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ABSTRACT

We investigate dynamics and bifurcations in a mathematical model that captures electrochemical experiments on arrays of microelectrodes.
In isolation, each individual microelectrode is described by a one-dimensional unit with a bistable current-potential response. When an array
of such electrodes is coupled by controlling the total electric current, the common electric potential of all electrodes oscillates in some interval
of the current. These coupling-induced collective oscillations of bistable one-dimensional units are captured by the model. Moreover, any
equilibrium is contained in a cluster subspace, where the electrodes take at most three distinct states. We systematically analyze the dynamics
and bifurcations of the model equations: We consider the dynamics on cluster subspaces of successively increasing dimension and analyze
the bifurcations occurring therein. Most importantly, the system exhibits an equivariant transcritical bifurcation of limit cycles. From this
bifurcation, several limit cycles branch, one of which is stable for arbitrarily many bistable units.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0067989

The interaction between simple individual units can lead to
the spontaneous occurrence of spatial or/and temporal patterns.
Much focus has been on the collective dynamics of coupled indi-
vidual (microscopic) oscillators. However, in some important
experimental contexts, the individual units are one-dimensional
and bistable rather than oscillatory. Examples include phase-
transition cathodes in Li-ion batteries and the electrocatalytic
oxidation of CO on Pt nanoparticles or arrays of Pt microelec-
trodes. For the microelectrode array, one can observe that fixing
the total current through the electrodes leads to clustered dynam-
ics of two or three clusters where all units within one cluster take
on the same state. Moreover, such clustered states can exhibit
sustained collective oscillations. These dynamic features are cap-
tured in a simple mathematical model." Here, we elucidate the
dynamics and bifurcations that arise in the model equations as
parameters are varied. We exploit the fact that in a stationary
state, each of the N bistable units takes on one of only three differ-
ent values and reduce the N-dimensional system to two or three

degrees of freedom that describe the clustered dynamics. This
allows us to perform a bifurcation analysis of the steady states and
limit cycles, which arise in Hopf bifurcations. Furthermore, using
knowledge of the stability of the clusters in the full system,’' we can
conclude that stable oscillations also exist in thermodynamically
large systems with 10" individual bistable units, for example,
in electrocatalytical systems composed of nanoparticular catalyst
particles on some support.

. INTRODUCTION

Networks of interacting bistable units are an important class
of dynamical systems that are relevant in diverse physical con-
texts. While coupled units with oscillatory or chaotic dynamics have
been widely considered (see, e.g., the textbook in Ref. 2), multi-
component systems in which each unit has a single degree of free-
dom have received much less attention. Zanette’ considered globally
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coupled bistable elements, which interacted linearly through their
common mean. The global coupling was diffusive in the sense that
it vanished for uniform states. For random initial condition and a
sufficiently large coupling strength, the global interaction led to a
coherent motion of the entire ensemble toward one of the two stable
states. The impact of additive noise to the bistable units in related
network configurations was analyzed in Refs. 4-7, while Refs. 8-10
considered the collective response of bistable units that were con-
nected through different coupling topologies. A recent study also
examined the transition from a local to global coupling topology,
focusing on the mathematical perspective.''

Kouvaris and Mikhailov'” investigated the effect of a global
feedback on the dynamics of networks of diffusively coupled bistable
units. The global feedback was chosen such that it altered the exci-
tation threshold, i.e., the position of the saddle point, of the local
one-dimensional reaction dynamics. In this case, localized station-
ary activation patterns form, the size of which can be adjusted by
varying the feedback strength. The impact of a global time-delayed
feedback and additive noise on an ensemble of bistable units was
examined in Refs. 4 and 13, while in Ref. 14, the impact of hetero-
geneities on the synchronization state of globally coupled bistable
electronic circuits is discussed.

Here, we consider bistable units that interact through a macro-
scopic observable, which is forced to take a fixed value as a global
constraint. This observable can be the sum of the intrinsic state vari-
ables of the individual units or it can be the sum of a function of
the individual state variables. The global constraint is enforced by
allowing a parameter that controls the state of an individual unit
on the equilibrium branch to adapt; thus, the global constraint can
be seen as a bifurcation parameter of the coupled system. Indeed,
such coupling between bistable units is realized in many physi-
cal systems: These include Li-ion batteries with phase-transition
cathodes'>'° and bistable electrochemical reactions, such as the CO
oxidation on an array of Pt electrodes.”~"” In the case of Li-ion bat-
teries, the cathodes consist of billions of nano-particles that can be
considered bistable units. Each nanoparticle can be in a Li-rich or Li-
poor state depending on the chemical potential or equivalently the
voltage. Thus, the battery can be seen as interacting bistable units
coupled through a global constraint: When charging or discharg-
ing the battery slowly, a constraint is set to the time evolution of
the total charge, while the voltage adjusts accordingly. Similarly, the
CO oxidation on Pt is a prototypical electrocatalytic reaction, which
exhibits bistable reaction rates and thus a bistable current-voltage
characteristic. In technological applications, electrodes consist of
billions of catalytically active nanoparticles on a nonreactive sup-
port that interact globally when a set current is passed through the
electrode. A setup that enables the measurement of the state of an
individual bistable component is an array of Pt electrodes. Such
measurements reveal key dynamical properties: The bistable units
activate sequentially upon a slow parameter ramp, they form clus-
ters with most electrodes in the two stable states and at most one
electrode on the unstable state of the individual electrode, and they
may exhibit collective oscillations of the entire ensemble.”~"” We
recently derived a general necessary condition when a system of
bistable units subject to a global constraint can become unstable
in a Hopf bifurcation' and validated this condition in a simplified
CO-electrooxidation model.
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In this paper, we analyze this CO-electrooxidation model and
elucidate its bifurcation properties. The behavior of the coupled
units is particularly interesting when the value of the constraint is in
the transitional regime between the two outer “active” and “passive”
states of an uncoupled individual unit. As a globally and identically
coupled system of identical units, the bifurcations are constrained
by the symmetry properties of the system: The dynamical equa-
tions are Sy-symmetric (equivariant), where Sy denotes the group
of permutations of N symbols that acts by permuting component
indices; see Ref. 20 for a general introduction to dynamical systems
with symmetry. The presence of symmetries gives rise to dynami-
cally invariant subspaces, which correspond, for example, to cluster
configurations where the state of some components coincides. Sym-
metric systems can exhibit bifurcation behavior that is nongeneric
for a general dynamical system as their bifurcation behavior is con-
strained by the symmetry.””*'’ We will consider symmetry-breaking
bifurcations where the configuration of all units being synchro-
nized (the one-cluster configuration) loses stability. Indeed, since
the state space of an individual unit is one-dimensional for the sys-
tem we consider, collective oscillations cannot occur if all units are
synchronized. Thus, the emergence of collective oscillations nec-
essarily requires symmetry-breaking bifurcations away from full
synchrony.

In our bifurcation analysis, we concentrate specifically on the
structure imposed by the invariant subspaces due to symmetry.
Here the one-, two-, and three-cluster subspaces are crucially impor-
tant as they contain all equilibria of the system. We give a detailed
bifurcation analysis of the steady states in these subspaces and high-
light bifurcations that give rise to and stabilize limit cycles as they
induce collective oscillations observed in experiments. Specifically,
the paper is organized as follows. In Sec. I1, we summarize the model
equations. In Sec. I1I, we consider the one-dimensional, fully syn-
chronized dynamics where the states of all units take the same value
and form one cluster. In Sec. IV, we discuss symmetry-breaking
bifurcations away from full synchrony to two-cluster equilibria and
bifurcations of the two-cluster equilibria; these can give rise to col-
lective oscillations (that are transversely unstable for most cluster
sizes). In Sec. V, we outline bifurcations of three-cluster equilib-
ria and indicate that the transversely unstable collective oscillations
within the two-cluster subspace can be stabilized in a transcritical
bifurcation. We conclude with some remarks in Sec. V1.

Il. SYMMETRIC NETWORKS OF BISTABLE UNITS
A. Model equation

We consider the following simplified model for CO-
electrooxidation on Pt microelectrodes. Its derivation from an estab-
lished, more detailed model version can be found in the supplement
of Ref. 1. The intrinsic state x; of unit k evolves according to

1 — (1 + ab)xi(b)

() = — S w0~ w0, (1)
1 N
y= }’W == ; w(®)[1 — x(B)]x(8), (1b)
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where y imposes a global constraint and a and b are positive con-
stants; throughout this paper, we fix a = 0.05, b = 0.01 as in Ref. 1.
In terms of the CO dynamics, x; is the CO-covered fraction of the
surface and u the electrode potential. The macroscopic observable
Yot is the total CO oxidation current, and y denotes the mean current
per electrode (or nanoparticle). In our setting, y is the bifurcation
parameter, while u adjusts such that the system can attain the preset
mean value. Note that this type of coupling corresponds to a control
that fixes the value of a function of the mean state of the ensem-
ble and allows the “natural control parameter”—in our case u—to
change. This situation is different from the situation considered in
Ref. 3, where the main bifurcation parameter of the bistable unit is
also the bifurcation parameter of the globally coupled ensemble and
thus set to a constant value.

First, consider a single uncoupled unit, N =1, with state
x1 = x; the corresponding equilibrium dynamics x = 0 are shown
in Fig. 1. When u is treated as a parameter, x is bistable in u with
equilibrium branch as in Fig. 1(a); there are two saddle-node (SN)
bifurcations that bound the region of bistability. For ease of nota-
tion, we subdivide the branch of equilibria into three segments
specified by the points where these SN bifurcations occur and the
branch turns over: The active segment (“a”), where the current is
high, the middle (“m”) segment, and the passive segment (“p”),
where the current is low (see Fig. 1). We denote the value of u corre-
sponding to the transitions between the passive and middle segment
with #P~™ and the transition between the middle and active segment
with 4™, The transitions between segments play an explicit role in
the bifurcation analysis as we will discuss below. For the equilibrium
values of x, there is a single-valued, but non-monotonic relationship
between u and y, depicted in Fig. 1(b). By contrast, the value of x at
equilibrium depends monotonically on y [Fig. 1(c)].

S 10 1

0.95 1.00 0.0 0.5 1.0
Xk

y

FIG. 1. Equilibrium curve of an individual unitin (a) the (u, x«) plane, (b) the (u, y)
plane, and (c) the (x4, y) plane. For fixed u, the units shows bistable dynamics.
The equilibrium branch is subdivided into a passive (‘p”), a middle (‘m”), and an
active (“a”) segment by the saddle-node points at uP~™ and u™?. These are
indicated by labels and vertical lines in all panels. Fixing y and letting u adapt
allows to select the corresponding segment for an individual unit.
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The dynamical equations (1) can be rearranged to the explicit
form

(1 — ()] (8) )y o
Ly —x®lx)

) = 1— (1 +abx() (

14+ a— x(b)

with the electrode potential

Y
, (3)
LS [ —x®]x()

which is determined by the intrinsic states x; and the bifurcation
parameter y. If we define the two functions

u(t) =

1= +ab)x
PO= e ‘)
Qx) =1 —x)x, (4b)
the dynamical equations take the form
. Q(x(9)
O =Px®) |\ =8 == | > (5)
. . (}V > Q(xz(t))>

Configurations where the states of the units form three clusters are
particularly interesting because all equilibria of Eq. (5) necessarily lie
in a three-cluster subspace. To see this, consider the fixed points x}
of Eq. (1) with u = u*, which satisfy

0

1 — (14 ab)x; — u[1 — xf]xg(1 +a — x)

—u* (%) + Qut + au)(x))? — (1 + ab + u* + au®)x} + 1.
(6)
Since this cubic polynomial has at most three distinct roots, the coef-

ficients of any equilibrium of (5) take at most three distinct values
and thus form a cluster configuration.

B. Cluster subspaces and full synchrony

As a globally coupled network of N identical bistable units, the
system equation (5) is symmetric (equivariant) with respect to per-
mutations of units. In other words, if the group Sy of permutations
of N symbols acts on the bistable units by permuting indices, the
equations of motion remain unchanged. This implies that cluster
configurations, where the state of all units in each cluster is identical,
are also invariant under the dynamics.

Suppose that the units form M clusters such that the kth clus-
ter contains Ny units with identical state &. Evidently, we should
have N = ZJA; N;. Define the relative cluster size ny = % and write
Ciny,...nyp for the cluster subspace where the first N; oscillators form
cluster 1, the next N, oscillators cluster 2, and so on. The effective
uration with these cluster sizes—are M-dimensional, and the state &
of cluster k € {1,..., M} evolves according to

QG (1)
> mQeE D)
While # only takes finitely many values for finite networks, in the

limit of infinitely many units, N — 0o, we can see 1 as a continuous
parameter.

& () = P(&) — ( 7)
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I1l. FULLY SYNCHRONIZED DYNAMICS

The simplest cluster configuration C; is a single cluster; that
is, all units are synchronized with x; = & = &. With P, Q as above,
the synchronized dynamics of (5) are given by

1— (1+ab@®)

(1) = 8
0= "0 ®)
Equation (8) has only one single equilibrium point
s_1-y—ay
= 9
§ l4+ab—y @)

for any y € (0,1), which is identical to the curve of an individual
element depicted in Fig. 1. Restricted to the synchronized subspace,
the system is monostable for all parameter values; i.e., for each y,
there is exactly one single equilibrium. (If u is given instead of y,
however, there can be three equilibria.) Linearizing Eq. (8) at the
equilibrium £* yields

) 1— b)*
fp =g - Loytab)

a@b b0t i

and thus, £* is always stable within C.

The stability of £&* as an equilibrium of the full system (5)
depends on the N — 1 eigenvalues transverse to C(;). Due to the sym-
metry, all transversal eigenvalues are the same; they are all negative
on the “a” and “p” segments and positive on the “m” segment. This
implies that the equilibrium is stable on the “a” and “p” segments
and unstable on the “m” segment. The change of stability of the equi-
librium &* happens in Sy-equivariant transcritical bifurcations at
uP~™ and u™~* where all eigenvalues transverse to C(;, pass through
zero simultaneously. Note that at these transcritical bifurcations, an
uncoupled individual bistable unit undergoes a SN bifurcation if u
is considered a bifurcation parameter [cf. Eq. (1a)]; that is, the bifur-
cation happens where all synchronized units jointly transition from
the passive to middle segment of the branch or from the middle to
active segment of the branch.

IV. TWO-CLUSTER DYNAMICS AND BIFURCATIONS

Now, we consider two-cluster configurations C,, ., with rela-
tive sizes #; and n,, respectively. The two-dimensional dynamics on
C(n, ny) are given by

o ~ Q& (1)
20 =FEG) (mQ(sl ) + an@z(t))>y ’ (112)
: Q&)

= P — . b
20 =PEO) (le(&(t)) n an(sz(t»)y (L)

The intersection of all possible two-cluster subspaces contains the
fully synchronized subspace {£; = &,}. Note that for n; and n, fixed,
the system has a parameter symmetry

(n,m2;61,8) B (n2,n1362,81),

which corresponds to exchanging the clusters. Since n; +n, = 1,
the parameter »; fully determines the system, and the parameter

ARTICLE scitation.org/journal/cha

symmetry can also be written as

(n;61,86) > (1 —ni36,6). (12)

Thus, without loss of generality, we may assume n; > n,. If the
clusters are of equal size, n; = n,, the parameter symmetry yields
a system symmetry (§1,&;) — (&, &) on the cluster subspace.

The branch of fully symmetric equilibria in C(;) interacts with
branches of two-cluster solutions in C,, ) in transcritical bifurca-
tions. Note that we say that two (distinct) branches of equilibria or
limit cycles interact if they are involved in the same bifurcation; for
example, two branches of equilibria interact in a simple transcritical
bifurcation. All branches and their bifurcations described through-
out the paper were calculated numerically using AUTO-07P.* In
the following, we will first focus on the specific relative cluster sizes
n; = 0.8, n, = 0.2 to illustrate the bifurcation behavior. Figure 2
shows the equilibria branches in the (u, y)-plane as the bifurcation
parameter y is varied. The black line shows the fully symmetric equi-
librium £= = (&%, £*)—with £* as in Sec. I1l—within Cyy C Cpyny)s
this branch is the same as the one shown in Fig. 1(b).

The locations where the fully symmetric equilibrium solution
undergoes transcritical bifurcations are indicated by yellow dots. At
these bifurcation points, the symmetric branch interacts with the
branch of two-cluster equilibria (dark blue line). It is useful to sub-
divide the branch of two-cluster equilibria into segments: We write
“aa” if both clusters are on the active segment, “am” if the first clus-
ter is on the active and the second one on the middle segment, etc.
This leads to the labeling shown in Fig. 2, and the boundaries of the

30
— equilibrium &, =&,
—— equilibrium &, # &>
254 limit cycle
homoclinic orbit
® saddle node bif.
201 transcritical bif.
pom ® Hopf bif.
urPt
5 15 4 ma
10 A
5 -
ym-a
0

y

FIG. 2. Symmetry-breaking bifurcations and transitions to periodic dynamics
occur on the two-cluster subspace Cqy, n,) for ny = 0.8, n, = 0.2, for a = 0.05,
b = 0.01. The black line indicates the branch of fully symmetric equilibria as in
Fig. 1. This branch interacts with the two-cluster equilibria (blue line) in trans-
critical bifurcations (yellow dot). The labels “a,” “m,” and “p” indicate the active,
middle, and passive segments of the branch as detailed in the main text with the
first letter representing &; and the second &,. A Hopf bifurcation (pink dot) gives
rise to oscillatory dynamics. The shaded parameter range is considered in detail
in Fig. 3.
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segments are given by the local maxima and minima correspond-
ing to u € {uP~™, u™?}. This labeling yields some intuition of what
happens at the transcritical bifurcations: At the first transcritical
bifurcations, the two-cluster equilibrium transitions from “pm” to
“mp” and the clusters switch roles as the majority cluster (n; = 0.8)
switches from “p” to “m” and the minority cluster (1, = 0.2) from
“m” to “p.” Similarly, at the second transcritical bifurcation, there
is a transition from “ma” to “am.” Following the two-cluster equi-
librium branch further, it folds over twice in SN bifurcations (green
dots) and undergoes a Hopf bifurcation at y & 0.8 (pink dot). This
gives rise to a branch of limit cycles (light blue) that is stable within
C(n, 1,y and ends in a homoclinic bifurcation close to the transcritical
bifurcation at y &~ 0.9.

There is actually a series of bifurcations close to the second
transcritical bifurcation as the parameter y is varied as shown in
Fig. 3. When the Hopf bifurcation occurs at y = 0.8, there are three
equilibria in Cy, .,), the symmetric equilibrium &= in Cyy C Cy ny)
as well as nonsymmetric equilibria ¢ * = (&7, &") with ;" < &' and
E7 = (§,& ) with&, < & ; the former gives rise to the stable limit
cycle. At the transcritical bifurcation, &£~ interacts with £~ and sat-
isfies & < &, after the bifurcation point. This equilibrium then

ARTICLE scitation.org/journal/cha

collides with the limit cycle in a homoclinic bifurcation at y ~ 0.91.
Finally, the two equilibria £~ and & meet in the fold where the
nonsymmetric branch in Fig. 2 folds over itself. Note that the tran-
scritical bifurcation must happen before the homoclinic bifurcation
to allow for this bifurcation scenario: It cannot occur on the “ma”
segment before the transcritical bifurcation but has to occur on the
“am” segment (but before £~ and & merge in the SN bifurcation).

Considering transverse stability beyond Ci,, ), we realize that
the branch of two-cluster equilibria undergoes transcritical bifurca-
tions whenever u € {uP~™, u™?}. Hence, there are six in total, the
two indicated by yellow dots in Fig. 2, where all bifurcating branches
lie within C, 4,), and four additional ones where the two-cluster
equilibria interact with three-cluster equilibria; we will discuss these
in more detail in Sec. V.

To elucidate the dynamics and bifurcations for other relative
cluster sizes, we continued the bifurcations in two parameters, y
and n;. The resulting two-parameter bifurcation lines are shown in
Fig. 4. Note that the symmetry of the bifurcation diagram reflects
the parameter symmetry (12). The transcritical bifurcation lines are
horizontal since the bifurcation condition does not depend on the
relative cluster sizes: Consider equilibria on C,, ), that is, solutions

y =0.82 y = 0.86 y = 0.904205812 y=0.91 y = 0.91325 y =0.93
1.00 . 1 . . .
0.75 . . . . . : ;
& 0.50 . . g - (| - 41 - [
0.25 . . . . .
0.00 L T T T L T T T A T T T L T T T A T T T L T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
&1 &1 & 31 &1 &
t f H— } |
A
-~ N
} } } P
05q Y =0.9041 y = 0.904205812 y = 0.9043 y = 0.9045
& 0.53 4 . . .
0.52 . y . .
0.51 0.52 0.53 0.51 0.52 0.53 0.51 0.52 0.53 0.51 0.52 0.53
&1 &1 &1 &1

FIG. 3. Phase portraits elucidate the dynamics in C, »,) due to the successive transcritical bifurcation (yellow dot), the homoclinic bifurcation (light green dot), and the
saddle-node bifurcation (green dot) for ny = 0.8, n, = 0.2, a = 0.05, and b = 0.01. Gray solid lines indicate the nullclines; solutions and bifurcation points are colored as in
Fig. 2. As the parameter y is increased, the limit cycle (light blue circle) that arises from the Hopf bifurcation of &£ ™ (upper blue dot in the first panel) grows quickly. At the same
time, the two-cluster equilibrium &~ (lower blue dot in the first panel) crosses through the invariant subspace C1,—the diagonal in the (£1, &) plane—in the transcritical
bifurcation before it interacts with the limit cycle in a homoclinic bifurcation. Finally, the equilibria £ and &~ merge in a saddle-node bifurcation.
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of Eq. (6) with two distinct real roots & # &, (a nonsymmetric
equilibrium on Ci,, ,,)). Now suppose that these roots coincide at
a bifurcation for u = u*, defined in (3), which means that (6) has a
triple root £ = & = &* (an equilibrium on C;y C Cyy,ny))- Then,
the associated value of y is

y=mu Q&) + mu*Q(&) = u*Q(E"), (13)

independent of n;. Furthermore, for any given relative cluster sizes
(n1, np), there is a branch of equilibria in C,, .,). These branches
arise in saddle-node bifurcations and interact with the one-cluster
equilibrium in the transcritical bifurcation. The more asymmetric
the clusters are, the larger the distance of the saddle-node bifurca-
tion to the transcritical bifurcation in the bifurcation parameter y
is. The Hopf and homoclinic bifurcations of the two-cluster states
described above extend to a large range of cluster sizes from the
most asymmetric distribution n, = 1 (or, equivalently, n; = 0) to
n; =~ 0.4 (respectively n; = 0.6). They meet in a codimension-
two Bogdanov-Takens bifurcation point at (y,n;) ~ (0.907,0.34)
[(y, n1) = (0.907,0.66), respectively]. For increasing (respectively
decreasing) cluster size n;, the Hopf bifurcation curve approaches

0.910
> 0.905 -
0.900 T T
0.3 0.4 0.5
n
1.0
= ° —
0.6 1 —— saddle node bif.
> transcritical bif.
0.4 A —— Hopf bif.
homoclinic bif.
0.2 ® Bogdanov-Takens
0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0
m

FIG. 4. A codimension-2 Bogdanov-Takens bifurcation organizes the bifurcation
behavior in Cx, 1, @s both y and the relative cluster size nq are varied; the remain-
ing parameters are n, = 1 — ny, a = 0.05, and b = 0.01. The symmetry of the
bifurcations is due to the parameter symmetry (12). The upper panel shows a
magnification close to the codimension-2 Bogdanov-Takens point where sad-
dle-node, Hopf, and homaclinic bifurcation branches meet. For ny = n, = %, the
saddle-node and transcritical bifurcations merge in a pitchfork symmetry-breaking
bifurcation.
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the saddle-node bifurcation curve again. In this region of parameter
space, the limit cycle solution grows extremely quickly as in a Canard
phenomenon” before it is destroyed in a branch of homoclinic
bifurcations.

In the full system (5), all these bifurcations happen simultane-
ously in a large number of invariant subspaces. On the one hand,
for fixed (m;,n,), the bifurcations happen simultaneously in the
symmetric copies of C,,,»,). On the other hand, recall that (n;, n,)
parameterize invariant subspaces of different cluster sizes. The tran-
scritical bifurcations for all the different (n;, n,) happen at the same
value of y given by (13). Thus, the symmetric equilibrium under-
goes a transcritical bifurcation simultaneously in all these invariant
subspaces as one would expect in our symmetric setting. In the case
of symmetric clusters, n; = n, = 0.5, these degenerate to a sym-
metric pitchfork bifurcation, in line with the reflection symmetry
(¢1,82) = (62,61) on Ciyy s cf. Fig. 4.

V. THREE-CLUSTER DYNAMICS AND BIFURCATIONS

Now, consider the three-cluster subspace C,,u, ;) With three
clusters of relative sizes n; + n, + n; = 1 whose states &;,&,,&;
evolve according to

, Q&)
e : 14
s =PE (nlo(so+nzo<sz>+nao<sg>>y .
, Q&)

pe : 4b
2=PE) (nlcz(sl)ﬂzo(sz)+n3Q(ss>)y e
. Q&)

H=PE (le(Sl)+an(§z)+n3Q(§a)>y e

The invariant three-cluster space C,, ,,n;) contains the invariant
two-cluster spaces Cij4nyn3) a8 {81 = &2}, Clnynytny) a8 {62 = &3},
and Cy, 4n3,n,) as {£3 = &}, on which the dynamics are given by (11).
As above, any permutation of the three clusters yields a parameter
symmetry. If n; = ny, n, = n3, or n3 = ny, then (14) has a symmetry
with respect to the transpositions that swap the corresponding clus-
ters. Thus, without loss of generality, we may assume n; > #n, > n;.
Ifn,=n,=n; = % (i.e., all clusters are of equal size), then Eq. (14)
is equivariant with respect to the full permutation of three elements.

A. Equivariant bifurcation of equilibria

Since any equilibrium is constrained to a three-cluster con-
figuration due to condition (6), any branch of steady states is
contained in a cluster subspace C,,,n,n3)- Figure 5 shows the equi-
librium branches in Cgyuy 4, for relative cluster sizes n; = 0.8,
n, = 0.16, and n3 = 0.04. We have Cy)y C C(nnyn3); therefore, the
branch of symmetric equilibria in Fig. 1 appears (black line). Note

subspaces {&; = &} and {& = &}; these correspond to Cioga0.16)
and Cog6004)> respectively. The steady state bifurcations can be
read in Fig. 4, and the corresponding branches of equilibria are
depicted in Fig. 5 as purple and teal lines, respectively. Finally,
there is one branch of three-cluster equilibria. Taken together, for
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—— equilibrium, & =&5 — equilibrium, §; =&, =&
—— equilibrium, & =&, ® saddle node bif.
—— equilibrium, &; = &5 transcritical bif.
201 —— equilibrium, 3-cluster ®  Hopf bif.
ama
Ly
15 [aaa
aam
aap
=3
10 A
ppa
ppnT
PpPpP
5 4
ym-a
pmp
(] T T T T
0.0 0.2 0.4 0.6 0.8

FIG. 5. Three-cluster subspaces Ciy n,n, contain all possible equilibrium
curves; here, branches of solutions in Cy, n, n,) for relative cluster sizes ny = 0.8,
n, = 0.16, n3 = 0.04 are shown as y is varied and a = 0.05, b = 0.01 are fixed.

Like in Fig. 1 and explained in the main text, the labeling with letters “a,” “m,” and

“p” indicate the active, middle, and passive segments of the equilibrium branch in
cluster 1, 2, and 3, respectively. The black line shows the fully symmetric equi-
librium (as in Figs. 1 and 2), blue lines of different color are the three different
two-cluster equilibrium branches (the dark blue with &, = &; is the same one
shown in Fig. 2), and the gray line corresponds to a branch of asymmetric equilib-
ria. Two- and three-cluster equilibria interact in symmetric transcritical bifurcations
(yellow dots), and other bifurcation points are indicated as above. The shaded
parameter range is considered in detail in Fig. 7.

u e [uP~™, y™?], there are 3> = 27 equilibria because each Xj can
take one of three values while X=0,u= 0).

These equilibria now (ex)change their stability properties
as they bifurcate. In addition to the transcritical bifurcations of
the fully synchronized equilibrium, the two-cluster equilibria also
undergo transcritical bifurcations in which three-cluster equilibria
are involved. More specifically, each of the three two-cluster sub-
spaces contained in Cioso.16004) that is, & =&, & =&, & =&,
contains a transcritical bifurcation for each of the two double root
of the equilibrium equation (6). This yields six transcritical bifurca-
tions in addition to the transcritical bifurcations of the fully synchro-
nized equilibrium that already appeared in Fig. 2. These bifurcations
link to the physical interpretation as in Sec. IV: At each transcrit-
ical bifurcation, the value of u is identical with one of the values at
which the individual unit undergoes a saddle-node bifurcation when
u is considered a bifurcation parameter. Indeed, it can be shown
that when the transcritical bifurcation involves an equilibrium with
the larger of the two u-values, i.e., u = uP~™, the components of
the three-cluster state that are on the middle and passive branch
segment switch the segment, while the component on the active seg-
ment remains unchanged. For example, if éj", j € {1,2,3} denotes the
jth component of a three cluster that is on the segment x € {p, m, a},
then an equilibrium £* = (£2, £, £7) on the “amp” segment transi-
tions to £* = (£3,&),£M™) on the “apm” segment. Correspondingly,
at the lower value of u, the components with values on the middle
and active segment switch segment, while the one on the passive
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segment remains there, such as £* = (£3,&M, &) transitions to
£ = (51, 6,€).

We can evaluate the values at which the transcritical bifurca-
tions occur explicitly as in Sec. I'V; in general, they depend on the
cluster sizes n,, n,, n3. Consider equilibria on C,, 4, 43, that is, solu-
tions of Eq. (6) with three distinct real roots & # & # & # &
(a nonsymmetric equilibrium on C,, ,4;)). Now, suppose two of
these roots coincide at a bifurcation for u = u*, defined in (3) so
that Eq. (6) has one real double root £¢ and one real single root &°.
Without loss of generality, we assume that £ = £%, & = & = £9on
Connytnz) C Conpnainy)- Then, the associated value of y is

y = mu* Q&) + mu*QE)) + nsu* Q(E))
= u'[QE") — QEYHIm + u*QEY), (15)

which is linear in n,. The cluster at £° is what distinguishes this from
the previous lower-dimensional case, where this “bystander” was not
present. By symmetry, the condition for the transcritical bifurcation
in the other two-cluster subspaces depends linearly on #, and #;,
respectively. Thus, the transcritical bifurcations are given by lines as
the cluster sizes are varied, shown in Fig. 6. In this figure, we see that
eight transcritical bifurcations exist for every »;. The value n; = 0.8
corresponds to Fig. 5. We see the two transcritical bifurcations in
Ciny,ny+ny) following Eq. (15). Furthermore, 1, and n3 are chosen to
be linearly dependent on #, (see the caption of Fig. 6); therefore, the
corresponding bifurcations lie on straight lines, too.

For the full system with N identical units, this means that for
each ¢ € {2,...,N} (i.e., the combined size of cluster 2 and 3, which

fall together at the bifurcation), there are ('Z ) o %(ﬁ) transcritical

bifurcations at y = u*[Q(€°) — Q4] (N — £)/N + u*Q(£9). These

1.0
£,=E,=§, 4
——— S
E=E
0.8 — £t aam
e ama
amm
E,=§; amp
0.6 1
- transcritical bif.
—— Hopf bif.
0.4 1
E,=§,
0.2 1 E=§;
§.=5,
§=8,=§,
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m

FIG. 6. Numerical continuation shows a two-parameter bifurcation as both the
bifurcation parameter y and the relative cluster sizes are varied. Here, transcrit-
ical bifurcation branches [yellow lines; cf. Eq. (15)] as well as Hopf bifurcation
branches (pink lines) occurring in three-cluster subspaces are shown for the rela-
tive cluster sizesn, = 0.8 - (1 — ny), n3 = 0.2 - (1 — ny) and fixed parameters
a=0.05, and b = 0.01. The letters “a,” “m,” and “p” indicate how the clusters
distribute on the three segments (see Fig. 1) of the equilibria that undergo the
Hopf bifurcation.
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bifurcation points lie in (‘2’) different subspaces, depending on which
x; are at &% and £9. If you consider bifurcations as identical when
they can be switched between by index permutation, then there is
only one such bifurcation for each combination of £ € {2,...,N}
(i.e., combined size of cluster 2 and 3) and k € {1,...,£ — 1} (i.e.,
size of cluster 2). Furthermore, many of these transcritical bifur-
cations lie on the same points in the parameter space and in the
phase space such that in total, there are actually just N — 1 multi-
branch bifurcation-points at every u*, i.e., one for each possible
size of cluster 1 (the cluster at £°) and one for each £ € {2,...,N}.
The number of branches is 2 +2 Y ;_} %(i) These bifurcations are
invariant under intra-cluster index-permutations and are very simi-
lar to the equivariant bifurcations we saw in lower dimensions. Here,
however, they can occur at various different values of y. In fact,
for N — oo, they occur at each of the two u*-values in the entire
y-intervals from the transcritical bifurcations almost to the respec-
tive fully symmetric state.

As seen above for the two-cluster subspaces, also, three-cluster
equilibria might undergo a Hopf bifurcation. In Fig. 6, the loca-
tions of the Hopf bifurcations of the three-cluster and the different
two-cluster equilibria are depicted in the (y,n;)-plane. The labels
of the different curves indicate the segments of the three compo-
nents of the equilibria from which the limit cycles bifurcated. All
of them contain at least one cluster on the middle segment. As
shown in Ref. 1, in the full system, any steady state with more than
one element on the middle branch is unstable. Hence, even if the
Hopf bifurcations are supercritical and the limit cycle branches off
equilibria that are stable in the cluster subspaces, they are unstable
in the full system. The limit cycles that emerge in a Hopf bifur-
cation will, therefore, not be observable in systems containing a
large number of individual elements. However, as we will demon-
strate in Subsection V B, the three-cluster limit cycles might interact
with a two-cluster limit cycle in a transcritical bifurcation, thereby
stabilizing the limit cycle in the two-cluster subspace.

B. Equivariant bifurcation of limit cycles

Consider the phase portraits in the three-cluster subspace
points and two limit cycles, which were both born at slightly smaller
values of y in supercritical Hopf bifurcations. One limit cycle and
one fixed point are three-cluster limit sets, while the other two
limit sets lie in the invariant C,, .,+n,) Subspace; i.e., & = &;. The
two-cluster limit cycle is stable within the two-cluster subspace but
unstable in the direction perpendicular to it, while the three-cluster
limit cycle is stable within the invariant three-cluster subspace. As y
is increased to y = 0.79, we see that the limit cycles have increased
in size and have moved closer together. At y & 0.79625, there is a
transcritical bifurcation of the limit cycles; i.e., they coincide on the
two-cluster subspace C,; n,+n,)- Then, at y = 0.8, the three-cluster
limit cycle is on the other side of the Cy, u,+n;) plane. In the trans-
critical bifurcation, the limit cycles have exchanged their stabilities
perpendicular to the two-cluster subspace. Hence, the two-cluster
limit cycle is now stable within the three-cluster subspace.

Analogous to the equivariant transcritical bifurcation of equi-
libria, in the full system, the transcritical bifurcation of limit cycles
is an equivariant transcritical bifurcation. As above, the cluster sizes
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FIG. 7. Variation of the parameter y indicates a transcritical bifurcation of limit
cycles as illustrated in phase portraits; the other parameters are ny = 0.8,
n, = 0.16, n; = 0.04, a = 0.05, and b = 0.01. (a) Two limit cycles have just
branched from a Hopf bifurcation at slightly smaller y. One of these two limit
cycles lies on a plane, which is the two-cluster subspace Cin ny+ny) C Cinymgung)-
The other lies above this plane in the three-cluster subspace Cin, n, ny)- (b) The
two limit cycles grow as y is further increased. (c) The two limit cycles interact
in a transcritical bifurcation of limit cycles. (d) The three-cluster limit cycle is now
below the two-cluster plane.

are not true bifurcation parameters but rather enumerate differ-
ent invariant subspaces in the same system. Thus, the transcritical
bifurcation takes places simultaneously in all the different subspaces,
which are related to each other by index permutation, and in the cor-
responding subspaces, which correspond to different cluster sizes
n, and n3 at fixed n, + n; =1 — ny. In other words, in the full
system with N identical components and sufficiently large N at
y = 0.796 25, multiple limit cycles from different three-cluster sub-
spaces meet in the same two-cluster limit cycle, each changing the
stability of a different Floquet exponent of the two-cluster limit
cycle. Since all transversal eigenvalues (i.e., intra-cluster eigenvalues)
of the Jacobian matrix are degenerate due to symmetry,’ it actually
affects all of them in the same way. As a consequence, in the full
system, the equivariant transcritical bifurcation of two-cluster limit
cycles stabilizes the latter and macroscopic two-cluster oscillations
should be observable in arbitrarily large systems, i.e., even in the
thermodynamic limit. We verified this conclusion numerically for
a system with N = 20 units and the other parameters as in Fig. 7.

VI. DISCUSSION AND CONCLUSIONS

In the CO-electrooxidation model we analyzed in this paper,
the fully synchronized one-cluster equilibrium loses stability in an
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Sn-equivariant transcritical bifurcation where N — 1 real eigenval-
ues change sign simultaneously. Such bifurcations can arise, for
example, as a perturbation of a pitchfork bifurcation’’ where the
invariant subspace persists. Indeed, the pitchfork bifurcation for
identical cluster sizes (n; = n,) perturbs to a pair of saddle-node
and transcritical bifurcation for nonidentical cluster sizes. While the
symmetric transcritical bifurcation happens simultaneously for all
cluster sizes, the parameter values of the saddle-node bifurcation are
distinct for different relative cluster sizes as seen in Fig. 4: The most
asymmetric two-cluster state is generated first, then increasingly
symmetric ones, and finally the symmetric (3, 1)-cluster in a pitch-
fork bifurcation. The symmetry-breaking bifurcations from two- to
three-cluster equilibria occur in a similar fashion, just that there is
an additional cluster as an “bystander.” More generally, if the phase-
space geometry allows, Sy-equivariant transcritical bifurcation can
also have a global flavor.**

Equations that describe globally coupled identical one-
dimensional units also directly relate to more general contexts, such
as coupled oscillators. If a general Sy-equivariant system under-
goes a Sy-equivariant transcritical bifurcation, one can describe the
dynamics on the corresponding center manifold through a suitable
normal form. This approach has been used to describe the dynam-
ics of identical Stuart-Landau oscillators at a symmetry-breaking
bifurcation.””~” Truncating to appropriate order, one obtains a
cubic Sy-equivariant system of coupled one-dimensional variables
x”***" that describe the dynamics on the center manifold. In the
limit of two large clusters and one cluster of vanishing size, the
dynamics is characterized by a web of heteroclinic orbits between
the two-cluster equilibria.”” These cubic vector fields show the same
bifurcation behavior close to the symmetry-breaking bifurcations
of the system analyzed here, including the transcritical and saddle-
node bifurcations, as well as the secondary bifurcations where the
two-cluster solutions lose stability; cf. Refs. 25 and 26. A system of
coupled one-dimensional units with a cubic vector field, however, is
unable to capture some of the more intricate secondary bifurcation
behavior, such as Hopf and homoclinic bifurcations, described here.
These require the inclusion of higher-order terms, such as the cou-
pling of (1) of our CO-electrooxidation model that is beyond cubic
order, or a higher-order approximation on the center manifold.

The dynamical features described in this paper arise in a math-
ematical model that captures the experimental control of a physical
system. From this perspective, the bifurcations discussed are com-
mon to many real-world systems. Yet, we made one simplification,
which will never be strictly fulfilled in a physical system, namely, that
all bistable units are identical. While the permutational symmetry is
broken if the units are slightly heterogeneous, hyperbolic equilib-
ria and limit cycles—which are the main focus of our analysis—will
persist. The exact behavior of the branches at the (symmetric) bifur-
cation points will of course differ as these bifurcations break up
into a series of generic bifurcation points; how exactly depends on
the heterogeneity. However, the qualitative behavior that is relevant
for real-world systems is preserved: In all ensemble steady states,
each of the bistable units will be on one of its three branch seg-
ments. We can still define a cluster as a group of units that are on
the same segment, and a unit transits between the segments at its
turning points of u, i.e., u?~™ or u™~*. However, for the individual
units, the turning points do not necessarily occur at identical values
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of u as the branches deform. We verified that Hopf and homo-
clinic bifurcations still occur in a model of heterogeneous bistable
units. Consequently, our bifurcation analysis facilitates a qualitative
understanding of experimental observations also for nearly symmet-
ric systems and the conditions for the occurrence of oscillations.
Consider, e.g., Li-ion batteries. Here, a global constraint, corre-
sponding to the constant current in our model, is imposed on the
total charge. The hysteresis in the cell voltage U over the total charge,
which is measured when charging and discharging Li-ion batter-
ies with phase-transition cathodes even at infinitely slow rates [14],
could be seen as the “shadow” of the transcritical bifurcations at
the turning points of the charge vs voltage curve of the individual
nano-sized storage particles in the symmetric system.

Another physical system that shows similar symmetry-
breaking bifurcations, including a Hopf bifurcation, are certain
electronic circuits, which, in addition, can be considered superlattice
models.”’ While in that case the governing equations of the individ-
ual elements were two-dimensional, our studied revealed that stable,
macroscopic collective oscillations may also exist in ensembles of
coupled one-dimensional bistable units. This might lead to a rein-
terpretation of the origin of oscillations observed in many-particle
systems, where macroscopic oscillations have been interpreted as the
result of synchronization of oscillating units.
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