
In this assumption lies the main motivation for the ADER-DG scheme, in
case of a smooth solution the temporal convergence-rate is determined by
the polynomial degree of the interpolation rule.

21

2. High order discontinuous Galerkin methods for tsunamis

To compute the DG-Predictor, we take Equation (2.37) and set all fluc-
tuations to zero F (,) · ~n = 0. We solve the nonlinear equation system for
the DG-Ansatz in time, with test functions ϕ(n)

m (t):

∆x(m)Mji

∫ tn+1

tn
ϕ(n)
m

∂

∂t
ϕ

(n)
l dt · p(n,m)

il +

Kjri

∫ tn+1

tn
ϕ(n)
m ϕ

(n)
l dt · Fr

(
p(n,m)
il

)
+ (2.46)

Mji

∫ tn+1

tn
ϕ(n)
m ϕ

(n)
l dt · S

(
p(n,m)
il

)
= 0

There are several analytically equivalent solutions to solve Equation (2.46).
We follow the continuous Galerkin predictor approach [55].

As the coefficients are independent of time, we can precompute the tem-
poral mass tM and stiffness tK matrices. To simplify the integral, we use
integration by substitution to transform the interval [tn, tn+1] to [0, 1]. We
get the discrete nonlinear equation system:

∆x(m)tKmlMjip(n,m)
il = (2.47)
∆t

(
tMmlKjri · Fr

(
p(n,m)
il

)
+ tMmlMji · S

(
p(n,m)
il

))
.

As in Equation (2.43), we can again move all spatial matrices to the right.
On the left side we split the temporal stiffness matrix and the DG-Predictor
into the part belonging to tn at l = 0 and l = 1, ..., N for all other interme-
diate time-steps. For l = 0 we know by definition that p(n,m)

i0 = q(n,m)
i ,

tKml =
(
t
0Km,

t
1KmL

)
p(n,m)
il =

(
q(n,m)
i , 1p(n,m)

iL

)
, (2.48)

with L ∈ 0, . . . , N − 1. Finally, we can solve Equation (2.47) for 1p(n,m)
iL

1p(n,m)
jL = ∆t

∆x(m)
t
1K−1

Lm
tMmlM−1

iJ KJki · Fk
(
p(n,m)
il

)
+ (2.49)

∆t

∆x(m)
t
1K−1

Lm
tMml · S

(
p(n,m)
jl

)
− t

1K−1
Lm

t
0Kmq(n,m)

j =: P
(
p(n,m)
jL , q(n,m)

j

)
.

With P we summarize the whole right side of the equation. Dumbser et
al. show that for bound flux and source terms, P is a self contraction [33].
After Banach’s fixed-point theorem, this allows us to solve Equation (2.49)

22

2.4. Nonlinear DG for the SWE on triangular meshes

with a fixed-point iteration

i+1p(n,m)
iL = P

(
ip(n,m)
iL , q(n,m)

j

)
. (2.50)

As initial values2 we use 0piL
(n,m) = q(n,m)

i for all L. To compute the
predictor we repeat Equation (2.50) until the change in one iteration is
below a predefined threshold

||i+1p(n,m)
iL − ip(n,m)

iL ||2 < εpred, (2.51)

where we use εpred = 1.0× 10−16 throughout this thesis. Equivalently to
the Picard Iteration in a continuous setting, the fixed-point iteration finds
a discrete solution to the ODE, we defined in Equation (2.46). This is why
it is often referred to as the Picard loop or directly called Picard Iteration.
As result, we obtain the element local evolution of the solution spanned on
a grid in time and space.

The corrector step

To get a time-stepping scheme and couple the local solution with adjacent
elements we take the semi-discrete scheme and integrate it in time:

∫ tn+1

tn

∂

∂t
q(m)
i dt = 1

∆x(m)

∫ tn+1

tn
Vol

(
q(m)
i

)
+

3∑
k=1

Bnd
(
q(m)
i , q(mk)

i

)
dt .

(2.52)

The left hand side is evolved with the fundamental theorem of calculus,
such that we get q(n+1,m)

i − q(n,m)
i . Flux, source and fluctuations at the

boundary now have to be computed in space and time [126]. We interpolate
the flux, source and boundary terms with the same interpolation rule that
we used in Equation (2.45). All integrals can be easily transformed to the
interval [0, 1], which again allows us to precompute them:

q(n+1,m)
i = q(n,m)

i + ∆t

∆x(m)((∫ 1

0
ϕj dt

)
Vol

(
p(n,m)
ij

)
+
(∫ 1

0
ϕj dt

) 3∑
k=1

Bnd
(
p(n,m)
ij , p(n,mk)

ij

))
. (2.53)

The resulting scheme is called the Corrector-step and allows us to propagate
2In case of a resting lake the initial condition is the solution.

23

2. High order discontinuous Galerkin methods for tsunamis

the solution in time, having the predictor of an element and its adjacent
neighbors.

The time-step size and CFL condition

In order to ensure stability of the Runge-Kutta time-stepping and the DG-
Predictor, we keep ∆t within the limit given by the CFL condition [28,
33]

∆tn ≤ min
Ω(m)

∆x(m)
(

(2N + 1)max
i
λi
(
φjq(n,m)

j

))−1
, (2.54)

where λi(q(n,m)) are the eigenvalues of the SWE evaluated at tn for triangle
Ω(m),

λ0 = u−
√
gh λ1 = u+

√
gh λ2 = v −

√
gh λ3 = v +

√
gh (2.55)

As we need the time-step size a priori, we estimate it for tn based on the
nodal values in each cell at tn−1 and scale the result by a factor c ∈]0, 1] to
account for possible jumps in λ between the time-steps

∆tn = c ·min
Ω(m)

∆x(m)
(

(2N + 1) max
i,j

λi
(
q(n−1,m)
j

))−1
. (2.56)

2.4.3 Fluctuations

In both codes we compute fluctuations with the Rusanov flux [86]

F
(
qLi , qRi

)
·~n = 1

2
(
F
(
qLi
)
− F

(
qRi
))
·~n+ 1

2B̄
(
qLi , qRi

)
·~n−α2

(
qRi − qLi

)
,

(2.57)

where qLi and qRi are the two projected dofs from Equation (2.36) and α is
the maximal absolute eigenvalue. B̄ accounts for the hydrostatic pressure
and the source term, and is in our case defined by

B̄
(
qi, qRi

)
· ~n =

0
g(hLi + hRi)

(
max(hLi + bLi − b̄i, 0)−max(hRi + bRi − b̄i, 0)

)
~n1

g(hLi + hRi)
(
max(hLi + bLi − b̄i, 0)−max(hRi + bRi − b̄i, 0)

)
~n2

 , (2.58)

24

2.4. Nonlinear DG for the SWE on triangular meshes

Wet case Semi-dry case

Figure 2.4.: Water level (blue) and bathymetry (brown) at a coast in the
analytic (dashed) and discrete setting. Quadrature nodes are
marked as crosses. For a wet area (left) and at a coast (right),
in which the discrete setting becomes the semi-dry case.

where b̄i = max
(
bL, bR

)
. The Rusanov flux has to fulfill the well-balanced

criterion, for identical water level hLi + bLi = hRi + bRi but different water
columns hLi 6= hRi and zero velocity on both sides. While Equation (2.58)
ensures that velocities remain zero in this case, fluctuations are generated
in the diffusive term of the water column as hRi − hi 6= 0. To enforce
well-balancedness we change it to(

max(hLi + bLi − b̄i, 0)−max(hRi + bRi − b̄i, 0)
)

. (2.59)

In case of the ADER-DG method we have to take the time integral from
the Corrector (Equation (2.53)) into account

1
2

∫ 1

0
φj
(
F
(
pLij
)
− F

(
qRi
))
· ~n dt+ (2.60)

1
2

∫ 1

0
φjB̄

(
pLij, pRij

)
· ~n dt−

∫ 1

0
φj
α

2
(
pRij − pLij

)
dt .

In this version of the numerical flux, we would have to store the whole
projected predictor on each edge, to later evaluate the flux and source term.
Instead we exploit that the Rusanov flux is linear in F

(
pLij
)
·~n and in p and

only store the time-integrated values:

1
2
(
FLi − FRi

)
· ~n+ 1

2B̄
(
QLi ,Q

R
i

)
· ~n− α

2
(
QRi − QLi

)
, (2.61)

with

Qi =
∫ 1

0
φjpij dt ,Fi =

∫ 1

0
φjF

(
pij
)

dt ,

B̄
(
QLi ,Q

R
i

)
≈
∫ 1

0
φjB̄

(
pLij, pRij

)
· ~n dt . (2.62)

25

2. High order discontinuous Galerkin methods for tsunamis

2.5 The sam(oa)2-flash code
The first numerical method we realized in sam(oa)2 is called sam(oa)2-flash,
which is based on the work by Vater et al. [136]. sam(oa)2-flash is a sec-
ond order RK-DG scheme: Second order convergence in space is acquired
through a linear polynomial interpolation on Gauss-Legendre nodes (See
Equation (2.29)). Time integration is performed with Heun’s method, such
that the numerical scheme is equivalent to the one we derived in Equa-
tion (2.44).

On the boundary of the elements, the well-balanced positivity preserving
Rusanov flux from Section 2.4.3 defines numerical fluctuations and is inter-
polated on three Gauss-Legendre quadrature nodes (Equation (2.35), see
Section 2.4.1). The method’s characterizing feature is the Barth-Jespersen
type limiter, which is used to adjust the solution after each RK-stage

1. Traversal: ∗qni = qni + dt
dx

(
Vol

(
qn
i

)
− Bnd

(
qn
i
, q̃n

i

))
2. Traversal: ∗qn

i
= BJ-Limiter(∗qni , ∗q̂ni) (2.63)

3. Traversal: qn+1
i = qni + 0.5 dt

dx
(
∗qn
i

+ Vol
(
∗qn
i

)
− Bnd

(
∗qn
i
, ∗q̃n

i

))
4. Traversal: qn+1

i
= BJ-Limiter

(
qn+1
i , q̂n+1

i

)
.

To compute the update (∗qni ,qn+1
i) in each RK-Stage, we require the limited

results of all adjacent elements from the previous stage (∗qn
i
,qn+1
i

). The
limiter on the other hand uses the updates from all adjacent elements. In
total we require four traversals to iterate the scheme by one time-step.

2.5.1 Well-balancedness through flux modification

Well balancedness in wet cells is ensured by the exact Gauss-Legendre in-
terpolation of the scheme, used for the approximation of the flux and source
term in Equation (2.31), and the well-balanced Riemann solver: In the case
of a wet cell with zero velocities F (Q) and S (Q) are quadratic functions of
Q. After the discretization of Q to a linear polynomial, flux and source be-
come polynomials of degree two, which we can interpolate exactly with the
Gauss-Legendre quadrature rule (compare to the wet case in Figure 2.4).

In order to keep the semi-dry case well-balanced, we force the gravita-
tional acceleration to zero, such that no momenta are generated and the
solution stays constant. To detect the semi-dry case, we assume that for a

26

2.5. The sam(oa)2-flash code

resting lake with ascending coast the highest water level Hi = bi + hi is at
a dry node on land (compare to the semi-dry case in Figure 2.4).

With this assumption we can define a criterion to detect semi-dry cells

max
xi∈Ω

(Hi)−max
xi∈Ω

(bi) < TOL, (2.64)

where TOL is a predefined tolerance, usually the dry-tolerance.
There are several exceptions where the criterion erroneously marks cells

as semi-dry, however these false positives do not show a significant influence
on the solution [135].

2.5.2 A Barth-Jespersen typed limiter for wetting and drying cells.

Slope-Limiters are a common tool to resolve oscillations in DG methods for
the SWE [29, 142]. While these approaches reliably resolve discontinuities,
their interaction with a wetting and drying mechanism can lead to instabil-
ities [21, 141]. This is the main motivation for the newly developed limiter,
which is based on the well-balanced Barth-Jespersen limiter and a positiv-
ity operator by Bunya et al. [11, 21]. The limiter exists as “edge-based”
and “vertex-based” version, where we look only at the “vertex-based” real-
ization, as Vater et al. show that this approach leads to better results for
several benchmarks [136].

Limiting fluid depth

Equivalent to the linear interpolatory polynomial basis, we can represent
the water level in each cell by its average H and slope ∇H

H(x) = H +∇H · (x− xc) , (2.65)

where xc is the centroid of the cell.
Within the neighborhood N of a cell, which contains the cell itself and

all cells that share at least one of its vertices Vj, we compute the minimal
and maximal average,

Hmin = min
C∈N

(HC), Hmax = max
C∈N

(HC). (2.66)

The limiter scales the slope ∇H, by a factor α ∈ [0, 1], such that all values

27

2. High order discontinuous Galerkin methods for tsunamis

in the cell are within these two bounds,

Hmin ≤ H + α∇H · (x− xc) ≤ Hmax. (2.67)

Following this constraint, α is computed by the rule

α = min
Vj


min(1, Hmin−H

Hj−H
) , Hj < H

min(1, Hmax−H
Hj−H

) , Hj > H

1 else.
(2.68)

In order to avoid negative water columns, a positivity operator defined by
Bunya et al. is applied to the limited nodal water columns [21]. The operator
equalizes negative water heights, by subtracting the missing values equally
from positive water columns. First, all three nodal values for the water-
column h0, h1, h2 are sorted in ascending order, then the water columns are
rebalanced. For hi < hj < hk:

hi := max(0, hi),

hj := max(0, hj −
∆hi

2), (2.69)

hk := max(0, hk −
∆hi

2 −∆hj),

where ∆hi = hi − hi is the amount we equalized in i.

Velocity limiting

As the computation of the velocity u = hu
h

is ill-conditioned for small water
columns h→ 0, it can lead to very high values close to the coastline. While
on one hand these high velocities are usually unphysical, they also reduce
the maximal admissible time-step size significantly, as they lead to increased
wave speeds (Section 2.4.2). In order to avoid high velocities, limiting is
also applied to the velocity. While we could apply the same slope-liming
that was used for the water level, the limiter uses a different approach,
that focuses on the reduction of the variability of velocities within a DG
cell. As both velocity components are limited independently with the same
algorithm, we show it for v only:

We first compute the cell averages of the water columns h, momentum
hv and velocity v and determine their minimum vmin and maximum vmax
in the neighborhood N. On each vertex the velocity is forced within the

28

2.6. An ADER-DG method for the SWE

maximum and minimum averages,

vi = min (max (vi, v̄min) , v̄max) . (2.70)

After limiting we want to keep the average momentum in the cell, such that
we can only choose to limit two of the velocities vj, vk with Equation (2.70).
The third velocity has to be recomputed with

vbi =
hv + (hv − hjvj) + (hv − hkvk)

h
. (2.71)

This leaves us with three potential configurations, from which we want
to pick the one for which we end up with the smallest variation,

∆vi = max
(
vbi , vj, vk

)
−min

(
vbi , vj, vk

)
. (2.72)

To find the optimal configuration we have to compute ∆vi for all three
possible configurations, from which we then can choose the one with the
smallest variation. Finally, the limited momenta are reproduced from the
limited water columns and velocities,

hvi = hivbi , hvj = hjvj, hvk = hkvk. (2.73)

2.6 An ADER-DG method for the SWE
The second method we realized in sam(oa)2 is an ADER-DG method with
a posteriori finite volume limiting [103]. We implemented the method fol-
lowing the Predictor-Corrector scheme we derived in Section 2.4.2.

Its spatial interpolation rule (Equation (2.29)) is based on the alpha-
optimized quadrature nodes from [70], in time interpolated with Gauss-
Lobatto nodes (Equation (2.45)). On the boundary we use the time-averaged
well-balanced version of the Rusanov flux (Section 2.4.3), sampled on the
N+1 alpha-optimized nodes that are located on each edge (Equation (2.35)).

To limit oscillating cells and resolve wetting and drying, we use the a
posteriori finite volume sub-cell limiting approach by Dumbser et al. [36].
The limiter requires the implementation of an additional FV scheme, that
we take from the work by Ferreira et al. [50]. In the scheme wetting and
drying cells are treated by the augmented Riemann solver by George [57].

The limiter is applied a posteriori to the solution after the corrector step
and by design does not require an additional traversal. Hence we can realize

29

2. High order discontinuous Galerkin methods for tsunamis

the scheme in two traversals of the mesh

1. Traversal: pn+1
i = Predictor (qni)

2. Traversal: qn+1
i = qni + Corrector

(
qni , pn+1

i , p̂n+1
i

)
(2.74)

qn+1
i = FV-Limiter

(
qn+1
i , q̂ni

)
.

2.6.1 Well-balancedness through flux splitting

As we resolve the coast and semi-dry cells with the limiting scheme, the
ADER-DG method is only applied in areas of deep-water. Hence, we only
have to ensure well-balancedness for the wet case. The integration rule,
based on the alpha-optimized quadrature nodes is not accurate for poly-
nomials of order 2N and without a proper modification, the scheme would
be ill-balanced. To resolve this issue we split the flux of the SWE into a
conservative flux modeling the conservation of mass and momentum and a
non-conservative flux for the gravitational acceleration

∇ · F (Q) + B (Q) · ∇Q + S (Q) =
hu

(hu)2

h
(huhv)
h


x

+


hv

(huhv)
h

(hv)2

h


y

+

 0
ghhx
ghhy

−
 0
ghbx
ghby

 .
The non-conservative part is treated numerically equivalently to the source
term, which allows us to add both terms. After the spatial discretization
the terms cancel each other in the resting-lake case as hx − bx = Hx = 0.

2.6.2 Finite volume limiting: A state machine for troubled or
wetting and drying cells

In order to resolve wetting and drying cells and to limit oscillations, our
ADER-DG implementation relies on an adjusted realization of the a poste-
riori FV sub-cell limiter by Dumbser et al. [36, 38]. The driving idea behind
the limiter is that in the presence of discontinuities FV schemes are more
robust and wetting and drying cells can easily be resolved with a suitable
Riemann solver. Where a cell is oscillating or has to resolve inundation,
we fall back to a FV scheme to evolve the solution. In our case, the first
order FV scheme on patches is given by the work of Ferreira et al. [49] and
inundation is resolved with the augmented Riemann solver by George [57].

30

2.6. An ADER-DG method for the SWE

DG-cell FV-cell

0.10

0.05

0.00

0.05

0.10

Figure 2.5.: Representation of the water level in a DG-cell (left) an a FV-
cell (right). In the DG-cell the solution is represented by a
polynomial of degree N = 4 on 15 nodes (black crosses). In
the FV-cell the solution is represented with constant values
in 81 sub-cells.

Figure 2.6.: Illustrative example of a hybrid mesh for the Sumatra
bathymetry. FV cells (grey) on the coast are detected with
the criterion in Equation (2.75). To couple DG cells (blue)
and FV cells (grey) we define an interface layer of cells holding
both representations (green).

31

2. High order discontinuous Galerkin methods for tsunamis

The sub-steps of the limiter in its original version are summarized as:

• Compute a Candidate Solution With the ADER-DG method
from Section 2.4.2 we compute a candidate solution at the next time-
step tn+1 for each cell.

• Detect troubled Cells All candidate solutions are tested by phys-
ical and numerical conditions. In case of the SWE we test if the
result contains unphysical negative water columns. To detect oscilla-
tions we use the discrete maximum principle, which is introduced in
Section 2.6.3.

• Correct troubled cells A cell that fails the previous tests is marked
as troubled and its candidate solution discarded. We project the so-
lution of the cell and all adjacent neighbors at the current time-step
tn onto a FV patch with (2N + 1)2 cells in each dimension (See Fig-
ure 2.5 (right) and Section 2.6.4). The FV solution on the whole patch
is advanced to tn+1 with a robust FV scheme.

• Reconstruct the DG-Solution For troubled cells the DG solution
is reconstructed from the FV-Solution (See Section 2.6.4).

We will see in Section 2.6.4, that the reconstruction and projection from
DG to FV representation and vice versa are neither well-balanced nor pos-
itivity preserving. These two issues lead to our version of the limiter: In-
stead of projecting and reconstructing the solution for cells at the coast in
every time-step, we allow cells to persistently store the representation as
FV patches.

The resulting mesh contains three types of cells: DG-cells that hold a
DG representation (Figure 2.5 left), FV-cells that hold a FV patch repre-
sentation (Figure 2.5 right) of the solution and interface-cells, that are used
to couple DG and FV-cells. An example mesh for the Sumatra benchmark
(Section 3.7) is presented in Figure 2.6. The mesh shows DG-cells (blue)
in the deep ocean and FV-cells along the coast (grey). Placed between
both is a layer of interface-cells (green). Cells on land that are dry and
are surrounded by dry cells (white) can be skipped in the computation.
To detect cells that are at the coast we initially check the bathymetry at
the nodal values of the DG representation for a predefined threshold Bcoast.
The solution of a cell is persistently represented as FV patch if the absolute
bathymetry is below this threshold

∃i ∈ 1, ...,M : |bi| < Bcoast. (2.75)

32

2.6. An ADER-DG method for the SWE

While this simple criterion allows us to define a ribbon of FV-cells around
the coast line, it can be easily replaced with a more advanced approach
whenever needed.

DG FV

Predictor

DG Solver

FV Solver

Predictor
diverged

FV
neighbourhood

Violates
DMP

Coast
or semi-dry

Figure 2.7.: State machine for the
representation in a cell
of the mesh.

In order to keep track of the var-
ious cell types, we implemented a
state-machine as presented by the
control-flow graph in Figure 2.7.

FV-cells are only advanced with
the underlying FV-Solver. The
DG-Predictor is explicitly not com-
puted, as in the presence of wetting
and drying cells, the fixed-point
iteration from Equation (2.49) is
prone to diverge as the flux term is
potentially not bound. This implies
that cells that are adjacent to FV-
cells cannot be advanced with the
ADER-DG method, as the neigh-
boring DG-Predictor is required to
compute fluctuations (See Equa-
tion (2.53)). Instead we use cells
that are next to FV-cells, but do
not resolve a coast or are trou-
bled themselves, as interface-cells to
couple between DG- and FV-cells.
Interface-cells simultaneously hold
a FV and DG representation. From
the DG representation, we can eval-
uate the Picard-Iteration and use
the resulting DG-Predictor to com-
pute fluctuations for the neighbor-
ing DG-cells. The FV representa-
tion on the other hand allows us
to compute fluctuations with the
neighboring FV-cells. To update
interface-cells, we compute the FV

representations of all neighboring cells and compute an update using the
FV-Solver. Finally the DG representation is reconstructed after every time-
step.

For DG-cells we add an additional check for the convergence of the Picard-

33

2. High order discontinuous Galerkin methods for tsunamis

Iteration as the iteration might diverge for water columns close to zero,
which can appear in scenarios like the oscillating lake (See Section 3.5),
where the coastline is constantly moving. We also keep the DMP check for
oscillations in DG-cells (thick line).

2.6.3 The discrete maximum principle

Oscillations are detected with the relaxed discrete maximum principle (DMP),
which was first defined by Dumbser et al. [36]. It is motivated by the ana-
lytic maximum-principle, which states that for the scalar conservation law,
the maximal and minimal values of a solution must lie within the minimal
and maximal values of its initial condition at any time [144].

The relaxed discrete maximum principle describes this property for the
DG-approximation and discrete time-steps: We defined the neighborhood
N of Ω(m), equivalently to Section 2.5.2, as all elements that share a vertex
withΩ(m) and includeΩ(m). At time-step tn+1 the DG solution φi(x)(m)q

(n+1,m)
i

in element Ω(m) must remain within the extrema of the neighborhood at
tn, ∀(x, y) ∈ Ω(m):

min
ν∈N

φ
(ν)
i q

(n,ν)
i − δ ≤ φ

(m)
i q

(n+1,m)
i ≤ max

ν∈N
φ

(ν)
i q

(n,ν)
i + δ. (2.76)

The relaxation parameter δ introduces a buffer around the extrema. Within
the buffer new maxima and minima are allowed to emerge

δ = δs max
(
δ0,max

ν∈N
φ

(ν)
i q

(n,ν)
i −min

ν∈N
φ

(ν)
i q

(n,ν)
i

)
. (2.77)

Here, δs scales the buffer and δ0 defines a minimal size of the buffer, which
is required to not detect cells where minima and maxima are close to each
other as for example in a resting lake.

In case of a shock front, we assume that the occurring oscillations cause
the solution to exceed the previous extrema and violate Equation (2.76).
Unfortunately, the maximum principle does not hold for arbitrary smooth
solutions: For the SWE a simple example where the principle does not
hold, is given by a perturbation in the water level of an initially resting
lake. Gravity causes the generation of velocity, which violates the DMP
compared to the initially zero velocity, if the tolerance is set too small.
We see in Chapter 5 that this case is the initial condition for all tsunami
simulations. In order to avoid this erroneous limiting for this case, we apply
the DMP only to the water column of the solution. In Section 3.4 we test

34

2.6. An ADER-DG method for the SWE

the difference of applying the DMP for all quantities against applying it to
the water column, with the example of the radial dam break.

The computation of extrema in Equation (2.76) is a non-trivial task as it
requires the solution of a non-linear equation system. Instead we compare
the maximal and minimal coefficients of the DG-representation and the
FV-representation in each DG-cell.

2.6.4 Projection an reconstruction

The last components that are missing for the limiter are operators to switch
between the DG representation and FV representation in a cell. Here we
derive the operators on the reference element only, as after we applied in-
tegration by substitution all metric terms are canceled out. Analogous to
their original definition by Dumbser et al. [36] we name the operators pro-
jection (for DG to FV representation) and reconstruction (for FV to DG
representation).

To avoid any loss or gain of mass or energy, both operators ensure that the
integrals of physical quantities on the whole cell are conserved. On a sub-cell
level, both operators minimize the L2-difference of both representations.

For a polynomial representation φi (x, y) qi defined on the reference tri-
angle Ω and constant FV solutions vi on a set of uniform sub-cells ti within
Ω, these constrains are

∑
i

1
‖ti‖

∫
Ω

∑
j

φj (x, y) qjdΩ
!=
∑
i

vi, (2.78)

∥∥∥∥∥∥
∑
i

1
‖ti‖

∫
ti

∑
j

φj (x, y) qj dti − vi

∥∥∥∥∥∥
2

!= min . (2.79)

In case of the projection from DG to FV-representation, we average the
DG-representation on every sub-cell to exactly solve Equation (2.79),

1
‖ti‖

∫
ti
φjqj d~x = 1

‖ti‖

(∫
ti
φj d~x

)
qj = vi,∀i. (2.80)

We can precompute the projection as a matrix Φ ∈ R(2N+1)2×M ,

Φij = 1
‖ti‖

(∫
ti
φj d~x

)
. (2.81)

For the reconstruction on the other hand, the problem is over-determined

35

2. High order discontinuous Galerkin methods for tsunamis

as the number of sub-cells (2N + 1)2 exceeds the number of nodes in a
DG-cell M = (N + 1) · (N + 2)/2. We solve Equation (2.79) with an
L2-optimization and enforce the overall conservation in Equation (2.78) to
obtain a constrained least squares problem. With λ as Lagrange multiplier
and the projection matrix Φij, which we use to simplify the minimization
term of Equation (2.79), we get the minimization problem

min
qi,λ

(
Φijqj − vi

)T
·
(
Φijqj − vi

)
− λ

(
Φjqj −

∑
i

vi

)
. (2.82)

With Φj, we denote the row-vector holding the integrals of all basis func-
tions on Ω: Φj := ∑

i Φij = ~1i · Φij.

As shown in [35] we find the unique solution to Equation (2.82) by cal-
culating the roots of its derivative in q and λ,

δ

δq : 2ΦTij · Φjkqk − vTj · Φji − ΦTij · vj − λΦjqj = 0 (2.83)

δ

δλ
: Φjqj −

∑
i

vi = 0.

By moving all dependencies of v to the right, we get the linear equation
system (

2ΦT · Φ ΦT

Φ 0

)
·
((

qj
)

λ

)
=
(

2ΦT
~1

)
· (vi) . (2.84)

For a closed matrix-matrix form of the reconstruction, we invert the ma-
trix on the left side and erase the row which solves for λ. For the resulting
matrix we use µ−1 as notation,

qj = µ−1
ji · vi, where µ−1 ∈ RM×(2N+1)2

. (2.85)

If we set vi = Φijqj in Equation (2.84) we can solve it with λ = 0, hence
the reconstruction is the left inverse to the projection,

qk = µ−1
kj · Φji · qi. (2.86)

Showing that the projection is not the right inverse to the reconstruction
is trivial. We know that Equation (2.79) cannot be solved exactly for a

36

2.6. An ADER-DG method for the SWE

vi
1 vi

0.0
0.2
0.4
0.6
0.8

0.3
0.2
0.1

0.0
0.1
0.2
0.3

Figure 2.8.: Effects of projection and reconstruction on the water level on
a discontinuous coast (left, center). As result artificial waves
are generated, shown in the difference on the right.

discontinuous vi, hence

0 6= Φkjµ
−1
ji vi − vi → Φkjµ

−1
ji vi 6= vk. (2.87)

Well-balancedness

It is trivial to prove that zero velocities and constant water levels in a
cell are conserved, as both operators are linear. This allows us to easily
switch between both representations in the deep-water, without violating
well-balancedness.

In the semi-dry case, the original formulation of the limiter would lead
to a constant switching between FV and DG-representation. We know
from Equation (2.87) that the projection is not the right inverse to the
reconstruction. This is why it leads to the generation of spurious waves at
the interface.

The example in Figure 2.8 shows the water level at a discontinuous syn-
thetic coast (left) compared to the water level after it was reconstructed to
a DG- and projected back to a FV-representation (center). The difference
of both (right) shows that artificial waves are generated in the process. By
keeping cells close to the coast constantly as FV-cells, we can bypass this
problem.

Positivity preservation

Looking at the matrices for projection and reconstruction reveals that both
hold negative entries. We can thus not be certain that positive values in
the polynomial representation of a water column lead to positive values

37

2. High order discontinuous Galerkin methods for tsunamis

in the FV representation and vice versa. In case the reconstruction from
FV to DG representation results in a negative water column, we simply
use our state machine to keep the cell in FV representation until it is fully
“repaired”.

For the projection, we introduce a mechanism that ensures that nega-
tive water columns are equalized and the FV representation contains zero
or positive water columns only: Given the conservation constraint Equa-
tion (2.78), we know that the overall sum of water columns has to be pos-
itive. This allows us to extend the postivity operator of Bunya et al. (see
Equation (2.69)) to FV cells and distribute the negative balance equally
among sub-cells with positive water height [21].

In Algorithm 1, we describe the exact procedure to rebalance negative
water columns. Initially we count the absolute amount we have to distribute
among positive water columns. After that, we repeatedly subtract the miss-
ing balance equally from all sub-cells. In case a sub-cell holds less than the
amount we want to subtracted, we set its water column to zero. In prac-
tice, this case is mostly important for cells close to dry areas, where a high
variation between nodal values leads to negative values in the polynomial.

ALGORITHM 1: Rebalancing algorithm for negative water
columns

input : h(:) potentially negative FV water columns
output: hr(:) positive rebalanced FV water columns
for i← 0 to len(h) do

if h(i) < 0 then
negativeBalance ← negativeBalance - h(i);
hr(i) ← 0;

else
hr(i) ← h(i);

end
end
nextNegativeBalance ← negativeBalance;
while negativeBalance > 0 do

for i← 0 to len(h) do
∆ ← min(negativeBalance/ len(h),hr(i));
hr(i) ← hr(i) - ∆;
nextNegativeBalance ← nextNegativeBalance - ∆;

end
negativeBalance ← nextNegativeBalance;

end

38

CHAPTER

3
Verification of the tsunami methods

3.1 Introduction
In this chapter we want to verify the numerical schemes we derived in the
last chapter. We base the selection of benchmarks on the work by Vater et
al. [136] and extend it by test cases highlighting the limiting approaches of
both methods. We start with standard benchmarks for well-balancedness
(Section 3.2) and the resolution of wetting and drying cells (Section 3.3).
As stress test for the limiting approaches we look at a discontinuous prob-
lem with highly oscillating solution (Section 3.4) and a moving shoreline
(Section 3.5). Finally we reproduce the Okushiri laboratory experiment
(Section 3.6) and the Sumatra-Andaman tsunami (Section 3.7).

3.2 The resting lake scenario
The first scenario we use to validate our models is the resting lake scenario.
This test is the base of all further analysis. It ensures that for a flat sea
surface and zero velocities, no spurious waves or flows are generated by the
numerical scheme or its implementation. The benchmark tests the well-
balancedness of the schemes.

We look at two versions of the benchmark, based on a smooth (Fig-
ure 3.1a) and a discontinuous bathymetry (Figure 3.1b). Both benchmarks
are designed to mimic typical coast patterns of complex topographies.

39

3. Verification of the tsunami methods

(a) Smooth resting-lake (b) Discontinuous resting-lake

Figure 3.1.: Sketches for bathymetry and water level of the resting lake
benchmarks.

In the domain Ω = [0, 1] × [0, 1] the smooth bathymetry is defined by a
Gaussian bell curve

b1(x, y) = 0.25 · exp
(
−40.0 · ‖(x, y)− (0.5, 0.5)‖2

2

)
− 0.1. (3.1)

The discontinuous bathymetry consists of four stacked obstacles

b2(x, y) =



0.02 ‖(x, y)− (0.35, 0.65)‖2 < 0.1,
−0.05 ‖(x, y)− (0.55, 0.45)‖2 < 0.1,
−0.03 ‖(x− 0.47)‖ ∧ ‖(y − 0.55)‖ < 0.25,
−0.07 ‖(x, y)− (0.5, 0.5)‖2 < 0.45,
−0.1 else.

(3.2)

Velocities and water level are set to zero

h0(x, y) = max(0.0,−bi(x, y)), hu0(x, y) = hv0(x, y) = 0. (3.3)

We run the benchmark on a uniform mesh of 210 cells for 40 s and mea-
sure the momentum every 50 ms. In all runs the dry tolerance is set to
1.0× 10−9 m. To resolve the coast for the ADER-DG method, we set Bcoast

to −0.01 m.
Figure 3.2 (a) and (b) show the resulting L2-norm of the momentum

40

3.2. The resting lake scenario

0 10 20 30 40
time [s]

10 20

10 18

10 16

||h
u|

| 2

(a) Smooth resting-lake

0 10 20 30 40
time [s]

(b) Discontinuous resting-lake

RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

Figure 3.2.: L2-norm of the momentum over the time of 40 s.

for both benchmarks of the Runge-Kutta method (RK-1) and the ADER-
DG method from order 2 to 7 (ADER-2 to ADER-7). For all ADER-
DG methods we see that the momentum increases in time with decreasing
slope and remains below 1.0× 10−18 in the smooth resting lake scenario.
For the discontinuous resting lake the momentum stays constantly below
1.0× 10−21.1 For RK-1, the momentum slowly increases for the smooth and
the discontinuous resting lake and remains at values close to 1.0× 10−15

after 40 s. In all cases the generated momenta are negligible. We can thus
be certain that the solution stays constant for all methods. To test the
spatial convergence rate of the methods, we perform the same benchmarks
on grids from 22 up to 215 cells and compute the L2-norm for the error of
the water column in the numerical approximation to its analytic reference.

In Figure 3.3, we show the resulting comparison of mesh size to L2 error.
In the smooth resting lake, we see that the dry tolerance of 1.0× 10−9 m
sets a lower bound of the error functions of all methods. For a DG method
of order N , we reach a convergence rate of N + 1, hinted by the underlying
dashed lines. While ADER-7 has reached the error limit for 26 cells and
a cell size of ∆x ≈ 0.088, ADER-2 and RK-1 do not reach the limit even
with 215 cells.

In the discontinuous case, the convergence rate degenerates to linear con-
vergence. Increasing the order of the method, while keeping the cell size
constant, decreases the error. However no method reaches the convergence
limit within the tested cell resolutions.

1This value lies below machine precision, as we compute the numerical error without
considering the volume of single cells and later multiply it analytically.

41

3. Verification of the tsunami methods

10 2 10 1 100

x

10 8

10 6

10 4

10 2

||
h|

| 2

(a) Smooth resting-lake

10 2 10 1 100

x

10 3

10 2

(b) Discontinuous resting-lake

RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

Figure 3.3.: L2-norm of the absolute error of the water column for de-
creasing mesh sizes. Ideal convergence rates are hinted by
dashed lines

3.3 A single wave on a sloping beach
To test how well the solvers are able to represent inundation, we compare
against the one dimensional analytic solutions given by Carrier et al. [25].
Carrier solved the shallow water equations for several initial waves, propa-
gating towards a linear sloping beach. The values of the initial waves are
set such that “the wave does not brake”, or in our terms no shocks are gen-
erated. The test shows how well the schemes are able to resolve wetting and
drying cells. In case of the ADER-DG method, the benchmark also shows
if the transition from DG to FV-cells introduces errors to the solution.

We compare the numerical results against a semi-analytic result set,
which contains the water level and velocity at 160, 175 and 220 s, as well
as the evolution of the shoreline from 90 to 350 s [71]. In the domain
x ∈ [−400, 50000] the corresponding set-up is given by a linear-sloping
bathymetry and an initial wave

h0(x) = 3.0 exp
(
−0.4444 ·

(
x

5000.0 − 4.1209
)2
)

+

9.0 exp
(
−4.0000 ·

(
x

5000.0 − 1.6384
)2
)
− b(x) (3.4)

u0(x) = 0.0 b(x) = −0.1 · x.

To solve the problem in two dimensions, we take the initial condition from
Equation (3.4) and set it constant along the y-axis in a squared domain.

42

3.4. The radial dam break scenario

Table 3.1.: Mesh resolutions for the Runge-Kutta method (RK-1) and
ADER-DG methods of order 2 to 7 (ADER-2 to ADER-7),
for the single wave on a sloping beach benchmark.
Method Cells ∆xc RK-1 220 24.6
ADER-2 218 16.4 ADER-5 216 16.4
ADER-3 218 12.3 ADER-6 214 28.1
ADER-4 216 19.7 ADER-7 214 24.6

In case of the RK method we use a mesh size ∆x = 25 m. To reach
the same resolution on the coast, for each order of the ADER-DG method,
we pick the mesh size ∆x such that the sub-cell resolution ∆xc of the
corresponding FV-method is close to 25 m. (The detailed mesh sizes are
are listed in Table 3.1.) Bcoast for the ADER-DG method is set to −100 m.

In Figure 3.4 we show the resulting comparison for the water level, the
momentum and the velocity at the coast. For water level and momentum all
methods show an exact agreement with the analytic solution. The velocity is
computed pointwise from momentum and water column in a post-processing
step. We see that close to the shoreline values of the velocity highly differ
from the analytic solution, which is caused by ill-condition of the velocity
computation for water columns close to zero (see Section 2.5.2). In wet
areas we get an accurate match for the velocity.

Figure 3.5 shows the recorded shoreline for all methods and compares
them to the analytic solution. The stepwise pattern in the shorelines are a
result of the mesh size and can be removed by further refining the coast.
All methods match the reference equally well and capture the time of the
largest inundation distance at 165 s as well as the trough at 220 s accurately.
We can conclude, that the mechanisms for inundating coasts work equally
well for all our numerical schemes.

3.4 The radial dam break scenario

To test and compare how well the Barth-Jespersen Limiter (Section 2.5.2)
and the a posteriori FV sub-cell limiter (Section 2.6.2) resolve oscillations
along shock-waves, we run the radial symmetric version of the one dimen-
sional dam break problem. The one dimensional dam break problem is
defined by an initial discontinuity in the water column and zero velocities.

43

3. Verification of the tsunami methods

25

0

25
H

[m
]

t = 160 s

100

0

hu
 [m

²/s
]

400 0 500 1000
0

5

10

u
[m

/s
]

25

0

25

t = 175 s

100

0

400 0 500 1000
x [m]

10

0

25

0

25

t = 200 s
Analytic
RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

200

100

0

400 0 500 1000

2

0

Figure 3.4.: Comparison of trajectories for the sloping beach benchmark.

100 150 200 250 300 350
time [s]

200
100

0
100
200
300

x
[m

]

Analytic
RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

Figure 3.5.: Comparison of the shoreline for the sloping beach benchmark.

44

3.4. The radial dam break scenario

We use the values:

h0(r) =
4.0 x < 0

7.0 x > 0
(3.5)

hu0(r) = 0.0.

Its analytic solution consists of three constant states, which are separated
by a rarefaction and a shock wave.

To transform the initial condition to two dimensions, we consider it in
polar coordinates and take Equation (3.5) along the radius, such that the
jump is placed at |r| = 5. In its angle φ, we keep the condition constant,

q0(r, φ) = (h0(r − 5), hu0(r − 5)) . (3.6)

In the domain Ω = [−10, 10]2 we look at the numerical solution at T =
0.3 s, after which the solution has not yet reached the boundaries or the
center of the domain.

As shown by Glaister [60], we cannot compare the two dimensional so-
lution directly to the transformed one dimensional solution, as the change
of variables introduces additional source terms. Instead we compare our
results to a highly resolved reference simulation (∆x = 0.005), from a pure
FV method on 223 cells.

In Figure 3.6 we show a comparison of the water column and momentum
along the line φ = 0, r ∈ [0, 10] at T = 0.3 s, of the FV reference (FV)
against the second order RK method (RK-1) and the ADER-DG method
for order 7. For the ADER-DG method we show the result of an unlimited
simulation (ADER-U) and limited runs, where the DMP is checked only for
the water-column (ADER-H) or for all quantities (ADER-Q).

Like the one dimensional analytic solution, the reference consists of a
rarefaction wave (r) propagating towards r = 0 and a shock wave (s) prop-
agating towards r = 10, which separate the constant states ql, qm, qr. While
ql and qr are the left and right initial value of the Riemann problem, the
middle state qm is the result of the conditions for the rarefaction wave and
the Rankine-Hugoniot condition at the shock front [86]. In two dimensions
the middle state becomes a linear sloping function connecting the rarefac-
tion and shock wave.

The unlimited ADER-DG method ADER-U shows significant oscillations
around the shock wave, as we would expected from Gibbs phenomenon. For
RK-1 the Barth Jespersen limiter damps the oscillations, which is what we
also see for both versions of the DMP in ADER-H and ADER-Q. The DMP

45

3. Verification of the tsunami methods

0 5 10
r

2

4

6
h

ql r qm s qr

0 5 10
r

0

5

10

hu

FV
RK-1
ADER-U
ADER-Q
ADER-H

Figure 3.6.: Comparison of trajectories for the radial dam break problem.

10 2 10 1

x

100

101

||
h|

| 2

10 2 10 1

x

101||
hu

|| 2

RK-1
ADER-Q
ADER-H

Figure 3.7.: Errors for the water height of limited and unlimited simula-
tions of the radial dam break problem.

detects oscillations in both cases, such that the FV-method is able to repair
them.

In order to quantify how well the limiters repair the convergence of the
method, we show an error analysis for the water column and momentum for
different mesh resolutions in Figure 3.7, for all three limiting approaches.
For each method we plot the L2-norm of the difference to the FV reference,
against the cell resolution. We see that all methods approach the reference
solution, until the error is bound by the accuracy of the numerical reference.

46

3.5. The oscillating lake scenario

3.5 The oscillating lake scenario
The oscillating lake scenario is part of the periodic two dimensional analytic
solutions found by Thacker [124]. It is characterized by a periodically mov-
ing water droplet, which propagates through a dry parabolic basin. Until
this point we only looked at benchmarks where the shoreline is restricted to
a known predefined area. In this benchmark the shoreline is the boundary of
the droplet and moves constantly through the domain. For the ADER-DG
method this implies that we cannot use a predefined region to constantly
solve the shoreline with a FV method and that we have to rely on the DMP
and the divergence of the Predictor to track the shoreline.

The solution to the test-case is given in closed analytic form, which allows
us to use it to study the errors of our methods,

h(x, y, t) = max (0, 0.1 · (x · cos (ωt) + y · sin (ωt))− b(x, y)) ,

hu(x, y, t) = max (0, h(x, y, t)) · ω2 (− sin (ωt)) , (3.7)

hv(x, y, t) = max (0, h(x, y, t)) · ω2 (− cos (ωt)) ,

b(x, y) = 0.1 ·
(
x2 + y2

)
.

The circular frequency ω =
√

0.2g is set such that it takes a period of
TP = 2πω−1 ≈ 4.487 s for the droplet to propagate through the domain
Ω = [−1, 1]2.

In Figure 3.8 we show the water column of the droplet for a whole pe-
riod, simulated with the ADER-DG method of order 2, on a uniform mesh
of 218 cells at t = 0, 1/3TP , 2/3TP and TP . The dry tolerance is set to
1.0× 10−6 m and we let the DMP detect cells with a water column of less
than 1.0× 10−2 m, such that the shoreline is constantly detected and lim-
ited (see the red contour in (a), (b), (c), (d)). Our scheme conserves radial
symmetry and matches the position of the shoreline to the reference. How-
ever, the wetting and drying process introduces small perturbations to the
solution which can be seen in the black contour lines in (c) and (d).

To study the convergence behavior, we show the L2-errors of the water
column and momentum on uniform meshes of 25 to 218 cells in Figure 3.9,
for the ADER-DG method form order 2 (ADER-2) to order 7 (ADER-
7) and the Runge-Kutta (RK-1) method. The dashed lines hint linear
and quadratic convergence orders. For the ADER-DG methods we can
reach linear convergence, which is what we would expect from the Godunov
scheme that we use in the limiting process. Higher orders reduce the error,

47

3. Verification of the tsunami methods

1 0 1
1

0

1
(c) t = 2/3TP (d) t = TP

(a) t = 0 (b) t = 1/3TP

0.02

0.04

0.06

0.08

0.10
h

Figure 3.8.: Propagation of the oscillating lake after t = 0, 1/3TP , 2/3TP
and TP . The bathymetry is hinted with black contour lines.
The DMP activated for cells with a water column of less than
1.0× 10−2 m is hinted by the red contour.

48

3.6. Okushiri: Wave on a complex bathymetry

10 2 10 1 100

x

10 3

10 2

10 1
||

h|
| 2

10 2 10 1 100

x

10 3

10 2

10 1

||
hu

|| 2

RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

Figure 3.9.: L2-errors of the water column and momentum of the oscillat-
ing lake for decreasing mesh sizes. The dashed lines hint the
slope for linear and quadratic convergence rates.

which we can relate back to the lower sub-cell resolution in the FV-methods.
The limiting of the RK method allows to reach second order convergence
and shows a smaller error than the ADER-DG methods for a mesh of 214

cells.

3.6 Okushiri: Wave on a complex bathymetry
The first benchmark with complex topography we look at is based on a
physical experiment, reproducing the tsunami subsequent to the Hokkaido-
Nansei-Oki earthquake in a small scale model. Matsuyama et al. modeled
the bathymetry of the region in a flume and induced the tsunami by a wave
generator on the left side of the model [93].

We use this benchmark to test how well our methods are able to resolve
inundation in case of a complex topography.

Figure 3.10 (b) shows the set-up, which is at a scale of 1/400 of the
original domain and the wave profile (a) that we set as boundary condition
along the left side of the domain x = 0. As sam(oa)2 is restricted to
squared domains, we extend the rectangular domain of the set-up from
[0.0, 5.5]× [0.0, 3.5] to [0.0, 5.5]× [−2.0, 3.5] and use constant extrapolation
to define the bathymetry for y < 0. This allows us to reproduce the tsunami
and its back propagation from the coast, reflections from the lower boundary
of the fume are shifted in time.

The tsunami in the experiment was recorded at three gauges, placed
at (x, y) = (4.527, 1.196), (4.521, 1.696) and (4.521, 2.196) in front of the

49

3. Verification of the tsunami methods

0 5 10 15 20
time [s]

1

0

1

ss
h

[c
m

]

0 1 2 3 4 5
x [m]

0

1

2

3
y

[m
]

Bdc.

1
2
3

10

5

0

5

10

b [cm]

Figure 3.10.: Incoming wave (top) and bathymetry of the Okushiri bench-
mark (bottom). The incoming wave is set as boundary con-
dition on the left of the domain. The three gauges, labeled
1,2 and 3 are placed in front of the coast. For the ADER-DG
method the threshold Bcoast from Equation (2.75) is hinted
by the red dashed line.

coastline, which record the propagation of the tsunami towards the coast,
as well as its propagation back, after it inundated the coast. Additionally
the experimental shoreline is provided, which we manually reproduced from
[136].

We use the ADER-DG method of order 7 (ADER-7) and the Runge-
Kutta method (RK-1) and set a dry tolerance of 1.0× 10−5 m on meshes
with 214 cells for ADER-7 (≈ 1.8 Mdofs) and 220 for RK-1 (≈ 2.4 Mdofs).
For ADER-7 we set Bcoast to −1.0 m (see the red line in Figure 3.10). To
capture the tsunami and some time after the inundation, we simulate the
benchmark for the time of 40 s.

In Figure 3.11 we show the inundation of the coast for the RK-1 method
after 15.0 s, 15.5 s, 16.0 s, 16.5 s and 17.0 s. The shoreline from the experi-
ment is added as white line, with which the numeric results shows a good
agreement. Between 15.5 s and 16.0 s the tsunami is reflected at the coast.
The superposition of incoming and outgoing wave lead to an increased am-
plitude.

50

3.6. Okushiri: Wave on a complex bathymetry

1.6

2.0

2.4

y
[m

]

(a) 15.0 s (b) 15.5 s (c) 16.0 s

4.6 5.0 5.4

1.6

2.0

2.4

y
[m

]

(d) 16.5 s

4.6 5.0 5.4
x [m]

(e) 17.0 s

0

1

2

3

4

5
ss

h
[c

m
]

Figure 3.11.: Inundation of the coast at 15.0 s, 15.5 s, 16.0 s, 16.5 s and
17.0 s. The white line describes the experimental shoreline.

51

3. Verification of the tsunami methods

0.00

0.02

0.04

ss
h

[m
]

0 10 20 30 40
time [s]

0.00

0.02

0.04 Reference
RK-1
ADER-7

Figure 3.12.: Record of the wave for the three gauges placed at (x, y) =
(4.527, 1.196), (4.521, 1.696) and (4.521, 2.196).

This superposition is present in the record of three gauges as the highest
amplitude, in Figure 3.12 after ≈ 17 s. Naturally we see differences between
experimental and numerical records, however the amplitude and phase of
the main wave is captured accurately by both methods. After 35 s the
numeric results differ from the record, which is caused by the extrapolation
of the domain we performed for the set-up.

As large areas of the coast are inundated by the tsunami, we expect to
see the same effects on the velocity we saw for the linear sloping beach
in Section 3.3. We want to use this in order to compare both limiting
approaches for their effect on the wave speeds (u±

√
gh and v±

√
gh) and

with that on the maximal admissible time-step size (see Section 2.4.2).
Figure 3.13 shows the recorded maximal wave speeds for both methods.

Up to the first inundation at 17 s both cases show low maximal wave speed,
close to 5 m s−1. After that, we see a significant increase of the maximal
wave speed for ADER-7, which remain at a high level around 40 m s−1, with
outliers of up to 300 m s−1. While the waves-speeds also increase for RK-1,
they are significantly smaller after this point. ADER-7 is limited at the
coast with no special mechanism to reduce wave speeds, RK-1 on the other
hand runs with a dedicated limiter to reduce them.

The consequence can be seen in the number of time-steps required in both
methods to reach 40 s. While ADER-7 has fewer degrees-of-freedom (≈ 1.8

52

3.7. The Sumatra-Andaman tsunami

0 5 10 15 20 25 30 35 40
time [s]

102

m
ax

 [m
/s

]
ADER-7
RK-1

Figure 3.13.: Maximal waves speeds over time for the ADER-DG method
of order 7 (ADER-7) and the second Runge-Kutta method
(RK-1).

Mdofs) and requires 120 600 time-steps, RK-1 has more degrees-of-freedom
and requires only 92 320 time-steps (≈ 2.4 Mdofs).

3.7 The Sumatra-Andaman tsunami
Finally, we look at the application of both methods to reproduce an actual
tsunami event. The Sumatra-Andaman Earthquake occurred 2004 in the
Indian ocean, causing a subsequent tsunami which killed around 283,000
people in the surrounding areas, including Indonesia, Sri Lanka and India.
The epicenter of the earthquake was placed in the Sumatra subduction
zone, close to the Nicobar islands and had a moment magnitude Mw of 9.
The earthquake has been numerically reproduced several times, for example
with the SeisSol software package [128, 132]. We use the source of Ulrich et
al. which is based on weak sediments and has a maximal displacement of
33 m [128]. In order to incorporate the earthquake as initial condition for
the tsunami, we postprocess the earthquake data with the coupling pipeline
from Chapter 5. The tsunami is sourced time-independent, as introduced
in Section 5.1. Hence, the initial condition of the test case is the post-
processed displacement field of the earthquake simulation and applied as
initial perturbation of the sea-surface, all velocities are set to zero (see
Figure 3.14 a).

Figure 3.14 shows the evolution of the tsunami for an ADER-DG method
of order 2 on a mesh of 217 cells. Bcoast is set to −500 m (see the blue contour
in Figure 3.14 b), with a dry tolerance of 0.1 m.

53

3. Verification of the tsunami methods

Table 3.2.: Mesh configurations for the Sumatra-Andaman Tsunami, to
reproduce the Jason-1 cross section reference with a relative
error of < 25%.

Method Cells Dofs RK-1 219 12.5e6
ADER-2 216 3.1e6 ADER-5 213 1.4e6
ADER-3 215 2.6e6 ADER-6 213 1.8e6
ADER-4 214 1.95e6 ADER-7 212 1.2e6

The resulting tsunami arrives at the Indonesian coast after 15 min and
reaches Sri-Lanka after 2 h (Figure 3.14 c). Close to the arrival in Sri-
Lanka the Jason-1 Satellite recorded a cross section of the tsunami, which
we use to verify our numerical results (see the black line in Figure 3.14
c). Because of the model-error and noise in the recorded data, we cannot
expect a perfect match with our numerical result. Instead we compute a
high resolved reference solution to the problem (RK-1 on 222 cells) and
evaluate the relative error between the cross section of the reference and
our models.

The resulting relative errors εrel are plotted in Figure 3.15. We see that
we lose the high order convergence of the error in all cases. However, for
constant mesh size all ADER-DG methods show a smaller error than the
RK-DG method and with increasing polynomial order the error decreases.
The number of cells and the number of dofs with which we can achieve a
relative error of < 25% are summarized in Table 3.2.

While RK-1 requires a mesh of 12.5× 106 dofs to reach this relative error,
ADER-7 requires around ten times fewer (1.2× 106). For the chosen mesh
configurations, Figure 3.16 shows a comparison of the cross sections against
the Jason-1 record. All simulations are able to capture the location and
amplitude of the two peaks at latitude −5◦ and −3◦ as well as the dip at
−2◦.

54

3.7. The Sumatra-Andaman tsunami

-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00

ssh [m]

2

1

0

1

2

y
[k

m
]

1e3
(a) 0 h (b) 1 h

-1.50
-1.12
-0.75
-0.38
0.00
0.38
0.75
1.12
1.50

ssh [m]

-1.10
-0.83
-0.55
-0.28
0.00
0.27
0.55
0.83
1.10

3 2 1 0 1
x [km] 1e3

2

1

0

1

2

y
[k

m
]

1e3
(c) 2 h

3 2 1 0 1
x [km] 1e3

(d) 3 h

-1.20

-0.90

-0.60

-0.30

0.00

0.30

0.60

0.90

1.20

Figure 3.14.: Evolution of the Sumatra-Andaman tsunami in the Indian
ocean for a simulation with the ADER-2 method. At ini-
tialization (a), after 1 h (b), 2 h (c) and 3 h (d). In (b) we
mark the coastal-area, that is resolved with FV-cells (blue
dashed contour). The trajectory of the Jason-1 Satellite is
added in (c) (black curve).

55

3. Verification of the tsunami methods

0.10 1.00
x [105m]

20

40

60

80

100
re

l [
%

]
RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

Figure 3.15.: Relative errors for decreasing mesh resolution, for the meth-
ods RK-1 and ADER-2 to ADER-7.

-10 -5 0 5 10 15
lat [°]

1.0

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

ss
h

[m
]

Jason
RK-1
ADER-2
ADER-3
ADER-4
ADER-5
ADER-6
ADER-7

Figure 3.16.: Comparison of the cross sections, for the mesh configura-
tions from Table 3.2.

56

CHAPTER

4
Comparing time-to-solution for Runge-Kutta

and ADER-DG methods.

4.1 Introduction
In the last chapter we evaluated how well the RK-DG and ADER-DG meth-
ods solve typical test cases, which are crucial for the simulation of tsunamis,
and finalized our analysis with the reproduction of the Sumatra-Andaman
tsunami. In this chapter we add an analysis and comparison of the com-
putational cost of both methods and test how well an implementation in
the sam(oa)2 framework can exploit modern CPU architectures. Tsunami
simulations are two-dimensional and the size of a single simulation is small
compared to the performance that is available on current supercomputing
systems. However, in Probabilistic Tsunami Hazard Analysis (PTHA) [61]
and Uncertainty Quantification [115] we often have to perform millions of
distinct simulations, such that initially small performance issues can sud-
denly grow significant. In this context we want to compare time-to-solution
for the second order Runge-Kutta method and the ADER-DG method.

Previous comparisons for time-to-solution have been performed for the
linear ADER-DG method for seismic simulations [20] or for matrix-free
DG methods for incompressible flows [6, 47]. While these papers restrict
their evaluation of time-to-solution to one numerical method and vary its
convergence order, we extent the analysis by a dimension and also compare
between our two numerical methods.

57

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

In order to compare time-to-solution we look at the ratio of the accu-
racy, i.e. the inverse of some error norm, that a method can reach and the
amount of time invested [47]. We split this ratio in a factor accounting for
the accuracy of the spatiotemporal approximation and a factor account-
ing for the time our implementation of the model requires to evolve this
approximation by one time-step

accuracy
time = accuracy

dofs · time-steps ·
dofs · time-steps

time . (4.1)

As we want to look at both factors separately, we assume that the imple-
mentation has no significant effect on the accuracy of the method. This
means, we neglect small differences that might occur when we change the
order of operations or use a vectorized fused multiply-add. While the first
factor was the subject of the last chapter, we add an analysis of the second
term in this chapter. Finally we use the results of this analysis and conclude
on the time-to-solution for three representative benchmarks: We choose the
smooth resting lake benchmark as we can use it as a baseline for all other
test-cases. The second benchmark is the oscillating lake, as its moving
shoreline is a challenging task for both limiting approaches. To assess the
application on a real world example, we finally look at the simulation of the
Sumatra tsunami.

The second term in Equation (4.1) is the time our implementation re-
quires to propagate a degree of freedom by one time-step, which we call
time-per-dof. In our particular case it depends on several factors:

• The bandwidth of the underlying sam(oa)2 framework.

• The number of bytes each method requires to represent a dof.

• The number of mesh traversals each method requires to propagate by
one time-step.

• The arithmetic intensity of the main kernels.

• The implementation and hardware optimizations we can perform for
each method.

• Load-imbalance that can appear due to mesh refinement.

• In the case of the ADER-DG method load-imbalance also appears as
the limiter is not activated in each cell and the number of iterations
in the Picard loop is not fixed.

58

4.2. A memory-bandwidth model for sam(oa)2

In order to reduce complexity and be able to focus on the comparison
of the methods, we restrict our analysis in several points: We fix the used
hardware resources to a single socket on the SuperMUC-NG cluster, such
that we can avoid NUMA effects. As we explicitly want to include load-
imbalance as characteristic of the numerical schemes, we deactivate all load-
balancing mechanisms in sam(oa)2. Finally we restrict meshes to the subset
of uniform meshes, as we cannot be certain that we end up with the same
dynamic mesh refinement for different methods using the same refinement
strategy. The shape of the mesh has a high influence on the cost of the stack
and stream approach which makes it challenging to compare the runtime of
simulations performed on different meshes.

In order to abstract properties of the underlying sam(oa)2 framework in
our analysis, we develop a model to assess the bandwidth we can reach for
each method in Section 4.2. As we want to consider the effect of the band-
width of the sam(oa)2 framework separately, we split the second term in
Equation (4.1) into the time we require to process a byte in a single traver-
sal, the number of traversals required for one time-step, and the number of
bytes a method needs to represent a dof

dofs · time-steps
time = bytes · traversals

time · dofs
bytes ·

time-steps
traversals . (4.2)

The resulting time per degree of freedom is assembled in Section 4.5.
In Section 4.4 we look at the arithmetic intensity and recapture the

hardware-aware optimizations we performed for all methods and look at
their effect. Finally we use all previous results and perform an overall com-
parison of time-to-solution in Section 4.6.

4.2 A memory-bandwidth model for sam(oa)2

When we traverse the mesh in sam(oa)2 additional costs are added to the
pure memory transfers by the cell-stream and edge-stack we introduced in
Section 2.2.1. In this section, we take a look at the bandwidth we can reach
with this approach.

In our approach we follow the STREAM Triad benchmark [94]: The
benchmark determines the maximum attainable bandwidth of a system by
repeatedly performing the operation:

ai = bi + s · ci, (4.3)

59

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

on three double-precision arrays a, b, and c and scalar s. The array sizes are
chosen large enough such that all cache effects that might happen in the rep-
etition are negligible. We know for this problem that the data transfers are
the only important factor for the wall-time, as all floating point operations
are overlapped by the dominant load and store instructions [120].

In order to test the available bandwidth in sam(oa)2 we adapt the bench-
mark and persistently store three arrays on each cell in a uniform triangular
mesh. Each array has a payload of d doubles, on which we perform the triad
element-wise. We create a theoretical model to describe the memory band-
width by splitting the wall-time in three components: With td we represent
the time we require to perform the computation of the triad for a single
index i. In td we consider the time spent for memory transfers as if a, b,
and c where stored on a static array and ignore any effects of the cell stream
or the underlying application. td is equivalent to the inverse of the available
bandwidth Bavail [B s−1], which we can reach with the original STREAM
Triad benchmark

td = 3 · 8
Bavail

[s]. (4.4)

To account for the cost of the traversal through the cell stream we define
a time tc required to load and store single cells without payload. In tc
we accumulate all latencies that occur for pointer resolutions in the SSFC
traversal and for the memory transfer of metadata, like coordinates and
transformations. Finally we add a constant time tp that accumulates all
operations in sam(oa)2 that happen independent from the cell stream or
its payload, as the initialization of data-structures or the synchronization
of threads.

For a problem size of c cells, each with a payload of d doubles per array,
we transfer 3 · 8 · c · d bytes in every traversal. The required time in our
model is tp + c · tc + c · d · td. We get a theoretical bandwidth of

bandwidth(c, d) = 3 · 8 · c · d
tp + c · tc + c · d · td

. (4.5)

We can see the most important characteristics of this model if we look at
what happens for large numbers of cells c→∞ and a large payload d→∞,

lim
c→∞

bandwidth(c, d) = d · 24
tc + d · td

= Bavail ·
d · td

tc + d · td
, (4.6)

lim
d→∞

bandwidth(c, d) = 24
td

= Bavail. (4.7)

60

4.2. A memory-bandwidth model for sam(oa)2

0.001

0.01

0.1

1

10

Av
ai

la
bl

e
Ba

nd
wi

dt
h

[%
]

102 104 106 108

Cells

10 2

10 1

100

101

102
Ba

nd
wi

dt
h

[G
B

s
1]

Payload [3 Doubles]
1
2
4
8
16
32
64
128

256
512
1024
2048
4096
8192
STREAM
Model

Figure 4.1.: Bandwidth for the STREAM triad in sam(oa)2. We measure
the bandwidth for increasing payload and cell number. As
reference, we add the bandwidth for the theoretical model
(Model) for a payload of d = 1 and the bandwidth reached
by the original STREAM triad (STREAM).

For small payloads, we cannot reach the available bandwidth by scaling up
the number of cells, as the constant factor accounting for the cell stream
tc remains. With larger payloads, the factor becomes small compared to
the time required to process the doubles in each cell d · td. The larger the
payload in each cell, the closer the bandwidth we can reach is to the available
bandwidth of the system. Finally the contribution of the constant factor
td decreases faster for high payloads such that we can reach the available
bandwidth with less cells than for lower payloads.

To verify the model we perform the benchmark on a single socket on
SuperMUC-NG, with 24 OMP threads that are pinned to 24 cores. The
available bandwidth we measure with the STREAM Triad is 101.5 GB s−1.
We perform the benchmark with exponentially increasing payload d =
20, 21, 22, 23, ..., 215 on uniform meshes with exponentially increasing amount
of cells c = 23, 24, 25, ..., 217. The resulting measured bandwidth for all set-
tings is presented in Figure 4.1. For comparison we add the model Equa-
tion (4.5) for a payload of d = 1 which we fit with timings tc = 2.5 ns and
tp = 10.0 ms.

The results show a very good agreement with our model. Hence, we can
increase the maximum attainable bandwidth with an increased payload. For
high number of cells (≥ 219), the contribution of the cell-stream-independent
parts tp becomes negligible (< 5%) for all payloads.

61

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

Payload on edges

Before we start to estimate the maximum attainable bandwidth for our
numerical models, we have to include the influence of data transfers over
edges to our consideration.

In order to solve Riemann problems between adjacent cells, we have to
persistently store projections of their degrees-of-freedom and some addi-
tional information on the shared edge. Next we have to compute fluctua-
tions, that we use to advance the dofs in each cell.

As not all edges in the mesh are stored on the edge stack, we cannot
estimate a constant cost for edges as we did for cells in Equation (4.5).
Instead, we measure the influence of edges and their payload by a series of
benchmarks. Equivalently to the triad we performed for the cell stream, we
persistently store three arrays aei , bei , and cei , each with an edge payload de.

We emulate the projection from cell to edge, by broadcasting all cell
arrays onto the edge.1

aei = ac(i mod dc), (4.8)
and do this equivalently for bei and cei .

Instead of solving a Riemann problem on the edge we simply exchange
the three arrays from the left and right representation to set the arrays aui ,
bui and cui for the updates of the left and right cell (denoted by the subscripts
l and r):

la
u
i = ra

e
i , ra

u
i = la

e
i . (4.9)

We finally add the update to the arrays we stored in each cell:

aci = aci + au(i mod de). (4.10)

The copy operations we perform are memory bound. (We see them as
our version of the STREAM Move benchmark.)

In order to benchmark the cost of an edge payload de, we set fixed cell
payloads dc. We use dc = 6, 59, and 348, which correspond to the payload
on a cell for the methods RK-1, ADER-2 and ADER-7, as we see in the
next section. Data transfers and computations over edges are additional
effort we have to perform to advance the solution in a cell. As the payload
on edges does not contribute to the number of dofs we can represented in
a cell, we only consider the additional time required for the transfers and
neglect the transferred bytes in the computation of the bandwidth.

1Note that the superscript c is introduced to mark arrays that belong to cells

62

4.2. A memory-bandwidth model for sam(oa)2

102 104 106 108

10 2

10 1

100

101

102
Ba

nd
wi

dt
h

[G
B

s
1]

Cell Payload: 6
0.01

0.1

1.0

10.0

100.0

Re
l.

Ba
nd

wi
dt

h
[%

]

102 104 106 108

Cell Payload: 59

102 104 106 108

Edges

10 2

10 1

100

101

102

Cell Payload: 348

Edge Payload [3 Doubles]
2
4
8
16
32
64
128
256

512
1024
2048
4096
8192
Model
Baseline
STREAM

Figure 4.2.: Measured bandwidth for the edge STREAM benchmark in
sam(oa)2 for cell payloads of dc = 6, 59, and 348. We increase
the number of edges in the mesh and the edge payload. As
reference we add the baseline for zero edge payload (Baseline)
and the bandwidth of the original STREAM triad (Stream).

In Figure 4.2 we present the resulting bandwidth including the baseline
for a cell-only benchmark as we performed it in the previous chapter. We
see that for low edge payloads the bandwidth comes close to the bandwidth
of a traversal that only considers cells. With increasing edge payload, the
maximum attainable bandwidth decreases exponentially. The results show
two significant effects for our analysis, opposing each other: A high order
polynomial representation results in an increased payload on cells, for which
we expect a higher bandwidth. However, higher order also leads to more
bytes we have to store on each edge, which again decreases the maximum
attainable bandwidth.

63

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

Table 4.1.: Number of bytes and dofs that are stored on each cell and edge
for the methods RK-1 and ADER-2 to ADER-7 (left). Mea-
sured maximal bandwidth for the corresponding benchmarks
STREAM-1 to STREAM-7 (right).

Method dof/cell B/cell B/edge Model Bmax [GByte/s]

RK-1 12 168 96 STREAM-1 22.9
ADER-2 24 1856 400 STREAM-2 37.9
ADER-3 40 3088 544 STREAM-3 38.4
ADER-4 60 4632 688 STREAM-4 39.7
ADER-5 84 6488 832 STREAM-5 40.9
ADER-6 112 8656 976 STREAM-6 42.0
ADER-7 144 11136 1120 STREAM-7 43.1

Bandwidth of the numerical models

In order to determine the bandwidth we can reach for each of our methods,
we set the payload on cells and edges to the requirements of the numerical
methods. This way we ensure that the benchmarks perform the same num-
ber of memory transfers in each iteration as their corresponding numerical
method. The payloads for the methods RK-1 and ADER-2 to ADER-7
on cells and edges are summarized in Table 4.1. Additionally we show the
number of dofs that are represented in each cell. We see that in case of
the ADER-DG methods we store significantly more bytes to represent a
dof (77 byte-per-dof) than for the RK method (14 byte-per-dof), for which
the main reason is the state machine we developed in Section 2.6.2: All
ADER-DG methods simultaneously store the DG and FV representations
of the solution, as well as the time-averaged DG-Predictor. On edges, addi-
tional to the projected time-averaged DG-Predictor, we store the projected
time-averaged fluxes, which also results in a significantly higher payload on
edges (see Section 2.4.3).

For later use we call the corresponding benchmark models STREAM and
annotate them with the polynomial order of their respective DG method.

In Figure 4.2 we mark the bandwidth of the models STREAM-1, STREAM-
2 and STREAM-7 in red. The resulting maximal bandwidths show us that
STREAM-1 can reach a maximal bandwidth of 22.9 GB s−1. The bench-
marks that adapt the ADER-DG methods can reach up to twice the band-
width (STREAM-2 37.9 GB s−1, STREAM-7 43.1 GB s−1). Between the
ADER-DG methods, the maximum attainable bandwidth differs slightly

64

4.3. The roofline model for sam(oa)2

(5.2 GB s−1 difference for between ADER-7 and ADER-2). With increasing
order, the maximum bandwidth also increases.

4.3 The roofline model for sam(oa)2

Up to this point we resolved the dependency between the maximum at-
tainable bandwidth in sam(oa)2 and the numerical methods. To evaluate
the cost of our methods, we look at the arithmetic intensity of their main
kernels in this section.

The most common approach to model the performance of a method is
the idealized roofline model [139]. Its basic assumption is that the scheme
is either dominated by the memory transfers or by the computations that
are performed:2

T = max
(

#flops
Pmax

,
#bytes
Bmax

)
. (4.11)

Here T denotes the time that is required to process a total of #bytes
on which we perform #flops. Pmax is the peak performance of a system,
while Bmax is the highest bandwidth we can reach. In our case we deter-
mined the maximum attainable bandwidth for each method in the previous
chapter. The ratio of #flops and #bytes is the arithmetic intensity (AI)
of the scheme, the ratio of Bmax and Pmax the machine balance (MB) and
a property of the system we are using. In case the arithmetic intensity is
larger than the inverse machine balance, #flops/#bytes > Pmax/Bmax, the
time to perform all floating point operations dominates the memory trans-
fers and we speak of a compute bound application. In the opposite case the
application is dominated by the memory transfers and the application is
memory bound.

The roofline model is built upon some radical simplifications, from which
we want to enumerate a few, as they become important in our considerations
later [120]:

1. All memory transfers and floating point operations overlap.

2. All memory latencies can be hidden by prefetching.
2Our version of the roofline model is derived from its standard formulation:

P = #flops
T = min

(
Pmax,

Bmax
#bytes
#flops

)

65

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

Table 4.2.: Number of floating point operations #flops and transferred
bytes #bytes for the main kernels of RK-1 and ADER-2 to
ADER-7. Additionally we compute the arithmetic intensity
(AI) and the individual inverse machine balance (IMB), based
on the peak performance and the measured maximum attain-
able bandwidth from Table 4.1.

Method #flops #bytes AI IMB
RK-1 361 104 3.5 83.7

ADER-2 3551 567 6.2 50.7
ADER-3 12659 995 12.7 50.0
ADER-4 34320 1532 22.3 48.3
ADER-5 78330 2182 35.8 47.0
ADER-6 158592 2944 53.8 45.7
ADER-7 293832 3820 76.9 44.5

3. All operations can exploit the theoretical peak performance of the
system.

4. The instruction pipeline is always fully utilized.

5. All cores on a CPU perform the same number of operations, hence
load-imbalance is never an issue.

To see if our applications are memory or compute bound, we present the
arithmetic intensity of the main kernels for both methods in Table 4.2. In
case of the ADER-DG method the main kernel is the Picard loop, for RK-1
the volume integral is the kernel with the largest number of flops.

As in the previous chapter we perform our analysis on a single socket on
SuperMUC-NG. With the original STREAM Triad benchmark we measure
a bandwidth of BSTREAM

max = 101.5 GB s−1. The 24 cores on each socked
each have two AVX-512 FMA vector units that run with a frequency of
2.5 GHz, which accumulates to a theoretical peak-performance of Pmax =
1.92 TFLOPS s−1. The resulting inverse machine balance is ≈ 18.9.

As we can not reach Bmax with our methods, we compute the inverse ma-
chine balance individually for each method (IMB), based on the maximum
attainable bandwidth we measured in Table 4.1.

Comparing AI and the individual IMB reveals that only for ADER-6 and
ADER-7 we can expect that the main kernels are compute bound when
executed in sam(oa)2 (ADER-6: AI 53.8 > IMB 45.7, ADER-7: AI 76.9

66

4.4. Node level optimizations

> IMB 44.5). In all other cases the kernel is bound by the maximum
attainable bandwidth. This is especially significant for the RK-1 method,
for which the individual inverse machine balance is increased to 83.7. In
case of ADER-4 and ADER-5 the increased individual machine balance
means that the stack and stream approach puts both methods from the
compute bound to the memory bound regime (ADER-4: AI 22.3 < IMB
48.3, ADER-5: AI 35.8 < IMB 47.0).

Practically, factors that are neglected in the roofline model play a crucial
role in the runtime of our codes: Not all functions can fully exploit the peak
performance of the system. For example, the limiter of the RK-DG scheme
performs a vast amount of integer operations as index sortings. The same
applies to divisions, which are used several times in the computation of the
velocity (for example in the flux function). Branching avoids that we fully
utilize the instruction pipeline, which happens in the different treatment of
wet and dry cells in both methods. Finally, load-imbalance occurs neces-
sarily in the ADER-DG scheme, as we cannot know the number of limited
cells a priori.

4.4 Node level optimizations
The implementations we presented in Section 2.5 and Section 2.6 leave
room for several hardware optimizations we performed to improve the per-
formance of both methods. Base for our optimizations is the Intel Skylake
architecture used on SuperMUC-NG with the underlying AVX-512 instruc-
tion set and a vector-length of 64 byte. Compilation is performed with the
2019 version of the Intel Fortran and C++ compiler.

4.4.1 Optimizing the Runge-Kutta DG code

In order to avoid cache line splits, we align all arrays to Skylake’s vector-
length. The numerical flux is auto-vectorized by the compiler, which we
guide with the OpenMP directive !#omp simd, similar to the work be Fer-
reira et al. [50]. To match with the length of the vector register, we use
zero-padding of the quadrature nodes on edges to four in the Riemann
solver.

Similarly we proceed with the volume kernels of the RK-1 method. We
zero pad the volume quadrature nodes to a length of four, which guides the
compiler to autovectorize Fortran’s default matmul implementation.

The performance of the Barth-Jaspersen typed limiter Section 2.5.2 is

67

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

dominated by divisions and the sorting of water height and velocity in
Equation (2.69) and Equation (2.72). As a vectorization of this loop is
cumbersome and is most likely inefficient we decided to omit it at this
point.

4.4.2 Optimizing the ADER-DG code

As for the RK-DG method we align all arrays with the AVX-512 vector-
length. For the FV scheme used in the limiter from Section 2.6.2, we adapt
the already provided vectorization by Ferreira et al. [50]. Projection and
reconstruction (Section 2.6.4) are again auto-vectorized with OMP pragmas.
As the Rusanov flux of the ADER-DG method only takes up a small fraction
of the runtime, we skip its vectorization at this point.

YATeTo for the optimization of the Picard loop

The discretization of the predictor (see Equation (2.49)) leads to small dense
tensor contractions that we perform repeatedly for a previously unknown
number of iterations:

n+1PlLq = dt
dx

(
tKT tM−1)

JL
(iJ)mq SlJm+(

tKT tM−1)
JL

(
sM−1sK (iJ)−1

)
lbj

FjJbq+ (4.12)(
tK−1tKT

0

)
L
qlq.

Where S and F are the flux and source terms evaluated for the predictor at
iteration n:

SlJm = S (nPlJm) FiJbq = F (nPlJm) .

We use YATeTo to generate hardware optimized kernels for the Skylake
architecture [131]. Based on a custom high-level language for the defini-
tion of tensor contractions, YATeTo generates assembly code to exploit the
available AVX-512 vector registers. The framework performs several stages
to optimize the finally compiled code, in our case these boil down to:

• Strength reduction: The sequence in which tensor contractions are
evaluated is optimized for the lowest number of operations.

68

4.4. Node level optimizations

Table 4.3.: Key performance characteristics of the Picard loop. We
present the floating point operations and transferred bytes per
iteration. Additionally we show the resulting arithmetic inten-
sity, the performance in GB s−1 and its fraction of the peak
performance.

Order Flops/It. Bytes/It. AI Perf. % Peakperf.
2 3551 567 6.2 516.7 13.4
3 12659 995 12.7 739.1 19.2
4 34320 1532 22.3 1091.4 28.4
5 78330 2182 35.8 1228.2 32.0
6 158592 2944 53.8 1522.3 39.5
7 293832 3820 76.9 1658.0 43.2

• Data Layout: Tensor contractions are evaluated as loop-over-GEMM
(LoG). Whenever it is beneficial for vectorization indices are fused in
a LoG.

• Generated Assembler Code: For the resulting GEMMs the libxsmm
[69] library is called to generate assembler code. The code exploits the
AVX-512 instruction-set to evaluate matrices in their outer-product
formulation [63].

The key characteristics of the resulting kernels are presented in Table 4.3.
By design the arithmetic intensity of the predictor increases with the order
of the method. Orders 2 and 3 are memory bound, as we stay below the
machine balance on SuperMUC-NG of 19.2. For higher orders we are in the
compute bound regime.

In order to estimate the attainable peak performance of the predictor we
run a test on 100 000 elements and 400 000 repetitions on 48 cores on a
single node. The test shows that the performance of the predictor increases
with the polynomial degree of the method. It can reach up to 1658 GFlops
for ADER-7, which is 43.2 % of the theoretical peak performance and a
factor of 3.2 times higher as for ADER-2 with 13.4 %.

4.4.3 Performance improvement

In order to quantify the effect of our custom optimizations, we want to cal-
culate the speedup we get when we compare the time per degree-of-freedom

69

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

to runs with only auto-optimizations. For the baseline we leave out all cus-
tom optimizations and compile with most aggressive compiler optimization
(‘-O3‘). The Picard iteration is directly mirrored from Equation (4.12)
to Fortran code. Tensor contractions are resolved with loop-over-GEMM,
where matrix products are computed with the default matmul implemen-
tation of Fortran. The reference does not consider zero padding and loops
are only auto-vectorized.

In order to compare both implementations, we pick a mesh of 219 cells
for which we know from Section 4.2 that the stack and stream approach
reaches the maximal bandwidth for all methods. As scenario we choose the
Sumatra tsunami.

In Figure 4.3 we show a comparison for the time per degree-of-freedom per
time-step for all seven methods for custom-optimized (O) and baseline (B)
kernels. We show for each traversal the individual contribution in ns and
for the optimized implementation the speedup, compared to the compiler
optimized version.

As the optimizations of the adaption in both versions are the same, we see
no difference for this traversal. We get the highest overall speedup (1.8×)
for ADER-5. For all other ADER methods the speedup increases with the
order of the method (from 1.1× for ADER-2 to 1.6× for ADER-7). The
RK-1 method has a speedup of 1.2×.

In case of the ADER-DG methods the speedup is the result of the im-
proved Picard loop, which we can accelerate by up to more than three
times (3.2× for ADER-5). The Corrector shows a significant benefit only
for orders above 5.

For RK-1 the padding of volume kernels and vectorization of the Riemann
solver lead to a speedup of 1.3× in both stages. The limiter does not benefit
from any of the optimizations we performed.

4.5 Degrees of freedom per second
In this chapter we compare the time T from Equation (4.11) between an im-
plemented method and its corresponding STREAM benchmark. This way
we get a description of the cost an implemented method raises, compared
to its pure memory transfers.

Following the discussion of the roofline model, practically the measured
difference has to be either related to flops that are not overlapping with
memory accesses, or to one of the factors we mentioned at the end of Sec-
tion 4.3.

70

4.5. Degrees of freedom per second

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time/(dof time-step) [ns]

RK-1

ADER-2

ADER-3

ADER-4

ADER-5

ADER-6

ADER-7

B
O

B
O

B
O

B
O

B
O

B
O

B
O

2.8
2.8

2.8
2.8

2.8
2.8

2.8
2.8

2.7
2.7

2.7
2.7

5.3
5.1 (x1.0)

5.9
5.4 (x1.1)

6.3
6.0 (x1.0)

6.2
6.1

6.7
6.4 (x1.0)

6.9
6.5 (x1.1)

4.2
3.6 (x1.2)

6.2
3.7 (x1.7)

6.8
3.4 (x2.0)

10.7
3.5 (x3.0)

8.2
3.8 (x2.2)

10.5
4.6 (x2.3)

 12.4
 11.5 (x1.1)

 14.9
 11.9 (x1.3)

 15.9
 12.3 (x1.3)

 19.6
 12.4 (x1.6)

 17.5
 12.9 (x1.4)

 20.1
 13.7 (x1.5)

1.1
1.0

2.2 (x1.3)

2.8
1.1

1.1

2.2 (x1.3)

2.9
1.2

1.2
 7.8 (x1.2)

 9.1

Adaption
Solver
Predictor

Heun Stage 1
Limiter Stage 1

Heun Stage 2
Limiter Stage 2

Figure 4.3.: Time-To-Solution for custom-optimized (O) and baseline (B)
kernels for the RK-DG method and ADER-2 to ADER-7,
split in the traversals required for a time-step. In case of the
ADER-DG method the limiter is part of the Solver traversal.

We first look at the time-per-byte, which we get when we normalize the
time T required for a simulation by its problem size.

Knowing the number of bytes we require to represent a dof, we can con-
clude on the time-per-dof:

dofs · time-steps
time = bytes · traversals

time · dofs
bytes ·

time-steps
traversals . (4.2)

71

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

Time-per-byte

In Figure 4.4 we show a full comparison for the time-per-byte, between
the benchmarks (STREAM-1 to STREAM-7) and their respective methods
(RK-1, ADER-2 to ADER-7) for the resting lake benchmark. The number
of cells are set such that all set-ups have close to 106 dofs, for which we
know that all models run with the maximum attainable bandwidth (See
Section 4.2). For each comparison we break down the analysis into the
single stages of a time-step and estimate the cost of a method as the factor
with which the time-per-byte increases between benchmark and model.

For the benchmarks (STREAM-1 to STEAM-7) the time-per-byte is the
inverse of the measured maximum attainable bandwidth, and consequently
decreases with the order. For ADER-2 to ADER-7 we see the opposite
result, as the time-per-byte increases with the order and remains within
the range [49.2 ps B−1, 59.1 ps B−1]. RK-1 is significantly slower compared to
all ADER-DG methods with 98.1 ps B−1. The time-per-byte of all methods
increases by a cost factor of 1.9× to 2.6× compared to the benchmarks and
we measure the same factor for RK-1 and ADER-5 (2.2×). As the data
transfers of method and benchmark are equal and we do not perform any
refinement operations, the adaption traversals agree in all comparisons. In
case of the ADER-DG methods the additional effort comes mostly from
the Solver traversals, which are slower than the benchmarks by a factor
of 3.1× to 4.8×. At first sight, this is a surprising result as we would
expect that the Picard loop performed in the Predictor traversal to be the
most expensive kernel. However, the Predictor traversals are only slower
by a factor of 2.1× to 3.4× compared to the benchmark. We see two
main reasons for this: The optimizations we perform for the Picard loop in
Section 4.4 are very effective (We speed up the traversal by a factor of up
to 3) and it becomes less significant. Moreover the Solver traversal contains
OMP barriers which are caused by small load-imbalance in the mesh (see
Figure 4.5). For RK-1 we see that the most effort is in the traversals that
perform the element update (Heun), which are 3.5 to 4.0 times slower than
the STREAM-1 benchmark. The Limiter traversals are less costly and 1.9×
to 2.0× times slower than the benchmark.

We get a lower time-per-byte for the ADER-DG methods, as for the
RK-1 method, which is caused by the two additional traversals we have to
perform for each time-step for RK-1. For high-order ADER-DG meth-
ods we get a higher time-per-byte, than for low order methods, which
corresponds to their higher computational cost (see Table 4.2). Parts of
the higher computational effort of the high order methods can be hidden

72

4.5. Degrees of freedom per second

0 20 40 60 80 100
time/(byte traversal) [ps/Byte]

STREAM-1
RK-1

STREAM-2
ADER-2

STREAM-3
ADER-3

STREAM-4
ADER-4

STREAM-5
ADER-5

STREAM-6
ADER-6

STREAM-7
ADER-7

12.1
12.1

12.0
12.0

12.0
12.0

11.9
11.9

11.4
11.4

11.5
11.5

21.9 (x3.1)
7.2

23.4 (x3.3)
7.1

26.0 (x4.0)
6.6

26.4 (x4.2)
6.3

27.6 (x4.5)
6.2

27.9 (x4.8)
5.8

15.2 (x2.1)
7.2

15.8 (x2.2)
7.1

14.7 (x2.2)
6.6

15.2 (x2.4)
6.3

16.4 (x2.7)
6.2

19.7 (x3.4)
5.8

 49.2 (x1.9)
 26.4

 51.1 (x2.0)
 26.1

 52.7 (x2.1)
 25.2

 53.5 (x2.2)
 24.5

 55.5 (x2.3)
 23.8

 59.1 (x2.6)
 23.2

14.2
14.2

25.4 (x3.5)
7.3

13.9 (x1.9)
7.3

29.5 (x4.0)
7.3

15.0 (x2.0)
7.3

 98.1 (x2.2)
 43.6

Adaption
Triad
Solver

Predictor
Heun Stage 1
Limiter Stage 1

Heun Stage 2
Limiter Stage 2

Figure 4.4.: Comparison of the time per byte between the bandwidth
benchmarks STREAM-1 to STREAM-7 and the methods
RK-1 and ADER-2 to ADER-7 in ps B−1. The overall time
per byte is decomposed in the single traversals required to
compute a single time-step. The factor with which the run-
time increases compared to the corresponding bandwidth
model is appended and marked with ×.

73

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

Table 4.4.: Time-per-dof for the resting lake, the oscillating lake and the
Sumatra tsunami in ns for a mesh of around 106 dofs.

resting lake oscillating lake Sumatra Tsunami
RK-1 7.84 6.98 7.4

ADER-2 9.22 6.08 10.9
ADER-3 9.34 5.68 11.6
ADER-4 9.37 6.02 12.1
ADER-5 9.57 6.18 12.9
ADER-6 9.63 6.24 13.9
ADER-7 10.5 6.66 15.8

behind their increased maximum attainable bandwidth. When we com-
pare ADER-2 and ADER-7, we see that the additional effort for ADER-7
(35.9 ps B−1 higher time-per-byte compared to STREAM-7) and for ADER-
2 (22.8 ps B−1 higher time-per-byte compared to STREAM-2) differs by
13.1 ps B−1. However the direct comparison of time-per-byte reveals that
ADER-7 has 9.9 ps B−1 more effort than ADER-2. This shows us that the
additional effort is reduced by around 25%, by memory transfers that are
3.2 ps B−1 faster for the order seven case.

Time-per-dof

Having derived a model for the time-per-byte we use it to conclude on the
time-per-dof: In Table 4.1 we saw that the number of bytes we have to store
in order to represent a dof and hold all required meta data, highly differs be-
tween RK-1 (bytes/dof = 14) and the ADER-DG method (bytes/dof ≈ 77).

This has a significant effect on how the methods compare in time-per-
dof, which we present for all three set-ups in Table 4.4. While RK-1 is the
method with the highest time-per-byte for the resting lake, its lower number
of bytes-per-dof leads to the lowest time-per-dof (7.84 ns). In contrast all
ADER-DG methods show higher time-per-dofs values, which again increase
with the polynomial order (from 9.22 ns to 10.5 ns). We see the exact same
relation for the Sumatra Tsunami, however the time-per-dof have signifi-
cantly increased for the high order ADER-DG methods (ADER-7: resting
lake 10.5 ns, Sumatra Tsunami: 15.8 ns). In case of the oscillating lake all
ADER-DG methods are faster than RK-1 (RK-1 6.98 ns, ADER-DG from
6.08 ns to 6.66 ns).

74

4.5. Degrees of freedom per second

2

4
1e-09 s

Ad
ap

tio
n

Comp. Resting Lake
Sync. Resting Lake

Comp. Oscillating Lake
Sync. Oscillating Lake

Comp. Sumatra
Sync. Sumatra

0

1 1e-08 s

Pr
ed

ict
or

0

1
1e-08 s

So
lv

er

ADER-2 ADER-3 ADER-4 ADER-5 ADER-6 ADER-7
0

2
1e-08 s

Su
m

RK
-1

Adaption Heun-1 Limiter-1 Heun-2 Limiter-2
0

2
1e-09 s

Sum
0

10 1e-09 s

Figure 4.5.: Comparison of time-per-dof between three benchmarks.

To see in detail where these differences come from, we add a comparison
for time-per-dof for all three scenarios in Figure 4.5 and look at the single
traversals in detail. As they play a significant role we additionally split the
time-per-dof into the time that is spent for each dof in computations or spent
in OMP barriers. Data between OMP threads are exchanged in sam(oa)2

at the end of each traversal after all threads finished computations for their
part of the domain. Large synchronization barriers imply that threads have
to wait for each other and indicate load-imbalance. As in our set-up all
OMP threads hold the same number of cells, load-imbalance has to be a
result of varying computational costs of cells.

In case of the RK-1 method the computational cost of cells only differs
between the wet and dry case. On dry cells less computations are performed,

75

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

as all operations that require positive water columns (as the velocity) are
skipped. In all other steps operations are performed equivalently on all
cells.

In case of the ADER-DG method there are several aspects where the
computational cost per cell differs. At first not all cells perform the same
number of iterations of the Picard loop. When a cell contains a resting
solution the loop usually converges after a single traversal, as the initial
condition is already the right solution. Cells that hold a non-steady so-
lution require more iterations of the loop, as the solution in the predictor
has to evolve before it converges. If the water column in a cell is too small
compared to the velocity the Picard loops can diverge as the flux is nu-
merically not bound. In our implementation the divergence gets detected
after a threshold of twenty iterations and is then treated by the limiting
mechanism.

Another factor that leads to varying costs for cells in the ADER-DG
scheme is given by the state-machine. Here cells that are captured and
limited by the DMP (see Section 2.6.3) have a higher cost as unlimited
cells, as they perform the corrector step and compute the FV Solution.
The state machine also captures cells that are dry and are surrounded by
dry cells at the beginning of each time-step. For these cells we can be
certain that their state stays constant and skip the computation of their
Picard loop and corrector.

The results of Figure 4.5 show us that the time-per-dof is similar for
all scenarios simulated with the RK-1 method but vary for the ADER-DG
methods

The only outstanding difference for RK-1 are in the OMP-Barriers and
computations for the oscillating lake scenario. We can directly relate these
difference back to the asymmetry of the solution: Large areas of the oscil-
lating lake are dry, while a wet droplet propagates in circles through the
domain. The asymmetry of the solution leads to unevenly distributed wet
and dry cells and results in load-imbalance. The time for computations is
reduced, compared to the resting lake and the Sumatra tsunami, as large
parts of the domain are dry.

For the Predictor and Solver traversals of the ADER-DG method the
load-imbalance for the oscillating lake are even more significant. As the
state machine detects dry cells and skips their computation, the time in
computations in both traversals is significantly reduced compared to the
resting lake scenario. In case of the Predictor traversal, dry cells that do
not perform the Picard loop, wet cells with a few iterations, and cells close
to the wet/dry interface for which the Picard loop diverges are not evenly

76

4.6. Time to solution

distributed and lead to load-imbalance. We see the same behavior in the
Solver iteration where dry, limited, and unlimited cells are unevenly dis-
tributed in the mesh.

For the Sumatra tsunami we do not see the same large load-imbalance
for the Predictor in the Sumatra tsunami. Here the FV-threshold captures
cells with a small water-column at the coast such that there is no cell
for which the Picard loop diverges. However, the Solver traversal shows
large load-imbalance that are partly caused by the asymmetric ribbon of
static FV-cells we define around the coast. As the initial tsunami contains
discontinuities, we also expect that several cells are detected by the DMP
and have to be limited.

4.6 Time to solution
Having derived the single components of Equation (4.1), we can finally
assemble them to a full comparison in time-to-solution

accuracy
time = accuracy

dofs · dofs · time-steps
time · 1

time-steps . (4.1)

For our three scenarios we want to compute the error-per-time for in-
creasing meshes of 24 to 216 cells. For each mesh, we recapture the time-
per-degree as measured in Section 4.5 and the error-per-dof which we derive
from the results from Chapter 3. The full comparison is presented in Fig-
ure 4.6 for the resting lake (Figure 4.6a), the oscillating lake (Figure 4.6b)
and the Sumatra tsunami (Figure 4.6c).

We first look at the smooth resting lake scenario in Figure 4.6a. As we
already saw the representation of the smooth solution benefits from the
high order representation such that the convergence rate and values of the
error-per-dof are significantly better for the high order ADER methods than
for the low order case. For ADER-2 as well as RK-1 this means that we
cannot reach the convergence limit within our measured number of cells.
We saw in Table 4.4 that the attainable time-per-dof is lower for the RK-1
method, however up to 2.0× 105 dofs the time-per-dof is higher for RK-1
as for the ADER-DG methods. This is related to the later convergence
of the bandwidth for RK-1 method that we observed for low payloads in
Section 4.2. For all ADER-DG methods the time-per-dof increases with
the polynomial degree. The best result for time-to-error is achieved with
ADER-7 for a time of 9.5 s. With increasing order the double precision limit
can be achieved within exponentially less invested time (ADER-6 12.2 s,

77

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

ADER-5 39.2 s ADER-4 146.2 s and ADER-3 561.9 s). We see in the smooth
case that the better error-rate of high order methods pays off and can easily
equalize the increased number of time-steps and the higher time-per-dof.

Next we look at the oscillating lake scenario. We observed that the Barth

10 7

10 4

er
ro

r

RK-1 ADER-2
ADER-3
ADER-4

ADER-5
ADER-6
ADER-7

104 106

dofs

10 8

10 7

10 6

tim
e-

pe
r-d

of
 [s

]

100 101 102 103

time [s]

10 8

10 6

10 4

10 2

er
ro

r

(a) Time-to-solution for the resting lake.

10 3

10 2

er
ro

r

104 106

dofs

10 8

10 7

tim
e-

pe
r-d

of
 [s

]

100 101 102 103

time [s]

10 3

10 2

er
ro

r

(b) Time-to-solution for the oscillating lake.

78

4.6. Time to solution

102

2 × 101
3 × 101
4 × 101
6 × 101

er
ro

r

105 107

dofs

10 8

10 7

tim
e-

pe
r-d

of
 [s

]

100 102 104

time [s]

102

2 × 101

3 × 101
4 × 101

6 × 101

er
ro

r

(c) Time-to-solution for the Sumatra Tsunami.

Figure 4.6.: Time-to-solution comparison for the methods RK-1 and
ADER-2 to ADER-7. We show the time required to advance
a single dof for one time-step against the number of dofs, the
error against the number of dofs and finally the time required
to reach a certain error.

Jespersen limiter of the RK-1 method leads to an improved error-rate com-
pared to the FV implementation we use in the limiting process of the ADER-
DG method. The higher convergence rate of the RK-1 methods leads to sig-
nificantly better error-per-dof compared to the ADER-DG methods (RK-1
0.0015 error for 1.97× 106 dofs, ADER-7 0.006 for 3.0× 106 dofs). Between
ADER-DG methods high order still pays off as the error-per-dof decreases
with the polynomial degree (For example ADER-2 0.007 for 4.0× 106 dofs
and ADER-3 0.006 for 3.2× 106 dofs). In case of the ADER-DG meth-
ods, time-per-dof profits from the state-machine that detects and skips dry
cells. The time-per-dof is better for all ADER-DG methods compared to
RK-1 and increases with the polynomial degree. However, the differences
in time-per-dof between all methods are small (around ∼ 10 % for the
same number of dofs) such that the improved time-per-dof of the ADER-
DG methods cannot equalize the slower error rate. For this reason the
comparison in time-to-solution shows a very clear advantage for the RK-
DG method. RK-1 outperforms all ADER methods, for simulations with a
reasonable high number of dofs.

Finally we look at the Sumatra tsunami. Here we saw a lower error for

79

4. Comparing time-to-solution for Runge-Kutta and ADER-DG methods.

all ADER-DG methods compared to the RK-DG method, which is caused
by the significantly lower initial error. As the convergence rate is equivalent
between methods the error remains lower for all ADER-DG methods. As
for the oscillating lake the error decreases slightly with the order.

The time-per-dof is lower for the RK-DG method, which is caused by the
high load-imbalance we saw for the ADER-DG methods in Section 4.5 and
increases with the order of the ADER-DG method. Combining all results
reveals that the error-per time shows the best values for the ADER-DG
methods. While a relative error of less than 25 % is reached with the RK-1
method in 2657 s, all ADER-DG methods require less than 640 s (ADER-
2 639 s, ADER-3 540 s, ADER-4 365 s, ADER-5 235 s, ADER-6 404 s and
ADER-7 268 s).

4.7 Conclusion
In this chapter we disassembled and compared time-to-solution for high-
order ADER-DG methods and a second order Runge-Kutta method in the
sam(oa)2 framework. We showed in all cases that time-to-solution is better
for the scheme that addresses a problem with the more complex method.
In all cases the higher time-to-solution of the more complex scheme, is
compensated for with better error behaviors.

In case of the ADER-DG methods, time-to-solution for the resting lake
benefits from the high-order representation: The higher number of memory
transfers and flops of the ADER-DG methods, compared to RK-1, lead to
an higher time-per-dof. Better errors for the high-order representation of
the smooth solution equalize these additional costs and lead to a better
time-to-solution.

In case of the oscillating lake time-per-dof is lower for the ADER-DG
methods than for RK-1. The higher time-per-dof for RK-1, is equalized by
the better resolution of the inundation process by the limiting scheme.

In case of the simulation of the Sumatra tsunami we focused on a com-
parison for a trajectory of the water-level in the deep-ocean. We thus see
the same better error behavior for ADER-DG, as we see it for the resting
lake.

In conclusion, the error behavior of the polynomial representation results
in better time-to-solution for solutions in deep-water, while for inundation
processes the limiting scheme plays the fundamental role. A future com-
parison in time-to-solution should include RK methods of higher order and
extend the limiting scheme of the ADER-DG method.

80

CHAPTER

5
Linking of earthquake and tsunami codes

Realistic sources and physically correct linking are the key to accurate pre-
dictions of the impact of tsunamis [15].

The common approach to reproduce earthquake events and model tsunami
sources is based on the analytic solutions by Okada [15, 101]. Okada sum-
marized closed solutions for the surface displacement field, in homogeneous
half-spaces with singular point or finite rectangular sources [8]. While these
solutions are still widely used to derive sources for tsunamis, they are re-
stricted to flat topographies and homogeneous material parameters [146].

Advanced HPC codes from computational seismology allow us to model
complex fault systems with realistic fracture mechanics. In the context of
Probabilistic Tsunami Hazard Assessment (PTHA), where we want to es-
timate the long-term impact of tsunamis on exposed regions, we can easily
vary uncertain parameters in the earthquake model, simulate the subse-
quent tsunamis and analyze their effects [61].

In this chapter we introduce a workflow for the one-way linking of earth-
quake simulations to discontinuous Galerkin codes for the simulation of
tsunami models. The workflow has been applied to simulations in several
publications [92, 140, 143].

The classical physical toolbox for linking of displacements from earth-
quake simulations, to source tsunamis is given by linear potential theory in
inviscid fluids, which we use as foundation of our linking approach [121]. In
linear potential theory the flow between sea floor and sea-surface is consid-
ered incompressible, all rotational forces are neglected. The displacement

81

5. Linking of earthquake and tsunami codes

of sea floor and sea-surface are boundary conditions of the water layer,
where gravitation is considered the only acting force. To induce the dis-
placement on the sea-surface a constant or time-dependent deformation of
the sea-bottom is used.

Takahasi was the first to apply linear potential theory to find an analyt-
ical solution for the relation between a sea-bottom displacement on a flat
bathymetry and the sea surface [121]. Kajiura generalizes Takahashi’s ap-
proach and derives several analytical solutions for the vertical displacement
of the sea-surface, caused by instantaneous sea floor deformations [75]. The
Fourier analysis of Kajiura’s solutions shows that in the transition from sea
floor to sea-surface displacement wavenumbers which are larger than 1/H
(where H is the sea-depth) are filtered in the water-layer. Today this result
is still commonly used to convert sea floor displacements to tsunami sources
and is widely known as Kajiura filter.

In Kajiura’s theory the sea floor deformation happens instantaneously
at t = 0, which does not allow to take the temporal evolution of the sea
floor deformation into account. Saito extended the approach by modeling
time-dependence of the deformation with a time-rate function. The rate-
function leads to a uniform elevation of the sea floor displacement. After the
source time σt the deformation remains permanent [108, 109]. Saito used
his approach to show that depending on the size of the tsunami source σr,
the filtering effects Kajiura observed are only significant for small source
areas σr < 13H, or for long source process times σt > σr/(8

√
gH), with g

as the gravitational acceleration [111].
To this point all presented approaches consider gravity as the single sourc-

ing force of tsunamis. All kinetic energy in a tsunami evolves from the
potential energy induced by the displacement of the sea-surface.

To include the kinetic energy, which is transmitted by horizontally moving
slopes in the bathymetry, Song et al. propose to use an initial set horizontal
momentum in the tsunami model [119]. With a fully coupled dynamic-
rupture and tsunami model Lotto et al. study the effects of this transmitted
initial momentum and show that it only effects ocean acoustic waves and
is negligible for the tsunami [91].

In Lotto and Dunham’s model the sea floor is modeled as boundary condi-
tion to couple seismic waves in a solid with acoustic waves in a compressible
ocean layer under the influence of gravity. The sea-surface boundary condi-
tion is set to model tsunami gravity waves [80, 90]. Abrahms et al. use this
model to conclude from source size and duration, on the effect of different
coupling strategies [1].

The linking workflow we present in this chapter is based on the results

82

5.1. Sourcing tsunamis with the shallow water equations

found by Kajiura [75], Saito [111] and Lotto [90]. We take the horizontal and
vertical displacement fields from an earthquake simulation and use the well
known Tanioka’s method to compute a perturbation of the sea floor [122].
From Kajura’s and Saito’s work we know that we can use the perturbation
of the sea floor to directly source the tsunami and do not have to consider
any effects happening in the water layer. Lotto et al. tell us that this is the
only source we require to properly source the tsunami.

We first show how we extend the numerical methods in sam(oa)2 for time
dependent and time independent tsunami sources in Section 5.1. To include
horizontal displacements we revisit the well known Tanikoa’s method and
derive it for our particular application in Section 5.2. Seismic waves play a
crucial role in our workflow, as in our sourcing they might generate spurious
waves. As solution we introduce a novel Fourier based filtering approach in
Section 5.3.

5.1 Sourcing tsunamis with the shallow water
equations

We start with inclusion of the source in the shallow water equations (SWE)
as we defined them in Section 2.3. The postprocessed results of an earth-
quake model lead to a perturbation of the sea floor ∆b(x, y, t) that we want
to include in the tsunami model. The bathymetry becomes an initial con-
stant sea floor b̂(x, y), modified by a time-dependent sea floor perturbation.
After the last recorded time-step of the earthquake model T , we assume
that the sea floor perturbation has converged and remains constant,

b(x, y, t) =
b̂(x, y) +∆b(x, y, t) if t ≤ T

b̂(x, y) +∆b(x, y, T) else.
(5.1)

In the sea floor perturbation we accumulate all influences of the earth-
quake on the sea floor and follow the argumentation of Lotto, that these
are the only effects we have to consider to properly initialize the tsunami
[91]. Our linking approach is designated for large interplate events, where
tsunami source size σr and duration σt allow us to directly translate the
sea floor perturbation to the sea-surface and neglect all effects that might
happen in the vertical water-flow (σr � 13H or σr/8

√
gH � σt, where H

is the sea-depth) [111].
We want to compare the sea floor perturbation as time-independent and

time-dependent source. In case of time-independent sourcing, we take the

83

5. Linking of earthquake and tsunami codes

water column h0 of the resting lake scenario based the initial constant sea
floor b̂ and add the sea floor perturbation ∆b at the end of the earthquake,

h0 = max(−b̂, 0), (hu)0 = (hv)0 = 0, b0 = b̂+∆b(x, y, σt). (5.2)

For time-dependent sourcing we use the depth-averaged continuity from
Equation (2.21) and replace the water column h with the difference of water
level H and bathymetry b. We get the SWE in the form

Qt +∇ · F (Q) = S (Q) , (5.3)

with

Q =

Hhu
hv

 ,∇ · F (Q) =


(hu)x + (hv)y(

1
2gh

2 + hu2
)
x

+ (huv)y
(huv)x +

(
1
2gh

2 + hv2
)
y

 , S (q) =

 bt
−gbxh
−gbyh

 .
(5.4)

Godunov splitting allows us to solve Equation (5.4) numerically [86]: We
separate the source term in the part that affects the sea-surface and the
part that adjusts the momenta,

Ssurf (Q) =

bt0
0

 , Smom (Q) =

 0
−gbxh
−gbyh

 . (5.5)

The splitting approximates the PDE in Equation (5.4) as PDE with subse-
quent ODE,

PDE: Q∗t +∇ · F (Q∗) = Smom (Q∗) (5.6)
ODE: Qt = Ssurf (Q∗) . (5.7)

In order to use the unchanged DG methods from Section 2.5 and Sec-
tion 2.6 to solve the PDE Equation (5.6), we have to remove the dependency
on time in Smom (Q). We can do this by assuming that the gradient of the
bathymetry hardly changes between two time-steps,

bx(x, y, tn+1) ≈ bx(x, y, tn), by(x, y, tn+1) ≈ by(x, y, tn). (5.8)

The temporal evolution of the bathymetry is given from the earthquake
model, such that we can solve the ODE in Equation (5.7) with explicit

84

5.2. The method of Tanioka and Satake

(a)

Dz

b

∆b

(b)

Dx

b

∆b

Figure 5.1.: Qualitative sketch of the sea floor perturbation ∆b caused by
vertical (a) and horizontal displacement (b) of the sea floor b.

integration in time,

Hn+1 = Hn +
∫ tn+1

tn
bt(t, x, y) dt . (5.9)

With the fundamental theorem of calculus we can show that the change
of the bathymetry is given by the seafloor perturbation,∫ tn+1

tn
bt dt = bn+1 − bn = ∆b(x, y, tn+1)−∆b(x, y, tn) 5.9→ (5.10)

Hn+1 = Hn +∆b(x, y, tn+1)−∆b(x, y, tn).

In the actual implementation we only have to store the water column and
bathymetry explicitly. Equation (5.10) is implicitly realized, by updating
the bathymetry with the change of the sea floor perturbation at the end of
every time-step.

5.2 The method of Tanioka and Satake
To generate the sea floor perturbation we have to consider vertical and hor-
izontal displacements of the sea floor. Figure 5.1 shows the two types of
ground motion that change the vertical height of the bathymetry. Vertical
displacements are directly translated to the bathymetry and cause uplift
and subsidence (a). Horizontal displacements on the other hand lead to a
shift of the bathymetry and also have to be reflected in the sea floor per-
turbation (b). Tanioka was the first to consider horizontal displacements in
the tsunami generation. Here we translate his approach to time dependent

85

5. Linking of earthquake and tsunami codes

displacements [122].
We look at the Lagrangian description for the motion of a particle located

at the surface of the bathymetry at (x, y, b(x, y, t)) during an earthquake.
After a period of ∆t the particle has been translated by (∆x,∆y,∆z) and
has to remain on the surface,

(x+∆x, y +∆y, b(x+∆x, y +∆y, t+∆t)) =
(x, y, b(x, y, t)) + (∆x,∆y,∆z). (5.11)

In order to get rid of the translations in the bathymetry at the left side of
the equation, we evolve b(x+∆x, y+∆y, t+∆t) in a Taylor series in x and
y, and neglect the second order terms,

b(x+∆x, y +∆y, t+∆t) ≈
b(x, y, t+∆t) + bx(x, y, t+∆t)∆x+ by(x, y, t+∆t)∆y. (5.12)

As the magnitude of the displacement is small compared to the magnitude
of the bathymetry, we assume that the gradient of the bathymetry hardly
changes over time,

bx(x, y, t+∆t) ≈ bx(x, y, 0), by(x, y, t+∆t) ≈ by(x, y, 0). (5.13)

Combining Equation (5.11), Equation (5.12) and Equation (5.13) leads
to:

b(x, y, t+∆t) = b(x, y, t) +∆z − b(x, y, 0)x∆x− b(x, y, 0)y∆y. (5.14)

Finally we have to determine the particle translations (∆x,∆y,∆z) within
the period ∆t. We know, that at the beginning of the earthquake there is a
particle (x̃, ỹ, b0(x̃, ỹ)) on the sea floor, which is translated to (x, y, b(x, y, t))
by its displacements at time t,

(x, y, b(x, y, t)) = (x̃, ỹ, b0(x̃, ỹ))+
(Dx(x̃, ỹ, t), Dy(x̃, ỹ, t), Dz(x̃, ỹ, t)) . (5.15)

As we do not know the exact initial position (x̃, ỹ, b0(x̃, ỹ)), we have to
approximate it. Displacements are relatively small compared to the size
of the domain, assuming that the field is locally smooth. Therefore, we
approximate

D∗(x̃, ỹ, t) ≈ D∗(x, y, t). (5.16)

86

5.3. A Fourier filter to erase fast seismic waves

Now we can use the difference of the displacements after ∆t to compute
the translation of the particle,

(∆x,∆y,∆z) =

(x+∆x, y +∆y,b(x+∆x, y +∆y, t+∆t))− (∆x,∆y,∆z) (5.16)=
(Dx(x, y, t+∆t)−Dx(x, y, t), (5.17)
Dy(x, y, t+∆t)−Dy(x, y, t),
Dz(x, y, t+∆t)−Dz(x, y, t)).

Equation (5.14) and Equation (5.17) give us a time dependent version
of the method of Tanioka & Satake. The approximations made in Equa-
tion (5.12), Equation (5.13) and Equation (5.16) allow us to compute the
sea floor perturbation locally in each coordinate,

∆b(x, y, t+∆t) = b(x, y, t)− b(x, y, 0) + (Dz(x, y, t+∆t)−Dz(x, y, t))
− b(x, y, 0)x(Dx(x, y, t+∆t)−Dx(x, y, t))

− b(x, y, 0)y(Dy(x, y, t+∆t)−Dy(x, y, t)). (5.18)

5.3 A Fourier filter to erase fast seismic waves
Simulating a three dimensional earthquake in high resolution is computa-
tionally expensive. Therefore the simulated time is usually chosen to only
record the convergence of the permanent seafloor displacement reached after
a couple of minutes. Following the method we presented in Section 5.1, the
tsunami is sourced by the sea floor perturbation for the recorded time range.
After this time, the sea floor perturbation is kept constant. As the perma-
nent displacement has converged at this point, it is properly resolved in the
tsunami model. Seismic waves on the other hand are abruptly stopped, as
keeping the seafloor perturbation constant is equivalent to setting all wave
velocities to zero. In the tsunami model these waves appear as permanent
seafloor perturbation and generate spurious waves.

To avoid the false modeling of seismic waves, we choose to eliminate
them from the displacement field. This is valid, as Saito showed with cou-
pled earthquake tsunami models, that these waves have no influence on the
tsunami, as they propagate out of the domain [110].

A simple method is to crop the field, such that seismic waves artificially
propagate out of the domain in the recorded time-frame. This approach
works whenever seismic waves and permanent displacement are not overlap-

87

5. Linking of earthquake and tsunami codes

ping and spatially separable. A more sophisticated approach is required, in
case seismic waves overlay the permanent displacement in the last recorded
time-step: In this section we look at a novel Fourier filtering approach, in-
spired by techniques used in computer vision [77]. Our filter works in the
frequency-wavenumber (f-w) spectrum of a displacement field, to separate
the content of fast seismic surface waves from the spectrum of the dominant
slow lifting permanent displacement. We want to identify those f-w coef-
ficients of the displacement field which distinctly belong to seismic surface
waves and zero them out.

To give an idea on how the f-w representations of both types of dis-
placement behave, we first look at the Fourier transformations of analytic
examples. From these examples and their numerical counterparts we design
a filtering kernel which damps fast seismic waves and keeps the permanent
displacement. Finally we analyze the effects of our filtering approach.

5.3.1 Separation in Fourier space

Our filtering approach is designed on the underlying assumption that we
can separate fast traveling seismic waves from a permanent displacement
in their combined frequency-wavenumber representation. This assumption
is strengthened by the observation that the analytic Fourier transformation
of a traveling wave has its coefficients along the line ω − f

v
.

The main tool in this study is the two-dimensional Fourier transforma-
tion. For a function g(t, x) in time t and space x, the Fourier transformation
Ft,x(f, ω) {g (t, x)} computes the frequency f and wavenumber ω with

Ft,x(f, ω) {g (t, x)} := Fx(ω) {Ft(f) {g (t, x)}} =∫ ∞
−∞

∫ ∞
−∞

g(t, x) exp (−itf) dt exp (−ixω) dx . (5.19)

Here Fx(ω) {·} and Ft(f) {·} denote the one dimensional Fourier transfor-
mations.

If we assume a wave traveling with velocity v, defined by a time-series
w(t) : R→ R, its Fourier transformation is

Ft,x(f, ω)
{
w
(
t− x

v

)}
= Fx(ω)

{
exp

(
−ix
v
f
)
Ft(f) {w(t)}

}
=

Fx(ω)
{

exp
(
−ix
v

)
f
}
∗ Ft(f) {w(t)} = δ

(
ω − f

v

)
∗ Ft(f) {w(t)} . (5.20)

88

5.3. A Fourier filter to erase fast seismic waves

Where we used the convolution theorem:

Fx(ω) {g(x)h(x)} = Fx(ω) {g(x)} ∗ Fx(ω) {h(x)} :=∫ ∞
−∞

Fx(ω) {g(x)} (η)Fx(ω) {h(x)} (ω − η) dη (5.21)

As a permanent displacement remains constant after a time-frame and is
not highly oscillating but restricted to a fixed area, we expect to see large
coefficients along the lines f = 0 and ω = 0.

In order to confirm our assumption we look at two analytic examples: A
slowly lifting displacement taken from Saito [109] and a constantly moving
S-wave taken from Aki [3].

Fourier transformation of a permanent displacement

For the case of the slowly lifting displacement Dz
p(x, t), we assume that it

is defined by a final permanent displacement d(x) and a time-rate func-
tion χ(t) [109]. The time-rate function χ(t) determines the rate that the
displacement emerges with, starting at a flat seafloor,

Dz
p(x, t) = d(x)

∫ t

−∞
χ(T) dT . (5.22)

We chose a Gaussian hill as permanent displacement d(x), with σr as the
size of the source,

d(x) = exp
(
− x2

2 · σ2
r

)
. (5.23)

For a source duration of σt and a maximum rate at t0 we define the rate
function by

χ(t) = 4
σt
√
π

exp
−((t− t0) · 4

σt

)2
 , (5.24)

such that
∫∞
−∞ χ(t) = 1.

The analytic fourier transformation for the permanent displacement is
shown in Appendix A. We get the norm of the f-w coefficients

|Ft,x(f, ω)
{
Dz
p

}
| =
√

2σr
f
√
π

exp
(
−
(
σt
8 · f

2
))

exp
(
−
(

(σr · ω)2

2

))
. (5.25)

89

5. Linking of earthquake and tsunami codes

At f = 0 the coefficients have a singularity, as the integral of the perma-
nent displacement diverges for t → ∞. We see that the coefficients with
the highest norm of Equation (5.25) are close to the lines f = 0 and ω = 0.

Fourier transformation of a generic S-wave

For a point source with source-time function X(t) placed at the origin in
depth d, the vertical displacement for the emanating S-wave is given by Aki
et al. [3],

Dz
s(x, t) = 1

4πρv2

(
1− d2

r2

)
X
(
t− r

v

)
, (5.26)

where v is the velocity of the wave and r =
√
‖x‖2

2 + d2 the Euclidean
distance to the point source location. In our example we remove all scalars
of (5.27) and take a simple Gaussian impulse as point source,

Dz
s(x, t) = 1

v2

(
1− d2

r2

)
exp

(
−
(
t− r

v

)2
)

. (5.27)

In Appendix A we show that the norm of the f-w coefficients can be
approximated by the equation

|Ft,x(f, ω) {Dz
s} | =∣∣∣∣∣δ (f) δ (ω)

√
π√

2v2
− π

dv2 exp
(
−f

2

4

)
exp

(
−d|ω − f

v
|
)∣∣∣∣∣ . (5.28)

At (f, ω) = (0, 0) the norm of the f-w coefficients is equivalent to the
wave’s integral over (t, x) ∈ R2,

|Ft,x(0, 0) {Dz
s} | =

√
π√

2v2
+ π

dv2 , (5.29)

everywhere else it is

|Ft,x(f, ω) {Dz
s} | =

π

dv2 exp
(
−f

2

4

)
exp

(
−d|ω − f

v
|
)

. (5.30)

While the first exponential factor shows us that the norm exponentially
decays with f 2, the second exponential factor has its highest values along
the lines f

ω
= v and decreases towards the normals of the line. Compared

to the trajectory of the S-wave (x/t = v) these characteristic lines have the

90

5.3. A Fourier filter to erase fast seismic waves

inverse slope (ω/f = v−1) in f-w representation.

5.3.2 Filter kernel design
We want to use the results from the analytic case, to remove fast traveling
seismic waves from a discrete displacement field.

The Nyquist-Shannon sampling theorem tells us that for a discrete dis-
placement field, with Nx samples in space and Nt samples in time, a res-
olution of ∆x and ∆t and a domain of [0,W] × [0, T], we can repre-
sent the wavenumbers ωj = j · 1/(2∆x) and frequencies fi = i · 1/(2∆t),
∀j ∈ [0, Nx], ∀i ∈ [0, Nt]. The discrete fourier transformation (DFT) of the
displacement field gives us the matrix of complex coefficients Dji for the
represented wavenumbers and frequencies.

To erase the characteristic lines ω − f/v in the coefficient matrix we
define a mask based on a cone that includes the minimal vmin and maximal
velocity vmax of the waves we want to filter,

M s
ij =

0, if vmin < |fi|/|ωj| < vmax

1, else.
(5.31)

This cone also erases coefficients close to f = 0, ω = 0 and affects the
permanent displacement. To avoid this we add a buffer to the mask, to
keep the parameters of the permanent displacement. Based on the results
in Equation (5.25), we define the size of the buffer depending on the source
size σr and source duration σt, with relaxation variables for frequency cfrel
and wavenumber cωrel,

Mp
ij =


1 if w2

j
σ2

r

2 < cωrel
1 if f 2

i
σt

8 < cfrel
0 else.

(5.32)

The relaxation variables define how aggressive we filter the coefficients
in the overlapping region of both waves. While high values conserve the
permanent displacement, low values lead to higher cancellation of seismic
waves.

The final filter kernel is the logical disjunction of both masks,

Mij = M s
ij ∨M

p
ij. (5.33)

For which we get the DFT of the filtered displacement Dji with the

91

5. Linking of earthquake and tsunami codes

0

50

100

(a)

0.00

0.25

0.50

0.75

1.00
Dy [m]

0

0.5

1

(b)

0

10

20

log (|F (f, ω)|)

0

50

100

ti
m

e
[s

]

(c)

0.0

0.1

0.2

0.3

0.4
0

0.5

1

f
[H

z]

(d)

5

10

15

20

-40 0 40

x [km]

0

50

100

(e)

0.0

0.5

1.0

-1.25 0 1.25

ω [km−1]

0

0.5

1

(f)

0

10

20

Figure 5.2.: Wavefield (a,c,e) and frequency-wavenumber representation
(b,d,f) for a synthetic benchmark. We show the representa-
tions for a permanent displacement (a,b), several fast travel-
ing S-waves (c,d) and the superposition of both (e,f).

Hadamard product of the unfiltered displacement and the filter kernel,

D = M ◦D = (Mji ·Dji)ji. (5.34)

Filtering a synthetic example

To test the filter, we look at a discrete synthetic example based on the
definitions from Equation (5.27) and Equation (5.22). In Figure 5.2 we show
the displacement field and the corresponding discrete fourier transformation
(DFT) of a large slowly lifting displacement in the center of the domain
(a,b), several fast S-waves (c,d) and the superposition of both (e,f).

We look at the displacement in the area [−40, 40] km and for 100 s. The

92

5.3. A Fourier filter to erase fast seismic waves

0

50

100

(a)

0.0

0.5

1.0

Dy [m]
0

0.5

1

(b)

0

10

20

log (|F (f, ω)|)

0

50

100

ti
m

e
[s

]

(c)

0.0

0.5

1.0

0

0.5

1
f

[H
z]

(d)

0

10

20

-40 0 40

x [km]

0

50

100

(e)

−0.2

0.0

0.2

-1.25 0 1.25

ω [km−1]

0

0.5

1

(f)

Figure 5.3.: Wavefield (a,c,e), f-w representation (b,d) and filter kernel (f)
for the filtering process of the synthetic displacement. From
the f-w representation of the unfiltered displacement (b), the
filter kernel (f) erases characteristic lines of seismic waves (d).
In the wavefield (a) this process removes seismic waves (c).
The removed waves after the filtering are shown in (e).

permanent displacement is set for a source width of L = 20 km and a
duration of σt = 40 s with the highest rate at t0 = 15 s. S-waves are initiated
at t0 = 25 s, move with speeds v ∈ [1.0, 3.0] km s−1 and have amplitudes in
the range of [0.25, 0.4] m.

We record the displacement field for 100 s and a time-step of ∆t = 0.5 s,
the resulting highest represented frequency is 1 s−1. The spacial discretiza-
tion is set on the interval [−40, 40] km, with ∆x = 800 m and a represented
wavenumber of ω = 1.25 km−1. These resolutions are chosen to resemble
the typical output from an earthquake simulation.

Looking at the logarithmic norms (log |F (f, ω)|) of the DFTs and the

93

5. Linking of earthquake and tsunami codes

analytic f-w representation shows us the characteristic properties which
were the motivation for the design of the filter kernel. The coefficients of
the permanent displacement are dominant along the lines f = 0 and ω = 0
(b) and those of the S-waves are characterized by the lines f

ω
= v (d). Both

share high norms close to the origin, which tells us that we are not able to
separate them perfectly in a given combined displacement field (f), without
knowing their exact distribution.

In order to filter the displacement, we set the filtered velocities from
vmin = 0.7 km s−1 to vmax = 8 km s−1. Based on the analytically derived
norm in Equation (5.25), we set cωrel = 2.5× 10−8 and cfrel = 2.5× 10−9 for
the relaxation parameters. Figure 5.3 shows a comparison of the combined
displacement (a) to the displacement after we applied the filter (c). The
filter mask (f) erases the characteristic lines of the S-wave from the f-w co-
efficients, the coefficients around f = 0 and ω = 0 are left untouched (b,d).
In the unfiltered displacement the relative L2 norm of the S-waves was 0.11.
After we applied the filter the norm more than halved for the remaining
artifacts to 0.052 (e). While we are not able to erase all artifacts of S-waves,
we can significantly reduce their contribution to the filtered displacement.

5.3.3 Filtering seismic waves in discrete displacement fields
In Section 5.3.2 we can only compute the effect of the filter, because we know
the analytical description of all waves in the superpositioned displacement
field. In case of numerical results the only information we have, besides
the displacement field, are the geometrical and material properties of the
model.

To find the right relaxation parameters for the filter we propose to look
at particular seismic waves, which can be clearly identified in the displace-
ment field. Having found a seismic wave we gradually increase the strength
we filter with (i.e. we decrease the values of the relaxation parameters),
until the wave is removed from the displacement field. To see the effects
of the relaxation parameters, we look at the displacement field of a one di-
mensional dynamic rupture simulation situated in a subduction zone [143].
Figure 5.4 shows the displacement fields before (a) and after (b) we fil-
tered for velocities from 0.7 km s−1 to 8 km s−1 with relaxation parameters
cωrel = 1.0× 10−5 and cfrel = 2.5× 10−7. The DFT of the field agrees with
our analytical observations (d): Dominant coefficients of the permanent
displacement are along the lines ω = 0 and f = 0. The characteristic lines
of seismic-waves also appear but show diffusion from the inhomogeneous
material in the subduction zone. The difference of filtered and unfiltered

94

5.3. A Fourier filter to erase fast seismic waves

0

80

165

ti
m

e
[s

]
(a)

0

5

Dy [m] (b)

0

5

-100 200 500

x [km]

0

80

165

ti
m

e
[s

]

(c)

−1

0

1

∆Dy [m]

-0.5 0 0.5

ω [km−1]

0

0.5

1
f

[H
z]

(d)

0

5

10

15

20

log (|F (f, ω)|)

Figure 5.4.: Wavefield for the unfiltered (a) and filtered displacement in
a subduction zone (b). The difference (c) shows that we can
erase seismic waves from the field. The f-w representation of
the field conforms with our analytical model (d).

displacements show that we erase a large part of the seismic waves for the
displacement field (c).

To adjust the relaxation parameters, we use the fact that we know the
speed of the P-wave, from the inhomogeneous material parameters of the
earthquake simulation. Figure 5.5 shows seismograms for the particle ve-
locity of the model for the range [100, 300] km in a 10 km distance before
(black) and after (red) we applied the filter (a). We see that initially the
evolution of the permanent displacement (located between the two green
lines) is interfered by several seismic-waves. In the unfiltered velocity field
the P-wave moves with a speed of 4.429 km s−1. After applying the filter
it is no longer present in the field (b, blue line). Accordingly, the seismic
waves interfering the evolution of the dynamic displacement have reduced.

This is no longer the case, if we set the relaxation parameters to higher
values and decrease the level of filtering. In Figure 5.6 we show the P-wave
for the parameter sets increased by a factor of 10 (cωrel = 1.0× 10−4, cfrel =
2.5× 10−6) (a) and a factor of 100 (cωrel = 1.0× 10−3, cfrel = 2.5× 10−5) (b).
We see that in both cases higher relaxation parameters lead to a reduced
filtering of the P-wave and it remains present in the displacement field.

95

5. Linking of earthquake and tsunami codes

0.0 30.0 60.0 90.0 120.0 150.0

t [s]

100

160

220

280
x

[k
m

]

(a)

20.0 30.0 40.0 50.0 60.0

t [s]

100

160

(b)

P-Wave

Permanent

Unfiltered

Filtered

Figure 5.5.: Velocity components of seismograms for the unfiltered (black)
and filtered displacement (red) in a subduction zone. The
blue line indicates the trajectory of the peak of the P-
wave, the green lines the area, the permanent displacement
is generated in. (a) shows the seismograms in the domain
[100, 300] km up to 150 s. (b) the seismograms focusing on
the P-wave. The filtering process erases the P-wave in the
filtered displacement.

20.0 30.0 40.0 50.0 60.0

t [s]

100

160

x
[k

m
]

(a)

20.0 30.0 40.0 50.0 60.0

t [s]

100

160

(b)

P-Wave

Permanent

Unfiltered

Filtered

Figure 5.6.: Velocity components of seismograms focusing on the P-wave,
for the unfiltered (black) and filtered displacement (red) in a
subduction zone. Relaxation parameters are increased by a
factor of 10 (a) and 100 (b). In both cases the P-wave is not
fully filtered.

96

5.3. A Fourier filter to erase fast seismic waves

0

80

165

ti
m

e
[s

]
(a)

−2.5

0.0

2.5

5.0

7.5
Dy [m] (b)

−2

0

2

4

6

Dy [m]

-100 200 500

x [km]

0

80

165

ti
m

e
[s

]

(c)

−2

0

2

∆Dy [m]

-100 200 500

x [km]

(d)

−4

−2

0

2

4

∆Dy [m]

Figure 5.7.: Displacement field of an earthquake in a subduction zone.
The relaxation parameters have been decreased by factors 10
(a) and 100 (b). The values lead to a high deformation of the
permanent displacement (c,d).

If we increase the level of filtering with lower values for the relaxation
parameters, we also increase the influence of the filter on the permanent
displacement. Figure 5.7 shows the displacement field after we filtered with
decreased parameters sets for division factors of 10 (cωrel = 1.0× 10−6, cfrel =
2.5× 10−8) (a) and 100 (cωrel = 1.0× 10−7 , cfrel = 2.5× 10−9) (b). Both
displacement fields are highly deformed and loose important characteristics
as the maximal displacement (c,d). We also see that at the temporal and
spatial boundaries of the displacements spurious waves are generated.

5.3.4 Going to two dimensions

When we move our concept to two spatial dimensions, the f-w spectrum of
the displacement field is now defined in two wavenumbers ω1 and ω2 and the
frequency f . Under the assumption that seismic waves and permanent dis-
placement evolve approximately radial symmetric around a center, we can
transform the observations we made in one dimension into two dimensions.

We take the analytic test setting from Section 5.3.1 and transform it to
a radial symmetric solution in two dimensions, by taking it constant along

97

5. Linking of earthquake and tsunami codes

-0.25 0 0.25
-0.25

0

0.25

ω
2

f =0 s−1

-0.25 0 0.25
-0.25

0

0.25
f =15 s−1

-0.25 0 0.25
-0.25

0

0.25
f =30 s−1

-0.25 0 0.25

ω1

-0.25

0

0.25

ω
2

f =45 s−1

-0.25 0 0.25

ω1

-0.25

0

0.25
f =60 s−1

-0.25 0 0.25

ω1

-0.25

0

0.25
f =75 s−1

10

20

30

10

15

20

25

10

15

20

25

10

15

20

10

15

20

10

15

20

log (|F (f, ω1, ω2)|)

Figure 5.8.: f-w representation of the radial symmetric synthetic displace-
ment field, for frequencies f = 0, 15, 30, 45, 60 and 75 s−1.
For the displacement the significant coefficients are located
along the axes (f = 0, ω1 = 0), (f = 0, ω2 = 0) and
(ω1 = 0, ω2 = 0) in the f-w representation. The coefficients
for seismic-waves appear as circles at ωr = f

v
.

the angle in polar coordinates. The f-w representation of the example for
selected frequencies is shown in Figure 5.8: The significant coefficients of
the permanent displacement in the f-w spectrum are now along the axes
(f = 0, ω1 = 0), (f = 0, ω2 = 0) and (ω1 = 0, ω2 = 0). Characteristic
lines of seismic waves have turned into cones f/‖ω‖2 = v, where ‖ω‖2 =√
ω2

1 + ω2
2 is the spectral norm of the two wavenumbers.

We can use these observations to design the two dimensional filter kernel
on the base of its one-dimensional counterpart. In Equation (5.31) we
replace the wavenumber ω with the spectral norm of the wavenumbers,

M s
ijk =

0, if vmin < |fi|/|(‖ω‖2)jk| < vmax

1, else.
(5.35)

For the permanent displacement we keep the three lines along the axes in

98

5.3. A Fourier filter to erase fast seismic waves

-0.14 0 -0.14
-0.14

0

-0.14

ω
2

[k
m
−

1
]

(a)

10

15

20

25
log(|F (f, ω1, ω2)|)

-0.14 0 -0.14

ω1 [km−1]

f : 0.475(b)

-0.14 0 -0.14

(c)

10

15

20

25
log(|F (f, ω1, ω2)|)

-1000 -600 0 600

-600

0

600

1000

y
[k

m
]

(d)

−5.0

−2.5

0.0

2.5

5.0

ssh [m]

-1000 -600 0 600

x [km]

(e)

−5.0

−2.5

0.0

2.5

5.0

-1000 -600 0 600

(f)

−0.5

0.0

0.5

1.0

∆ssh [m]

Figure 5.9.: Filtering process for the model set-5. From the f-w represen-
tation at f = 0.457 s−1 (a) we erase the cone belonging to
seismic waves with the two dimensional filter mask (b) to get
the filtered f-w representation (c). The filter removes seismic
waves from the displacement field at t = 150 s (d) and damps
imprinting waves in the filtered displacement field (e) of up
to 1 m amplitude (f). Adapted from Figure S1 & S2 in [140].

the representation,

Mp
ijk =


1, if (w1)2

j
L2

2 < cωrel ∧ (w2)2
k
L2

2 < cωrel
1, if (w1)2

j
L2

2 < cωrel ∧ f 2
i
tc
8 < cfrel

1, if (w2)2
k
L2

2 < cωrel ∧ f 2
i
tc
8 < cfrel

0, else.

(5.36)

The final mask is build equivalently to Equation (5.33).
In Figure 5.9 we see the filtering process for the displacement field of

model set-5, that we introduce in Chapter 6 We filter the velocities vmin =
0.7 km s−1 and vmax = 8.0 km s−1, the relaxation parameters are set to cwrel =
5.0× 10−7 and cfrel = 1.25× 10−9. (a) shows the f-w representation of the
displacement field at the frequency f = 0.475 s−1. Clearly visible as circles

99

5. Linking of earthquake and tsunami codes

are the conic sections in (a) with the coefficients belonging to seismic waves.
At the origin we see the line (ω1 = 0, ω2 = 0) of the permanent displacement.

We follow the one dimensional workflow and apply the mask, for every
sampled frequency (b) to the f-w representation to get the filtered f-w rep-
resentation (c). From the unfiltered displacement field (d), seismic waves
have been damped in the filter displacement field (e). The difference shows
us that we removed waves up to 1 m amplitude and especially waves that
where imprinting the permanent displacement. Remaining seismic waves in
the filtered displacement can simply be erased by cropping the displacement
field.

5.4 Conclusion and discussion
The Fourier filter we presented in this chapter is build under several math-
ematical approximations:

1. The permanent displacement is close to the axes in f-w-representation.

2. The fast seismic waves we want to filter are characterized by cones
f/‖ω‖2 = v (and lines in one dimension).

3. The displacement field is approximately radial symmetric.

From these assumptions we derived a filter kernel based on parameters cfrel
and cωrel. These parameters balance between the factor with which seismic
waves are damped and with which the permanent displacement is kept. In
case of displacement fields that were generated by a seismic code, we do not
know suiting values a priori. Instead we have to test multiple sets, until we
found a proper configuration.

The need to use the filter can be seen in a comparison of wavefields, for
the set-3 benchmark that we introduce in Chapter 6. In Figure 5.10 we
show the tsunami at the end of the source after 200 s, at 1400 s and 2000 s
for filtered and cropped, unfiltered and cropped and unfiltered displacement
fields.

In case of the filtered displacement we used the parameters cwrel = 5.0× 10−7

and cfrel = 1.25× 10−9 for the filtering mask. For the cropped displace-
ment field, we take the unfiltered displacement in the area Ω = [0, 450] ×
[−300, 300] and set all values outside to zero.

We see significant differences for the tsunamis of the three sources. After
the source finished at 200 s, the tsunami to the unfiltered source contains
seismic waves, which erroneously become tsunami waves at 1400 s. In the

100

5.4. Conclusion and discussion

-550

-150

250

Filtered

200 s

Cropped Original

−4

−2

0

2

4
ssh [m]

-550

-150

250

y
[k

m
]

1400 s

−3

−2

−1

0

1

2

3

-300 0 300

-550

-150

250

2000 s

-300 0 300

x [km]
-300 0 300

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Figure 5.10.: Wavefields for set-3 after 200 s, 1400 s and 2000 s for filtered,
cropped and unfiltered displacement fields.

cropped displacement field, the fast traveling seismic waves that do not
imprint the permanent displacement have been erased. However we still
see the effect of seismic waves that imprint the permanent displacement on
the tsunami 1400 s, compared to the tsunami of the filtered displacement.
After 2000 s we can still see a significant influence of the fast seismic waves
on the tsunami to the unfiltered source. Cropped and filtered displacement
show slight differences.

101

CHAPTER

6
The ASCETE framework

6.1 Introduction
The linking methods we presented in Chapter 5 are part of the subduction
earthquake tsunami linking pipeline that was presented by Madden et al.
[92] and used for an extended parameter study by Wirp et al. [140]. In
both publications simulations of the movement of continental plates in sub-
duction zones, of dynamic rupture earthquake events and of tsunamis are
linked and used to isolate the effects of parameters in earthquake models
on the subsequent tsunamis. In this chapter we revisit the most important
findings and refer readers to the corresponding publications for details in
Section 6.4 and Section 6.5. The core metrics of the considered models are
accumulated for the seafloor-perturbation, the tsunami and the inundation
process in Table 6.1, Table 6.2 and Table 6.3.

The work that we present in this chapter has been created in a joint
effort. Results of models for subduction zones and for dynamic rupture
earthquakes were performed by the first authors or other co-authors of
the respective papers. All contributions that are tsunami related, as the
generation of the sea floor perturbation, the application of the Fourier filter
and the simulation and evaluation of tsunamis models were created as part
of this dissertation. In order to show the full picture, we give an overview
of all findings.

Finally, we use the models to compare differences between time dependent
and time independent sourcing in Section 6.6.

102

6.2. Metrics and nomenclature

Sea Surface Height Inundation Depth

Run-up Distance

Run-up Elevation

Figure 6.1.: Sketch of the most important definitions to describe a
tsunami and the inundation of the coast.

6.2 Metrics and nomenclature

Before we look at studies of linked earthquake tsunami models, we define
a common nomenclature and look at the most important metrics for the
analysis of tsunamis.

Nomenclature and tsunami metrics

Figure 6.1 shows a sketch of the definitions we use to describe a tsunami and
its impact on the coast [129]. We call the height of the tsunami relative to
the flat surface of an ocean sea-surface height (ssh). The sea-surface height
is the difference of the water column h of a tsunami to the water-column in
the resting case max(0,−b), where b is the bathymetry.

On all points on the coast and all areas that were initially dry (usually
where b > 0), we call the height of the water column inundation depth. At
each point on the coast, we will look at its maximal value over all time-steps,
called the highest inundation depth. The first time a location on the coast is
inundated is the first time-step where the inundation depth is higher than
zero, called the inundation time. With the highest inundation depth and
the inundation time of a coast we get a temporal and spatial description
for the impact of the tsunami on the coast. The first time any point at
the coast is inundated is the arrival time of the tsunami. To see how deep
a wave propagates on land, we compute the run-up distance. Along each
normal of the coastline it is the distance of the deepest point the land was
inundated. The run-up elevation is the value of the topography at that
point. In case of analytic topographies, the run-up elevation can directly
be derived from the run-up distance.

103

6. The ASCETE framework

Metrics for the seafloor-perturbation

The simplest way to characterize a sea floor perturbation is given by its
geometrical properties. We will look at the duration σt, the size1 σr and
the range [min∆b,max∆b] of the potentially time dependent source.

For a water depth H = −b, Abrahams et al. introduce the measure [1]

σp = σr
σt
√
gH

, (6.1)

which gives us a relation between the size of the source and the distance
the tsunami travels in the duration of the source. For σp � 1 it is assumed
that time independent sourcing is enough to initialize the model.

As measure how much energy is added by the source ∆b(x, y, t), we com-
pute its potential energy, also called tsunami potential (TP) [97],

TP (∆b(x, y, t)) =
∫
Ω

ρ · g
2 ∆b(x, y, t)2dxdy, (6.2)

where g > 0 is the gravitational acceleration and ρ > 0 the density of
seawater. From Equation (5.2) we know that in case of time independent
linking, the tsunami potential at the end of the earthquake is the initial
potential energy of the tsunami. As we initialize with zero velocities, it is
also equal to the constant total energy of the system.

Energy metrics

To quantify the wave fields over the whole domain we look at their total
energy (TE), potential energy (PE) and kinetic energy (KE). In our linking
approaches the only potential energy that can be converted to kinetic energy
is given by the change in the sea-surface. We thus always compute the
potential energy in relation to the resting lake. The TE, PE and KE can
be computed as

PE
(
q
(
~x, t
))

=
∫
Ω

ρg

2 H
2dΩ (6.3)

KE
(
q
(
~x, t
))

=
∫
Ω

ρ

2h
(
u2 + v2

)
dΩ (6.4)

TE = PE + KE, (6.5)

1Here we use the diameter of the circumcircle around the source.

104

6.3. Set-up for the tsunami models

Several studies suggest that the total energy and the energy distribution
are indicators for the maximal inundation depth and the run-up distance
[64, 109, 145].

6.3 Set-up for the tsunami models
For all linked earthquake-tsunami models of the ASCETE framework, we
use the same base definition for the tsunami model. The set-up incorporates
a flat seafloor at 2 km depth, with a linearly sloping beach. The position of
the slope is given by an intersect with the flat seafloor at the beach toe x0
and an ascent of 0.05,

b(x, y) =
0.05(x− x0)− 2000 for x > x0

−2000 else.
(6.6)

The coastline at xcoast is located at 40 km away from x0. Initially water-
height and velocities are set to the sea at rest. For 2 km water depth the
analytic tsunami velocity is 141.5 m s−1. This relatively simple bathymetry
is adapted from the single wave on a sloping beach benchmark (see Sec-
tion 3.3), to reduce the influence of the bathymetry to a minimum.

In all simulations we initialize the seafloor perturbation field according the
time dependent method from Section 5.1. Displacement fields are filtered
with the Fourier filter we introduced in Section 5.3.

6.4 Earthquake-tsunami models
We first look at two synthetic linked earthquake tsunami models (denoted
by et-a and et-b)[92]. Both earthquake models are placed in a layer of
homogeneous material, to resemble the subduction zone in an oceanic crust.
Faults are planar, 200 km long, 35 km deep and have a dip of 16◦.

The strength of both faults is determined by a linear slip-weakening fric-
tion law, which we describe in more detail in Section 7.2.1. Linear slip-
weakening models the weakening of a fault as linear relation between slip
and fault strength: Initially a predefined static strength is used to model
the strength of the fault, for shear stresses below no slip is generated. As
soon as stresses exceed this threshold, the fault starts to move and slip and
seismic waves are initiated. From an initial strength, defined by the static
friction coefficient, the fault strength linearly decreases with the slip. As

105

6. The ASCETE framework

-200 0 200 400
x [km]

-200

0

200

y
[k

m
]

(c)

-200 0 200 400
x [km]

-200

0

200

(d)

2

1

0

1

2

Disp [m]

0 50 100
 [km]

-100

-50

0

50

100

 [k
m

]

(a)

0 50 100
 [km]

-100

-50

0

50

100

 [k
m

]

(b)

0

2

4

6

8

10

Slip [m]

Figure 6.2.: On fault accumulated slip (a,b) (η: along-strike and ξ: down-
dip) and unfiltered final displacement fields (c,d) for et-a (a,c)
and et-b (b,d). Adapted from Figure 3 in [92].

the total slip reaches the critical distance, the fault strength remains in a
constant state defined by the dynamic friction coefficient.

In model et-b the static fault strength linearly increases with the depth
of the fault. For model et-a, the same setting is used at 15 km and below.
At positions above the static fault strength is smoothly increased up to
8 MPa at the surface (compared to 0.4 MPa for model et-b). The resulting
accumulated slip on the fault and the final vertical displacement field for
both models are presented in Figure 6.2.

Nucleation is initiated in the south-east corner of the fault at 26 km depth,
from this point the rupture propagates unidirectional towards north. For

106

6.4. Earthquake-tsunami models

Table 6.1.: Maximal and minimal uplift (max∆b, min∆b), final uplift
(max∆b(Tmax), min∆b(Tmax)) and maximal (max TP(Tmax))
and final (TP(Tmax)) tsunami potential for the earthquakes to
all five models.

et-a et-b set-3B set-5 set-6
max∆b [m] 2.34 3.10 5.88 8.60 8.21
min∆b [m] −1.03 −1.27 −2.15 −3.16 −3.22

max∆b(Tmax) [m] 2.13 2.56 4.55 5.93 5.49
min∆b(Tmax) [m] −0.99 −1.27 −2.03 −3.03 −3.03

max TP(Tmax) [PJ] 0.19 0.37 4.77 9.96 9.34
TP(Tmax) [PJ] 0.16 0.32 3.13 6.95 6.18

et-a the higher fault strength stops slipping close to the surface (η = 0 in
Figure 6.2 a) and leads to a blind rupture (the seafloor remains intact in
Figure 6.2 c). The lower fault strength of et-b, produces high slip which
propagates to the surface (η = 0 in Figure 6.2 b) and leads to a breaching
of the surface (Figure 6.2 d). The main characteristics of the displacement
fields, which are important for the subsequent tsunami, are presented in
Table 6.1. The range of the uplift is larger for et-b, with a minimum of
−1.27 m and a maximum of 3.1 m, compared to −1.03 m and 2.34 m for
et-a. We see the same result at the end of the earthquake. Uplifts have
a wider range for the surface breaching rupture ([−1.27 m, 2.56 m]), as for
the blind case ([−0.99 m, 2.13 m]). Those differences are also reflected in
the maximal and final tsunami potential, which are both higher (0.37 PJ
and 0.32 PJ) in et-b than in et-a (0.19 PJ and 0.16 PJ).

Tsunami Results

For both models we use the resulting displacement fields to generate the
sea floor perturbation with Tanioka’s method, as introduced in Section 5.2.
In order to remove waves that imprint the displacement, results are filtered
with the Fourier filter, from Section 5.3 for parameters cwrel = 5.0× 10−7

and cfrel = 1.25× 10−9. The toe of the beach is placed at x0 = 200 km,
such that the coastline is located at xcoast = 240km. The domain is set
to Ω = [−400 km, 400 km]2, which is sufficient to avoid any boundary ef-
fects. Highest mesh resolution is at the coasts with a mesh size of 12.2 m.
We source the tsunami time-dependent, following the method presented in
Section 5.1. Figure 6.3 shows the wavefield for the tsunami to the blind

107

6. The ASCETE framework

Table 6.2.: Maximal water height (max ssh), velocity (vel), average total
(TE), potential (PE) end kinetic energy (KE) of the tsunamis
to all five models.

et-a et-b set-3B set-5 set-6
max ssh [m] 2.049 2.544 4.308 5.745 5.209

vel [m s−1] 156.25 140.62 146.48 165.39 163.53
TE [PJ] 0.162 0.302 3.183 6.795 6.080
PE [PJ] 0.077 0.148 1.463 3.200 2.840
KE [PJ] 0.086 0.155 1.720 3.595 3.239

rupture (a) and the tsunami to the surface breaching rupture (b). We show
time-steps during the initialization at 100 s, around the time of first in-
undation at 1200 s and close to the highest inundation at 1600 s. We see
that the blind rupture leads to a smooth wave, while the surface-breaching
rupture produces a jump after the tsunami initialization. Around the dis-
placed seafloor, waves evolve in elliptic shape. We can see asymmetries in
the wave height, caused by the unidirectionality of the ruptures. After the
wave arrives at the coast after 1210 s (et-a) and 1220 s (et-b), the amplitude
of the wave amplifies (1600 s).

The most important metrics of both wavefields are summarized in Ta-
ble 6.2. For both tsunamis the maximal sea surface height agrees with the
highest value of the seafloor perturbation. The peak of the waves for the
blind rupture propagates faster with 156 m s−1 then the peak of the wave
for the surface-breaching rupture with 140 m s−1. The average total energy
is higher for the wave of the surface breaching than for the blind rupture
(0.162 PJ, 0.302 PJ), which is also true for the kinetic and potential energy.

To look at the waves in more detail, we show cross sections for the same
events as the wavefield in Figure 6.4 (a,b,c) along the lines y = 0, y = −150
and y = 150 km. Additionally we show a time series of the inundation depth
for points placed 10 m inland on the coast (d).

At t = 120 s we again see that the blind rupture leads to a smooth wave,
while the surface-breaching rupture incorporates a jump (Figure 6.4 a).
The tsunami of the surface-breaching rupture has lower minimal and higher
maximal sea surface heights [−1.05 m, 2.4 m], then in the case of the blind
rupture [−0.75 m, 1.6 m], which agrees with the ranges we observed for the
displacement fields. At 1210 s the wave from the blind rupture arrives at the
coast, 10 s later the wave of the surface-breaching rupture (Figure 6.4 b,d).
The extrema of both waves ([−0.85 m, 0.85 m] for et-a and [−0.95 m, 1.1 m]

108

6.4. Earthquake-tsunami models

-400 0 260
x [km]

-400

0

400
1600 s

-400 0 260

2

1

0

1

2

-400

0

400

y
[k

m
]

1200 s

1.0

0.5

0.0

0.5

1.0

-400

0

400
100 s
(a) (b)

2

1

0

1

2

ssh [m]

Figure 6.3.: Wavefield of the tsunamis to model et-a and et-b during the
sourcing at 100 s, the arrival on the coast at 1200 s and close
to the highest inundation at 1600 s. Adapted from Figure 5
in [92].

109

6. The ASCETE framework

1

0

1

2 (a) 120 s coast

0.5
0.0
0.5
1.0 (b) 1200 s

ss
h[

m
]

-300 -200 -100 0 100 200 300
x [km]

0.0

1.5

3.0 (c) 1480 s

1000 1200 1400 1600 1800 2000 2200 2400
time[s]

0

1

2

3 (d) 240.01 km

ss
h[

m
]

eq-tsu-a
eq-tsu-b

 0 km
-150 km
 150 km

1200 1250
0.0

0.1

Figure 6.4.: Cross sections of the wavefield to the tsunamis in models et-a
and et-b at 120 s (a), 1200 s (b) and 1480 s (c) along the lines
y=0 km, 150 km and 150 km. Time series of the inundation
depth 10 km on land (d). Adapted from Figure 6 in [92].

for et-b) differ less at this point. The peak of inundation height is reached
at around 1480 s (Figure 6.4 c,d) in both cases. At the coast, the wave for
the blind rupture produces a lower peak, than the wave for the surface-
breaching rupture ([−0.7 m, 2.5 m] for et-a and [−0.9 m, 2.8 m] for et-b).

To look at the inundation process, we show the inundation time (a,b,c)
and the highest inundation depth (d,e,f) in Figure 6.5. Additionally the
most important metrics are summarized in Table 6.3. Both models show
similar timings for the inundation, as the wave arrives first in the center of

110

6.4. Earthquake-tsunami models

0 24.5 49 73.5

180

90

0

-90

-180

y
[k

m
]

(a) et-a

0 24.5 49 73.5

(b) et-b

1200
1300
1400
1500
1600
1700
1800
1900
2000

time [s]

0 24.5 49 73.5

(c) et-b - et-a

et-a
et-b

150

100

50

0

50

100

150
 time [s]

0 24.5 49 73.5
x - xcoast [m]

180

90

0

-90

-180

(d) et-a

0 24.5 49 73.5

(e) et-b

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ssh [m]

0 24.5 49 73.5

(f) et-b - et-a

0.4

0.2

0.0

0.2

0.4

 ssh [m]

Figure 6.5.: Inundation time (a,b,c) and maximal inundation depth (d,e,f)
for the tsunamis of the models et-a (a,d) and et-b (d,e) and
their difference et-b - et-a (c,d). The stepwise pattern is the
result of the mesh size at the coast. Adapted from Figure 7
in [92].

the coast and later in outer regions (a,b). By looking at the difference in
timing (c), we see that areas at the coastline are inundated earlier by the
wave of model et-b, positions further in land by the wave of model et-a.

For the inundation depth, both models again show similar patterns. The
peak is at the center of the coast and decreases towards its boundaries
(d,e). Inland the maximal inundation depth becomes smaller, until the
run-up depth is reached. The difference (f) shows that the surface-breaching
rupture produces higher waves at the coast (up to 3.75 m) compared to the
blind rupture (up to 3.4 m). This also explains the higher run-up depth

111

6. The ASCETE framework

0 100 200 300 400
100

50

0

y
[k

m
]

(a)

Air
Incoming Sedminents
Upper Oceanic Crust

Lower Oceanic Crust
Continential Crust
Litospheric Mantle

Astenospheric Mantle
Initial Weak Zone
Fault

0 100 200 300 400
100

50

0

y
[k

m
]

(b)

0 100 200 300 400
x [km]

100

50

0

y
[k

m
]

(c)

.3.0

6.0

9.0
log10 [Pa]

Figure 6.6.: Material layers and second invariant of the stress tensor for
the subduction zone model. An initial set weak zone in the
set-up (a) is displaced by the propagating oceanic plate and
causes its subduction of the continental plate (b). After
3.6 Myr the second invariant of the stress tensor (c) causes
materials to fail. Adapted from Figure A2 in [92].

and inundated area (73 m and 18.32 km2) in model et-b, than in model et-a
(61 m and 15.82 km2) (c,f).

6.5 Subduction-earthquake-tsunami models
Instead of using approximated parameters for the earthquake model as we
did in the last section, the simulation of dynamics in an oceanic subduction

112

6.5. Subduction-earthquake-tsunami models

zone allows us to generate more realistic parameters. We use the geody-
namic seismic cycle model (SC), based on the work by van Zelts et al. [134].
The model depicts the south Chilean subduction zone, in which an oceanic
plate subducts a continental plate (Figure 6.6 a).

By solving thermomechanical conservation equations their model can sim-
ulate the long-term evolution of the plates and their influence on the Earth’s
upper mantle (consisting of the Lithosphere and Asthenosphere) over a span
of millions of years. The oceanic plate propagates with small velocity to-
wards the continental plate. An initially set weak zone is displaced by the
moving oceanic plate and causes it to subduct the continental plate. After
3.6 Myr the subduction model has reached a steady-state, for which the
subsequent seismic cycle is initiated and resolved with a reduced time-step
(Figure 6.6 b). In the seismic cycle earthquakes occur as spontaneous fric-
tional instabilities (so called slip events). Through the constantly moving
oceanic plate, stresses continue to build up in the model and more material
fails (Figure 6.6 c). The result are multiple consecutive slip events from
which we pick one as input to the earthquake model. Several adjustments
have to be made to link the basic axioms of both models, which are in detail
described by Wirp et al. [140]:

Earthquake results

The subduction model is the foundation of the parameter study by Wirp et
al. [4]. The authors conclude from the effects of the location of the hypocen-
ter, varied material and rupture parameters on the subsequent tsunami
[140]. In this chapter we compare three exemplary models, for which the
tsunami models where created as part of this work and repeat their core
findings: The reference model (set-3B) shares the location of the nucleation
with the SC model (40 km depth, at the center of the fault at y = −150 km).
Materials are modeled as Poisson solid (ν = 0.25), hence the first Lameé
parameter λ and the shear modulus µ share the same value in the whole
domain (an introduction to both parameters is given in Section 7.2).

In model set-5 the fracture energy, which represents the amount of energy
that has to be expended to start and uphold the fracture, is tripled com-
pared to the reference model. This is done by tripling the critical slip weak-
ening distance in the linear-slip weakening law (compare to Section 6.4).

To see the effects of material properties Poisson’s ratio is increased com-
pared to model set-3B (to ν = 0.30), in model set-6, leading to an increased
P-wave speed.

The resulting final slip and displacement fields are presented in Figure 6.7.

113

6. The ASCETE framework

-600 -200 200 600 1000
-1000

-600

-200

200

600

y
[k

m
]

(d)

-600 -200 200 600 1000

x [km]

(e)

-600 -200 200 600 1000

(f)

−5.0

−2.5

0.0

2.5

5.0

Disp [m]

0 100 200 350

-300

-200

-100

0

η
[k

m
]

(a)

0 100 200 350

ξ [km]

(b)

0 100 200 350

(c)

0

12

24

36

48

60
Slip [m]

Figure 6.7.: On-fault accumulated slip (a,b,c) (η: along-strike and ξ: down-
dip) and unfiltered final displacement fields (d,e,f) for the
models set-3B (a,d), set-5 (b,e) and set-6 (c,f). Adapted from
Figure 6 & 9 in [140].

-250 0 250 500

0

5 (c) 170.0 s

-250 0 250 500

x [km]
-250 0 250 500

−5

0

5

ss
h

[m
] (b) 160.0 s

0

5

3B

(a) 150.0 s

5 6

coast -157 km

-313 km

0 km

Figure 6.8.: Cross sections of the tsunamis to model set-3B, set-5 and set-
6 after 200 s, 1400 s an 2000 s. Along the lines y = −157 km,
in the center of the domain and the parallels y = 0 km and
y = −313 km. Adapted from Figure S5 & 10 in [140].

114

6.5. Subduction-earthquake-tsunami models

Table 6.3.: Maximal run-up (max Ru), highest inundation depth max Id,
arrival time (min It) and inundated area (area) of the tsunamis
for the earthquake tsunami models eq-a and eq-b and the sub-
duction zone earthquake tsunami models set-3B, set-5, set-6.

et-a et-b set-3B set-5 set-6
max Ru [s] 61.04 73.24 87.89 161.13 124.51
max Id [m] 3.40 3.75 5.42 7.53 6.90
min It [s] 1210.00 1220.00 2010.00 2090.00 2070.00

area [km2] 15.82 18.32 52.18 67.44 59.77

In all three models slip evolves circularly away from the position of the
nucleation, which leads to a bilateral evolution of the rupture. The final
accumulated slips (a,b,c) show us that the ruptures are stopped close to the
surface, the seafloor, is breached in no case. Higher fracture energy leads
to twice as high final accumulated slip (a,b) compared to the reference, the
same effect happens for when we increase Poisson’s ratio (c).

The final tsunami potential of model set-3B is 3.13 PJ for set-5 and set-6
it is twice as high (6.95 PJ, 6.18 PJ in Table 6.1). Maximal uplift of set-5
(8.6 m) and set-6 (8.31 m) are also significantly increased compared to the
reference model (5.88 m). Uplift and TP show us, that we can expect the
tsunamis of model set-5 and set-6 to be of higher magnitude than the one
in set-3B.

The permanent displacement in all three fields is imprinted by trapped
waves (d,e,f), which we have to remove with our filtering approach from
Section 5.3. The exact filtering process including a suiting parameter set
for set-5 is explained in Section 5.3.4, the same set-up was used to filter
set-3B and set-6.

Tsunami results

We again apply the postprocessing pipeline from Section 5.2 and Section 5.3.
The displacement field are filtered with parameters cwrel = 5.0× 10−7 and
cfrel = 1.25× 10−9. The resulting seafloor perturbation is applied as time-
dependent source. In the bathymetry of the tsunami model we set x0 =
500 km, such that the beach is located at xcoast = 540 km. For the sake of
boundary effects the domain is set to Ω = [−600, 600]× [−750, 450] km.

The cross sections at the lines y = 0 km, y = −157 km and y = −313 km
are shown in Figure 6.8. The seafloor perturbations converge after 200 s.

115

6. The ASCETE framework

0 14 51 87 125 161

-350

-150

50

y
[k

m
]

(d) set-5 - set-3B

set-3B

set-5

0 14 51 87 125 161

x - xcoast [m]

(e) set-6 - set-5

set-5

set-6

0 14 51 87 125 161

(f) set-6 - set-3B

set-3B

set-6

−150

−100

−50

0

50

100

150
∆ time [s]

-350

-150

50
y

[k
m

]

(a) set-3B (b) set-5 (c) set-6

2200

2400

2600

2800

3000

time [s]

Figure 6.9.: Inundation time for the models set-3B (a), set-5 (b) and
set-6 (c). The difference in timing are plotted in (d,e,f) The
run-up depth for all three models is added to the difference
plots. The stepwise pattern is a result of the mesh resolution
at the coast. Adapted from Figure 8 & 11 in [140].

At this point we see that the displaced volume is larger for set-5 and set-6
than set-3B. Both models also show higher peaks of the wave compared to
the reference (set-3B: 4.3 m, set-5: 5.7 m, set-6: 5.2 m) which corresponds
to the observed differences in the tsunami potentials of the seafloor pertur-
bation and is reflected in the resulting total energy of the tsunamis(set-3B:
3.183 PJ, set-5: 6.795 PJ, set-6: 6.080 PJ in Table 6.2).

The waves evolve symmetric to the center of the domain y = −150 km,
which is caused by the central position of the nucleation patch and the
bilateral rupture in all models. After 1400 s we see that the peaks of the

116

6.5. Subduction-earthquake-tsunami models

0 14 51 87 125 161

-350

-150

50

y
[k

m
]

(d) set-5 - set-3B

set-3B

set-5

0 14 51 87 125 161

x-xcoast [m]

(e) set-6 - set-5

set-5

set-6

0 14 51 87 125 161

(f) set-6 - set-3B

set-3B

set-6

−3

−2

−1

0

1

2

3

∆ ssh [m]

-350

-150

50

y
[k

m
]

(a) set-3B (b) set-5 (c) set-6

2

4

6

8

ssh [m]

Figure 6.10.: Maximal inundation depth for the models set-3B (a),
set-5 (b) and set-6 (c). Additionally we show the differences
between the models in (d,e,d). set-5 shows the highest max-
imal inundation depth (e) followed by set-6 (f) and set-3B
(d). The run-up depth for all three models is added to the
difference plots. The stepwise pattern is a result of the mesh
resolution at the coast. Adapted from Figure 8 & 11 in [140].

wave in the tsunami to the increased Poisson’s ratio and increased fracture
energy are higher than in the reference model. At 2000 s the tsunamis have
reached the coast and amplify due to the slope of the bathymetry.

Inundation time for all models is shown in Figure 6.9, maximal inundation
in Figure 6.10. The tsunami of model set-3B arrives first at the coast after
2010 s, for set-5 80 s and set-6 60 s later. Areas further inland are inundated
most early by the wave to set-6 and latest by the wave to set-3B (Figure 6.9

117

6. The ASCETE framework

d,e,f). The highest maximal inundation depth in all three models is in the
center of the coast, where set-5 has the highest depth, followed by set-
6 and set-3B (set-3B: 5.3 m, set-5: 7.5 m, set-6: 6.9 m). We can directly
relate these observations back to the difference in the wave peaks before the
inundation. On the whole coast the maximal inundation depth is higher in
model set-5 than in set-3B (up to 2.2 m difference). Compared to set-6 the
difference is smaller (up to is 0.7 m), but especially in the center set-5 has a
higher maximal inundation depth. The same relations hold for the run-up
depth (set-3B: 88 m, set-5: 161 m, set-6: 124 m) and the inundated area
(set-3B: 52 km2, set-5: 67.5 km2, set-6: 60 km2).

6.6 Time dependent vs. time independent source
We perform a meta-analysis using the models eq-a and eq-b from Section 6.4
and set-3B, set-5 and set-6 from Section 6.5, to compare the difference be-
tween time dependent and time independent tsunami sourcing (see Sec-
tion 5.1).

We base our analysis on the work of Abrahams et al. [1], who claim that
for a large source size σr relative to a short source duration σt and tsunami
wave speed

√
gH, the difference of both approaches is negligible.

The relation is expressed by the measure we introduced in Equation (6.1):

σp = σr
σt
√
gH

. (6.1)

For σp � 1 the size of earthquake source is significantly larger than the
distance the tsunami propagates during the earthquake evolution. As the
tsunami hardly evolves during the earthquake, the effects of time dependent
sourcing should be negligible compared to time independent sourcing. For
all five models the source duration is in the range of minutes, the source
size in hundreds of kilometers (σt ∈ [68, 198] s and σr ∈ [176, 540] km). The
resulting values for σp are in the range σp ∈ [13.06, 19.27], we thus expect
little difference between both sourcing approaches (Table 6.4).

In order to compare the tsunamis for both sourcing approaches, we rerun
the simulations using time independent sourcing, with the same settings as
in Section 6.4 and Section 6.5. In case of time independent sourcing, the
initial time is not clearly defined, we choose to synchronize the tsunamis of
both sourcing approaches by their arrival time at the coast.

We first look at the peak of the tsunamis and the mean of the energy met-
rics for the wavefields, as defined in Section 6.2 in Table 6.5. In the table we

118

6.6. Time dependent vs. time independent source

Table 6.4.: Source duration σt, source size σr, the metric σr (from Equa-
tion (6.1)) and the tsunami potential energy (TP) of the
seafloor perturbations to the models et-a, et-b, set-3B, set-5
and set-6.

et-a et-b set-3B set-5 set-6
σt [s] 68 98 198 198 198
σr [km] 176 181 395 531 540
σp 18.30 13.06 14.11 18.96 19.27

TP(Tmax) [PJ] 0.16 0.32 3.13 6.95 6.18

present all values for time dependent sourcing (d), time independent sourc-
ing (s) and their relative difference (∆ = 100·(d-s)/d). A negative sign in
the relative difference tells us a higher value for time independent sourcing.
For the peak of the wave (max ssh) we see that in all cases, except set-3B,
time dependent sourcing leads to a smaller value than time independent
sourcing. The differences are in a range of 0.3 to 2.4 %. The only notice-
able difference in the total mean energy (TE) is in model et-b with 1.6 %,
for all other cases it is less than 0.64 %. Looking at the distributions of
mean potential PE and mean kinetic energy KE we see differences between
1.16 % and 5.4 %. For the earthquake tsunami models eq-a and eq-b time
dependent sourcing produces more kinetic and less potential energy than
time independent sourcing, for the subduction earthquake tsunami models
set-3B, set-5 and set-6 we observe the opposite.

On the coast we do the same comparison for the run-up distance (max Ru),
the maximal inundation depth (max ID) and the inundated area (area) in
Table 6.6. For the run-up distance we see zero difference between both ap-
proaches. The highest maximal inundation depth shows differences up to
2.5 %. For all models except set-5 it is larger for time dependent displace-
ment. The total inundated area shows difference in the same magnitude,
with up to 2.2 %. In all cases the time independent sourcing leads to a
larger area.

In order to compare the inundation process on the coast, we compute the
mean and the standard deviation of the difference in inundation time and
maximal inundation depth between both sourcing approaches. The mean
difference of the inundation time depends on our manual synchronization of
arrival times and cannot be used to express a difference (one can synchronize
both results such that the mean difference is zero and not by the arrival
time). However the standard deviation gives us a summarizing measure

119

6. The ASCETE framework

Table 6.5.: Maximal water height max ssh, mean total TE, mean potential
PE and mean kinetic energy KE of tsunamis for models et-a,
et-b, set-3B, set-5 and set-6, for time dependent (d) and time
independent (s) sourcing, and their relative difference (∆ =
100·(d-s)/d).

et-a et-b set-3B set-5 set-6
max ssh [m] d 2.049 2.544 4.308 5.745 5.209

s 2.097 2.564 4.293 5.874 5.295
[%] ∆ −2.380 −0.789 0.338 −2.253 −1.636

TE [PJ] d 0.162 0.302 3.183 6.795 6.080
s 0.162 0.297 3.183 6.791 6.041

[%] ∆ 0.216 1.671 0.006 0.050 0.632
PE [PJ] d 0.077 0.148 1.463 3.200 2.840

s 0.079 0.151 1.443 3.108 2.760
[%] ∆ −2.445 −2.270 1.380 2.853 2.821

KE [PJ] d 0.086 0.155 1.720 3.595 3.239
s 0.083 0.146 1.740 3.683 3.281

[%] ∆ 2.602 5.438 −1.164 −2.444 −1.288

Table 6.6.: Comparison of run-up max Ru, maximal inundation depth
max Id and inundation area area of tsunamis for models et-
a, et-b, set-3B, set-5 and set-6, for time dependent (d) and
time independent (s) sourcing, and their relative difference
(∆ = 100·(d-s)/d).

et-a et-b set-3B set-5 set-6
max Ru [m] d 61.04 73.24 87.89 161.13 124.51

s 61.04 73.24 87.89 161.13 124.51
[%] ∆ 0.00 0.00 0.00 0.00 0.00

max Id [m] d 3.40 3.75 5.42 7.53 6.90
s 3.49 3.81 5.54 7.48 6.96

[%] ∆ −2.64 −1.71 −2.25 0.75 −0.90
area [km2] d 15.82 18.32 52.18 67.44 59.77

s 16.17 18.72 52.22 68.15 60.11
[%] ∆ −2.22 −2.19 −0.08 −1.05 −0.56

120

6.6. Time dependent vs. time independent source

Table 6.7.: Mean and standard deviation of the inundation time
(∆It,σ∆It) and inundation depth (∆Id,σ∆Id) for time depen-
dent and time independent sourced tsunamis for models et-a,
et-b, set-3B, set-5 and set-6.

Model et-a et-b set-3B set-5 set-6
∆It [m] 53.93 40.14 −1.55 8.54 −3.14
σ∆It [m] 51.33 40.09 5.09 24.11 20.46
∆Id [m] -0.03 −0.02 −0.03 0.01 0.02
σ∆Id [m] 0.07 0.08 0.06 0.09 0.09

for the difference in inundation time in all locations, independent from the
mean of both approaches. We see values ranging from 5 s in model set-3B
up to 51 s for et-a, showing a significant difference.

The mean difference in inundation depth is in the range of centimeters
([−0.03, 0.02] cm) its standard deviation close to 10 cm.

In conclusion, we can see differences in all five models between both
sourcing approaches. The differences for the wavefields in energy and wa-
ter height are relatively small, where the highest difference is 5.5 % more
kinetic energy for model et-b in time dependent sourcing compared to time
independent sourcing.

The impact on the coast is represented with both sourcing approaches
equally well for all models, with small differences up to 3.0 %. Especially
the run-up distance is equal for both sourcing approaches. The average
inundation depth differs up to 3 cm, with a relatively high standard devia-
tion of up to 9 cm. We see the most significant difference of both sourcing
approaches in the inundation time. In case of time-independent sourcing,
we neglect the temporal variation of the source, which also has an influence
on the temporal variation of the inundation. Overall our results agree with
the assumption by Abrahams et al. [1].

121

CHAPTER

7
ExaSeis: A curvilinear ADER-DG method for

the simulation of dynamic rupture scenarios

7.1 Introduction
In this chapter, we introduce the components of the ExaSeis collection
of applications for the ExaHyPE-Engine. For a detailed introduction to
the ExaHyPE-Engine we refer the reader to the work by Reinarz et al.
[104]. The core concept of the ExaHyPE-Engine for hyperbolic PDEs is
adapted from game engines: The engine provides a finished implementation
of solvers, mesh infrastructure, hardware optimizations and parallelization
strategies for hyperbolic partial differential equations and gives users a clean
C++ interface to implement terms of a specific PDE. The MPI and TBB
parallelization is based on the Peano framework on Cartesian meshes [138].
As numerical solver, the linear and non-linear ADER-DG method with a
posteriori finite volume sub-cell limiting is used [33, 36]. The implementa-
tion of the linear ADER-DG method, also called the Cauchy-Kovalevskaya
(CK) method [126], was realized as part of this thesis and is introduced in
Section 7.4. Hardware optimized kernels for the CK methods are provided
by a code generation approach, that relies on the libxsmm library [53, 69].
The CK method has been optimized with a sum factorization approach
by Gallard et al. reaching 22.5 % of the peak performance on a current
Skylake node on SuperMUC-NG [54]. To perform load-balancing, Samfass
et al. implemented a novel work-stealing approach [113]. The performance

122

7.2. Elastodynamics in first order formulation

of the Engine has been assessed by Charrier et al. and is not part of this
discussion [26].

The ExaHyPE-Engine comes with the promise to provide a scalable im-
plementation of dynamic adaptive meshes. In the context of dynamic rup-
ture earthquake simulations this allows to address one of the main problems
of this field: In order to simulate the propagating rupture accurately, the
rupture front has to be resolved in the range of centimeters, while the
simulated domain usually is in the range of hundreds of kilometers. This
large difference of the required length-scales makes a simulation with static
grids infeasible, as the resulting number of unknowns can not yet be solved
computationally [79]. As solution to this problem dynamic adaptive mesh
refinement (AMR) allows us to track the rupture front with a highly re-
solved grid, while that parts of the fault where the rupture has already
finished or has no effect, can be simulated with a more coarse resolution.

In this chapter, we present the methods that make ExaSeis ready for
such a simulation. We focus on earthquakes in domains with complex to-
pographies and fault structures, that we represent on curvilinear meshes. In
the context of uncertainty quantification and probabilistic seismic hazard
analysis, we enable the automated set-up of simulations, by introducing an
automated inductive meshing approach.

In the first section, we look at the elastic wave equation in their first or-
der formulation and incorporate earthquakes as point sources and interface
conditions [3, 39]. With perfectly matched layers we remove erroneous fluc-
tuations coming from the truncated boundaries of a simulated domain in
Section 7.3 [42]. In Section 7.4 we introduce the linear Cauchy Kovalevskaya
scheme for curvilinear meshes, for which we require numerical fluctuations
as presented in Section 7.5. In order to incorporate complex topographies
and structures, we present a novel meshing approach in Section 7.6.

The results presented in Section 7.3, Section 7.4 and Section 7.5 were
created in joint work and published in [41–43]. The automated mesher,
presented in Section 7.6 was created as part of this dissertation.

7.2 Elastodynamics in first order formulation
Before we go into the details of the ExaSeis framework, we want to give
the reader an impression of the underlying physics. For a more detailed
introduction we refer to [3, 86]. This chapter is inspired by the work of
LeVeque et al. from which we adapt the notation [86].

The objective is the modeling of particles as continuum in an elastic

123

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

medium. Waves that propagate through the continuum follow the first
order stress velocity formulation, defined by:

ρut − σxxx − σxyy − σxzy = fxv (7.1)
ρvt − σxyx − σyyy − σyzy = f yv (7.2)
ρwt − σzxx − σyzy − σzzy = f zv (7.3)
σxxt − (λ+ 2µ)ux − λvy − λwz = fxxσ (7.4)
σyyt − λux − (λ+ 2µ)vy − λwz = f yyσ (7.5)
σzzt − λux − λvy − (λ+ 2µ)wz = f zzσ (7.6)
σxyt − µ(vx + uy) = fxyσ (7.7)
σxzt − µ(uz + wx) = fxzσ (7.8)
σyzt − µ(vz + wy) = f yzσ . (7.9)

Here

σ =

σ
xx σxy σxz

σxy σyy σyz

σxz σyz σzz

 , (7.10)

defines the symmetric stress tensor, while u, v and w are the particle veloc-
ities in x, y and z direction.

In this work we only consider isotropic materials, which are described
by the density ρ and the Lamé parameters λ and µ. Unlike anisotropic
materials, as crystals or wood, isotropic materials share identical properties
in all directions.

Displacement and strain

Not apparent in the first order formulation, but crucial for their under-
standing are the displacement field ~U ∈ R3 and the strain tensor ε ∈ R3×3.
When a material is deformed the particles in its interior are displaced. The
continuously differentiable field ~U represents all particle displacements in
the continuum. Its temporal derivative are the particle velocities:

~Ut = ~u =

uv
w

 . (7.11)

We can consider a material as elastic and particles as a continuum, when
deformations are infinitesimal, in the sense that the spatial gradient of the
displacements is small compared to the extent of the domain ‖∇U‖ � 1.

124

7.2. Elastodynamics in first order formulation

With strain we describe the relative change of a body between its original
state and after a deformation happened. If we compare two separate points
P and Q, with connecting vector ∆x = Q − P , that are displaced after
the deformation to the points P = P + U(P) and Q = Q + U(Q) =
Q + U(P + ∆x) with connecting vector ∆x. The change of the vector ∆x
in the i-th dimension is computed by:

∆xi −∆xi = Ui(P +∆x)− Ui(P). (7.12)

As we only consider very small ∆x, we can linearize the displacement field
to approximate U(Q):

U(P +∆x) ≈ U(P) +∇U (P) ·∆x. (7.13)

Rigid rotations in the displacement do not change the relative position of
two points and thus have no influence on strain. In order to remove them
from the equation, we evolve ∇U (P) into a symmetric and an antisymmet-
ric part. The antisymmetric part represents the rigid rotations:1

∇U = 1
2
(
∇U +∇UT

)
+ 1

2
(
∇U −∇UT

)
. (7.14)

Equation (7.12) becomes:

∆xi −∆xi ≈ (ε ·∆x)i , (7.15)

where the matrix
εij = 1

2
(
∇U +∇UT

)
ij

(7.16)

is called the strain tensor.
Using Equation (7.11), we can compute the temporal derivative of the

strain tensor, depending on particle velocities:

εijt = 1
2
(
∇~u+∇~uT

)
ij

. (7.17)

A visual interpretation for the strain tensor is given by the deformation
of a body that initially has the shape of the unit sphere. After the defor-
mation, the unit sphere becomes an (potentially shifted) ellipsoid in which
the principle semi-axes are changed by the eigenvalues ε1, ε2 and ε3 of the

1Compare to curl(U)

125

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

σyy

ε22

ε11

2
ε11

2

σxy

ε12

σyy = Eε22 = −E
ν
ε11 σxy = 2µε12

Figure 7.1.: Relation between normal and shear stress and strains.

strain tensor:
x2

(1 + ε1)2 + y2

(1 + ε2)2 + z2

(1 + ε3)2 = 1. (7.18)

Stresses and Hook’s law

If we consider a point on a plane in the continuum with normal ~n, the
corresponding traction vector ~t describes the force in that point applied
from one side of the plane to the other. For a point that is the intersection
of three planes with normals ~e1, ~e2 and ~e3, we can summarize those tractions
with the stress tensor σ. Vice versa having the stress tensor, we can derive
the traction for an arbitrary plane with normal ~n:

~t = σ · ~n. (7.19)

Hook’s law tells us the relation between stress and strain. If we consider
a cuboid body of isotropic material in the continuum and apply a normal
force on one of its faces at the x-axis, the relative deformation of the body
in x is proportional to the stress (Compare to Figure 7.1 left):

σxx = Eε11. (7.20)

The proportion factor E is called Young’s modulus. In the other directions
the cuboid is also stretched proportional to the stress and equally in both

126

7.2. Elastodynamics in first order formulation

dimensions, as the material is isotropic

− νε11 = ε22 = ε33. (7.21)

ν is called Poisson’s ratio. If we apply stresses to all faces of the cuboid,
strains accumulate and we end up with the relation:

ε11 = 1
E
σxx −

ν

E
σyy −

ν

E
σzz,

ε22 =− ν

E
σxx + 1

E
σyy −

ν

E
σzz, (7.22)

ε33 =− ν

E
σxx −

ν

E
σyy + 1

E
σzz.

One can show that shear strain and stress are proportional:

ε12 = 2µσxy, ε13 = 2µσxz, ε23 = 2µσyz, (7.23)

with the shear modulus µ as proportion factor (Compare to Figure 7.1
right). If we invert Equation (7.23) and Equation (7.22) and combine the re-
sult with the temporal derivative of the strain tensor from Equation (7.17),
we end up with Equation (7.5) to Equation (7.9) in the elastic wave equa-
tion. The Lamé parameter λ and µ can be derived from Young’s modulus
and Poisson’s ratio:

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (7.24)

Newton’s second law

Equation (7.2) - Equation (7.4) are derived from Newton’s second law,
which states that the change of impulse p in a point has to be equal to the
acting forces:

~F = ∂

∂t
p = ∂

∂t
m~v. (7.25)

If we consider Equation (7.25) for an arbitrary cuboid reference element V
we get:

∂

∂t

∫
V
ρ~v dV =

∫
V

~f dV +
∫
δV

~t dδV , (7.26)

where we split the acting forces in body forces f and tractions on the surface
~t. We know from Equation (7.19), that the traction on a plane with normal
~n can be described as ~t = σ · ~n. Applying the divergence theorem leads us

127

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

to:
∂

∂t

∫
V
ρ~v dV =

∫
V

~f +∇ · σ dV . (7.27)

For an infinitesimal small volume V , we finally end up with Equation (7.2)
to Equation (7.4). In this work we consider body forces that are applied at
a single location xc of the form:

~fv(t) = S(t)M · ∇δ(x− xc), (7.28)

for the symmetric moment tensor:

M =

M
xx Mxy Mxz

Mxy Myy Myz

Mxz Myz M zz

 (7.29)

and a moment time history S(t).
We can move body forces of this type from Newton’s second law (Equa-

tions (7.2) - (7.4)) to Equations (7.5) - (7.9), by setting the body forces of
the stress tensor to:

fσ(t) = ∂

∂t
S(t)Mδ(x− xc). (7.30)

As the spatial derivative of the Dirac delta is not present in Equation (7.30),
this form is numerically more convenient.

7.2.1 Sourcing earthquakes

While seismic waves can be initialized by external forces as for example
volcanoes, landslides or the movement of elephant herds [3, 99], we focus
solely on sources originating in the interior of the earth. In general we
consider fault systems, as in the subduction zone example we showed in
Section 6.5.

Geometrically a fault is modeled as a surface Σ with normals ~n in the
earths interior (Figure 7.2a). Due to tectonic movements, stresses are ac-
cumulated on the fault until the material of the surface cannot uphold its
locked state. The fault ruptures and slipping is initiated. The two adjacent
sides of the faultΣ− andΣ+ are displaced in opposite directions by displace-
ments V + and V −, for which the difference is called slip [[V]] = V + − V −
and its derivative in time the slip-rate [[v]] = v+ − v−. Because of the dis-
continuity in the displacement, linear elastics cannot be used to model the

128

7.2. Elastodynamics in first order formulation

Σ
V +

V −

~n

(a) A simplified fault.

f

ψ

Dc

µd

µs

(b) Linear slip-weakening friction law.

propagation of waves directly on the fault. However, in the adjacent vol-
umes separated by the fault the equations are still valid and initiate seismic
waves.

There are two established methods to include this sourcing in the elastic
wave equation. The first accumulates slip in a single equivalent point dislo-
cation, which is used as body force in Equations (7.2) - (7.4). The second
directly models slip and strength on the fault by a friction law and sources
the earthquake by enforcing traction components on the fault.

Pointsources

It can be shown, that the evolution of the displacement field in a volume only
depends on the initial velocity and stresses, and forces applied at the inside
of the medium [3]2. In case the represented fault Σ is significantly smaller
than the wave length of the occurring seismic waves, we can accumulate
the effects of the displacement on the fault, to an equivalent body force in
a single point. These body forces are represented in the form [3]:

~fv = ~S(t)M∇δ(x− xc), (7.31)

where M ∈ R3×3 is the moment tensor component and S(t) : R → R the
moment time history.

In Equation (7.30) we saw that with some adjustments we can apply this
body force to the stress components of the equation:

~fσ(t) = ∂

∂t
S(t)Mδ(x− xc). (7.32)

129

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

Σ+

Σ−

[[V]]

−σn

τ

~t
v+

v−
[[v]]

Figure 7.3.: Dynamic rupture mechanism on a fault. After the shear trac-
tion τ is equal to the fault strength τs, slip [[s]] is initiated.

Dynamic rupture

If we want to model the rupture directly on the fault, we decompose the
traction ~t into the components normal and tangential to the fault (Fig-
ure 7.3):

~t =σ · ~n, tn =t · ~n, τ =~tn − tn~n. (7.33)

Equivalently we get the normal [[vn]] and tangential parts s = [[v]]− [[vn]]~n
of the slip-rate. As we do not allow opening or interpenetration of two sides
of the fault Σ− and Σ+, the normal slip rate has to be zero [[vn]] = 0.

The shear traction τ models the force acting in the tangential direction of
the fault. The strength of the fault τs sets the maximal shear traction it can
uphold. As the shear traction reaches the fault strength, the fault breaks
and slip is initiated in the same direction as the shear traction. Hence, the
shear traction may never exceed the fault strength:

‖τ‖ ≤ τs. (7.34)

In case the shear traction is less than the fault strength, the fault remains
locked and no slip is generated:

‖τ‖ < τs =⇒ s = 0. (7.35)

We can summarize all three conditions in the equation:
s

V
= τ

τs
, (7.36)

2As we do not consider surface forces in this work.

130

7.3. Perfectly Matched Layers in a nutshell

where V = ‖s‖ is the absolute slip-rate.
As the fault breaks it is further weakened and the fault strength is re-

duced. In order to model this behavior, we set fault strength and the path
of the slip ψ(t) =

∫ t
0 ‖s(θ)‖dθ in direct relation by a friction law f (ψ):

τs = c− σnf (ψ) . (7.37)

Here, σn := max (0,−σ · ~n) is the normal stress3 and the cohesion c sum-
marizes that part of the fault strength that is independent from friction.

Generally speaking, the friction law models to what extent compression
forces contribute to the fault strength. We use linear slip weakening as
introduced by Ida [72]:

f (ψ) = µs − (µs − µd)
min (ψ,Dc)

Dc

. (7.38)

For zero slip the friction law has the value of the static friction coefficient
µs, as soon as the slip-path exceeds the critical distance Dc it becomes the
dynamic friction coefficient µd (Compare Figure 7.2b right). In between,
the coefficient linearly decreases with ψ.

All three components of the friction law have an influence on the energy
that is present in the final system [100] and with that on the magnitude of
the earthquake. Is is shown that the fracture energy G (which can be seen,
as the energy required to break the connection between both sides of the
fault) is part of the energy balance. For linear slip weakening it is:

G = 1
2 (µs − µd)Dcσn. (7.39)

7.3 Perfectly Matched Layers in a nutshell
The commonly used artificial absorbing boundary conditions, used to em-
ulate the exit of waves that propagate out of a simulated domain, are not
perfect and lead to reflections that spuriously appear in seismograms and
wavefields [45]. A simple solution for this is the extension of the domain,
such that waves never reach the boundary and no reflections can be gen-
erated. With this extension, additional cells are introduced and the prob-
lem size increased, which can be reduced by coarsening cells towards the
boundary of the domain. However, a working and scalable implementa-

3As convention it is negative for compressing stresses

131

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

tion for statically refined meshes is required for this solution. Additionally,
the coarsening of cells can again introduce reflections, as the accuracy of
the representation of a wave changes between elements. Alternatively, our
approach follows the method of perfectly matched layers (PML) first intro-
duced by Berenger et al. [17] and tailored for our scheme by Duru et al.
[42].

The approach is based on the complex coordinate stretching [27] tech-
nique. For a quick illustration, we assume a solution composed by plane
waves in the form [74]:

u(x, t) =
M∑
m=0

N∑
n=0

ûnme
i(kmx−ωnt), (7.40)

with wave vector and frequency km, ωn ≥ 0, and coefficients ûnm. If we
change the coordinate x from the real valued line x to the complex valued
curve x̃ = x+ iθ(x)x, we get:4

u(x̃, t) =
M∑
m=0

N∑
n=0

ûnme
i(km(x+iθ(x)x)−ωnt) (7.41)

=
M∑
m=0

N∑
n=0

ûnme
i(kmx−ωnt)e−θ(x)xkm .

We see that in the region x < 0 the solution is equal to u(x, t), for x > 0
the plane waves are damped by e−kmx and exponentially decay in x and
in the wave vector km. The concept of complex coordinate stretching is
equivalent to this example: In order to damp the solution in a designated
layer, a suiting change of the variable to the complex space x is introduced.

In order to apply PML to the elastic wave equation, the PDE is first
transformed with the Laplace transformation L [∗], as temporal derivatives
disappear in complex space after the transformation:

L [t]
(
∂

∂t
u(x, t)

)
= sũ(x, s), (7.42)

where ũ(x, s) is the Laplace transformation of u(x, t) and s its Laplace dual
time variable.5 With this property we can transform Equation (7.2) to

4With θ(x) we denote the Heaviside step function
5Here we used the assumption the PML layer is initially empty.

132

7.3. Perfectly Matched Layers in a nutshell

Equation (7.9) into a system of ordinary differential equations:

sũ(x, s) =
∑
i=1,3

Ai
∂

∂xi
ũ(x, s). (7.43)

To add PML to the equation, we perform a change of variables in each
spatial dimension xi, such that:

∂

∂xi
→ 1

Si(x, s)
∂

∂xi
, for Si(xi, s) = 1 + di(xi)

s+ αi(xi)
. (7.44)

Changing the variables in Equation (7.43) leads to:

sũ(x, s) =
∑
i=1,3

Ai
1

Si(xi, s)
∂

∂xi
ũ(x, s). (7.45)

In order to improve the stability of the method the change of variables was
chosen by the approach of Appelö et al. [5]. Here di(x) ≥ 0 denotes the
PML damping functions and αi(x) ≥ 0 the complex frequency shift.

The term Si(xi, s)−1∂/∂xi
ũ(x, s) does not allow us to analytically trans-

form Equation (7.45) back to a PDE. Alternatively, we introduce helper
variables:

w̃i(x, s) = 1
(s+ αi)Si

Ai
∂

∂xi
ũ(x, s), (7.46)

which leads to a system of ODEs:6

sũ(x, s) =
∑
i=1,3

Ai
∂

∂xi
ũ(x, s)− di(x)w̃(x, s) (7.47)

sw̃i(x, s) = Ai
∂

∂xi
ũ(x, s)− (αi(x) + di(x))w̃i(x, s).

We can analytically compute the inverse Laplace transformation for Equa-
tion (7.47) and retrieve the elastic wave equation with perfectly matched
layers:

∂

∂t
u(x, t) =

∑
i=1,3

Ai
∂

∂xi
u(x, t)− di(x)w(x, t) (7.48)

∂

∂t
wi(x, t) = Ai

∂

∂xi
u(x, t)− (αi(x) + di(x))wi(x, t).

6Here we used 1
Sx

= 1− d(x)
(s+α)Sx

.

133

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

The added helper variables wi blow up the hyperbolic PDE from 9 to
9 + 3 · 9 = 36 unknowns. The main contribution of the work by Duru et
al. [42] lies in the development of a provably stable discontinuous Galerkin
method to discretize Equation (7.47) [42]. Additionally to the new terms
in Equation (7.47) Duru et al. introduce stable numerical fluctuations, in-
corporating PML on element and boundary interfaces. We do not revisit
the fluctuations at this point, but refer the reader to [42] for a detailed
presentation and stability proof.

7.3.1 The choice of PML-Parameters

In order to damp the solution we have to find a proper parameterization
of di(x) and αi(x). The PML damping function di(x) defines the degree,
with which waves are damped in the spatial dimension xi. For di(x) = 0
waves are unchanged and we return at the elastic wave equation, which
also implies that the helper variables we introduced in Equation (7.46) are
zero. The complex frequency shift αi(x) is an additional stabilizer of the
equation, that was first introduced for Maxwell’s equations by Kuzuoglu et
al. [84].

The choice of parameters is based on the work by Appelö et al. [5]: For a
cubic domain ⊗3

i=1

[
xli, x

r
i

]
we define an enclosing cube ⊗3

i=1

[
x̄li, x̄

r
i

]
, such

that the emerging layer has a constant width of ∆x = x̄li − xli and ∆x =
xri − x̄ri in all dimensions. We set the damping functions such that they
increase within the layer towards the outer boundary of the PML layer:

di(xi) =


0, if xi ∈ [xli, xri]
dmax,

(
xr

i−xi

∆x

)n
if xi ∈ [xri , x̄ri]

dmax,
(
xi−xl

i

∆x

)n
if xi ∈ [x̄li, xli].

(7.49)

As function we chose a polynomial of degree n that increases from 0 to dmax
within the layer. The complex frequency shift αi(x) is chosen as function
depending on di(x)

αi(x) = αc + αsdi(x). (7.50)
Appelö shows that the stability of the numerical solution is sensible to the
choice of the parameters ∆x, dmax, n, αc, αs. Unfortunately, no general rule
for suiting parameter sets has been found up to this date. Alternatively, a
few rules of thumb can be derived [5]: In order to filter all reflections in the
layer ∆x the maximal damping dmax and the polynomial degree n must be

134

7.3. Perfectly Matched Layers in a nutshell

Table 7.1.: PML parameters for the benchmarks of Chapter 8.
Benchmark Domain ∆x n dmax αs αc

Zugspitze [0 km, 90 km]3 1.8 km 1 20.0 0.0 1.5
TPV 5/26/28/29 [0 km, 51 km]3 1.9 km 1 20.0 0.0 1.5

HHS1/LOH1 [0 km, 17 km]3 2.0 km 3 18.0 0.0 1.5

chosen large enough. Too aggressive damping leads to instabilities, which
can be stabilized for sufficiently small di(x) by increasing αi(x). As the
parameters do not depend on the resolution of the mesh, we suggest a series
of low resolved test simulations to empirically determine the right of choice
of parameters for a final large production run. In case a coarse solution
contains reflections the damping parameters have to be increased, in case
of instabilities, we have to increase α or decrease di(x). As orientation
we summarize the choice of parameters for all benchmarks that are object
of Chapter 8 in Table 7.1. We see that in all benchmarks parameters are
chosen in the same magnitude and especially that a constant representation
of α was sufficient to ensure stability.

7.3.2 An analytic example: PML for the one dimensional advec-
tion equation

In order to give an intuitive idea how the PML layer works, we want to
look at an analytic example for the linear scalar advection equation in one
dimension:

ut(x, t) = aux(x, t), (7.51)
with initial condition u0(x) and solution u(x, t) = u0(at + x). We assume
α = 0, such that the advection equation with perfectly matched layers
(analogous to Equation (7.47)) collapses to a single equation:

Ut(x, t) = aUx(x, t)− d(x)U(x, t). (7.52)

The solution to Equation (7.52) is given by the function:7

Ũ(x, t) = u(x, t) · exp
(∫ x

−∞

d(x′)
a

dx′
)

=: u(x, t)f(x). (7.53)

7Which we can trivially prove by evaluating Equation (7.52) in Equation (7.53).

135

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

x0

1

u

t=0.0

x

t=0.33 Adv
Adv-PML
Damping

1 0 1
x

0

1
u

t=0.66

1 0 1
x

t=1.00

Figure 7.4.: Solutions for the advection equation without (Adv) and with
Perfectly Matched Layers (Adv-PML). The damping function
exponentially decreases the amplitude of the solution.

The solution for the advection equation with PML is the solution to the
advection equation scaled by a spatial damping factor. With d(x), we can
define the position at which we start damping the wave and the rate with
which the damping increases for higher x. In order to ensure that the wave
is damped to 0, we have to define d(x) such that d(x) < 0,∀x > x′ for some
x′. In Figure 7.4 we show the evolution of a Gaussian wave for the damping
function d(x) = −0.5x · θ(x). For x < 0 both solutions are identical, while
for x > 0 the amplitude decreases, until it is close to 0.

7.4 Cauchy-Kovalevskaya scheme on curvilinear
meshes

In order to numerically solve the elastic wave equation, we use the linear
Cauchy-Kovalevskaya method [126]. We render the method for curvilinear
meshes based on Cartesian reference elements as introduced by Duru et al.
in [43].

Starting point is a hyperbolic PDE on curvilinear coordinates (ξ, η, ν) of
the form

∂

∂t
Q + ∇̃ · F (Q) + B (Q) · ∇̃Q = S (Q) . (7.54)

For the elastic wave equation fluxes and source terms are linear in Q and
only depend on temporally constant material parameters P. Flux F, non-
conservative product B, and source term S turn into matrix-vector multi-

136

7.4. Cauchy-Kovalevskaya scheme on curvilinear meshes

plications. In Einstein notation Equation (7.54) becomes

∂

∂t
Qn + ∇̃d (Fdnm (P) Qm) + Bdnm (P)

(
∇̃dQm

)
= Snm (P) Qm. (7.55)

We transformed the divergence operator to a tensor contraction over the
dimensional index d = 1, ..., 3, corresponding to the three spatial dimensions
ξ,η and ν. n and m ∈ 1, ...,M are the indices for the M physical quantities.
The elastic wave equation in Section 7.2 and the elastic wave equation with
perfectly matched layers in Section 7.3 are of the form in Equation (7.55),
for different numbers of physical quantities. For the sake of brevity we drop
the notation for material parameters at this point.

7.4.1 Transforming between computational and physical mesh

Our approach is build on the goal to create a DG scheme on curvilinear
elements under the constraint that the meshing infrastructure is restricted
to Cartesian elements, as it the case for the underlying Peano framework.
From this point on we talk about a physical mesh of curvilinear elements Ck
and a uniform computational mesh of cubes Ωk. We restrict the derivation
to uniform meshes, as the meshing infrastructure reduces element updates
in arbitrary statically and dynamically refined Cartesian meshes back to
the uniform case.

In order to conform with the interface of the ExaHyPE-Engine, we have
to derive the scheme such that all components of the physical mesh become
part of the flux and source terms. The final kernels have to be computed
on the reference element of the computational mesh Ω = [0, 1]3. For this
approach we require element-wise bijective transformations τk from each
element in the computational mesh to a curvilinear element in the physi-
cal mesh. The construction of such a transformation for boundary fitting
meshes is discussed in Section 7.6. The transformation has to keep the
neighbor relations between adjacent elements.

With the multi-index k = (k1, k2, k3) : ki ∈ {0, Ne}, we describe the
position of element Ωk in a uniform mesh that has Ne elements in each
dimension. The six neighbors of Ωk (and Ck) are denoted with Ωk+o (and
Ck+o) and share the six faces Γ (o) (and E(k,o)).8 With the multi-index o ∈
O = {(−1, 0, 0), (1, 0, 0), (0,−1, 0), (0, 1, 0), (0, 0,−1), (0, 0, 1)}, we encode
the relative position of the neighboring elements in all three dimensions

8This notation is well defined, if we assume a layer of boundary elements around the
domain to model boundary conditions.

137

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

((−1, 0, 0) is the left neighbor, (1, 0, 0) the right neighbor, ...).
Additionally, we know that in the computational mesh there exists a

transformation from the reference element Ω = [0, 1]3 to every Cartesian
element Ωk. The transformation consist of a transposition of the element
and a scaling of every edge with ∆x. We denote this transformation with
γk, which has a derivative of Dγk = ∆xI3.9

By composing both transformations, we get a bijective transformation
from the reference element to each curvilinear element Ck in the physical
mesh,

τk(x, y, z) : τk(Ωk) = Ck and γk(x, y, z) : γk(Ω) = Ωk

=⇒ τk(γk(x, y, z)) : τk(γk(Ω)) = Ck. (7.56)

In order to transform the derivative to the reference element, we have to
perform a change of variables from curvilinear (∇̃d) to Cartesian coordinates
(∇b). To ensure numerical stability of the discretized scheme, we use two
analytically equivalent versions of the chain rule [43],

Bdnm∇̃d = BdnmD((γ−1)k ◦ (τ−1)k)db∇b = 1
∆x

B̃k
bnm∇b,

with B̃k
bnm := BdnmD(τ−1)kdb. (7.57)

∇̃dFdnm = 1
Jk
∇b

(
JkD((γ−1)k ◦ (τ−1)k)Fdnm

)
= 1
∆xJk

∇bF̃
k
bnm,

with F̃ kbnm := JkD(τ−1)kdbFb. (7.58)

Here D(τ−1)kdb is the Jacobian of the inverse to τkdb,

D(τ−1)kdb =


∂
∂ξ

(τ−1
x)k ∂

∂η
(τ−1
x)k ∂

∂ν
(τ−1
x)k

∂
∂ξ

(τ−1
y)k ∂

∂η
(τ−1
y)k ∂

∂ν
(τ−1
y)k

∂
∂ξ

(τ−1
z)k ∂

∂η
(τ−1
z)k ∂

∂ν
(τ−1
z)k

 , (7.59)

Jk = det
{
D(τ−1)kdb

}
its determinant, and the index b = 1, ..., 3 corresponds

to the three Cartesian dimensions x, y and z.
We end up with the locally transformed representation of Equation (7.55)

in Cartesian coordinates,

∂

∂t
Qn + 1

∆xJk
∇b

(
F̃ kbnmQm

)
+ 1
∆x

B̃k
bnm (∇bQm) = SnmQm. (7.60)

9I3 denotes the 3× 3 identity matrix.

138

7.4. Cauchy-Kovalevskaya scheme on curvilinear meshes

7.4.2 Interpolation and quadrature rule

To construct an element local polynomial approximation of Q, we start with
the definition of the tensor basis on the unit cube:

Φi(x, y, z) = φi1(x)φi2(y)φi3(z). (7.61)

Where φi(x) are the one dimensional Lagrange polynomials to a set of N+1
quadrature nodes xk, and multi-index i = (i1, i2, i3). While in general the
basis can be build with an arbitrary set of quadrature nodes, we choose the
Gauss Lobatto Legendre nodes (GLL), as they have nodes placed on the
element interfaces (x0 = 0, xN = 1) and the corresponding quadrature rule
is 2N − 1 accurate [70]. We can construct an interpolatory basis to the
quadrature nodes

(ξki1 , η
k
i2 , ν

k
i3) = τk(γk(xi1 , xi2 , xi3)), (7.62)

on the curvilinear element by composing Equation (7.61) with the inverse
of the transformation:

Φki (ξ, η, ν) := Φi
(
(γ−1)k((τ−1)k(ξ, η, ν))

)
. (7.63)

In the curvilinear element Ck we get the approximation

Q(ξ, η, ν, t)|Ck ≈
(N,N,N)∑
i=(0,0,0)

Φki (ξ, η, ν)qki (t) =: Φki (ξ, η, ν)qki (t), (7.64)

where the definition on the right introduces the Einstein-notation on multi-
indices. Equivalently we approximate the flux

F̃kbnm (P) Qm(ξ, η, ν, t) ≈ Φki (ξ, η, ν)̃f kbin(t). (7.65)

In order to numerically solve volume integrals on the reference element
and face integrals on its boundaries, we apply the quadrature rule that
we used to build the interpolatory polynomial basis. To numerically solve
volume integrals, we span the one-dimensional quadrature rule to three
dimensions and get quadrature nodes xl = (xl1 , xl2 , xl3) with quadrature
weights wl = ωl1ωl2ωl3 . With this choice the evaluation of the basis in

139

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

integrals becomes trivial,

Φi (xl) = δil =
1, if (i1 = l1) ∧ (i2 = l2) ∧ (i3 = l3)

0, else.
(7.66)

Φj (xl)Φi (xl) = δjk · δik. (7.67)

In order to get a quadrature rule for the faces Γ (o), we pick the indices of
that nodes of the three dimensional rule, that lie on the face. For example,
on face Γ ((−1,0,0)) we use the quadrature nodes (x0, xl2 , xl3) with weights
ωl2ωl3 . We generalize this constructive approach to all faces, with the set
of multi-indices L̂(o) located on face Γ (o),

L̂(o) =
{(
l̂1(o1), l̂2(o2), l̂3(o1)

)}
, such that: (7.68)

∀s ∈ {1, 2, 3} : l̂s(os) =


0, for os = −1
l̂s, for os = 0
N, for os = 1

, l̂s ∈ 1, ..., N . (7.69)

and quadrature weights on o:

ω(o)l̂ := ω
1−|o1|
l̂1

ω
1−|o2|
l̂2

ω
1−|o3|
l̂3

. (7.70)

For the set of multi-indices L̂(o), we additionally introduce the character-
istic function:

χ
[
j ∈ L̂(o)

]
=
1, if j ∈ L̂(o)

0, else,
(7.71)

which tells us if the node to a multi-index j is located on the face Γ (o).
Note that the quadrature rule on the reference element and the face inherit
the 2N − 1 accuracy from the one-dimensional rule.

7.4.3 The semidiscrete scheme

As we have now prepared all tools, we next construct the semi-discrete
scheme following the road map from Section 2.4: We first apply the DG
ansatz (See Section 2.4.1) on each curvilinear element Ck with test functions

140

7.4. Cauchy-Kovalevskaya scheme on curvilinear meshes

Φkj . Under the assumption that Φki qkim is globally differentiable we get

∀j :
∫
Ck
ΦkjΦ

k
i

∂

∂t
qki (t) + Φkj

(1
∆xJk

∇bΦ
k
i

)
f̃ kbin(t)+

Φkj
1
∆x

B̃bnm

(
∇bΦ

k
i qkim (t)

)
− ΦkjSnmΦiqkim (t) dCk = 0. (7.72)

In order to treat discontinuities on the six element interfaces E(k,o), we
introduce numerical fluctuations F

(
Φki qkin, Φk+o

i qk+o
in

)
·~n (See Section 2.4.1)

∀j :
∫
Ck
ΦkjΦ

k
i

∂

∂t
qki (t) + Φkj

(1
∆xJk

∇bΦ
k
i

)
f̃ kbin(t)+

Φkj
1
∆x

B̃bnm

(
∇bΦ

k
i qkim (t)

)
− ΦkjSnmΦiqkim (t) dCk +∑

o∈O

∫
E(k,o)

ΦkjF
(
Φki qkin, Φk+o

i qk+o
in

)
· ~n dE(k,o) = 0. (7.73)

An overview of numerical fluctuations in ExaSeis is given in Section 7.5.
We can solve the integral on the reference element Ω, by using integration

by substitution based on the transformations from Equation (7.56)

∀j : ∆x3
∫
Ω
Jk

ΦjΦi ∂
∂t

qkin (t) + Φj

(1
∆xJk

∇bΦi

)
f̃ kbin(t)+

Φj
1
∆x

B̃kbnm
(
∇bΦiqkim (t)

)
− ΦjΦiSnmqkim (t)

 dΩ+

∆x2 ∑
o∈O

∫
Γ (o)

JkΦjF
(
Φiqkin, Φoi qk+o

in

)
· ~n dΓ (o) = 0. (7.74)

In order to solve Equation (7.74), we use the previously introduced quadra-
ture rules in volumes and on faces. By evaluating all basis functions ac-
cording to Equation (7.66) we get

∀j : ∂
∂t

qkjn (t) +
(

1
∆xJk(xj)

(∇bΦi) (xj)
)

f̃ kbin(t)+

1
∆x

B̃bnm(xj)
(
(∇bΦi) (xj)qkim (t)

)
− Snm (xj) qkj (t)+

1
∆x

∑
o∈O

χ
[
j ∈ L̂(o)

] ωj(o)
ωj
F
(
qkjn, qk+o

j̃n

)
· ~n = 0. (7.75)

141

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

With the index j̃ = (ĵ1 − |o1|N, ĵ2 − |o1|N, ĵ3 − |o1|N), we denote those
indices of the neighboring element that lie on face Γ (o).

In order to resolve the analytic definition of the divergence operator, we
introduce the discrete derivative operator10

∇̄bji := (∇bΦi) (xj). (7.76)

After we factorized and simplified the equation we get the semidiscrete
scheme

∀j : ∂
∂t

qkjn (t) + 1
∆xJkj

∇̄bjĩf
k

bin(t) + 1
∆x

B̃kbjnm
(
∇̄bjiqkim (t)

)
−

Snmqkjm (t) + 1
∆x

∑
o∈O

χ
[
j ∈ L̂(o)

] ωj,o
ωj
F
(
qkjn, qk+o

j̃n

)
· ~n = 0, (7.77)

where we denote the non-conservative product and Jacobian evaluated at
xj with

B̃kbjnm := B̃kbnm(xj) Jkj := J(xj)k. (7.78)

There are two remarkable characteristics of Equation (7.77), that we want
to highlight: The scheme contains no mass or stiffness matrices, the only
operator remaining is the discrete derivative and numerical fluctuations only
change the solution in nodes that directly lie on one of the interfaces.

We split all terms into linear volume and boundary operators, which we
require for the integration in time

∂

∂t
qkjn(t) = 1

∆x

(
Volkjnimqkim(t) +

∑
o∈O

Bndk(qkjn, qk+o
j̃n

)
)

. (7.79)

7.4.4 The curvilinear transformation as material parameter

Before we show the integration in time of Equation (7.79), we want to
recapture what components of the curvilinear transformation τk have to
be computed in order to represent a boundary fitting mesh. We saw in
Equation (7.57) that the Jacobian of the inverse to the curvilinear transfor-
mation D(τ−1)k has been moved to the redefined flux and non-conservative
product. The resulting terms contain the Jacobian and its determinant. In
10The construction of the tensor basis allows us to simplify Equation (7.76) to a single

matrix-multiplication.

142

7.4. Cauchy-Kovalevskaya scheme on curvilinear meshes

the interpolation of the flux term in Equation (7.65) and the application of
the quadrature rule in Equation (7.75) the Jacobian an its determinant are
evaluated at the nodes xj . The only components of the curvilinear trans-
formation we require are the Jacobian and its determinant evaluated on the
quadrature nodes,

D(τ−1)k(xj) and Jk(xj) ∀j. (7.80)

As we redefined the flux and non-conservative product, we also have
to adjust the computation of their eigenvalues. One can show that for
Equation (7.60), we get the new eigenvalues

λ̃i1 = cp‖Jki ‖2, λ̃i2 = cs‖Jki ‖2, λ̃i3 = cs‖Jki ‖2, (7.81)

where Jki is the Euclidean norm of the i-th row of the Jacobian,

‖Jki ‖2 :=
√

(D(τ−1)ki1)2 + (D(τ−1)ki2)2 + (D(τ−1)ki3)2. (7.82)

As the time-step size depends on the eigenvalues of the PDE (compare to
Section 2.4.2) the transformation directly influences the admissible time-
step size.

7.4.5 Time integration

In order to advance qi from tn to tn+1, we use the assumption that for small
enough ∆t = tn+1− tn the temporal derivative can be substituted with the
volume operator we derived in Equation (7.79) [126]:

∂

∂t
≈ Volkjnim. (7.83)

We integrate Equation (7.79) in time and get

qkjn(tn+1) = qkjn(tn) +
∫ tn+1

tn

∂

∂t
qkjn(t) dt ≈

qkjn(tn) + 1
∆x

∫ tn+1

tn
Volkjnimqkim(t) dt+

∑
o∈O

1
∆x

∫ tn+1

tn
Bndk(qkjn, qk+o

j̃n
) dt .

(7.84)

143

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

Next qj(t) is approximated with a Taylor series of order N in tn

qkjn(t) ≈
N∑
l=0

(t− tn)l
l!

∂

∂tl
qkjn(tn)

(7.83)
≈

N∑
l=0

(t− tn)l
l!

(
Volk

)l
jnim

qkim(tn),

(7.85)

where we can compute the single temporal derivatives iteratively(
Volk

)l+1

jnim
qim(tn) = Volkjnkl

(
Volk

)l
klim

qim(tn). (7.86)

We use the series to approximate the integral pkjn(tn) of the solution qkjn(t):

∫ tn+1

tn
qkjn(t) dt ≈

∫ tn+1

tn

N∑
l=0

(t− tn)l
l!

(
Volk

)l
jnim

qkim(tn) dt =

N∑
l=0

(∆t)l+1

(l + 1)!
(
Volk

)l
jnim

qkim(tn) =: pkjn(tn).

With which we can finally evolve Equation (7.84) to a time-stepping
scheme

qkjn(tn+1) = 1
∆x

Volkjnimpkim(tn) +
∑
o∈O

1
∆x

Bndk(pkjn(tn), pk+o
j̃n

(tn)). (7.87)

7.5 A physically motivated numerical flux
Numerical fluctuations play the fundamental role for the inclusion of dy-
namic rupture in the numerical scheme. In this chapter we do not revisit
the whole scheme, development, stability and convergence proves of the
solver, but look at its core properties. For details of the one dimensional
Riemann solver, we refer the reader to the work by Duru et al. [41]. The
three dimensional solver extends the results of the one dimensional case
and is described in detail by Duru et al. [43]. Dynamic rupture is included
equivalent to the approach by Duru et al. [39]. From all three publications
we adapt notation and nomenclature in this subsection.

A common solution to compute numerical fluctuations for problems in
linear elasticity is the Godunov flux. Numerical fluctuations are computed
by solving the exact Riemann problem between DG elements to find the
state on the interface of two elements. Using the Rankine-Hugoniot jump

144

7.5. A physically motivated numerical flux

condition numerical fluctuations can be computed from the boundary state
of an element and the derived state on the interface. In case of internal or
external boundary conditions, an initial boundary value problem is solved:
To a set of physical constraints, states on the interface are constructed,
from which energy-stable numerical fluctuations are computed.

The Riemann solver we use in ExaSeis is defined one abstraction level
above the upper approach: Numerical fluctuations are constructed in a
reverse engineering approach, to obey numerical stability and consistency.
Numerical stability is ensured by the energy method by Gustafsson et al.
[66].

We start with the one dimensional case and use it to conclude on the
numerical fluctuations in three dimensions. In contrast to other approaches,
all element interfaces in a mesh are attributed with a frictional strength α.
Classical DG interfaces have an infinite frictional strength α→∞. In case
we model a friction law on an interface, α is finite. On the interface we
want to impose left and right states σ̂−, σ̂+, v̂− and v̂+ such that they hold
the force balance and friction law from Equation (7.37)

Force balance: σ− = σ+ = σ (7.88)

Friction Law: σ = α[[v]], α = σn
f (ψ)
V

. (7.89)

Note that V = ‖[[v]]‖ and f(ψ) is the friction coefficient. In order to develop
a provably stable convergent flux, we have to look at the characteristics
in the eigenspace of the flux matrix of the one dimensional elastic wave
equation (

v
σ

)
t

=
(

0 ρ−1

µ 0

)(
v
σ

)
x

, (7.90)

where velocity and stress tensor reduce to single values. We get the char-
acteristics by transforming σ and v to the eigenspace of the flux matrix

p(σ, v) =1
2 (Zv + σ) q(σ, v) = 1

2 (Zv − σ) , (7.91)

where we introduced the impedance Z = √µρ.
For two neighboring projected solutions (σ−, v−) and (σ+, v+) the char-

acteristics are

outgoing: p(σ−, v−) q(σ+, v+), or (7.92)
incoming: p(σ+, v+) q(σ−, v−). (7.93)

145

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

In order to solve for well-posed boundary or interface conditions the am-
plitude of outgoing characteristics have to be preserved by the imposed
states on the boundary [66]

p(σ−, v−) = p(σ̂−, v̂−) q(σ+, v+) = q(σ̂+, v̂+). (7.94)

Duru et al. [41] show that the physical constraints in Equation (7.88) and
the preservation of amplitudes in Equation (7.94) are solved by defining the
interface variables as:

σ̂+ = σ̂− = α

η + α
Φ [[v̂]] = 1

η + α
Φ α = σn

f (ψ)
V

v̂− = 1
Z+

(
2p
(
σ+, v+

)
− σ̂+

)
− [[v̂]] (7.95)

v̂+ = 1
Z−

(
2p
(
σ−, v−

)
+ σ̂−

)
+ [[v̂]],

where

Φ = η
(2
Z+p(σ

+, v+)− 2
Z−

q(σ−, v−)
)

and η = Z+Z−

Z+ − Z−
. (7.96)

Having found the states in Equation (7.94) we can introduce the flux
fluctuations by penalizing data against incoming characteristics:

F−(t) = q(σ−, v−)− q(σ̂−, v̂−) (7.97)
F+(t) = p(σ+, v+)− p(σ̂+, v̂+).

Finally numerical fluctuations are constructed by penalizing Equation (7.97),
such that physical dimensions match:

F−(t) =
(

1
−Z−1

)
F−(t), F+(t) =

(
1
−Z−1

)
F+(t). (7.98)

For the choice of Equation (7.98) Duru et al. show stability and provide
an error estimate proving the convergence of the scheme [41].

When we move to curvilinear coordinates in three dimensions we consider
the problem on a curvilinear interface between two elements. We solve for
numerical fluctuations in single quadrature nodes (See Equation (7.54)) on
which we impose a local basis {~n, ~m,~l}, where ~n is the normal of the face
and ~m and ~l can be generated with the Gram-Schmidt process. In each
quadrature node we can compute the corresponding rotated tractions tn,

146

7.6. Curvi: An automated mesh generator

tm, tl and velocities vn, vm, vl.
In three dimensions the physical constraints on the interface from Equa-

tion (7.88) become

Force balance: t−ξ = t+ξ = tξ, ξ ∈ {n,m, l}
No opening: [[vn]] = 0 (7.99)

Friction Law: tν = σn
f (ψ)
V

, ν ∈ {m, l}.

Equivalently to the one dimensional case we create variables v̂+
ξ , v̂−ξ , t̂+ξ

and t̂−ξ in all three directions ξ ∈ {n,m, l}, such that they keep the con-
straints in Equation (7.99)

[[v̂n]] = 0 t̂n = Φn (7.100)

[[v̂ν]] = 1
ην + α

Φν t̂ν = α

ην + α
Φν ν ∈ {m, l}

v̂−ξ = 1
Z+
ξ

(
2p
(
tξ, v

+
ξ

)
− t̂η

)
− [[v̂ξ]]

v̂+
ξ = 1

Z−ξ

(
2p
(
tξ, v

−
ξ

)
+ t̂η

)
+ [[v̂ξ]].

The final numerical flux is constructed equivalent to the one dimensional
case in Equation (7.98) and can be found in [43]

7.6 Curvi: An automated mesh generator
As we described in Section 7.4, we can represent curvilinear meshes in
ExaHyPE by mapping each single element from the computational mesh
to an element in the physical mesh. The transformation has to represent
structures and simultaneously meet constraints given by the meshing in-
frastructure of the computational mesh:

• At the end of Section 7.4, we showed that in order to incorporate
the curvilinear mesh into the numerical scheme, we require the metric
derivative and its determinant of the element-wise transformation on
all quadrature nodes. To generate these parameters it is sufficient to
represent the element wise transformation as an N-th order polyno-
mial in PN (R3).

147

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

• In the resulting transformation the topography, faults and material in-
terfaces are thus approximated by two-dimensionalN -th order splines,
which correspond to the projected faces of computational elements.

• We have to keep the same neighbor relations in the computational
and the physical mesh. We thus have to enforce that the shared faces
of neighboring elements in the computational mesh are mapped to
the same face in the physical mesh. This implies that shared vertices
and edges are also mapped to the same vertices and curves. The
transformation has to be continuous between elements.

Following the first property, we write the transformation τk(x, y, z) of
elementΩk to Ck in terms of the spatial approximation from Equation (7.63)

τk(x, y, z) =
(N,N,N)∑
i=(0,0,0)

Φki (x, y, z)
(
ξki1 , η

k
i2 , ν

k
i3

)
. (7.101)

This representation allows us to reduce the problem to finding the (N + 1)3

transformed coordinates
(
ξki1 , η

k
i2 , ν

k
i3

)
, to the interpolation points (xki1 , yki2 , zki3)

in element Ωk. From Equation (7.101) we can then compute the metric
derivatives with the discrete derivative operator ∇̄ and derive its determi-
nant.

In order to conserve the neighbor relation between computational and
physical mesh, the transformed coordinates on faces of adjacent elements
have to be equal. For a mesh of Ne elements in each dimension, this leaves
us with (NNe + 1)3 transformed coordinates, that we can use to define the
transformation.

For arbitrary cuboid domains we can always find a bijective projection
to the unit-cube, which allows us to simplify the generation of the trans-
formation and only consider it for the unit-cube [0, 1]3. To construct the
transformation for the computational mesh, we first find a suiting transfor-
mation τ for the nodes of a uniform grid of Ng = (NNe + 1) equidistant
nodes in each dimension

τ

(
l1
Ng

,
l2
Ng

,
l3
Ng

)
=
(
ξl1 ,ηl2 ,ν l3

)
, (7.102)

where l1, l2, l3 ∈ {0, ..., Ng}.
Having the transformed coordinates of all nodes in the uniform grid, we

can reconstruct the transformation of the nodes in the computational mesh

148

7.6. Curvi: An automated mesh generator

Figure 7.5.: Transformation of a Cartesian element (left) to a curvilin-
ear element (right). We generate the transformation for a
uniform mesh (dashed lines). With interpolation we can re-
produce the transformation for the quadrature nodes of the
DG-scheme (marked as crosses) and ensure that adjacent el-
ements share the same transformation of their interface.

with a simple interpolation (See Figure 7.5)

(
ξki1 , η

k
i2 , ν

k
i3

)
=

N(k3+1)∑
l3=Nk3

N(k2+1)∑
l2=Nk2

N(k1+1)∑
l1=Nk1

Φkl
(
xki1 , y

k
i2 , z

k
i3

) (
ξl1 ,ηl2 ,ν l3

)
,

(7.103)

where Φl are the interpolation polynomials to the uniform nodes

Φkl (xi) = δli, for l, i : ls, is ∈ {Nks, ..., N(ks + 1)}, s = 1, ..., 3. (7.104)

Equation (7.103) ensures that nodes on the shared face of two adjacent
elements in the computational mesh, share the same transformation. As
consequence we can be certain that their interfaces in computational space
are projected to the same interface in physical space. The method we use to
construct a transformation, that represents topographies, faults and sharp
material interfaces, is the object of the next sections.

149

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

(u, 1)

(0, v)

(u, 0)

(1, v)

(0, 1) (1, 1)

(0, 0) (1, 0)

~cu1 (u)

~c0v (v)

~cu0 (u)

~c1v (v)

C D

A B

Figure 7.6.: Sketch of the two dimensional transfinite interpolation. The
conforming boundary curves ~cu0 (u) ,~c0v (v) ,~cu1 (u) ,~c1v (v)
define a surface (right, blue), for which the transfinite in-
terpolation returns a diffeomorphic transformation from the
unit square (left). The isolines are evenly distributed over the
domain (black lines).

7.6.1 The transfinite interpolation

The core of our automatic meshing approach is the transfinite interpolation.
The transfinite interpolation describes a locally-invertible (diffeomorphic)
transformation from Cartesian coordinates to curvilinear coordinates (also
called computational and physical domain) for a given set of boundary
curves in two and boundary surfaces in three dimensions. For the sake of
brevity we only recapture the formulation of the two dimensional interpo-
lation ~C2 [λn] (u, v) : [0, 1]2 → Rn at this point and refer the reader for the
three dimensional case to Appendix B

~C2 [λn] (u, v) =
(1− u)~c0v (v) + u~c1v (v) + (1− v)~cu0 (u) + v~cu1 (u)− (7.105)(

(1− v)(1− u) · ~A+ (1− v)u · ~B + v(1− u) · ~C + vu · ~D
)

.

~C2 [λn] (x, y) is the transfinite interpolation to the ordered set of boundary
curves

λn = (~cu0 (u) ,~cu1 (u) ,~c0v (v) ,~c1v (v)), (7.106)
which are each functions [0, 1]→ Rn.

150

7.6. Curvi: An automated mesh generator

The set λn holds the left, right, top and bottom curves that the transfi-
nite interpolation returns along the lines (u, 0), (u, 1), (0, v), (1, v) for u, v ∈
[0, 1]. The curves have to be conforming, i.e. they have to be parameterized
such that their intersection points are placed at the vertices of the domain
of definition (u, v) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}

~A = ~c0v (0) = ~cu0 (0) , ~B = ~cu0 (1) = ~c1v (0) , (7.107)
~C = ~cu1 (0) = ~c0v (1) , ~D = ~c1v (1) = ~cu1 (1) .

In Figure 7.6 we show the transformation of the uniform square to a curvi-
linear surface with prescribed topography ~cu0 (u) = (u,T(u)), while all other
boundary curves are modeled as straight lines. We see that the projected
isolines vj = j

9 , j = 0, ..., 9 in the uniform square are evenly distributed over
the domain and gradually match the straight line at the bottom and the to-
pography at the top. For the uniform nodes (ui, vj) =

(
i
9 ,

j
9

)
, i, j = 0, ..., 9

the transformation gives us corresponding projected nodes ~C2 [λ2] (ui, vj) for
a curvilinear mesh.

In three dimensions the transfinite interpolation becomes a function
~C3 [Λn] (u, v, w) : [0, 1]3 → Rn. It is now based on a set of conforming
boundary surfaces containing the left, right, top, bottom, front and back
surface

Λn =
(
~F0vw (v, w) , ~F1vw (v, w) , ~Fu0w (u,w) , (7.108)

~Fu1w (u,w) , ~Fuv0 (u, v) , ~Fuv1 (u, v)
)

.

All surfaces are functions [0, 1]2 → Rn. Analogous to boundary curves
in two dimensions, boundary surfaces define the images of the transfinite
interpolation for the six faces of the unit-cube [0, 1]3

~C3 [Λn] (u, v, 0) = ~Fuv0 (u, v) , ~C3 [Λn] (u, v, 1) = ~Fuv1 (u, v) ,
~C3 [Λn] (u, 0, w) = ~Fu0w (u,w) , ~C3 [Λn] (u, 1, w) = ~Fu1w (u,w) , (7.109)
~C3 [Λn] (0, v, w) = ~F0vw (v, w) , ~C3 [Λn] (1, v, w) = ~F1vw (v, w) .

In order to be conforming with the transfinite interpolation, the parameteri-
zation of the boundary surfaces has to be matching at the twelve intersection

151

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

~F0vw(v, w) ~F1vw(v, w)

~Fu0w(u,w)

~Fu1w(u,w)

Figure 7.7.: Transfinite interpolation to a set of conforming boundary sur-
faces (black isolines), modeling a topography on top (blue
isolines). Marked is the transformation for the element from
Figure 7.5 (blue volume).

paths:

~Fuv0 (u, 0) = ~Fu0w (u, 0) , ~Fuv1 (u, 0) = ~Fu0w (u, 1) ,
~Fuv0 (u, 1) = ~Fu1w (u, 0) , ~Fuv1 (u, 1) = ~Fu1w (u, 1) ,
~Fuv0 (0, v) = ~F0vw (v, 0) , ~Fuv1 (0, v) = ~F0vw (v, 1) , (7.110)
~Fuv0 (1, v) = ~F1vw (v, 0) , ~Fuv1 (1, v) = ~F1vw (v, 1) ,
~Fu0w (0, w) = ~F0vw (0, w) , ~Fu1w (0, w) = ~F0vw (1, w) ,
~Fu0w (1, w) = ~F1vw (0, w) , ~Fu1w (1, w) = ~F1vw (1, w) ,

for u, v, w ∈ [0, 1]. A set of conforming boundary surfaces in three dimen-
sions (and boundary curves in two dimensions) can be interpreted as the
definition of empty hulls. The transfinite interpolation is the transformation
from the unit cube onto a boundary fitting volume for that hull. Having
the transformation to a set of boundary surfaces, we can generate trans-
formed coordinates for the uniform mesh from Equation (7.102), that fit
with predefined surfaces (See Figure 7.7).

152

7.6. Curvi: An automated mesh generator

7.6.2 Topography fitting curvilinear meshes

The entry point of our meshing approach is the generation of conforming
boundary surfaces for a prescribed region with topography. We want to
represent the topography of the domain as one of the boundary surfaces
and model with the domain, the interior of the Earth down to a preset
depth.

The method we present here is invariant under all permutations of the
coordinates x, y and z. We construct the example from Figure 7.7 and
assume w.l.o.g. that we model the region [x̃0, x̃1]× [z̃0, z̃1] down to a depth
of ỹ1. The topography is given as scalar field T : R2 → R in the coordinates
x and z. In order to construct a conforming set of boundary surfaces that
represent the topography in the defined region, we map the top and bottom
faces of the unit cube to the surfaces given by the topography and the depth
of the domain. For (u,w) ∈ [0, 1]2

~Fu0w (u,w) := (x̃(u),T(x̃(u), z̃(w)), z̃(w)) (7.111)
~Fu1w (u,w) := (x̃(u), ỹ1, z̃(w)),

where x̃(u) = u · (x̃1 − x̃0) + x̃0 and z̃(w) = w · (z̃1 − z̃0) + z̃0. In order to
conform with the edges of the domain, we generate the remaining boundary
surfaces using the two dimensional curvilinear interpolation. Our construc-
tive approach is shown in Figure 7.8: As the generated surfaces have to be
conforming, the top and bottom edges of all missing faces are determined
by the edges of the top and bottom surface. For the front surface ~Fuv0 (u, v),
we construct the left and right edge by connecting the vertices of the edges
with a straight line (left, red lines)

~cu0 (u) := ~Fu0w (u, 0) ,
~cu1 (u) := ~Fu1w (u, 0) , (7.112)
~c0v (v) := v

(
~Fu1w (0, 0)− ~Fu0w (0, 0)

)
+ ~Fu0w (0, 0) ,

~c1v (v) := v
(
~Fu1w (1, 0)− ~Fu0w (1, 0)

)
+ ~Fu0w (1, 0) .

Having the set of all four boundary curves λ3
uv0 we can represent the front

surface with the two dimensional transfinite interpolation

~Fuv0 (u, v) = ~C2
[
λ3
uv0

]
(u, v). (7.113)

We get the remaining three boundary surfaces ~Fuv1 (u, v), ~F0vw (v, w) and

153

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

~c0v(v) ~c1v(v)

~cu1(u)

~cu0(u)

~Fuv0(u, v)

Figure 7.8.: Construction of the front face for a given top and bottom
face. The top surface represents some topography, while the
bottom is predefined by the depth. By taking the two edges
of the top and bottom face and constructing the two missing
edges (left, red lines), we get the front face by evaluating the
two dimensional transfinite interpolation (right red).

~F1vw (v, w) analogously and end up with a set of conforming boundary sur-
faces Λ3. The corresponding transfinite interpolation gives us the transfor-
mation from the unit-cube to a topography fitting volume

τ(u, v, w) = ~C3
[
Λ3
]

(u, v, w) . (7.114)

In case we require a mesh only to represent the topography (as for the
Zugspitze scenario in Section 8.4) and no structures in its interior, we can
generate the transformation for the uniform grid in Equation (7.102) and
are finished with meshing at this point.

7.6.3 Imposing fault structures

Next we want to impose structures in the physical domain we constructed in
the last section. Examples for these structures can be sharp material param-
eter interfaces, as we encounter them in the Loh1 scenario (Section 8.2.2)
or fault structures, as they appear for the TPV benchmarks (Section 8.3).
For each structure we want to incorporate, we define a corresponding face

154

7.6. Curvi: An automated mesh generator

hi inside the unit-cube, parallel to the u-v, u-w or v-w-plane, and a surface
Si in the physical domain. The final transformation has to project each face
onto its corresponding surface,

τ(hi) != Si, ∀(hi, Si) ∈ G. (7.115)

Here we introduced the set of constraints G to summarize all pairs of faces
and surfaces we want to incorporate in the final transformation

G = {(hi, Si), i ∈ I} , (7.116)

with a set of indices I. In order to define the transformation, we use the
faces hi to inductively divide the unit-cube into cuboids

Qj = [ūj, ūj+1]× [v̄j, v̄j+1]× [w̄j, w̄j+1]. (7.117)

For each cuboid Qj we construct corresponding (conforming) boundary sur-
faces Λ3

j . Pairs of cuboids and boundary surfaces, describe a simultaneous
sub-division of the computational and physical domain, which we summa-
rize with the set B:

B =
{(
Qj, Λ

3
j

)
, j ∈ J

}
, (7.118)

for a set J of indices. The final transformation for the unit-cube is defined
as piecewise transfinite interpolations for each pair in B

τ(u, v, w) := ~C3
[
Λ3
j

] (u− ūj
ūj+1 − ūj

,
v − v̄j
v̄j+1 − v̄j

,
w − w̄j
w̄j+1 − w̄j

)
, (7.119)

for (u, v, w) ∈ Qj and j ∈ J .
In the next sections of this chapter we introduce an inductive approach

that generates a sub-division (Equation (7.118)) of the unit-cube and the
boundary faces we introduced in Section 7.6.2, such that a set of constraints
as in Equation (7.116) are fulfilled in the final transformation in Equa-
tion (7.119).

As approach and proof become very technical, we want to outline the
single steps up front. Figure 7.9 illustrates the approach:

1. We start with the unit-cube [0, 1]3 and its corresponding set of bound-
ary faces Λ from Section 7.6.2, that represent a topography. Addi-
tionally, we consider the first constraint (h0, S0) from G.

2. We split the unit cube into two cuboidsQ1, Q2 and the set of boundary

155

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

Figure 7.9.: Sub-division of the unit cube and the conforming set bound-
ary surfaces based on a condition (red). The new sets of
boundary faces (right) represent the structure at their shared
interface (red), while the previously introduced topography
remains in the representation.

faces into two new sets 1Λ, 2Λ. The cuboids share the face h0 at their
interface. The new sets of boundary faces share the surface at their
interface.
Splitting the unit cube is trivial: For example a face h0 = 0.5 ×
[0, 1] × [0, 1], gives us cuboids Q1 = [0, 0.5] × [0, 1] × [0, 1] and Q2 =
[0.5, 1] × [0, 1] × [0, 1]. To split the set of boundary faces with the
surface we have to perform a series of intermediate steps:

• We have to find those boundary faces F ∈ Λ that intersect
with Si.

• For these faces we find the path along which they intersect with Si.
• With the intersection path, we can split the faces into two new

faces 1F and 2F .
• Having split all faces we can construct new conforming sets of

boundary faces 1Λ, 2Λ, that share the structure Si at their inter-
face.

3. For the next structure (hn+1, Sn+1), we return to the first step and
perform the following steps for all pairs of cuboids that intersect with
the face hn+1.

156

7.6. Curvi: An automated mesh generator

Inductive construction of sub-divisions

In order to simplify the notation, we define the domain D(Λ̂3) of boundary
surfaces Λ̂3, as the image of the unit-cube to their corresponding three
dimensional transfinite interpolation,

D(Λ̂3) =
{
~C3
[
Λ̂3
]

(u, v, w) , (u, v, w) ∈ [0, 1]3
}

. (7.120)

By definition we get the equation

∀j ∈ J : τ (Qj) = D(Λ3
j). (7.121)

The global domain from Section 7.6.2 is denoted with D(Λ3).
As the transformation has to be well defined, the cuboids have to cover

the whole unit-cube. We want keep the representation of the topography in
the global domain as image of the unit cube, thus the union of the images
of the cuboids has to be D(Λ3):

⋃
j∈J

Qj
!= [0, 1]3,

⋃
j∈J

τ (Qj) =
⋃
j∈J

D(Λ3
j)

!= D(Λ3). (7.122)

With the definition of the transformation in Equation (7.119), we can
rewrite Equation (7.115) as condition of the sub-division B. For every
constraint (hi, Si) ∈ G, we require that there exist two subsets of the sub-
division such that the face is represented by the interface of the two subset
unions of cuboids and the surface by the interface of the two subset unions
of the domains. ∀(hi, Si) ∈ G, ∃B1,B2 ⊂ B :(⋃

(Qj1 ,Λ
3
j1

)∈B1

Qj1

)
∩
(⋃

(Qj2 ,Λ
3
j2

)∈B2

Qj2

)
= hi (7.123)

(⋃
(Qj1 ,Λ

3
j1

)∈B1

D(Λ3
j1)
)
∩
(⋃

(Qj2 ,Λ
3
j2

)∈B2

D(Λ3
j2)
)

= Si. (7.124)

We provide an inductive approach to construct a sub-division B, that ful-
fills an arbitrary set of constraints G, as defined in Equation (7.122), Equa-
tion (7.123) and Equation (7.124).

As initial case we choose the result from Section 7.6.2, with B0 :=
{[0, 1]3, Λ3}, that trivially meets Equation (7.123), Equation (7.124), and
Equation (7.122) as G0 = ∅. For the induction step we assume an existing

157

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

sub-division Bn, that obeys all n constraints in

Gn := Gn−1 ∪ {(hn, Sn)}. (7.125)

To add a new surface Sn+1 as the image of a face hn+1 to the sub-division,
we pick those pairs in Bn where the cuboid intersects with the face

Bn =
{

(Qj, Λ
3
j) : Qj ∩ hn+1 6= ∅, (Qj, Λ

3
j) ∈ Bn

}
. (7.126)

For the definition of the new surface Sn+1 we require, that it fully lies in
the unified domain of the corresponding boundary surfaces,11

Sn+1 ∩

 ⋃
(Qj ,Λ3

j)∈Bn

D(Λ3
j)

 = Sn+1. (7.127)

We divide each cuboid Qj and its corresponding boundary surfaces Λ3
j

into two new pairs, to the left (1Qj, 1Λ3
j) and to the right (2Qj,

2Λ3
j) of

the face and surface.12 The new cuboids share hn+1 as interface and the
fraction of Sn+1 that lies inside the initial domain D(Λ3

j), is the interface of
the domains to the divided boundary surfaces

1Qj ∪ 2Qj = Qj,
1Qj ∩ 2Qj = hc̄ ∩Qj (7.128)

D(1Λ3
j) ∪D(2Λ3

j) = D(Λ3
j), (7.129)

D(1Λ3
j) ∩D(2Λ3

j) = Sn+1 ∩D(Λ3
j). (7.130)

We sort the pairs into the ones located on the left of the face B
1
n and on the

right B
2
n. In order to construct a new sub-division Bn+1 we replace each

original pair
(
Qj, Λ

3
j

)
in Bn with the newly constructed pairs

Bn+1 = (Bn/Bn) ∪B
1
n ∪B

2
n.

The unions in Equation (7.128) make it trivial to prove that the new sub-
division fulfills Equation (7.123) and Equation (7.124). We can also use
them to easily prove that Equation (7.122) holds for all constraints (hi, Si) ∈
Gn.

11This constraint is naturally met for realistic mesh geometries.
12We define that the normals to the faces hi are oriented in positive direction, which

gives us definition of left and right.

158

7.6. Curvi: An automated mesh generator

In case of (hn+1, Sn+1), we take the new defined sets B
1
n and B

2
n and get ⋃

(1Qj ,1Λ3
j)∈B1

n

D(1Λ3
j)

 ∩
 ⋃

(2Qj ,2Λ3
j)∈B2

n

D(2Λ3
j)

 =

 ⋃
(1Qj ,1Λ3

j)∈B1
n

⋃
(2Qj ,2Λ3

j)∈B2
n

D(1Λ3
j) ∩D(2Λ3

j)

 = (7.131)

 ⋃
(Qj ,Λ3

j)∈Bn

D(Λ3
j) ∩ Sn+1

 (7.128)= Sn+1 ∩

⋃
j∈J

D(Λ3
j)
 (7.127)= Sn+1.

The inductive approach gives us a method to add structures bit by bit to
an existing transformation. The last tool that is missing are the operators
to split cuboids by faces and boundary surfaces by structures that meet
Equation (7.128).

Splitting a cuboid by a face is trivial, the definition of an operator to
split a set of conforming boundary surfaces by a surface is the object of the
next paragraphs.

Splitting conforming sets of boundary surfaces

We have to construct a method to split a set of boundary surfaces Λ3
j into

two sets 1Λ3
j and 2Λ3

j , that obey Equation (7.129). In order to simplify
our approach, we require that every surface Si has to be represented by an
associated scalar field Si : R2 → R, that is evaluated for a set of curvilinear
coordinates:

Si(u, v) = (ũ, ṽ, S(ũ, ṽ)), for (ũ, ṽ) = ~C2
[
λ2
i

]
(u, v) or (7.132)

Si(u,w) = (ũ, S(ũ, ṽ), w̃), for (ũ, w̃) = ~C2
[
λ2
i

]
(u,w) or (7.133)

Si(v, w) = (S(ṽ, w̃), ṽ, w̃), for (ṽ, w̃) = ~C2
[
λ2
i

]
(v, w). (7.134)

for u, v, v ∈ [0, 1] and û, v̂, ŵ ∈ {0, 1}. λ2
i are the corresponding sets of

conforming boundary curves,

λ2
i = (~cu0 (u) ,~cu1 (u) ,~c0v (v) ,~c1v (v)). (7.135)

This choice for the representation of surfaces allows us to interpret every
surface as the cutaway of the graph to a scalar-field. The cutting lines are

159

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

the boundary curves of λ2
i . In order to split a surface we can redefine the

boundary curves to match with the intersection.

W.l.o.g. we present the method for the division by a surface in v-w, as
defined in Equation (7.134). With simple permutations the method can be
equivalently used for structures defined in u-v (Equation (7.132)) and u-w
(Equation (7.133)). Figure 7.9 illustrates the operator for this example.

In order to find two new conforming sets of boundary faces 1Λ3
j and 2Λ3

j ,
we have to split all surfaces in Λ3

j that intersect with Si. For our example
these are the top, bottom, front and back surface in Λ3

j . By denoting the
surface-surface splitting operators with •/1• and •/2•, we get 1Λ3

j and 2Λ3

with

1Λ3
j =

(
~F0vw (v, w) , Ŝi(v, w), ~Fu0w (u,w) /1Si, (7.136)

~Fu1w (u,w) /1Si, ~Fuv0 (u, v) /1Si, ~Fuv1 (u, v) /1Si

)
2Λ3

j =
(
Ŝi(v, w), ~Fv1w (v, w) , ~Fu0w (u,w) /2Si, (7.137)

~Fu1w (u,w) /2Si, ~Fuv0 (u, v) /2Si, ~Fuv1 (u, v) /2Si

)
.

The surface-surface splitting operators return the left and right parts of a
boundary surface, divided along the intersection path with Si, as shown
in Figure 7.10. The new sets of boundary faces share the reparametrized
surface Ŝi at their interface and by design meet the constraints in Equa-
tion (7.124).

In order to define the surface-surface splitting operators, we again look
at an example for a fixed set of coordinates. With permutations, the
method can be translated to all cases. We look at the intersections F1 :=
~Fu0w (u,w) /1Si and F2 := ~Fu0w (u,w) /2Si. By the restriction in Equa-
tion (7.133), we can represent ~Fu0w (u,w) with

~Fu0w (u,w) := (ũ,F(ũ, w̃), w̃), for(ũ, w̃) = ~C2
[
µ2
]

(u,w) (7.138)

for some scalar field F and boundary curves

µ2 = (~Cu0 (u) , ~Cu1 (u) , ~C0w (w) , ~C1w (w)). (7.139)

We have to find the intersection path ~I(w) of ~Fu0w (u,w) and Si along

160

7.6. Curvi: An automated mesh generator

Figure 7.10.: Surface-surface splitting operator: We find the intersection
path of two surfaces (left) to split the first surface (right
blue) along the intersection path (right red). The two re-
sulting new surfaces are reparametrized.

their shared coordinate w,

~I(w) = (Ix(w), Iy(w), Iz(w)) : (7.140)
(Ix(w),F(Ix(w), Iz(w)), Iz(w)) = (S(Ix(w), Iy(w)), Iy(w), Iz(w)) ,

for w ∈ [0, 1].

Having the intersection path I(w), we can next define two new sets
of conforming boundary curves µ2

1 and µ2
2 and split the surface into two

reparametrized surfaces F1 and F2,

F1(u,w) =(ũ, F (ũ, w̃), w̃), for (ũ, w̃) = ~C2
[
µ2

1

]
(u,w), (7.141)

F2(u,w) =(ũ, F (ũ, w̃), w̃), for (ũ, w̃) = ~C2
[
µ2

2

]
(u,w).

We take the boundary curves from Equation (7.139) and split the top and

161

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

bottom curve with the intersection path

1 ~Cu0 (u) = ~Cu0 (u · ū0) , 2 ~Cu0 (u) = ~Cu0 (u · (1− ū0) + ū0) ,
1 ~Cu1 (u) = ~Cu1 (u · ū1) , 2 ~Cu1 (u) = ~Cu1 (u · (1− ū1) + ū1) , (7.142)

~I(w) = ~I(w · (w̄1 − w̄0) + w̄0),

where ū0,ū1,w̄0 and w̄1 are the points where the curves intersect with the
intersection path

~Cu0 (ū0) = I(w̄0), ~Cu1 (ū1) = I(w̄1). (7.143)

With the split reparametrized curves and the intersection path, we can
generate the two new conforming sets of boundary curves,

µ2
1 = (1 ~Cu0 (u) , 1 ~Cu1 (u) , ~C0w (w) , ~I(w)), (7.144)
µ2

2 = (2 ~Cu0 (u) , 2 ~Cu1 (u) , ~I(w), ~C1w (w)). (7.145)

After splitting all faces in Equation (7.136) and Equation (7.137), we find
a conforming reparameterization of the surface Si, by taking the four inter-
section paths as boundary curves

λ̂2 =
(
~Iuv0(v), ~Iuv1(v), ~Iu0w(w), ~Iu1w(w)

)
(7.146)

and define then new boundary face with:

Ŝi(v, w) = (S(ṽ, w̃), ṽ, w̃), for (ṽ, w̃) = ~C2
[
λ̂2
]

(v, w). (7.147)

Approximating intersections

The last missing pieces are the intersection path in Equation (7.140) and
the intersections in Equation (7.143). First we numerically approximate
Equation (7.140) to the problem of finding intersections on isolines. We
take the N isolines of both surfaces along z for equidistant values zk ∈
[zmin, zmax], zk+1 = ∆z+zk, and zmin and zmax are the minimal an maximal
z values in Si([0, 1]2) and ~Fu0w ([0, 1]2). By interpolating the isolines with
linear splines on N subintervals, defined by xi+1 = xi + ∆x, and yj+1 =
yj +∆y, we can reduce the problem to a linear equation system

(x,F(x, zk), zk) ≈
(xi,F(xi, zk), zk) + λi(x) (∆x,F(xi+1, zk)− F(xi, zk), 0) (7.148)

162

7.6. Curvi: An automated mesh generator

(S(y, zk), y, zk) ≈
(S(yj, zk), yj, zk) + µj(y) (S(yj+1, zk)− S(yj, zk), ∆y, 0) , (7.149)

where λi(x) = (x− xi)∆x−1 and µj(y) = (y − yj)∆y−1, (7.150)

for x ∈ [xi, xi+1], y ∈ [yi, yi+1]. Along the isolines zk we are left with the
problem

F(yj, zk) + µj (y) · (F(yj+1, zk)− F(yj, zk)) = xi + λi (x) ·∆x, (7.151)
S(xi, zk) + λi (x) · (S(xi+1, zk) − S(xi, zk)) = yj + µj (y) ·∆y, (7.152)

which we can easily solve for λi or µj. With λi and µj, we can compute the
intersection points x̂k and ŷk, along the isolines zk. With all N intersection
points (x̂n, ŷn, zn), we reconstruct the intersection path with linear splines,

~I(w) = (w ·N − n) (x̂n+1 − x̂n, ŷn+1 − ŷn, ∆z) + (x̂n, ŷn, zn) , (7.153)

for w ∈ [n/N, (n+ 1)/N].
With the approach that we used to intersect isolines, we can find the

intersection points of two curves as required in Equation (7.143).

TPV24: Recursive boundary splitting

The resulting sets of boundary faces are both conforming and their elements
all agree with the assumptions we made. This means, we can impose multi-
ple structures, by recursively splitting pairs of sub-cuboids and correspond-
ing conforming sets of boundary faces. In order to illustrate this approach,
we look at the example of the TPV24 dynamic rupture benchmark, which
is defined by a main fault and a branch fault [67]. The domain represents a
flat topography and is defined in the cube [−14, 28]×[0, 28]×[0, 28] km. We
can define the initial domain as in Section 7.6.2 and receive a conforming
set of boundary faces Λ3.

The main fault of the benchmark is a planar fault in y and z at x = 0,
this can be defined by the surface:

S1 = {(0, y, z), (y, z) ∈ [0, 28]× [0, 28]}. (7.154)
The branch fault has an angle of 30 degrees to the main fault, and is only

163

7. ExaSeis: A curvilinear ADER-DG method for earthquakes

Figure 7.11.: Generation of the conforming boundary sets for TPV24.

defined in the area x > 0. We can incorporate it with the surface:

S2 = {(x, y, 14), (x, y) ∈ [−14, 0]× [0, 28]}∪
{(x, y, 14 +

√
3/2 · x), (x, y) ∈ [0, 14]× [0, 28]}. (7.155)

In order to generate suiting constraints, we define one face in the cuboid’s
center, parallel to the y-z plane h1 = {0}× [0, 28]× [0, 28] for the main fault
and a second face for the branch fault h2 = [−14, 14]×[0, 28]×{14}. Finally
we split the boundary faces of the initial domain with the first structure:(

1Λ3, 2Λ3
)

= Λ3//S1 (7.156)

and then both resulting boundary faces with the second structure:(
11Λ3, 12Λ3

)
= 1Λ3//S2,

(
21Λ3, 22Λ3

)
= 2Λ3//S2 (7.157)

For the resulting four sets of boundary faces:

11Λ3, 12Λ3, 21Λ3, 22Λ3, (7.158)

we end up with four corresponding cuboids:

Q11 = [−14, 0]× [0, 28]× [0, 28], Q21 = [−14, 14]× [0, 28]× [0, 28],
(7.159)

Q12 = [−14, 0]× [0, 28]× [0, 28], Q22 = [−14, 24]× [0, 28]× [0, 28].

The resulting subdivision defines the transformation for TPV24, as illus-
trated in Figure 7.11.

164

CHAPTER

8
Verification and applications of ExaSeis

8.1 Introduction
Before we start with the simulation of earthquake events, we verify our
numerical method against a series of community benchmarks. A full verifi-
cation for kinematic point sources, is given in the work by Duru et al. [42,
43]. In this chapter we summarize the core findings of both papers and ex-
tend the verification by benchmarks for dynamic earthquake rupture. First,
we check for benchmarks with simple kinematic point sources (Homoge-
neous half-space: Section 8.2.1) and material layers (Layer over half-space:
Section 8.2.2), whether the code is able to resolve seismic waves in inho-
mogenous material. The (semi-)analytic references for these benchmarks
are provided by the Seismic Modeling Web Interface1 [98]. Simultaneously,
we verify that the perfectly matched layers scheme from Section 7.3 removes
reflections coming from the boundary. In order to do this, we reduce the
extent of the simulated domain and compare simulations with PML against
simulations with the common absorbing boundary conditions.

After the verification for point sources and homogeneous material param-
eters, we focus on the verification of our method against dynamic rupture
benchmarks. Definitions and numeric references for the benchmarks are
provided by the SCEC Spontaneous Rupture Code Verification Project2 [68].

1Accessed 18.08.2021: http://www.sismowine.org/
2Accessed 18.08.2021: https://strike.scec.org/cvws/

165

http://www.sismowine.org/
https://strike.scec.org/cvws/

8. Verification and applications of ExaSeis

We use tests with increasing difficulty to verify the mechanisms of our
method required for the simulation of real spontaneous dynamic rupture
events. Finally, we show that out approach works on dynamically refined
meshes and rerun one of the benchmarks.

Having verified the method, we present earthquake events simulated with
ExaSeis: In the Zugspitze model in Section 8.4, we analyze the effects
of a complex topography on scattering, amplification and deamplification.
Finally, we simulate a dynamic rupture event for the Húsav́ık fault in the
north Iceland region in Section 8.5.

8.2 Kinematic point sources

8.2.1 The homogeneous half-Space benchmark

As most basic benchmark we look at the homogeneous half-space problem
(HHS1) [30]. The domain of the benchmark is a half-space with free-surface
placed at y = 0. The homogeneous, isotropic, elastic material is described
by parameters

ρ =2.7 t m−3, cp =6.0 km s−1, cs =3.464 km s−1. (8.1)

A point source is placed 0.693 km deep at x0 = (0, 0.693, 0) and initialized
with a moment-rate time history (compare to Section 7.2.1):

f(t) = M0

(
t

T 2 exp
(
− t

T

))
. (8.2)

The moment tensor of the source is zero everywhere, except the shear com-
ponent xy, where Mxy = M0 = 1000.0 PN m. M0 is the moment magnitude
of the source and T = 0.1 s the point of its highest rate. At the free surface
nine receivers are placed to record the evolution of seismic waves (Table 8.1).

In order to avoid significant reflections from the absorbing boundary con-
ditions, the original benchmark is defined within the domain [−26, 32] ×
[0, 34] × [−26, 32] km. As the PML layer allows us to restrict the do-
main even further, we only have to simulate that part of the domain that
contains seismograms and the point source [−2.287, 14.046] × [0, 16.333] ×
[−2.287, 14.046] km, which is less than 3 % of the original domain. The
PML parameters we use in the layer are summarized in Table 7.1.

With this benchmark we can test how well our numerical schemes repre-
sents body waves (P- and S-waves) in the domain, as well as surface-waves

166

8.2. Kinematic point sources

Table 8.1.: Positions of the receivers for the HHS1 benchmark.
Receiver 1 2 3 4
x [km] 0 0 0 0.490
z [km] 0.636 5.542 10.392 0.490

5 6 7 8 9
3.919 7.348 0.577 4.612 8.647
3.919 7.348 0.384 3.075 5.764

(as Love and Rayleigh-waves). To see the effects of the PML layer we ad-
ditionally run the simulation in the same reduced domain with absorbing
boundary conditions. In Figure 8.1 we show the seismograms at the 7th, 8th
and 9th receiver for an order 7 scheme with absorbing boundary conditions
(ADER-7-ABC) and with PML at the boundaries of the domain (ADER-
7-PML) and compare against the reference. Each dimension is resolved by
25 elements, leading to a resolution of ∆x = 1.04 km and a sub-cell res-
olution of ∆xc = 0.13 km. Waves are recorded for 5 s. We see that both
schemes are able to resolve the seismograms sufficiently. Receivers close to
the boundary (8 and 9) show spurious reflections that appear in the solution
of ADER-7-ABC, for ADER-7-PML these reflections are damped.

To determine the accuracy level of the method we compute the envelop
misfit (EM) and the phase misfit (PM) between the reference and our mea-
sured receivers [82]. We skip the detailed introduction to envelop-phase
misfits and interpret EM as a measure for the relative difference of the am-
plitudes and PM for the relative difference of phases for two signals. Codes
that can reach EM and PM values of less than 5 % are considered to be
of the highest accuracy level [98]. In Table 8.2 we show EM and PM for
ADER-7-PML for all nine receivers. We see that in all cases misfit values
are below the required limit.

8.2.2 The layer over half-space benchmark
The layer over homgeneous half-space (Loh1) benchmark is an extension of
the just presented HHS1 [30]. In Loh1 we model a half-space that is covered
by a layer of material with less density and lower P- and S-wave speed:

y >1.0 : ρ =2.6 t m−3, cp =4.0 km s−1, cs =2.0 km s−1 (8.3)
y <1.0 : ρ =2.7 t m−3, cp =6.0 km s−1, cs =3.464 km s−1.

167

8. Verification and applications of ExaSeis

1

1
v x

Receiver 7 Receiver 8
Reference ADER-7-ABC ADER-7-PML

Receiver 9

1

1

v y

0.0 2.5
1

1

v z

0.0 2.5
time [s]

0.0 2.5 5.0

Figure 8.1.: Comparison of semi-analytic and numerical results for the
velocity components at the 7th 8th and 9th receiver for the
HHS1 benchmark. Numerical results are computed with the
ADER-DG method of order 7, with absorbing boundary con-
dition (ADER-7-ABC) and perfectly matched layers (ADER-
7-PML).

Table 8.2.: Envelope (EM) and Phase misfit (PM) analysis for the nu-
merical solution of the ADER-7-PML method for the HHS1
benchmark at all nine receivers. All misfits are below the re-
quired limit of 5%.

Receiver 1 2 3 4 5 6 7 8 9

EM(u) [%] 2.56 1.16 1.98 1.02 1.39 1.30 1.38 0.73 1.93
PM(u) [%] 0.95 0.61 0.69 0.43 0.43 0.37 0.46 0.35 0.63
EM(v) [%] 0.05 0.02 0.40 1.02 1.39 1.30 1.47 1.58 1.79
PM(v) [%] 0.00 0.00 0.00 0.43 0.43 0.37 0.56 0.64 0.54
EM(w) [%] 0.05 0.00 0.08 2.39 2.44 2.74 2.13 1.71 2.72
PM(w) [%] 0.00 0.00 0.00 0.66 0.69 0.76 0.65 0.49 0.76

168

8.2. Kinematic point sources

1

1

v x

Receiver 7 Receiver 8
Reference ADER-7-ABC ADER-7-PML

Receiver 9

1

1

v y

0 5
1

1

v z

0 5
time [s]

0 5 9

Figure 8.2.: Velocity components at the 7th, 8th and 9th receiver for the
Loh1 benchmark. The results are generated with ADER-DG
methods of order 7, with absorbing boundary conditions and
perfectly matched layers.

The point source has the moment-rate history from Equation (8.2) and is
located 2 km deep at x0 = (0.0, 2.0, 0.0). Again nine recievers are placed at
the surface positions according to Table 8.1. Additionaly to the waves that
are part of the solution of HHS1, the sharp interface between the two layers
introduces interface and guided waves.

We again restrict the simulated domain to [−2.287, 14.046]× [0, 16.333]×
[−2.287, 14.046] km and use a mesh of 25 elements in each direction. In
order to represent the sharp material interface with the geometry of the
mesh, we use the curvilinear mesher (See Section 7.6), to place a sharp
element interface at y = 1.

Figure 8.2 shows the comparison of ADER-7-PML against ADER-7-ABC
and the analytic reference. As for HHS both schemes can represent the
main characteristic waves sufficiently. For ADER-7-ABC receivers close to
the boundary are significantly disturbed by the reflections. In all cases EM
and PM (Table 8.3) are below the required limit for ADER-7-PML.

169

8. Verification and applications of ExaSeis

Table 8.3.: Envelope (EM) and Phase misfit (PM) analysis for the nu-
merical solution of the ADER-7-PML method for the LOH1
benchmark at all nine receivers. All misfits are below the re-
quired limit of 5%.

Receiver 1 2 3 4 5 6 7 8 9

EM(u) [%] 1.51 1.77 2.23 1.39 1.72 0.95 0.83 1.56 1.47
PM(u) [%] 3.93 2.88 2.59 3.91 3.14 1.70 2.34 2.75 3.11
EM(v) [%] 0.29 0.54 2.58 1.39 1.72 0.95 1.41 1.66 1.89
PM(v) [%] 0.00 0.00 0.00 3.91 3.14 1.70 3.91 3.03 3.82
EM(w) [%] 0.55 0.98 2.65 0.78 0.98 1.28 0.60 0.75 1.44
PM(w) [%] 0.00 0.00 0.00 1.51 1.98 2.11 1.13 1.55 2.85

8.3 Dynamic rupture

After we verified our code for benchmarks with simple point sources, we
next compare our implementation to dynamic rupture problems from the
SCEC Spontaneous Rupture Code Verification Project [67, 68]. The project
provides a set of benchmarks for dynamic rupture simulations, with incre-
mental difficulty and publishes a collection of numeric results from various
codes.

The provided sets of results consist of off-fault seismograms placed in
the interior of the domain and on its surface, on-fault seismograms placed
directly on the fault and the contour of the rupture-process. In off-fault seis-
mograms we track all three components of the particle velocity (vx,vy,vz).
On-fault seismograms record the slip-rate, slip and shear stresses in hori-
zontal and vertical direction. The rupture contour records the first time the
absolution slip rate on the fault exceeds 1 mm s−1 and describes the tem-
poral evolution of the slip. We compare our results to uploaded numerical
results generated with the high order finite difference code WaveQLab [40]
and the low order finite element code FaultMod [9].

In all benchmarks we simulate vertical strike-slip faults with homogeneous
material:

ρ = 2.670 t m−3, cp = 6.0 km s−1, cs = 3.464 km s−1. (8.4)

At the borders of the domain reflections are damped with perfectly matched
layers (for which parameters are presented in Table 7.1), at y = 0 a free
surface boundary condition is set.

170

8.3. Dynamic rupture

15 10 5 0 5 10 15
 [km]

0

2

4

6

8

10

12

14

 [k
m

]
ExaSeis
WaveQLab

Figure 8.3.: Contour plot for the TPV5 benchmark. Contours are placed
at t = 0, 0.5, ..., 5.5 s. The station from Figure 8.4 is marked.

8.3.1 TPV5: A plain fault

The first benchmark is the TPV5 benchmark, which models spontaneous
rupture in a homogeneous halfspace. We consider the domain
Ω = [−19.75, 19.75] × [0, 39.5] × [−19.75, 19.75] km, where the rupture
happens on the planar fault (x, y, z) ∈ {0} × [0, 15] × [−15, 15] km. The
fault strength is defined with zero cohesion and linear friction parameters
µs = 0.667, µd = 0.525 and Dc = 0.4. Initially stresses are set zero every-
where, except σxx = −120 and σxz = 70 MPa. The rupture is initiated by a
3 km wide nucleation patch centered around (ξ0, η0) = (7.5, 0.0), where the
initial shear traction τ is set higher than the fault strength τs. Here, we
introduced the coordinates on the fault ξ and η, corresponding to the hori-
zontal and vertical direction. To the left at (ξ, η) = (7.5,−7.5) and to the
right at (ξ, η) = (7.5, 7.5) of the nucleation patch, two additional patches
with same extent and reduced and increased initial stress are placed. The
resulting initial shear stress yz is described by

σyz =


81.6, if (ξ, η) ∈ [6.0, 9.0]× [−1.5, 1.5]
78.0, if (ξ, η) ∈ [6.0, 9.0]× [−9.0,−6.0]
62.0, if (ξ, η) ∈ [6.0, 9.0]× [6.0, 9.0]
70.0, else.

(8.5)

171

8. Verification and applications of ExaSeis

70

80
h-

ss

ExaSeis FaultMod WaveQLab

0

1

v-
ss

0

2

h-
s

0.000

0.002

v-
s

0.0 2.5 5.0 7.5 10.0
time [s]

0

2

h-
sr

0.0 2.5 5.0 7.5 10.0

0.00

0.01

v-
sr

Figure 8.4.: TPV5: On-fault station at (η, ξ) = (−12.0, 7.5) km. We show
the shear-stress (ss), slip (s) and slip-rate (sr) in horizontal
(h) and vertical (v) direction.

0.5

0.0

v x

0.5

0.0

v y

0 2 4 6 8 10 12
time [s]

0.0

0.5v z

Figure 8.5.: TPV5: Off-fault station at the surface at (x, y, z) =
(3.0, 0.0,−12.0) km. We show the three components of the
velocity vector (vx, vy, vz).

172

8.3. Dynamic rupture

This benchmark is the simplest case we consider and allows us to verify
our implementation of the rupture process in its most basic form.

We run the simulation with polynomial order 7 and on a mesh of 79
elements in all dimensions, such that the domain is resolved with a cell
resolution of ∆x = 0.5 km and a sub-cell resolution of ∆xs = 65.5 m. With
this set-up, computational mesh and physical mesh are identical as the fault
is identical to an element interface of the computational mesh.

In Figure 8.3, we present a comparison of the rupture contour for our
simulation against the WaveQLab result. We see that the contours of both
codes match perfectly. A comparison for on-fault and off-fault stations is
given in Figure 8.4 and Figure 8.5. We see a perfect match between ExaSeis
and WaveQLab, while Fault-Mod shows very small differences to the other
two codes for the on-fault station.

15 10 5 0 5 10 15
 [km]

0

2

4

6

8

10

12

14

 [k
m

]

ExaSeis
WaveQLab

Figure 8.6.: Contour plot for the TPV28 benchmark. Contour lines are
placed at t = 0, 0.5, ..., 15 s. The fault station from Figure 8.7
is marked.

173

8. Verification and applications of ExaSeis

8.3.2 TPV28: A structured fault
To test if we can resolve geometrically complex structures on a fault, we
next look at the TPV28 benchmark. In TPV28 two hills with 10.5 km
horizontal distance to the hypocenter are added to the planar fault. The
structure of the fault is defined by

r1 = ‖(ξ, η)− (−10.5, 7.5)‖2

r2 = ‖(ξ, η)− (10.5, 7.5)‖2

t(ξ, η) =


−0.3 (1 + cos (πr1)) , if r1 < 3.0
−0.3 (1 + cos (πr2)) , if r2 < 3.0
0, else,

(8.6)

which we can model with our meshing approach.
Initial stresses are zero everywhere except σxx = −60 MPa, σzz = −60 MPa

and σxz = 29.38 MPa. As in TPV5 the rupture is initialized in the nucle-
ation point (ξ0, η0) = (7.5, 0) by a nucleation patch,

rn =‖(ξ, η)− (7.5, 0.0)‖2

σyz =


11.60, if r <n 1.4

5.8
(

1 + cos
(
π

(rn − 1.4)
0.6

))
, if 1.4 < rn < 2.0

0.0 else.

(8.7)

The parameters for linear slip weakening are set to µs = 0.677, µd =
0.373, Sc = 0.4 m and zero cohesion.

Figure 8.6 shows a comparison of the rupture contour for TPV28 between
ExaSeis and WaveQLab. We again see that both codes match perfectly.
Around the centers of the two hills ((7.5,−10.5) and (7.5, 10.5)), we can
clearly see their effect on the rupture. For the on-fault and off-fault stations
in Figure 8.7 and Figure 8.8, we also get a perfect match between ExaSeis
and the two reference codes.

174

8.3. Dynamic rupture

10

20

h-
ss

ExaSeis FaultMod WaveQLab

0

1

v-
ss

0.0

2.5

h-
s

0.000

0.025

v-
s

0 5 10
time [s]

0

5

h-
sr

0 5 10

0.0

0.1

v-
sr

Figure 8.7.: TPV28: On-fault station at (ξ, η) = (−12.0, 7.5) km. We
present the shear-stress (ss), slip (s) and slip-rate (sr) in hor-
izontal (h) and vertical (v) direction.

0.05
0.00
0.05

v x

0.05

0.00

0.05

v y

0 2 4 6 8 10 12
time [s]

0

1

v z

Figure 8.8.: TPV28: Off-fault station at surface at (x, y, z) =
(3.0, 0.0, 15.0) km. We show the three components of the
velocity vector (u,v,w).

175

8. Verification and applications of ExaSeis

20 15 10 5 0 5 10 15 20
 [km]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

 [k
m

]

ExaSeis
WaveQLab

Figure 8.9.: Contour plot for the TPV26 benchmark. Contour lines are
placed at t = 0, 0.5, ..., 15 s. The fault stations from Fig-
ure 8.10 is marked.

8.3.3 TPV26: Forcing rupture

Up to this point we initialized the rupture artificially within a predefined
nucleation patch, where the initial shear traction exceeds the fault strength.
This approach leads to a sudden initialization of slip within the nucleation
patch. In order to induce the rupture smoothly a second approach is in-
troduced for TPV26: Instead of setting the shear traction to exceed the
fault-strength, the fault-strength is gradually weakened in a circle around
the hypocenter (ξ0, η0) with radius rcrit, until it falls below the initial
shear traction [67]. We implement this approach by adding the parame-
ter fT (ξ, η, t) ∈ [0, 1] to the linear slip weakening law from Equation (7.38),

f (ψ) = µs − (µs − µd) max
(
fT (ξ, η), min (ψ,Dc)

Dc

)
. (8.8)

The parameter linearly increases from 0 to 1 in a time-frame of fixed size t0.
Within the time-frame the length of the slip path is forced to the critical
distance Dc. The starting point Tf (r) of the time-frame depends on the
distance from the hypocenter r(ξ, η) = ‖(ξ, η)− (ξ0, η0)‖2,

176

8.3. Dynamic rupture

25

30

h-
ss

ExaSeis FaultMod WaveQLab

0.5

0.0

v-
ss

0

2

h-
s

0.02

0.00

v-
s

0 5 10
time [s]

0

5

h-
sr

0 5 10

0.05

0.00

v-
sr

Figure 8.10.: TPV26: On-fault station at (ξ, η) = (10.0, 10.0) km. We
present the shear-stress (ss), slip (s) and slip-rate (sr) in
horizontal (h) and vertical (v) direction.

0.0

0.1

v x

0.0

0.1

v y

0 2 4 6 8 10 12
time [s]

0.2

0.0

v z

Figure 8.11.: TPV26: Off-fault station at surface at (x, y, z) =
(−3.0, 0.0, 5.0) km. We show the three components of the
velocity vector (u,v,w).

fT (ξ, η, t) =


0, for t < Tf (r)
(t− Tf (r)) /t0, for Tf (r) ≤ t ≤ Tf (r) + t0

1, for Tf (r) + t0 ≤ t.
(8.9)

177

8. Verification and applications of ExaSeis

The starting point Tf (r) is chosen such that the rupture expands with
variable velocity ∂F (r)/∂r,

Tf (r) =


r

0.7Vs
+ 0.081rcrit

0.7Vs

(
1

1− (r/rcrit)2 − 1
)

, for r < rcrit

1.0× 109 else.
(8.10)

At the hypocenter r = 0 the rupture expands with 0.7Vs at rcrit the velocity
is zero. For TPV26 the parameters for the forced nucleation are set to

Vs = 3.464 km s−1, t0 = 0.5 s, (8.11)
rcrit = 4.0 km, (η0, ν0) = (−5, 10) km.

Additionally, TPV26 introduces depth-variable cohesion and initial stress
tensor [67]: In order to avoid interaction with the surface of the domain,
cohesion linearly decreases in the top 5 km from 4.0 GPa to 0.4 GPa,

c(η) = 0.40 + 0.72 ·max (5.0− η, 0) GPa. (8.12)

The initial stress tensor is chosen to increase with the depth,

Pf = 1.0 · 9.8 · y
σ̂yy = −2.670 · 9.8 · y
σxx = Ω (bxx (σ̂yy + Pf)− Pf) + σ̂yy(1−Ω) + Pf (8.13)
σxz = Ω (bxz (σ̂yy + Pf))
σzz = Ω (bzz (σ̂yy + Pf)− Pf) + σ̂yy(1−Ω) + Pf

σyy = σ̂yy + Pf σxy = 0.0 σyz = 0.0.

Where the parameters for TPV26 are set to

Ω =


1.0 , for y ≤ 15.0
0.2 · (20.0− y) , for y ≤ 20.0
0.0 else

(8.14)

bxx = 1.073206, bxz = −0.169029, bzz = 0.926793.

We simulate the problem in the domainΩ = [−25.675, 25.675]×[0, 51.35]×
[−25.675, 25.675] km with an order 7 method, which leads to a resolution of

178

8.3. Dynamic rupture

∆x = 650 m sub-cell resolution of ∆xc = 81.25 m. We again get a perfectly
matching rupture contour between ExaSeis and the reference WaveQLab
in Figure 8.9. The stations of all three references also match perfectly in
Figure 8.10 and Figure 8.11.

8.3.4 TPV29: A rough fault

The last benchmark we verify our code against is TPV29. TPV29 is defined
similar to TPV26, but introduces a rough fault based on a randomly gen-
erated data set (see Figure 8.12a). For TPV29 the mechanisms to initialize
the rupture are adapted from TPV26, with a changed set of parameters:
Cohesion is decreased in the upper 4 km layer from 1.2 GPa to 0.4 GPa,

c(y) = 0.40 + 0.2 ·max (4.0− y, 0) GPa. (8.15)

The parameters for the initial stresses are also adjusted,

Ω =


1.0 , for y ≤ 17.0
0.2 · (22.0− y) , for y ≤ 22.0
0.0 else

(8.16)

bxx = 0.974162, bxz = −0.158649, bzz = 1.025837.

20 15 10 5 0 5 10 15 20
 [km]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

 [k
m

]

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

 [k
m

]

(a) Fault structure of the TPV29 benchmark.

179

8. Verification and applications of ExaSeis

20 15 10 5 0 5 10 15 20
 [km]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

 [k
m

]
ExaSeis
WaveQLab

(b) Contour plot for the TPV29 benchmark

Figure 8.12.: Fault structure and rupture contour plot for TPV29. The
contour lines are placed at t = 0, 0.5, ..., 15 s. The fault
station from Figure 8.13 is marked.

10.0

12.5

h-
ss

ExaSeis FaultMod WaveQLab

1

0

v-
ss

0

1

h-
s

0.01

0.00

v-
s

0 5 10 15 20
time [s]

0

1

h-
sr

0 5 10 15 20

0.025

0.000

v-
sr

Figure 8.13.: TPV29: On-fault station at (ξ, η) = (5.9, 4.7) km. We
present the shear-stress (ss), slip (s) and slip-rate (sr) in
horizontal (h) and vertical (v) direction.

180

8.3. Dynamic rupture

0.05
0.00
0.05

v x

0.05

0.00

0.05

v y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

0.2

0.0

v z

Figure 8.14.: TPV29: Off-fault station at surface at (x, y, z) =
(2.0, 0.0, 0.0) km. We show the three components of the
velocity vector (u,v,w).

We simulate the problem in the same domain as TPV26:
Ω = [−25.675, 25.675]× [0, 51.35]× [−25.675, 25.675] km and again use an
order 7 method.

In Figure 8.12b, we can see the significant effect of the rough fault on
the propagation of the rupture front. Again ExaSeis and WaveQLab show
perfectly matching results. The comparison of on-fault and off-fault stations
in Figure 8.13 and Figure 8.14 shows a perfect match.

8.3.5 Dynamic adaptive mesh refinement

Finally, we want to verify our code for dynamic rupture simulations on dy-
namically refinement meshes. As example we choose the TPV5 benchmark
from Section 8.3.1. Following the mesh infrastructure, cells are refined by
splitting single elements into patches of 3×3×3 elements [138]. Patches that
were refined, can be coarsened back at a later point in time. The solution
is projected between refinement levels with L2-projections [26]. Refinement
and coarsening of cells is determined by a refinement criterion. In order to
track the rupture front, we provide a criterion based on the maximal norm

181

8. Verification and applications of ExaSeis

of the velocity vector in all nodes i within a cell,

‖v‖2 = max
i

√
(vx)2

i + (vy)2
i + (vz)2

i . (8.17)

Cells that contain a maximal velocity norm above vrefine should be refined,
below vcoarsen coarsened,

Criterion(‖v‖2) =


Refine, if ‖v‖2 > vrefine

Coarsen, if ‖v‖2 < vcoarsen

Keep, else.
(8.18)

In theory the mesh infrastructure of the ExaHyPE-Engine provides arbi-
trary levels of refinement and coarsening. At the time of this work sev-
eral issues in the implementation and with the performance of the engine,
only allowed us to run the simulation with one level of refinement, with-
out coarsening and only with an ADER-DG method of order up to 5 until
an end-time of T = 8.5 s. In our test we set the refinement velocity to
vrefine = 0.5 m s−1 and deactivate coarsening by setting vcoarsen < 0.0 m s−1.
We use an initial mesh of 25 elements in each dimension such that the res-
olution is ∆x = 0.5 km and the sub-cell resolution ∆xs = 0.083 km. For
refined cells this implies a resolution of ∆xr = 0.166 km and the sub-cell
resolution ∆xrs = 0.027 km. To highly resolve the nucleation we initially
refine a patch of 3× 3× 3 elements around the hypocenter.

In Figure 8.16 we show an illustration of the evolution of the mesh and the
velocity norm. The mesh tracks the wavefield velocity, after 5 s most parts
of the domain are fully refined. In Figure 8.17, we compare the refined
mesh on the fault against the measured slip rate. At t = 0.0 s, we see
the initial patch defined around the hypocenter. For later time-steps at
t = 1.0 s, 2.0 s and 4.0 s the rupture-front is fully resolved by the refined
mesh. In order to test if the rupture is tracked sufficiently, we compare
the on-fault station from Section 8.3.1 in Figure 8.15 for a simulation with
dynamic AMR against the solution we generated on a uniform mesh. We see
all components match between the simulation on a uniform mesh and with
dynamic AMR, small differences in the vertical components are negligible.

182

8.4. The Zugspitze scenario

70

80

h-
ss

ExaSeis AMR ExaSeis WaveQLab

0

1

v-
ss

0

2

h-
s

0.000

0.002

v-
s

0 2 4 6 8
time [s]

0

2

h-
sr

0 2 4 6 8

0.00

0.01

v-
sr

Figure 8.15.: Comparison of a simulation with dynamic AMR against a
simulation on a uniform mesh, for the on-fault station at
(η, ξ) = (−12.0, 7.5) km.

8.4 The Zugspitze scenario
The first application of our method is the Zugspitze model. In order to
quantify the influence of a complex topography on seismic waves, we cre-
ated a benchmark based on a single kinematic point source in the northern
region of the Alps [43, 89]. The domain is chosen in an 80× 80 km square,
centering the Zugspitze in the Wettersteingebirge. The topography of the
area shows a high variability and large deviations from a planar surface (See
Figure 8.19). From a complex surface we expect amplification, deamplifi-
cation scattering and channeling effects on the ground motion [10, 56].

The moment-rate time history of the point source, to initialize the earth-
quake is adapted from Equation (8.2) and placed 10 km deep at x0 =
(10.0, 10.0, 10.0) km. In order to focus on the effects of the topography,
we pick homogeneous material parameters,

ρ = 2.670 t m−3, cp = 6.0 km s−1, cs = 3464 km s−1. (8.19)

We use the scenario to analyze two main aspects: We want to test how
well the curvilinear mesh can represent topographies and if the meshing ap-

183

8. Verification and applications of ExaSeis

Figure 8.16.: Illustration of the wavefield and dynamically refined mesh
for TPV5 at t=0.5 s, t=2.0 s, t=3.5 s and t=5.0 s.

0

5

10

15

20

 [k
m

]

t=0.0s t=1.0s

10 0 10
 [km]

5

10

15

20

 [k
m

]

t=2.0s

10 0 10
 [km]

t=4.0s
0

2

4

Sl
ip

 R
at

e
[m

/s
]

Figure 8.17.: Slip rate and mesh for the TPV5 benchmark with dynami-
cally refined meshes.

184

8.4. The Zugspitze scenario

proach from Section 7.6 gives us valid representations for complex surfaces.
Second, we analyze the effects of the complex topography on characteristic
numbers of the resulting earthquake.

The model is simulated on a mesh of 241 cells in each dimension with
an order 3 ADER-DG method and a 5 km wide PML-layer around the
domain, resulting in a resolution of ∆x = 0.4 km and s sub-cell resolution of
∆xc = 0.1 km. Wavepropagation is simulated for 30 s. Receivers are placed
on the surface equidistantly along the diagonal (xi, zi) = (i + 1) · (10, 10),
for i = 1, ..., 4. The topography of the scenario and the resulting wavefield
is illustrated in Figure 8.18 after 5, 10, 15, and 20 s.

Figure 8.18.: 3D illustration of the absolute velocity of the propagating
seismic wavefield for the Zugspitze model at t=5 s, t=10 s,
t=15 s and t=20 s simulated with ExaSeis. Adapted from
Figure 10 in [43].

185

8. Verification and applications of ExaSeis

8.4.1 Topography filtering

In order to quantify what effects the complexity of the topography has on
several aspects of our model, we filtered the wave number content of the
original Zugspitze topography. Our filtering approach uses the two dimen-
sional discrete Fourier transformation of a representation of the topography
on a uniform grid with a mesh size of ∆x = ∆y = 25 m. We get the co-
efficients Tij to the wave numbers 1ωi,

2ωi = i · 80 km−1, i ∈ [0, 1600]. To
reduce the complexity, we zero out those coefficients for which the Euclidean
wave length ωrij =

√
(1ωi)2 + (2ωj)2 is less than a predefined cut-off wave

number ωt

Tij =
Tij, if ωrij < ωt

0, else.
(8.20)

We look at six topographies, starting at a flat surface for ωt = 0 km−1

and five configurations with exponentially increasing cut-off wave number
ωt ∈ {4, 8, 16, 32, 64} km−1. The resulting topographies are presented in
Figure 8.19.

Verification

In order to verify our implementation of the curvilinear mesh, we compare
the receivers for all six topographies against high resolved results gener-
ated with the finite-difference code WaveQLab [40] and the discontinuous
Galerkin code SeisSol [34]. WaveQLab runs on a uniform mesh of 100 m
grid spacing, reflections are removed with a PML mechanism, equivalent to
the one we use in ExaSeis. For the result in SeisSol the domain is extended
to [−65, 85]× [−3, 45]× [−65, 85] km, such that reflections from the bound-
aries are reduced. The results are computed with an order 6 method on a
tetrahedral static adaptive mesh of 300 m cell size around the point-source
that gradually increases to 3.5 km at the outer layers of the domain.

In Figure 8.20 we compare the components of the velocity vector in all
four stations placed on the surface, for the topography with the highest cut-
off frequency ωt = 64 km−1. We get a perfect match between WaveQLab
and ExaSeis in all cases. In the results from the SeisSol code, we see small
reflections appearing at the end of each recorded station, which can be
removed by further extending the domain.

186

8.4. The Zugspitze scenario

0 20 40 60 80
x [km]

0

20

40

60

80

z [
km

]

t = 0.16 km 1

0 20 40 60 80
x [km]

t = 0.32 km 1

0 20 40 60 80
x [km]

t = 0.64 km 1

0

20

40

60

80

z [
km

]
No Topography t = 0.04 km 1 t = 0.08 km 1

0.5

1.0

1.5

2.0

2.5

y [km]

Figure 8.19.: Filtered topographies of the Zugspitze scenario for ωt ∈
{0, 4, 8, 16, 32, 64} km−1. Receivers are marked with a black
circle, the point source location with a red cross. Adapted
from Figure 9 in [43].

Influence on the time-step size

The complexity of the topography has a direct influence on the maximal
admissible time-step size. As we showed in Section 7.4.4, the time-step size
directly depends on the row of the Jacobian with the highest norm. In case
of a flat surface the transformation from computational to physical space is
the identity, the Jacobian is one everywhere. As we introduce complexity to
the topography, the values of the element local Jacobians in the curvilinear
mesh increases, as the transformation from computational to physical space
leads to a “higher” deformation of the elements.

In Table 8.4, we show the highest norm for the rows of all Jacobians in
the mesh for an ADER-DG method of order 3 and 241 elements, depending
on the cut-off wave number ωt. We see that the values increase with the
cut-off wave number. For ωt = 0.64 the simulation requires 2.4× more time-
steps, than a simulation with flat topography. Significant is the effect for an
unfiltered topography, for which we would require 19.5× more time-steps,
than for a flat surface. Compared to the highest cut-off frequency ωt = 0.64

187

8. Verification and applications of ExaSeis

0.2

0.0

0.2

v z

(20,20) km

ExaSeis SeisSol WaveQLab

0.1

0.0

0.1

v z

(30,30) km

0.05

0.00

0.05

v z

(40,40) km

0 5 10 15 20 25 30
time [s]

0.05

0.00

0.05

v z

(50,50) km

Figure 8.20.: Comparison of the velocity component in z for all four
receivers, for the topography with the highest cut-off fre-
quency ωt = 64 km−1.

Table 8.4.: Maximal determinant of the element local metric derivatives
(max det{J}) in the Zugspitze model for various cut-off fre-
quencies ωt. With increasing frequency content in the topog-
raphy the maximal determinant significantly decreases.
ωt 0.0 0.04 0.08 0.16 0.32 0.64 ∞

max ‖Jki ‖2 1.0 1.38 1.61 1.86 2.27 2.4 19.5

188

8.4. The Zugspitze scenario

0.1

0.0

0.1

v z

0 km 1

0.1

0.0

0.1

v z

4 km 1

0.1

0.0

0.1

v z

8 km 1

0.1

0.0

0.1

v z

16 km 1

0.1

0.0

0.1

v z

32 km 1

0 5 10 15 20 25 30
time [s]

0.1

0.0

0.1

v z

64 km 1

Figure 8.21.: Seismograms at (x, y) = (40, 40) for all six versions of the
complex topography.

for the simulation with the unfiltered topography, the number of time-steps
increases by a factor of ∼ 8.1×.

Scattering effects

We want to quantify the effect of the complex topography on the scattering
of the wavefield. In Figure 8.21 we see the recorded seismograms for the sta-
tion at (x, y) = (40, 40) km for the z component of the velocity vector. We
can clearly observe that the frequency content increases with the frequency
content of the topography.

In order to quantify the effect, we look at the seismogram after the S-

189

8. Verification and applications of ExaSeis

Table 8.5.: Spectral centroid of the four velocity components measured at
the seismogram at (40, 40) km for all six complex topographies.

ωt 0.0 0.04 0.08 0.16 0.32 0.64
u 0.5 2.3 2.2 5.1 9.2 11.3
v 1.0 4.3 4.5 7.5 10.9 15.4
w 0.5 1.9 1.8 6.6 8.9 8.7

wave has been recorded on the flat surface at t > 14.25 s. As measure we
compute the spectral centroid of the signal

C = 100 ·
∑N
t=0 fi · ωi∑N
t=0 ωi

, (8.21)

where ωi = i/T are the sampled frequencies and fi the corresponding coeffi-
cients of the signal. The measure tells us where the center of mass within a
spectrum of a seismogram is located and allows us to compare the frequency
contents of different seismograms. For the seismogram at (40, 40) km the
spectral centroids for all three velocity components and topographies are
summarized in Table 8.5. We see that for all components the measure in-
creases with the frequency content of the topography. This confirms our
initial observation that the scattering effect increases with the complexity
of the topography.

Peak ground velocity and amplification

In order to quantify the amplification and deamplification effects of the
topography we compute the peak ground velocity (PGV) from the particle
velocity measured at the surface for all six set-ups

PGV (x, y) = max
t

√
vx(x, y, t)2 + vz(x, y, t)2. (8.22)

In Figure 8.22 we show the PGV for all six topographies. We can see
that with increasing complexity of the topography, the frequency of PGV
increases. Comparing to the topography reveals, that we get the highest
values of PGV at the mountain peaks, in valleys the values are reduced.
To quantify these amplification (AMP) and deamplification (DMP) effects,
we compute the maximal and minimal difference between PGVs for the
complex topographies against the flat topography. The resulting values are

190

8.5. The Húsav́ık-Flatey fault

0 20 40 60 80
x [km]

0

20

40

60

80

z [
km

]

t = 0.16 km 1

0 20 40 60 80
x [km]

t = 0.32 km 1

0 20 40 60 80
x [km]

t = 0.64 km 1

0

20

40

60

80

z [
km

]
No Topography t = 0.04 km 1 t = 0.08 km 1

8

6

4

2

0

y [km]

Figure 8.22.: PGV maps for all six topographies of the Zugspitze scenario.

Table 8.6.: Amplification (AMP) and Deamplification (DMP) in m s−1,
depending on the cut-off frequency of the topography.

ωt 0.04 0.08 0.16 0.32 0.64
AMP [m s−1] 0.99 1.3 1.1 1.2 1.7
DMP [m s−1] -1.8 -1.9 -1.8 -2.0 -2.1

presented in Table 8.6. We get the largest amplification (AMP 1.7 m s−1)
and deamplification (DMP −2.1 m s−1) for the topography with the highest
complexity. Vice versa both measures are reduced for the topography with
the lowest complexity (AMP 0.99 m s−1 and DMP −1.8 m s−1). For ωt =
0.08, 0.16, 0.32 all values for AMP lie close to each other.

8.5 The Húsav́ık-Flatey fault
Finally, we simulate an earthquake located in the north Iceland region. We
look at the Húsav́ık-Flatey fault which is a ∼ 90 km long right lateral strike-
slip fault. The set-up is based on the work by Li et al. [88]. The topography
and fault are illustrated in Figure 8.23a. The structure of the fault is con-

191

8. Verification and applications of ExaSeis

structed from 55 vertical segments, that are summarized in one smoothed
curve (red line). As our meshing approach becomes significantly more ef-
ficient, when faults are approximately parallel to one of the boundaries of
the domain, we rotate the original set-up from [88] by 60◦ east. With PML
we can restrict the domain to 96.8 km in each direction.

Initially we set Andersonian stresses with the method by Ulrich et al.
[129]. Material parameters are determined by a depth dependent velocity
model that we initialize using the easi framework [130]. The fault strength
is modeled with a linear slip weakening law, for which the parameters are
set to µs = 0.55, µd = 0.1 and Dc = 0.5.

The hypocenter is located at (x0, z0) = (13.8, 2.5) km and at a depth
of 5 km. Nucleation is initialized with the method we presented in Equa-
tion (8.9), for parameters Vs = 3.8 km s−1, rcrit = 3.0 km and t0 = 0.0 s.
Cohesion linearly decreases in the top 10 km from 0.4 GPa to 2.4 GPa

In order to generate the mesh, we split the domain into two sub-domains,
such that the fault is modeled at their shared interface Figure 8.23b. The
mesh consists of a total of 241 elements in each direction for an order
three ADER-DG method, which results in a resolution of ∆x = 0.4 km
and a sub-cell resolution of ∆xc = 0.1 km. The resulting time-step size is
∆t = 0.7 ms. In Figure 8.24, we compare the resulting rupture on the fault
against a simulation performed with the SeisSol framework. The SeisSol
reference has an on-fault resolution of 0.2 km and gradually coarsened to a
maximum cell size of 5.0 km.

Both approaches show the exact same evolution of the rupture contour
(top plot), which propagates homogeneously from the hypocenter towards
the boundaries of the fault. After 16 s the rupture has propagated over the
entire fault. For the absolute slip (ASL), we get well agreeing results for
both codes. Close to the surface we spot small differences, which we explain
with the different representations of the surface in both codes. While in
SeisSol the surface is represented with linear functions on triangles, ExaSeis
represent the surface in this set-up with cubic polynomials. The highest slip
is right at the hypocenter with 4.8 m. South-west from the hypocenter, we
locate a second patch with increased slip of 4.1 m. Using the absolutes slip
on the fault, we measure a moment magnitude of Mw = 7.2.

In order to assess the impact of the earthquake on the surface, we plot the
ground motion (i.e. the maximal acceleration in each location as multiples of
g = 9.81 m s−2) and the recorded particle velocity in Húsav́ık in Figure 8.25.
We see that the ground motion is symmetric on both halves of the fault,
with the highest measured ground motion of 7.0 m s−2. In Húsav́ık the
highest ground motion is 3.0 m s−2.

192

8.5. The Húsav́ık-Flatey fault

40 20 0 20 40
x [km]

40

20

0

20

40
z [

km
]

N

E

(a) Topography and fault structure (red line) of the Húsav́ık-Flatey fault.

(b) Mesh for the Húsav́ık-Flatey fault.

Figure 8.23.: Rotated set-up for the Húsav́ık-Flatey fault (a). The fault is
marked as red line, Húsav́ık as circle. Our meshing approach
from Section 7.6 splits the mesh into two blocks (b).

193

8. Verification and applications of ExaSeis

010

 [km]
Contour

ExaSeis
SeisSol

010

 [km]

ExaHyPE

40
30

20
10

0
10

20
30

40
 [km

]

010

 [km]

SeisSol

0.0

4.5

ASL [m]

0.0

4.5

ASL [m]

F
igure

8.24.:C
om

parison
ofExaSeis

ans
SeisSolfor

the
rupture

dynam
ics

for
the

N
orth-Iceland

scenario.
Top

com
parison

ofthe
rupture

contour,both
codesm

atch
perfectly.M

iddle
and

Bottom
A

bsolute
Slip

R
ate

(A
SL)forExaSeisand

SeisSol.Both
codesshow

a
very

good
agreem

ent,on
the

surface
som

e
difference

appear
caused

by
the

differing
representations.

194

8.5. The Húsav́ık-Flatey fault

40 20 0 20 40
x [km]

40

20

0

20

40
y

[k
m

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Gr
ou

nd
 M

ot
io

n
[m

/s
2]

(a) Ground motion.

0.0

2.5

v x

2.5

0.0v y

6 8 10 12 14 16
time [s]

2.5

0.0v z

(b) Particle velocity at Húsav́ık.

Figure 8.25.: Ground Motion [m/s2] and particle velocity measured at
Húsav́ık for the earthquake on the Húsav́ık-Flatey fault.

195

CHAPTER

9
Conclusion and discussion

Efficient earthquake and tsunami simulations are the basis of urgent compu-
ting pipelines, probabilistic seismic and tsunami hazard assessment and un-
certainty quantification. In this context, we developed and implemented nu-
merical schemes based on the ADER-DG method. To source tsunamis from
the results of an earthquake simulation, we introduced a linking pipeline.

In order to conclude on the efficiency of the implemented methods, we
performed a time-to-solution comparison of Runge-Kutta and ADER-DG
methods for the shallow water equations.

In many ways, the non-linear shallow water equations we use through-
out this work are limited. While several studies show that gravity waves,
the essential wave type in tsunamis, are resolved accurately by the model,
solitary waves or the dispersion of non-hydrostatic waves are not included
in this model. Our realization of the SWE in sam(oa)2 is an ideal basis
to extend the code to more complex models, as the Boussinesq approxi-
mation [76] or new dispersive approaches [46]. In order to include vertical
flow a multi-layer SWE approach can be integrated [48]. The bandwidth
model, which we developed for sam(oa)2 in the time-to-solution comparison
(Chapter 4), provides a guideline for the efficiency of these extensions.

Our full time-to-solution comparison is performed exclusively for the
sam(oa)2 framework. We showed that the payload we put on each cell is
crucial for the maximum attainable bandwidth of the implemented model
and also influences the time-per-dof. However, our findings show the most
important characteristics of both schemes: In case of smooth solutions, we

196

can benefit from the high order convergence of the ADER-DG method. For
high orders, the main kernels can reach higher performance. For inundation
at the coast, the RK-method profits from the Barth-Jespersen typed limiter
which also reduces the number of required time-steps as the wave-speeds are
kept small. Replacing the first order finite volume scheme used in the lim-
iter of the ADER-DG method, with a second-order finite volume scheme, as
the MUSCL-Hancock scheme that incorporates the Barth-Jespersen typed
limiter, would be a promising idea [133].

Implementations of patches of low-order DG elements are one way to
increase the payload on single elements [49, 50, 83]. With this approach we
can increase the maximum attainable bandwidth for low orders.

The linking approach with novel Fourier filter, enables the linking of
dynamic rupture codes and tsunami models. One essential weakness of
this approach is that the parameters that define how strong a displacement
field is filtered, have to be determined empirically. A set of rules for the
parameters has to be found. With increasing computing power fully coupled
models of earth and water layer become feasible and allow modeling the
interaction of sea-surface and sea floor more accurately [1, 81]. However,
no fully coupled model that resolves inundation has been developed to the
best of our knowledge, such that the linking to designated tsunami codes
remains without alternative.

Finally, we presented the ExaSeis framework, with which the ExaHyPE-
Engine becomes ready for dynamic rupture simulations with dynamically
adaptive refined curvilinear meshes. While in this work, we reproduced a
synthetic community benchmark with dynamic AMR, the method next has
to be applied to reproduce actual earthquake events. One candidate is the
simulation of earthquakes in the north Iceland region which we performed
on uniform meshes in this work. An essential component of these simu-
lations is the automatic mesher that we developed. The mesher allows to
automatically set-up different geometries for fault structures or surfaces.

We saw that the time-step size depends on the complexity of the topo-
graphy, and single elements can have a significant effect on time required for
a whole simulation. A known method to address this problem is local time
stepping [19, 132], which is realizable for the Cauchy-Kovalevskaya method
we introduced.

A comparison in time-to-solution to alternative approaches as the Diffuse
Interface Method by Tavelli et al. [123] or the Godunov-Peshkov-Romensik
model [37, 51], where the time-step size is independent from the topography
would be desirable.

Overall this work enabled the simulation of earthquakes and tsunamis

197

9. Conclusion and discussion

with the ADER-DG method. We showed the whole picture of the method’s
potential for the simulation of tsunamis with the SWE and provided a
performance model that can be used for the extension of sam(oa)2. For
computational seismology, we developed one of the first full functioning
codes for dynamic rupture simulations on dynamically refined meshes. The
method is set-up fully automatic, such that it is ready for applications in
UQ, PSHA and urgent computing.
- I hope you enjoyed reading my dissertation.

198

APPENDIX

A

Fourier transformation of displacements

First we compute the Fourier transformation to the S-wave:

Uv(x, t) = 1
v2

(
1− d2

r2

)
exp

(
−
(
t− r

v

)2
)

, (A.1)

where v is the velocity of the wave in the material and r is the distance to
the point source location r =

√
x2 + 12.

In the proof we use the approximation

r

v
=
√
x2 + d

v
≈ x

v
, (A.2)

for which we assume d
v2 � 1. We start with

Ft,x(f, ω) {Uv(x, t)} =

Ft,x(f, ω)
{

1
v2

(
1− d2

r2

)
exp

(
−
(
t− r

v

)2
)}

=

δ (f) δ (ω)
√
π√

2v2
− 1
v2Ft,x(f, ω)

{
d2

r2 exp
(
−
(
t− r

v

)2
)}

. (A.3)

199

A. Fourier transformation of displacements

For the last term we get

Ft,x(f, ω)
{
d2

r2 exp
(
−
(
t− r

v

)2
)}

=

Fx(ω)
{
d2

r2Ft(f)
{

exp
(
−
(
t− r

v

)2
)}}

=

Fx(ω)
{
d2

r2 exp
(
−if r

v

)
Ft(f)

{
exp

(
−t2

)}}
=

exp
(
−f

2

4

)
Fx(ω)

{
d2

r2 exp
(
−if r

v

)}
. (A.4)

(A.5)

From which we again take the last term

Fx(ω)
{
d2

r2 exp
(
−if r

v

)}
=

Fx(ω)
{
d2

r2

}
∗ Fx(ω)

{
exp

(
−if r

v

)}
A.2≈

Fx(ω)
{
d2

r2

}
∗ Fx(ω)

{
exp

(
−if x

v

)}
=

π

dv2 exp (−d|ω|) ∗ δ(ω − f

v
) =

π

dv2 exp
(
−d|ω − f

v
|
)
. (A.6)

We can accumulate all three results to

Ft,x(f, ω) {Uv(x, t)} =

δ (f) δ (ω)
√
π√

2v2
− π

dv2 exp
(
−f

2

4

)
exp

(
−d|ω − f

v
|
)
. (A.7)

Second the Fourier transformation of the permanent displacement:

The time-rate function and the final displacement are defined on inde-
pendent variables, we can thus evaluate their Fourier transformations sep-
arately.

Using the rules for shifting and the transformation for a Gaussian hill the

200

Fourier transformation of the final displacement is

Fx(ω) {d(x)} = Fx(ω)
{

exp
(
− x2

2 · σ2
r

)}
= σr · exp

(
−(σr · ω)2

2

)
. (A.8)

For the time-rate function we get

Ft(f) {χ(t)} =

Ft(f)
 1√

π

4
tc

exp
−((t− t0) · 4

tc

)2
 =

√
2√
π

exp (it0f) exp
(
−tc8 · f

2
)

. (A.9)

The integration property of the Fourier transformation gives us the trans-
formation of the time-rate integral. For f 6= 0

FT (f)
{∫ T

−∞
χ(t)dt

}
= (A.10)

1
if

Ft(f) {χ(t)}+ π · χ(0)δ(f) ≈ (A.11)
√

2
f
√
π

exp
(
i(t0f −

π

2)
)

exp
(
−tc8 · f

2
)

, (A.12)

where we used χ(0) ≈ 0 and i−1 = exp
(
−iπ2

)
.

201

APPENDIX

B

The three dimensional transfinite interpolation

The three dimensional transfinite interpolation ~C3 [Λn] (u, v, w) : [0, 1]3 →
Rn, to a set of boundary curves

Λn =
(
~F0vw (v, w) , ~F1vw (v, w) , ~Fu0w (u,w) ,

~Fu1w (u,w) , ~Fuv0 (u, v) , ~Fuv1 (u, v)
)

,

is defined by

~C3 [λn] (u, v, w) = A(u, v, w) +B(u, v, w) + C(u, v, w)
− AB(u, v, w)− AC(u, v, w)−BC(u, v, w) + ABC(u, v, w). (B.1)

With helper functions

A(u, v, w) = (1− u)~F0vw (v, w) + u~F1vw (v, w) , (B.2)
B(u, v, w) = (1− v)~Fu0w (v, w) + v ~Fu0w (v, w) , (B.3)
C(u, v, w) = (1− w)~Fuv0 (u, v) + w~Fuv1 (u, v) . (B.4)

202

AB(u, v, w) = (1− u)(1− v)~F0vw (0, w) + u(1− v)~F1vw (0, w) (B.5)
+ v(1− u)~F0vw (1, w) + uv ~F1vw (1, w) ,

AC(u, v, w) = (1− u)(1− w)~Fuv0 (0, v) + u(1− w)~Fuv0 (1, v) (B.6)
+ w(1− u)~Fuv1 (0, v) + uw ~Fuv1 (1, v) ,

BC(u, v, w) = (1− v)(1− w)~Fu0w (u, 0) + v(1− w)~Fu1w (u, 0) (B.7)
+ w(1− v)~Fu0w (u, 1) + vw ~Fu1w (u, 1) .

and

ABC(u, v, w) = (1− u)(1− v)(1− w)~Fu0w (0, 0)
+ w(1− u)(1− v)~Fu0w (0, 1)
+ u(1− v)(1− w)~Fu0w (1, 0)
+ v(1− u)(1− w)~Fu1w (0, 0) (B.8)

+ uw(1− v)~Fu0w (1, 1)
+ vw(1− u)~Fu1w (0, 1)
+ uv(1− w)~Fu1w (1, 0)

+ uwv ~Fu1w (1, 1) .

203

Bibliography

[1] Lauren S Abrahams, Lukas Krenz, Eric M Dunham, Alice-Agnes
Gabriel, and Tatsuhiko Saito. Comparison of methods for coupled
earthquake and tsunami modeling. 2022.

[2] Robert A Adams and John JF Fournier. Sobolev spaces. Elsevier,
2003.

[3] Keiiti Aki and Paul G. Richards. Quantitative Seismology. 2nd edi-
tion. University Science Books, 2002. isbn: 0-935702-96-2.

[4] Sara Aniko Wirp et al. “3D Linked Subduction, Dynamic Rupture,
Tsunami, and Inundation Modeling: Dynamic Effects of Supershear
and Tsunami Earthquakes, Hypocenter Location, and Shallow Fault
Slip”. In: Frontiers in Earth Science 9 (2021), p. 177.

[5] Daniel Appelö and Gunilla Kreiss. “A new absorbing layer for elastic
waves”. In: Journal of Computational Physics 215.2 (2006), pp. 642–
660.

[6] Daniel Arndt et al. “ExaDG: High-order discontinuous Galerkin for
the exa-scale”. In: Software for Exascale Computing-SPPEXA 2016-
2019. Springer, Cham, 2020, pp. 189–224.

[7] Marc de la Asunción, Manuel J Castro, Enrique Domingo Fernández-
Nieto, José M Mantas, Sergio Ortega Acosta, and José Manuel González-
Vida. “Efficient GPU implementation of a two waves TVD-WAF
method for the two-dimensional one layer shallow water system on
structured meshes”. In: Computers & Fluids 80 (2013), pp. 441–452.

[8] A. Y. Babeyko, A. Hoechner, and S. V. Sobolev. “Source model-
ing and inversion with near real-time GPS: a GITEWS perspective
for Indonesia”. In: Natural Hazards and Earth System Sciences 10.7
(2010), pp. 1617–1627. doi: 10.5194/nhess-10-1617-2010.

204

https://doi.org/10.5194/nhess-10-1617-2010

[9] Michael Barall. “A grid-doubling finite-element technique for calcu-
lating dynamic three-dimensional spontaneous rupture on an earth-
quake fault”. In: Geophysical Journal International 178.2 (2009),
pp. 845–859.

[10] Pierre-Yves Bard et al. “Effects of surface geology on ground motion:
recent results and remaining issues”. In: Proc. 10 European Conf.
Earth. Eng., ed. Duma, Balkema, Rotterdam. 1995, pp. 305–323.

[11] Timothy Barth and Dennis Jespersen. “The design and application
of upwind schemes on unstructured meshes”. In: 27th Aerospace sci-
ences meeting. 1989, p. 366.

[12] Peter Bastian, Markus Blatt, Andreas Dedner, Christian Engwer,
Robert Klöfkorn, Mario Ohlberger, and Oliver Sander. “A generic
grid interface for parallel and adaptive scientific computing. Part I:
abstract framework”. In: Computing 82.2-3 (2008), pp. 103–119.

[13] Peter Bastian et al. “A generic grid interface for parallel and adaptive
scientific computing. Part II: Implementation and tests in DUNE”.
In: Computing 82.2-3 (2008), pp. 121–138.

[14] Peter Bauer, Alan Thorpe, and Gilbert Brunet. “The quiet revolu-
tion of numerical weather prediction”. In: Nature 525.7567 (2015),
pp. 47–55.

[15] J Behrens and F Dias. “New computational methods in tsunami sci-
ence”. In: Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 373.2053 (2015), p. 20140382.

[16] Jörn Behrens et al. “Probabilistic Tsunami Hazard and Risk Anal-
ysis: A Review of Research Gaps”. In: Frontiers in Earth Science 9
(2021), p. 114.

[17] Jean-Pierre Berenger. “A perfectly matched layer for the absorp-
tion of electromagnetic waves”. In: Journal of computational physics
114.2 (1994), pp. 185–200.

[18] Marsha J Berger, David L George, Randall J LeVeque, and Kyle
T Mandli. “The GeoClaw software for depth-averaged flows with
adaptive refinement”. In: Advances in Water Resources 34.9 (2011),
pp. 1195–1206.

[19] Alexander Breuer, Alexander Heinecke, and Michael Bader. “Petas-
cale local time stepping for the ADER-DG finite element method”.
In: 2016 IEEE international parallel and distributed processing sym-
posium (IPDPS). IEEE. 2016, pp. 854–863.

205

Bibliography

[20] Alexander Breuer, Alexander Heinecke, Leonhard Rannabauer, and
Michael Bader. “High-order ADER-DG minimizes energy-and time-
to-solution of SeisSol”. In: International Conference on High Perfor-
mance Computing. Springer. 2015, pp. 340–357.

[21] Shintaro Bunya, Ethan J. Kubatko, Joannes J. Westerink, and Clint
Dawson. “A wetting and drying treatment for the Runge–Kutta dis-
continuous Galerkin solution to the shallow water equations”. In:
Computer Methods in Applied Mechanics and Engineering 198.17
(2009), pp. 1548–1562. doi: https://doi.org/10.1016/j.cma.
2009.01.008.

[22] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. “p4est:
Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests
of Octrees”. In: SIAM Journal on Scientific Computing 33.3 (2011),
pp. 1103–1133. doi: 10.1137/100791634.

[23] John C Butcher. “Coefficients for the study of Runge-Kutta integra-
tion processes”. In: Journal of the Australian Mathematical Society
3.2 (1963), pp. 185–201.

[24] John C Butcher. “Implicit runge-kutta processes”. In: Mathematics
of Computation 18.85 (1964), pp. 50–64.

[25] G. F. Carrier and H. P. Greenspan. “Water waves of finite ampli-
tude on a sloping beach”. In: Journal of Fluid Mechanics 4.1 (1958),
pp. 97–109. doi: 10.1017/S0022112058000331.

[26] Dominic Etienne Charrier. “Communication-avoiding algorithms for
a high-performance hyperbolic PDE engine”. PhD thesis. Durham
University, 2020.

[27] Weng Cho Chew and William H Weedon. “A 3D perfectly matched
medium from modified Maxwell’s equations with stretched coor-
dinates”. In: Microwave and optical technology letters 7.13 (1994),
pp. 599–604.

[28] Bernardo Cockburn and Chi-Wang Shu. “Runge–Kutta discontinu-
ous Galerkin methods for convection-dominated problems”. In: Jour-
nal of scientific computing 16.3 (2001), pp. 173–261.

[29] Bernardo Cockburn and Chi-Wang Shu. “The Runge–Kutta dis-
continuous Galerkin method for conservation laws V: multidimen-
sional systems”. In: Journal of Computational Physics 141.2 (1998),
pp. 199–224.

206

https://doi.org/https://doi.org/10.1016/j.cma.2009.01.008
https://doi.org/https://doi.org/10.1016/j.cma.2009.01.008
https://doi.org/10.1137/100791634
https://doi.org/10.1017/S0022112058000331

[30] Steven M. Day. Tests of 3D elastodynamics codes. https://steveday.
sdsu.edu/BASINS/Final_Report_1A01.pdf. Accessed June 17th
2021. 2001.

[31] Willem Deconinck et al. “Atlas : A library for numerical weather
prediction and climate modelling”. In: Computer Physics Communi-
cations 220 (2017), pp. 188–204. doi: https://doi.org/10.1016/
j.cpc.2017.07.006.

[32] Michael Dumbser and Dinshaw S. Balsara. “A new efficient formu-
lation of the HLLEM Riemann solver for general conservative and
non-conservative hyperbolic systems”. In: Journal of Computational
Physics 304 (2016), pp. 275–319. doi: https://doi.org/10.1016/
j.jcp.2015.10.014.

[33] Michael Dumbser, Dinshaw S. Balsara, Eleuterio F. Toro, and Claus-
Dieter Munz. “A unified framework for the construction of one-
step finite volume and discontinuous Galerkin schemes on unstruc-
tured meshes”. In: Journal of Computational Physics 227.18 (2008),
pp. 8209–8253. doi: https://doi.org/10.1016/j.jcp.2008.05.
025.

[34] Michael Dumbser and Martin Käser. “An arbitrary high-order dis-
continuous Galerkin method for elastic waves on unstructured meshes
—II. The three-dimensional isotropic case”. In: Geophysical Journal
International 167.1 (2006), pp. 319–336.

[35] Michael Dumbser and Martin Käser. “Arbitrary high order non-
oscillatory finite volume schemes on unstructured meshes for lin-
ear hyperbolic systems”. In: Journal of Computational Physics 221.2
(2007), pp. 693–723.

[36] Michael Dumbser and Raphaël Loubère. “A simple robust and accu-
rate a posteriori sub-cell finite volume limiter for the discontinuous
Galerkin method on unstructured meshes”. In: Journal of Computa-
tional Physics 319 (2016), pp. 163–199. doi: https://doi.org/10.
1016/j.jcp.2016.05.002.

[37] Michael Dumbser, Ilya Peshkov, Evgeniy Romenski, and Olindo Zan-
otti. “High order ADER schemes for a unified first order hyperbolic
formulation of continuum mechanics: Viscous heat-conducting fluids
and elastic solids”. In: Journal of Computational Physics 314 (2016),
pp. 824–862. doi: https://doi.org/10.1016/j.jcp.2016.02.015.

207

https://steveday.sdsu.edu/BASINS/Final_Report_1A01.pdf
https://steveday.sdsu.edu/BASINS/Final_Report_1A01.pdf
https://doi.org/https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/https://doi.org/10.1016/j.jcp.2015.10.014
https://doi.org/https://doi.org/10.1016/j.jcp.2015.10.014
https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.002
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.002
https://doi.org/https://doi.org/10.1016/j.jcp.2016.02.015

Bibliography

[38] Michael Dumbser, Olindo Zanotti, Raphaël Loubère, and Steven
Diot. “A posteriori subcell limiting of the discontinuous Galerkin
finite element method for hyperbolic conservation laws”. In: Jour-
nal of Computational Physics 278 (2014), pp. 47–75. doi: https:
//doi.org/10.1016/j.jcp.2014.08.009.

[39] Kenneth Duru and Eric M Dunham. “Dynamic earthquake rup-
ture simulations on nonplanar faults embedded in 3D geometrically
complex, heterogeneous elastic solids”. In: Journal of Computational
Physics 305 (2016), pp. 185–207.

[40] Kenneth Duru and Eric M. Dunham. “Dynamic earthquake rup-
ture simulations on nonplanar faults embedded in 3D geometrically
complex, heterogeneous elastic solids”. In: Journal of Computational
Physics 305 (2016), pp. 185–207. doi: https://doi.org/10.1016/
j.jcp.2015.10.021.

[41] Kenneth Duru, Leonhard Rannabauer, Alice-Agnes Gabriel, and Heiner
Igel. “A new discontinuous Galerkin method for elastic waves with
physically motivated numerical fluxes”. In: Journal of Scientific Com-
puting 88.3 (2021), pp. 1–32.

[42] Kenneth Duru, Leonhard Rannabauer, Alice-Agnes Gabriel, Gunilla
Kreiss, and Michael Bader. “A stable discontinuous Galerkin method
for the perfectly matched layer for elastodynamics in first order
form”. In: Numerische Mathematik 146.4 (2020), pp. 729–782.

[43] Kenneth Duru, Leonhard Rannabauer, Alice-Agnes Gabriel, On Ki
Angel Ling, Heiner Igel, and Michael Bader. “A stable discontinuous
Galerkin method for linear elastodynamics in 3D geometrically com-
plex elastic solids using physics based numerical fluxes”. In: Com-
puter Methods in Applied Mechanics and Engineering 389 (2022),
p. 114386.

[44] Albert Einstein. “Die grundlage der allgemeinen relativitätstheorie”.
In: Das Relativitätsprinzip. Springer, 1923, pp. 81–124.

[45] Björn Engquist and Andrew Majda. “Absorbing boundary condi-
tions for numerical simulation of waves”. In: Proceedings of the Na-
tional Academy of Sciences 74.5 (1977), pp. 1765–1766.

[46] C. Escalante, M. Dumbser, and M.J. Castro. “An efficient hyper-
bolic relaxation system for dispersive non-hydrostatic water waves
and its solution with high order discontinuous Galerkin schemes”.

208

https://doi.org/https://doi.org/10.1016/j.jcp.2014.08.009
https://doi.org/https://doi.org/10.1016/j.jcp.2014.08.009
https://doi.org/https://doi.org/10.1016/j.jcp.2015.10.021
https://doi.org/https://doi.org/10.1016/j.jcp.2015.10.021

In: Journal of Computational Physics 394 (2019), pp. 385–416. doi:
https://doi.org/10.1016/j.jcp.2019.05.035.

[47] Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. “Efficiency
of high-performance discontinuous Galerkin spectral element meth-
ods for under-resolved turbulent incompressible flows”. In: Interna-
tional Journal for Numerical Methods in Fluids 88.1 (2018), pp. 32–
54. doi: https://doi.org/10.1002/fld.4511.

[48] Enrique Domingo Fernández-Nieto, MJ Castro Dı́az, and Carlos
Parés. “On an intermediate field capturing Riemann solver based on
a parabolic viscosity matrix for the two-layer shallow water system”.
In: Journal of Scientific Computing 48.1 (2011), pp. 117–140.

[49] Chaulio R Ferreira and Michael Bader. “Load balancing and patch-
based parallel adaptive mesh refinement for tsunami simulation on
heterogeneous platforms using Xeon Phi coprocessors”. In: Proceed-
ings of the Platform for Advanced Scientific Computing Conference.
2017, pp. 1–12.

[50] Chaulio R Ferreira, Kyle T Mandli, and Michael Bader. “Vectoriza-
tion of Riemann solvers for the single-and multi-layer Shallow Water
Equations”. In: 2018 International Conference on High Performance
Computing & Simulation (HPCS). IEEE. 2018, pp. 415–422.

[51] A-A Gabriel, Duo Li, Simone Chiocchetti, Maurizio Tavelli, Ilya
Peshkov, Evgeniy Romenski, and Michael Dumbser. “A unified first-
order hyperbolic model for nonlinear dynamic rupture processes in
diffuse fracture zones”. In: Philosophical Transactions of the Royal
Society A 379.2196 (2021), p. 20200130.

[52] Peter Galison. Image and Logic. Chicago: University of Chicago
Press, 1997.

[53] Jean-Matthieu Gallard, Lukas Krenz, Leonhard Rannabauer, Anne
Reinarz, and Michael Bader. “Role-Oriented Code Generation in an
Engine for Solving Hyperbolic PDE Systems”. In: Tools and Tech-
niques for High Performance Computing. Ed. by Guido Juckeland
and Sunita Chandrasekaran. Cham: Springer International Publish-
ing, 2020, pp. 111–128. isbn: 978-3-030-44728-1.

[54] Jean-Matthieu Gallard, Leonhard Rannabauer, Anne Reinarz, and
Michael Bader. “Vectorization and Minimization of Memory Foot-
print for Linear High-Order Discontinuous Galerkin Schemes”. In:

209

https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.035
https://doi.org/https://doi.org/10.1002/fld.4511

Bibliography

2020 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). 2020, pp. 711–720. doi: 10.1109/
IPDPSW50202.2020.00126.

[55] Gregor Gassner, Michael Dumbser, Florian Hindenlang, and Claus-
Dieter Munz. “Explicit one-step time discretizations for discontinu-
ous Galerkin and finite volume schemes based on local predictors”.
In: Journal of Computational Physics 230.11 (2011), pp. 4232–4247.

[56] Louis Geli, Pierre-Yves Bard, and Béatrice Jullien. “The effect of to-
pography on earthquake ground motion: a review and new results”.
In: Bulletin of the Seismological Society of America 78.1 (1988),
pp. 42–63.

[57] David L George. “Augmented Riemann solvers for the shallow water
equations over variable topography with steady states and inunda-
tion”. In: Journal of Computational Physics 227.6 (2008), pp. 3089–
3113.

[58] Steven J Gibbons et al. “Probabilistic Tsunami Hazard Analysis:
High Performance Computing for Massive Scale Monte Carlo type
Inundation Simulations”. In: EGU General Assembly Conference Ab-
stracts. 2020, p. 8041.

[59] F.X. Giraldo, J.S. Hesthaven, and T. Warburton. “Nodal High-Order
Discontinuous Galerkin Methods for the Spherical Shallow Water
Equations”. In: Journal of Computational Physics 181.2 (2002), pp. 499–
525. doi: https://doi.org/10.1006/jcph.2002.7139.

[60] Paul Glaister. “Shallow water flow with cylindrical symmetry”. In:
Journal of Hydraulic Research 29.2 (1991), pp. 219–227.

[61] Sylfest Glimsdal et al. “A new approximate method for quantify-
ing tsunami maximum inundation height probability”. In: Pure and
Applied Geophysics 176.7 (2019), pp. 3227–3246.

[62] Herman H Goldstine and Adele Goldstine. “The electronic numerical
integrator and computer (eniac)”. In: Mathematical Tables and Other
Aids to Computation 2.15 (1946), pp. 97–110.

[63] Kazushige Goto and Robert A van de Geijn. “Anatomy of high-
performance matrix multiplication”. In: ACM Transactions on Math-
ematical Software (TOMS) 34.3 (2008), pp. 1–25.

[64] George Green et al. “On the motion of waves in a variable canal of
small depth and width”. In: Transactions of the Cambridge Philo-
sophical Society 6 (1838), p. 457.

210

https://doi.org/10.1109/IPDPSW50202.2020.00126
https://doi.org/10.1109/IPDPSW50202.2020.00126
https://doi.org/https://doi.org/10.1006/jcph.2002.7139

[65] Anita Grezio et al. “Probabilistic tsunami hazard analysis: Multi-
ple sources and global applications”. In: Reviews of Geophysics 55.4
(2017), pp. 1158–1198.

[66] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time de-
pendent problems and difference methods. Vol. 24. John Wiley &
Sons, 1995.

[67] Ruth A Harris et al. “A suite of exercises for verifying dynamic
earthquake rupture codes”. In: Seismological Research Letters 89.3
(2018), pp. 1146–1162.

[68] Ruth A Harris et al. “The SCEC/USGS dynamic earthquake rupture
code verification exercise”. In: Seismological Research Letters 80.1
(2009), pp. 119–126.

[69] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. “LIBXSMM: Accelerating Small Matrix Multiplications by
Runtime Code Generation”. In: SC ’16: Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis. 2016, pp. 981–991. doi: 10.1109/SC.2016.83.

[70] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin
methods: algorithms, analysis, and applications. Springer Science &
Business Media, 2007.

[71] Juan J Horrillo, Zygmunt Kowalik, and Edward Kornkven. “The
third international workshop on long-wave runup models”. In: (2004).

[72] Yoshiaki Ida. “Cohesive force across the tip of a longitudinal-shear
crack and Griffith’s specific surface energy”. In: Journal of Geophys-
ical Research 77.20 (1972), pp. 3796–3805.

[73] Claes Johnson and Juhani Pitkäranta. “An analysis of the discontin-
uous Galerkin method for a scalar hyperbolic equation”. In: Mathe-
matics of computation 46.173 (1986), pp. 1–26.

[74] Steven G. Johnson. Notes on Perfectly Matched Layers (PMLs).
2021. arXiv: 2108.05348 [cs.CE].

[75] Kinjiro Kajiura. “The leading wave of a tsunami”. In: Bulletin of
the Earthquake Research Institute, University of Tokyo 41.3 (1963),
pp. 535–571.

211

https://doi.org/10.1109/SC.2016.83
https://arxiv.org/abs/2108.05348

Bibliography

[76] Jihwan Kim, Geir K Pedersen, Finn Løvholt, and Randall J LeV-
eque. “A Boussinesq type extension of the GeoClaw model-a study
of wave breaking phenomena applying dispersive long wave models”.
In: Coastal engineering 122 (2017), pp. 75–86.

[77] Reinhard Klette. Concise computer vision. Springer, 2014.
[78] Dimitri Komatitsch and Jean-Pierre Vilotte. “The spectral element

method: an efficient tool to simulate the seismic response of 2D and
3D geological structures”. In: Bulletin of the seismological society of
America 88.2 (1998), pp. 368–392.

[79] JE Kozdon and EM Dunham. “Adaptive Mesh Refinement for Dy-
namic Rupture Simulations”. In: AGU Fall Meeting Abstracts. Vol. 2010.
2010, S54A–08.

[80] Jeremy E Kozdon, Eric M Dunham, and Jan Nordström. “Simulation
of dynamic earthquake ruptures in complex geometries using high-
order finite difference methods”. In: Journal of Scientific Computing
55.1 (2013), pp. 92–124.

[81] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel,
Lauren S Abrahams, Eric M Dunham, and Michael Bader. “3D
acoustic-elastic coupling with gravity: the dynamics of the 2018 Palu,
Sulawesi earthquake and tsunami”. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis. 2021, pp. 1–14.

[82] Miriam Kristeková, Jozef Kristek, Peter Moczo, and Steven M Day.
“Misfit criteria for quantitative comparison of seismograms”. In: Bul-
letin of the seismological Society of America 96.5 (2006), pp. 1836–
1850.

[83] Martin Kronbichler and Katharina Kormann. “Fast Matrix-Free Eval-
uation of Discontinuous Galerkin Finite Element Operators”. In:
ACM Trans. Math. Softw. 45.3 (Aug. 2019). doi: 10.1145/3325864.

[84] Mustafa Kuzuoglu and Raj Mittra. “Frequency dependence of the
constitutive parameters of causal perfectly matched anisotropic ab-
sorbers”. In: IEEE Microwave and Guided wave letters 6.12 (1996),
pp. 447–449.

[85] Thorne Lay et al. “The great Sumatra-Andaman earthquake of 26
december 2004”. In: science 308.5725 (2005), pp. 1127–1133.

[86] Randall J LeVeque et al. Finite volume methods for hyperbolic prob-
lems. Vol. 31. Cambridge university press, 2002.

212

https://doi.org/10.1145/3325864

[87] Randall J LeVeque, David L George, and Marsha J Berger. “Tsunami
modelling with adaptively refined finite volume methods”. In: Acta
Numerica 20 (2011), pp. 211–289.

[88] Bo Li, Alice-Agnes Gabriel, Thomas Ulrich, Claudia Abril Lopez,
Benedikt Halldorsson, and Michael Bader. “Physics-based rupture
models and ground shaking simulations in the Húsav́ık–Flatey fault
zone, Northern Iceland”. In: AGU Fall Meeting 2021. AGU. 2021.

[89] On Ki Angel Ling. “Simulating Seismic Wave Propagation in the Eu-
ropean Alps with WaveQLab3D and ExaHyPE”. MA thesis. Ludwig-
Maximilians-Universität, 2018.

[90] Gabriel C Lotto and Eric M Dunham. “High-order finite difference
modeling of tsunami generation in a compressible ocean from offshore
earthquakes”. In: Computational Geosciences 19.2 (2015), pp. 327–
340.

[91] Gabriel C Lotto, Gabriel Nava, and Eric M Dunham. “Should tsunami
simulations include a nonzero initial horizontal velocity?” In: Earth,
Planets and Space 69.1 (2017), p. 117.

[92] EH Madden et al. “Linked 3D modeling of megathrust earthquake-
tsunami events: from subduction to tsunami run up”. In: Geophysical
Journal International (2020).

[93] Masafumi Matsuyama and Hiroyoshi Tanaka. “An experimental study
of the highest run-up height in the 1993 Hokkaido Nansei-oki earth-
quake tsunami”. In: National Tsunami Hazard Mitigation Program
Review and International Tsunami Symposium (ITS). 2001, pp. 879–
889.

[94] John D McCalpin et al. “Memory bandwidth and machine balance
in current high performance computers”. In: IEEE computer soci-
ety technical committee on computer architecture (TCCA) newsletter
2.19–25 (1995).

[95] Oliver Meister. “Sierpinski Curves for Parallel Adaptive Mesh Refine-
ment in Finite Element and Finite Volume Methods”. PhD thesis.
Technische Universität München, 2016.

[96] Oliver Meister, Kaveh Rahnema, and Michael Bader. “Parallel memory-
efficient adaptive mesh refinement on structured triangular meshes
with billions of grid cells”. In: ACM Transactions on Mathematical
Software (TOMS) 43.3 (2016), pp. 1–27.

213

Bibliography

[97] Diego Melgar, Amy L Williamson, and E Fernando Salazar-Monroy.
“Differences between heterogenous and homogenous slip in regional
tsunami hazards modelling”. In: Geophysical Journal International
219.1 (July 2019), pp. 553–562. doi: 10.1093/gji/ggz299.

[98] Peter Moczo et al. “Comparison of numerical methods for seismic
wave propagation and source dynamics—the SPICE code valida-
tion”. In: ESG 2006, Third Intl. Symposium on the Effects of Surface
Geology on Seismic Motion. Vol. 1. LCPC Editions. 2006, pp. 495–
504.

[99] Beth Mortimer, William Lake Rees, Paula Koelemeijer, and Tarje
Nissen-Meyer. “Classifying elephant behaviour through seismic vi-
brations”. In: Current Biology 28.9 (2018), R547–R548. doi: https:
//doi.org/10.1016/j.cub.2018.03.062.

[100] S Nielsen, Elena Spagnuolo, Marie Violay, S Smith, Giulio Di Toro,
and A Bistacchi. “G: Fracture energy, friction and dissipation in
earthquakes”. In: Journal of seismology 20.4 (2016), pp. 1187–1205.

[101] Yoshimitsu Okada. “Surface deformation due to shear and tensile
faults in a half-space”. In: Bulletin of the seismological society of
America 75.4 (1985), pp. 1135–1154.

[102] Josep de la Puente, Juan Esteban Rodriguez, Marisol Monterrubio-
Velasco, Otilio Rojas, and Arnau Folch. “Urgent Supercomputing of
Earthquakes: Use Case for Civil Protection”. In: Proceedings of the
Platform for Advanced Scientific Computing Conference. PASC ’20.
Geneva, Switzerland: Association for Computing Machinery, 2020.
isbn: 9781450379939. doi: 10.1145/3394277.3401853.

[103] Leonhard Rannabauer, Michael Dumbser, and Michael Bader. “ADER-
DG with a-posteriori finite-volume limiting to simulate tsunamis in
a parallel adaptive mesh refinement framework”. In: Computers &
Fluids 173 (2018), pp. 299–306.

[104] Anne Reinarz et al. “ExaHyPE: an engine for parallel dynamically
adaptive simulations of wave problems”. In: Computer Physics Com-
munications 254 (2020), p. 107251.

[105] Gerard R Richter. “An optimal-order error estimate for the discon-
tinuous Galerkin method”. In: Mathematics of Computation 50.181
(1988), pp. 75–88.

214

https://doi.org/10.1093/gji/ggz299
https://doi.org/https://doi.org/10.1016/j.cub.2018.03.062
https://doi.org/https://doi.org/10.1016/j.cub.2018.03.062
https://doi.org/10.1145/3394277.3401853

[106] Johann Rudi et al. “An extreme-scale implicit solver for complex
PDEs: highly heterogeneous flow in earth’s mantle”. In: Proceedings
of the international conference for high performance computing, net-
working, storage and analysis. 2015, pp. 1–12.

[107] Carl Runge. “Über die numerische Auflösung von Differentialgle-
ichungen”. In: Mathematische Annalen 46.2 (1895), pp. 167–178.

[108] Tatsuhiko Saito. “Dynamic tsunami generation due to sea-bottom
deformation: Analytical representation based on linear potential the-
ory”. In: Earth, Planets and Space 65.12 (2013), pp. 1411–1423.

[109] Tatsuhiko Saito. Tsunami generation and propagation. Springer, 2019.
[110] Tatsuhiko Saito, Toshitaka Baba, Daisuke Inazu, Shunsuke Take-

mura, and Eiichi Fukuyama. “Synthesizing sea surface height change
including seismic waves and tsunami using a dynamic rupture sce-
nario of anticipated Nankai trough earthquakes”. In: Tectonophysics
769 (2019), p. 228166.

[111] Tatsuhiko Saito and Takashi Furumura. “Three-dimensional tsunami
generation simulation due to sea-bottom deformation and its inter-
pretation based on the linear theory”. In: Geophysical Journal In-
ternational 178.2 (2009), pp. 877–888.

[112] Philipp Samfass, Jannis Klinkenberg, and Michael Bader. “Hybrid
MPI+ OpenMP Reactive Work Stealing in Distributed Memory in
the PDE Framework sam (oa)ˆ 2”. In: 2018 IEEE International Con-
ference on Cluster Computing (CLUSTER). IEEE. 2018, pp. 337–
347.

[113] Philipp Samfass, Tobias Weinzierl, Dominic E Charrier, and Michael
Bader. “Lightweight task offloading exploiting MPI wait times for
parallel adaptive mesh refinement”. In: Concurrency and Computa-
tion: Practice and Experience 32.24 (2020), e5916.

[114] Kenji Satake. “Advances in earthquake and tsunami sciences and
disaster risk reduction since the 2004 Indian ocean tsunami”. In:
Geoscience Letters 1.1 (2014), pp. 1–13.

[115] Linus Seelinger, Anne Reinarz, Leonhard Rannabauer, Michael Bader,
Peter Bastian, and Robert Scheichl. “High performance uncertainty
quantification with parallelized multilevel Markov chain Monte Carlo”.
In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 2021, pp. 1–
15.

215

Bibliography

[116] Jacopo Selva et al. “Probabilistic tsunami forecasting for early warn-
ing”. In: Nature communications 12.1 (2021), pp. 1–14.

[117] Bruno Seny, Jonathan Lambrechts, Thomas Toulorge, Vincent Legat,
and Jean-François Remacle. “An efficient parallel implementation of
explicit multirate Runge–Kutta schemes for discontinuous Galerkin
computations”. In: Journal of Computational Physics 256 (2014),
pp. 135–160.

[118] Chi-Wang Shu and Stanley Osher. “Efficient implementation of es-
sentially non-oscillatory shock-capturing schemes, II”. In: Upwind
and High-Resolution Schemes. Springer, 1989, pp. 328–374.

[119] Y Tony Song, L-L Fu, Victor Zlotnicki, Chen Ji, Vala Hjorleifsdot-
tir, CK Shum, and Yuchan Yi. “The role of horizontal impulses of
the faulting continental slope in generating the 26 December 2004
tsunami”. In: Ocean Modelling 20.4 (2008), pp. 362–379.

[120] Holger Stengel, Jan Treibig, Georg Hager, and Gerhard Wellein.
“Quantifying performance bottlenecks of stencil computations us-
ing the execution-cache-memory model”. In: Proceedings of the 29th
ACM on International Conference on Supercomputing. 2015, pp. 207–
216.

[121] Ryütarü Takahashi. “On the seismic sea waves caused by deforma-
tion of the sea bottom”. In: Bull. Earthq. Res. Inst., Univ. Tokyo 20
(1942), pp. 357–400.

[122] Yuichiro Tanioka and Kenji Satake. “Tsunami generation by horizon-
tal displacement of ocean bottom”. In: Geophysical research letters
23.8 (1996), pp. 861–864.

[123] Maurizio Tavelli, Michael Dumbser, Dominic Etienne Charrier, Leon-
hard Rannabauer, Tobias Weinzierl, and Michael Bader. “A simple
diffuse interface approach on adaptive Cartesian grids for the lin-
ear elastic wave equations with complex topography”. In: Journal of
Computational Physics 386 (2019), pp. 158–189.

[124] William Carlisle Thacker. “Some exact solutions to the nonlinear
shallow-water wave equationsa”. In: Journal of Fluid Mechanics 107
(1981), pp. 499–508. doi: 10.1017/S0022112081001882.

[125] Jeremy Thomas. https://www.llnl.gov/news/llnl-and-hpe-partner-amd-
el-capitan-projected-worlds-fastest-supercomputer. https://www.llnl.
gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-
worlds-fastest-supercompute. Accessed: January 9th 2022.

216

https://doi.org/10.1017/S0022112081001882
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercompute
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercompute
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercompute

[126] Eleuterio F Toro. Riemann solvers and numerical methods for fluid
dynamics: a practical introduction. Springer Science & Business Me-
dia, 2013.

[127] Eleuterio F Toro. Shock-capturing methods for free-surface shallow
flows. Wiley-Blackwell, 2001.

[128] Thomas Ulrich, Alice-Agnes Gabriel, and Elizabeth Madden. “Stress,
rigidity and sediment strength control megathrust earthquake and
tsunami dynamics”. In: (2020).

[129] Thomas Ulrich et al. “Coupled, physics-based modeling reveals earth-
quake displacements are critical to the 2018 Palu, Sulawesi tsunami”.
In: Pure and Applied Geophysics 176.10 (2019), pp. 4069–4109.

[130] Carsten Uphoff. “Flexible model extension and optimisation for earth-
quake simulations at extreme scales”. PhD thesis. Technische Uni-
versität München, 2020.

[131] Carsten Uphoff and Michael Bader. “Yet another tensor toolbox for
discontinuous Galerkin methods and other applications”. In: ACM
Transactions on Mathematical Software (TOMS) 46.4 (2020), pp. 1–
40.

[132] Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth
H Madden, Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes
Gabriel. “Extreme scale multi-physics simulations of the tsunami-
genic 2004 sumatra megathrust earthquake”. In: Proceedings of the
international conference for high performance computing, network-
ing, storage and analysis. 2017, pp. 1–16.

[133] Bram van Leer. “Towards the ultimate conservative difference scheme.
V. A second-order sequel to Godunov’s method”. In: Journal of Com-
putational Physics 32.1 (1979), pp. 101–136. doi: https://doi.org/
10.1016/0021-9991(79)90145-1.

[134] Iris Van Zelst, Stephanie Wollherr, A-A Gabriel, Elizabeth H Mad-
den, and Ylona van Dinther. “Modeling megathrust earthquakes
across scales: One-way coupling from geodynamics and seismic cy-
cles to dynamic rupture”. In: Journal of Geophysical Research: Solid
Earth 124.11 (2019), pp. 11414–11446.

[135] Stefan Vater, Nicole Beisiegel, and Jörn Behrens. “A limiter-based
well-balanced discontinuous Galerkin method for shallow-water flows
with wetting and drying: One-dimensional case”. In: Advances in
water resources 85 (2015), pp. 1–13.

217

https://doi.org/https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/https://doi.org/10.1016/0021-9991(79)90145-1

Bibliography

[136] Stefan Vater, Nicole Beisiegel, and Jörn Behrens. “A limiter-based
well-balanced discontinuous Galerkin method for shallow-water flows
with wetting and drying: Triangular grids”. In: International Journal
for Numerical Methods in Fluids 91.8 (2019), pp. 395–418.

[137] Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-
water flow. Vol. 13. Springer Science & Business Media, 1994.

[138] T. Weinzierl. “The Peano Software ;Parallel, Automaton-based, Dy-
namically Adaptive Grid Traversals”. In: ACM Trans. Math. Softw.
45.2 (2019), 14:1–14:41.

[139] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline:
an insightful visual performance model for multicore architectures”.
In: Communications of the ACM 52.4 (2009), pp. 65–76.

[140] Sara Aniko Wirp et al. “3D linked subduction, dynamic rupture,
tsunami and inundation modeling: dynamic effects of supershear and
tsunami earthquakes, hypocenter location and shallow fault slip”. In:
Frontiers in Earth Science 9 (2021), p. 177.

[141] Yulong Xing and Xiangxiong Zhang. “Positivity-preserving well-balanced
discontinuous Galerkin methods for the shallow water equations on
unstructured triangular meshes”. In: Journal of Scientific Compu-
ting 57.1 (2013), pp. 19–41.

[142] Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. “Positivity-
preserving high order well-balanced discontinuous Galerkin methods
for the shallow water equations”. In: Advances in Water Resources
33.12 (2010), pp. 1476–1493. doi: https://doi.org/10.1016/j.
advwatres.2010.08.005.

[143] Iris van Zelst, Leonhard Rannabauer, Alice-Agnes Gabriel, and Ylona
van Dinther. “Earthquake rupture on multiple splay faults and its
effect on tsunamis”. In: (2021).

[144] Xiangxiong Zhang and Chi-Wang Shu. “Maximum-principle-satisfying
and positivity-preserving high-order schemes for conservation laws:
survey and new developments”. In: Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 467.2134
(2011), pp. 2752–2776.

[145] Xi Zhao, Benlong Wang, and Hua Liu. “Characteristics of tsunami
motion and energy budget during runup and rundown processes over
a plane beach”. In: Physics of Fluids 24.6 (2012), p. 062107. doi:
10.1063/1.4729597.

218

https://doi.org/https://doi.org/10.1016/j.advwatres.2010.08.005
https://doi.org/https://doi.org/10.1016/j.advwatres.2010.08.005
https://doi.org/10.1063/1.4729597

[146] G. J. van Zwieten, R. F. Hanssen, and M. A. Gutiérrez. “Overview
of a range of solution methods for elastic dislocation problems in
geophysics”. In: Journal of Geophysical Research: Solid Earth 118.4
(2013), pp. 1721–1732. doi: https://doi.org/10.1029/2012JB009278.

219

https://doi.org/https://doi.org/10.1029/2012JB009278

	1 Introduction
	2 High order discontinuous Galerkin methods for tsunamis
	2.1 Introduction
	2.2 The sam(oa)2 framework
	2.3 The shallow water equations
	2.4 Nonlinear DG for the SWE on triangular meshes
	2.5 The sam(oa)2-flash code
	2.6 An ADER-DG method for the SWE

	3 Verification of the tsunami methods
	3.1 Introduction
	3.2 The resting lake scenario
	3.3 A single wave on a sloping beach
	3.4 The radial dam break scenario
	3.5 The oscillating lake scenario
	3.6 Okushiri: Wave on a complex bathymetry
	3.7 The Sumatra-Andaman tsunami

	4 Comparing time-to-solution for Runge-Kutta and ADER-DG methods.
	4.1 Introduction
	4.2 A memory-bandwidth model for sam(oa)2
	4.3 The roofline model for sam(oa)2
	4.4 Node level optimizations
	4.5 Degrees of freedom per second
	4.6 Time to solution
	4.7 Conclusion

	5 Linking of earthquake and tsunami codes
	5.1 Sourcing tsunamis with the shallow water equations
	5.2 The method of Tanioka and Satake
	5.3 A Fourier filter to erase fast seismic waves
	5.4 Conclusion and discussion

	6 The ASCETE framework
	6.1 Introduction
	6.2 Metrics and nomenclature
	6.3 Set-up for the tsunami models
	6.4 Earthquake-tsunami models
	6.5 Subduction-earthquake-tsunami models
	6.6 Time dependent vs. time independent source

	7 ExaSeis: A curvilinear ADER-DG method for earthquakes
	7.1 Introduction
	7.2 Elastodynamics in first order formulation
	7.3 Perfectly Matched Layers in a nutshell
	7.4 Cauchy-Kovalevskaya scheme on curvilinear meshes
	7.5 A physically motivated numerical flux
	7.6 Curvi: An automated mesh generator

	8 Verification and applications of ExaSeis
	8.1 Introduction
	8.2 Kinematic point sources
	8.3 Dynamic rupture
	8.4 The Zugspitze scenario
	8.5 The Húsavík-Flatey fault

	9 Conclusion and discussion
	Appendices
	A Fourier transformation of displacements
	B The three dimensional transfinite interpolation
	Bibliography

