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Abstract

In many safety-critical computer vision applications, it is mostly desired to seek
the optimal solutions with provable guarantee in presence of noise and outliers,
since local optimums may lead to serious failures. Therefore, in this thesis,
globally optimal solutions for unit-norm constrained computer vision problems
are investigated. Specifically, the globally optimal solutions are provided by
the branch-and-bound algorithm, which is a deterministic global optimization
algorithm. Moreover, to obtain global optimums for unit-norm constrained
optimization problems, we explore the geometry of the unit-norm constraint and
introduce a general inequality for n-sphere.

Based on the introduced general inequality and the branch-and-bound algorithm,
three different unit-norm constrained computer vision tasks are studied to seek
globally optimal solutions in this thesis. Specifically,

1. Globally optimal solution for estimating vertical direction from the Atlanta
world. This work is about globally estimating the unique vertical direction
in Atlanta world. Compared with the state-of-the-art methods, it has
two advantages: (1) avoiding the curse of dimensionality in Atlanta world;
(2) avoiding manual adjustment of the number of horizontal directions.
Methodologically, the contributions are mainly as follows: (1) A novel
global searching method for estimating vertical direction is proposed. It is
different from conventional rotation search. Since the domain of the vertical
directions is inherently in the unit sphere, the proposed searching method
is more efficient in vertical direction estimation. (2) Three novel different
bounds for branch-and-bound algorithm are derived. To the best of our
knowledge, it is the first to propose such bounds in the unit sphere to the
structural world frame estimation problem.

2. Globally optimal solution for camera orientation estimation from 2D-3D
line feature correspondences. This work is concerned with the problem of
estimating camera orientation from a set of 2D/3D line correspondences,
which is a major part of the Perspective-n-Line (PnL) problem. The
RANSAC algorithm is the de facto standard for solving outlier-contaminated
PnL problems. However, RANSAC cannot produce a reasonable result
with a provable guarantee. Therefore, a PnL algorithm that could obtain
a certifiably optimal solution from outlier-contaminated data is highly
needed. We take a big step towards this goal. Specifically, we first decouple
camera orientation and position, then a globally optimal camera orientation
estimation algorithm is investigated.
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3. Globally optimal solution for camera relative pose estimation with known
vertical direction. Recently, there has been a surge of interest in using prior
gravity direction to solve traditional robot vision problems. However, most
of them focus on solving outlier-free problems. To obtain a robust solution
from outlier-contaminated inputs, we propose a globally optimal algorithm
for relative pose estimation with known gravity direction. The proposed
method employs the branch-and-bound algorithm to solve a consensus
maximization problem, and thus it is able to obtain the global solution with
a provable guarantee. The proposed algorithm has important potential to
be used in some safety-demand applications.
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Zusammenfassung

In vielen sicherheitskritischen Computer Vision Anwendungen ist es erwünscht
nachweisbar optimale Lösungen mit einer Optimalitätsgarantie bei vorhandenem
Rauschen und Ausreißern in den Daten zu finden, da lokale Optima zu gravieren-
den Ausfällen führen können. Deswegen, erforscht diese Dissertation global opti-
male Lösungen für Unit-norm Constrained Computer Vision Probleme. Genauer
gesagt werden die global optimalen Lösungen mithilfe eines Branch-and-Bound
Algorithmus, welcher ein deterministischer global optimaler Optimierungsalgo-
rithmus ist, gefunden. Des Weiteren, untersuchen wir die Geometrie der Einheit-
snormbeschränkung und stellen eine generelle Ungleichung für die n-Domaine
vor, um globale Optima für Einheitsnorm-beschränkte Optimierungsprobleme zu
erhalten.

Basierend auf der vorgestellten generellen Ungleichung und dem Branch-and-
Bound Algorithmus, werden in dieser Dissertation drei verschiedene Einheitsnorm-
beschränkte Computer Vision Aufgaben bezüglich global optimaler Lösungen
untersucht. Insbesondere:

1. Eine global optimale Lösung zu Abschätzung der vertikalen Richtung aus
der Atlanta Welt. Diese Arbeit befasst sich mit der globalen Abschätzung
der eindeutigen vertikalen Richtung in der Atlanta Welt. Verglichen mit
anderen Methoden auf dem Stand der Technik gibt es zwei Vorteile: (1) Der
Fluch der Dimensionalität in der Atlanta Welt und (2) manuelles Anpassen
der Anzahl der horizontalen Richtungen werden vermieden. Die Arbeit leis-
tet folgende Beiträge zur Forschung: (1) Eine neue globale Suchmethode zur
Abschätzung der vertikalen Richtung wird vorgeschlagen. Diese Suchmeth-
ode unterscheidet sich von konventionellen Rotationssuchen. Da die Domäne
der vertikalen Richtungen inhärent die Einheitskugel ist, ist die vorgestellte
Suchmethode effizienter darin die vertikaler Richtung abzuschätzen. (2) Drei
neue unterschiedliche Branch-and-Bound Algorithmen werden abgeleitet.
Nach unserem besten Wissen ist dies der erste Vorschlag für derartige
Schranken in der Einheitskugel für das structural world frame estimation
Problem.

2. Eine global optimale Lösung für die Abschätzung der Kameraorientierung
mithilfe von 2D-3D Linienkorrespondenzen. Diese Arbeit beschäftigt sich
mit dem Problem der Abschätzung der Kameraorientierung mithilfe einer
Menge von 2D-3D Linienkorrespondenzen. Dies ist ein wesentlicher Teil
des Perspective-n-Line (PnL) Problems. Der RANSAC Algorithmus ist
die de facto Standardlösung für PnL Probleme mit Ausreißern. Allerd-
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Zusammenfassung

ings liefert RANSAC keine sinnvollen Ergebnisse mit nachweisbarer Op-
timalitätsgarantie. Deswegen besteht Bedarf für einen PnL Algorithmus,
welcher eine nachweisbar optimale Lösung für Daten mit Ausreißern erzielt.
Wir gehen einen großen Schritt in Richtung dieses Ziels. Konkret entkoppeln
wir erst die Kameraorientierung und -position und ermitteln dann einen
Algorithmus zur global optimalen Abschätzung der Kameraorientierung.

3. Eine global optimale Lösung für relative Kamerapositionsabschätzung mit
bekannter vertikaler Richtung. In letzter Zeit wuchs das Interesse daran
Vorwissen über die Gravitationsrichtung zu verwenden um traditionelle
Robot Vision Probleme zu lösen. Allerdings liegt der Fokus der meisten
Methoden darauf ausreißerfreie Probleme zu lösen. Um robuste Lösungen
von Inputdaten mit Ausreißern zu erhalten, stellen wir einen global opti-
malen Algorithmus für relative Kamerapositionsabschätzung mit bekannter
Gravitationsrichtung vor. Die vorgeschlagene Methode verwendet den
Branch-and-Bound Algorithmus um ein consensus maximization Problem
zu lösen und ist deshalb in der Lage eine global optimale Lösung mit nach-
weisbarer Optimalitätsgarantie zu erzielen. Deshalb hat der vorgeschlagene
Algorithmus Potential zur Verwendung in sicherheitskritischen Anwendun-
gen.
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Chapter 1

Introduction

1.1 Safety-Critical Systems and Computer

Vision Algorithms

A safety-critical system(or life-critical system) [1–3] is a system whose failure or
malfunction may lead to consequences that are determined to be unacceptable [1].
For example, self-driving system [4, 5] is a typical safety-critical system, because
if we cannot provide the safety guarantee for the system, it might lead to very
serious failures, even the death or serious injury to people [6, 7]. According to
the news reports(see Fig. 1.1 [8]), as of Dec. 2021, there have been 10 verified
fatalities involving Tesla’s Autopilot, which is a famous self-driving system, and
we can see the details from this webpage1. Therefore, to meet the safety demand,
the safety-critical systems need extremely reliable solutions. Accordingly, the
optimization algorithms in safety-critical systems should provide the provably
optimal solutions with guarantees [9].

Figure 1.1: A Tesla electric car crashed into a highway barrier, California, on March
23, 2018 and investigators confirmed that Autopilot was partially to blame.

Computer vision, which is an important field of artificial intelligence (AI),
seeks to develop techniques to help computer systems derive meaningful infor-
mation from visual inputs [10,11]. Nowadays, computer vision techniques play
an increasingly important role in many modern tasks, such as intelligent traf-
fic systems [12, 13], robot systems [14, 15], assisting in medical diagnosis and

1https://www.tesladeaths.com/

1

https://www.tesladeaths.com/


Chapter 1 Introduction

treatment [16–18]. Naturally, the computer vision techniques are also widely
applied in many safety-critical systems [5]. For example, there are many computer
vision algorithms have been proposed to solve various visual perception prob-
lems in self-driving systems [4,19], such as semantic segmentation [20], motion
estimation [11,21] and object detection [22,23].

(a) Given two images of a scene, one important task is to estimate the relative camera pose.

(b) The relative pose can be solved from the established correspondences according to epipolar
geometry [11]. ’+’ denotes the salient point feature. Green lines denote the feature
correspondences.

(c) In real applications, mismatches are not able to be avoided and they may bias the estimation
results significantly. ’+’ denotes the salient point feature. Green lines denote the true
feature correspondences and red lines denote the mismatches.

Figure 1.2: Relative pose estimation in visual perception subsystem for self-driving
car. In real applications, extremely reliable visual perception algorithms
are highly needed to obtain the optimal solutions from the given outlier-
contaminated input data [24].

In order to explain the role of computer vision techniques in safety-critical
systems, we take the motion estimation in the self-driving system for example.
Specifically, a calibrated camera is mounted on a moving car and it will record
the visual images of environment surrounding the car. The task is to estimate
the relative pose of the moving camera and thereby the self relative motion of
the car from the images obtained by the calibrated camera. It is one of the
core parts for visual perception subsystem of the self-driving system [25]. It
should be mentioned that many high-level planning and decision in self-driving
system highly rely the information provided by visual perception subsystem. If
a bad motion estimation solution is given, the self-driving system may make a
inappropriate decision, which may lead to very serious failures [9]. Therefore, to
meet the safety demand, it is highly needed that the computer vision algorithms
should provide correct solutions with provable guarantee.
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1.2 Robust Objective Functions

Typically, to estimate the relative pose from two given images, the first step
is to establish the correspondences of the salient features(e.g., keypoints) in
the two images(see Fig. 1.2). Once the correspondences are established, the
relative pose can be efficiently solved by classical computer vision algorithms,
such as 5-point algorithm and 8-point algorithm [11, 26, 27]. However, in real
applications, it is almost impossible to have the feature correspondences without
mismatches [28](see Fig. 1.2). Theoretically, the mismatches can be considered as
the infamous outliers in robust estimation problems [29–31]. It is well known that
even one outlier can bias the estimation results significantly [32,33]. To obtain
the robust solution in the presence of outliers, robust estimation algorithms
are needed to be explored. The de facto standard, which can return robust
solution from outlier-contaminated inputs, is to embed outlier-free algorithms
into RANSAC(RANdom SAmple consensus) framework [11,34]. Unfortunately,
RANSAC is a non-deterministic algorithm and it will provide a reasonable result
only with a certain probability [35]. In other words, RANSAC may provide an
unsatisfactory solution occasionally [29]. Consequently, the visual perception
subsystem may return incorrect information, which thereby may be a risk for the
self-driving system. Therefore, it is highly needed that the relative pose estimation
algorithm can exact the extremely reliable solution from the outlier-contaminated
correspondences. From the perspective of optimization, it is demanded to obtain
the optimal relative pose with provable guarantee [29].

In summary, the computer vision technologies are widely applied in safety-
critical systems, especially as the core parts in many visual perception subsystems,
which certainly need to provide safety guarantee. However, the existence of
outliers, which are almost unavoidable in real applications, will introduce the
risks to safety-critical systems. Unfortunately, traditional computer vision algo-
rithms usually cannot provide the correct solutions with provable guarantee from
outliers-contaminated inputs [29]. Therefore, in this thesis, we explore globally
optimal solutions to some computer vision problems for safety-critical applications.
Specifically, the globally optimal algorithm is deterministic global optimization
algorithm [36], which can provide the optimal solution with theoretical guarantees
that the reported solution is indeed the global one (the best one).

1.2 Robust Objective Functions

In practical computer vision applications, it is rare that the input measurements
are perfect. Noise and outliers are usually unavoidable and they are usually
everywhere [29]. In addition, the outlier may introduce serious risks to visual
perception system. A natural idea is to reject or remove all the outliers in
advance and then to estimate parameters [29, 37]. However, it turns out the idea
is mathematically intractable. The authors in [30] point that even for a simple
linear instance of outlier rejection is inapproximable:
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In the worstcase, there exist no quasi-polynomial algorithm that can compute
(even an approximate) solution to the outlier rejection problem. [30]

It is should be mentioned that this conclusion does not imply that we cannot
remove all the outliers. It emphasizes that removing all the outliers is inefficient,
i.e., it is time-consuming. Theoretically, removing outliers in advance is actually
as difficult as solving the original outlier-robust estimation problem [29,30].

(a) False point correspondences (mismatches) can be con-
sidered as outliers and usually cannot be avoidable.

(b) Epipolar geometry. R ∈ SO(3)
and t are to-be-solved relative
pose.

Figure 1.3: Epipolar geometry in relative pose estimation.

Since rejecting outliers is inapproximable, to obtain robust solution, the outliers
should be suppressed. Mathematically, the real input measurements {mi}Mi=1 can
be modeled as [38] {

mi = mgt
i + κi, if mi is an inlier

mi = oi, if mi is an outlier
(1.1)

where mgt
i is a true measurement and κi is the inlier measurement noise [38]; oi

is an outlier, which may be arbitrarily far from the true measurement. Note that
oi, κi and mi are the same data structures.

For example, in relative pose estimation, let {pi, qi}Mi=1 denote the keypoint
correspondences, which may include mismatches(see Fig. 1.3). R ∈ SO(3) and t
are to-be-solved relative pose. According to epipolar geometry [11], the residue
for absolutely true correspondence is

ri (pi, qi) = |pTi [t]×Rqi| = 0 (1.2)

where [t]× is the matrix representation of the cross product with t, and | · |
is absolute value function. In practical applications, given a reasonable inlier
threshold ε, we can define{

ri =|pTi [t]×Rqi| ≤ ε , correspondence {pi, qi} is inlier

ri =|pTi [t]×Rqi| > ε , correspondence {pi, qi} is outlier
(1.3)
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1.2 Robust Objective Functions

Notably, the noise is usually modeled as additive white Gaussian noise [39,40].
M-estimation [41], which is generalizing maximum likelihood estimation, is usually
applied to suppress Gaussian noise and estimate the parameters [42].

min
M∑
i=1

ρ (ri (pi, qi)) (1.4)

where ρ (·) is an M-estimator function. Typical M-estimators are shown in
Fig. 1.4 [43]. It is well known that, in Fig. 1.4(a), the least square estimator is
not robust to outliers. In contrast, the redescending estimators [44] (b) and (c)
are more robust to outliers.

(a) Least square (b) German-McClure (c) Blake-Zisserman

Figure 1.4: Typical M-estimators. (a) Least square loss function ρ(x) = x2. (b)

German-McClure loss function ρ (x) =
x2/2

1 + x2
. (c) Blake-Zisserman loss

function ρ(x) = − log
(
e−x

2
+ ε0

)
, where ε0 is a to-be-tuned parameter.

Specifically, to suppress outliers, the robust M-estimators attempt to reduce
the influence of outliers. Therefore, the minimum solution of Eq. (1.4) is the
to-be-solved relative pose. In other words, relative pose estimation problem can
be modeled as a optimization problem, whose minimum solution is the optimal
relative pose. Unfortunately, the robust objective functions constructed by the
redescending estimators are usually non-convex, which means there are many
local optimums in solving robust objective functions [29]. The standard algorithm
to find the maximum likelihood estimation is iteratively reweighted least squares
(IRLS) [45,46]. However, IRLS only guarantees to find a local optimum [29,43],
which may be unacceptable in real applications.

In fact, there are two sub problems here: (a) which measurements are inliers?
(b) what are the to-be-estimated model parameters? If we can solve one sub
problem, then we can solve the other one. However, both sub problems are
unknown, which is a well-known chicken-and-egg problem [47]. Usually, expecta-
tion maximization(EM [48]) type algorithms are applied to solve chicken-and-egg
problems [49]. Specifically, the key idea of EM-type methods is that it starts
from an initial solution and solves the original problem by alternately solving
the two sub problems. Notably, IRLS can be considered as one of EM type
algorithms [50]. It starts from an initial model parameters (usually returned by
ordinary least square method) to determine which observations are inliers with a
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soft “weight”, then it alternatively solve “model parameters” and “weight of each
observations” problems until convergence. Theoretically, EM-type algorithms
are local methods, which guarantee to return a local optimum, which maybe an
unsatisfactory solution for real safety-critical applications [49,51]

Consensus Maximization. In addition to robust M-Estimators, there are
still many robust loss functions, which are able to suppress outliers. One of the
most widely applied robust objective functions is inlier set maximization [52, 53],
also known as consensus maximization [29, 54]. Mathematically, we can think
that the consensus maximization applies the 0-1 loss function

ρ(x) =

{
1, |x| ≤ ε

0, others
(1.5)

For example, in relative pose estimation, the objective function (i.e., inlier
maximization) can be formulated as

max
M∑
i=1

I (ri (pi, qi) ≤ ε) (1.6)

where I(·) is a indicator function, which returns 1 if the inner condition is true
and return 0 otherwise.

Compared to other robust objective functions that utilize other robust loss
functions, consensus maximization is easier to use. Specifically, it can distinguish
inliers and outliers by the inlier threshold ε and maximizes the count of inlier
measurements. Therefore, consensus maximization has been very popular in
many computer vision problems due to its simplicity [29]. In this thesis, to obtain
the robust solution from outlier-contaminated inputs, we also use consensus
maximization to construct the robust objective functions.

Usually, consensus maximization is quite easy to be formulated in various
applications, however, it is non-smooth, which means it is difficult to obtain
its optimum by traditional gradient based optimization algorithms. To solve
consensus maximization, the de facto standard is RANSAC [29]. RANSAC is a
heuristic global optimization method and it is able to avoid being trapped in local
optimum. However, RANSAC can only provide a reasonable solution only with
a certain probability. Specifically, RANSAC repeatedly samples minimal/non-
minimal [55, 56] subset and solves the candidate solutions from the sampled
subset. In the meantime, every candidate solution can be applied to calculate
the inlier number. RANSAC takes the best candidate solution, which obtains
maximum inlier number, as the final solution. Evidently, the randomized nature
of RANSAC does not provide an absolute certainty whether the obtained result
is a satisfactory solution [57].

1.3 Globally Optimal Solutions

For the computer vision algorithms in safety critical systems, the provable safety
guarantees are usually desired [9, 58]. From the perspective of optimization,
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1.3 Globally Optimal Solutions

to ensure the safety guarantee is to obtain the global optimums with provable
guarantee. Being trapped in local optimums should be prohibited since the local
optimums may be an incorrect solution, which is unacceptable [59]. For example,
it is highly needed in self-driving cars to obtain the global optimal motion esti-
mation [52], since the local optimum may lead to a serious failure [9]. From view
of optimization, if the problem can be formulated as a convex problem, then the
only-one local optimum must be the global optimum [60]. Many classical local op-
timization methods are sufficient to obtain the optimal solution. However, in real
applications, noise and outliers are unavoidable. To suppress the corrupted data,
the robust non-convex objective functions should be formulated. Consequently,
there are usually many local optimums in the non-convex problems. If the initial
start point is not properly set, local optimization methods might be trapped in
the local optimums, which may lead to serious failures in some safety-critical
applications. Therefore, globally optimal algorithms are highly needed to find
the global solution to meet safety requirements in some applications. The whole
mind flow chart is shown as Fig. 1.5.

Figure 1.5: A flow chart for our motivation.

Notably, the globally optimal solutions in this thesis are usually meaning de-
terministic global optimization [61, 62], which is different from non-deterministic
global optimization (e.g., multistart type methods [63] and genetic type algo-
rithms [64]). Typically, non-deterministic global optimization algorithms (e.g.,
RANSAC) can avoid being trapped in local optimums. But they will converge in
probability to the global optimum. Theoretically, only if the runtime is unlimited,
which is unrealistic, the probability that finding the globally optimal optimum by
non-deterministic global optimization algorithms can increase towards 100%. In
contrast, deterministic global optimization algorithms have a theoretical guarantee
of convergence to the globally optimal optimum.

In fact, due to the significance of global optimum in practical safety-critical
applications, obtaining the globally optimal solution has become a hot research
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topic in computer vision filed [29]. There have been many globally optimal
solutions are proposed in many visual perception applications. For example,
tracking objects [65], point set registration [66–68], simultaneous camera pose
and feature correspondence [52, 69], camera calibration [70,71] and event camera
motion estimation [72,73].

1.4 Unit-Norm Constrained Problems

Arguably, many computer vision algorithms are proposed to extract mathematical
information from the input measurements [74], such as target point location in
object tracking, rigid pose in target pose estimation, and weight parameters in
deep neural networks [75–77]. Roughly speaking, the mathematical information
that is expected to be estimated in various real applications should satisfy
some physical constraints. For example, there will be a reasonable range for
target location in object tracking. More strictly, there will be a famous epipolar
constraint in estimating relative pose from two-view images [11]. More generally,
if the mathematical information to be sought should satisfy some geometrical
constraints, which arise from the physical properties of the scene, these computer
vision problems are called geometric vision problems [58]. Typically, the geometric
vision problems are focused on exploring the fundamental geometrical constraints,
and they are a broad subclass of computer vision problems.

Figure 1.6: Unit-norm constrained computer vision problem is a special geometric
vision problem. Three visual perception problems, which are investigated
in this thesis, are all unit-norm constrained problems.

In this thesis, we mainly focus on unit-norm constrained computer vision
problems, which are widely distributed in computer vision filed. Actually, we
can also think that the unit-norm constraint is a special geometric constraint,
since the unit-norm constraint can be considered as a unit sphere constraint. The
relationship is illustrated as Fig. 1.6. Unfortunately, geometric vision problems
are fulfilled with difficult optimization problems [58]. Notably, exactly solving
some of geometric vision problems(i.e., obtaining the global optimum) are even
inherently intractable [29]. For example, exactly solving consensus maximization
for robust linear model fitting is NP-hard [78]. More pessimistically, it shows
that solving consensus maximization for robust linear model fitting is impossible
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to approximate, in other words, there are no polynomial time algorithm that
computes an approximation solution efficiently [30,78].

Although unit-norm constrained computer vision problems can be considered
as special geometric problems, they have many special properties. In this thesis,
we explore these special properties of the unit-norm constraint and propose
globally optimal solutions for some typical unit-norm constrained computer vision
problems. One thing should be mentioned is that the unit-norm constraint can
be considered that the solution domain of the optimization problem is in the
unit (hyper-)sphere, which is certainly non-convex (see Fig. 1.7). Therefore, an
optimization problem with unit-norm constraint should be non-convex problem(no
matter if the objective function is convex or not) [60]. Generally, solving a
non-convex problem is NP-hard [79]. However, fortunately, solving a specific
non-convex problem does not necessarily mean that it must be difficult [80].

(a) convex region (b) non-convex region (c) non-convex region

Figure 1.7: Unit-norm constraint is non-convex. The region is convex if the segment
between any two distinct points of the region is completely included in the
region. (a) and (b) are typical convex and non-convex region, respectively.
(c) Evidently, the unit-norm constraint(e.g., circle edge) is not convex.

Specifically, in this thesis, globally optimal solutions are explored for three
applications:(1) vertical frame direction estimation in Atlanta world; (2) absolute
camera orientation estimation from line correspondences; (3) relative pose estima-
tion with known gravity direction. They are all unit-norm constrained computer
vision problems, and they share many similar properties.

World frame estimation in Atlanta world [81]. In man-made environ-
ments, most of the objects and structures are usually organized in the form of
orthogonal and parallel planes. Atlanta world makes an assumption that the
man-made scene can be modeled by a horizontal plane (e.g., ground plane) and
many vertical planes (e.g., buildings and walls). The normals of the planes, which
are called world frames, can describe the scenes abstractly. In other words, one
vertical frame and multiple horizontal frames could represent Atlanta world. It
is a crucial step to estimate these vertical and horizontal frame directions in
computer vision applications, which is named Atlanta frame estimation. It could
be utilized as key modules for various high-level vision applications. Notably,
there is an interesting property that all horizontal frames are in a plane and the
vertical frame is parallel to the normal of the plane(see Fig. 1.8). In order to
estimate the world frames in Atlanta world, the unique vertical direction can be
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(a) Structural world (b) Depth image (c) Surface normal sphere

Figure 1.8: Atlanta frame estimation. According to Atlanta world assumption, one
vertical frame and many horizontal frames can represent the world. We
need to estimate the world frames from given inputs. For example, given
the depth images, the surface normals can be exacted and they can be
used to estimate the world frames.

estimated first. The vertical world frame direction is denoted as v = [v1, v2, v3]
T .

Naturally, it should satisfy
v ∈ S2 (1.7)

where S2 means 2-sphere in three-dimensional space. Specifically, ‖v‖ = v21 +
v22 + v23 = 1. Therefore, it is a typical unit-norm constrained problem. In fact, all
Atlanta world frames are all in the 2-sphere. Therefore, Atlanta frame estimation
is also a unit-norm constrained problem.

Figure 1.9: Absolute camera orientation estimation from line correspondences. It
is a major part of the famous PnL problem [59], which is determining
the relative position and orientation of a camera and an object from line
correspondences.

Absolute camera orientation estimation from line correspondences [82].
This work is concerned with the problem of estimating camera orientation from a
set of 2D/3D line correspondences, which is a major part of the Perspective-n-Line
(PnL) problem(see Fig 1.9). Mathematically, camera rotation can be denoted by
R ∈ SO(3). Equivalently, we solve a rotation estimation problem [83].

At first glance, the constraint R ∈ SO(3) seems nothing to do with unit-norm
constraint. However, we notice that any rotation R can be represented not only
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by a special orthogonal matrix but also by the unit quaternion numbers [84,85].
Let s = [a, b, c, d]T be a unit quaternion vector, then

Rs =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 , (1.8)

s.t. a2 + b2 + c2 + d2 = 1 (1.9)

where Rs is the rotation matrix represented by the unit quaternion s. Con-
sequently, camera orientation estimation can be formulated as a unit-norm
constrained problem.

Figure 1.10: Relative pose estimation from keypoint correspondences.

Relative pose estimation with known gravity direction [86]. As we
discussed, the task of relative pose estimation is estimating the relative camera
pose from matching correspondences of two frames, also known as essential matrix
estimation [11](see Fig. 1.10). It is well-known that we can obtain camera pose
R ∈ SO(3) and t ∈ S2 (up to scale). Clearly it contains two unit-norm constraints
and it is naturally a unit-norm constrained problem.

In this thesis, we focus on a quite common case in which the gravity direction
is known in advance. If the gravity is known, then the epipolar geometry becomes

tT (ai + sin(θ)bi + cos(θ)ci) = 0 (1.10)

where θ ∈ [−π, π] is to-be-solved rotation angle. ai,bi and ci are constructed
by input correspondences and they are explained in detail in Section 5. Let
q1 = sin(θ) and q2 = cos(θ), then Eq. (1.10) can be reformulated as

tT (ai + q1bi + q2ci) = 0, s.t. q21 + q22 = 1 (1.11)

Therefore, relative pose estimation with known gravity direction is a unit-norm
constrained problem.

Overall, unit-norm constrained problems are commonly distributed in computer
vision filed. Mathematically, they can be considered as sub-parts of constrained
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optimization problems, which are extensively studied [87,88]. Moreover, optimiza-
tion methods on Riemannian manifolds are also well-studied [89,90]. However, in
real applications, things are more complicated than the ideal mathematical mod-
els [29]. Specifically, the input measurements are usually imperfect, which may
lead to incorrect solutions. Therefore, more robust objective functions instead
of the sum of squared residual should be formulated to suppress the imperfect
measurements. Generally, the robust objective functions are non-convex [43] and
traditional algorithms may efficiently obtain a locally optimal solution, which may
be an unacceptable solution for safety-critical applications. Unfortunately, it is
non-trivial to obtain globally optimal solutions [91] for robust objective functions,
especially, with unit-norm constraints.

1.5 Contributions

For unit-norm constrained computer vision problems, the unit-norm constraint is
naturally non-convex. In addition, to suppress the noisy inputs, objectives are
usually formulated as non-convex functions for practical computer vision problems.
For such challenging tasks, in which both objective and constraint are non-convex,
seeking the global optimum (i.e., extremely robust solution for safety-critical
systems) is typically not easy. In this thesis, we take steps towards this goal. We
focus on the globally optimal solutions for the unit-norm constrained computer
vision problems.

The main contributions are as followings:

• Theoretically, a general inequality in n-sphere is introduced. Specifically,
the unit-norm constraint is thoroughly explored, and a novel mapping way
is applied to use compact parameters to represent the unit-norm constraint.
Besides, by exploring the geometrical properties, a novel inequality is
introduced. Solid proofs are provided in this thesis. Moreover, we find
that the introduced inequality about n-sphere is a general formulation of
one fundamental inequality in the famous rotation search theory [92]. It is
worth noting that the inequality in rotation search theory is only applied
in three-dimensional space i.e., SO(3). However, our introduced general
inequality is extended to n-dimensional space.

• A novel globally optimal solution is proposed to estimate the vertical
direction in Atlanta world [81]. In man-made environments, many objects
and structures are organized in the form of orthogonal and parallel planes.
These planes can be approximated by an Atlanta world assumption, in which
the normals of planes can be represented by Atlanta frames. The Atlanta
world assumption has one vertical frame and multiple horizontal frames.
Given a set of inputs such as surface normals, the Atlanta frame estimation
problem can be solved by a globally optimal algorithm [93]. However, the
runtime will increase greatly when the dimensionality (i.e., the number
of horizontal frames) increases. In contrast, we estimate only the vertical
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direction, instead of all Atlanta frames at once. Accordingly, we propose a
vertical direction estimation method by considering the relationship between
the vertical frame and horizontal frames. More importantly, our approach
is able to obtain the globally optimal solution for vertical direction without
requiring prior knowledge of the number of Atlanta frames.

• A novel globally optimal solution is proposed to estimate the camera
orientation in Perspective-n-Line (PnL) problem [82,94]. Estimating camera
orientation from a set of 2D/3D correspondences, which is a major part of
the PnL problem, is a basic computer vision problem. There are some cases
that usually occur in real applications: the input point/line correspondences
are corrupted by mismatches (a.k.a. outlier correspondences). RANSAC
algorithm is the de facto standard for solving outlier-contaminated problems.
However, RANSAC is a non-deterministic algorithm, which means that it
produces a reasonable result only with a certain probability. To obtain a
certifiably optimal solution from outlier-contaminated data is a matter of
priority for some safety-critical applications, we propose a globally optimal
camera orientation estimation algorithm. Specifically, it first decouple
rotation and translation. After that, the optimal camera orientation can
be obtained by rotation search theory, which is a deterministic global
optimization method. Therefore, the estimated camera orientation is indeed
the best optimum with provably guarantee.

• A novel globally optimal solution is proposed to estimate the relative pose
from two matching images with a known vertical direction [86]. Relative
pose estimation is a core task in computer vision, and it is the basis of
many high-level applications (e.g., visual odometry). We focus on a quite
common case in which the gravity direction is known in advance with the
help of IMUs. Commonly, incorrect feature matches (a.k.a. outliers) are
unavoidable, and they will impair the accuracy significantly. RANSAC
is the de facto standard to suppress the outliers and obtain a robust
solution. However, RANSAC is a non-deterministic algorithm, which means
it produces a reasonable result only with a certain probability, and it cannot
guarantee the global optimality to meet the safety demand in many life-
critical applications. Therefore, we propose a globally optimal algorithm
for relative pose estimation with known gravity direction. Specifically, the
proposed method employs the branch-and-bound (BnB) algorithm to solve
a consensus maximization problem, and thus it is able to obtain the global
solution with a provable guarantee.

Overall, in this thesis, we first explore the fundamental geometric of the unit
sphere in arbitrary dimension. Accordingly, a general inequality for n-sphere
is introduced. After that, we combine the inequality and branch-and-bound
algorithm to globally solve some typical unit-norm constrained computer vision
problems to meet the demand in safety-critical applications.
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1.6 Thesis Outline

Figure 1.11: Thesis outline.

This thesis is structured as Fig. 1.11. Specifically, we first introduce the
background of unit-norm constrained computer vision problems. Moreover, the
motivation to obtain the globally optimal solutions are explained. Chapter 2
introduces the fundamental mathematical theories. It mainly includes the branch-
and-bound algorithm, which is a deterministic optimization framework to obtain
the globally optimal solutions, and a general inequality for n-sphere. Besides,
the relationship between the general inequality and rotation search theory are
explained in detail. After that, Chapter 3, 4, and 5 are the applications of the
fundamental theories. Concretely, Chapter 3 presents a novel globally optimal
solution for vertical direction estimation in Atlanta world. Chapter 4 introduces
a novel globally optimal solution for camera orientation estimation from 2D and
3D line feature correspondences. Chapter 5 introduces a novel globally optimal
solution for relative pose estimation with a known gravity direction. Chapter 6
provides conclusions and discussions on further work.
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Chapter 2

Related Techniques

2.1 Branch and Bound

Branch-and-Bound (BnB) algorithm was first proposed in 1960s for discrete
programming [95] and has become the most commonly used tool for solving
many NP-hard optimization problems [96,97]. Technically, the BnB algorithm
will search the entire solution domain to seek the global optimum, therefore, it
can avoid local optimums. However, different from naive brute-force search, the
BnB algorithm consists of a systematically searching strategy, and therefore, it is
usually more efficient than naive brute-force search [98].

Specifically, the BnB algorithm recursively splits the search space (i.e., solution
domain) into smaller spaces, which is called branching , and the smaller sub
spaces are also called sub-branches. Given a sub-branch, it should be checked
against upper and lower estimated bounds on the optimal solution, which is
called bounding. If it can be proved that it will not contain a better solution
than the best one found so far by the algorithm in the given sub-branch, the
sub-branch will be discarded, which is called pruning. The BnB algorithm
repeatedly conducts the process of branching , bounding and pruning until
convergence. As a consequence, some sub-branches can be efficiently discarded
and the search space is gradually decreasing, which is significantly faster than
brute-force enumeration of candidate solutions.

In this thesis, we introduce the BnB algorithm from the end-user standpoint.
For more rigorous mathematical analysis about BnB algorithm, dear readers
can refer to [99,100]. From the perspective of usage, one thing is worth noting
that the BnB algorithm highly depends on the efficient estimation of lower and
upper bounds in the given sub-branch. The term of efficiency includes two
points [83, 97]:

• Tightness. It should be expected that the lower and upper bounds of
the optimal value are very tight. If we can tightly estimate the bounds,
we can eliminate the branches that do not contain the optimal solution
efficiently. The search space can be reduced rapidly and the BnB algorithm
can terminate rapidly.

• Computing efficiently. Estimating the lower and upper bounds of the
optimal value should be efficient. In each iteration, the bounds need be
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estimated, therefore, computing the bounds efficiently contributes to the
high efficiency of the BnB algorithm.

In addition, not any lower and upper bounds are sufficient to be nested into
BnB algorithm. Two strict conditions for the convergence of BnB algorithms
should be satisfied [100]:

1. Given a sub-branch, lower bound ≤ best optimal solution in the branch ≤
upper bound.

2. When the sub-branch collapses to a single point, the gap between the lower
bound and upper bound should be zero.

Note that the second condition does not imply that when the BnB algorithm
terminates, the gap between upper bound and lower bound must be zero. For
smooth objective functions, when the gap between the upper and lower bounds
is smaller than a certain threshold ε, the algorithm can stop and the found
optimal solution is ε-suboptimal [100]. This can greatly reduce the computations
burden and is usually used when the obtained solution is good enough for practical
purposes [99]. Many famous computer vision algorithms, such as [66,67,101], rely
on this strategy.

However, in this thesis, the robust objective functions are formulated by
consensus maximization, which is non-smooth. Notably, the stop condition for
the BnB algorithm is slightly stricter: when the gap between the upper and
lower bounds becomes to zero, the algorithm terminates. In other words, the
found solution by BnB algorithm is indeed the best optimal one with theoretical
guarantee in this thesis.

To better explain how the BnB algorithm find the optimum, a simple example
is given:

Minimize f(x) = x2 + 2x+ 10 sin(2x), x ∈ [−10, 10] (2.1)

The true minimum is at (−0.796,−10.956) (see Fig. 2.1).

Figure 2.1: Graph of the example function.
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2.1 Branch and Bound

From the figure of the objective function, we can find that there are many
local optimums in the solution domain. If the initial point is not set properly,
the classical gradient-based optimization methods may fall into a local optimum.
In contrast, the BnB algorithm can obtain the global optimum. To estimate the
lower and upper bound, we apply the interval analysis [102]. Specifically, given
x ∈ [a, b], min g1 = x2 + 2x ∈ [gL1 , g

U
1 ] and min g2 = 10 sin(2x) ∈ [gL2 , g

U
2 ]. Then

min f = min g1 + min g2 ∈ [fL, fU ], where fL = gL1 + gL2 and fU = gU1 + gU2 . For
example,

x ∈ [0, 1]⇒

{
min g1 ∈ [0, 1.250]

min g2 ∈ [0, 8.415]
⇒ min f ∈ [0, 9.665] (2.2)

x ∈ [−1, 0]⇒

{
min g1 ∈ [−1,−0.750]

min g2 ∈ [−10,−8.415]
⇒ min f ∈ [−11,−9.165] (2.3)
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Figure 2.2: Convergence curve for the given example. (a) and (b) The gap between
lower and upper bounds is becoming very small. (c) The remaining search
space is gradually reduced to very small. (d) The number of branches
represents the memory space occupied by the algorithm.

The termination condition for BnB algorithm is when the gap between lower
and upper bounds is less than 0.001. The convergence curve is shown in Fig. 2.2.
The concrete data in the convergence process is shown in Table 2.1. From the
results, it is clearly shown that the search space is gradually decreasing and
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the gap between the lower and upper bounds is gradually becoming small. The
local optimums can be avoided and the algorithm can provide a globally optimal
solution.

Table 2.1: Data in convergence process of BnB algorithm

iteration x lower upper branch num. remaining

1 -5.0000 -11.0000 20.4402 2 20.0000
2 -2.5000 -11.0000 10.8392 3 20.0000
3 -1.2500 -11.0000 -6.9222 4 20.0000
4 -0.6250 -11.0000 -10.3492 4 15.0000
5 -0.9375 -11.0000 -10.5370 2 1.2500
6 -0.7813 -10.9961 -10.9518 2 0.6250
7 -0.7813 -10.9961 -10.9518 2 0.3125
8 -0.7813 -10.9802 -10.9518 3 0.3125
9 -0.8008 -10.9677 -10.9556 3 0.2344
10 -0.7910 -10.9630 -10.9557 3 0.0781
11 -0.7910 -10.9603 -10.9557 4 0.0781
12 -0.7959 -10.9597 -10.9561 4 0.0684
13 -0.7959 -10.9594 -10.9561 4 0.0293
14 -0.7959 -10.9581 -10.9561 5 0.0293
15 -0.7959 -10.9577 -10.9561 5 0.0244
16 -0.7959 -10.9575 -10.9561 6 0.0244
17 -0.7959 -10.9571 -10.9561 7 0.0244

2.2 Rotation Search Theory

In computer vision filed, rotation estimation is one of the most classical prob-
lems [83]. In this thesis, we consider rotation estimation problem as a special
unit norm constrained problem. Typically, to estimate the rotation robustly, a
robust non-convex objective function will be formulated. Consequently, classical
gradient-based optimization algorithms may fall into the local optimum. Fortu-
nately, the globally-optimal algorithms called rotation search theory have been
developed to obtain the global optimum, and they have been applied in many
applications [83,103,104].

Specifically, the rotation search theory applies the BnB algorithm to search the
entire rotation space(i.e., SO(3)) for the optimal solution. For different robust
objective functions, different lower and upper bounds should be carefully designed.
Nonetheless, to estimate the bounds, which involves the non-convex rotation
constraint, is not an easy problem.

To estimate the lower and upper bounds, an method based on interval analysis
is proposed in [103]. In fact, interval analysis defines a set of operations on
intervals. For example,

18



2.2 Rotation Search Theory

• [a, b] + [c, d]⇒ [a+ c, b+ d]

• [a, b]− [c, d]⇒ [a− d, b− c]

• [a, b]× [c, d]⇒ [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• [a, b]÷ [c, d]⇒
[
min

(
a

c
,
a

d
,
b

c
,
b

d

)
,max

(
a

c
,
a

d
,
b

c
,
b

d

)]
This method is only applied to estimate the vanishing point in Manhattan world,
which can be considered as a rotation estimation problem [103].

Notably, the most widely applied rotation search methods are based on two novel
inequalities to estimate the lower and upper bounds, which are first introduced
in [49,92] and they are discussed in the following parts. If not specifically pointed
out, rotation search algorithms in the thesis only mean the methods that are
based on the two novel inequalities by default. The rotation search theory
has been applied in many applications to obtain the globally optimal solutions,
such as 3D point set registration [66], hand-eye calibration [71],vanishing point
estimation [103] and 2D-3D point/line registration [69].

2.2.1 Two Fundamental Inequalities

In this part, we introduce the two novel inequalities, which are the fundamental
components in the most widely applied rotation search theory. First of all, we
introduce the axis–angle representation of a rotation matrix. Mathematically, a
rotation can be represented by a rotation angle θ and a rotation axis r, where
r ∈ R3 and ‖r‖ = 1. The axis-angle representation can be defined as

r = θr (2.4)

Let I be identity matrix and [r]× be cross product matrix of r.

[r]× =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 , [r]T× = −[r]×, [r]3× = −[r]× (2.5)

The relationship of r � R can be described by Rodrigues’ rotation formula [11]:

R = eθ[r]× =I + θ[r]× +
1

2!
(θ[r]×)2 +

1

3!
(θ[r]×)3 + · · · (2.6)

=I +

(
θ − 1

3!
θ3 + · · ·

)
[r]× +

(
1

2!
θ2 − 1

4!
θ4 + · · ·

)
[r]2× (2.7)

=I + sin(θ)[r]× + (1− cos(θ))[r]2× (2.8)

In addition [105],

θ = arccos

(
Tr(R)− 1

2

)
(2.9)

2 sin(θ)[r]× = R−RT (2.10)
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Figure 2.3: π-ball

where Tr(R) is the trace of the rotation matrix.
One thing should be noted that without restricting θ, the axis-angle represen-

tation of a rotation matrix is not unique. For example, θr and (2π − θ)(−r)
correspond to the same rotation. To reduce the redundancy, θ can be restricted
in [0, π]. Geometrically, we have the famous π-ball [83], which is illustrated
in Fig. 2.3. The SO(3) space can be represented by the π-ball. In other words,
given a rotation matrix R, there is at least a point r, which corresponds to R, in
the solid ball.

After introducing the axis–angle representation of rotations, we then list the
famous lemmas [92]:

Lemma 2.1. For any vector v ∈ R3, R1,R2 ∈ SO(3), then [92]

∠ (R1v,R2v) ≤ ∠ (R1,R2) (2.11)

where 0 ≤ ∠ (R1,R2) ≤ π is the angle distance between R1 and R2. More
specifically,

∠ (R1,R2) = arccos

(
Tr(R1R

T
2 )− 1

2

)
= arccos

(
Tr(RT

1 R2)− 1

2

)
(2.12)

The authors in [92] think that lemma 2.1 seems simple enough that they omit the
proof. In this thesis, we show a picture in Fig. 2.4 to explain the results visually.
Specifically, to prove lemma 2.1, it is sufficient to prove

∠
(
v,RT

1 R2v
)

= ∠ (R1v,R2v) ≤ ∠ (R1,R2) (2.13)

Let R = RT
1 R2, then we need to prove

∠ (v,Rv) ≤ arccos

(
Tr(RT

1 R2)− 1

2

)
= arccos

(
Tr(R)− 1

2

)
= θ (2.14)

where θ is the rotation angle of R.
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2.2 Rotation Search Theory

Figure 2.4: Illustration of lemma 2.1.

In Fig. 2.4, we define v =
−→
OA and the unit direction of

−−→
OB is the rotation

axis r of R. OC ′ ⊥ OB, OC ⊥ OB, |OA| = |OB| = |OC| = |OC ′|, and point

O,A,B,C are in the same plane. We define ∠C ′OC = θ, therefore, R
−→
OC =

−−→
OC ′,

R
−→
OA = Rv =

−−→
OA′ and points O,A′, B, C ′ are in the same plane. In addition,

AB′ ⊥ OB and A′B′ ⊥ OB, then ∠A′B′A = ∠C ′OC = θ.
In 4A′B′A and 4A′OA, we have

|AA′| = 2 sin

(
θ

2

)
|AB′| = 2 sin

(
∠A′OA

2

)
|OA| (2.15)

In addition, |OA|| sin (∠AOB) | = |AB′|, then

sin

(
θ

2

)
| sin (∠ (v, r)) | = sin

(
∠ (v,Rv)

2

)
(2.16)

⇒ ∠ (v,Rv) = 2 arcsin

(
sin

(
θ

2

)
| sin (∠ (v, r)) |

)
(2.17)

≤ 2 arcsin

(
sin

(
θ

2

))
(2.18)

= θ (2.19)

Only when the axis of rotation is perpendicular to the vector, i.e., ∠ (v, r) =
π

2
,

the equal sign can be established.

Lemma 2.2. For any R1,R2 ∈ SO(3), r1, r2 in the π-ball are the corre-
sponding axis–angle representations, then [92, 106]

∠ (R1,R2) ≤ ‖r1 − r2‖ (2.20)
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It is worth noting that this lemma describes the angle distance of two rotations
is less than the Euclidean distance in their angle-axis representations.

To prove lemma 2.2, the authors in [92] are simply explaining this relationship
may be proved rigorously by computing an infinitessimal metric on the quaternion
sphere [92]. In addition, a more complete and strict proof is provided in [49],
which is based on the basic theory in weakly compact lie groups [107]. However,
this proof is not easy to be understood for some junior researchers and they have
to understand many obscure mathematical concepts. Fortunately, a proof that is
easier to understand is provided by Thomas Ruland in [108].

In this thesis, we introduce a simply explanation to understand this lemma more
intuitively. First, we discuss unit quaternion representations of rotation more
deeply [105,106]. Specifically, given rotation R and their axis-angle representations
r = θr, the unit quaternion representations should be

s =

[
cos

(
θ

2

)
, sin

(
θ

2

)
r

]
, [a, b] (2.21)

Notably, if we do not restrict the bound of θ, then

R� ±s (2.22)

Accordingly, we can define d∠ (·, ·) to describe the rotation distance [105].

d∠ (s1, s2) = arccos
(
|sT1 s2|

)
(2.23)

The abs function is to restrict

0 ≤ d∠ (s1, s2) ≤ π/2 (2.24)

Furthermore, the conjugate of the quaternion

s∗ =

[
cos

(
θ

2

)
,− sin

(
θ

2

)
r

]
= [a,−b] (2.25)

In fact, conjugate of the quaternion is also a quaternion and s∗ represents RT .
The multiplication of two quaternions [84]

sR1 > sR2 = [a1, b1] > [a2, b2] (2.26)

=
[
a1a2 − bT1 b2, a1b2 + a2b1 + b1 × b2

]
(2.27)

=sR1R2 (2.28)

Therefore, the multiplication of two quaternions is still a quaternion and in fact
sR1R2 represents R1R2.

Lemma 2.3. Given rotation R1, R2 and their unit quaternion representa-
tions s1, s2, then [92, 105, 106]

∠ (R1,R2) = 2d∠ (s1, s2) (2.29)
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2.2 Rotation Search Theory

Proof. To prove lemma 2.3, let R = RT
1 R2, then

∠ (R1,R2) = ∠
(
I,RT

1 R2

)
= ∠ (I,R) = θ (2.30)

Observe the composition of the rotation RT
1 R2 can be obtained by the product

of the quaternions

sRT
1 R2

= sRT
1
> sR2 = s∗R1

> sR2 (2.31)

= [a1,−b1] > [a2, b2] (2.32)

=
[
a1a2 + bT1 b2, a1b2 − a2b1 − b1 × b2

]
(2.33)

and

sR = sRT
1 R2

=

[
cos

(
θ

2

)
, sin

(
θ

2

)
r

]
(2.34)

Therefore,

a1a2 + bT1 b2 = cos

(
θ

2

)
(2.35)

Evidently,

sT1 s2 = a1a2 + bT1 b2 = cos

(
θ

2

)
(2.36)

Considering 0 ≤ θ ≤ π, then arccos
(
|sT1 s2|

)
= θ

2
, therefore,

d∠ (s1, s2) = arccos
(
|sT1 s2|

)
=
θ

2
(2.37)

Consequently, 2d∠ (s1, s2) = ∠ (R1,R2).

Lemma 2.4. Given rotation R1, R2, their unit quaternion representations
s1, s2, and corresponding axis–angle representations r1, r2, then [92, 108]

2d∠ (s1, s2) ≤ ‖r1 − r2‖ (2.38)

It is not easy to prove lemma 2.4. Nonetheless, a straight and detailed proof
is given in [108]. Geometrically, lemma 2.4 shows a relationship between the
3-dimensional solid π-ball and unit quaternion sphere. In the following part, we
provide a more general proof for n-sphere and its corresponding n-dimensional
solid ball.

Overall, in this thesis, we separate lemma 2.2 into lemma 2.3 and lemma 2.4.
This is also the way to explain lemma 2.2 in [92]. Specifically, the angle distance
between two rotations is related to the angle distance between unit quaternions
in lemma 2.3. After that the relationship between unit quaternions and solid
π-ball are discussed and formulated in lemma 2.4.

Lemma 2.1 and 2.2 are two of the most important inequalities in rotation search
theory. From lemma 2.1 and 2.2, it is straightforward to get the following result:

23



Chapter 2 Related Techniques

Lemma 2.5. For any vector x ∈ R3, R1,R2 ∈ SO(3) and r1, r2 in the
π-ball are the corresponding axis–angle representations, then [92]

∠ (R1x,R2x) ≤ ‖r1 − r2‖ (2.39)

This lemma is more widely applied in solving many complicated computer vision
problems. Some following works just rely on this lemma without considering
lemma 2.1 and lemma 2.2, for example [67,93,109].

2.3 An Inequality in n-sphere

Figure 2.5: Illustration of exponential map

In this thesis, we focus on the general unit norm constrained problems and
therefore we introduce a more general inequality in n-sphere (Sn), which is a
n-dimensional unit sphere in Rn+1.

First, we introduce a novel parameterization for n-sphere. Generally, a point x
in n-sphere can be

x = [x1, x2, · · · , xn, xn+1]
T and ‖x‖ = 1 (2.40)

However, it is well known that the n-sphere is in fact n dimension, therefore, we
need a compact parameterization to eliminate the unit norm constraint. Inspired
from the relationship between unit quaternion sphere and solid π-ball, we apply
the exponential map (Lie theory [110,111]). Specifically, let x ∈ Sd, then

xT =
[
cos(θ), sin(θ)ωT

]
(2.41)

where 0 ≤ θ ≤ π; ω = [ω1, ω2, · · · , ωd]T ∈ Rd and ‖ω‖ = 1. From Eq. (2.41), we
can find that x can be represented by θ and ω. Then, it can be defined as

ϕ = θω (2.42)
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Obviously, ϕ ∈ Rd. In addition, the domain of ϕ is similar to π-ball. Geometri-
cally, the unit sphere is mapped into a solid ball. The relationship between the
unit sphere and solid ball ϕ� x is illustrated in Fig. 2.5.

Lemma 2.6. xp ∈ Sd, xq ∈ Sd are two vectors in the d-dimensional unit
hyper-hemisphere, and ϕp ∈ Rd, ϕq ∈ Rd are the two corresponding points
in the d-dimensional solid ball.

∠(xp,xq) ≤ ‖ϕp −ϕq‖ (2.43)

Proof. xp,xq,ϕp,ϕq can be formulated as:

ϕp = ωp · θp = [ωp1θp, ωp2θp, · · · , ωpdθp]T (2.44)

ϕq = ωq · θq = [ωq1θq, ωq2θq, · · · , ωqdθq]T (2.45)

xp = [cos(θp), ωp1 sin(θp), ωp2 sin(θp), · · · , ωpd sin(θp)]
T (2.46)

xq = [cos(θq), ωq1 sin(θq), ωq2 sin(θq), · · · , ωqd sin(θq)]
T (2.47)

Since ‖xp‖ = ‖xq‖ = ‖ωp‖ = ‖ωq‖ = 1, we can define

γ = ∠(ωp,ωq) = arccos(
ωTp ωq

‖ωp‖‖ωq‖
) = arccos(ωTp ωq) (2.48)

On the left, we have

ρ = ∠(xp,xq) (2.49)

= arccos
( xTpxq

‖xp‖‖xq‖
)

= arccos(xTpxq) (2.50)

= arccos
(

cos(θp) cos(θq) + ωp1ωq1 sin(θp) sin(θq) + · · ·+ ωpdωqd sin(θp) sin(θq)
)

(2.51)

= arccos
(

cos(θp) cos(θq) + (ωTp ωq) sin(θp) sin(θq)
)

(2.52)

= arccos
(

cos(θp) cos(θq) + cos(γ) sin(θp) sin(θq)
)

(2.53)

Let λ ∈ [0, 1], cos(γ) = 2λ− 1, then we have

ρ2 = arccos2
(

cos(θp) cos(θq) + (2λ− 1) sin(θp) sin(θq)
)

(2.54)

= arccos2
(
λ cos(θp − θq) + (1− λ) cos(θp + θq)

)
(2.55)

On the right,

ξ = ‖ϕp −ϕq‖ = ‖ωpθp − ωqθq‖ (2.56)

=
√

(ωp1θp − ωq1θq)2 + · · ·+ (ωpdθp − ωqdθq)2 (2.57)

=
√
θ2p + θ2q − 2θpθq cos(γ) (2.58)

25



Chapter 2 Related Techniques

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Figure 2.6: f(α) = arccos2(α)

Since cos(γ) = 2λ− 1,

ξ2 = θ2p + θ2q − 2θpθq cos(γ) (2.59)

= θ2p + θ2q − 2θpθq(2λ− 1) (2.60)

= λ(θp − θq)2 + (1− λ)(θp + θq)
2 (2.61)

To compare ρ and ξ, we introduce a convex function f(α) = arccos2(α), when
α ∈ [−1, 1], see Fig. 2.6. Its second derivative is as follows

f ′′(α) =
2

1− α2
− 2 · α · arccos(α)

(1− α2)3/2
(2.62)

It is easy to confirm f ′′(α) is non-negative, when α ∈ (−1, 1). According to
Jensen’s inequality, we then have

f
(
λα1 + (1− λ)α2

)
≤ λf(α1) + (1− λ)f(α2) (2.63)

Let α1 = cos(θp − θq) and α2 = cos(θp + θq), then we have

ρ2 = arccos2(λ cos(θp − θq) + (1− λ) cos(θp + θq)) (2.64)

≤ λ arccos2(cos(θp − θq)) + (1− λ) arccos2(cos(θp + θq)) (2.65)

According to the bound of θp− θq and θp + θq, two cases are discussed separately.
Case (a): If xp,xq are on the upper hemisphere Sd+, which means xp1 ≥ 0

and xq1 ≥ 0. Then 0 ≤ θp ≤ π
2
, 0 ≤ θq ≤ π

2
. Therefore, −π ≤ θp − θq ≤ π and

−π ≤ θp + θq ≤ π. Moreover,

arccos2 (cos (θ)) = θ2, θ ∈ [−π, π] (2.66)

Therefore,

ρ2 ≤ λ arccos2(cos(θp − θq)) + (1− λ) arccos2(cos(θp + θq)) (2.67)

= λ(θp − θq)2 + (1− λ)(θp + θq)
2 (2.68)

= ξ2 (2.69)
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Figure 2.7: θ2 ≥ arccos2 (cos (θ))

Case (b): If 0 ≤ θp ≤ π, 0 ≤ θq ≤ π. Therefore, −2π ≤ θp − θq ≤ 2π and
−2π ≤ θp + θq ≤ 2π. The relationship between θ2 and arccos2(cos(θ)) are shown
in Fig. 2.7.

arccos2 (cos (θ)) ≤ θ2, θ ∈ [−2π, 2π] (2.70)

Therefore,

ρ2 ≤ λ arccos2(cos(θp − θq)) + (1− λ) arccos2(cos(θp + θq)) (2.71)

≤ λ(θp − θq)2 + (1− λ)(θp + θq)
2 (2.72)

= ξ2 (2.73)

Combing case (a) and (b), ρ2 ≤ ξ2. Because of the non-negativeness of ρ and
ξ, then it follows that ∠(xp,xq) ≤ ‖ϕp −ϕq‖ .

In fact, lemma 2.4 can be considered as a special case of lemma 2.6. Specifically,
lemma 2.4 describes the relationship between between unit quaternions and
solid π-ball in 3 dimension. However, lemma 2.6 describes the n-sphere and its
corresponding n-dimensional solid ball. Since lemma 2.4 is core part in rotation
search theory, which provides globally optimal solutions in 3-dimensional space,
lemma 2.6 can be applied in the globally optimal solutions in n-sphere.
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Chapter 3

Globally Optimal Direction
Estimation in Atlanta World

This chapter is an application of lemma 2.6 in unit sphere (S2). The core idea is
applying the BnB algorithm to solve vertical direction in Atlanta world estimation
problem, which inherently includes a unit sphere constraint. This chapter is a
modified version of

• Liu, Yinlong, Guang Chen, and Alois Knoll. Globally optimal vertical
direction estimation in Atlanta World. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020).

It has been reproduced here with the permission of the copyright holder.

3.1 Background

In man-made environments, scenes usually have structural forms (e.g., the layout
of buildings and many indoor objects such as furniture), which can be repre-
sented by a set of parallel and orthogonal planes [112]. Atlanta world makes
an assumption that the man-made scene can be modeled by a horizontal plane
(e.g., ground plane) and many vertical planes (e.g., buildings and walls), then
the normals of the planes, which are called world frames, can describe the scenes
abstractly. In other words, one vertical frame and multiple horizontal frames
could represent Atlanta world [113,114]. Therefore, it is a crucial step to estimate
these vertical and horizontal frame directions in computer vision applications,
which is named Atlanta frame estimation [114,115]. More specifically, structural
world frame estimation could be utilized as key modules for various high-level
vision applications such as scene understanding [112,116] and SLAM [117,118].

Mathematically, an orientation in 3D Euclidean space corresponds to a point
in the unit sphere (i.e., S2, S2 = {x ∈ R3 : ‖x‖ = 1}). This means that the
Atlanta frame estimation which estimates multiple orientations is a multiple-
clustering (also multi-model fitting) problem in S2. There have been many general
multiple-clustering algorithms [119–121] and some of them have been applied in
structural world frame estimation [122,123]. However, Atlanta frame estimation
is not exactly the same as the general multiple-clustering problem. It has some
special constraints that all horizontal frames are in a plane and the vertical
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frame is parallel to the normal of the plane. These special constraints reflect
essential properties of the Atlanta world assumption. If these constraints are
omitted, it will not only lead to a significant decrease in accuracy, but also increase
the dimensionality of the problem. Furthermore, most of the adopted multiple-
clustering algorithms cannot guarantee global optimality when there are many
outliers in observations [103,124]. Therefore, recent developments in structural
world frame estimation highlight the imminent need for robust and globally
optimal methods by considering the above special orthogonal constraints [93,115].

Recently, Manhattan frame estimation [112], which is a special case of the
Atlanta frame estimation, is solved efficiently by a branch-and-bound (BnB)
method with the orthogonal constraints [93]. However, when the BnB method is
extended to the Atlanta world [114,115], two problems appear,

1. The algorithm requires the number of Atlanta frames to be specified, and
it is rare for this number to be known in advance. Although an automatic
method is proposed to estimate the number of horizontal directions in [115],
if it is over- or under-estimated, the global optimum may not occur in the
correct direction.

2. It will suffer the curse of dimensionality [125]. There are a considerable
number of horizontal directions, whose relationships are unknown, which
is different from the Manhattan world assumption. Consequently, the
dimensionality of the problem will increase with the number of horizontal
frames, and thus the runtime of the BnB algorithm will increase greatly.

We focus on estimating the unique vertical direction instead of all directions in
Atlanta world at once. There are two advantages in comparison with the one-time
solving-all-directions methods, as follows

1. More flexible. The vertical direction is unique in Atlanta frames, and we
can estimate the vertical direction even though we do not know the total
number of the horizontal directions. Additionally, we can also estimate the
vertical direction from some irregular Atlanta world scenes (e.g., cylindrical
buildings in Atlanta world, whose horizontal directions number →∞).

2. More efficient. Vertical direction estimation is solved in a closed two-
dimensional space S2, which is a low-dimensional problem. In other words,
only estimating vertical direction can significantly avoid the curse of dimen-
sionality in Atlanta world.

Furthermore, estimating the vertical direction first is usually favorable for
following operations in practical applications (e.g., scene classification [126],
parsing indoor scenes [127] and point set registration [128]). Specially, it is also
helpful for estimating other horizontal Atlanta frames, because given the vertical
direction, all other horizontal directions will be in a plane, and estimating the
other horizontal directions will be a one-dimensional clustering problem in angular
space [115]. In other words, given the vertical direction in Atlanta world, it is
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easy to estimate other horizontal directions with or without knowing the number
of horizontal frames [115,129].

3.2 Related Work

There is a large body of literature concerned with structural world frame estima-
tion [93,112,115,130]. Since it is a clustering problem in S2 with some orthogonal
constraints, we first review the works that apply the classical clustering or fitting
method. With the definition of Atlanta world, Expectation Maximization (EM)
type algorithms, which are popular for solving the chicken-and-egg problems [49],
are applied in direction estimation [113]. However, the EM-type algorithms are
local methods and have no guarantee of global optimality. Therefore, there is an
evident risk of local minima, and their performances rely heavily on good initial-
ization [131]. Besides, the RANdom SAmple Consensus (RANSAC) [34] type
multi-structure estimation algorithms (e.g., T-linkage [47] and J-linkage [132])
are applied in structural direction estimation [122, 123]. These RANSAC-type
methods are fast, accurate and have the best performances in many cases, but
their solution is sub-optimal due to their obvious heuristic nature [115]. More
recently, Straub et al. [112] propose a real-time capable inference algorithm by
considering the orthogonal constraints, which uses an adaptive Markov-Chain
Monte-Carlo sampling algorithm.

However, when there are lots of outliers in the measurements, these above
methods are sub-optimal [115]. To assure global optimality, J. Bazin et al. propose
globally optimal methods [93, 103, 114, 115, 124] by applying a branch-and-bound
algorithm to solve a consensus set maximization problem. The fundamental
theory of these global methods is rotation search [83,92]. Specifically, the problem
is solved by combining Interval Analysis theory with BnB algorithm in [124].
By contrast, the method in [103] is a natural application of Hartley and Kahl’s
rotation search theory in SO(3) [92]. Furthermore, 2D-EGI (Extended Gaussian
Image) and its integral image are applied in [93] to accelerate the calculation of
the bounds in rotation search. Recently, rotation search theory is also extended
to Atlanta frame estimation in [114,115].

However, Atlanta world is more complicated than Manhattan world geomet-
rically, since it has more than three frames. Consequently, the global searching
method in [114] requires the number of horizontal directions to be hand-tuned
according to the scene, which seems unrealistic in practical applications. There-
fore, an automatic two-stage method (meta-BnB) is proposed in [115] to estimate
the number of directions. Concretely, it first searches the vertical direction and
the horizontal plane in SO(3), then it estimates the horizontal directions in
one-dimensional angle space. It is worth noting that the meta-BnB is also based
on rotation search theory in SO(3). However, searching vertical directions is
inherently optimized in S2, whose dimensionality is less than that of SO(3).

Since the rotation search theory is closely related to our work, we then briefly
review the rotation search theory. The rotation search theory has achieved great
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success in geometric vision problems, for example, point set registration [52,66],
camera calibration [133,134] and relative pose estimation [92,135]. Because of
the great success of rotation search, there have been several works focusing on
improving the efficiency of the algorithm [52,93,136,137].

More specifically, most of the rotation search methods rely lemma 2.1 and
lemma 2.2 in chapter 2. For completeness, we still list these two lemmas here:

Lemma. For ∀v ∈ S2, Ra,Rb ∈ SO(3), then

∠(Rav,Rbv) ≤ ∠(Ra,Rb) (3.1)

where ∠(Ra,Rb) is the angle lying in the range [0, π] of the rotation RaR
−1
b and

∠(·, ·) denotes the angular distance between vectors.

Lemma. For ∀Ra,Rb ∈ SO(3), then

∠(Ra,Rb) ≤ ‖ra − rb‖ (3.2)

where ra and rb are their corresponding angle-axis representations. These two
lemmas are the basis for the success of the rotation search theory.

Additionally, it is also worth noting that the rotation search usually means
optimization in SO(3), which is closely related to S3. Precisely, the homomorphism
from a unit quaternion sphere (i.e., S3) to SO(3) is a two-to-one mapping, and
then the search domain SO(3) may be represented by a hemisphere (including
equator) of the unit quaternion sphere [106, 137]. However, the estimation of
directions in three-dimensional Euclidean space (i.e., Manhattan or Atlanta
frame) is inherently optimized in S2. Unfortunately, there is still a lack of rigid
theories regarding globally optimal algorithms in S2. In order to estimate the
vertical directions in Atlanta world, we originally propose some new and solid
mathematical conclusions about searching in S2.

3.3 Contribution

To overcome the curse of the dimensionality and avoid the difficulty of requiring
users to specify the number of Atlanta frames, we propose a novel method for
vertical direction estimation in Atlanta world. The contributions of this chapter
are mainly as follows:

• We propose a global searching method for estimating vertical direction,
which is different from conventional rotation search in SO(3) [115]. Since the
domain of the vertical directions is inherently in S2, our searching method
is more efficient at vertical direction estimation.

• Four new different bounds for BnB algorithm are investigated. In contrast to
rotation search theory in SO(3), more parametrizations for the hemisphere
are considered, including exponential mapping, stereographic projection
and the sphere coordinate system. To the best of our knowledge, we are
the first to propose such bounds in S2 to solve the structural world frame
estimation problem.
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3.4 Methods

3.4.1 Problem Formulation

In this chapter, we estimate the vertical direction from the surface normals in
Atlanta world. We denote the input normal set as N = {nj}Nj=1, where nj ∈ S2 is
the j-th effective unit normal, and N is the number of input normals. In addition,
the unknown-but-sought vertical direction is denoted as v. It is in a hemisphere
(S2+), which is defined as:

S2+ = {x ∈ S2|x3 ≥ 0} (3.3)

where x = [x1, x2, x3]
T is a unit vector in R3.

To robustly estimate vertical direction, we then apply the inlier maximization
approach to formulate the objective function as

max
v∈S2+

N∑
j=1

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
(3.4a)

S‖
+

j = I
(
∠(v,nj) ≤ ε

)
(3.4b)

S‖
−

j = I
(
∠(v,nj) ≥ π − ε

)
(3.4c)

S⊥j = I
(
|∠(v,nj)−

π

2
| ≤ ε

)
(3.4d)

where I(·) is an indicator function which returns 1 if the condition · is true and 0
otherwise. ∨ is the logical OR operation. | · | is the abs function and 0 < ε < π/2
is the inlier threshold. Eq. (3.4b), (3.4c) and (3.4d) mean that only the surface
normals, which are parallel or perpendicular to vertical direction, are inliers.

Additionally, because nTj v = cos(∠(v,nj)), and when x ∈ [0, π], cos(x) is a
monotonically decreasing function, then an equivalent formulation can be given
by

max
v∈S2+

N∑
j=1

I

(
Q
‖
j ∨Q⊥j

)
(3.5a)

Q
‖
j = I

(
|nTj v| ≥ cos(ε)

)
(3.5b)

Q⊥j = I
(
|nTj v| ≤ sin(ε)

)
(3.5c)

Note that rotation search based method [115] finds an optimal rotated motion
R rather than the optimal direction vector v directly. Concretely, given an initial
direction vector v0 = [0, 0, 1]T and because R ∈ SO(3), then v = Rv0 ∈ S2. For
estimating vertical direction, it is sufficient to search the entire rotation domain
and find the optimal R to satisfy that Rv0 is the optimal vertical direction.
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3.4.2 Branch-and-Bound Algorithm

Finding the optimal v ∈ S2+ to maximize the cardinality of the inlier set is by no
means a trivial problem [138,139]. Additionally, the outlier observations, which
are unavoidable in the real applications, increase the hardness of the estimation
problem, because it is well known that exactly distinguish inliers and outliers to a
general outlier-contaminated robust estimation problem is NP-hard [78, 140, 141].

To obtain the robust optimal vertical direction, we then use the BnB algorithm.
The BnB algorithm is one of the most commonly used tools for solving NP-
hard optimization problems, and it is widely applied in many global optimization
problems [142]. Briefly, the BnB algorithm recursively divides the search space into
smaller spaces and estimates the upper bound and lower bound of the optimum
in each subspace. Then, it removes the sub-spaces which cannot produce a
better solution than the best one found so far by the algorithm. This process is
repeated until the best optimum is found within the desired accuracy. The BnB
algorithm for estimating vertical direction globally in Atlanta world is outlined
in Algorithm 1. It is worth noting that the algorithm only needs the surface
normals and the inlier threshold as the inputs. Specially, it needs no the prior
knowledge of the number of horizontal frames.

Algorithm 1: Globally Searching Vertical Direction

Input: surface normal set {nj}Nj=1, inlier threshold ε
Output: optimal vertical direction v∗

1 Initialize the searching domain D, upper bound U ← N , lower bound
L← 0, the best branch B← D and a queue q ← ∅;

2 while |U − L| > 0 do
3 Divide the best branch B into sub-branches;
4 Estimate the bounds for each sub-branch {Li, Ui}Ni=1;
5 Add the sub-branches with their bounds into q;
6 Update L← max{Li}, U ← max{Ui} for all branches in q;
7 Remove the branch that Ui < L in q ;
8 Update the best branch B, which has the maximum upper bound in q;
9 Remove the best branch from q;

10 end
11 v∗ ← center point in best branch B

The key of the BnB algorithm is estimating the upper and lower bounds of
the optimum in each subspace tightly and efficiently. Accordingly, two general
bounds are proposed as follows:

Proposition 3.1 (General bounds-1). Given a branch B, if ∃vc ∈ B, ∀v ∈
B, φj , max∠(v,nj), φ

j
, min∠(v,nj), and φj = ∠(vc,nj), then the upper

bound can be:
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Us(B) =
N∑
j=1

I

(
S⊥j
(
φ
j
, φj
)
∨ S‖

+

j

(
φ
j

)
∨ S‖

−

j

(
φj
))

(3.6a)

S‖
+

j

(
φ
j

)
= I
(
φ
j
≤ ε
)

(3.6b)

S‖
−

j

(
φj
)

= I
(
φj ≥ π − ε

)
(3.6c)

S⊥j
(
φ
j
, φj
)

= I
(
φ
j
− ε ≤ π

2
≤ φj + ε

)
(3.6d)

the lower bound can be:

Ls(B) =
N∑
j=1

I

(
S⊥j
(
φj
)
∨ S‖

+

j

(
φj
)
∨ S‖

−

j

(
φj
))

(3.7a)

S‖
+

j

(
φj
)

= I
(
φj ≤ ε

)
(3.7b)

S‖
−

j

(
φj
)

= I
(
φj ≥ π − ε

)
(3.7c)

S⊥j
(
φj
)

= I
(
|φj −

π

2
| ≤ ε

)
(3.7d)

Proof. To prove general bounds-1 are effective bounds to be nested in the BnB
algorithm, we need to prove Eq. (3.6) is an upper bound and Eq. (3.7) is a lower
bound. Besides, we must prove that as B collapses to a single point, the gap of
the upper and lower bounds converges to zero.

To prove Eq. (3.6) is an upper bound, it is sufficient to show that ∀v ∈ B, if
nj contribute 1 to the objective, it must contribute 1 to Eq. (3.6).

Observe

S‖
+

j = I
(
∠(v,nj) ≤ ε

)
= 1 (3.8)

⇒ ∠(v,nj) ≤ ε (3.9)

⇒ φ
j
≤ ∠(v,nj) ≤ ε (3.10)

⇒ I
(
φ
j
≤ ε
)

= 1 (3.11)

⇒ S‖
+

j = 1 (3.12)

Similarly,

S‖
−

j = I
(
∠(v,nj) ≥ π − ε

)
= 1 (3.13)

⇒ ∠(v,nj) ≥ π − ε (3.14)

⇒ φj ≥ ∠(v,nj) ≥ π − ε (3.15)

⇒ I
(
φj ≥ π − ε

)
= 1 (3.16)

⇒ S‖
−

j = 1 (3.17)
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And

S⊥j = I
(
|∠(v,nj)−

π

2
| ≤ ε

)
= 1 (3.18)

⇒ ∠(v,nj)− ε ≤
π

2
≤ ∠(v,nj) + ε (3.19)

⇒ φ
j
− ε ≤ π

2
≤ φj + ε (3.20)

⇒ I
(
φ
j
− ε ≤ π

2
≤ φj + ε

)
= 1 (3.21)

⇒ S⊥j = 1 (3.22)

Thus,

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
= 1⇒ I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
= 1 (3.23)

Then,

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
≥ I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
(3.24)

Therefore,

N∑
j=1

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
≥ max

v∈B

N∑
j=1

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
(3.25)

Thus, Us(B) is an upper bound.
For the lower bound, it is understandable that the maximum value in the

subspace is no less than the function value at any specific point.
Lastly, when the branch B collapses to a single point vb, then vc = v = vb and

φj = φ
j

= φj = ∠(v,nj) = ∠(vc,nj) = ∠(vb,nj). Hence, Us(B) = Ls(B).

Proposition 3.2 (General bounds-2). Given a branch B, if ∃vc ∈ B, ∀v ∈
B,∠(v,vc) ≤ max∠(v,vc) , ψ, then the upper bound can be:

Uq(B) =
N∑
j=1

I

(
Q
‖
j

(
vc, ψ

)
∨Q⊥j

(
vc, ψ

))
(3.26a)

Q
‖
j

(
vc, ψ

)
= I

(
|nTj vc| ≥ cos

(
min{ε+ ψ, π/2}

))
(3.26b)

Q
⊥
j

(
vc, ψ

)
= I

(
|nTj vc| ≤ sin

(
min{ε+ ψ, π/2}

))
(3.26c)

the lower bound can be:

Lq(B) =
N∑
j=1

I

(
Q‖
j

(
vc
)
∨Q⊥

j

(
vc
))

(3.27a)

Q‖
j

(
vc
)

= I
(
|nTj vc| ≥ cos(ε)

)
(3.27b)

Q⊥
j

(
vc
)

= I
(
|nTj vc| ≤ sin(ε)

)
(3.27c)
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Proof. To prove general bounds-2 are effective bounds to be nested in the BnB
algorithm, we first prove Eq. (3.26) is an upper bound and Eq. (3.27) is a lower
bound. Then we prove that as B collapses to a single point, the gap of the upper
and lower bounds converges to zero.

To prove Eq. (3.26) is an upper bound, it is sufficient to show that ∀v ∈ B, if
nj contribute 1 to the objective, it must contribute 1 to Eq. (3.26).

First, if ε+ ψ ≥ π/2, then Q
‖
j = Q

⊥
j = 1. Obviously, Uq(B) is an upper bound.

If 0 ≤ ε+ ψ < π/2, observe

Q
‖
j = I

(
|nTj v| ≥ cos(ε)

)
= 1 (3.28)

⇒

{
I
(
nTj v ≥ cos(ε)

)
= 1 (3.29a)

I
(
nTj v ≤ cos(π − ε)

)
= 1 (3.29b)

For Eq. (3.29a),

I
(
nTj v ≥ cos(ε)

)
= 1 (3.30)

⇒ ∠(v,nj) ≤ ε (3.31)

⇒ ∠(vc,nj)− ∠(vc,v) ≤ ∠(v,nj) ≤ ε (3.32)

⇒ ∠(vc,nj)− ψ ≤ ∠(v,nj) ≤ ε (3.33)

⇒ ∠(vc,nj) ≤ ε+ ψ (3.34)

⇒ I
(
nTj vc ≥ cos (min{ε+ ψ, π/2})

)
= 1 (3.35)

⇒ Q
‖
j = 1 (3.36)

For Eq. (3.29b),

I
(
nTj v ≤ cos(π − ε)

)
= 1 (3.37)

⇒ ∠(v,nj) ≥ π − ε (3.38)

⇒ ∠(vc,nj) + ∠(vc,v) ≥ ∠(v,nj) ≥ π − ε (3.39)

⇒ ∠(vc,nj) + ψ ≥ ∠(v,nj) ≥ π − ε (3.40)

⇒ ∠(vc,nj) ≥ π − ε− ψ (3.41)

⇒ I
(
nTj vc ≤ − cos (min{ε+ ψ, π/2})

)
= 1 (3.42)

⇒ Q
‖
j = 1 (3.43)
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Moreover,

Q⊥j = I
(
|nTj v| ≤ sin(ε)

)
= 1 (3.44)

⇒ π/2− ε ≤ ∠(v,nj) ≤ π/2 + ε (3.45)

⇒

{
π/2− ε ≤ ∠(v,nj) ≤ ∠(vc,nj) + ∠(vc,v)

∠(vc,nj)− ∠(vc,v) ≤ ∠(v,nj) ≤ π/2 + ε
(3.46)

⇒

{
π/2− ε− ∠(vc,v) ≤ ∠(vc,nj)

∠(vc,nj) ≤ π/2 + ε+ ∠(vc,v)
(3.47)

⇒ π/2− ε− ψ ≤ ∠(vc,nj) ≤ π/2 + ε+ ψ (3.48)

⇒ − sin(ε+ ψ) ≤ nTj vc ≤ sin (ε+ ψ) (3.49)

⇒ I
(
|nTj vc| ≤ sin(min{ε+ ψ, π/2})

)
= 1 (3.50)

⇒ Q
⊥
j = 1 (3.51)

Thus,

I

(
Q
‖
j ∨Q⊥j

)
= 1⇒ I

(
Q
‖
j ∨Q

⊥
j

)
= 1 (3.52)

Therefore,

I

(
Q
‖
j ∨Q

⊥
j

)
≥ I

(
Q
‖
j ∨Q⊥j

)
(3.53)

then,
N∑
j=1

I

(
Q
‖
j ∨Q

⊥
j

)
≥ max

v∈B

N∑
j=1

I

(
Q
‖
j ∨Q⊥j

)
(3.54)

Thus, Uq(B) is an upper bound.
For the lower bound, the proof is easy, which is that the function value at a

specific point within the domain is less than or equal to the maximum.
Lastly, when the branch B collapses to a single point vb, then vc = v = vb and

ψ = 0. Hence, Uq(B) = Lq(B).

In fact, if they have the same vc in both general bounds, then Ls = Lq. The
main difference between general bounds-1 and general bounds-2 is the calculation
of the upper bound. More specifically, given a subspace B,

Us(B) ≤ Uq(B) (3.55)

which means general bounds-1 is tighter than general bounds-2.

Proof. To prove Us(B) ≤ Uq(B), it is sufficient to show that given a branch B, if
nj contribute 1 to Us(B), it must contribute 1 to Uq(B).

First, vc ∈ B, ∀v ∈ B,

∠(vc,nj) + ∠(vc,v) ≥ ∠(v,nj) (3.56)

∠(vc,nj)− ∠(vc,v) ≤ ∠(v,nj) (3.57)
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Then,

∠(vc,nj) + ψ ≥ φj (3.58)

∠(vc,nj)− ψ ≤ φ
j

(3.59)

If ε+ ψ ≥ π/2, then Q
‖
j = Q

⊥
j = 1. Obviously, Us(B) ≤ Uq(B).

If 0 ≤ ε+ ψ < π/2, observe

S‖
+

j = I
(
φ
j
≤ ε
)

= 1 (3.60)

⇒ φ
j
≤ ε (3.61)

⇒ ∠(vc,nj)− ψ ≤ ε (3.62)

⇒ ∠(vc,nj) ≤ ε+ ψ (3.63)

⇒ I
(
|nTj vc| ≥ cos(min{ε+ ψ, π/2})

)
= 1 (3.64)

⇒ Q
‖
j = 1 (3.65)

Similarly,

S‖
−

j = I
(
φj ≥ π − ε

)
= 1 (3.66)

⇒ φj ≥ π − ε (3.67)

⇒ ∠(vc,nj) + ψ ≥ π − ε (3.68)

⇒ I
(
nTj vc ≤ − cos(min{ε+ ψ, π/2})

)
= 1 (3.69)

⇒ I
(
|nTj vc| ≥ cos(min{ε+ ψ, π/2})

)
= 1 (3.70)

⇒ Q
‖
j = 1 (3.71)

And

S⊥j = I
(
φ
j
− ε ≤ π

2
≤ φj + ε

)
= 1 (3.72)

⇒ φ
j
− ε ≤ π

2
≤ φj + ε (3.73)

⇒ ∠(vc,nj)− ψ − ε ≤
π

2
≤ ∠(vc,nj) + ψ + ε (3.74)

⇒ π/2− ε− ψ ≤ ∠(vc,nj) ≤ π/2 + ε+ ψ (3.75)

⇒ − sin(ε+ ψ) ≤ nTj vc ≤ sin(ε+ ψ) (3.76)

⇒ I
(
|nTj vc| ≤ sin(min{ε+ ψ, π/2})

)
= 1 (3.77)

⇒ Q
⊥
j = 1 (3.78)

Thus,

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
= 1⇒ I

(
Q
‖
j ∨Q

⊥
j

)
= 1 (3.79)

Therefore,

I

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
≤ I

(
Q
‖
j ∨Q

⊥
j

)
(3.80)

Finally, Us(B) ≤ Uq(B).
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

Above discussions just provide theoretical bounds in the BnB algorithm. In
the following sections, we introduce how to calculate the upper bounds in detail.

3.4.3 Parametrizing the Search Domain

Before estimating the bounds in BnB algorithm, we must first parametrize the
solution space. In this section, we first recall the parametrization of SO(3) in
the rotation search theory [92, 115], and introduce three different parametriza-
tions of S2+. Furthermore, we analyze the similarities and differences in the
parametrizations between SO(3) and S2+.

3.4.3.1 Parametrization of SO(3)

It is well known that the rotation space SO(3) can be minimally parametrized
with the angle-axis vector, whose norm is the angle of rotation, and whose
direction is the axis of the rotation. Therefore, the space of all 3D rotations can
be represented by a solid ball of radius π in R3 [66]. Furthermore, the π-ball
is usually relaxed to a 3D cube for ease of manipulation in the BnB algorithm.
Thus lemma 2.1 and 2.2 can be used to efficiently estimate the bounds [115].

3.4.3.2 Parametrization of S2+: Exponential Mapping

Geometrically, S2+ is a hemisphere in three-dimensional Euclidean space, and
it is inherently a two-dimensional closed space. In order to parameterize S2+

minimally, we apply an exponential mapping method to map the hemisphere to a
2D disk. Concretely, let v = [v1, v2, v3]

T ∈ S2+, then it can be represented by its
corresponding point d ∈ R2 in the disk,

vT =
[
sin(θ)d̂T , cos(θ)

]
(3.81)

where θ ∈ [0, π/2], d̂ is a unit vector in R2 and d = θd̂. Note that the domain
of θ corresponds to v3 > 0, and geometrically, θ is the radius of the disk. In the
BnB algorithm, a square (side=π) circumscribing the mapped disk area is used
as the vertical direction domain for ease of manipulation. The mapping v 
 d
is similar to the mapping from SO(3) to the 3D solid π-ball in rotation search
theory [92]. More specifically, the exponential mapping is closely related to Lie
theory [111, 143]. However, in this thesis we will not rely on any knowledge of
the Lie groups theory without distracting readers’ attention and focus on the
direction estimation problem.

According to lemma 2.6 in Chapter 2, we have

Proposition 3.3. For ∀va,vb ∈ S2+, then

∠(va,vb) ≤ ‖da − db‖ (3.82)

where da,db are corresponding points of va,vb in the 2D disk(see Fig. 3.1).
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3.4 Methods

Figure 3.1: A visual interpretation of Proposition 3.3.

3.4.3.3 Parametrization of S2+: Stereographic Projection

Figure 3.2: Visualization of stereographic projection. A point v ∈ S2+ corresponds
to a point k ∈ R2. A square-shaped branch is relaxed to a circle, which
corresponds to an umbrella-shaped region in S2+.

In geometry, stereographic projection is a particular mapping that can project
a hemisphere to a disk in plane, which means we can also represent the S2+

minimally by applying stereographic projection.
The stereographic projection is visually described as Fig. 3.2. We denote a

point k = [k1, k2]
T ∈ R2 in the equatorial plane and its corresponding point

v = [v1, v2, v3]
T ∈ S2+, and if the projection pole is at [0, 0,−1]T (south pole,

see [144]), then we have:

kT =
[ v1

1 + v3
,

v2
1 + v3

]
(3.83)

vT =
[ 2k1

1 + k21 + k22
,

2k2
1 + k21 + k22

,
1− k21 − k22
1 + k21 + k22

]
(3.84)

Similarly, a square (side=2) circumscribing the mapped disk area is used as
the vertical direction domain in the BnB algorithm. It is worth noting that the

41



Chapter 3 Globally Optimal Direction Estimation in Atlanta World

Figure 3.3: Visualization of the spherical coordinate system. The hemisphere is
flattened to a rectangle, which leads to significant distortion, especially
near the pole.

stereographic projection was also applied to accelerate the calculation in rotation
search [136], which inspires our work.

3.4.3.4 Parametrization of S2+: Spherical Coordinate System

The S2+ can also be parameterized by the spherical coordinate system (Wikipedia:
“spherical coordinate system”). Geometrically, the hemisphere is flattened to a
rectangle (see Fig. 3.3). In the BnB algorithm, the rectangle region can be set
as the initial search domain. For ∀v = [v1, v2.v3]

T ∈ S2+ and its corresponding
point h = [h1, h2]

T , the mapping from the three-dimensional Cartesian coordinate
system to the spherical coordinate system is1

hT =

[
arctan(v2, v1), arctan

(
v3,
√
v21 + v22

)]
(3.85)

where arctan(·, ·) is the four-quadrant inverse tangent function2. Conversely3

vT = [cos(h2) cos(h1), cos(h2) sin(h1), sin(h2)] (3.86)

where −π ≤ h1 ≤ π and 0 ≤ h2 ≤ π/2 are azimuth angle and elevation angle,
respectively.

In summary, the space of SO(3) is parameterized and relaxed to a 3D cube. By
contrast, the parameterization of the hemisphere S2+ are a 2D disk or rectangle.
Accordingly, in the BnB algorithm, the 3D cube is recursively subdivided into
eight sub-cubes, however, the 2D disk or rectangle is recursively subdivide it into
four smaller squares or rectangles. For ease of understanding, we call the point in
the 2D solid disk or rectangle image point, meanwhile we call its corresponding
point pre-image point in S2+.

1https://www.mathworks.com/help/matlab/ref/cart2sph.html
2https://www.mathworks.com/help/matlab/ref/atan2.html
3https://www.mathworks.com/help/matlab/ref/sph2cart.html
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3.4 Methods

3.4.4 Estimating Bounds

In this section, we show how to calculate the bounds with different parameteriza-
tions in detail.

3.4.4.1 Bounds of Rotation Search

We first recall the bounds applied in rotation search. According to lemma 2.5,

∠(Rax,Rbx) ≤ ‖ra − rb‖ (3.87)

Then, we have the following Lemma.

Lemma 3.1 (rotation uncertainty angle bound). Given a cube-shaped rotation
branch Brot, whose center is crot, half-side is σrot. For ∀R ∈ Brot,∀v0 ∈ S2,

∠
(
Rv0,Rcv0

)
≤
√

3σrot , ψrot (3.88)

where Rc is the matrix representation of crot. Let initial vertical direction
v0 = [0, 0, 1]T , Rv0 = vrot and Rcv0 , vrotc . Then,

∠(Rv0,Rcv0) ≤ ψrot ⇒ ∠(vrot,vrotc ) ≤ ψrot (3.89)

Observe that it satisfies the conditions of Proposition 3.2: vrot → v, vrotc → vc,
ψrot → ψ and {Rv0|R ∈ Brot} → B.

Then, given a divided cube-shaped rotation branch Brot, the bounds can be

U rot =
N∑
j=1

I

(
Q
‖
j

(
vrotc , ψrot

)
∨Q⊥j

(
vrotc , ψrot

))
(3.90)

Lrot =
N∑
j=1

I

(
Q‖
j

(
vrotc

)
∨Q⊥

j

(
vrotc

))
(3.91)

Note that similar bounds are widely used in many geometrical vision prob-
lems [93, 115], which are not our original contributions. Besides, it is worth
noting that there seems to be a tighter bound than Eq. (3.88) in [52], however,
to calculate the bound efficiently, it is based on two unproven assumptions.

3.4.4.2 Bounds using Exponential Mapping

According to Proposition 3.3, we have,

Proposition 3.4. Given a square-shaped branch Bexp in exponential mapping
plane, whose center is dexpc , and half-side is σexp. For ∀d ∈ Bexp,

∠(v,vexpc ) ≤
√

2σexp , ψexp (3.92)

where vexpc ,v ∈ S2 are pre-image points of dexpc and d.
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

Figure 3.4: Visualization of exponential mapping. Two points va,vb ∈ S2+ correspond
to two points da,db ∈ R2 and ∠(va,vb) ≤ ‖da − db‖. A square-shaped
branch, whose center is dexpc , is relaxed into a circle in R2. Then the
pre-image of the circle is relaxed into a spherical patch, whose center is
vexpc , in S2. ψexp is the radius of the relaxed circle in the 2D plane.

Proof. This proposition can be derived as follows:

∠(v,vexpc ) ≤ ‖d− dexpc ‖ ≤
√

2σexp (3.93)

which follows Proposition 3.3 (see Fig. 3.4).

Proposition 3.4 and lemma 3.1 have similar formulations. However, to the best
of our knowledge, it is the first time Proposition 3.4 has been explicitly introduced
to the computer vision field. Obviously, given square-shaped branch Bexp in the
exponential mapping plane, according to Proposition 3.2, the bounds can be:

U exp
q =

N∑
j=1

I

(
Q
‖
j

(
vexpc , ψexp

)
∨Q⊥j

(
vexpc , ψexp

))
(3.94)

Lexpq =
N∑
j=1

I

(
Q‖
j

(
vexpc

)
∨Q⊥

j

(
vexpc

))
(3.95)

3.4.4.3 Visual Interpretation of the Upper Bound using Exponential
Mapping

In the proposed exponential mapping method, the hemisphere is flatten to a solid
disk, which is then relaxed to its circumscribed square. In BnB algorithm, the
upper bound for a sub-branch is constructed by geometrical relaxation. In this
part, we explore the relaxation geometrically. Specifically, we draw relaxation
region and the original sub-branch in the sphere and the solid disk, see Fig. 3.5.
Evidently, in the exponential mapping, the square-shaped branch will correspond
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3.4 Methods

to an irregular shape in the sphere (bounded by green line). The relaxed circle-
region for sub-branch in the disk is also corresponding to an irregular shape in
the sphere(bounded by red line). However, using lemma 2.6, the irregular shape
can be bounded by a sphere patch (blue circle bounded umbrella-shaped patch).

Figure 3.5: Geometric interpretation of the upper bound using exponential mapping

One may be curious about cases that the sub branch is across the boundary
(equator), or the sub-branch is out of the hemisphere and is in the opposite
hemisphere. We then draw the cases in Fig. 3.6.

From the figures, we can find that when the branch is far away from the original
point, it will deform drastically, especially when the distance is greater than π

2

(out of hemisphere). It means the relaxation is becoming loose. Fortunately,
hemisphere is enough for our proposed globally optimal solutions. Evidently, in a
hemisphere, the relaxation is quit tight.

3.4.4.4 Bounds using Stereographic Projection

Stereographic projection has a crucial property: circles are projected as circles
(circle preserving [136, 145]). We can use this property to calculate the bound
based on stereographic projection.

Proposition 3.5. Given a square-shaped branch Bste in stereographic projection
plane, and its circumscribed circle is Cste

2D. The pre-image of Cste
2D is Cste in S2,

whose radius is σste and the direction of its center point is vstec ; ∀k ∈ Bste, v is
its pre-image point,

∠(v,vstec ) ≤ arcsin(σste) , ψste (3.96)

Proof. Because k ∈ Bste ⊂ Cste
2D, then its pre-image point v ∈ Cste. The angle of

v and vstec must be no greater than the maximum angle ψste (see Fig. 3.7).
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3.4 Methods

Figure 3.7: The geometry of a square-shaped branch in stereographic projection
plane. A square-shaped branch (k1,k2,k3,k4) is projected to a domain
(v1,v2,v3,v4) in S2. The radius of its circumscribed circle is σste, and the
direction of the center point is vstec , then ψste = ∠(v1,v

ste
c ) = arcsin(σste).

We then explain how to calculate ψste and vstec in detail. Given a square-
shaped branch Bste in the 2D plane, its four vertexes (k1,k2,k3,k4) must be
in the circumscribed circle Cste

2D (see Fig. 3.7). Then the pre-image points
(v1,v2,v3,v4) of the vertexes must be in Cste. The direction of the center
point vstec is perpendicular to the plane crossing the circle Cste. Hence, vstec is
perpendicular to any vector in the circle-plane, which means vstec ⊥ (v1− v2) and
vstec ⊥ (v1 − v3). Let vcross , (v1 − v2)× (v1 − v3). Then, vstec = vcross/‖vcross‖
and ψste = ∠(vstec ,v1) = arcsin(σste).

Intuitively, Proposition 3.5 shows that a square-shaped branch in the stereo-
graphic projection plane is relaxed to a solid disk; meanwhile the corresponding
domain in the 3D sphere is also relaxed to an umbrella-shaped patch surrounded
by a circle of radius σste.

Given a square-shaped branch Bste in stereographic projection plane, according
to Proposition 3.2, the bounds can be

U ste
q =

N∑
j=1

I

(
Q
‖
j

(
vstec , ψste

)
∨Q⊥j

(
vstec , ψste

))
(3.97)

Lsteq =
N∑
j=1

I

(
Q‖
j

(
vstec
)
∨Q⊥

j

(
vstec
))

(3.98)

The bounds (Eq. (3.97) and Eq. (3.98)) are called circle bounds using stereo-
graphic projection as the square-shaped branch is relaxed to its circumscribed
circle.
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3.4.4.5 Tighter Bounds using Stereographic Projection

For the stereographic projection, a tighter bound can be found without relaxing
the divided square, and therefore, it does not apply the circle-preserving property.

Given a square-shaped branch Bste in stereographic projection plane, the pre-
image of its center is vstet . v ∈ S2+ is the pre-image point of k ∈ Bste.

φste
j
, min∠(v,nj) (3.99)

φ
ste

j , max∠(v,nj) (3.100)

φstej = ∠(vstet ,nj) (3.101)

Considering the Proposition 3.1, the bounds can be

U ste
s =

N∑
j=1

I

(
S⊥j
(
φste
j
, φ

ste

j

)
∨ S‖

+

j

(
φste
j

)
∨ S‖

−

j

(
φ
ste

j

))
(3.102)

Lstes =
N∑
j=1

I

(
S⊥j
(
φstej
)
∨ S‖

+

j

(
φstej
)
∨ S‖

−

j

(
φstej
))

(3.103)

We then explain the implementation details to calculate φste
j

and φ
ste

j . Geomet-

rically, the pre-image of a line in the stereographic projection plane is a circle
passing through the projection pole in S2 [145]. Hence an edge of the square
corresponds to an arc of the circle (see Fig.3.9). Therefore, given a square-shaped
branch Bste in stereographic projection plane, its pre-image in S2 is a region
surrounded by four arcs. For the j-th surface normal nj, there are three cases
(see Fig. 3.8):

1. ±nj are not in the closed pre-image of the square.

2. nj is in the closed pre-image of the square-shaped branch.

3. −nj is in the closed preimage of the square-shaped branch.

In case (1), it is obvious that φste
j

and φ
ste

j must occur on the edge of Bste.
Therefore, it is sufficient to calculate the angle range between the nj and the four
arcs. We first calculate the angle between nj and an arc. Intuitively, the angle
between nj and an arc may be in a part of a periodic function. Interestingly,
we can get the maximum and minimum angle analytically with stereographic
projection. Let nj = [aj, bj, cj]

T and v be a point in the arc, then

φj = arccos(vTnj) (3.104)

where for x ∈ [−1, 1], arccos(x) returns values in the interval [0, π]. To obtain
the range of φj, it is sufficient to know the range of $ , vTnj.

$ =
2k1 · aj

1 + k21 + k22
+

2k2 · bj
1 + k21 + k22

+
1− k21 − k22
1 + k21 + k22

· cj (3.105)

= 2 · k1 · aj + k2 · bj + cj
1 + k21 + k22

− cj (3.106)
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Figure 3.8: Three cases for estimating range [φste
j
, φ

ste
j ]. (1) ±na are not in the closed

pre-image of the square-shaped branch, then [φste
a
, φ

ste
a ] depends on the

boundary. (2) nb is in the closed pre-image of the square-shaped branch,
then φste

b
= 0. (3) −nc is in the closed pre-image of the square-shaped

branch, then φ
ste
c = π.

If we separate the branches along the coordinate axis in BnB, then it is a univariate
function for each edge, and its derivatives are:

$′k1 =
−2ajk

2
1 − (4cj + 4bjk2)k1 + 2ajk

2
2 + 2aj

(1 + k21 + k22)2
(3.107)

$′k2 =
−2bjk

2
2 − (4cj + 4ajk1)k2 + 2bjk

2
1 + 2bj

(1 + k21 + k22)2
(3.108)

Let $′k1 = 0, we can get two optimal points, of which one corresponds to the
maximum value and the other corresponds to the minimum value.

k∗1 =
cj + bjk2 ±

√
(cj + bjk2)2 + aj(ajk22 + aj)

−aj
(3.109)

Similarly, let $′k2 = 0, we can also get two optimal points:

k∗2 =
cj + ajk1 ±

√
(cj + ajk1)2 + bj(bjk21 + bj)

−bj
(3.110)

However, the optimal points may be outside of the arc because an edge of the
square only corresponds to an arc in S2 not a whole circle. As a result, when
the optimal points are outside the arc, the maximum and minimum value can
be obtained at the endpoints of the arc. In other words, to calculate the angle
range between nj and arc, we need to calculate the optimal points in the whole
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Figure 3.9: The geometry between an edge (ka,kb) of a square-shaped branch and
nj ,nj+1 in stereographic projection. For better visualization, we set
N = [0, 0, 1]T as the stereographic projection pole. For nj , the optimal
points are not in the edge, then the optimal points are the endpoints (ka
and kb). In contrast, for nj+1, the optimal point that corresponds to the
minimum angle is in the edge, but maximum angle occurs at one of the
two endpoints (ka or kb).

circle firstly. If the optimal points are not in the arc, then the angle range is
determined by the endpoints of the arc. Otherwise, the angle range is depending
on the optimal points.

For a square-shaped branch with four edges, [φste
j
, φ

ste

j ] can be obtained by

calculating the angle range between nj and four edges of the square one by one.

In case (2), since nj is in the closed preimage of the divided square-shaped

branch, then φste
j

= 0. However, φ
ste

j still needs to be calculated in edges. Similarly,

in case (3), −nj is in the closed preimage of the square, then φ
ste

j = π, and φste
j

is calculated in edges.

Note that the bounds are tighter than circle bounds using stereographic pro-
jection. The reason is obvious that a square-shaped branch is relaxed to a solid
circle in the circle bounds but not relaxed in the tighter bounds. Additionally,
because the bounds are based on the square, we call the tighter bounds square
bounds using stereographic projection.

3.4.4.6 Bounds using the Sphere Coordinate System

In this part, we introduce the upper and lower bounds using the sphere coordinate
system according to Proposition 3.1.
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Figure 3.10: Estimating [φscs
j
, φ

scs
j ] using the sphere coordinate system. (1) ±na are

not in the closed pre-image of the branch, then [φscs
a
, φ

scs
a ] depends on the

boundary. (2) nb is in the closed pre-image of the branch, then φscs
b

= 0.

(3) −nc is in the closed pre-image of the branch, then φ
scs
c = π.

Given a rectangle-shaped branch Bscs in the azimuth-elevation rectangle, the
pre-image of its center is vscsc . v ∈ S2+ is the pre-image point of h ∈ Bscs.

φscs
j
, min∠(v,nj) (3.111)

φ
scs

j , max∠(v,nj) (3.112)

φscsj = ∠(vscsc ,nj) (3.113)

Then, the bounds can be

U scs
s =

N∑
j=1

I

(
S⊥j
(
φscs
j
, φ

scs

j

)
∨ S‖

+

j

(
φscs
j

)
∨ S‖

−

j

(
φ
scs

j

))
(3.114)

Lscss =
N∑
j=1

I

(
S⊥j
(
φscsj
)
∨ S‖

+

j

(
φscsj
)
∨ S‖

−

j

(
φscsj
))

(3.115)

where φscsj = ∠(vscsc ,nj).

We then explain how to estimate the range [φscs
j
, φ

scs

j ] in detail. Similarly, there

are also three cases (see Fig. 3.10):

1. ±nj are not in the closed preimage of the divided rectangle-shaped branch.

2. nj is in the closed preimage of the rectangle.

3. −nj is in the closed preimage of the rectangle.
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

In case (1), it is understandable that φscs
j

and φ
scs

j must occur on the edges.

Given nj = [aj, bj, cj ]
T , and φj = arccos(vTnj), then to estimate the range of φj ,

it is sufficient to estimate the range of $ = vTnj.

$ = cos(h2) cos(h1)aj + cos(h2) sin(h1)bj + sin(h2)cj (3.116)

If we separate the branches along the coordinate axis in BnB, then it is a univariate
function for each edge, and its derivatives are:

$′h1 = cos(h2)
(
− aj sin(h1) + bj cos(h1)

)
(3.117)

$′h2 = cj cos(h2)− sin(h2)
(
aj cos(h1) + bj sin(h1)

)
(3.118)

Let $′h1 = $′h2 = 0, we can obtain the optimal points (see Fig. 3.11).

h∗1 = {arctan(bj, aj), arctan(−bj,−aj)} (3.119)

h∗2 = arctan
(
cj, aj cos(h1) + bj sin(h1)

)
(3.120)

If the optimal points are inside the edge, then the maximum or minimum value
can be obtained at the optimal points, otherwise, the optimal values are obtained
at the endpoints of the edge. Finally, the range [φscs

j
, φ

scs

j ] can be obtained by

calculating the angle range between nj and four edges of the square one by one.

Figure 3.11: The geometry of calculating the optimal points in the sphere coordinate
system. Given an edge La, which is a part of a circle Ca, all the points
in Ca have the same azimuth h1. Then for ∀nj = [aj , bj , cj ]

T ∈ S2+,
the minimum angle between nj and Ca must occur at [h1, h

∗
2]
T .Given

an edge Lb, which is a part of a circle Cb, all the points in Cb have the
same elevation h2. Then for ∀nj = [aj , bj , cj ]

T ∈ S2+, the minimum and
maximal angle between nj and Cb must occur at [arctan(bj , aj), h2]

T

and [arctan(−bj ,−aj), h2]T , respectively.

In case (2), nj is in the closed pre-image of the square-shaped branch, then
φscs
j

= 0. However, φ
scs

j still needs to be calculated in edges. Similarly, in case (3),
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3.4 Methods

Table 3.1: Different settings for different bounds in Algorithm 1.

Methods Upper Lower Search domain

RS U rot Lrot 3D cube (side=2π)
exp-BnB U exp

q Lexpq 2D square (side=π)
spc-BnB U ste

q Lsteq 2D square (side=2)
sps-BnB U ste

s Lstes 2D square (side=2)
scs-BnB U scs

s Lscss 2D rectangle (2π × π/2)

−nj is in the closed pre-image of the square, then φ
scs

j = π, and φscs
j

is calculated

in edges.

3.4.4.7 Comparison of the Bounds

To show the relaxation and the tightness, in this section, we compare these bounds
(Table 3.1) geometrically.

Bounds of rotation search. The search domain is parametrized as a 3D
cube. In BnB, for each divided sub-cube, it is first relaxed to its circumscribed
ball and then relaxed to a region in quaternion sphere (lemma 2.2). Lastly, it is
relaxed to a spherical patch in S2 using Lemma 2.1.

Bounds using exponential mapping (exp bounds). The search domain
is parametrized as a 2D square. The divided sub-square is first relaxed to its
circumscribed circle and then relaxed to a spherical patch in S2 (Proposition 3.4).
Therefore, it has a two-step geometrical relaxation.

Circle bounds using stereographic projection (ste-cirlce bounds).
The search domain is parametrized as a 2D square. The divided sub-square
is first relaxed to its circumscribed circle, which corresponds to a spherical patch
in S2 (circle preserving). In geometric, it has only one-step relaxation.

Square bounds using stereographic projection (ste-square bounds).
The search domain is the same as that of the ste-circle bounds, however, the
ste-square bounds have no geometrical relaxations.

Bounds using the sphere coordinate system (scs bounds). The search
domain is parametrized as a 2D azimuth-elevation rectangle, which leads to
significant distortions. Nonetheless, they have no geometrical relaxations.

Note that what we say about geometrical relaxation is only for one specific
input. There is another relaxation for the objective, which relaxes the connections
among the inputs. In other words, for a large branch, it hardly obtains the upper
bound simultaneously for all inputs.

Computational efficiency. The exp bounds and the ste-circle bounds are
calculated more efficiently than the ste-square bounds and the scs bounds. This
is because to estimate φj and φ

j
, it is needed to calculate the angle range between

the nj and four edges of the branch in the ste-square bounds and the scs bounds.
However, given a branch B, all {nj}Nj=1 share the same ψ in the exp bounds and
the ste-circle bounds.
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

Although there have different bounds, branching and pruning processes are
repeated similarly until the difference between the upper and lower limits is less
than 1, then the algorithm terminates.

3.5 Experiments

In this section, we verify the validity of the proposed method on challenging
synthetic and real-world data. Firstly, we compared our proposed methods
with RANSAC and the rotation search method to demonstrate robustness and
efficiency. Then, full Atlanta frame estimation experiments were conducted to
verify that estimating the vertical direction was helpful for estimating all Atlanta
frames. Lastly, we tested the proposed methods in two real-world datasets to
verify the practicality. All methods were implemented in Matlab 2019a and
executed on an AMD Ryzen 7 2700X 3.7GHz CPU.

3.5.1 Experimental Setting

The settings of approaches/pipelines run on experiments were as follows:

• RANSAC: The number of minimal sample subsets was 2. It could get
three directions from two inlier-inputs (two inlier directions and its cross
product direction), and one of them might be the vertical direction. Besides,
the confidence level ζ = 0.99 was used for the stopping criterion [34]. The
number of iterations was typically taken as⌈ log(1− ζ)

log(1− (1− ρ)2)

⌉
(3.121)

where ρ was the outlier proportion, d·e returned the nearest integer greater
than or equal to the input.

• RS: Algorithm 1 with the rotation search bounds. Note that the bounds
were also used in meta-BnB in [115]. We did not use the Extended Gaussian
Image (EGI) and its integral image [93, 115], because we focused on the
geometry and the validity of the proposed bounds. There may be more
efficient bounds calculation methods for the proposed bounds but it is
outside of the scope of this paper.

• exp-BnB: Algorithm 1 with the proposed bounds using the exponential
mapping.

• spc-BnB: Algorithm 1 with the proposed circle bounds using the Stereo-
graphic Projection.

• sps-BnB: Algorithm 1 with the proposed square bounds using the Stereo-
graphic Projection.
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3.5 Experiments

• scs-BnB: Algorithm 1 with the proposed bounds using the Sphere Coordi-
nate System.

In addition, to simulate the corrupted inputs in the synthetic experiments,
noise and outliers were added. For noise, ej ∈ R3 was the j-th random vector,
whose elements were randomly and uniformly distributed in the interval [−1, 1].
The noise was simulated by

nj ←−
nj + κej
‖nj + κej‖

(3.122)

where κ was the amplitude of noise. For outliers, random orientations were added
into the inputs. The total number of inputs was denoted N and the number of
outlier inputs was denoted No, whereupon ρ = No/N was the outlier proportion.

3.5.2 Synthetic Data Experiments

3.5.2.1 Synthetic Atlanta World

To simulate synthetic Atlanta world data, a random orientation was generated
as the vertical direction (vgt). Except where otherwise specified, 20% inlier
inputs were parallel to the vertical direction, and the other 80% inlier inputs
were randomly generated to be perpendicular to the vertical direction and thus
in the ”horizontal plane”. Note that the number of the horizontal frames were
not specified. The inlier threshold was ε = arctan(κ) according to the noise level
in all the synthetic experiments. Once the vertical direction was estimated as v∗,
the error was calculated by

arccos(abs(vTgtv
∗)) (3.123)

To evaluate the results of the experiment, the error and runtime were recorded.
Additionally, the iterations of BnB algorithm with different bounds were also
recorded. Moreover, to reduce the randomness, 500 trials were repeated in each
setting.

Controlled experiments. We first tested all the methods with different
outlier ratios ρ = {0.1, · · · , 0.6} and different noise levels κ = {0.005, 0.010, 0.020}.
The number of input was set N = 500. The results are shown in Fig. 3.12. From
the results, we can draw the following conclusions:

• All the four types of bounds in S2 and the bounds of rotation search could
be nested into the BnB algorithm to estimate the vertical direction globally
in Atlanta world.

• The BnB algorithms with different bounds in S2 had different efficiencies.
Nonetheless, searching in S2 was more efficient than searching in SO(3).

• Broadly, the exp-BnB and the spc-BnB had similar efficiency. The sps-BnB
and the scs-BnB had similar efficiency. More specifically, the first two were
more efficient than the last two.
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

• Generally, the sps-BnB and the scs-BnB had fewer iterations than the
exp-BnB and the spc-BnB. It revealed that the sps bounds and the scs
bounds were tighter, which was consistent with the previous theoretical
analysis.

There are three main reasons why the rotation search method is rather inefficient
for vertical direction estimation.

1. Multiple solutions. Since Rv0 = v∗, if the initial direction v0 and the
optimal vertical direction v∗ are fixed, there are numerous solutions for
R [146]. Specifically, if Rv0 = v∗ holds, then RvRv0 = Rvv

∗ = v∗ holds,
where Rv is an arbitrary rotation about axis v∗. Therefore, all possible
RvR are solutions. For the BnB algorithm, if there are multiple solutions,
there are many near-optimal branches, then the BnB algorithm must spend
much time pruning the branches.

2. Higher dimensionality. Since the vertical direction is inherently in two
dimension, searching in higher dimension leads to lower efficiency.

3. Conservative bound. Since rotation search bounds have a three-step geo-
metrical relaxation, the bounds are relatively conservative.

Furthermore, why did exp-BnB and spc-BnB algorithms run faster despite having
more iterations? We think this was because on one hand, tighter bounds would
remove branches more aggressively and yield fewer iterations. However, on
the other hand, using tighter bounds in BnB might be counter-productive if
calculating the bound itself took significant time.

Challenging experiments. We conducted more experiments on challenging
data. In this part, we only tested the bounds in S2, as the bounds of rotation
search were obviously less efficient. The number of inputs was fixed at N = 500.
First, all methods were tested at different high outlier ratios ρ = {0.65, · · · , 0.9}
and different noise levels κ = {0.005, 0.010, 0.020}. The results are shown in
Fig. 3.13. Second, all methods were tested at different large noise levels κ =
{0.050, 0.100, 0.200} and different outlier ratios ρ = {0.1, · · · , 0.6}. The results
are shown in Fig. 3.14. From all the results, we can draw the following conclusions:

• The exp-BnB had the highest efficiency among all BnB-based methods in
such experimental settings. It is worth noting that in large outlier ratio
cases (ρ ≥ 0.8), the exp-BnB algorithm even had comparable efficiency with
RANSAC.

• The sps-BnB had the least iterations among all BnB-based methods, which
showed the bounds were very tight.

Theoretically, both ste-square bounds and scs bounds have no geometrical
relaxations, then why did scs bounds need more iterations than ste-square bounds
in the challenging experiments? We think this was due to the large distortion
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

Figure 3.15: A synthetic street corner in Atlanta world, which contains six walls and
no ground plane. The task is estimating the Atlanta frames from the
surface normals.

of the search domain. For example, the region near the optimal direction in S2

might be expanded to a scale-up region in azimuth-elevation rectangle, therefore,
the BnB algorithm needed more iterations to prune the near-optimal branches.

3.5.2.2 Full Atlanta Frame Estimation

In this part, we verified the performance of our proposed bounds in the full
Atlanta frame estimation problem. For the sake of fairness, the experiments were
conducted on the synthetic Manhattan world and the rotation search method was
from [103] without EGI acceleration [93]. Our proposed methods first estimated
the vertical frame direction, and then estimated the horizontal frames by a
one-dimension clustering method, which we called sequential methods.

We then introduce how to sequentially estimate full Atlanta frame estimation
(see Fig. 3.15). First, the vertical direction can be estimated by our proposed ver-
tical estimation methods. After obtaining the vertical direction, the Atlanta world
frame estimation problem becomes very easy, because all horizontal directions
are all in the horizontal plane whose normal is parallel to the vertical direction.
Therefore, estimating the horizontal directions with known vertical directions is
a one-dimensional multi-model clustering or fitting problem. There have been
lots of methods could solve the problem(e.g., Gaussian Mixture Models, k-Means
Clustering, Hierarchical Clustering). Nevertheless, we introduce an easy-to-use
method to estimate the horizontal directions in this part.

Firstly, according to the Atlanta world assumption, given the vertical directions
(vv), the j-th horizontal frame (vhj) must satisfy the following inequation:

|∠(vv,vhj)− π/2| ≤ ε (3.124)
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Figure 3.16: One-dimensional clustering method. After filtering the outliers, the re-
maining normals are parameterized by angles, then histogram is appplied
to obtain the horizontal directions.

where ε is the inlier threshold. It gives a rule to reduce the outliers significantly
and reduces the dimensionality of problem to one. Note that we cannot remove
all the outliers in this step.

After filtering the non-horizontal outliers, the remaining normals all lie in
equatorial patch of the normal-sphere as Fig. 3.16. We then use the angles to
represent the normals. Given the vertical direction vv, we first define the 0-degree
direction v0h and 90-degree direction v90h . They are an orthonormal basis4 for the
null space of vTv . By calculating the angle disctance between the j-th remaining
normal nj and {v0h, v90h }, we can represent nj by an angle θj . Note that since nj
and −nj may represent the same structral world frame, we then set θj ∈ [0◦, 180◦].

Next, the task is estimating the clustering centers of {θj}Mj=1, where M is
the number of remaining normals. The clustering centers are corresponding to
the directions of the horizontal frames. Specifically, we apply a Matlab built-
in function histcounts5 to obtain the angle-histogram bin counts. Then, the
clustering centers can be estimated by finding the peaks of the histogram.

4https://ww2.mathworks.cn/help/matlab/ref/null.html
5https://ww2.mathworks.cn/help/matlab/ref/histcounts.html
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3.5 Experiments

To generate the input normals in Manhattan world, we randomly selected
a point Rgt in SO(3) as the Manhattan frames. In other words, each column
of Rgt corresponded to a Manhattan frame. The experimental settings were
N = 500, κ = {0.005, 0.010, 0.020} and ρ was set from 0.1 to 0.6. Once the frame
directions had been estimated as R∗, the estimation error was measured by

mean
(

arccos
(
max(abs(RT

gtR
∗))
))

(3.125)

where mean(·) was the average function; arccos(·) was the element-wise arccosine
function; max(·) was the column-wise max function. It computed the average
error of the three frames.

Note that the solution of rotation search method inherently satisfies the SO(3)
constraint, while the solutions of our sequential methods were determined without
this constraint, as they were formulated for general Atlanta frame estimation.

The results are given in Fig. 3.17. The accuracy of the rotation search method
was slightly better than that of the sequential methods in large noise level. This
was because the rotation search method considered the three orthogonal con-
straints. Nevertheless, the runtime of the rotation search was much greater than
that of the sequential methods, due to the fact that the sequential methods had
lower dimensionality, tighter bounds and fewer iterations in the BnB framework.

3.5.3 Real Data Experiments

3.5.3.1 NYUv2 Data

Figure 3.18: Selected image from NYUv2 data set.

We tested our method on the NYUv2 dataset [147], which contained 1449 RGB
images, along with the corresponding depths, as well as camera information(see
Fig. 3.18). The data involved a variety of indoor scenes that were considered to be
a man-made structural world. In our experiments, we utilized the data to estimate
the vertical direction of the scenes. Concretely, we generated the normals from the
depth image by the Matlab built-in function pcnormals, and estimated the vertical
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Chapter 3 Globally Optimal Direction Estimation in Atlanta World

direction from the downsampled normal data (N ≈ 3000) for all scenes. The
threshold was set to 2◦ in all methods. For RANSAC, ρ = {0.65, 0.75, 0.85, 0.95}
were tested since the ground truth of the outlier ratio of each scene was unknown,
and the sample iteration was determined by ρ (Eq.(3.121)).

Figure 3.19: The distribution of error for different methods in NYUv2 data.

The distribution of error (Eq.(3.123)) is shown in Fig.3.19. The results revealed
that the estimation errors of the BnB algorithms were all concentrated at 0◦ and
90◦. This is because there were some degenerate scenes in the data set, which
were degenerated into the Manhattan assumption, or even worse, only two main
orthogonal frames (Fig.3.21). Estimating vertical direction in such degenerate
scenes might return a frame direction in the horizontal plane. Consequently,
some errors were concentrated at 90◦. Furthermore, when the outlier propor-
tion ρ was set low, the estimation errors of the RANSAC algorithm were not
concentrated. When the outlier proportion ρ was set high, the errors were also
concentrated. Moreover, to demonstrate the results quantitatively, the ε-recall
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Figure 3.20: ε-recall curve in NYUv2 data. (Higher is better)

curve was presented in Fig. 3.20, where the success case was satisfied error < ε
or error > 90◦ − ε.

(a) (b)

Figure 3.21: Degenerate case in NYUv2 data. (a) a degenerate scene that has only
two main frames. (b) the point cloud of the left scene, which is viewed
from the right side.

Furthermore, the four bounds in S2 had different efficiencies. Specifically, the
distribution of iteration and runtime in NYUv2 data are shown in Fig. 3.22.
More specifically, the median runtime and iteration can be found in Table 3.2.
Obviously, the exp-BnB algorithm was the most efficient. On the other hand,
RANSAC ran very fast when the outlier proportion ρ was set low, although it may
have returned incorrect results. If the outlier proportion ρ was set high (ρ = 0.95),
its runtime was longer than that of the exp-BnB algorithm. Besides, to compare
with rotation search, we directly quote the results from [93]. With rotation search
bounds, it needs 117.06s on average to estimate Manhattan frames for each scene
without input sampling. However, with an efficient bounds computation method
like the one proposed in [93], it needs only 0.07s on average.

Lastly, it is worth noting that it is not easy to estimate the outlier proportion
(i.e., ρ) appropriately in various real applications. If ρ is overestimated, RANSAC
needs redundant random sampling, which leads to unnecessary running time. If
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Figure 3.22: The distribution of iteration and runtime in NYUv2 data.

Table 3.2: Median runtime and iteration of different methods in NYUv2 data.

Methods Median time(s) Median iteration

exp-BnB 0.134 816
spc-BnB 0.184 1010
sps-BnB 4.256 478
scs-BnB 4.500 675
RANSAC(ρ = 0.65) 0.007 36
RANSAC(ρ = 0.75) 0.013 72
RANSAC(ρ = 0.85) 0.038 203
RANSAC(ρ = 0.95) 0.344 1840

ρ is underestimated, RANSAC may return incorrect results. In contrast, the
proposed BnB-type methods only need the inlier threshold to be specified and
they always return a globally-optimal solution, which is more adaptable.

3.5.3.2 Outdoor Data

In this part, we verified the validity of our methods with the outdoor scene. The
data set6 was recorded in the old town of Bremen, Germany (see Fig.(3.23)).
It contained 13 3D scans, each with up to 22,500,000 points. Estimating the
vertical direction first may be useful for registering the scenes [128]. For each
scene, it was considered as an Atlanta world and [0, 0,−1]T was roughly set as the
ground truth of vertical direction. We firstly down-sampled the inputs using the
Matlab built-in function pcdownsample. More specifically, a box grid filter was
used to reduce the inputs (N ≈ 400, 000). Then their normals were computed by
pcnormals, and the vertical direction was estimated from the obtained normals.
ρ = {0.8, 0.9} were set in RANSAC. The inlier threshold was set ε = 1◦ for
all methods in these experiments. To emphasize the global optimality of our

6http://kos.informatik.uni-osnabrueck.de/3Dscans/
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3.5 Experiments

proposed algorithms, 200 trials were repeated in each scene. Average runtime
and error were recorded.

Figure 3.23: The whole scene of the Bremen city data, which are merged using markers
as tie points.

The results can be found in Table 3.3 . Note that the ground truth for vertical
direction was roughly set, and the errors were only indicating that the vertical
direction estimation results were roughly correct. In these outdoor settings, all
bounds in S2 can be nested into the BnB algorithm to globally estimate the
vertical direction. Furthermore, the results showed that the exp-BnB and spc-BnB
algorithm had a similar performance and were more efficient. Note that RANSAC
returned incorrect solutions (error > 10◦) occasionally due to its heuristic nature.
That is why their average errors were slightly larger than that of globally optimal
algorithms. Besides, the rotation search method could not terminate in 1800s
(30min) in each scene. However, according to the results in [115], with the help
of an accelerating method, it takes about 80s to estimate Atlanta frames in the
whole scene.

Table 3.3: Vertical direction estimation results in outdoor data.

Methods Average time(s) Average error(◦)

exp-BnB 1.233 1.229
spc-BnB 1.296 1.242
sps-BnB 85.014 1.240
scs-BnB 147.961 1.224
RANSAC(ρ = 0.8) 0.928 1.421
RANSAC(ρ = 0.9) 3.325 1.254
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3.6 Conclusion

We propose a novel method for estimating the vertical direction in Atlanta world.
It obtains the globally optimal solution by applying a BnB algorithm, without
requiring any prior knowledge of the number of frames. Since estimating vertical
direction is inherently a two-dimensional problem, we propose new bounds in S2

for BnB which are different from the conventional bounds in the rotation search.
The experimental results show that all the bounds (in S2 or SO(3)) can be

nested inside the BnB algorithm to obtain the global solution, and the bounds
in S2 outperform the bounds in SO(3), which is the state-of-the-art technique,
for estimating vertical direction globally. Furthermore, these four bounds in
S2 exhibit varying performance. Generally, exp-BnB and spc-BnB have similar
performance and are more efficient. Moreover, although sps-BnB and scs-BnB
have tighter bounds, they are rather inefficient because of the heavy computational
burden. In addition to the quality of the bounds, appropriate parametrization
of the search domain is also an important factor of the efficiency of the BnB
algorithm. We think this is why the sps-BnB is more efficient than the scs-BnB
algorithm.

Lastly, since the sps-BnB has the least iterations, there may be a hope of
accelerating the calculation of the ste-square bounds to obtain a faster BnB
algorithm in further work. In addition, since the ste-square bounds are very
tight in S2 according to the experimental results, similarly, there may be tighter
provable bounds in the rotation search.
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Chapter 4

Globally Optimal Camera
Orientation Estimation from
Line Correspondences

This chapter is regarding applications of rotation search theory in camera pose
estimation. The core idea is to decouple rotation and translation from rigid pose.
After that, we can sequentially solve the decoupled subproblems. Especially, the
globally optimal solution for camera orientation can be obtained. This chapter is
a modified version of

• Liu, Yinlong, Guang Chen, and Alois Knoll. Globally Optimal Camera
Orientation Estimation from Line Correspondences by BnB algorithm. IEEE
Robotics and Automation Letters 6.1 (2020): 215-222.

It has been reproduced here with the permission of the copyright holder.

4.1 Background

Figure 4.1: PnL problem: determining the relative position and orientation of a
camera and an object from line correspondences.

Absolute camera pose estimation is determining the position and orientation of
a camera in the scene, which is a core task in computer vision and robot navigation.

69
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This task can be solved using 2D/3D line feature correspondences, which is also
known as the Perspective-n-Line (PnL) problem [59](see Fig.4.1). It plays an
import role in many computer vision applications, e.g., Simultaneous Localization
and Mapping (SLAM) [148] and robot localization and navigation [149,150]. It is
worth noting that the PnL approach is inherently suitable for texture-less scenes,
e.g., man-made structural environments [151,152].

To address the PnL problem, one of the most important preconditions is
knowing the correspondences between 3D line features in real world and their
2D counterparts in the image plane. Unfortunately, incorrect correspondences,
which are also known as outliers, are usually unavoidable in the real applications.
These mismatches seriously impair the camera pose estimation: even a small
percentage of outliers might significantly decrease the accuracy of outlier-free
algorithms [33]. To reduce the impact of corrupted data, the de facto standard
mechanism is combining an outlier-free PnL algorithm with a RANdom Sample
Consensus (RANSAC) scheme [34,151]. Broadly speaking, RANSAC randomly
samples minimal subsets of the inputs and applies the embedded outlier-free PnL
algorithm to obtain candidate solutions. After repeating the sampling routine
many times, RANSAC returns the best candidate with the largest inlier set as
the final solution, which is also known as a hypothesize-and-verify framework.
However, the randomized nature of RANSAC does provide no guarantee of the
optimality of its solution. In other words, there is no absolute certainty that the
obtained result is a satisfactory solution [57].

Nevertheless, there are some safety-critical applications (e.g., self-driving cars)
which demand that such spatial perception algorithms can provide certifiably
optimal solutions in the presence of noise and outliers [30, 153]. Conventional
methods that combine outlier-free PnL algorithms and RANSAC fail to achieve
this goal. In this thesis, we take a big step towards this objective: we propose
a novel method for obtaining the globally optimal camera orientation from
outlier-contaminated line correspondences. Furthermore, as the camera pose
comprises position (i.e., translation t ∈ R3) and orientation (i.e., rotation R ∈
SO(3)), obtaining the provably optimal camera orientation is usually favorable
for addressing the problem of the certifiably optimal camera pose [154,155].

In addition, many modern vision systems are equipped with Inertial Mea-
surement Units (IMUs), which could provide a prior knowledge of the vertical
direction [150, 156]. Accordingly, we first proposed a singularity-free and thus
more accurate algorithm for the outlier-free known-vertical-direction PnL prob-
lem. Furthermore, for outlier-contaminated cases, a special camera orientation
estimation algorithm with a guarantee of the optimality is proposed.

4.2 Related Work

Since camera pose estimation is a long-history and well-studied task in computer
vision, it can be formulated as many different kinds of problems, e.g., Perspective-
n-Point (PnP) problem [157,158], Perspective-n-Line (PnL) problem [59], and
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pose from points and lines(PnPL) problem [159,160]. These different formulations
share many common techniques, nonetheless, we focus on PnL algorithms, which
are the most related to our thesis.

Conventionally, combing outlier-free PnL algorithms with RANSAC is one of
the most commonly used mechanisms for estimating the camera pose from outlier-
contaminated line correspondences. For the RANSAC scheme [161], some recent
advancements focus on special geometrical problems (e.g., pseudo-convex [162,
163]); other recent advancements still do not change its randomized nature and
still lack absolute certainty that the obtained solution is optimal [164,165]. In
any case, they are not directly used to address PnL problems. Therefore, we
review the most relevant PnL algorithms in detail.

4.2.1 PnL Algorithms

According to the optimizing techniques, we can divide these methods into three
categories:

(a) Locally iterative PnL solutions [166–168]. Generally speaking, these local
iterative algorithms formulate the pose estimation problem as a nonlinear least
squares optimization problem. Unfortunately, the objectives usually are non-
convex because of noise and outliers. Therefore, if the initialization is not carefully
set, these locally iterative algorithms might be trapped in a local optimum, which
might be far from the true camera pose [151].

(b) Algebraic solutions [169–171]. The algebraic algorithms estimate the camera
pose by solving a polynomial system of equations. One of the most important
advantages of these algebraic algorithms is that they can obtain the globally
optimal solution from outlier-free inputs without careful initializing. However, to
obtain a robust solution from outlier-contaminated inputs, they must be nested
inside a non-deterministic RANSAC framework.

(c) Linearized PnL solutions [59, 151]. The linearized PnL methods formulate
the line correspondences as a homogeneous system of linear equation by dropping
some constraints that might compromise the accuracy [156,171]. The final camera
pose can be extracted from the solution of the linear system by adding the
dropped constraints.

It is worth noting that to suppress outlier inputs, these linearized PnL methods
can incorporate with Algebraic Outlier Rejection (AOR [172]) [151]. AOR can
estimate the robust solution of the linear objective very quickly. Therefore, the
camera pose can be recovered from the robust linear solution. However, these
methods usually have a break-point, which means that when the proportion
of outliers reaches the break-point, these methods cannot obtain a satisfactory
solution [151,172].

4.2.2 Known-Vertical-Direction PnL Algorithms

With the help of relatively cheap IMUs, some recent work has focused on es-
timating camera pose from line correspondences with a known vertical direc-
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tion [150,156,173]. In common, they first estimate the camera orientation and
then solve translation. Specially, linearized algorithms are proposed for estimating
camera rotation in [156] and [150]. The authors in [156] pointed out that the
biggest disadvantage of a linear solution is ignoring orthogonality, which might
lead to low accuracy.

To consider the orthogonality of camera rotation, a cubic polynomial solution,
which belongs to the algebraic algorithm, is proposed for determining the camera
orientation [173,174]. However, it employs a singularity-affected rotation parame-
terization that will reduce the accuracy in some cases. In this paper, we apply a
singularity-free rotation parameterization to improve accuracy.

For outlier-contaminated inputs, a novel RANSAC2 algorithm, whose inner
routine requires only two random 2D-3D pairs of line correspondences, is proposed
to estimate the rotation [150]. Actually, one line correspondence is sufficient to
be nested inside RANSAC [175]. Nonetheless, RANSAC still cannot guarantee
the optimality of the solution.

4.3 Rotation Estimation

4.3.1 Mathematical Formulation

Figure 4.2: Line definition and the geometrical constraints in PnL problem.

Given a calibrated camera, the lines in the image plane can be denoted as Lc

in the camera coordinate system {ocxcyczc} and the lines in the real world can
be denoted as Lw in the world coordinate system {owxwywzw} (see Fig. 4.2).
Geometrically, a 3D line can be represented by a point p ∈ R3 on the line and a
unit direction v ∈ R3 denoting the direction of the line, therefore Lc and Lw can
be represented as:

Lc := pc + λcv
c, Lw := pw + λwv

w (4.1)

where λc and λw are parameters describing particular points on each line. Note
that the point pc is not necessarily the corresponding image point of the 3D point
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pw. The objective of PnL is to estimate the camera pose (i.e., rotation/orientation
R and translation/position t) from a set of line correspondences {(Lwi , Lci)}Ni=1.

To obtain globally optimal rotation, we first formulate constraints about rotation
R by constructing an auxiliary variable. For a line correspondence, there is a
projection plane Ω passing through the camera center and both lines. The unit
normal of the plane Ω is denoted by n in the camera coordinate system and it
can be obtained from the line Lc in the image plane:

n =
vc × pc

‖vc × pc‖
(4.2)

For the i-th line pair, there is an important geometrical constraint [156,176].

nTi Rvwi = 0 (4.3)

Furthermore, there is another constraint for translation t.

nTi (Rpwi + t) = 0; (4.4)

Conventionally, the outlier-free PnL algorithms formulate the objective as [171,
176].

min
R

N∑
i=1

(
nTi Rvwi

)2
(4.5a)

min
t

N∑
i=1

(
nTi (Rpwi + t)

)2
(4.5b)

Camera pose can be obtained by optimizing these two objectives sequentially.
However, it is well known that the objectives are sensitive to outliers [59,151]. In
contrast to the outlier-free PnL algorithm, our robust objective is formulated by
maximizing the cardinality of the inlier set [29].

max
R

N∑
i=1

I
(
|nTi Rvwi | ≤ ε

)
(4.6a)

max
t

N∑
i=1

I
(
|nTi (Rpwi + t)| ≤ ε

)
(4.6b)

where ε is the inlier threshold and I(·) is the indicator function. Specifically, I(·)
returns 1 if the condition · is true, and it returns 0 if the condition · is not true.
The maximization cardinality formulation is inherently robust to outliers and is
successfully applied in many applications of robust estimation [29].

It is worth noting that the formulation of Eq. (4.6) naturally decouples rotation
and translation. Normally, to obtain the globally optimal solution of a rigid
pose, nested BnB should be applied [52, 66]. However, the nested BnB algorithm
needs to search a given 6-dimensional space (i.e., SE(3)), which requires a lot of
computing resources. By decoupling the optimization problem in 6-dimensional
space into two optimization sub problems in 3-dimensional space will significantly
reduce computing requirements.
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4.3.2 Branch-and-Bound

We first focus on obtaining the globally optimal solution of camera orientation
(i.e., solving Eq. (4.6a)). To obtain the globally optimal solution, we introduce
the branch-and-bound algorithm (BnB) [177], which is a global optimization
technique that is applied in many geometrical vision problems (e.g., 3D point
cloud registration [66]).

Specifically, the BnB algorithm recursively divides the best possible branch (i.e.,
solution domain) into small branches (i.e., branching), then it calculates the upper
and lower bounds of the optimum in each divided branches (i.e., bounding). By
checking the upper and lower estimated bounds, it removes some divided branch
which cannot produce a better solution than the best one found by the algorithm
so far (i.e., pruning). The branching-bounding-pruning process is repeated until
the desired accuracy is approached and then the optimal solution is found.

Algorithm 2: Camera orientation estimation by BnB

Input: Line correspondences {Lwi , Lci}Ni=1, inlier threshold ε
Output: Optimal camera oritiention R∗

1 Initialize the searching domain D with SO(3);
2 Initialize the branches queue Q← ∅ and the optimal branch B← D;
3 Initialize upper bound EU ← N and lower bound EL ← 0;
4 while |EU − EL| ≥ 1 do
5 Divide B into eight cubes (branching);
6 Add all sub-branches into Q with their lower bounds eL and upper

bounds eU (bounding);
7 Update EL ← max{eiL}, i for all branches in Q;
8 Update EU ← max{eiU}, i for all branches in Q;
9 Take out the branch that has the maxmum lower bound EL from Q and

use it to update optimal branch B and use its center to update R∗;
10 Delete the branches whose eiU < EL, i for all branches in Q (pruning);

11 end

The algorithm for globally optimal rotation estimation using BnB is summarized
in Algorithm 2. To globally search the optimal rotation, SO(3) needs to be
parameterized properly. Accordingly, the minimally parameterized axis-angle
parameterization is used to represent the rotation space [66]. Specifically, a
3D rotation R ∈ SO(3) corresponds to a 3-vector r ∈ R3 whose direction and
norm specify the axis and angle of rotation. Their relationship follows Rodrigues’
rotation formula:

R = exp([r]×) = I + sin(θ)[r]× +
(
1− cos(θ)

)
[r]2× (4.7)

where I is the 3 × 3 identity matrix; θ = ||r|| is the angle of the rotation;
r = r/||r|| is the axis of the rotation; [•]× is the skew-symmetric matrix for a
vector • and exp(·) is the matrix exponential of the SO(3) algebra [178]. With the
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help of axis-angle parameterization, all possible rotations are in a π-ball [66]. For
ease of manipulation, a cube enclosing the π-ball is used as the initial searching
domain. Therefore, the branching process in the BnB algorithm divides the larger
cube into eight sub-cubes.

The key part of the BnB algorithm is estimating the upper and lower bounds
efficiently and tightly in each divided branch. Given a divided cube-shape rotation
branch, whose center is r0, the lower bound of the optimum can be set as

eL =
N∑
i=1

I
(
|nTi Rr0v

w
i | ≤ ε

)
(4.8)

where Rr0 is the matrix form of rotation r0.

Proof. The function value at a specific point (i.e. Rr0 ) within the domain must
be less than the maximum value.

On the other hand, given a divided cube-shape rotation branch, whose center
is r0 and whose side length is φ, the upper bound of the optimum can be set as

eU =
N∑
i=1

I
(
|nTi Rr0v

w
i | ≤ cos

(
barccos(ε)− ψc

))
(4.9)

where Rr0 is the matrix form of rotation r0; ψ , min{
√

3φ/2, π}; b·c is a non-
negative function. Specifically,

bxc =

{
0, x < 0

x, x ≥ 0
(4.10)

Proof. To derive the upper bound, we first introduce lemma 2.5 in Chapter 2:

Lemma. For an arbitrary vector v ∈ R3 and two rotations Rr and Rr0 in matrix
form, r and r0 in angle-axis form, then

∠(Rrv,Rr0v) ≤ ||r − r0|| (4.11)

where ∠(·, ·) is the angle of two vectors. According to lemma 2.5, given a
divided cube-shape rotation branch, whose center is r0 and side is φ, we have

∠(Rrv
w
i ,Rr0v

w
i ) ≤ min{||r − r0||, π} (4.12)

≤ min{
√

3

2
φ, π} , ψ (4.13)

where r is an arbitrary point in the cube, whose matrix form is Rr. According to
triangle inequality
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∠
(
ni,Rrv

w
i

)
≤ ∠

(
ni,Rr0v

w
i

)
+ ∠

(
Rrv

w
i ,Rr0v

w
i

)
(4.14)

≤ ∠
(
ni,Rr0v

w
i

)
+ ψ (4.15)

∠
(
ni,Rrv

w
i

)
≥ ∠

(
ni,Rr0v

w
i

)
− ∠

(
Rrv

w
i ,Rr0v

w
i

)
(4.16)

≥ ∠
(
ni,Rr0v

w
i

)
− ψ (4.17)

Hence,
∠
(
ni,Rr0v

w
i

)
− ψ ≤ ∠

(
ni,Rrv

w
i

)
≤ ∠

(
ni,Rr0v

w
i

)
+ ψ (4.18)

Observe

I
(
|nTi Rrv

w
i | ≤ ε

)
(4.19)

⇔I
(
− ε ≤ nTi Rrv

w
i ≤ ε

)
(4.20)

⇔I
(
− ε ≤ cos

(
∠
(
ni,Rrv

w
i

))
≤ ε
)

(4.21)

⇔I
(

arccos(ε) ≤ ∠
(
ni,Rrv

w
i

)
≤ π − arccos(ε)

)
(4.22)

Also, we note that

arccos(ε) ≤ ∠
(
ni,Rrv

w
i

)
≤ π − arccos(ε) (4.23)

⇒

{
arccos(ε) ≤ ∠

(
ni,Rrv

w
i

)
≤ ∠

(
ni,Rr0v

w
i

)
+ ψ

∠
(
ni,Rr0v

w
i

)
− ψ ≤ ∠

(
ni,Rrv

w
i

)
≤ π − arccos(ε)

(4.24)

⇒

{
arccos(ε) ≤ ∠

(
ni,Rr0v

w
i

)
+ ψ

∠
(
ni,Rr0v

w
i

)
− ψ ≤ π − arccos(ε)

(4.25)

⇒ arccos(ε)− ψ ≤ ∠
(
ni,Rr0v

w
i

)
≤ π − arccos(ε) + ψ (4.26)

⇒ barccos(ε)− ψc ≤ ∠
(
ni,Rr0v

w
i

)
≤ π − barccos(ε)− ψc (4.27)

⇒ − cos(barccos(ε)− ψc) ≤ cos
(
∠
(
ni,Rr0v

w
i

))
≤ cos(barccos(ε)− ψc)

(4.28)

⇒ − cos(barccos(ε)− ψc) ≤ nTi Rr0v
w
i ≤ cos(barccos(ε)− ψc) (4.29)

⇒ |nTi Rr0v
w
i | ≤ cos

(
barccos(ε)− ψc

)
(4.30)

where Eq. (4.27) follows 0 ≤ ∠
(
ni,Rr0v

w
i

)
≤ π.

Therefore,

|nTi Rrv
w
i | ≤ ε (4.31)

⇔ arccos(ε) ≤ ∠
(
ni,Rrv

w
i

)
≤ π − arccos(ε) (4.32)

⇒|nTi Rr0v
w
i | ≤ cos

(
barccos(ε)− ψc

)
(4.33)

Then

I
(
|nTi Rrv

w
i | ≤ ε

)
= 1⇒ I

(
|nTi Rr0v

w
i | ≤ cos (barccos(ε)− ψc)

)
= 1 (4.34)
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Hence,

I
(
|nTi Rrv

w
i | ≤ ε

)
≤ I

(
|nTi Rr0v

w
i | ≤ cos (barccos(ε)− ψc)

)
(4.35)

And,

max
N∑
i=1

I
(
|nTi Rvwi | < ε

)
≤

N∑
i=1

I
(
|nTi Rr0v

w
i | ≤ cos

(
barccos(ε)− ψc

))
(4.36)

Therefore, eU is an upper bound.

In addition, when the given sub branch collapses to a single point, obviously,
eL = eU . Therefore, eL and eU are sufficient to be nested into the BnB algorithm.

4.4 Rotation Estimation with Known Vertical

Direction

Figure 4.3: Geometrical constraints with a vertical direction

4.4.1 Mathematical Formulation

In this section, we consider the special case where the vertical direction is known.
Geometrically, prior knowledge of the vertical direction is a constraint [156], see
Fig. 4.3:

Rvw0 = vc0 (4.37)

where vw0 and vc0 are the unit-norm vertical direction in the world coordinate
system and camera coordinate system, respectively. The solution of Eq. (4.37) is

R = Rvc0
·Rc

w (4.38)

where Rc
w is the rotation that aligns vw0 to vc0 with the minimum geodesic motion

(see [146]); Rvc0
= exp(α[vc0]×) is a rotation that rotates α about axis vc0. Hence,

the objective of our work is to determine α correctly.
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For the i-th line pair constraints:

nTi Rvwi (4.39)

=nTi ·Rvc0
·Rc

wv
w
i (4.40)

=nTi ·
(
I + sin(α)[vc0]× +

(
1− cos(α)

)
[vc0]

2
×

)
·Rc

wv
w
i (4.41)

=(−nTi · [vc0]2× ·Rc
wv

w
i ) · cos(α) + (nTi · [vc0]× ·Rc

wv
w
i ) · sin(α)

+ nTi ·
(
I + [vc0]

2
×

)
·Rc

wv
w
i (4.42)

=ai · cos(α) + bi · sin(α) + ci (4.43)

where ai = −nTi · [vc0]2× ·Rc
wv

w
i ; bi = nTi · [vc0]× ·Rc

wv
w
i ; ci = nTi ·

(
I+[vc0]

2
×

)
·Rc

wv
w
i .

Therefore, given the known vertical direction, the rotation constraint from the
i-th line correspondence is:

nTi Rvwi = ai · cos(α) + bi · sin(α) + ci = 0 (4.44)

4.4.2 Unit Constraint Solution

To address the unknown α, a linear solution is proposed in [150] and [156], where
q1 = cos(α), q2 = sin(α), then for the i-th line correspondence:

ai · q1 + bi · q2 + ci = 0 (4.45)

Hence, q1 and q2 can be determined from the linear system. However, they
may not satisfy the trigonometric constraint q21 + q22 = 1 [150,156]. In addition,
the cubic polynomial solution is proposed in [156, 173, 174]. Specifically, let
q = tan(α/2), then,

cos(α) =
1− q2

1 + q2
, sin(α) =

2q

1 + q2
(4.46)

Therefore, for the i-th line correspondence:

ai
1− q2

1 + q2
+ bi

2q

1 + q2
+ ci = 0 (4.47)

The objective is

min
q

N∑
i=1

(
(ci − ai)q2 + 2biq + ai + ci

)2
(4.48)

The optimal solution should occur at its first derivative equal zero

N∑
i=1

(
a′iq

3 + b′iq
2 + c′iq + d′i

)
= 0 (4.49)
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where a′i = 4a2i + 4c2i − 8aici; b
′
i = 12bici − 12aici; c

′
i = −4a2i + 8b2i + 4c2i ;

d′i = 4aibi + 4bici. Therefore, q can be solved from the third order polynomial
system. However, when α = π, q → +∞ and when α = −π, q → −∞. This is a
singularity-affected parameterization [40], which might reduce the accuracy near
the singularity angle (i.e., ±π).

In this thesis, we apply a singularity-free parameterization to increase the
accuracy. Specifically, the objective is formulated as:

min
N∑
i=1

(ai · q1 + bi · q2 + ci)
2, s.t. q21 + q22 = 1 (4.50)

In contrast to the linear solution, it does not drop the unit-norm constraint.
Additionally, in contrast to the cubic polynomial solution, it does not suffer from
any degeneracy.

Clearly, Eq. (4.50) is a typical Equality Constrained Optimization problem [179].
The Lagrangian formulation is

f =
N∑
i=1

(ai · q1 + bi · q2 + ci)
2 + λ(q21 + q22 − 1) (4.51)

where λ is a Lagrange multiplier. The first-order optimality condition of the
Lagrangian formulation is

f ′q1 = 2
∑N

i=1 a
2
i q1 + 2

∑N
i=1 aibiq2 + 2

∑N
i=1 aici + 2λq1 = 0

f ′q2 = 2
∑N

i=1 b
2
i q2 + 2

∑N
i=1 aibiq1 + 2

∑N
i=1 bici + 2λq2 = 0

f ′λ = q21 + q22 − 1 = 0

(4.52)

⇒

{
ãq21 + b̃q22 + c̃q1q2 + d̃q1 + ẽq2 = 0

q21 + q22 − 1 = 0
(4.53)

where ã =
∑N

i=1 aibi; b̃ = −
∑N

i=1 aibi; c̃ =
∑N

i=1(b
2
i − a2i ); d̃ =

∑N
i=1 bici; ẽ =

−
∑N

i=1 aici. The original optimal solution (q1, q2) can be obtained by identifying
all solutions of Eq. (4.53).

Specifically, solving Eq. (4.53) can be considered as a case of solving the
intersection of two conic curves, which is comprehensively discussed by Prof.
Jürgen Richter-Gebert in [180]. The core idea is constructing a new degenerate
conic, which can be the two possibly coincident lines. The points of intersection
between the new degenerate conic and either one of the two original conics will
be the desired points.

However, in computer vision, hidden variable resultant is more popular [181,182].
We then introduce solving Eq. (4.53) by hidden variable resultant. Specifically,
from Eq. (4.53), we can get

ãq21 + b̃q22 + c̃q1q2 + d̃q1 + ẽq2 = 0

q21 + q22 − 1 = 0

ãq31 + b̃q1q
2
2 + c̃q21q2 + d̃q21 + ẽq1q2 = 0

q31 + q1q
2
2 − q1 = 0

(4.54)
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Then, we rewrite the equations,
0 ã c̃q2 + d̃ b̃q22 + ẽq2
0 1 0 q22 − 1

ã c̃q2 + d̃ b̃q22 + ẽq2 0
1 0 q22 − 1 0



q31
q21
q1
1

 =


0
0
0
0

 (4.55)

To obtain the non-trivial solutions, the determinant of the coefficient matrix
should be zero. ∣∣∣∣∣∣∣∣

0 ã c̃q2 + d̃ b̃q22 + ẽq2
0 1 0 q22 − 1

ã c̃q2 + d̃ b̃q22 + ẽq2 0
1 0 q22 − 1 0

∣∣∣∣∣∣∣∣ = 0 (4.56)

Then, we can get an univariate polynomial of the hidden variable

m4q
4
2 +m3q

3
2 +m2q

2
2 +m1q2 +m0 = 0 (4.57)

where m4 = (ã− b̃)2 + c̃2; m3 = 2c̃d̃− 2ẽ(ã− b̃); m2 = −c̃2 + d̃2 + ẽ2 − 2ã(ã− b̃);
m1 = 2ãẽ− 2c̃d̃; m0 = ã2 − d̃2. By solving the univariate polynomial system, we
can obtain q2, and we the solving q1 by q1 = ±

√
1− q22.

4.4.3 Outlier-Contaminated Cases

In the outlier-contaminated cases, just one line correspondence is sufficient to be
a minimal-subset solver in RANSAC [175]. For the i-th line correspondence, if
the unit norm constraint is not ignored, then we have

ai · q1 + bi · q2 + ci = 0

q21 + q22 = 1
⇒ (a2i + b2i )q

2
1 + 2aiciq1 + c2i − b2i = 0 (4.58)

We can obtain two solutions for α from Eq. (4.58). Similarly, two α solutions can
also be obtained from Eq. (4.47) (singularity-affected parameterization).

As discussed above, RANSAC-type algorithms cannot guarantee the optimality
of the solution. To obtain the certifiably optimal solution, we apply the BnB
algorithm to obtain the optimal α from outlier-contaminated inputs. According
to Eq. (4.6a) and Eq. (4.44), the robust objective can be formulated as

max
α

N∑
i=1

I (|ai · cos(α) + bi · sin(α) + ci| ≤ ε) (4.59)

Equivalently,

max
α

N∑
i=1

I
(∣∣√a2i + b2i · sin(α + ϕi) + ci

∣∣ ≤ ε

)
(4.60)

80



4.5 Translation Estimation

where ϕi = arctan 2(ai, bi)
1.

Given a branch [α, α], the upper bound and lower bound can be

ẽL =
N∑
i=1

I
(∣∣√a2i + b2i · sin(α̂ + ϕi) + ci

∣∣ ≤ ε

)
(4.61)

ẽU =
N∑
i=1

I
(∣∣√a2i + b2i · sin(α∗i + ϕi) + ci

∣∣ ≤ ε

)
(4.62)

where α̂ = 0.5(α + α) and by Interval Analysis (see [103])

α∗i = arg max
α

I
(∣∣√a2i + b2i · sin(α + ϕi) + ci

∣∣ ≤ ε

)
(4.63)

In addition, when the branch is becoming a point, ẽU = ẽL. Therefore, the
proposed bounds are sufficient to be nested into BnB algorithm.

4.5 Translation Estimation

After obtaining the optimal camera rotation R, solving the translation then
becomes a linear model fitting problem [29]. Theoretically, the globally op-
timal translation can also be obtained by solving Eq. (4.6b) using the BnB
algorithm [35]. However, the translation domain, which is different from the
closed SO(3) structure, is not easily estimated correctly for various applications.
Moreover, sequentially solving rotation and translation by two separate BnB
methods does not mean that the obtained optimal rotation and translation are
necessarily globally optimal for the combined problem [155]. In this thesis, the
RANSAC algorithm2 is applied to estimate translation.

4.6 Experiments

To investigate the performance of our algorithms, we compared them with several
state-of-the-art PnL methods on both synthetic and real-world data. All experi-
ments were run on a personal computer with an AMD Ryzen 7 2700X CPU and
32GB RAM.

4.6.1 Experimental Setup

All comparison methods are listed:

1arctan2(·, ·) is the four-quadrant inverse tangent function: https://www.mathworks.com/

help/matlab/ref/atan2.html
2It was implemented by a Matlab built-in function: https://www.mathworks.com/help/

vision/ref/ransac.html
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• Ansar+MLESAC4+RPnL: Ansar PnL algorithm [170] is nested into MLE-
SAC [183] and the final solution is computed by RPnL [184].

• Mirzaei+MLESAC3: Mirzaei PnL algorithm [176] is nested inside MLESAC.

• RPnL+MLESAC4: RPnL algorithm [184] is nested inside MLESAC.

• P3L+RANSAC3: A P3L algorithm [59] is plugged into RANSAC.

• ASPnL+RANSAC4: ASPnLalgorithm [59] is plugged into RANSAC.

• DLT-Lines+AOR: DLT(Direct Linear Transformation)-Lines PnL algo-
rithm [151].

• LPnL Bar LS+AOR: As proposed in [59], where the lines are parameterized
with the barycentric coordinates.

• LPnL Bar ENull+AOR: As proposed by Xu et at. in [59].

• DLT-Pücker-Lines+AOR: It applies Pücker coordinates [151].

• DLT-Combined-Lines+AOR: It is a combination of DLT-Lines and DLT-
Plücker-Lines [151].

• Ro PnL: Our proposed Robust PnL algorithm, which first applies the BnB
algorithm to obtain rotation then uses RANSAC to estimate translation.

• Cubic-solution: This is an outlier-free known-vertical-direction PnL algo-
rithm in [156] and cubic-ransac is its outlier-robust version.

• Unit-solution: Our proposed singularity-free non-minimal PnL algorithm
with a known vertical direction. Unit-ransac is its outlier-robust version,
which is also proposed in [175].

• vBnB: This method first estimates rotation with a known vertical direction
using our proposed non-RANSAC globally optimal algorithm, then estimates
translation by RANSAC.

The number at the end of MLESAC/RANSAC denotes the number of line
correspondences used to generate hypotheses and the maximal number of random
trials is limited to 10,000. +AOR means the linear algorithm is combined
with AOR [151, 172]. The inlier threshold ε was set to 1◦ in RANSAC-type
methods and BnB-based methods. All the compared codes3 and our codes were
executed on Matlab2019a. To demonstrate the accuracy and robustness, the
translation/position error is defined as: etrans = ||tgt − t∗|| where tgt is ground

3http://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/
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4.6 Experiments

Figure 4.4: Convergence curves of our proposed globally optimal camera orientation
estimation.

truth; t∗ is the estimated translation. The rotation/orientation error is defined
as the angle between ground truth Rgt and estimated rotation R∗:

erot = arccos

(
Tr(R−1gt R∗)− 1

2

)
(4.64)

To compare the efficiency, the median runtime for 500 trials is recorded for each
setting.

4.6.2 Synthetic Data Experiments

Data generation. N line segments were created randomly using 2N random
endpoints, which were distributed in a cube [100m× 100m× 100m]3. A virtual
pinhole camera was randomly placed in the scene facing towards to the line
segments. The camera is simulated using a 640 × 480 pixels image, 800 pixels
focal length. To simulate noise, the 2D endpoints were perturbed with Gaussian
noise with a standard deviation of σ = 1 pixel. The outliers were simulated by
adding Gaussian noise with a very large standard deviation (σ = 100 pixels). We
first showed the convergence process of our proposed method (see Fig. 4.4) to
validate the global optimal solution. From the results, the proposed method can
converge to the optimal solution in hundreds step with the zero-gap between
lower and upper bounds.

Outlier-contaminated inputs. We then tested our proposed method on
synthetic data with different outlier rates. N = 200 and the outlier rates were
{0.1, · · · , 0.7}. To demonstrate the guaranteed optimality of our method, we
define the success rate: N+/N , where N is the total number of inputs; N+ is the
number of successful cases that satisfy erot < 5◦ and etrans < 2m. The results are
shown in Fig. 4.5.

We can draw the following two conclusions from the results:
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Figure 4.5: Controlled experiments on synthetic data with different outlier rates. Top
subfigure: rotation error erot(deg). Second subfigure: translation error
etrans(m). Third subfigure: success rate. Bottom subfigure: median
runtime (second).
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Figure 4.6: Comparison of experiments using cubic-solution and unit-solution. Top
subfigure: noise level was set to 1 pixel and different camera orientations
were tested. Bottom subfigure: random camera orientations were tested
at different noise levels.

1. With the outlier rate increasing, the existing methods might return more
unsatisfactory solutions. Conversely, our proposed methods (i.e., Ro PnL)
can obtain the globally optimal camera rotation, which was superior to
other existing PnL methods. In addition, obtaining optimal rotation is
helpful in estimating camera translation. Therefore, our method can always
provide the maximum success rate.

2. Although our proposed method returns very robust solutions, it had a
longer running time than most existing methods except for the Ansar
algorithm [170], which has O(N2) computational complexity.

Outlier-free inputs with a known vertical direction. First we present
the comparison between unit-solution and cubic-solution to confirm that our
proposed singularity-free parameterization leads to superior accuracy. N = 200
and no outliers. Different camera orientations (α = {−π, · · · , π}) and random
orientations were also tested with noise level δ = 1. In addition, we also compared
these two methods at different noise levels ({1, · · · , 10}) with random camera
orientations. The results are shown in Fig. 4.6.

From the results (top subfigure in Fig. 4.6), when the camera orientation is
near to the singularity angle (i.e., ±π), our proposed unit-solution was clearly
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able to achieve better results, and therefore, our proposed method could obtain
superior accuracy in random cases. In addition, the results (bottom subfigure in
Fig. 4.6) show that the unit-solution is more accurate than the cubic-solution at
different noise levels.

Outlier-contaminated inputs with a known vertical direction. We
then compared our proposed vBnB method with RANSAC-type methods in
outlier-corrupted data with different outlier rates ({0.1, · · · , 0.8}). The results
are shown in Fig. 4.8. Compared with RANSAC-type methods, our proposed
BnB method can obtain a globally optimal camera rotation. Besides, unit-ransac
obtained slightly better accuracy than cubic-solution. This is because cubic-ransac
applied the singularity-affect parameterization. For efficiency, our proposed vBnB
was slower than other RANSAC-type methods in low outlier rate cases, however,
it was faster in high outlier rate cases, which was consistent with a conclusion
that BnB-based method could be more efficient than RANSAC-type methods in
high outlier rate cases [146].

Outlier-contaminated inputs with a biased vertical direction. To sim-
ulate the cases that the vertical direction was obtained inaccurately, we also tested
our proposed vBnB method using synthetic data when the vertical direction was
given with a bias. The outlier rate was {0.1, · · · , 0.8} and the vertical direction
was biased by {0.1◦, 0.5◦, 1◦}. The results are illustrated in Fig. 4.9. It shows
that due to the biased vertical direction, the final accuracy will also be biased,
however, vBnB is still robust to outliers.

4.6.3 Real-Data Experiments

In this section, we investigated the performance on the real data from VGG Mul-
tiview Dataset4 (see Fig. 4.7). The VGG dataset contained image sequences, line
segments, true correspondences and a ground-truth projection matrix. Outliers
were randomly added to the original data, and for each scene the outlier rate
was 0.2. To emphasize the global optimality, maximum rotation error, maximum
translation error and average runtime were recorded for each method.

The results are listed in Table 4.1. Our proposed algorithm could obtain the
right poses (erot < 2◦ and etrans < 1m) in all scenes. Conversely, other PnL
algorithms could not provide all satisfactory solutions. On the other hand, to
obtain robust solutions, our algorithm had longer runtime than the other existing
methods.

Next, we assumed that the vertical direction was known in each scene and
compared our vBnB method and RANSAC-type methods. Random outliers were
also added to the clean data and outlier rate was set to 0.2. We then recorded
the maximum errors and average runtime in experiments. The results are present
in Table. 4.2.

Our proposed vBnB method can obtain satisfactory solutions in all VGG data.
However, RANSAC-type methods may return incorrect solutions occasionally.

4https://www.robots.ox.ac.uk/~vgg/data/mview/
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(d) Merton College II

College III.pdf

(e) Merton College III

(f) Corridor

Figure 4.7: Selected image data from VGG dataset. The red lines denote the line
features exacting from the scenes.
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Table 4.1: Experiments with real VGG data.

Methods max erot(
◦) max etrans(m) avg. time (s)

Ansar + MLESAC4 + RPnL 179.12 46.90 0.719
Mirzaei + MLESAC3 178.85 46.84 0.025
RPnL + MLESAC4 177.95 32.97 0.067
P3L + RANSAC3 10.42 2.31 0.014
ASPnL + RANSAC4 2.25 1.11 0.024
LPnL Bar LS + AOR 178.21 32.43 0.010
LPnL Bar ENull + AOR 2.55 16.72 0.029
DLT-Lines + AOR 174.02 159.97 0.008
DLT-Plucker-Lines + AOR 179.40 122.61 0.012
DLT-Combined-Lines + AOR 178.11 2439.63 0.020
Ro PnL (Our) 1.56 0.84 5.825

Moreover, the runtime of all methods in Table. 4.2 were usually faster than those
in Table. 4.1. This is because with the help of the prior vertical direction, the
rotation domain is reduced from three to one dimension, and thus the BnB-based
algorithm is much faster [177].

4.7 Conclusion

To provide a certifiably optimal solution of PnL problem in some safety-critical
applications, we propose globally optimal solutions to the camera orientation
problem. The BnB algorithm is applied to search for the optimal rotation. In
addition, if the vertical direction is known by other means, we first propose
a novel non-minimal outlier-free PnL algorithm, which applies singular-free
parameterization and thus achieves improved accuracy. Furthermore, for outlier-
contaminated inputs, we propose a non-RANSAC and globally optimal algorithm
to estimate camera orientation with a known vertical direction. Experiments on
synthetic and real-world data all have demonstrated that our proposed methods
are more robust than several existing PnL methods.

Table 4.2: Experiments with real VGG data with known vertical direction.

Methods max erot(
◦) max etrans(m) avg. time (ms)

Cubic-ransac 57.61 43.61 3.03
Unit-ransac 11.61 3.79 2.65
vBnB (Our) 1.51 0.53 3.74
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Figure 4.8: Comparison of RANSAC and vBnB algorithm experiments. Top subfigure
shows the rotation error. Second subfigure shows the translation error.
Bottom subfigure shows the median runtime.
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Figure 4.9: Controlled experiments with different vertical direction biases. Top sub-
figure shows the rotation error. Second subfigure shows the translation
error. Bottom subfigure shows the median runtime
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Chapter 5

Globally Optimal Solution for
Relative Pose Estimation

This chapter explores the geometry of relative pose estimation with known
vertical (gravity) direction and provide a globally optimal solution. The core idea
is applying the inequality in unit sphere and using the nested BnB framework to
obtain the global optimum. This chapter is a modified version of

• Liu, Yinlong, Guang Chen, Rongqi Gu, and Alois Knoll. Globally Optimal
Consensus Maximization for Relative Pose Estimation With Known Gravity
Direction, in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
5905-5912, July 2021

It has been reproduced here with the permission of the copyright holder.

5.1 Background

The task of relative pose estimation is estimating the relative camera pose from
matching correspondences of two frames, which is also known as essential matrix
estimation [27]. It is one of core tasks in computer vision [11], thereby it is
the basis of many high-level applications (e.g., visual odometry, structure from
motion and 3D reconstruction) [10,185,186].

In addition to cameras, modern applications, such as autonomous driving and
robot navigation and localization, are usually equipped with many other sensors
(e.g., GPS, inertial measurement units (IMUs)) [187, 188]. Therefore, we can
obtain prior knowledge to help estimate the relative camera pose [189,190].

In this chapter, we focus on estimating relative pose with the prior known
gravity direction [191]. The gravity direction can be usually provided by IMUs,
and the accuracy of this direction is usually reliable even by low cost IMUs
(typically error < 0.5◦) [174,192]. Taking advantages of knowing gravity direction,
the degrees-of-freedom of relative pose estimation problem reduce to three, which
means three point correspondences instead of five [27] are sufficient to minimally
estimate relative pose [191].

Unfortunately, the mismatches (a.k.a. outliers), which will impair the accuracy
significantly [29], are unavoidable in real applications [189,191]. To suppress the
outliers, the defacto mechanism is RANdom SAmple Consensus (RANSAC) [34].
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However, RANSAC is a non-deterministic algorithm, which means it cannot
provide a correct solution with a provable guarantee [57]. More specifically,
RANSAC produces a reasonable result only with a certain probability [29]. On
the other hand, there are many safety-critical applications, which highly demand
such algorithms that can return a extremely reliable solution in the presence of
noise and outliers [30]. Obviously, RANSAC cannot meet this strict demand.

To provide a provably optimal solution for some safety-critical applications,
we propose a globally-optimal solution, which applies a novel nested branch-and-
bound (BnB) algorithm. The main contributions of this paper are as follows:

• In contrast to RANSAC, the proposed relative pose estimation method
can obtain the globally optimal solution with a provable guarantee, which
means it can meet the strict demand in many safety-critical applications.

• A nested BnB algorithm with novel geometric bounds is proposed. More
specifically, a new geometric formulation and its essential geometric rela-
tionship are explored.

5.2 Related Work

We first review the outlier-free solutions for relative pose estimation with known
gravity direction. In fact, the outlier-free solutions are well studied [189,191,193,
194]. They focus on finding solutions to algebraic systems. Specifically, closed-
form solutions for sightly different formulations are explored in [189] and [193],
respectively. Furthermore, Sweeney et al. point out that solving for relative pose
with known direction is a quadratic eigenvalue problem [191], and therefore, they
propose a simple and extremely efficient algorithm. More recently, given prior
knowledge of gravity direction, Ding et al. go deeper to explore minimal solutions
to relative pose estimation problem with unknown focal length in [195]. Moreover,
a non-minimal (N ≥ 4) solution for relative pose estimation with gravity prior is
explored in [196].

If the inputs are contaminated by outliers, outlier-free algorithms should be
nested into RANSAC scheme, which is the de facto mechanism [189]. However,
their solutions are sub-optimal due to the obvious heuristic nature of RANSAC [29].
To assure the global optimality of the optimal solution, Yang et al. [135] propose
a globally optimal solution to essential matrix estimation. Specifically, they
adopt the consensus set maximization as the objective and the branch-and-bound
algorithm to systematically search for the global optimum. However, due to rather
high dimensionality of the solution space (i.e., five degrees of freedom), Yang’s BnB
algorithm tends to be very slow [197]. Furthermore, Fredriksson et at. propose a
globally optimal method for a more difficult case in which the correspondences
are unknown [198]. In detail, they apply an efficient branch and bound technique
in combination with bipartite matching to solve the correspondence problem.
However, their method becomes intractable in the cases where outlier rate is
considerably high and the number of input is considerably large. Besides, with
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the prior knowlege of full camera orientation, Fredriksson et at. explore globally-
optimal methods for two-view translation estimation in [199] and [200]. Recently,
under the plane-based Ackermann steering motion assumption, a globally optimal
and correspondence-less solution is explored in [201].

In addition, the epipolar constraint can be linearized to enable the two-view
relative pose to be estimated linearly [11]. Accordingly, many globally optimal
algorithms for linear consensus maximization are proposed to solve the relative
estimation problem. Li is one of pioneers to explore the globally-optimal solution
for linearized relative pose estimation [35]. Furthermore, tree search method
is proposed to find the global optimum in [202], and more recently tree search
method is accelerated significantly in [162]. Nevertheless, because linearization
will drop some constraints, the solution of linearized objective is not necessarily
the same as the original solution.

It is worth mentioning that many recent studies focus on solving special pose
estimation problems with the help of gravity direction. For example, homography-
based minimal-case relative pose estimation with known gravity direction is
thoroughly explored in [203]. Furthermore, minimal solutions for relative pose
with a single affine correspondence and known vertical direction is studied in [204].
Besides, the prior knowledge of gravity direction is helpful for solving absolute pose
estimation problem [188,205] and PnL (Perspective-n-Line) problem [150,206].
These gravity-known works also inspire our work.

5.3 Problem Formulation

Figure 5.1: The geometric of two-view relative pose estimation with the known gravity
direction.

Given N point correspondences {pi, qi}Ni=1, which may be contaminated by
outliers, the target is estimating the relative pose (i.e., rotation R and translation
t). We start with the epipolar geometry [11] (see Fig. 5.1).
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Rλ1ipi + t = λ2iqi, i = 1 . . . N (5.1)

where λ1i and λ2i are two different projective scales. Furthermore, Eq. (5.1) can
be reformulated [191] as

tT (qi ×Rpi) = 0, i = 1 · · ·N (5.2)

where × is cross product. It should mention that the scaling of t cannot be
determined by Eq. (5.2) and we set ‖t‖ = 1.

In addition, given the known unit gravity direction g1 in left camera coordinate
and g2 in right camera coordinate, we have

g2 = Rg1 (5.3)

The solution of Eq. (5.3) is

R = R(θ, g2) ·Rg2
g1

(5.4)

where Rg2
g1

is the rotation that maps g1 to g2 with the minimum geodesic motion.
R(θ, g2) is the rotation that rotates θ about the axis g2 and θ is the unknown-
but-sought variable. Please refer to [207] for more details about the solution.
Furthermore, according to Rodrigues’ rotation formula [11],

R(θ, g2) = exp (θ[g2]×) (5.5)

= I + sin (θ) [g2]× + (1− cos (θ)) [g2]
2
× (5.6)

where [g2]× is the cross-product matrix for g2.
For the i-th correspondence, with the help of gravity direction,

qi ×Rpi = [qi]×
(
I + sin (θ) [g2]× + (1− cos (θ)) [g2]

2
×
)

Rg2
g1
pi (5.7)

= ai + sin (θ) bi + cos (θ) ci (5.8)

where ai = [qi]×
(
I + [g2]

2
×
)
Rg2

g1
pi, bi = [qi]×[g2]×Rg2

g1
pi and ci = −[qi]×[g2]

2
×Rg2

g1
pi.

Therefore, the epipolar constraint becomes

tT (qi ×Rpi) = 0 (5.9)

⇒tT (ai + sin (θ) bi + cos (θ) ci) = 0 (5.10)

Traditionally, if we define s = tan
(
θ
2

)
, then

tT
(
ai +

2s

1 + s2
bi +

1− s2

1 + s2
ci

)
= 0 (5.11)

⇒tT
((

1 + s2
)
ai + 2sbi +

(
1− s2

)
ci
)

= 0 (5.12)

⇒tT
(
(ai − ci) s2 + 2bis+ ai + ci

)
= 0 (5.13)

Consequently, the minimal outlier-free relative pose estimation problem can be
converted to a quadratic eigenvalue problem [191]. It should be mentioned that
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this formulation applies the singularity-affected parameterization, which means
the accuracy will decease near the singularity angle (i.e., θ = ±π) [157, 195].
Nonetheless, the authors in [195] point that this singularity problem can almost
be ignored in real applications.

However, in real application, it is almost impossible to estimate relative pose
with clean and perfect point correspondences. The optimal solution should be
obtained from the inlier observations, which should satisfy∣∣t∗T (ai + sin(θ∗)bi + cos(θ∗)ci)

∣∣ ≤ ε (5.14)

where t∗ and θ∗ are the optimal solution; ε is the inlier threshold. Therefore,
a robust objective, which can suppress the outliers, should be formulated by
utilizing the idea of inlier consensus maximization [29].

max
t,θ

N∑
i=1

I
(∣∣tT (ai + sin(θ)bi + cos(θ)ci)

∣∣ ≤ ε
)

(5.15)

where I (·) is the indicator function which returns 1 if the condition · is true and
returns 0 if condition · is not true.

To suppress the outliers, the robust objective is formulated. However, the
objective is obviously non-smooth and non-concave which means some traditional
optimizer (e.g., gradient descent) is infeasible and some (e.g., [163]) might be
trapped in local optimum. Furthermore, many safety-critical applications need
to obtain the globally optimal solution. To meet this demand, we apply the
brand-and-bound algorithm, which is the most commonly used mechanism for
solving NP-hard optimization problems [96], to seek the maximum value of the
objective with provable guarantee.

5.4 Branch-and-bound

The BnB algorithm systematically explores the whole domain of the candidate
solutions to find the optimal solution, thereby its solution is globally-optimal.
More specifically, the BnB algorithm recursively branches the solution domain,
and the sub-branches are checked against upper and lower estimated bounds on
the optimal solution. If the branch cannot produce a better solution than the
best one found so far by the algorithm, then it is discarded, and consequently,
the solution domain is reduced. The iterative process of branching, bounding and
cutting is terminated when the optimal solution is found.

5.4.1 Bounds estimation

Obviously, the key of the BnB algorithm is how to estimate the upper and
lower bounds in a given sub-branch. Accordingly, the solution domain should
be parameterized properly. We note that the solution domain is t ∈ S2 and
θ ∈ [−π, π]. In addition, if t is the optimal solution then −t is also the optimal

95



Chapter 5 Globally Optimal Solution for Relative Pose Estimation

Figure 5.2: The exponential mapping. Geometrically, the hemisphere is flattened into
a disk in a plane, and we have ∠ (ta, tb) ≤ ‖ea − eb‖.

solution, therefore, we set the domain of t a hemisphere S2+ instead of a full
sphere. S2+ is defined as

S2+ = {t|t3 ≥ 0} (5.16)

where t = [t1, t2, t3]
T is a unit vector in R3. To minimally parameterize the

translation domain, we employ the exponential mapping method to map the
hemisphere to a two dimensional disk [81]. More Specifically, given t ∈ S2+, we
can represent it by e ∈ R2 (see Fig. 5.2).

t = [sin(α) cos(β), sin(α) sin(β), cos(α)]T (5.17)

e = α[cos(β), sin(β)]T (5.18)

where α ∈ [0, π/2] and β ∈ [−π, π]. Consequently, we can apply the two
dimensional disk to represent the solution domain of translation. Furthermore, for
ease of manipulation, a circumscribed square of the solid disk is initialized as the
translation solution domain in the BnB algorithm. Therefore, to find the optimal
translation, the square-shaped branch will be subdivided into four sub-branches
and we need to estimate the upper and lower bounds in these square-shaped
sub-branches.

To derive the upper bound, according to the lemma 2.6 in chapter 2, then we
have

Lemma. Given ta, tb ∈ S2+, ea and eb are their corresponding points in the 2D
disk. Then

∠ (ta, tb) ≤ ‖ea − eb‖ (5.19)

In the BnB algorithm, let e ∈ Bt, where Bt is a translation branch. ec is the
center of the square-shaped branch and δ is the half-side length. Then we have

∠ (t, tc) ≤ ‖e− ec‖ ≤
√

2δ (5.20)

where t and tc correspond to e and ec, respectively.
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Figure 5.3: Illustration of the bound of di(θ)

Furthermore, we denote di (θ) , ai + sin (θ) bi + cos (θ) ci, then the objective
function is

max
t,θ

N∑
i=1

I
(
|tTdi(θ)| ≤ ε

)
(5.21)

Geometrically, di (θ) , θ ∈ [−π, π] is an full ellipse. Let θ ∈ Bθ where Bθ is an
angle branch. θc is the center of the branch, and rθ is the half length (radius) of
the branch. Consequently, when θ ∈ Bθ, di (θ) is a curve of the full ellipse in 3D
space, see Fig. 5.3.

Theorem (Mean value theorem for vector-valued functions). For a con-
tinuous vector-valued function f : [a, b]→ Rn, f : [a, b]→ Rn differentiable
on (a, b), there exists x ∈ (a, b) such that [208–210]

‖f(b)− f(a)‖ ≤ |b− a|‖f ′(x)‖ (5.22)

Inspired by Lipschitz optimization [49, 211] and mean value inequality for
vector-valued functions, we have

‖di (θ)− di (θc)‖ ≤ rθ ·max
θ∈Bθ
‖d′i (θ)‖ (5.23)

where d′i is the first derivative of di. More specifically,

d′i(θ) = cos(θ)bi − sin(θ)ci (5.24)

Then we define
τi = rθ · ‖d′i (θ)‖ ≥ rθ ·max

θ∈Bθ
‖d′i (θ)‖ (5.25)

where ‖d′i (θ)‖ is the upper bound of ‖d′i (θ)‖ and it can be calculated by Interval
Analysis [103,212]. Therefore,

‖di (θ)− di (θc)‖ ≤ τi (5.26)
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Geometrically, given θ ∈ Bθ, di(θ) is a curve that is contained by a relaxed
ball, whose center is at di(θc) and radius is τi. (see Fig. 5.3)

di(θ) = di(θc) + ηin (5.27)

where 0 ≤ ηi ≤ τi; n is a unit direction. As a result,

tTdi(θc)− τi ≤ tTdi(θ) ≤ tTdi(θc) + τi (5.28)

We define ξi = ∠ (t,di(θc)). Since t ∈ S2+, then

‖di(θc)‖ cos(ξi)− τi ≤ tTdi(θ) ≤ ‖di(θc)‖ cos(ξi) + τi (5.29)

According to the triangle inequality in spherical geometry [52], we have

∠ (tc,di(θc))− ∠ (t, tc) ≤ ξi ≤ ∠ (tc,di(θc)) + ∠ (t, tc) (5.30)

In addition, according to Eq. (5.20) we have

∠ (tc,di(θc))−
√

2δ ≤ ξi ≤ ∠ (tc,di(θc)) +
√

2δ (5.31)

Consequently, we can sequentially derive the following bounds by Interval Analysis

bξie
(5.31)
=⇒ bcos(ξi)e

(5.29)
=⇒ btTdi(θ)e ⇒ b|tTdi(θ)|e (5.32)

whereb·e means calculating the upper and lower bounds, and b·e ⇒ b·e indicates
that the bounds of the left-hand side leads to the bounds of the right-hand side.

For simplicity, we define the lower bound of |tTdi(θ)| is ∆i (Bt,Bθ). Then given
e ∈ Bt and θ ∈ Bθ, the upper bound of the objective can be

U =
N∑
i=1

I (∆i (Bt,Bθ) ≤ ε) (5.33)

Proof. Since ∆i (Bt,Bθ) ≤ |tTdi(θ)|, then

I (∆i (Bt,Bθ) ≤ ε) ≥ I
(
|tTdi(θ)| ≤ ε

)
(5.34)

⇒
N∑
i=1

I (∆i (Bt,Bθ) ≤ ε) ≥ max
Bt,Bθ

N∑
i=1

I
(
|tTdi(θ)| ≤ ε

)
(5.35)

Therefore, U is the upper bound.

For the lower bound, since the maximum value in the branch should not be
less than the value at a specific point, it can be set as

L =
N∑
i=1

I (∆i (tc,di (θc)) ≤ ε) (5.36)
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Figure 5.4: The geometric of the upper bound. Geometrically, the solution domain
of t is a hemisphere, which can be mapped into a solid disk. Generally,
d (θ) is a 3D ellipse when θ ∈ [−π, π]. Given the subdomain Bt, and Bθ,
t should be in a relaxed umbrella-shaped area centered at tc and d (θ)
should be a curve which is in a relaxed ball centered at d (θc).

where ∆i (tc,di (θc)) is the function value at a specific point, which means τi = 0
and δ = 0.

ξi
δ=0
=⇒ cos(ξi)

τi=0
=⇒ tTc di(θc)⇒ |tTc di(θc)| = ∆i (tc,di (θc)) (5.37)

In addition, when the branch collapses to a specific point {ts, θs}, then δ =
0, ξi = ∠ (ts,di(θs)) and τi = 0. As a result, b|tTdi(θ)|e = |ts,di (θs)|, then

L = U =
N∑
i=1

I (|ts,di (θs)| ≤ ε) (5.38)

In other words, the gap between upper and lower bound tends to be zero when
the branch tends to a specific point. Thus the proposed upper and lower bounds
are sufficient to be applied in BnB algorithm.

5.4.2 Nested BnB Algorithm

To avoid heavily computational burden, we leverage on the nested BnB idea [66],
which has better memory and computational efficiency [52]. Specifically, two
BnB algorithms (one is for θ and the other is for t, see Fig. 5.5) are executed in
a nested manner to obtain the optimal solution.

Concretely, given t ∈ Bt and θ ∈ [−π, π], we can use the BnB algorithm to find
the optimal θ, which is named inner BnB. Accordingly, in the inner BnB, given a
branch Bθ, the upper bound is still

Uin =
N∑
i=1

I (∆i (Bt,Bθ) ≤ ε) (5.39)
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Figure 5.5: Illustration of nested BnB algorithm

But the lower bound is slightly changed

Lin =
N∑
i=1

I (∆i (Bt,di (θc)) ≤ ε) (5.40)

where ∆i (Bt,di (θc)) is the lower bound of |tTdi(θc)| at a specific angle θc, which
means τi = 0.

bξie⇒bcos(ξi)e
τi=0
=⇒ btTdi(θc)e ⇒ b|tTdi(θc)|e (5.41)

Furthermore, we can only consider branching the translation domain, which is
called outer BnB. Accordingly, we denote the optimal θ∗ which is obtained by
the inner BnB in each branch Bt. The upper and lower bound in the outer BnB
are modified as

Uout =
N∑
i=1

I (∆i (Bt,di (θ∗)) ≤ ε) (5.42)

Lout =
N∑
i=1

I (∆i (tc,di (θ
∗)) ≤ ε) (5.43)

Note that Lout is the object value at a specific point (tc, θ
∗).

The outline of the inner BnB and the whole nested BnB algorithms are sum-
marized in Algorithm 3 and Algorithm 4.

5.5 Experiments

To verify the feasibility and the global optimality of our proposed method, we
conduct experiments using both synthetic and real-world data. Besides, to
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Algorithm 3: Inner BnB: Finding the optimal θ, given a translation
branch Bt.
Input: Point Matching {pi, qi}Ni=1, inlier threshold ε, gravity direction g1

and g2 and a transalation branch Bt.
Output: optimal θ∗

1 Initialize {ai, bi, ci}Ni=1;
2 Initialize a queue Qθ with a branch [−π, π] and its initial upper and lower

bounds are N and 0;
3 while Qθ is non-empty do
4 Take out the best branch Bθ which has the highest upper bound U∗in;
5 Branch Bθ into sub-branches and estimate the upper and lower bounds;
6 Update the optimal θ∗ with the center of the branch which has the

highest lower bound L∗in;
7 Remove the branches whose upper bound is less than the highest lower

bound;
8 if L∗in = U∗in then
9 Terminate

10 end

11 end

Algorithm 4: Nested BnB: Finding the optimal relative pose R, t.

Input: Point Matching {pi, qi}Ni=1, inlier threshold ε, gravity direction g1
and g2.

Output: optimal relative pose R∗, t∗

1 Initialize {ai, bi, ci}Ni=1;
2 Initialize a queue Qt with the solid square and its upper and lower bound

are N and 0 ;
3 while Qt is not empty do
4 Take out the best branch Bt which has the highest upper bound U∗out;
5 Branch Bt into sub-branches;
6 Call Algorithm 3 to obtain the optimal θ∗ in each sub-branch ;

/* ←Nested way */

7 Estimate the upper and lower bounds;
8 Update the optimal t∗ with the center of the branch which has the

highest lower bound L∗out;
9 Remove the branches whose upper bound is less than the highest lower

bound;
10 if L∗out = U∗out then
11 Terminate
12 end

13 end
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demonstrate the performance, our proposed method and several state-of-the-art
methods are compared.

5.5.1 Setup

All experiments are conducted in a computer with an AMD Ryzen 7 2700X CPU
and 32G RAM. In all the experiments, if not specified, the inlier threshold ε in
the objective (Eq. (5.15)) is set to 0.001. All compared state-of-the-art algorithms
are listed:

• RANSAC+3pt: RANSAC framework with the sate-of-the-art gravity-known
three points algorithm [191]. The confidence ρ = 0.999 for the stopping
criterion in all the experiments.

• RANSAC+5pt: RANSAC framework with the famous five points algo-
rithm [27]. The confidence ρ = 0.999 for the stopping criterion in all the
experiments.

• 5d-BnB: the BnB method to solve the optimal essential matrix estimation
problem without the prior knowledge of the gravity direction [135]. The
code is from the authors’ webpage1.

• A*: A* tree search with Non-Adjacent Path Avoidance and Dimension-
Insensitive Branch Pruning, which is named A*-NAPA-DIBP in original
paper [162]. In addition, we set the maximum runtime to 60 seconds to
avoid long time running. The code is from the authors’ open-source code2.

• gBnB: our proposed nested BnB method with known gravity direction.

Note that 5d-BnB is written in C++ and other algorithms are run in MAT-
LAB2020A.

Data Generation. We randomly generate N points in 3D world. Specifically,
the 3D points are inside a cube whose side is 1 meter and center is about 2
meters away from the camera. A simulated camera with 1000 pixel focal length
is randomly moved but still faces the 3D points. We then have 100 matching
point pairs in 2D image plane. The virtual gravity is recorded in the two
different coordinates. To simulate the mismatches (i.e., outliers), we replace the
correct point matches by incorrect random point matches. The outlier rate is
η = Noutlier/N where Noutlier is the number of outliers and N is the total number
of inputs. Besides, to simulate the noise of point localization, we add the Gaussian
noise to the data, and standard deviation σ is taken as the noise level. Moreover,

1http://jlyang.org
2https://github.com/ZhipengCai/MaxConTreeSearch
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Figure 5.6: Convergence curves of the outer BnB

to calculate the accuracy, we define the error as

er = arccos

(
Tr(RT

gtRopt)− 1

2

)
(5.44)

et = ∠ (tgt, topt) (5.45)

where Rgt and tgt are motion ground truth; Ropt and topt are estimated solution;
Tr(·) is the trace function of a square matrix.

5.5.2 Convergence

In this part, we show the convergence curves to demonstrate the global optimal-
ity of the proposed method. Specifically, N = 100 point correspondences are
generated. In the nested BnB algorithm, the inner BnB will be called in each
iteration of the outer BnB. Therefore, we only draw the outlier BnB convergence
curves to show the process. The curves are shown in Fig. 5.6. Evidently, the gap
between the lower and upper bounds is becoming to zero. The remaining search
domain reduces rapidly.

5.5.3 Controlled Experiments on Synthetic Data

In this section, to verify the global optimality of our proposed method, we
conducted controlled experiments using synthetic data. First, we test our proposed
method in different outlier rates, η = {0, · · · , 0.5}. The noise level σ is set to 1.
N = 100 point correspondences are generated. To observe the global optimality,
the experiments are repeated 200 times for each experimental setting. We then
calculate the success rate where a case that satisfies errrot ≤ 2◦ and errtran ≤ 2◦

is considered as a success case. In addition, the average error, median runtime and
consensus number are recorded. The results are showed in Fig. 5.7 and Fig. 5.8.

Furthermore, we test our proposed method in different noise levels, σ =
{0, · · · , 2}. The outlier rate η is set to 0.2. N = 100 points are generated. 200
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Figure 5.7: Controlled experiments on synthetic data with different outlier rates
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Figure 5.8: Consensus number comparison in controlled experiments on synthetic
data with different outlier rates
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times are repeated in each experimental setting to observe the global optimality.
The success rate, average error and median runtime are shown in Fig. 5.9 and
the consensus number are shown in Fig. 5.10.
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Figure 5.9: Controlled experiments on synthetic data with different noise levels.

In addition, we compare the efficiency between our proposed method and the
5d-BnB method, which does not rely on prior gravity [135]. In this experimental
setting, no outliers and noise are added. We only test the methods in different
number of inputs, N = {20, · · · , 140}. Since they are globally optimal methods,
we only show the time duration in Table 5.1, which is median runtime on 50
trials.

Table 5.1: Comparison of median runtime (seconds) on synthetic data with different
input numbers.

point number 20 50 80 110 140

gBnB 0.287 0.351 0.392 0.462 0.534
5d-BnB 21.666 29.963 32.884 37.405 58.828

From all the results, we can draw the following points:
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Figure 5.10: Consensus number comparison in controlled experiments on synthetic
data with different noise levels

• Due to the random nature, RANSAC-based methods may return incorrect
solutions while they run very fast. In contrast, our proposed BnB method
can obtain the globally optimal solution from outlier-contaminated inputs
in this experimental setting, while it needs more time than RANSAC-based
methods.

• When outlier rate increases, tree search method consumes more runtime sig-
nificantly. In addition, the tree search method cannot obtain all satisfactory
solutions in our experiments. There are two reasons:

1. The optimal solution for linearized objective is not necessarily the
same as that of original objective.

2. In large outlier rate, the tree search method reaches the time limita-
tion (60 seconds) and terminates early, which mean it is not able to
fully search all the solution candidates and just return the best-so-far
solution.

In contrast, our proposed method can obtain extremely robust solution and
has the highest success rate using much less runtime.

• With the increase of noise level, the accuracy of all methods will decrease.
However, when the noise level is large, our proposed method can obtain
better accuracy than other methods, which reveals the robustness of our
proposed method.

• With the help of gravity direction, our proposed BnB method is much
faster than 5d-BnB method, which is one of the state-of-the-art globally-
optimal methods. The reason is that with the help of gravity direction, the
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dimensionality of solution domain reduces from five to three, which leads
to high efficiency of the BnB framework.

5.5.4 Robustness to IMU Noise
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Figure 5.11: Controlled experiments under different bias gravity levels (deg).

In this part, given a biased gravity direction, which simulates the measurement
bias of IMUs, we conduct experiments to verify the robustness of our proposed
method. First, we set N = 100, η = 0.2, σ = 1 and the biased angle is set from
0.1◦ to 0.5◦. It is repeated 500 times under each experimental setting. In this
case, we only compare our proposed method with RANSAC+3pt, since other
methods are not sensitive to gravity direction. The median runtime, average error
and success rate are recorded. Besides, we also record the inlier number, which
is a common metric in consensus maximization solutions [57, 162]. In general,
the maximum objective for consensus maximization always occurs at the optimal
solution, therefore, we record the consensus set number. The results are showed
in Fig. 5.11.

From the results, we can find that when the gravity bias level increases,
the accuracy of our proposed method decreases. It is reasonable because the
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given gravity direction is biased gradually. Nonetheless, our proposed method
can still obtain satisfactory solution even with a biased gravity direction (≤
0.5◦). It is worth noting that due to the biased gravity direction, RANSAC+3pt
method cannot obtain the maximum inlier number, and our proposed method is
significantly more robust than the RANSAC+3pt method.

Table 5.2: Maximum error and average runtime(seconds) using selected images from
KITTI dataset in 50 times.

Methods RANSAC+3pt RANSC+5pt A* gBnB
Frame
104-
108

er 1.438 1.248 3.592 0.685
et 3.397 7.701 24.982 3.054
T 1.749 21.162 60.028 23.706

Frame
198-
201

er 0.389 0.672 2.295 0.346
et 1.785 3.792 17.022 1.599
T 1.703 20.448 60.076 20.078

Frame
417-
420

er 0.218 0.268 0.806 0.176
et 3.360 2.491 7.635 2.310
T 1.761 20.333 18.106 5.566

Frame
579-
582

er 0.276 0.375 1.452 0.242
et 1.751 3.357 19.416 1.668
T 1.757 20.392 60.166 50.020

Frame
738-
742

er 0.653 0.817 0.997 0.597
et 7.642 10.502 10.505 7.034
T 1.745 20.215 54.302 12.632

5.5.5 Real-World Data Experiments

In this part, we verify the feasibility and practicality using real-world data.
We select 5 image pairs (the first 5 crossroads) from the sequence 00 of the
KITTI Odometry dataset [24], see Fig. 5.12. The image pairs are obtained under
ground motion. This experimental setting is similar to the setting in [162]. We
utilize MATLAB built-in functions detectMSERFeatures3 and matchFeatures4 to
obtain the input correspondences. Note that to emphasize the outlier-robustness,
we adjust the parameters to obtain more-than-usual mismatches. Besides, the
iteration number of RANSAC-based methods is set to 10,000 since we have no
prior knowledge of outlier rate in each scene.

To show the robustness, we repeat 50 times in each image pair and we record
the maximum error. The results are listed in Table 5.2. Note that 5d-BnB
algorithm cannot terminate in 60 seconds in most of cases, we then do not list the
results. From the results, we can find that RANSAC-based algorithms may return
an unsatisfactory solution (error> 10◦). In addition, A* method may not return

3https://www.mathworks.com/help/vision/ref/detectmserfeatures.html
4https://www.mathworks.com/help/vision/ref/matchfeatures.html
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5.6 Conclusion

a correct solution due to time limitation and dropping non-linear constraints. In
contrast, our proposed method usually obtain a satisfactory solution. It is worth
mentioning that the proposed method needs more time than RANSAC-based
method. However, the proposed method is more efficient than 5d-BnB and A*
algorithm.

(a) Correspondences from Frame 104-108

(b) Correspondences from Frame 198-201

(c) Correspondences from Frame 417-420

(d) Correspondences from Frame 579-582

(e) Correspondences from Frame 738-742

Figure 5.12: Input from KITTI dateset. Red lines denote the incorrect correspon-
dences and green lines denote the correct inliers. The result is obtained
by our proposed gBnB algorithm.

5.6 Conclusion

In this chapter, we focus on a special case in which given the gravity direction,
solving the relative pose from outlier-contaminated inputs. Since traditional
RANSAC-based methods fail to guarantee the global optimality of the solution,
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we propose a novel nested BnB algorithm, which is able to obtain the globally-
optimal solution. Even with a biased gravity direction, the proposed method can
still obtain satisfactory solutions. We also verify the feasibility and practicality of
our proposed method using both synthetic and real-world data. The experimental
results reveal extreme robustness of our proposed method.
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Chapter 6

Conclusion and Further Study

6.1 Conclusion

In this thesis, we focus on globally optimal solutions for unit-norm constrained
computer vision problems, which can be considered as special cases of geometric
computer vision problems and are frequently encountered in real applications.
Mathematically, due to the non-convex nature of the unit-norm constraint, solv-
ing unit-norm constrained computer vision problems is naturally optimizing
non-convex problems. In addition, to suppress the noise and outliers in real
applications, robust objective functions, which normally are not convex, even not
smooth, are formulated to distinguish inliers and outliers. The goal of our research
is to find the optimal solution of modeled non-convex optimization problems,
which may contains many local optimums. However, locally optimal algorithms
and heuristic algorithms, which can return an optimum but do not ensure that
the solution is indeed the best (global) optimum, may lead to serious failures.
Therefore, to meet the demand in safety-critical applications, we study the glob-
ally optimal solutions for unit-norm constrained computer vision problems. The
proposed globally optimal algorithms can provide theoretical guarantees: the
returned optimal solution is indeed the global one,

Mathematically, the most of work in this thesis are applying the BnB frame-
work to obtain the global optimums for the unit-norm constrained optimization
problems. The main theoretical contributions of this thesis are introducing the
general inequality (Lemma 2.6) in n-sphere (Sn) and using it to estimate the
upper and lower bounds in the BnB algorithm. Notably, the well-known rotation
search theory thoroughly studies inequalities in SO(3) that is closely related to
the quaternion sphere(S3). Therefore, the general inequality in n-sphere is to
some extent an extension of the core inequality (Lemma 2.2) in rotation search
theory, see Fig. 6.1. In fact, to introduce the inequality in n-sphere, we provide
solid proofs and explore the geometry of n-sphere. Furthermore, based on this
inequality in n-sphere, several globally optimal solutions are proposed to solve
classical unit-norm constrained computer vision problems.

Specifically, in this thesis, the following tasks are explored:

1. Globally optimal vertical world frame estimation in structural world. It is
a typical robust estimation application in S2.
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2. Globally optimal camera orientation estimation using 2D/3D feature cor-
respondences. It is a rotation search problem in SO(3), which is closely
related to S3.

3. Globally optimal relative pose estimation with known vertical direction. It
uses the inequality in S2 and the nested BnB algorithm.

Figure 6.1: The theoretical overview of this thesis.

6.2 Limitation

In this thesis, three globally optimal solutions are proposed to meet the demand
of the safety-critical systems. However, all methods rely on the BnB algorithm to
obtain the global optimum. Although the BnB algorithm is more efficient than
brute-force exhaustive search, it is still far from real time. Therefore, there are
two main limitations introduced by BnB algorithm(see Fig. 6.2):

• The proposed methods are time-consuming. It is not easy to theoretically
analyze the computational complexity of the BnB algorithm [213]. Prac-
tically, when the inputs are heavily contaminated by outliers, the BnB
algorithms need a long time to execute.
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Figure 6.2: Main limitations of the proposed methods.

• Currently, the proposed methods can only solve low-dimensional problems.
To ensure the global optimality, the BnB algorithm need to search the
entire solution domain. Therefore, it will encounter the infamous curse of
dimensionality when it comes to high-dimensional problems [62].

Accordingly, from different views, there are different possible solutions to
alleviate limitations:

• From an engineering perspective, GPU and parallel computing may be a
good way to accelerate the search process [52].

• From the perspective of optimization, a new optimization framework should
be explored to avoid the curse of dimensionality.

• From the problem itself, if a good property of the to-be-solved problem is
discovered, then it may accelerate the BnB algorithm.

6.3 Further Research Directions

There are many possible further research directions including theoretical side and
practical side. We first list some possible theoretical directions:

• First Order Inequality [92]. Let us look back the lemma 2.5 in SO(3) space.

∠ (R1x,R2x) ≤ ‖r1 − r2‖ (6.1)

The authors in [92] call it zero-th order approximation. To obtain a small
gap, they propose a first order approximation to rotation. Specifically,

Let R be a rotation and R̂ be its first order approximation about R0,
where ∠ (R,R0) < rD < 0.76. For x ∈ R3 [92]

∠(Rx, R̂x) ≤ 1

2
r2D (6.2)
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They point out that the first order approximation gives a significantly better
result in rotation search. Therefore, similarly, there may be a first order
approximation in n-sphere. Specifically, since we already have lemma 2.6

∠(xp,xq) ≤ ‖ϕp −ϕq‖ (6.3)

Possibly, with some conditions, there may be

∠(x, ẋ) ≤ K‖ϕ−ϕ0‖2 (6.4)

where K is a scalar; ẋ is first order approximation about x0, which corre-
sponds to ϕ0. As a consequence, the results may be improved significantly
by using the first order approximation.

To explain it better, we abuse the definition of Lipschitz-Hölder continu-
ous [214,215],

dY (f(x1), f(x2)) ≤ KdX(x1, x2)
α (6.5)

where K is referred to as a constant scalar; dX(·, ·) and dY (·, ·) are distance
function in two metric spaces; α is order scalar. Here, α is very related
to the convergence order in the BnB algorithm [216]. Theoretically,
second order convergence (using Eq. (6.4)) performs faster than one order
convergence (using Eq. (6.3)).

• Quasi Branch and Bound [216]. For the problem of minimizing a smooth
function over a cube, the quasi branch and bound (qBnB) algorithm is
recently proposed. In the classical branch-and-bound algorithm, given a
sub domain, the upper and lower bounds of the optimum within this sub
domain should be estimated. However, the basic idea of qBnB algorithm is
to replace the lower bounds with quasi-lower bounds. Specifically, quasi-
lower bounds are a generalization of lower bounds and the quasi-lower
bounds are just required to be lower bounds only for sub-cubes containing
a minimizer. Notably, lower bounds are quasi-lower bounds, but quasi-
lower bounds are not necessarily lower bounds. The authors in [216,217]
point that qBnB compares favorably with alternative branch and bound
algorithms. Therefore, in further study, we may replace BnB by qBnB to
improve the performance.

• With other optimization frameworks. In this thesis, we applied BnB op-
timization framework to obtain the global optimum. However, the BnB
algorithm is often slow in high dimension. To handle high dimensional
problems, some other novel optimization frameworks should be explored.

In addition to theoretical innovations, the general inequality in n-sphere and
BnB framework can be applied in many other unit-norm constrained applications
to obtain the globally optimal solutions:

114



6.4 Extension Example: Globally Optimal Solution for Line Fitting

• Rigid pose estimation applications. Evidently, rotation estimation, which is
an unit-norm constrained problem, is a vital part of rigid pose estimation
and it can be solved by the proposed method. Therefore, our globally
optimal solutions for unit-norm constrained problems can be the basic
parts for obtaining globally optimal pose estimation. Many pose estimation
problems have been explored to obtain their globally optimal solutions,
such as [52,66]. However, there are still many pose estimation application
have not been explored. That is a good further research direction.

• Direction estimation applications. Direction estimation is a typical unit-
norm constrained problems. In this thesis, we only explored the vertical
direction in structural world. There are surely many other direction esti-
mation applications. A further research direction is to provide the globally
optimal solutions for these applications. An example is the densest hemi-
sphere problem [139]. Specifically, given a set K of n points on the unit
sphere Sd, a hemisphere of Sd is densest if it contains a largest subset of
K. The problem of determining a densest hemisphere is a typical direction
estimation problem.

• Other unit-norm constrained problems. In addition to computer vision, there
are undoubtedly many unit-norm constrained problems in other scientific
fields. Some of them may need to solve the problems globally, the methods
developed in this thesis might be helpful.

6.4 Extension Example: Globally Optimal

Solution for Line Fitting

This part shows how to apply the core idea in this thesis to other applications
step by step, and a toy example is given. Specifically, we show a simple line
fitting application and apply the method developed in this thesis to seek its global
optimum.

Given many input points from image, estimating the line parameters from
the noisy inputs is the called robust line fitting, see Fig. 6.3. If we apply the
homogeneous representation, it is a typical unit-norm constrained problem.

axi + byi + c = 0, i = 1 · · ·N s.t. a2 + b2 + c2 = 1 (6.6)

Since it is a unit-norm constrained problem, then the globally optimal solution
can be obtained by the introduce inequality and BnB algorithm.

Notably, using homogeneous representation will make the inputs from two
dimension [xi, yi]

T to three dimension [xi, yi, 1]T , see Fig. 6.4. Furthermore,
[a, b, c]T lies in the unit sphere and it is the unit normal of a plane which is
constructed by original point and [xi, yi, 1]T .
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Figure 6.3: Line fitting example. Blue cross markers are the outliers and red dot
markers are the inlier measurements.

Figure 6.4: Geometric interpretation of homogeneous representation

First, to suppress the outliers, the robust objective function can be formulated
by consensus maximization

max
N∑
i=1

I (|axi + byi + c| ≤ ε) s.t. a2 + b2 + c2 = 1 (6.7)

where I (·) is indicator function and ε is inlier threshold.
If we initialize the inputs ti[xi, yi, 1] = [x′i, y

′
i, z
′
i], and x′2i + y′2i + z′2i = 1, then

axi + byi + c = 0� ax′i + by′i + cz′i = 0 i = 1 · · ·N (6.8)

Therefore, we reformulate the objective function

max
N∑
i=1

I (|ax′i + by′i + cz′i| ≤ ε) s.t. a2 + b2 + c2 = 1 (6.9)
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Let x = [a, b, c]T and mi = [x′i, y
′
i, z
′
i]
T . Equivalently,

max
N∑
i=1

I
(
|mT

i x| ≤ ε
)

s.t. a2 + b2 + c2 = 1 (6.10)

⇔max
N∑
i=1

I (|cos (∠ (mi,x))| ≤ ε) s.t. a2 + b2 + c2 = 1 (6.11)

⇔max
N∑
i=1

I
(
|sin

(
∠ (mi,x)− π

2

)
| ≤ ε

)
s.t. a2 + b2 + c2 = 1 (6.12)

⇔max
N∑
i=1

I
(
|∠ (mi,x)− π

2
| ≤ arcsin (ε)

)
s.t. a2 + b2 + c2 = 1 (6.13)

Note that the objective function is a special case of Chapter 3. Specifically, the
objective in Chapter 3 needs to count the inliers that perpendicular or parallel
the sought direction. However, in this part, the objective function only count the
perpendicular inliers. Therefore, we can also consider exponential mapping and
sightly change the upper bound in Chapter 3 to formulate the bounds for BnB
algorithm. However, for the completeness, we still present the detailed derivation
and mind flow.

Since [a, b, c]T and [−a,−b,−c]T represent a same line, we then set the optimal
solution domain of [a, b, c]T is a hemisphere. Accordingly, to represent the
hemisphere compactly, the hemisphere is flatten to a solid disk see Fig. 6.5. Then
the circumscribed square of the disk is initialized as the solution domain for line
parameters x.

Figure 6.5: Illustration of exponential mapping of a hemisphere

To seek the global optimum, the BnB algorithm is applied and the square-
shaped region is being divided into small regions (see Fig. 6.6). To estimate the
bound, we then need to count the inlier number if x is in a given small branch.
Specifically, given a square-shaped branch in the disk, the center is xc and half
side is σ, the upper bound can be

U =
N∑
i=1

I
(
|mT

i xc| ≤ sin
(

min
{

arcsin(ε) +
√

2σ,
π

2

}))
(6.14)
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Figure 6.6: Geometrical illustration of the bound. The region bounded by green
square in left sub-figure means the divided sub-branch. It corresponds to
an irregular region bounded by green boundary in right sub-figure. Then
it is relaxed to an umbrella-shaped patch in the sphere (region bounded
by blue circle). The circle-region bounded by red line in the left sub-figure
is the circumscribed circle of the small branch. The irregular region in the
right sub-figure is corresponding to the circumscribed circle in the left.

The lower bound can be

L =
N∑
i=1

I
(
|mT

i xc| ≤ ε
)

(6.15)

Proof. 1. For the upper bound, observe

|mT
i x| ≤ ε⇔|∠ (mi,x)− π

2
| ≤ arcsin (ε) (6.16)

⇒|∠ (mi,xc)−
π

2
| ≤ arcsin (ε) +

√
2δ (6.17)

⇔I
(
|mT

i xc| ≤ sin
(

min
{

arcsin(ε) +
√

2σ,
π

2

}))
(6.18)

Then,

I
(
|mT

i x| ≤ ε
)

= 1⇒ I
(
|mT

i xc| ≤ sin
(

min
{

arcsin(ε) +
√

2σ,
π

2

}))
= 1

(6.19)
Therefore,

max
N∑
i=1

I
(
|mT

i x| ≤ ε
)
≤

N∑
i=1

I
(
|mT

i xc| ≤ sin
(

min
{

arcsin(ε) +
√

2σ,
π

2

}))
(6.20)

2. For the lower bound, the maximum in the region should be no less than
the objective value at any specific point in the region.
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6.4 Extension Example: Globally Optimal Solution for Line Fitting
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Figure 6.7: The convergence curves in BnB algorithm using two dimensional synthetic
data. As the algorithm iterates, the gap between the lower and upper
bounds is to zero and the remaining area is to be very small.

3. When the sub-branch is reduced to be a point, the gap between lower and
upper bound is zero.

We verify the validation of the method using synthetic input data. The synthetic
data are randomly generated N=200 with 50% outliers. The convergence curves
are shown in Fig. 6.7. Evidently, the BnB algorithm can rapidly converge to the
globally optimal solution.

In conclusion, we provide a simple globally optimal solution for robust line
fitting from two dimensional outlier-contaminated measurements. Particularly,
it demonstrates how to extend our proposed core idea in this thesis to other
applications.
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Appendix A

Triangle Inequality on the
Hyper-sphere Sn

In this thesis, we apply the triangle inequality on the hyper-sphere many times.
We then introduce a simple proof in this part.

Figure A.1: An examples of the triangle inequality for triangles with sides of lengths
Sa, Sb, Sc.

The triangle inequality [218], which states for any triangle in Euclidean space,
the sum of the lengths of any two sides must be no less than the length of the
remaining side, is well-known. Geometrically, it is shown in Fig A.1. Moreover,
the triangle inequality not only stands in R2 but also holds in Rn, where n is a
positive integer which means the dimensionality of the space [219].

Formally, given each three points ∀A,B,C ∈ Rn, there is

‖
−→
AB‖ ≤ ‖

−→
AC‖+ ‖

−−→
BC‖ (A.1)

where ‖·‖ is the Euclidean norm of a vector. This results can be obtained elegantly
by Cauchy–Schwarz inequality [220].

‖
−→
AB‖2 =

(
‖
−→
AC +

−−→
CB‖

)2
(A.2)

= ‖
−→
AC‖2 + ‖

−−→
BC‖2 + 2dot

(−→
AC,
−−→
CB
)

(A.3)

≤ ‖
−→
AC‖2 + ‖

−−→
BC‖2 + 2‖

−→
AC‖‖

−−→
BC‖ (A.4)

=
(
‖
−→
AC‖+ ‖

−−→
BC‖

)2
(A.5)

Without difficulty, ‖
−→
AB‖ ≤ ‖

−→
AC‖+ ‖

−−→
BC‖. Here dot (·, ·) means inner product

of two vectors .
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Appendix A Triangle Inequality on the Hyper-sphere Sn

It should mention that there is a general formulation, which is well known as
Minkowski inequality [221]:

‖
−→
AB‖p ≤ ‖

−→
AC‖p + ‖

−−→
BC‖p (A.6)

where 1 ≤ p <∞, and ‖·‖p means the Lp norm of a vector. More generally, the
triangle inequality can be formulated as

dist(A,B) ≤ dist(A,C) + dist(B,C) (A.7)

where dist(·, ·) is a distance function in a metric space [222–224].
If we take the angle distance as dist(·, ·), we then have

∠(va,vb) ≤ ∠(va,vc) + ∠(vb,vc) (A.8)

where va =
−→
OA,vb =

−−→
OB,vc =

−→
OC and 0 ≤ ∠(va,vb) ≤ π. Specifically,

∠(va,vb) = arccos(vTa vb)/ (‖va‖‖vb‖). Intuitively, Eq. (A.8) seems reasonable.
However, we cannot assert it is correct without solid proof.

In [52], the authors point the triangle inequality in a sphere S2(see Fig. A.2).
Here S2 means a unit sphere in R3, in other words, S2 = {x|x ∈ R3, ‖x‖ = 1}.
Formally, given three points A,B,C ∈ S2, there is

∠AOB ≤ ∠AOC + ∠BOC (A.9)

⇐⇒ ÃB ≤ ÃC + B̃C (A.10)

where 0 ≤ ∠AOB ≤ π means the angle distance between
−→
OA and

−−→
OB; ÃB is the

length of the shortest arc path from point A to point B on the sphere.

Figure A.2: The triangle inequality in S2.

Furthermore, this result can be extended to n-sphere, and the proof is then
briefly given in this part. Formally, let Sn be the standard unit sphere embedded
in Euclidean space as Sn = {x|x ∈ Rn+1, ‖x‖ = 1}.
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Given A,B,C ∈ Sn and va =
−→
OA,vb =

−−→
OB,vc =

−→
OC. There is

∠(va,vb) ≤ ∠(va,vc) + ∠(vb,vc) (A.11)

Proof. Let ωab = arccos
(
vTa vb

)
, ωac = arccos

(
vTa vc

)
and ωbc = arccos

(
vTb vc

)
.

Then

va = cos(ωac)vc + sin(ωac)zac (A.12)

vb = cos(ωbc)vc + sin(ωbc)zbc (A.13)

where zac, zbc are two unit vectors, which are orthogonal to vc. Note that va,vc
and zac are in a plane; vb,vc,zbc are in a plane (see Fig. A.3).

Figure A.3: The vector decomposition in S2.

Observe

cos (ωab) = vTa vb (A.14)

= cos(ωac) cos(ωbc) + sin(ωac) sin(ωbc)z
T
aczbc (A.15)

≥ cos(ωac) cos(ωbc)− sin(ωac) sin(ωbc) (A.16)

= cos(ωac + ωbc) (A.17)

Note that Eq. (A.15) is actually the spherical law of cosines [225].
After that, we have two cases:

1. If ωac + ωbc ≥ π, then ωab ≤ π ≤ ωac + ωbc.

2. If ωac + ωbc < π, since cos(x) is a monotonically decreasing function when
x ∈ [0, π], therefore, ωab ≤ ωac + ωbc.

Based on the above two cases, we then prove

∠(va,vb) ≤ ∠(va,vc) + ∠(vb,vc) (A.18)
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Appendix B

Convex Function f (x) = arccos(x)2

To prove lemma 2.6, we introduce a convex function f(x) = arccos(x)2. In this
part, we show that the f(x) = arccos(x)2 is convex in detail.

Figure B.1: Illustration of f(x) and f ′′(x)

Observe,

f(x) = arccos(x)2 (B.1)

f ′(x) =− 2
arccos(x)√

1− x2
(B.2)

f ′′(x) =
2
√

1− x2 − 2x arccos(x)

(1− x2)3/2
(B.3)

To prove f(x) is convex in [−1, 1], it is sufficient to prove f ′′(x) ≥ 0 in (−1, 1).
Therefore, we need to prove

√
1− x2 − x arccos(x) ≥ 0, x ∈ (−1, 1) (B.4)

Let

g(x) =
√

1− x2 − x arccos(x) (B.5)

Then

g′(x) = − arccos(x) (B.6)

Observe, g(1) = 0 and

g′(x) ≤ 0, x ∈ [−1, 1] (B.7)
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Appendix B Convex Function f(x) = arccos(x)2

Figure B.2: Illustration of g(x) and g′(x)

According to mean value theorem, ∃c ∈ [a, b],

g′(c) =
g(b)− g(a)

b− a
(B.8)

Therefore, for x ∈ (−1, 1), there is

g′(c) =
g(1)− g(x)

1− x
≤ 0 (B.9)

Since g(1) = 0, and 1− x ≥ 0, then

g(x) ≥ 0 x ∈ (−1, 1) (B.10)

Equivalently, √
1− x2 − x arccos(x) ≥ 0, x ∈ (−1, 1) (B.11)

Then

f ′′(x) =
2
√

1− x2 − 2x arccos(x)

(1− x2)3/2
≥ 0, x ∈ (−1, 1) (B.12)

Therefore, f(x) = arccos(x)2 is a convex function in [−1, 1].

126



Bibliography

[1] J. C. Knight. Safety critical systems: challenges and directions. In Pro-
ceedings of the 24th international conference on software engineering, pages
547–550, 2002.

[2] J. Athavale, A. Baldovin, R. Graefe, M. Paulitsch, and R. Rosales. Ai and
reliability trends in safety-critical autonomous systems on ground and air.
In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pages 74–77. IEEE, 2020.

[3] M. Rabe, S. Milz, and P. Mader. Development methodologies for safety
critical machine learning applications in the automotive domain: A survey.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 129–141, 2021.

[4] N. Agarwal, C.-W. Chiang, and A. Sharma. A study on computer vision
techniques for self-driving cars. In International Conference on Frontier
Computing, pages 629–634. Springer, 2018.

[5] X. Song, P. Wang, D. Zhou, R. Zhu, C. Guan, Y. Dai, H. Su, H. Li, and
R. Yang. Apollocar3d: A large 3d car instance understanding benchmark
for autonomous driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5452–5462, 2019.

[6] P. Lin. Tesla autopilot crash: Why we should worry about a single death.
IEEE Spectrum: Technology, Engineering, and Science News, 2016.

[7] 2 killed in driverless tesla car crash, officials say. URL: https://www.

nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html.

[8] Tesla needs to fix its deadly autopilot problem. URL: https://www.vox.
com/recode/2020/2/26/21154502/tesla-autopilot-fatal-crashes.

[9] T.-J. C. Luca Carlone, F. K. Anders Eriksson, and H. Yang. Global
optimization for geometric understanding with provable guarantees. URL:
https://mit-spark.github.io/GlobalOptimization-ICCV2019/.

[10] R. Szeliski. Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

[11] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition,
2004.

127

https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.vox.com/recode/2020/2/26/21154502/tesla-autopilot-fatal-crashes
https://www.vox.com/recode/2020/2/26/21154502/tesla-autopilot-fatal-crashes
https://mit-spark.github.io/GlobalOptimization-ICCV2019/


Bibliography

[12] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE
Transactions on Intelligent Transportation Systems, 21(9):3848–3858, 2019.

[13] K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Albuquerque.
Deep learning for safe autonomous driving: Current challenges and future
directions. IEEE Transactions on Intelligent Transportation Systems, 2020.

[14] A. Pugh. Robot vision. Springer Science & Business Media, 2013.

[15] V. Kyrki. Computer and robot vision. IEEE robotics & automation
magazine, 18(2):121–122, 2011.

[16] C.-h. Chen. Computer vision in medical imaging, volume 2. World scientific,
2013.

[17] T. M. Ward, P. Mascagni, Y. Ban, G. Rosman, N. Padoy, O. Meireles, and
D. A. Hashimoto. Computer vision in surgery. Surgery, 169(5):1253–1256,
2021.

[18] L. R. Kennedy-Metz, P. Mascagni, A. Torralba, R. D. Dias, P. Perona,
J. A. Shah, N. Padoy, and M. A. Zenati. Computer vision in the operating
room: Opportunities and caveats. IEEE transactions on medical robotics
and bionics, 3(1):2–10, 2020.

[19] D. Dong, X. Li, and X. Sun. A vision-based method for improving the
safety of self-driving. In 2018 12th International Conference on Reliability,
Maintainability, and Safety (ICRMS), pages 167–171. IEEE, 2018.

[20] A. Sagar and R. Soundrapandiyan. Semantic segmentation with multi scale
spatial attention for self driving cars. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2650–2656, 2021.

[21] G. Hee Lee, F. Faundorfer, and M. Pollefeys. Motion estimation for self-
driving cars with a generalized camera. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2746–2753,
2013.

[22] P. Kohli and A. Chadha. Enabling pedestrian safety using computer vision
techniques: A case study of the 2018 uber inc. self-driving car crash. In
Future of Information and Communication Conference, pages 261–279.
Springer, 2019.

[23] R. Kulkarni, S. Dhavalikar, and S. Bangar. Traffic light detection and
recognition for self driving cars using deep learning. In 2018 Fourth Interna-
tional Conference on Computing Communication Control and Automation
(ICCUBEA), pages 1–4. IEEE, 2018.

128



Bibliography

[24] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361. IEEE, 2012.

[25] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics,
33(5):1255–1262, 2017.

[26] M. Garcia-Salguero, J. Briales, and J. Gonzalez-Jimenez. Certifiable relative
pose estimation. Image and Vision Computing, 109:104142, 2021.

[27] D. Nistér. An efficient solution to the five-point relative pose problem. IEEE
transactions on pattern analysis and machine intelligence, 26(6):756–770,
2004.

[28] M. Hassaballah, A. A. Abdelmgeid, and H. A. Alshazly. Image features
detection, description and matching. In Image Feature Detectors and
Descriptors, pages 11–45. Springer, 2016.

[29] T.-J. Chin and D. Suter. The maximum consensus problem: recent al-
gorithmic advances. Synthesis Lectures on Computer Vision, 7(2):1–194,
2017.

[30] V. Tzoumas, P. Antonante, and L. Carlone. Outlier-robust spatial per-
ception: Hardness, general-purpose algorithms, and guarantees. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5383–5390. IEEE, 2019.

[31] C. C. Aggarwal. An introduction to outlier analysis. In Outlier analysis,
pages 1–34. Springer, 2017.

[32] J. Frost. Introduction to Statistics: An Intuitive Guide for Analyzing Data
and. 2019.

[33] H. Zhou, T. Zhang, and J. Jagadeesan. Re-weighting and 1-point ransac-
based p n n p solution to handle outliers. IEEE transactions on pattern
analysis and machine intelligence, 41(12):3022–3033, 2018.

[34] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[35] H. Li. Consensus set maximization with guaranteed global optimality for
robust geometry estimation. In 2009 IEEE 12th International Conference
on Computer Vision, pages 1074–1080. IEEE, 2009.

[36] M.-H. Lin, J.-F. Tsai, and C.-S. Yu. A review of deterministic optimiza-
tion methods in engineering and management. Mathematical Problems in
Engineering, 2012, 2012.

129



Bibliography

[37] C. Olsson, A. Eriksson, and R. Hartley. Outlier removal using duality. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 1450–1457. IEEE, 2010.

[38] H. Yang and L. Carlone. A quaternion-based certifiably optimal solution
to the wahba problem with outliers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1665–1674, 2019.

[39] W. Liu and W. Lin. Additive white gaussian noise level estimation in svd
domain for images. IEEE Transactions on Image processing, 22(3):872–883,
2012.

[40] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi. Revisiting
the pnp problem: A fast, general and optimal solution. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2344–2351,
2013.

[41] D. De Menezes, D. M. Prata, A. R. Secchi, and J. C. Pinto. A review
on robust m-estimators for regression analysis. Computers & Chemical
Engineering, page 107254, 2021.

[42] A. Ruckstuhl. Robust fitting of parametric models based on m-estimation.
Lecture notes, page 40, 2014.

[43] K. Aftab and R. Hartley. Convergence of iteratively re-weighted least
squares to robust m-estimators. In 2015 IEEE Winter Conference on
Applications of Computer Vision, pages 480–487. IEEE, 2015.

[44] G. Shevlyakov, S. Morgenthaler, and A. Shurygin. Redescending m-
estimators. Journal of Statistical Planning and Inference, 138(10):2906–2917,
2008.

[45] P. W. Holland and R. E. Welsch. Robust regression using iteratively
reweighted least-squares. Communications in Statistics-theory and Methods,
6(9):813–827, 1977.

[46] R. Wolke and H. Schwetlick. Iteratively reweighted least squares: algo-
rithms, convergence analysis, and numerical comparisons. SIAM journal
on scientific and statistical computing, 9(5):907–921, 1988.

[47] L. Magri and A. Fusiello. T-linkage: A continuous relaxation of j-linkage
for multi-model fitting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3954–3961, 2014.

[48] G. J. McLachlan and T. Krishnan. The EM algorithm and extensions,
volume 382. John Wiley & Sons, 2007.

130



Bibliography

[49] H. Li and R. Hartley. The 3d-3d registration problem revisited. In 2007
IEEE 11th international conference on computer vision, pages 1–8. IEEE,
2007.

[50] C. Ravazzi and E. Magli. Fast and robust em-based irls algorithm for sparse
signal recovery from noisy measurements. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3841–3845. IEEE, 2015.

[51] C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, and M. I. Jordan.
Local maxima in the likelihood of gaussian mixture models: Structural
results and algorithmic consequences. Advances in neural information
processing systems, 29:4116–4124, 2016.

[52] D. Campbell, L. Petersson, L. Kneip, and H. Li. Globally-optimal inlier
set maximisation for camera pose and correspondence estimation. IEEE
transactions on pattern analysis and machine intelligence, 42(2):328–342,
2018.

[53] J.-C. Bazin, Y. Seo, R. Hartley, and M. Pollefeys. Globally optimal inlier
set maximization with unknown rotation and focal length. In European
Conference on Computer Vision, pages 803–817. Springer, 2014.

[54] T. Probst, D. P. Paudel, A. Chhatkuli, and L. V. Gool. Unsupervised
learning of consensus maximization for 3d vision problems. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 929–938, 2019.

[55] V. Fragoso, C. Sweeney, P. Sen, and M. Turk. Ansac: Adaptive non-minimal
sample and consensus. In British Machine Vision Conference, 2017.

[56] R. B. Tennakoon, A. Bab-Hadiashar, Z. Cao, R. Hoseinnezhad, and D. Suter.
Robust model fitting using higher than minimal subset sampling. IEEE
transactions on pattern analysis and machine intelligence, 38(2):350–362,
2015.

[57] H. M. Le, T.-J. Chin, A. Eriksson, T.-T. Do, and D. Suter. Determin-
istic approximate methods for maximum consensus robust fitting. IEEE
transactions on pattern analysis and machine intelligence, 2019.

[58] T.-J. Chin, A. Eriksson, and Y. Matsushita. Optimisation methods in
geometric vision. 2019.

[59] C. Xu, L. Zhang, L. Cheng, and R. Koch. Pose estimation from line
correspondences: A complete analysis and a series of solutions. IEEE
transactions on pattern analysis and machine intelligence, 39(6):1209–1222,
2016.

131



Bibliography

[60] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[61] C. A. Floudas. Deterministic global optimization: theory, methods and
applications, volume 37. Springer Science & Business Media, 2013.

[62] D. Scholz. Deterministic global optimization: geometric branch-and-bound
methods and their applications, volume 63. Springer Science & Business
Media, 2011.

[63] K.-C. Hu, C.-W. Tsai, and M.-C. Chiang. A multiple-search multi-start
framework for metaheuristics for clustering problems. IEEE Access, 8:96173–
96183, 2020.

[64] O. Kramer. Genetic algorithms. In Genetic algorithm essentials, pages
11–19. Springer, 2017.

[65] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal greedy
algorithms for tracking a variable number of objects. In CVPR 2011, pages
1201–1208. IEEE, 2011.

[66] J. Yang, H. Li, D. Campbell, and Y. Jia. Go-icp: A globally optimal
solution to 3d icp point-set registration. IEEE transactions on pattern
analysis and machine intelligence, 38(11):2241–2254, 2015.

[67] D. Campbell and L. Petersson. Gogma: Globally-optimal gaussian mixture
alignment. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5685–5694, 2016.

[68] C. Olsson, F. Kahl, and M. Oskarsson. Branch-and-bound methods for
euclidean registration problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(5):783–794, 2008.

[69] M. Brown, D. Windridge, and J.-Y. Guillemaut. A family of globally optimal
branch-and-bound algorithms for 2d–3d correspondence-free registration.
Pattern Recognition, 93:36–54, 2019.

[70] M. Chandraker, S. Agarwal, D. Kriegman, and S. Belongie. Globally optimal
algorithms for stratified autocalibration. International journal of computer
vision, 90(2):236–254, 2010.

[71] J. Heller, M. Havlena, and T. Pajdla. Globally optimal hand-eye calibration
using branch-and-bound. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(5):1027–1033, 2015.

[72] D. Liu, A. Parra, and T.-J. Chin. Globally optimal contrast maximisation for
event-based motion estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6349–6358, 2020.

132



Bibliography

[73] X. Peng, L. Gao, Y. Wang, and L. Kneip. Globally-optimal contrast
maximisation for event cameras. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[74] A. Owen-Hill. Robot vision vs computer vision: What’s
the difference? URL: https://blog.robotiq.com/

robot-vision-vs-computer-vision-whats-the-difference.

[75] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[76] E. Oja and L. Wang. Robust fitting by nonlinear neural units. Neural
networks, 9(3):435–444, 1996.

[77] Y. Tong, L. Yu, S. Li, J. Liu, H. Qin, and W. Li. Polynomial fitting algorithm
based on neural network. ASP Transactions on Pattern Recognition and
Intelligent Systems, 1(1):32–39, 2021.

[78] C. Tat-Jun, C. Zhipeng, and F. Neumann. Robust fitting in computer vision:
Easy or hard? International Journal of Computer Vision, 128(3):575–587,
2020.

[79] P. Jain and P. Kar. Non-convex optimization for machine learning. Foun-
dations and Trends R© in Machine Learning, 10(3-4):142–336, 2017.

[80] J. Sun. When are nonconvex optimization problems not scary? Columbia
University, 2016.

[81] Y. Liu, G. Chen, and A. Knoll. Globally optimal vertical direction estimation
in atlanta world. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[82] Y. Liu, G. Chen, and A. Knoll. Globally optimal camera orientation
estimation from line correspondences by bnb algorithm. IEEE Robotics and
Automation Letters, 6(1):215–222, 2020.
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[151] B. Přibyl, P. Zemč́ık, and M. Čad́ık. Absolute pose estimation from line
correspondences using direct linear transformation. Computer Vision and
Image Understanding, 161:130–144, 2017.

[152] H. Yu, W. Zhen, W. Yang, and S. A. Scherer. Line-based camera pose esti-
mation in point cloud of structured environments. CoRR, abs/1912.05013,
2019. URL: http://arxiv.org/abs/1912.05013, arXiv:1912.05013.

[153] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard. Se-sync: A
certifiably correct algorithm for synchronization over the special euclidean
group. The International Journal of Robotics Research, 38(2-3):95–125,
2019.

[154] J. Fredriksson, V. Larsson, C. Olsson, O. Enqvist, and F. Kahl. Efficient
algorithms for robust estimation of relative translation. Image and Vision
Computing, 52:114–124, 2016.

[155] Y. Liu, X. Li, M. Wang, A. Knoll, G. Chen, and Z. Song. A novel method
for the absolute pose problem with pairwise constraints. Remote Sensing,
11(24):3007, 2019.

[156] N. Horanyi and Z. Kato. Multiview absolute pose using 3d-2d perspective
line correspondences and vertical direction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2472–2480, 2017.

[157] L. Kneip, H. Li, and Y. Seo. Upnp: An optimal o (n) solution to the
absolute pose problem with universal applicability. In European Conference
on Computer Vision, pages 127–142. Springer, 2014.

[158] S. Hadfield, K. Lebeda, and R. Bowden. Hard-pnp: Pnp optimization using
a hybrid approximate representation. IEEE transactions on pattern analysis
and machine intelligence, 41(3):768–774, 2018.

[159] A. Vakhitov, J. Funke, and F. Moreno-Noguer. Accurate and linear time
pose estimation from points and lines. In European Conference on Computer
Vision, pages 583–599. Springer, 2016.

[160] P. Miraldo, T. Dias, and S. Ramalingam. A minimal closed-form solution
for multi-perspective pose estimation using points and lines. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 474–490,
2018.

[161] S. Choi, T. Kim, and W. Yu. Performance evaluation of ransac family. In
Proceedings of the British Machine Vision Conference, pages 81.1–81.12.
BMVA Press, 2009. doi:10.5244/C.23.81.

139

http://arxiv.org/abs/1912.05013
http://arxiv.org/abs/1912.05013


Bibliography

[162] Z. Cai, T.-J. Chin, and V. Koltun. Consensus maximization tree search
revisited. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1637–1645, 2019.

[163] Z. Cai, T.-J. Chin, H. Le, and D. Suter. Deterministic consensus max-
imization with biconvex programming. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 685–700, 2018.

[164] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold,
and C. Rother. Dsac-differentiable ransac for camera localization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6684–6692, 2017.

[165] E. Brachmann and C. Rother. Neural-guided ransac: Learning where
to sample model hypotheses. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4322–4331, 2019.

[166] R. Kumar and A. R. Hanson. Robust methods for estimating pose and a
sensitivity analysis. CVGIP: Image understanding, 60(3):313–342, 1994.

[167] Y. Liu, T. S. Huang, and O. D. Faugeras. Determination of camera location
from 2-d to 3-d line and point correspondences. IEEE Transactions on
pattern analysis and machine intelligence, 12(1):28–37, 1990.

[168] Y. Zhang, X. Li, H. Liu, and Y. Shang. Probabilistic approach for maximum
likelihood estimation of pose using lines. IET Computer Vision, 10(6):475–
482, 2016.

[169] H. Abdellali, R. Frohlich, and Z. Kato. A direct least-squares solution to
multi-view absolute and relative pose from 2d-3d perspective line pairs.
In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pages 0–0, 2019.

[170] A. Ansar and K. Daniilidis. Linear pose estimation from points or lines.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):578–
589, 2003.

[171] P. Wang, G. Xu, Y. Cheng, and Q. Yu. Camera pose estimation from lines:
a fast, robust and general method. Machine Vision and Applications, pages
1–12, 2019.

[172] L. Ferraz, X. Binefa, and F. Moreno-Noguer. Very fast solution to the
pnp problem with algebraic outlier rejection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 501–508,
2014.

[173] H. Abdellali and Z. Kato. Absolute and relative pose estimation of a multi-
view camera system using 2d-3d line pairs and vertical direction. In 2018

140



Bibliography

Digital Image Computing: Techniques and Applications (DICTA), pages
1–8. IEEE, 2018.

[174] N. Horanyi and Z. Kato. Generalized pose estimation from line correspon-
dences with known vertical direction. In 2017 International Conference on
3D Vision (3DV), pages 244–253. IEEE, 2017.

[175] L. Lecrosnier, R. Boutteau, P. Vasseur, X. Savatier, and F. Fraundorfer.
Vision based vehicle relocalization in 3d line-feature map using perspective-n-
line with a known vertical direction. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 1263–1269. IEEE, 2019.

[176] F. M. Mirzaei and S. I. Roumeliotis. Globally optimal pose estimation from
line correspondences. In 2011 IEEE International Conference on Robotics
and Automation, pages 5581–5588. IEEE, 2011.

[177] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-
and-bound algorithms: A survey of recent advances in searching, branching,
and pruning. Discrete Optimization, 19:79–102, 2016.

[178] W. A. De Graaf. Lie algebras: theory and algorithms. Elsevier, 2000.

[179] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.
1982. URL: https://academic.microsoft.com/paper/1669104078.

[180] J. Richter-Gebert. Perspectives on projective geometry: a guided tour
through real and complex geometry. Springer Science & Business Media,
2011.

[181] H. Li and R. Hartley. Five-point motion estimation made easy. In 18th
International Conference on Pattern Recognition (ICPR’06), volume 1,
pages 630–633. IEEE, 2006.

[182] R. Hartley and H. Li. An efficient hidden variable approach to minimal-case
camera motion estimation. IEEE transactions on pattern analysis and
machine intelligence, 34(12):2303–2314, 2012.

[183] P. H. Torr and A. Zisserman. Mlesac: A new robust estimator with
application to estimating image geometry. Computer vision and image
understanding, 78(1):138–156, 2000.

[184] L. Zhang, C. Xu, K.-M. Lee, and R. Koch. Robust and efficient pose
estimation from line correspondences. In Asian Conference on Computer
Vision, pages 217–230. Springer, 2012.

[185] T. Moons, L. Van Gool, and M. Vergauwen. 3D Reconstruction from
Multiple Images: Principles. Now Publishers Inc, 2009.

141

https://academic.microsoft.com/paper/1669104078


Bibliography

[186] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–
1163, 2015.

[187] O. Saurer, P. Vasseur, R. Boutteau, C. Demonceaux, M. Pollefeys, and
F. Fraundorfer. Homography based egomotion estimation with a common
direction. IEEE transactions on pattern analysis and machine intelligence,
39(2):327–341, 2016.
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