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Zusammenfassung

Um das Eintreten des Kessler-Syndroms zu verhindern und die operationale Lebens-

zeit von Satelliten zu verl Èangern, sind Active Debris Removal- und On Orbit Servicing-

Missionen geplant. FÈur beide ist ein unkooperatives Rendezvous-ManÈover zwischen

den Verfolger und dem Ziel notwendig. HÈaufig steht kein exaktes 3D-Modell des Ziels

zur Verf Èugung, was die Aufgabe weiter erschwert. Viele Forschungsgruppen und Fir-

men aus der Weltraumindustrie entwickeln Systeme fÈur unkooperative Rendezvous-

ManÈover.

Das RACOON-Lab an der TUM ist eine dieser Forschungsgruppen. In ihrem Hardware-

in-the-loop-Teststand kÈonnen Rendezvous-Missionen simuliert werden. In vorange-

gangenen Arbeiten wurde eine Toolchain entwickelt, die die Trajektorie des Verfolgers

um das Ziel sowie eine 3D-Rekonstruktion des Ziels berechnet und dabei ausschlieû-

lich auf Daten von Sensoren, die auf dem Verfolger montiert sind, zurÈuckgreift. Daf Èur

wird der DIFODO-Algorithmus eingesetzt. Die Toolchain ist noch nicht f Èur eine reale

Mission geeignet, wobei Reflektionen in den verwendeten Bildern die meisten Proble-

me verursachen.

Diese Arbeit schl Èagt eine Toolchain zur Evaluation von Reinforcement Learning (RL)

zur Verbesserung von Tiefenbildern, die von den auf dem Verfolger monierten Senso-

ren aufgezeichnet wurden, vor, um die Genauigkeit der 3D-Rekonstruktion und der Tra-

jektorie zu verbessern. Der RL-Agent wÈahlt einen Tiefenbildfilter aus, der auf die Einga-

bebilder angewendet wird, bevor diese vom DIFODO-Algorithmus verarbeitet werden.

FÈur diese Toolchain wurden ein PPO-Algorithmus sowie eine dichte Belohnungsfunk-

tion ausgewÈahlt. Die RL-Umgebung wurde gemÈaû OpenAIs Gym-Schnittstelle imple-

mentiert. Sie kann daher unabhÈangig vom in dieser Arbeit genutzten RL-Agenten oder

der in dieser Arbeit genutzten Implementierung desselben verwendet werden.

Es wurden aussagekrÈaftige Diagrammarten entwickelt, die mit Funktionen, die als Teil

dieser Arbeit implementiert wurden, erstellt werden kÈonnen. Diese ermÈoglichen eine

Evaluation der Performance des RL-Agenten und der Toolchain selbst. Die Aussage-

kraft der Diagrammarten wurde in drei Kategorien bewertet: als einzelnes Diagramm,

im Vergleich mit anderen Diagrammen der gleichen Art und im Vergleich oder in Kom-

bination mit Diagrammen anderer Art. ZusÈatzlich wurden Funktionen zur Optimierung

zweier Parameter ± der Anzahl an parallelen Umgebungen und der Lerngeschwindig-

keit ± implementiert und getestet. Diese ermÈoglichen eine schnelle Optimierung der

Parameter. Die Kombination der Toolchain, der Diagramme und der Funktionen zur Pa-

rameteroptimierung bilden ein Werkzeug, das genutzt werden kann, um den Einsatz

von RL in kÈunftigen Studien des RACOON-Labs zu evaluieren.

Auûerdem wurde die Belohnungsfunktion mit Hilfe einer zuvor im RACOON-Lab auf-

gezeichneten Trajektorie getestet. Dabei zeigten sich Probleme in allen Komponen-

ten der Belohnungsfunktion, die vor allem von Schwankungen in den Koordinaten

und Orientierungen, die der DIFODO-Algorithmus berechnet, hervorgerufen werden.

Eine MÈoglichkeit, dieses Problem in kÈunftigen Arbeiten zur Evaluierung von RL im

RACOON-Lab anzugehen, wurde vorgeschlagen.
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Abstract

In order to prevent the Kessler Syndrome and to extent the operational lifetime of satel-

lites, Active Debris Removal and On Orbit Servicing missions are planned. Both rely

on an uncooperative rendezvous between the chaser and the target. Often an exact

3D model of the target is not available which makes the task even more difficult. Many

research groups as well as different space industry companies are developing systems

for an uncooperative rendezvous.

The RACOON-Lab at TUM is one of those research groups. In its hardware-in-the-loop

test stand, rendezvous missions can be simulated. In previous studies, a toolchain

was developed that calculates the trajectory of the chaser around the target and a

3D reconstruction of the target using only the data coming from the sensors mounted

on the chaser. For that purpose, a DIFODO algorithm is used. This toolchain is not

suitable for a real mission yet with reflections in the input image causing the most

problems.

This thesis proposes a toolchain to evaluate Reinforcement Learning (RL) to enhance

the depth images recorded by the sensors of the chaser in order to improve the accu-

racy of the 3D reconstruction and the trajectory. The RL agent chooses depth image

filters to apply to the input image before it is processed by the DIFODO algorithm. For

this toolchain, a Proximal Policy Optimization algorithm and a dense reward function

were chosen. The RL environment was implemented following OpenAI’s Gym inter-

face. It can thus be used independent of the RL algorithm or the implementation of the

same used in this thesis.

Expressive figure types which can be created using functions implemented as part

of this thesis were developed. These enable an evaluation of both the RL agent’s

performance and the toolchain itself. The expressiveness of the figures types were

ranked in three categories: as an individual figure, when being compared to figures of

the same type and when being compared to or combined with figures of other types.

Additionally, functions to optimize two essential parameters ± the number of parallel

environments and the learning rate ± were implemented and tested. These allow a

quick tuning of the parameters. In combination the toolchain, the figures, and the

parameter optimization functions form a tool which can be used to evaluate the usage

of RL in future studies of the RACOON-Lab.

Furthermore, the reward function was tested using a trajectory previously calculated

in the RACOON-Lab. These tests showed problems in all of the components of the

reward function, most of which are caused by fluctuations in the coordinates and orien-

tation angles calculated by the DIFODO algorithm. An option to address the problems

in the reward function has been proposed for future evaluations of RL in the RACOON-

Lab’s toolchain.
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Introduction

1 Introduction

Since the first successful deployment of a satellite in space in 1957, human space ac-

tivities have been increasing rapidly. More and more satellite applications for science,

communication, and earth observation have been developed. In 1978, Kessler and

Court-Palais published [1] in which they described the scenario which was later named

ºKessler Syndromeº by Gabbard. The Kessler Syndrome is a scenario in which objects

orbiting the Earth collide with each other at a frequency that creates a belt of fragments

around the Earth which threatens any human spaceflight activities. The prediction of

Kessler and Court-Palais in 1978 was that this belt could begin to form around the year

2000 and that it will grow exponentially even if no further artificial objects are launched

into space. In 2010, Kessler et al. published [2] in which they confirm the initial predic-

tions of [1] and state that Active Debris Removal (ADR) is likely to become necessary

to avoid the Kessler Syndrome from becoming a reality. Any artificial object orbiting

Earth which is unused ± for example a satellite which ran out of propellant ± is called

space debris.

Figure 1±1 shows the number of artificial objects in space over time. The number

of objects is increasing rapidly, especially in the last decade. So far, four accidental

collisions between cataloged objects have been reported, one of which ± the Iridium-

Cosmos-collision ± Kessler et al. consider catastrophic [2]. Anti-satellite tests such as

the very recent Russian one [3] come in addition and are also considered catastrophic

by the authors.

On Orbit Servicing (OOS) describes missions in space where servicing, ,maintenance,

refueling, repairs, or physical upgrades, is performed. They are also seen as an option

to reduce the amount of new space debris since they extend the operational lifetime of

a satellite. Any ADR or OOS mission requires a successful rendezvous between the

chaser, i.e., the approaching spaceship, and the target, i.e., the spaceship to approach.

At the Institute of Astronautics (LRT) at Technische Universit Èat MÈunchen (TUM), the

Fig. 1±1: Artificial objects in space [4]; all acronyms explained in table 1±1
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Introduction

Tab. 1±1: Explanation of acronyms used in figure 1±1

PL Payload

PF Payload Fragmentation Debris

PD Payload Debris

PM Payload Mission Related Object

RB Rocket Body

RF Rocket Fragmentation Debris

RD Rocket Debris

RM Rocket Mission Related Object

UI Unidentified

Real-Time Attitude Control and On-Orbit Navigation Laboratory (RACOON-Lab) was

established to simulate rendezvous missions. Dziura et al. introduced it in [5]. The

RACOON-Lab’s toolchain estimates the trajectory of the chaser around the target. The

results are not sufficient for a real mission yet with reflections in the input image causing

the most problems [6].

Following these findings from previous studies in the RACOON-Lab, the main goal of

this thesis is to develop a tool for the evaluation of RL for depth image enhancement

in the RACOON-Lab. The idea is to improve the toolchain’s results and handle the

reflections when occurring using depth image filters chosen by a RL agent. For the

task at hand, no pairs of depth images and best-suited filters are available. The usage

of supervised Machine Laerning (ML) for the task is thus not possible. RL in contrast

is capable of learning without such a dataset using a reward function.

Page 2



State of science and technology

2 State of science and technology

2.1 Orbital Proximity Operations

Nowadays, the term OOS implies robotic OOS although first OOS missions were car-

ried out by astronauts in Extravehicular Activities (EVAs) during the servicing of Intelsat

VI in 1992 and the Hubble Space Telescope in 1993 [7]. Reasons to develop robotic

OOS, although human servicing had already been successfully performed, were the

high risks for the astronauts as well as the enormous costs of the missions [8]. First

automated OOS experiments were conducted by the Japanese Aerospace Exploration

Agency (JAXA) (formerly Japanese National Space Developement Agency (NASDA))

in 1999 with the ETS-VII mission, the results of which were reported in [9]. This mis-

sion was the first to successfully control the satellite attitude and a robotic arm cooper-

atively [7].

Cooperative describes the state in which not only the chaser’s but also the target’s at-

titude can be controlled, which is generally not the case for OOS and by definition not

the case for ADR missions. Non-cooperative missions do not rely on that constraint,

which is why a chaser capable of approaching the target non-cooperatively is desired

for OOS and necessary for ADR missions. However, no non-cooperative system has

yet been successfully demonstrated for targets without special adoptions like reflector

plates. Therefore, many researchers and private companies are developing systems

for the non-cooperative case. The following will give an overview about the most rele-

vant projects in that area without a specific order.

The RemoveDEBRIS mission [10] was developed by a consortium of universities and

companies from the space sector and launched in 2018. It successfully performed

tests for a net and a harpoon capturing mechanism with the net targeting a CubeSat

and the harpoon a target of the size of a table tennis bat. Besides that, the mission

also performed tests for vision-based navigation using a digital camera and a flash

imaging LiDAR system. The tests for a dragsail to reduce the deorbiting of the CubeSat

mothership from Low Earth Orbit (LEO) by 90% compared to the duration of deorbiting

without further actions were unsuccessful.

Astroscale, a company headquartered in Japan, has launched its ELSA-D mission [11]

in March 2021. It aims to demonstrate a magnetic capturing mechanism of a non-

tumbling and a tumbling target. Like the RemoveDEBRIS mission, ELSA-D also uses

a CubeSat as the chaser and a smaller CubeSat as the target.

With its second Mission Extension Vehicle (MEV-2) [12], the US company Northrop

Grumman has been successfully performing OOS in Geostationary Orbit (GEO) since

docking MEV-2 with its target satellite IS-10-02 in April 2021. MEV-2 extends the op-

erational lifespan of the target satellite, which was about to run out of propellant, by

providing a propulsion system. However, as IS-10-02 was still fully functional, MEV-2

cannot be seen as demonstration of non-cooperative docking.
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Fig. 2±1: The RACOON’s test-stand with the chaser on the left and the target on the
right [6]

Under its Clean Space Initiative, the European Space Agency (ESA) has planned the

e.deorbit mission [13] which was meant to develop the technology necessary for ADR.

In 2018, the funding for e.deorbit was stopped and instead the ClearSpace-1 mis-

sion [14] was financed with C86 million by ESA. The mission is scheduled for 2025

and aims to deorbit a VESPA upper part launched in 2013. The project is conducted

by a consortium of European companies led by Swiss startup ClearSpace.

The German Aerospace Center (DLR)) operates the European Proximity Operations

Simulator (EPOS) 2.0 [15]. It consists of two robotic manipulators, each having six

degrees of freedom. One of the robotic manipulators can be moved on a linear slide

which is 25m long. Thus, at EPOS 2.0 the last 25m of rendezvous missions can be

simulated in real-time. Both hardware, especially sensors and cameras, and software

can be tested at EPOS 2.0. To make the lightning conditions similar to the ones ex-

pected in a real mission, a Sun simulator is available and can be used to simulate front,

side and back Sun illumination.

Another research group focusing on solving the challenges of non-cooperative docking

is the RACOON-Lab. With its hardware-in-the-loop test-stand, it simulates the final

stage of rendezvous missions and aims to develop software capable of calculating

the correct trajectory of the chaser relative to the target. The test-stand is shown in

figure 2±1. In the RACOON-Lab, the chaser which is equipped with a 3D camera

can be moved around the target satellite which can be rotated around 4 axes. The

RACOON-Lab can simulate both Sun and Earth Albedo illumination. Its test-stand was

compared to EPOS 2.0 by Rehn in [16].

The images recorded by the 3D camera mounted on the chaser are fed into a toolchain

which aims to calculate the trajectory of the chaser relative to the target. The current

toolchain consists of three steps as developed by Franceschini in [6]. First, a box

filter is applied to filter out the background of the lab which will not be present in a

real space mission. After that, the recorded 3D images are processed by a DIFODO

algorithm which estimates the trajectory of the chaser relative to the target. In the
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Fig. 2±2: Visualization of best-fit circle by Rehn [16]

Fig. 2±3: The current toolchain of the RACOON-Lab

RACOON-Lab, the real trajectory of the chaser is known to always be an exact circle.

In [16], Rehn has proposed a metric to evaluate the toolchain. According to that metric,

the points of the trajectory are projected on a best-fit plane on which a best-fit circle is

calculated. Figure 2±2 visualizes the metric. The current toolchain of the RACOON-

Lab is summarized in figure 2±3.

The results of the RACOON-Lab’s toolchain are not sufficient for a real mission yet.

Especially reflections from the illumination on the target seem to cause problems in es-

timating the correct trajectory. In her semester thesis [17], Pregel Hoderlein proposed

an autoencoder, i.e., an architecture of neural networks, to enhance the images before

being processed by the DIFODO algorithm. The results of the DIFODO algorithm were

used to calculate the loss function for the neural networks since ground truth data, i.e.,

perfect images without reflections or noise, are not available.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a subcategory of Machine Laerning (ML) that is com-

parable to the human learning behavior. In RL, a so-called agent acts inside an envi-

ronment, i.e., the task setting, in the following way: Given a state by the environment,

i.e., the current setting, the agent chooses an action to apply to this state from a pre-

defined set of actions. The action chosen by the agent is then applied to the state and

evaluated by the environment. This evaluation results in a reward in form of a positive

or negative scalar which is given to the agent. With that feedback, the agent learns

which actions to apply to which state as it aims to maximize the rewards over the train-
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ing. In most environments, a new state is entered after an action was applied. In such

case, the previously described steps are executed until the environment stops, i.e., the

episode ends. This can be the case either because a predefined termination condition

has been met (for example by entering a specific state) or because a maximum number

of steps has been executed. In the typical case of entering a new state after executing

an action, the reward for the following states is often included with a discount into the

reward for the action applied. This ensures that the global maximum reward is reached

instead of a local maximum.

In contrast to supervised ML methods, to train a RL agent, no prelabeled data but only

a reward function is necessary. However, finding an appropriate reward function for

the respective environment is of great importance since a reward function with wrong

incentives will lead to an agent with unintended behavior. Another important setting is

the definition of a state for the respective environment. When working with images for

example, intuitively it may seem reasonable to use one image as the state. However,

moving objects cannot be replicated by a single image, which is why using multiple

images as the state might lead to improved performance as for example shown in [18].

2.2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (Deep RL) uses deep learning methods like Convolu-

tional Neural Networks (CNNs) to learn successful policies. CNNs are Artificial Neural

Networks (ANNs) especially suited for processing images. Such ANNs consist of three

types of layers: input, hidden and output layers. ANNs with multiple hidden layers are

called deep. After advancements in deep learning for image and speech recognition,

Mnih et al. proposed Deep RL in [18]. They trained a CNN to play different Atari 2600

games with the last four down-scaled monochrome screen images as the states.

According to Sutton and Barto [19], the greatest achievement of Mnih et al. were not

the outstanding results for the specific games, many of which beat previous RL ap-

proaches, but doing so without any game-specific modifications. Other RL approaches

at that time used special feature-sets for each game [19]. These manually selected

features-sets were the key factor for the agent’s performance. Hence, training a new

RL agent with good performance needed experience and time. With the Deep RL ap-

proach of Mnih et al. however, this task became much easier. Also, non-deep RL

approaches can only process states of limited complexity. Deep RL techniques in con-

trast can process even complex states like one, or even multiple, images directly.

2.2.2 Reinforcement Learning for 2D image processing

For 2D image processing, RL has already been used successfully. Furuta et al. sum-

marize the works in that area in [20]: [21] uses RL for image cropping. [22] imple-

mented color enhancement using Deep RL. [23] performs image face hallucination,

i.e., the generation of high-resolution faces from low-resolution input images, using

Deep RL. [24] makes use of Deep RL for image restoration. In [25], multiple 2D image

filters have been applied in parallel in a filter fusion by the RL agent which adjusted the

weights used to represent each filtered image in the output image.
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3 Objective and Methodology

The huge efforts to develop systems for a non-cooperative rendezvous undertaken by

multiple research groups and private companies underline the great influence of the

field. The RACOON-Lab is one of those research groups and focuses on the testing of

sensor systems and the development of software for this purpose. Its current toolchain

is not sufficient for a real mission yet, with illumination reflections causing the greatest

problems [6].

In order to improve the toolchain’s performance and to bring it nearer to a state where

it is capable for a real mission, this thesis will evaluate the adoption of RL-based depth

image enhancement to the toolchain. To the best of the author’s knowledge, this is the

first attempt to adapt RL for depth image enhancement in the context of orbit proximity

operations. With recent developments in RL, especially Deep RL, and its proven ability

to enhance 2D images as outlined in chapter 2.2.2, the author sees great potential in

the use of RL for the described case. Thus, this thesis will propose strategies on how

to use RL for depth image enhancement in the toolchain of the RACOON-Lab. The

reward function will play a crucial role in the design decision due to its great influence

on the agent’s performance.

As this thesis focuses on the usage of RL for depth image enhancement, other appli-

cations of RL in the context of the RACOON-Lab will not be investigated. For example,

one could use RL to build an improved box-filter or an alternative toolchain. When eval-

uating RL only for depth image enhancement, there is one point in the toolchain that is

particularly qualified to apply depth image filters chosen by the RL agent. Therefore, it

is decided that the actions chosen by the RL agent will be applied after the application

of the box-filter and before providing the filtered image to the DIFODO algorithm as

visualized in figure 3±1. This thesis will not evaluate other options where to apply RL

for depth image enhancement in the toolchain of the RACOON-Lab.

This point is particularly qualified for implementing RL in the RACOON-Lab’s toolchain

as the depth image filter chosen by the RL agent must be applied before the depth im-

age is provided to the DIFODO algorithm. Otherwise, the filter would have no influence

on the trajectory calculated by the DIFODO algorithm. Also, it is no option to apply

the filter chosen by the RL agent before the application of the box filter since in that

case, the agent may be influenced by the Lab’s background which is not present in an

application in space.

Fig. 3±1: New toolchain for the RACOON-Lab implementing RL
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Additionally, as part of this thesis, one of the strategies will be implemented and evalu-

ated. To train the RL agent, previously recorded data will be used.

The implementation of the DIFODO algorithm available for this thesis is yet untested

and hence may not work as expected. Hence, this thesis will not finally evaluate the

usage of RL in the RACOON-Lab’s toolchain and will not compare the toolchain using

RL to the existing one which does not. Instead, it aims to provide a toolset capable

to evaluate the usage of RL in the RACOON-Lab’s toolchain, once the implementation

of the DIFODO algorithm was tested and verified to work as expected. It will not only

implement software to include RL in the RACOON-Lab’s toolchain but also implement

software creating figures which can be used to evaluate the agent’s performance and

the toolchain. The resulting software should be easily useable and optimizable once

the implementation of the DIFODO algorithm was tested and verified to work as ex-

pected. Therefore, the software will be tested and verified as far as possible with the

untested implementation of the DIFODO algorithm.

Due to its great influence on the agent’s performance, a special focus will be laid on the

reward function. As far as this is possible despite the untested implementation of the

DIFODO algorithm, the reward function will be analyzed and evaluated. Additionally, if

applicable, changes to the reward function will be proposed.

The current toolchain of the RACOON-Lab is capable of running in real-time on hard-

ware available in space. Since ML and hence RL are computationally intensive and

often involve the usage of Graphical Processing Units (GPUs), this thesis does not aim

to develop code which can run in real-time on such hardware. In a real-world applica-

tion, the recorded data could be sent to a ground station and processed on capable

hardware instead. The results of the toolchain could then be sent back to the chaser.

The created figures used to evaluate the toolchain will be ranked in three categories

in the discussion, all of which will rate the figure on a scale from −− to ++: the first

category will rate the expressiveness of the individual figure, the second one the ex-

pressiveness of the figure when being compared to figures of the same type and the

third one the expressiveness when being compared to or combined with figures of

other types. When ranking the figures in the categories, the two purposes named

above (evaluation of the agent’s performance and evaluation of the toolchain) will be

taken into account.

Table 3±1 defines the criteria used to classify the figures’ expressiveness. Cells with

a list name multiple options. If at least one of these criteria is fulfilled, the figure type

receives the rating in this category. Some terms of the table need a definition which will

be given in the following: Less relevant information refers to an overview for example

while relevant information could be showing that the agent is improving over the training

or how actions and rewards correlate. For categories 2 and 3, a distinction is made

between single-time and multi-time figures. Single-time figures can be created only

once per training and a comparison needs two trainings. Multi-time figures in contrast

can be created and compared multiple times per training and between trainings, for

example because they refer to a single episode. The highest in this category remains

++. In case a figure type meets more than one criterion in category 2 or 3 and the
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combination of these criteria is not explicitly stated in table 3±1, it receives the highest

rating of the individual criteria.
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Tab. 3±1: Criteria for the ranking the figures’ expressiveness

Rating Category 1 Categories 2 and 3

−−

• No information can be ob-

served

• Hint to a less relevant infor-

mation

• No additional information can be ob-

served

• One single-time, less relevant information

−

• Clearly observable, less rel-

evant information

• Hint to relevant information

• One single-time, relevant information

• Two or more single-time, less relevant in-

formation

• One multi-time, less relevant information

o
Clearly observable, relevant

information

• Two or more single-time, relevant infor-

mation

• Two or more multi-time, less relevant in-

formation

• One multi-time, relevant information

• One single-time, relevant information and

one multi-time, less relevant information

+
Clearly observable, relevant

information and hint to a less

relevant information

• Two or more single-time, relevant infor-

mation and one multi-time, relevant infor-

mation

• Two or more single-time, relevant infor-

mation and two or more multi-time less

relevant information

• Two or more multi-time less relevant infor-

mation and one multi-time relevant infor-

mation

• Two or more multi-time, relevant informa-

tion

++
Clearly observable, relevant

information and a hint to a

relevant information

• Two or more single-time, relevant infor-

mation and two or more multi-time rele-

vant information

• Two or more multi-time, relevant informa-

tion and two or more multi-time, less rel-

evant information
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4 Design Decision

In this chapter, the most important design decisions for the implementation of RL in

the toolchain of the RACOON-Lab are made. First, it decides on the way RL is imple-

mented in the RACOON-Lab’s toolchain. Then, an appropriate (Deep) RL algorithm

is chosen. Afterwards, the reward function is designed. Next, the actions for the RL

agent, i.e., the filters, are selected. The final subchapter then decides on the way of

implementation, i.e., the programming language and the software packages.

In each subchapter, multiple options are outlined first. Then they are discussed and

one of them is selected.

4.1 Training toolchain

Before deciding on a (Deep) RL technique and a reward mechanism, it needs to be

decided how RL will be implemented in the RACOON-Lab’s toolchain. This does not

include a decision on when to apply the filters chosen by the RL agent since this point

was fixed in chapter 3. Instead, a decision is made on the toolchain used for training

the RL agent.

When training a RL agent, it is of great importance to ensure an useful reward because

the training of the agent relies on that. Thus, the reward needs to incentive the expected

behavior. For this thesis, this means to choose actions that ensure a circular trajectory.

To achieve this goal, an appropriate training toolchain is key. Various options are con-

ceivable. The following will discuss three options: training on one, on multiple and on

all images of an experiment. It is worth mentioning that the trajectory of the DIFODO

algorithm is influenced by the previous images. Therefore, performing an action influ-

ences not only the point calculated by the DIFODO algorithm for the particular image,

but also all the following ones. However, since the input image is not totally changed

by the actions, the influence of the particular action on the points calculated for the fol-

lowing images is considered low. The following will use the term evaluation toolchain.

In the context of this thesis, the term refers to the toolchain used in a real world appli-

cation, i.e., the RL agent chooses an action for all images.

4.1.1 Training on one image per iteration

The first option is to train the RL agent only on one single image per iteration. In

this toolchain, the reward can be clearly assigned to the action. However, applying a

filter to a single image may result in changes so small that they cannot be adequately

measured.

Also, in a real world application, filters chosen by the RL agent would be applied to all

images recorded. Training and evaluating the agent on only one image per iteration

might lead to worse performance in such applications. Since the final goal of the im-

plementation of RL in the RACOON-Lab’s toolchain is to improve its performance in
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real world applications, this point is of great importance.

4.1.2 Training on multiple images per iteration

Within this category, there are two options to perform the training. The images the RL

agent is trained on can be either sequential or distributed over all the images from the

experiment. Both options will be evaluated in the following.

Sequential

When training the RL agent on multiple sequential images per iteration, the results

can most likely be measured adequately since they are of sufficient size. However,

the performance of a single action is slightly harder to track compared to training on a

single image because the reward given to an action could be influenced by previous

actions. Keep in mind that a dense reward for an action can include the discounted

reward for the state entered by the action. Using this, the influence of previous actions

on the result of following ones could be made assessable if necessary.

Training on multiple images in sequential order would partially address the problem of

different toolchains for training and evaluation which could lead to worse performance

in the evaluation. To fully address the problem, the training iteration needs to involve

all images of an experiment.

Distributed

Training on multiple images per iteration, which are distributed over all images of the

experiment, would most likely suffer from the same problems as training on one single

image per iteration while also lowering the traceability of each action’s performance.

Anyway, the training might run a little faster compared to the training on one single

image.

4.1.3 Training on all images of an experiment per iteration

The last option for a training toolchain that will be evaluated in this chapter is to train

the RL agent on all images of an experiment. This can be seen as the extended way

of the sequential case described previously. Hence, the traceability of each action’s

performance is most likely harder compared to training on only one image per itera-

tion. Nonetheless, the training and evaluation toolchain would be quite similar, so good

training results would most likely lead to good evaluation results.

4.1.4 Decision for a toolchain

The decision for the right training toolchain is a trade-off between the traceability of

each action and the similarity of the training and evaluation toolchain. The former would

increase the chances of good training performance while the latter would increase the

chances of good evaluation performance and ensure that the agent does not learn

something unintended.
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Fig. 4±1: Current state of training toolchain visualized

Most applications of RL perform actions continuously and cannot track the performance

of an individual action completely. The problem of traceability is thus a typical problem

in RL applications. Regardless of this problem, functional RL applications have been

developed. Hence, RL algorithms are able to deal with the problem of traceability.

The similarity of training and evaluation toolchain therefore weights higher than the

traceability of each action. Consequently, the training will be performed on all images

of an experiment per iteration. The resulting toolchain is visualized in figure 4±1.

4.2 (Deep) Reinforcement Learning Algorithm

4.2.1 Fundamentals of Reinforcement Learning

Before outlining options for a RL algorithm and afterwards choosing one of them, some

fundamentals of RL will be explained. The following explanations are mainly drawn

from a lecture held by David Silver, one of the authors of [18] proposing Deep RL,

at University College London in 2015 [26]. The explanations follow the notation of

the standard textbook [19] which used capital letters for random variables and lower

case letters for values of random variables and scalar functions. The scope of this

explanation is not to summarize the complete field of RL but to introduce the reader to

the most basic ideas and to make the reader familiar with the most common terms.

RL is typically applied to a Markov Decision Process (MDP) which is defined as a tuple

< S,A,P ,R, γ >. S is a finite set of states. [27, p. 24] Formally, a state St is a function

of the history Ht (St = f(Ht)). The history Ht is the sequence of all observations,

actions and rewards seen so far

Ht = O1, R1, A1, . . . , At−1, Ot, Rt . [28, p. 18] (4±1)

Depending on the problem to solve, the environment may be only partially observable,

meaning that the agent only knows a part of what defines the environment. Think of a
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card game where the agent only knows the public and its own cards but not the cards

of its opponents. This setting is called Partially Observable Markov Decision Process

(POMDP). [28, p. 24] In a POMDP, an Observation Ot is the information given to the

agent by the environment at a certain time step.

A is a finite set of actions. P is a state transition probability matrix where

Pa
ss′ = P[st+1 = s′ | St = s, At = a] . [27, p. 24] (4±2)

R is a reward function where

Ra
s = E[Rt+1 | St = s, At = a] . [27, p. 24] (4±3)

γ ∈ [0, 1] is a discount factor that reflects how much future rewards are influencing the

return Gt which is calculated by

Gt = Rt+1 + γRt+2 + . . . =
∞
∑

k=0

γkRt+k+1 . [27, p. 12] (4±4)

The goal of the RL agent is to maximize the return at each state [28, p. 15].

A policy π describes the agent’s behavior and can be understood as a map

from state s to action a. It is either deterministic (a = π(s)) or stochastic

(π(a | s) = P[At = a | St = s]). [28, p. 26] A stationary policy is time-independent, i.e.,

At ∼ π(· | St), ∀t > 0 [27, p. 26]. An agent searches an optimal policy which is defined

as follows:

π∗ ≥ π, ∀π [27, p. 40] (4±5)

Whether a policy is grater than another, i.e., π ≥ π′, is determined using the state value

function v(s):
π ≥ π′, if vπ(s) ≥ vπ′(s), ∀s [27, p. 40] (4±6)

For any MDP, a deterministic optimal policy exists [27, p. 41].

In order to solve MDPs, numerous types of agents have been proposed. They can

be categorized in Value-Based, Policy-Based and Actor-Critic approaches, all of which

are either Model-Free or Model-Based [28, p. 34f.].

4.2.1.1 Value-Based RL

Value-Based RL makes use of a value function. A value function determines the ex-

pected return from that state onwards. There are two types of value functions: The

state-value function vπ(s) tells us how much return we can expect starting in state s

and following policy π from that point onwards.

vπ(s) = Eπ[Gt | St = s] [27, p. 28] (4±7)

The action-value function qπ(s, a) in contrast also takes the action taken by the agent

into account when predicting the value.

qπ(s, a) = Eπ[Gt | St = s, At = a] [27, p. 26] (4±8)
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Both the state- and the action-value function can be expressed recursively using the

Bellman Expectation Equation

vπ = Rπ + γPπvπ [27, p. 36] (4±9)

in the following way:

vπ(s) = Eπ[Rt+1 + γvπ(St+1 | St = s)] (4±10)

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1) | St = s, At = a] [27, p. 30] (4±11)

A MDP can be solved by finding the optimal value function which is the maximum of all

value functions.

v∗(s) = max
π

(vπ(s)) (4±12)

q∗(s, a) = max
π

(qπ(s, a)) [27, p. 37] (4±13)

The optimal value functions are connected by the Bellman Optimality Equation

v∗(s) = max
a

(Ra
s) + γ

∑

s′∈S

Pa
ss′v∗(s

′) [27, p. 45] (4±14)

in the following way for a deterministic policy:

v∗(s) = max
a

(q∗(s, a)) [27, p. 43] (4±15)

q∗(s, a) = R
a
s + γ

∑

s′∈S

P a
ss′v∗(s

′) [27, p. 44] (4±16)

When the optimal action-value function is found, the return can be maximized by acting

greedy, meaning that the action with the highest value function is chosen at each state

by a deterministic optimal policy π∗. This deterministic optimal policy is defined using a

conditional probability, i.e., a probability is assigned to an action a given a state s.

π∗(a | s) =







1 if a = argmax
a∈A

(q∗(s, a))

0 otherwise
[27, p. 41] (4±17)

Value-Based agents learn the value function and thus are able to solve the MDP once

they found the correct value function. When searching for the optimal value function in

a large state space, the agent follows an implicit policy, for example the ϵ-greedy policy.

The parameter ϵ ∈ [0, 1] of the ϵ-greedy policy determines the rate between exploration

and exploitation. Exploration refers to the agent exploring unseen or uncertain terrain,

meaning it chooses actions even though they seem not optimal with the current knowl-

edge. By this exploration, the agent may find better ways than the ones it has explored

previously. In contrast, exploitation refers to the agent maximizing the immediate return

by choosing the best action known so far for the respective state. The ϵ-greedy policy

is a common way to deal with the problem of finding a balance between exploration

and exploitation. At a rate of ϵ, the agent explores, i.e., chooses an action randomly. At

a rate of 1− ϵ the agent exploits, i.e., chooses the action of which it expects the highest

return to receive from when starting in the current state. In other words: it acts greedy.

Page 15



Design Decision

There are also variants of the ϵ-greedy policy which do not use a fixed ϵ but decrease

it over time as the agent is expected to know its environment better. [29, p. 11]

When working with many states and actions, the value function has to be approximated

because a table for all states and actions is too large to store and learning the value of

each state and space is too slow. To approximate the value function, the parameters www

are used. Any type of function approximator can be chosen. Typical choices are linear

combinations of features and ANNs. When using differentiable function approximators

such as the two mentioned, the parameters www can be updated using gradient descent

or other optimization methods. [30, p. 6]

Value-Based methods are usually working off-policy what means that they can learn

from actions of others. Working on-policy in comparison means that the agent has to

be in control of the policy in order to learn. [29, p. 5]

Since Value-Based methods are working off-policy they have a high sample efficiency,

meaning they can exploit the data observed and therefore need less data in comparison

to other methods. However, they highly suffer from poor convergence and are less

stable than other methods, especially when using function approximators. This is the

case because Value-Based methods operate in the value space but the ultimate goal

is to find an optimal policy. A small change in the value space might lead to a bigger

change in the policy space. The last point is the main reason for the disadvantages of

Value-Based methods. [31, p. 18]

4.2.1.2 Policy-Based RL

Policy-Based agents learn a policy without using a value function. Therefore, the policy

is parametrized with the parameters θ:

πθ(s, a) = (P )[a | s, θ] [32, p. 3] (4±18)

Using this formulization, Policy-Based RL can be understood as an optimization prob-

lem. One can formulate a function J(θ) like the average value

JavV (θ) =
∑

s

dπθ(s)V πθ(s) (4±19)

or the average reward per time-step

JavR(θ) =
∑

s

dπθ(s)
∑

a

πθ(s, a)R
a
s (4±20)

where dπθ(s) is the stationary distribution of the Markov chain for πθ. Using this function

J(θ), one can optimize the policy by maximizing J(θ) using optimization methods such

as gradient descent. [32, p. 10f.]

The main advantages of Policy-Based methods are their better convergence proper-

ties compared to Value-Based methods and their effectiveness in high-dimensional or

continuous action spaces. Also, stochastic policies can be learned. The main disad-

vantage of these methods is that Policy-Based agents typically converge to local rather

than global optima. Additionally, the evaluation of a policy is often inefficient and suffers

under high variance. [32, p. 5]
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Fig. 4±2: The actor-critic architecture [33, p. 151]

4.2.1.3 Actor-Critic RL

Actor-Critic agents combine value and Policy-Based approaches by learning both the

value function and the policy. As visualized in figure 4±2, the policy serves as the actor

with the parameters θ and the value function as its critic with the parameters w. [32,

p. 23] Both are provided with the state, but only the value function receives the reward

from the environment. After an action was performed and a reward was received, the

value function computes the TD error

δπθ = rt+1 + γV (st+1)− V (st) (4±21)

which is used to update both the value function and the policy. [33, p. 151]

Advantage actor-critic methods approximate the advantage of an action

A(s, a) = Qw(s, a)− Vv(s) . (4±22)

The advantage A is then used to learn the parameters θ of the policy without the

need for the critic to approximate two functions (Q(s, a) and V (s)). The usage of the

advantage function can significantly reduce the variance of policy gradient. [32, p. 30]

As the idea of combining value and Policy-Based approaches already suggests, actor-

critic methods combine the best of both. They are sample efficient, have lower vari-

ance compared to Policy-Based methods and perform well in continuous state-action

spaces. [32, p. 26]

4.2.1.4 Model-free and Model-based RL

A model is a representation of a MDP with the parameters η which the agent learns [34,

p. 12]. In model-free RL, the agent learns the value function, the policy, or both from

experience. In model-based RL, the agent learns a model from experience and plans

on the value function, the policy, or both from that model. [34, p. 6] Figure 4±3 visualizes

that. Direct RL is an extension of model-based RL that lets the agent also learn from

experience. [34, p. 25]
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Fig. 4±3: Model-based RL visualized [33, p. 231]

The advantages of model-based RL are that it can use supervised learning methods

to efficiently learn the model and that it can evaluate the model’s uncertainty. The main

disadvantage is that if both the model and the value function are approximated with

parameters, there are two approximation errors in the feedback to the agent. [34, p. 11]

4.2.2 Definition of selection criteria

Now that the basic terms and ideas of RL have been introduced, options for a RL algo-

rithm will be outlined. Afterwards, a decision is made for one of the options. However,

first the selection criteria will be defined.

The algorithm to implement in the RACOON-Lab’s toolchain should be capable of han-

dling one or even multiple depth images, possibly downscaled, as an input. Other-

wise, one would have to manually select features which represent the depth image

well enough to choose suitable actions. Since the introduction of deep RL by [18] in

2013, this error-prone task is no longer necessary, as deep RL algorithms are capable

of processing large inputs such as multiple images.

The next criterion for an appropriate algorithm is a good performance. A common way

to measure the performance of RL algorithms is to compare their cumulative reward,

i.e., the sum of all rewards received so far, over the number of steps. In order to fully

optimize the algorithm’s hyperparameters such as the learning rate α or ϵ for the ϵ-

greedy policy, it has to be run multiple times for this comparison. One algorithm is

superior to another algorithm if its curve is consistently above the other’s. [35, chap-

ter 12.6] Alternatively, the reward for every episode can be compared. Once again,

one algorithm is superior to another if its curve is consistently above the other’s. Since

deep RL was proposed in [18] to play Atari games, this setting has become a standard

comparison for RL algorithms in discrete action spaces. In discrete action spaces, the

agent chooses one out of several available options. In continuous action spaces, the

agent controls one or multiple continuous parameters The first could be to choose one

out of several available filters, all of which would have a fixed intense while the latter

could be to control the intense of a filter that is applied to an image. The Arcade Learn-

ing Environment (ALE) by Bellemare et al. [36] for example offers an environment for

evaluating RL algorithms’ performance in Atari games. Since the implementation will

also use a discrete action space, comparison between algorithms will be done using
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ALE as a metric.

Good performance should be paired with high scalability, which is the third criterion.

Great performance which cannot be transferred to the intended application is not use-

ful. The ALE metric compares RL algorithms in a variety of applications with different

types of games and thus also checks the scalability of an algorithm. In combination

with the second criterion, the best algorithm is not necessarily the one performing best

in terms of cumulative score across all games since this one may perform bad in some

games and compensate this with very good performance in other games. Since it

is uncertain which Atari games do relate the most to the desired application in the

RACOON-Lab’s toolchain, a suitable algorithm should work well for most games, not

just very well for some.

Finally, an appropriate algorithm should be well-documented and available in a major

programming library which is optimized to run the calculations as quickly as possible,

for example on a GPU. This final criterion will drastically reduce the duration of the

implementation and training of the algorithm as well as the duration of the computation

in a real-world usage if the state is large, e.g., an image.

Now that the criteria for the algorithm have been set, multiple options will be outlined.

Stable baselines is a common python library providing state-of-the-art RL algorithms

including Advantage Actor Critic (A2C), Sample efficient actor-critic with experience

replay (ACER), Actor Critic using Kronecker-Factored Trust Region (ACKTR), Deep

Q-Network (DQN), Proximal Policy Optimization (PPO) and Trust-region policy opti-

mization (TRPO). It was published on GitHub [37]. In its documentation [38], a guide

to select an appropriate RL algorithm is provided [39]. It divides the algorithms by two

criteria: discrete or continuous actions and single process or multi-processed. The

multiprocessing criterion is further divided into multiprocessing with and without the

usage of Message Passing Interface (MPI). The following will evaluate which criteria

apply for our use-case.

As explained previously, the implementation of this thesis will operate in a discrete ac-

tion space. The environment replicating the RACOON-Lab toolchain will be a custom

environment. With the vectorized environments of stable baselines this custom envi-

ronment can be used for multi-processing. To allow usage of the environment indepen-

dent of MPI availability, this thesis restricts itself to multiprocessing without MPI. The

documentation of stable baselines suggests PPO2, A2C and its successors ACKTR

and ACER for this case. The following will now evaluate these algorithms according to

the selection criteria.

Since all of the algorithms are deep, they all fulfill the first criterion. The stable base-

lines library is based on Tensorflow, a common ML library for python. With this well-

documented implementation, all algorithms also fulfill the last criterion. The final sub-

chapter of the design selection will however evaluate alternatives to the stable base-

lines library for the selected algorithm. The following will now briefly introduce all algo-

rithms and then compare their performance and scalability using ALE as a metric.
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4.2.3 Algorithm PPO2

PPO2 is a Proximal Policy Optimization (PPO) algorithm. The family of PPO algorithms

was proposed by Schulman et al. in [40]. This family of algorithms combine the benefits

of TRPO [41], namely their stability and reliability, with the multi-worker architecture

of A2C. It uses multiple epochs of stochastic gradient ascent to perform each policy

update. PPO algorithms are mainly based on the idea that a policy update should not

move the policy too far from the old one.

The original paper includes a pseudo-code version of a PPO algorithm that uses fixed-

length trajectory segments which is shown in algorithm 1. It uses

LCLOP+V S+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)] (4±23)

where c1 and c2 are coefficients, S denotes an entropy bonus and

LV F
t = (Vθ(st)− V

targ
t )2 . (4±24)

It also uses

Ât = δt + (γλ)δt+1 + . . .+ . . .+ (γλ)T−t+1δT−1 (4±25)

with

δt = rt + γV (st+1)− V (st) . (4±26)

Algorithm 1 PPO algorithm [40]

for iteration= 1, 2, . . . do

for actor= 1, 2, . . . , N do

Run policy πθold in environment for T timesteps

Compute advantages estimates Â1, . . . , ÂT

end for

Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ

end for

Schulman et al. name the following benefits of their family of algorithms over TRPO:

simpler to implement, more general, and better overall performance.

4.2.4 Algorithm A2C

Advantage Actor Critic (A2C) is an adoption of Asynchronous Advantage Actor Critic

(A3C) which was proposed by Mnih et al. in [42] but without the asynchrony. This

means that in A2C the value function and the policy are optimized simultaneously

whereas in A3C there is a delay which is called asynchrony. Both algorithms are ad-

vantage actor-critic algorithms. By using multiple workers, the usage of a replay buffer

as used in the DQN can be avoided.
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A2C has proven to be more effective than A3C which is why it is a common base-

line to compare newly proposed algorithms against [43]. A3C however had already

outperformed the DQN algorithm, the first deep RL algorithm, of Mnih et al. [18], a

Value-Based approach. The comparison of A3C and DQN in Atari games reported

in [42] is shown in figure 4±6. Since it was outperformed by A3C, DQN will not be

considered here.

4.2.5 Algorithm ACKTR

Actor Critic using Kronecker-Factored Trust Region (ACKTR) is a deep actor-critic RL

algorithm proposed by Wu et al. in [43] which is a successor of A2C. It uses Kronecker-

factored approximate curvature (K-FAC) to update both the actor and the critic which

are both deep ANNs. K-FAC [44] is an optimization algorithm that speeds up the train-

ing of various ANNs and requires only little more computational efforts compared to

Stochastic Gradient Descent (SGD) (10-25% according to Wu et al.). A more detailed

description of the principle of the ACKTR algorithm is out of scope of this introduction

but can be found in the original paper [43].

4.2.6 Algorithm ACER

Sample efficient actor-critic with experience replay (ACER) is a deep actor-critic RL

algorithm that combines several ideas from other algorithms. It was proposed by Wang

et al. in [45] and uses experience replay like DQN, multiple workers like A2C and a trust

region like TRPO. Wang et al. also proposed several new ideas such as a new trust

region policy optimization method or stochastic dueling network architectures. The

appendix of the original paper also offers a pseudo-code implementation for discrete

actions which will not be presented in this thesis due to its length. Wang et al. report

that ACER is stable, sample efficient and matches the performance of other RL meth-

ods on Atari (they compared to A3C and DQN in figure 4±6). However, they also report

improvements over state-of-the-art RL algorithms in continuous action space.

4.2.7 Performance and stability comparison

For the Atari game Atlantis, Wu et al. report ACKTR to be 10 times more sample effi-

cient than A2C [43]. Figure 4±4 compares the performance of ACKTR, A2C and TRPO

in six different Atari games. The figure shows that ACKTR outperforms the other two al-

gorithms in every game. Figure 4±5 compares ACKTR, A2C and PPO2 in five different

Atari games. Once again, ACKTR outperforms the other two algorithms in every game.

Figure 4±6 compares both the sample efficiency (left) and the computation efficiency

(right) of ACER, A3C and DQN for 57 Atari games. The DQN algorithm performs worst

by both measures. While A3C is the second-worst in terms of sample efficiency, it

performs very well in terms of computation efficiency. The different versions of ACER

perform well on both metrics. Figure 4±7 compares the performance of ACKTR, PPO,

A2C and ACER in 49 Atari games. Please note that the hyperparameters of ACKTR

were tuned using only one game, Breakout. In this figure, no algorithm performs best

in all games. However, ACKTR performs better than A2C in almost all of them. For the

comparison of ACER, PPO, and ACKTR, no clear result can be drawn from this figure.
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Fig. 4±4: Performance of ACKTR, A2C and TRPO in six Atari games compared. Stan-
dard deviation over two random seeds is denoted by shaded regions. [43]

Fig. 4±5: Performance of ACKTR, A2C and PPO2 in five Atari games compared [46]
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Fig. 4±6: Performance of ACER, A3C and DQN in 57 Atari games [45]

PPO seems to work well in games in which all other algorithms have difficulty, such

as Kangaroo or Zaxxon. ACER shows similar behavior for other and fewer games.

ACKTR overall outperforms PPO in more games than vice versa.

Please note that only figure 4±5 was not published by the developers of one of the algo-

rithms and hence is the only fully independent comparison. As reported by Henderson

et al. in [48], improvements over state-of-the-art algorithms, especially when reported

by the developers themselves, do not have to be meaningful since choosing only some

games or optimizing the hyperparameters very intensively can lead to an improvement

for a very special case that cannot be replicated in other settings. Without neglecting

the findings of the developers of the algorithms, this has to be taken into account when

using the figures as a comparison.

Tab. 4±1: Comparison of RL algorithms for discrete action space and multiprocessing
available

Algorithm Based on Performance Stability

A2C A3C Slowest Least stable

ACER A2C Second-slowest Second most stable

ACKTR A2C Fastest Second least stable

PPO TRPO and A2C Second-fastest Most stable

4.2.8 Decision for an algorithm

Table 4±1 summarizes the findings of the performance and scalability analysis. Since

A2C performs worst in both performance and scalability, it is not considered any fur-

ther. Since all other algorithms are based on A2C at least to some extent, this result

was not unexpected. ACER shows good scalability but is outperformed by both PPO

and ACKTR and will therefore not be considered further. Even though ACKTR shows

remarkable performance, it cannot scale that performance across all games. PPO in

comparison shows good performance and great scalability. Since the developers of

PPO laid a special focus on scalability, this was also not unexpected. By combining
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Fig. 4±7: Performance of ACKTR, PPO, A2C and ACER in 49 Atari games [47]
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good performance and great scalability, PPO meets the selection criteria better than

the other algorithms. Therefore, PPO will be used in this thesis.

4.3 Reward function

Like for the algorithm, before the options for the reward function will be outlined, the

main ideas and most important terms of reward functions will be explained.

4.3.1 Fundamentals of reward functions

RL is based on a fairly simple theorem which states that any goal can be described by

a reward function that must be cumulatively maximized [28, p. 13]. However, finding

a suitable reward function that effectively incentives the agent to reach that goal is

arguably the most important design decision for any RL application. Before outlining

options for the reward function to train the RL agent in the RACOON-Lab’s toolchain

on, some fundamentals and basic terms regarding reward functions are introduced.

Typically, the value of an action also includes the rewards for the following actions,

which are most often discounted with a discount factor γ:

vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + . . . | St = s] [28, p. 27] (4±27)

One uses high values for γ, i.e., near 1, when the actions are expected to have a strong

influence on the following states and rewards. Imagine a game of tic-tac-toe where the

agent sees itself in the dilemma that the opponent will win in its next move no matter

which action the agent chooses since there are two options for the opponent to get

three symbols in a row. When the discount factor γ is low, i.e., near or equal to 0, the

negative reward for the opponent’s win will not have much influence on the previous

action which led to the dilemma. Therefore, the agent will not learn that the previous

action was bad and also will not change its behavior.

Rewards can be delayed, i.e., the agent receives the rewards after a certain delay, for

example a certain number of timesteps [28, p. 8]. Typically, one expects the agent to

figure out that there is a delay and deal with that delay itself.

Reward functions can be sparse or dense. Sparse reward functions give the RL agent

only occasional feedback. That means that the agent receives a reward of 0 most of

the time. An example of a sparse reward function is an environment of the game tic-

tac-toe that only gives the agent a reward once the game is over. Since this reward

accounts for all of the actions taken previously, one typically sets γ = 1 when using a

sparse reward function. A dense reward function in contrast provides the agent with

continuous feedback about its actions. This means to define certain sub-goals. For the

game tic-tac-toe, an environment could for example provide a reward for stopping the

opponent from winning or for placing two symbols in a row. To design a dense reward

function is often challenging since one has to think of good measurements for the

agent’s actions. Wrongly designed reward functions will lead to unintended behavior of

the agent. However, a well designed dense reward function will accelerate the training

of the agent drastically compared to a sparse reward setting, especially for complex

environments.

Page 25



Design Decision

4.3.2 Dense reward: Metric by Pregel Hoderlein

In her Semester’s Thesis [17, p. 15ff.], Pregel Hoderlein proposes a metric as a loss

function for a neural network aiming to enhance depth images in the RACOON-Lab’s

toolchain. The following will summarize the ideas and calculations of this metric.

The metric is based on the knowledge about the experimental setup at the RACOON-

Lab. In the RACOON-Lab, the chaser circles the target with constant distance and

constant angular velocity in the XZ-plane. Pregel Hoderlein calculates the angle γref
by which the chaser circled the target in the time t = t2 − t1 passed between two

arbitrary positions with the indices 1 and 2 using the angular velocity ωref .

γref = wref · t [17, p. 15] (4±28)

The correct translational velocity used as a reference vvvref is calculated using γref :

vvvref =









vx,ref

vy,ref

vz,ref









=









R·sin(γref )

t

0
R·(1−cos(γref ))

t









[17, p. 16] (4±29)

The correct angular velocity used as a reference ωωωref has only one entry since the

correct trajectory of the chaser lies in the XZ-plane.

ωωωref =









ωx,ref

ωy,ref

ωz,ref









=









0

ωref

0









[17, p. 16] (4±30)

Pregel Hoderlein calculates translational velocities vvv for the calculated trajectory as

follows:

vvv =









vx

vy

vz









=









x2−x1

t

y2−y1
t

z2−z1
t









[17, p. 17, corrected] (4±31)

The DIFODO algorithm outputs the yaw, roll, and pitch angle. The angular velocity ωωω

for the calculated trajectory is calculated as follows with u being the roll, v the pitch and

w the yaw angle:

ωωω =









ωx

ωy

ωz









=









w2−w1
t

v2−v1
t

u2−u1
t









[17, p. 17, adpoted] (4±32)

The absolute error E averages the four components dtranslation,norm, stranslation,norm,

drotation,norm and srotation,norm which are calculated as follows:

dtranslation,norm =











|∥vvvref∥−∥vvv∥|
∥vvvref∥

if
|∥vvvref∥−∥vvv∥|
∥vvvref∥

≤ 1

1 if
|∥vvvref∥−∥vvv∥|
∥vvvref∥

> 1
[17, p. 18f.] (4±33)
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stranslation,norm =
1−

vvvref

∥vvvref∥
· vvv
∥vvv∥

2
[17, p. 18f.] (4±34)

drotation,norm =











|∥ωωωref∥−∥ωωω∥|
∥ωωωref∥

if
|∥ωωωref∥−∥ωωω∥|
∥ωωωref∥

≤ 1

1 if
|∥ωωωref∥−∥ωωω∥|
∥ωωωref∥

> 1
[17, p. 18f.] (4±35)

srotation,norm =
1−

ωωωref

∥ωωωref∥
· ωωω
∥ωωω∥

2
[17, p. 18f.] (4±36)

E =
dtranslation,norm + stranslation,norm + drotation,norm + srotation,norm

4
[17, p. 19] (4±37)

All components are normalized between 0 and 1 and thus the absolute error E is also

normalized between 0 and 1. A value of 0 stands for a perfect estimation and a value

of 1 for a poor one. dtranslation,norm measures the similarity of the length of the velocity

vector vvv to the reference velocity vector vvvref . In other words: it compares the abso-

lute value of the velocities. stranslation,norm checks whether the two velocity vectors are

pointing in the same direction. drotation,norm and srotation,norm do the same for the angular

velocity vector ωωω and the reference angular velocity vector ωωωref .

This metric can be adopted fairly easily as a dense reward function for the RL en-

vironment by using the negative absolute error E as the reward function which then

would be in [−1, 0]. Alternatively, one could scale the reward function to [−1, 1] to give

a positive reward for a perfect estimation. Since the RL agent learns to maximize the

returns anyway, scaling the reward function will not have much impact besides using

the whole range of [−1, 1] which is typically used for reward functions. Thereby, the

distance between two rewards is doubled compared to the non-scaled version. When

Et is the absolute error for timestep t, the final reward function R(t) can be calculated

as follows:

R(t) = 1− 2Et (4±38)

This thesis assumes that actions are not influencing the performance of the following

decisions much. Therefore, the discount factor γ will be set to 0 and the performance

of an actions is only determined by the reward for that specific action. However, since

it is uncertain how large that influence is, it might be interesting to test, for example,

γ = 0.5 in future studies of the RACOON-Lab evaluating RL.

A dense reward function should split the overall goal into smaller pieces. The overall

goal for the agent is to apply filters that make the trajectory calculated by the DIFODO

algorithm more accurate. For the experiments conducted at the RACOON-Lab, this

means to bring the estimated trajectory closer to the shape of a circle. The proposed

dense reward function, adopted from Pregel Hoderlein [17], splits the overall goal into

appropriate sub-goals, because if all elements of the calculated trajectory were circular,

the calculated trajectory as a whole would be a circle.

Page 27



Design Decision

4.3.3 Sparse Reward: Total distance to best-fit circle

Alternatively, one could use a sparse reward function that sums up the squared dis-

tance of each point on the trajectory calculated by the DIFODO algorithm to the best-fit

circle. This sum then would be given as a negative reward to the agent. This reward

function can only be calculated at the end of an episode, i.e., when all images of an ex-

periment were processed by the toolchain. That is the case because the best-fit circle

can only be calculated correctly when the final trajectory has been calculated by the

DIFODO algorithm. Therefore, when using the best-fit circle as a metric, the reward

needs to be sparse. When using a sparse reward function, one should set γ = 1 so

that all actions get the same reward, since with a sparse reward function one cannot

judge which action had the greatest impact on the reward. Also, all rewards but the

last one should be set to 0 for a sparse reward. Finally, the result should be scaled to

[−1, 1]. It should therefore be divided by a constant c and added with 1. For example,

c could be the sum of squared distances of the recorded dataset as calculated by the

RACOON-Lab’s toolchain not using RL. As long as the agent does not double that sum

of squared distances, the reward will be greater than −1. When δi is the distance of

point i from the best-fit circle, this reward function R(t) can be calculated as follows for

n timesteps:

R(t) =

{

0 if t < n

1− 1
c

∑n−1
i=0 δ2i if t = n

(4±39)

4.3.4 Sparse Reward: Comparison to toolchain without Reinforcement Learn-
ing

The final option for a reward function also relies on the best-fit circle as a metric. Thus,

the same points regarding sparse rewards as for the previous reward function apply,

i.e., γ = 1 and all rewards except the last one set to 0. This reward function also

needs to calculate the sum of the squared distance of each point from the best-fit

circle. However, instead of directly using a factored version of that function as a reward

function like the previous option, this reward function compares this measure to the

current toolchain of the RACOON-Lab which does not use RL. Thereby, it ensures the

agent actually improves the quality of the toolchain’s results. When δrl is the summed

squared distance of all points from the best-fit circle for the toolchain using RL and

δcur the summed squared distance of all points from the best-fit circle for the current

toolchain not using RL, one could calculate the reward function R(t) for n timesteps as

follows:

R(t) =

{

0 if t < n
δcur−δrl

δcur
if t = n

(4±40)

If δrl < δcur, i.e., the agent improves the performance, the reward is positive. Other-

wise, if δrl > δcur, i.e., the agent would worsen the performance, the reward function is

negative. Dividing the function by δcur ensures that it stays within reasonable range. As

long as 0 ≤ δrl ≤ 2δcur, R ∈ [−1, 1].
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4.3.5 Decision for a reward function

Three options for a reward function were introduced. In the following, they will be

evaluated and one of them will be selected.

The greatest benefit of the sparse options is that they are using the sum of squared

distances from the best-fit circle as a metric, just like the metric developed by Rehn

in [16] which is used in the RACOON-Lab’s toolchain not using RL. This ensure that

they incentive the agent in the right way. The third option which compares the per-

formance of the RL toolchain against the toolchain not using RL additionally ensures

that the trained agent makes an improvement to the toolchain. However, both sparse

options suffer from the drawbacks of sparse reward functions, most importantly the low

training speed compared to dense reward functions. These drawbacks get a greater

influence the more challenging the environment is and the more actions are taken be-

fore a reward is received by the agent. Since the recordings in the RACOON-Lab can

consist of more than thousand depth images, it would take a very long time to train

the RL agent to achieve significant performance. If only sparse reward functions would

incentive the agent in the right way, one would have to accept this major drawback.

Fortunately, an option for a dense reward function is also available. Since it is dense,

it will not suffer under the low training speed of sparse reward functions. However,

it cannot use the metric developed by Rehn and therefore may incentive the agent

in a wrong direction. The probability for this was considered low when designing the

reward function since the metric used in the first reward function measures how close

the shape of the trajectory element is to a circle element. The remaining low probability

was considered to be far outweighed by the higher training speed of the dense reward

compared to the sparse ones. The first reward function was assumed to split the overall

goal of having a circular trajectory in suitable sub-goals. Hence, it was implemented

and used in this thesis. Figure 4±8 shows the resulting toolchain for the RACOON-

Lab. However, as discussed in chapter 7.2.2, the metric suffers under fluctuations in

the coordinates and orientation angles calculated by the DIFODO algorithm and thus

did not perform as expected.

4.4 Actions the agent can choose from

4.4.1 Depth images of mirror-like surfaces

Inaccuracies in the depth images recorded in the RACOON-Lab are mainly caused

by reflections of the mirror-like surfaces of the target’s solar-panels [6]. According

to Mallick et al. [49], mirror-like surfaces are not identified as objects, causing large

patches of holes in the depth image or the interpretation of false objects behind the

particular surface. The latter are caused by the fact that objects visible as a reflection in

the mirror-like surface are calculated as being behind the surface at the exact distance

they are in front of it. Figure 4±9 shows the effect by comparing (a) a RGB and (b)

a depth image of the same scene. In the depth image, the mirror’s pixels are either

black or white. The black pixels refer to a hole in the depth image since no object was

detected. The white pixels stand for an object detected behind the mirror, at almost the
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Fig. 4±8: The resulting toolchain for the RACOON-Lab using PPO and a dense reward

Fig. 4±9: Comparison of (a) RGB and (b) depth image showing that the Kinect camera
taking the picture is unable to recognize the surface as an object and instead estimates
the rear sides of the human with a lot of hole noise [49]

distance of the wall. Especially the inexistent objects cause problems for algorithms

taking the depth image as an input like the DIFODO algorithm in the RACOON-Lab.

Holes in comparison are considered to have much lower impact on the algorithm’s

performance. However, it would be ideal if the correct distance of the reflective surfaces

would be calculated. Therefore, filters dealing with the reflections should be available

for the RL agent to choose from.

Figure 4±10 shows the effect on an image from the RACOON-Lab. In (d), the estima-

tion for pixels of the solar panel fail because of the reflection on the same. The depth

image (d) shows the solar panel behind the side of the target on which it is mounted,

although it clearly is in front of it, as visible in the RGB image (b). Also, a reflection of

the solar panel leads to miscalculation of points on the side the panel is mounted on.

These points are much lighter than the rest of the surface in figure 4±10.
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Fig. 4±10: RGB and depth image before and after application of the cuboid box filter
used to filter out the Lab’s structures. In (d), the reflections on the solar-panel lead to a
depth value estimation that is much further away from the camera than the solar panel
actually is. [5]
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4.4.2 Definition of selection criteria

Even though the cameras installed in the RACOON-Lab provide RGB and depth im-

ages, only the depth images are used for the toolchain since RGB images may be

not available in an application in space when the mission is conducted in the Earth’s

shadow. Thus, guided filters, i.e., filters relying on RGB data, cannot be used. The

following will therefore focus on unguided depth image filters.

In contrast to the previous design decision, multiple options will be chosen since the

agent needs to have multiple options available to choose from. Therefore, only suitable

options will be outlined.

Also, the filters will be chosen based on an expected performance. If a filter is not

performing as expected, the RL agent will learn so and choose the filter less often. In

the description of the results, the rate to which each filter was chosen over time will be

analyzed.

Additionally, only filters which can be easily implemented or for which an implementa-

tion is already available will be used since this thesis does not aim to build new depth

image filters but to use them as actions for RL agent.

A final constraint for suitable filters is that they should not need to be trained on the

images. Otherwise, this would need additional learnings which are time-consuming

and, more importantly, increase the probability of overfitting the data, i.e., performing

well on the training data but worse on the testing data and in a real-world application.

Please note that mirror detection algorithms such as PSPNet [50], MirrorNet [51] and a

method proposed by Lin et al. in [52] are working with RGB images as an input. Since

RGB images may not be available in an application in space, these filters cannot be

used as actions for the RL agent.

4.4.3 Adaptive depth threshold Filter

Since reflective surfaces are often calculated to be further away from the camera then

they actually are, an adaptive depth threshold could address the problem. The filter

could for example set any depth values which are above 95% of the maximum depth

value to 0. In case the reflective surfaces are calculated to be behind the rest of the

structure, this filter could overwrite them. However, this filter will not be of any use when

the miscalculated points are within the range of the other depth values. In this case, the

filter will overwrite correct depth values, which probably leads to worse performance of

the DIFODO algorithm. The idea in using this filter is that the RL agent will recognize

so and learn for which depth images this filter is useful and for which it is not.

This filter could be built using the Inverted Threshold to Zero function of the OpenCV li-

brary which sets all pixel values over a defined threshold to 0. A python implementation

of the OpenCV library is available on GitHub [53] and also offers a documentation [54].
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4.4.4 Percentile Filter

With a similar idea and concept as the Adaptive depth threshold Filter, a Percentile

Filter is another option. Instead of setting values above 95% of the maximum depth

value to 0, this filter sets values above the 95th percentile to 0. The main difference is

that the effect of this filter will not decrease when the maximum depth value is a far

outlier as it might for the Adaptive depth threshold filter. However, both may be useful

in different situations and will therefore be options for the RL agent to choose from.

To build this filter, the same libraries as for the Adaptive depth threshold Filter can be

used.

4.4.5 IP-Basic

Ku et al. [55] proposed an unguided algorithm that only relies on basic image-

processing operations and does not need to be trained on the images but still out-

performed other methods on the KITTI depth completion benchmark [56]. The authors

also see potential benefits for Simultaneous Localization and Mapping (SLAM) algo-

rithms that perform a comparable task as the DIFODO algorithm. HEnce, it may be

interesting to test the algorithm as a filter for the depth images from the RACOON-Lab

even though it is not focused on dealing with reflective surfaces. The filter might need

to be adjusted depending on its performance in future studies since it was developed

for the KITTI depth completion benchmark and uses information about this dataset

which may not apply to the RACOON-Lab.

Ku et al. have made their code available on GitHub and also give a recommendation

which setup of their algorithm to use. They recommend their bilateral filter without

extrapolation for practical use but also offer a slower version that additionally removes

noise. This version still runs with 30 frames per second (FPS) on a Central Processing

Unit (CPU) compared to 87 FPS for the bilateral filter. Since the toolchain to implement

is not meant to run in real-time, the slower version called Multi-Scale, Bilateral, Noise

Removal, No Extrapolation will be used as an action for the RL agent.

4.4.6 Median Filter

The median filter is a very common filter for RGB and depth images. Like the IP-Basic

filter, it does not focus on dealing with reflective surfaces. However, it still could be

a valid option for images without reflections. The median filter is implemented in the

OpenCV library mentioned previously.

4.4.7 Do nothing

Another very valid option for the RL agent should be to not filter the depth image. Most

probably there is a wide range of depth images that the DIFODO algorithm can handle

without further filtering since the toolchain without RL also performs acceptable in most

depth images. For these cases, no further filter is needed and thus the RL agent will

be provided with the option to hand over the depth image to the DIFODO algorithm

without applying any filter to it.
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4.5 Programming Library

4.5.1 Definition of selection criteria

In this final section of the design decision chapter, a library for the PPO algorithm is

selected. Only libraries written in Python will be taken into account since Python has

become the standard programming language for ML tasks and hence offers the widest

range of optimized libraries. At the end of the chapter, the library for the RL environment

will also be selected. However, for most libraries implementing RL algorithms, there is

a standard library to use for custom environments. Since the library for the algorithm

should support the library of the environment, the standard environment library of the

algorithm’s library will be used if available.

When selecting a library for the PPO algorithm, the following criteria will be checked:

Firstly, the library should be well-documented, so that the implementation does not

take longer than necessary and more time can be spend on other tasks. Secondly, as

already reasoned in the last paragraph, the library should support a well-documented

environment library. Next, the library should show good performance. If available,

the performance will be compared for different libraries using ALE as a metric, as

done when an algorithm was selected. The last criterion for a suitable library for a

RL algorithm is that it should be up-to-date. That means that the library relies on

recent ML libraries and therefore uses good optimization methods which contributes to

the performance and stability of the algorithm.

Now that the selection criteria have been outlined, the following will introduce some

options for libraries for the PPO algorithm following a selection guide by Simonini [57]

which includes five libraries. Since one of those, KerasRL, does not include a PPO

implementation, it will not be introduced. For Stable Baselines (SB) both Stable Base-

lines 2 (SB2) and Stable Baselines 3 (SB3) will be introduced. After the introduction,

a suitable library will be chosen and the respective library for a RL environment will be

introduced shortly.

4.5.2 OpenAI Baselines

OpenAI Baselines is a standard library for RL which includes a range of algorithms. It

is based on Tensorflow, a common ML library. The master branch supports versions

1.4 to 1.14 while the tf2 branch supports Tensorflow 2.0. The library thus fulfills the last

criterion. Custom environments can be built following the Gym interface of OpenAI. It

is available on GitHub [37]. According to Simonini, it however lacks documentation and

comments in the code. Hence, the library does not fully fulfills the first criterion.

4.5.3 TF agents

TF agents is a library offered by the developers of Tensorflow. Therefore, it supports

Tensorflow versions 1.4.x and 2.0. It is available on GitHub [58] and offers some tu-

torials. Custom environments can be built following the PyEnvironments interface. Al-

though Simonini points out the high quality of the implementations of TF agents, he
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Fig. 4±11: Comparison of the performance of SB2 and SB3 in four Atari games showing
similar performance for both libraries [64]

sees a lack of documentation. As the OpenAI Baselines library, TF agents fulfills the

last criterion but does not fully fulfill the first one.

4.5.4 Stable Baselines 2

Stable Baselines 2 (SB2) is a fork of OpenAI Baselines, which the developers of SB2

reported to be unstable, uncommented and written without a common codestyle when

they were releasing the initial version of SB [59]. It is available on GitHub [60] and

well-documented [38]. Custom environments can be used with the OpenAI Gym in-

terface [61]. The library is based on Tensorflow. Unfortunately, SB2 only supports

Tensorflow versions 1.8.0 to 1.15.0 but not the versions 2.0.0 or above. It thereby does

not fully fulfill the last selection criterion. Since the SB2 library is in maintenance mode

as of 30.08.2021, the documentation recommends to use SB3 instead.

4.5.5 Stable Baselines 3

Stable Baselines 3 (SB3) is the most recent version of SB which is based on Pytorch,

another major ML library, but does not offer all of the algorithms of SB2. However, PPO

is available in SB3 and shows similar performance as the version in SB2 as shown in

figure 4±11. SB3 is also available on GitHub [62] and well-documented [63]. SB3 also

uses OpenAI’s Gym interface [61] for custom environments. Since SB3 is based on

Pytorch versions 1.8.1 or higher, it is up-to-date. According to Simonini, SB3 has many

additional features such as vectorized environments.

4.5.6 Tensorforce

Tensorforce is a RL library based on Tensorflow that offers an implementation of PPO.

It is available on GitHub [65] and is documented [66]. However, according to Simonini,

the documentation is incomplete. This library thus does not fully fulfill the first criterion.
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A benefit of Tensorforce is that it supports multiple interfaces for custom environments.

Since Tensorforce is based on Tensorflow 2.5.1, it fulfills the last criterion.

4.5.7 Decision for a programming library

Since OpenAI Baselines, TF agents, SB2 and Tensorforce do not fully fulfill the defined

selection criteria but SB3 does, SB3 is selected as the programming library for the

implementation. Hence, the RL environment will be implemented using OpenAI’s Gym

interface [61]. It is available on GitHub [61] and a documentation is available [67].
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5 Software System Design

This chapter provides a description of the software code developed for this thesis. After

an overview, the python code is described in detail.

5.1 Overview

Fig. 5±1: Overview of the code struc-
ture

The code for the thesis was developed in

modules to make it easily reusable for future

projects. All files were maintained on the

GitLab of the MÈunchner Wissenschaftsnetz

(MWN) and will be made available upon re-

quest. A README.md is also provided there

with additional information about the devel-

oped code. Figure 5±1 provides an overview

of the code structure.

The python code is stored in the Environment

and Evaluation folders. As the names already

suggest, the code for the RL environment and

its training is stored in the Environment folder

while the code for the evaluation of the results

is stored in the Evaluation folder. A descrip-

tion of the python files within these folders fol-

lows below, after the description of the other

elements in the code structure.

The log folder is empty when passed to the

Condor GPU cluster and used to store the

log, error, and out files. The PPO folder is

typically empty when passed to the Condor

GPU cluster and used to store any output of

the training, such as the actions chosen, the

rewards received and the trajectory as well

as the saved agent. In case a model is to

be loaded, the model and the saved histo-

ries need to be saved in the PPO folder and

passed to the Condor GPU cluster.

The docker-depthrl.htcfg file is a description

file for the Condor GPU cluster which spec-

ifies the job to execute. The Bourne shell

script job.sh is the code that is initially run by

the Condor GPU cluster and used to install all

necessary packages via pip. Afterwards it ex-
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ecutes the python code. The zip-package pydifodo-main is used to install the python

version of the DIFODO algorithm. The README.md contains a description of the

project to be displayed on the GitLab site on which the project is stored. The Readme-

files folder contains the figures used in Readme.md. Finally, the requirements.txt text

file specifies the python packages to install when executing job.sh.

See 5±2 for an overview of how the training routine is executed. Please be aware

that all files called by the Environment class are not included to keep the overview

character.

5.2 Description of the python code

The following will explain the purpose of each python file in the code structure, following

the order displayed in figure 5±1.

5.2.1 Environment folder

Figure 5±3 shows a class diagram of the environment class and associated classes. It

focuses on the most important aspects of the classes, i.e., most attributes and some

less important functions are not displayed. To increase understandability, the function

returns use a descriptive name for which specifies the parameters passed rather than

the datatype.

Within the Environment folder, there is a folder called Action which contains the actions

the RL agent can choose from (as described in chapter 4.4), that needed their own

python file.

The BoxFilter.py file contains a python class that is initialized with the values of the box

filter and has a function called filter that takes an image and returns the box-filtered

image.

CameraLoader.py contains a python class that is initialized with the path to the train-

ing files, the file number and the camera to load images from and that is used to

read images and other information out of the NetCDF4 files that were recorded dur-

ing earlier studies in the RACOON-Lab by Franceschini [6]. Its function next returns

the next image of the specified file. The function new is automatically called when

the function is initialized and loads all images of the specified dataset in the memory

to speed up the process of loading each single image afterwards. The reset func-

tion restarts the loading at the first file. The functions len, getDepthConversionFactor,

getOmegaRef, getFPS, getRadius, and getDimensions read the respective information

from the dataset.

The CameraSpecificator.py is a python class that provides the information used to

initialize the CameraLoader.py, i.e., the file number, while being also initialized with

the path to the training files and the camera. When its function next is called, the file

number of the next dataset which contains images from the camera specified in the

initialization is returned. If the end of the directory with the training files is reached, the

CameraSpecificator is reset with its function reset, i.e., the search continues with the
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Fig. 5±2: Code flowchart of training routine
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Fig. 5±3: Class diagram of the environment and associated classes

first file in the directory.

Environment.py contains a python class called RACOON Environment that follows the

Gym interface for RL environments from which it also inherits. In this class, all compo-

nents of the environment, i.e., all python files within the Environment directory besides

the main.py, are used. When being initialized, the class defines an action and an

observation space. The action space is a discrete action space with the number of

actions as length. Other than a continuous action space, a discrete one only allows

discrete values, i.e., integers, each of which stands for one action to take. The obser-

vation space is an array that can store a RGB image. Since the three cameras in the

RACOON-Lab have different resolution and the shape of observation space cannot be

updated during the training, the RACOON Environment class gets passed the camera

for initialization and once initialized only works with that camera. That means that any

agent trained with the RACOON Environment only works with one camera. Despite

being inevitable, this restriction also increases the chances of the agent to succeed

since the variation of the input images is much lower when only images from one cam-

era are used. During the initialization, the class also defines its CameraSpecificator,

CameraLoader, BoxFilter, AdaptiveThresholdFilter, IPBasicFilter, and PercentileFilter.

For evaluation purposes, an action history, reward history, Dtrans history, Drot history,

Strans history, Srot history, and trajectory are also initialized. These are saved after

the training is finished by the main.py.
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In order to follow the Gym interface, the RACOON Environment also needs to de-

fine a reset, step, render and close function, while the render and close function can

be empty. The reset function needs to reset the environment once it completed an

episode. Think of an environment that implements the game tic-tac-toe. Once a

game ends, it should be able to reset, i.e., start a new game. In the case of the

RACOON Environment, resetting means to get to start a new series of images from a

new experiment. The action history, reward history and trajectory get markers when

the environment is reset. Also, the PyDIFODO and Reward are initialized. This needs

to happen every time the environment is reset since the PyDIFODO cannot be reset

and the Reward may have new reference parameters to work with. The reset function

is also automatically called before the training starts. Every time a new image set is

started, the first image that is passed to the PyDIFODO raises an error which is why the

function SkipFirst, which excepts that error, is called at the end of the reset function.

The function returns the next image which is then processed by the RL agent.

The step function is what actually makes the RACOON Environment since in this func-

tion the behavior of the environment for each step is defined. The function gets passed

an action that was chosen by the agent which is also saved in the action history. Next,

the action is applied to the image which is then handed to the PyDIFODO, which cal-

culates the odometry. Afterwards it is asked for the current pose which is saved in the

trajectory and used to calculate the reward which is saved in the reward history. In

case the reward is NaN , it is set to 0 to prevent errors. The components of the rewards

are also saved in individual histories for evaluation. At the end of the step function, the

next image is loaded and it is checked whether the end of the image set is reached.

That determines the value of the variable done. The step function returns the next

image, the reward, the done variable as well as a variable info which is empty in the

case of the RACOON Environment.

main.py is the file that runs the training of the RL agent. It gets passed six required and

one optional arguments via the command line: The required arguments are timesteps,

trainingpath, save, camera, envs and learningrate. A pre-saved model can optionally

be passed to continue the training of the passed model. This setup makes it possible

to change the parameters of the training without changing the main.py file. Once the

parameters are read in, as many RACOON Environemnts as specified by the parame-

ter envs are wrapped in a SubprovVecEnv which parallelizes the training of the agent.

Then a PPO agent is initialized using the passed learningrate. Alternatively, the agent

from model is loaded. The timesteps argument is passed to the learn function of the

agent which is called right after the agents initialization. Once the training is finished,

the action history, reward history, the reward components histories and trajectory are

saved in the PPO folder for later evaluation.

Reward.py contains a python class that calculates the reward as designed in chap-

ter 4.3. For initialization, it takes the parameters omega ref, t and R and computes

the reference value gamma ref and the reference velocities v ref and omega ref. The

function step is used to calculate the reward for one step. It takes x1, x2, y1, y2,

z1, z2, roll1, roll2, pitch1, pitch2, yaw1, and yaw2 as input parameters and calculates

the reward which is returned by the method according to the formulas introduced in
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(a) Actions chosen over all episodes (b) Actions chosen in last episode

Fig. 5±4: Example of figures created by ActionHistory.py

chapter 4.3.

The file RLPyDIFODO.py contains a python class that implements the PyDIFODO for

the RACOON Environment. It inherits from the PyDifodo class and implements the

method loadFrame which gets passed an image and saves it under depth wf. Addi-

tionally, it has a method getPose which returns the cam pose. This method is called by

the RACOON Environment and then passed to the reward function.

5.2.2 Evaluation folder

The files in the Evaluation folder can be used to evaluate the agent’s performance and

the toolchain. Some figures distinguish between the environments. Since the trainings

in this thesis were run with four parallel environments, the functions are build for four

parallel environments. Nevertheless, they can be easily adopted for another number of

parallel environments.

ActionHistory.py defines a function with the same name that creates two bar charts

using the action history. The first one shows all actions chosen over the whole training

in all four environments. The second one displays only the actions in last episode of

each environment. The function takes three parameters (date, camera and timesteps)

to specify which file to read in as well as the parameter save to specify whether to save

the figures in a corresponding folder. See figure 5±4 for an example output.

The ActionRewardHistory function defined in ActionRewardHistory.py takes the same

inputs as the ActionHistory function. It creates one boxplot of the reward for each

action. See an output example in figure 5±5.

The same inputs are used for the ActionsOverEpisode function which is defined in
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Fig. 5±5: Example of figure created by ActionRewardHistory.py

ActionsOverEpisode.py. It creates a figure that displays the actions taken over the last

episode of each of the four environments in a stackplot. To do so, a lookback is defined

that specifies how many previous timesteps are taken into account when calculating

the distribution of actions for the current timestep. This is necessary since without

a lookback the distribution of actions would only consist of the action of the current

timestep what would not be very informative. See figure 5±6 for an example output.

The function computeBestFitCircle which is defined in BestFitCircle.py and computes

the best-fit plane and best-fit circle for a trajectory which is passed to it. To do so, it

follows the procedure described by Rehn in [16].

The ComparisonEnvironment class is defined in the ComparisonEnvironment.py file

and inherits from the RACOON Environment. It runs the typical environment but adds

a version of the old toolchain without RL from which it saves the trajectory. This envi-

ronment is used to compare the new and the old toolchain of the RACOON-Lab. It was

not tested in this thesis but may still be helpful for future projects.

The ComparisonWithOldToolchain.py file compares the new and the old toolchain of

the RACOON-Lab. For each completed episode it computes the best-fit circle for both

toolchains. It also creates a boxplot of the errors of both toolchains. The code was not

tested in this thesis but may still be helpful for future projects.

Episode.py defines a function which creates figures for one specific episode. It takes

the number of the episode to analyze as well as three parameters (date, camera and

timesteps) to specifying which file to read as arguments. For the episode, it then cre-

ates an action histogram like figure 5±4b, an actions over episode figure like figure 5±6

and a reward histogram like figure 5±9.

NumberOfEnvironments.py offers the option to create a figure showing the perfor-

mance measured in timesteps per second over the number of environments. The data

needs to be put in manually. Figure 5±7 shows a figure created using NumberOfEnvi-

ronments.py.
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Fig. 5±6: Example of figure created by ActionsOverEpisode.py

Fig. 5±7: Example output of NumberOfEnvironments.py
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The reward components can be analyzed using RewardCompoents.py. The function

takes an episode-number as well as three parameters (date, camera and timesteps)

to specifying which file to read in. It creates three figures: The first shows the reward

components of each timestep of the episode stacked, so that the total reward can

also be observed, for the four environments. The second is a boxplot of the reward

components observed during the specified episode. The third figure is also a boxplot

of the reward components but for the whole training. Figure 5±8 shows examples of

the figures created by RewardComponents.py

Within the file RewardHistory.py an eponymous function is defined which again takes

the same inputs as the three functions ActionHistory, ActionRewardHistory and Ac-

tionsOverEpisode described above. This function creates four figures. The first is a

histogram of the rewards for the whole training and all environments. The second one

displays a histogram of the rewards received in the first episode of each environment.

The third figure does the same for the last episode. The last figure is a area chart that

displays the mean reward for each episode for all four environments. See an example

output in figure 5±9.

The file RewardsOverEpisode.py contains a python function which takes an episode-

number as well as three parameters (date, camera and timesteps) to specifying which

file to read in. It creates a figure showing the rewards over the specified episode

of each environment. Figure 5±10 shows an example of the figure created by Re-

wardsOverEpisode.py.
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(a) Reward components over episode

(b) Boxplot of reward components of sin-
gle episode

(c) Boxplot of reward components of
whole training

Fig. 5±8: Example of figures created by RewardComponents.py

Page 46



Software System Design

(a) Rewards for whole training
(b) Rewards for first episode of each envi-
ronment

(c) Rewards for last episode of each envi-
ronment

(d) Mean reward for each episode of all
environments

Fig. 5±9: Example of figures created by RewardHistory.py
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Fig. 5±10: Example of figure created by RewardsOverEpisode.py
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6 Results

This chapter will describe the results of the training. The trainings were performed with

43 recordings made by Franceschini in a previous study of the RACOON-Lab [6]. Since

they included a wide range of parameters, a detailed description of the parameters is

omitted. Two datasets will be analyzed. As described in the objective in chapter 3, the

purpose of this analysis is to demonstrate the capabilities of the figures to evaluate the

RL agent’s performance and the toolchain. Additionally, two parameters (the number

of parallel environments and the learning rate) will be iterated to demonstrate how the

training can be optimized.

The data presented in the following was recorded with an error in the calculation of ωωω

which influenced the rotational components of the reward drotation,norm and srotation,norm.

Instead of taking the difference in the yaw, pitch, and roll angles between two timesteps

to calculate ωωω as shown in equation 4±32, the absolute values of the current timestep

were taken. Although the rotational components of the reward were not calculated

correctly, the demonstration of the capabilities of the figures is still possible with the

data. After the description of the datasets and before the iteration of parameters, a

corrected version of the component boxplots and the rewards over episode figures will

be given for one of the datasets. Chapter 7.2.1 discusses the impact of the error on

the validity of the results.

6.1 Dataset 21-11-11 04-41-55

The first dataset which will be analyzed was the result of a training started with the

parameters listed in the upper part of table 6±1. The bottom part of the table shows

parameters observed during the training.

Tab. 6±1: Parameters of dataset 21-11-11 04-41-55

parameter value

camera Intel Realsense D435

timesteps 250000

number of parallel environments 4

fps 3.47

iterations 31

time elapsed 73199 s

total timesteps 253952

learning rate 0.0003

loss 0.0421

n updates 300
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Fig. 6±1: Actions chosen over whole training of dataset 21-11-11 04-41-55 showing the
IP Basic filter to be most dominant

In order to prevent errors stopping the training, NaN rewards were overwritten with the

value 0 in episodes 5, 6, 13, 25, 33, and 34 in all four environments. In each case where

a reward was set to 0, the components had the following values: Dtrans = 1.0, Drot =
1.0, Strans = NaN, Srot = NaN .

6.1.1 Overview of results

The following will give an overview of the results of the dataset. Interesting episodes

will be identified and analyzed in more detail afterwards.

Figure 6±1 shows the number of times the agent chose each action over the whole

training. The IP Basic filter is by far the most dominant one here being chose more

than twice as often as the second-most chosen Adaptive Threshold filter. The actions

Do nothing and Percentile filter were chosen almost equally often and a bit less often

than the Adaptive Threshold filter. The Median filter was chosen the fewest, only about

half as often as the actions Do nothing and Percentile filter.

The same observations but more pronounced can be made for figure 6±2 showing

the actions chosen in the last episode of each environment. In all environments, the

IP Basic filter is chosen about three times as often as the second-most chosen ac-

tion which again is the Adaptive Threshold filer for all four environments. Also quite

interesting is that all four environments have only few differences. The most noticeable

difference is that in environments 1 and 4 the Do nothing action was chosen slightly

more often than the Percentile filter, while in environments 2 and 3 it is vice versa.

A detailed look on the actions chosen over the last episode of each environment as

available in figure 6±3 also underlines the clear dominance of the IP Basic filter. The

relative share of all actions is fluctuating heavily. In Environments 1 to 3, there is also a
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Fig. 6±2: Actions chosen in the last episode of each environment of dataset 21-11-11
04-41-55 showing the IP Basic filter to be by far the most dominant

decline in its relative share around timestep 300 for about 50 timesteps. In environment

4, the decline is even greater but around timestep 550 for about 100 timesteps.

Figure 6±4 shows a boxplot of the rewards categorized by actions. Remember that the

reward function designed in chapter 4.3 allows rewards in the range from −1 (worst)

to +1 (best). The median reward for all five actions lies a little above −0.4 with the

median of the rewards received after application of the IP Basic filter is a little lower

than for the other actions as is the first quartile and the third quartile. The same is true

for the mean. The interquartile range is also smaller for the IP Basic filter compared

to the other actions which all have approximately the same interquartile range. The

maximum boxplot value of the IP Basic filter of about 0.275 is about 0.1 lower than

the other actions’. For the IP Basic filter there are many outliers above the maximum

boxplot value while there is only one outlier for the other actions which is above the

maximum boxplot value of the Adaptive Threshold filer. The minimum boxplot value for

all actions is at −1.0.

A more detailed look on the rewards received over the whole training is provided by

figure 6±5. It looks approximately like a normal distribution around the value −0.4
where it reaches about 15000 occurrences. The right side of the distribution however

declines a little slower than the left side rose. At the value of 0 the occurrences jump

to 25000 just to continue the declining trend right afterwards. The maximum reward

received is approximately 0.4 but has occurred only a few times. The minimum reward
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Fig. 6±3: Detailed look on actions chosen over the last episode of each environment of
dataset 21-11-11 04-41-55

Fig. 6±4: Rewards over actions for dataset 21-11-11 04-41-55 showing many outliers
for the IP Basic filter
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Fig. 6±5: Histogram of reward received over whole training of dataset 21-11-11 04-41-
55 which looks approximately like a normal distribution around −0.4 besides an outlier
at 0

received of −1.0 also occurred rarely but much more often than the maximum one.

Looking on the rewards received in the first and last episode of each environment in

figure 6±6, the normal distribution observed in figure 6±5 can only be partially identified.

Especially for the rewards received in the first episode of each environment as shown in

figure 6±6a a normal distribution cannot be identified. The maximum value is reached

at −0.5 in environments 1, 2, and 4 and at −0.2 in environment 2 and therefore still in

the middle part of the histograms. Figure 6±6b showing the rewards received in the last

episode of each environment looks much more like a normal distribution, however not

as clearly as figure 6±5. These distributions reach their maximum around −0.3, so a bit

higher than the −0.4 for the whole training. The rewards for the environments displayed

in figure 6±6 range between −0.9 and 0.3, a slightly smaller range than the rewards for

the entire training. Only the rewards received in the last episode of environment 4

exceed these values and both of them at the same time. The jump at the value of

0 as observed in figure 6±5 cannot be identified in any of the episodes displayed in

figure 6±6.

In figure 6±7, the reward components of each environment are shown in a boxplot.

In most environments, the values for the four components take the full range of 0 to

1. Only the Drot component does not take the value 0 in environment 1, 2, and 4

but only in environment 3. This component also has a median and mean value of

approximately 1 in all four environments, the highest values reached by all components.

Hence, all values below 1 are categorized as outliers. The number of outliers for the

Drot component varies between the four environments but in all environments there

are several. The component with both the second-highest mean and median is the

Dtrans component. Its median ranges around 0.95 while the mean takes values of
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(a) First episode of each environment (b) Last episode of each environment

Fig. 6±6: Rewards received in first and last episode of each environment of dataset
21-11-11 04-41-55

approximately 0.75 in all four environments. Since the minimum value of the boxplot

is 0, there are no outliers in any of the environments. The component with the third-

highest mean and median is the Srot component. Its median is approximately 0.5 and

the mean slightly lower ± approximately 0.45 ± in all four environments. In environments

1, 2, and 4, the maximum of the boxplot of the Srot component is lower than 1 which

makes it the only component with that characteristic. In environments 1 and 2, the

minimum of the boxplot of the Srot component is higher than 0 which makes it the only

component besides the Drot component with that characteristic. In all cases where the

minimum or maximum of the boxplot is not 0 or 1, there are outliers that exceed the

minimum or maximum which also reach values of 0 or 1. The interquartile range of the

Srot component is the second-lowest after the Drot component’s, where the interquartile

range is approximately 0. The Strans component has not only the lowest mean and

median value in all four environments with both ranging slightly below 0.4, but also the

highest interquartile range. Its minimum and maximum values of the boxplots take the

values 0 and 1 in all four environments.

Figure 6±8 displays the mean reward over the episodes of each environment which is

negative in all cases. In all environments, the mean reward is fluctuating. An over-

all trend cannot be observed although the linear regression straight is ascending in

environments 1 to 3 since the slope of the regression grade is near 0 for all four envi-

ronments. The plots look quite similar for all four environments. All environments have

6 episodes (episode number 6, 13, 25, 33, 34, 36) with a mean reward of about 0 which

clearly stand out from the other episodes where the highest reward is approximately

−0.2 in episode 20 of environment 2. These episodes will be analyzed in more detail

below.
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Fig. 6±7: Boxplot of reward components of each environment of dataset 21-11-11 04-
41-55

6.1.2 Detailed analysis of interesting episodes

6.1.2.1 Episodes with outstanding high mean rewards of about 0

Figure 6±9 is a histogram of the rewards received in episode 6 of each environment.

It clearly shows that all rewards received were about 0. In fact, the chart looks exactly

the same for all other episodes with outstanding high mean rewards. Thus, they will

not be analyzed further.

6.1.2.2 Episode 20 of environment 2

Figure 6±10 shows the rewards received in episode 20 of each environment. In con-

trast to the rewards received for the episodes with outstanding high mean rewards of

about 0 shown in figure 6±9, the rewards take more than one value. As for figure 6±6,

no normal distribution can be identified for any of the episodes in figure 6±10. Also, the

mean reward of environment 2 is clearly higher than the one of the other environments

since the highest bar is around the value −0.2 here compared to −0.6 for environment

1 and −0.4 for environment 3 and 4. Also, there is a high concentration of rewards

around the value 0 in environment 2 which is not present in the other environments.

Rewards above 0.2 were only received in environments 1 and 2 but more so in envi-

ronment 2. Rewards smaller than −0.6 were received the least often in environment

2. The maximum reward received is about 0.3 in environments 1 and 2 while being
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Fig. 6±8: Mean reward for all episodes of each environment of dataset 21-11-11 04-41-
55

Fig. 6±9: Rewards received in episode 6 of dataset 21-11-11 04-41-55
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Fig. 6±10: Rewards received in episode 20 of dataset 21-11-11 04-41-55

only slightly lower than 0.2 in environment 3 and only about 0.1 in environment 4. The

maximum negative reward is the lowest in environment 2 with a value of about −0.7
compared to about −0.8 for the other environments.

A boxplot of the reward components of episode 20 is shown in figure 6±11. The great-

est difference of environment 2 compared to the other environments and the boxplot

of the whole training as shown in figure 6±7 is the low mean and median values of

the Srot component which are slightly above 0.2. The maximum of the boxplot for the

Srot component is only approximately 0.4 and the maximum outlier only 0.6. Therefore,

in environment 2 and also in environment 3, the Drot component has the lowest mean

and median value of all components. As for the whole training, it has the second-lowest

interquartile range following the Drot component in all four environments. The Dtrans

component in environments 1 and 2 have lower mean and median values than the one

of the whole training with the median being slightly above 0.8 and the mean approxi-

mately 0.7. The Drot component has a mean and median of 1 in all four environments

as already observed for the whole training.

The actions chosen in episode 20 for each environment are displayed in figure 6±12.

The distribution looks almost the same for environments 1 to 3 with the IP Basic filter

being the most-chosen one with about 400 occurrences and the actions Do nothing and

Percentile filter being the second-most chosen ones with about 275 occurrences each.

The Median filter was the fewest chosen one with about 200 occurrences in all three

environments. In environment 4, the distribution is slightly different with the Adaptive
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Fig. 6±11: Boxplot of reward components of episode 20 of each environment of dataset
21-11-11 04-41-55

Threshold filter sharing the second place with the Percentile filer with about 275 occur-

rences each while the Do nothing action is in fourth place. Also in environment 4, the

Median filter is the fewest chosen one, this time with about 150 occurrences.

With figure 6±13, the timestep of episode 20 in which the actions were chosen can

be analyzed. As in figure 6±3, the relative share of all actions is fluctuating heavily.

Although all environments look slightly different, observations only true for environment

2 can hardly be found. The characteristic increase of the Do nothing action in the last

timesteps for example can also be found in environment 3 although not as strong as in

environment 2. The strong decrease of the Adaptive threshold filter at timestep 1100

also exists in environment 1. The reasons for that decrease, however, are different. In

environment 1, the decrease is mainly caused by a strong increase of the Do nothing

action’s relative share whereas in environment 2, it is mainly caused by an increase of

the share of the Percentile filer.

Figure 6±14 shows the rewards of each environment over the timesteps of episode

20. The higher mean reward of environment 2 and the lower mean reward for environ-

ment 4 compared to the other environments as observed in figure 6±8 can be further

analyzed with this figure. In contrast to figure 6±13, clear differences between the

environments can be found in this figure.

In all environments, the negative rewards dominate and also reach higher absolute

values than the positive ones. Environment 2 has the highest proportion of positive
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Fig. 6±12: Actions chosen in episode 20 of each environment of dataset 21-11-11 04-
41-55 showing similar distribution for environments 1 to 3

rewards, followed by environment 1, shortly followed by environment 3. Environment

4 has only few positive rewards and hence the lowest proportion of positive rewards

of all environments. The maximum positive reward in environment 4 is also low com-

pared to other environment, with a value of about 0.1, as also observed in figure 6±10.

Environment 2 does not only have the highest proportion of positive rewards, it also

has the most segments of positive rewards, i.e., the most series of ongoing positive

rewards. The first of these segments in environment 2 are relatively short compared

to the long ones around timestep 900 and 1100 but about as long as most of the seg-

ments in other environments. The longest segment, however, is around timestep 1300

in environment 1 and lasts for about 100 timesteps. The positive segments of the dif-

ferent environments barely correlate. Interesting is a segment around timestep 350 of

environment 2 where positive and negative rewards alternate with high frequency. In

this segment, the absolute value of the positive rewards is greater than that of nega-

tive rewards. The overall trend of this alternating segment is decreasing, i.e., the last

positive and negative rewards are smaller than the respective first ones. A correlation

between the positive segments and the actions chosen during these segments in the

respective environment cannot be identified.

The negative rewards in environment 2 less often take high absolute values compared

to the other environments. Also, the maximum negative reward has a higher abso-

lute value than the maximum negative rewards of the other environments as already

observed in figure 6±10. In all environments, the positive rewards have changing val-
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Fig. 6±13: Detailed look on actions chosen over episode 20 in each environment of
dataset 21-11-11 04-41-55

Fig. 6±14: Rewards over episode 20 of each environment of dataset 21-11-11 04-41-55
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ues. For the negative rewards there are segments in which the reward is approximately

constant for 50 to 150 timesteps, for example around timestep 700 in environment 4.

Negative reward segments with changing values are rare, the segment around timestep

700 in environment 2 is an example. Often the first negative rewards after a segment

of positive rewards take a greater absolute value than the following negative segment.

See the small peak at timestep 300 in environment 3 at the start of the negative seg-

ment as an example. However, there are also segments with different behavior, for

example the negative segment starting at timestep 300 in environment 4 which has an

increasing absolute value.

Using figure 6±15, the rewards received over episode 20 of each environment as shown

in figure 6±14 can be analyzed in more detail. The figure shows the rewards divided

in its four components which are subtracted from a starting value of 1. Please be

aware that the component values displayed here are only half of the values shown in

figure 6±11 to make the total reward range between −1 and 1. As already observed

in figure 6±11, the Drot component is constantly high over all timesteps leading to a

subtraction of 0.5. In contrast to that, the other components take a range of values

as also observed in figure 6±11. For timesteps with positive rewards, these three

components typically all have relatively low values. The Dtrans component often takes

values near 0 for the timesteps where the combined reward is positive. Compared to its

typical subtraction of 0.4 or greater this has a huge influence on the combined reward.

However, there are also timesteps where the Dtrans component is approximately 0 and

the combined reward is still negative such as timestep 600 in environment 1. In many

timesteps, a positive reward is already impossible after the subtraction of only the Dtrans

and Drot components as for example from timestep 400 to 550 in environment 2. The

Strans component is even more often approximately 0. However, since its typical value

is lower, its influence on the positive rewards is slightly lower. The Srot component

causes the lowest subtraction as already observed in figure 6±11. However, it still

ranges between approximately 0 and 0.3. The constant negative segments observed

in figure 6±11 are caused by all four components being constant in these segments.

Fluctuating rewards in positive seem to be mainly caused by the Dtrans component as

for example visible around timestep 700 of environment 2.

6.2 Dataset 21-11-12 14-18-56

The next dataset which will be analyzed was started with the parameters listed in the

upper part of table 6±2 and returned the parameters observed during training as listed

in the bottom part of the table. Please note that the learning rate was set to 0.00005 for

this training.

In this dataset, no NaN reward occurred, so none was overwritten.

6.2.1 Overview of results

The following will give an overview of the results of this dataset. Interesting episodes

will be identified and analyzed in more detail afterwards.

Page 61



Results

Fig. 6±15: The rewards over episode 20 of each environment of dataset 21-11-11 04-41-
55 divided in components

Figure 6±16 shows the actions chosen over the whole training. As in figure 6±1, the

IP Basic filter clearly stands out as the most-chosen action. It was chosen more than

twice as often as the second-most chosen action, the Median filter. The actions Do

nothing and Adaptive Threshold follow with approximately 20% less occurrences com-

pared to the Median filter. The Percentile filter was chosen the least often.

The actions chosen in the last episode of each environment are shown in figure 6±

17. In contrast to figure 6±2, the dominance of the IP Basic filter is less extreme in

the last episode compared to the whole training. It is still the most chosen action in

every environment. However, it was chosen only 1.5 times as often as the second-

most chosen action which is the Adaptive threshold filter for environments 1 and 2 and

the Median filter for environment 3 and 4. For environments 1 and 2, the Median filter

follows as the third-most chosen action. For environments 3 and 4, the Do nothing

action was the third-most chosen one. The least chosen action was the Percentile

filter for environments 1, 3, and 4 and the Do nothing action for environment 2. These

actions were still chosen more than half as often as the most chosen IP Basic filter ±

another large contrast to figure 6±2 where the least chosen actions were chosen about

a tenth as often as the most chosen one.

As already observed for other figures showing the actions over an episode for each

environment, the relative shares in figure 6±18 showing the actions over the last com-

pleted episode of each environment are fluctuating a lot. The strong increase of the
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Fig. 6±16: Actions chosen over whole training of dataset 21-11-12 14-18-56 showing
the IP Basic filter to be the most dominant

Fig. 6±17: Actions chosen in the last episode of each environment of dataset 21-11-12
14-18-56 showing the IP Basic filter to be chosen most often
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Tab. 6±2: Parameters of dataset 21-11-12 14-18-56

parameter value

camera Intel Realsense D435

timesteps 250000

number of parallel environments 4

learning rate 0.00005

fps 3.10

iterations 31

time elapsed 81969 s

total timesteps 253952

learning rate 0.00005

loss 0.00298

n updates 300

relative share of the Percentile filter in environment 3 starting at timestep 400 lasting

for about 50 timesteps just to decrease to its starting value within another 50 timesteps

is interesting since the relative share hits about 4 times the starting value at its peak.

The same phenomenon, but on a much smaller scale, can be observed in the other

environments. Another interesting point is timestep 900 in environment 1 where the

relative share of the Adaptive Threshold declines to almost zero, just to increase again

so much that the relative share of the IP Basic filter decreases to almost zero around

timestep 1000. This phenomenon cannot be observed in the other environments.

Figure 6±19 shows a boxplot of the rewards received categorized by the action that

was chosen previously. The action with both the highest mean and median reward was

the IP Basic filter. All other actions follow with a small gap and have approximately the

same mean and median reward. The interquartile range is approximately the same for

all actions. Compared to figure 6±4, the maximum values of the boxplot is smaller for

all actions. Especially all actions but the IP Basic filter have a much smaller maximum

boxplot value. All actions have many outliers above the maximum boxplot value while

only the IP Basic filter has one outlier below its minimum boxplot value.

A histogram of rewards received over the whole training is provided in figure 6±20.

The first noticeable difference compared to figure 6±5 is that there is no outlier at the

value of 0. Thus, the shape of the histogram looks even more like the one of a normal

distribution with a peak value of approximately −0.4. As in figure 6±5, the maximum

value is approximately 0.4 and the minimum one −1.0. The slightly slower decline on

the right side of the distribution compared to the left side can also be found in both

reward histograms.

Figure 6±21 shows the rewards received in the fist and last episode of each environ-

ment. As in other figures showing the reward of single episodes, no overall shape can
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Fig. 6±18: Detailed look on actions chosen over the last episode of each environment
of dataset 21-11-12 14-18-56

Fig. 6±19: Rewards over actions for dataset 21-11-12 14-18-56 showing the IP Basic
filter to have the highest mean and median reward
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Fig. 6±20: Histogram of rewards received over whole training of dataset 21-11-12 14-
18-56 which looks approximately like a normal distribution around −0.4

be clearly identified. For environments 1 to 3, the rewards of the last episode are over-

all higher than in the first episode, i.e., the distribution shifts towards higher rewards.

The effect is very strong for environment 3 where almost all rewards are below 0 in the

first episode but some rewards reach values of 0.4 in the last episode. For environment

4 however, the effect is the other way around, i.e., the rewards in the last episode are

overall lower than the ones in the first episode.

In figure 6±22, a boxplot of the reward components of each environment is shown. It

looks pretty similar to figure 6±7, only the Srot component shows major differences.

Therefore, only these differences between the two figures will be outlined in the follow-

ing. Overall, both the mean and median value of the Srot component are lower than in

figure 6±7 and now range around the values of the Strans component of approximately

0.5. In environment 3, both are even slightly lower than the ones of the Strans com-

ponent. The interquartile range of the Srot component in environment 3 lowered. In

figure 6±7, three minimum or maximum boxplot values of the Srot component were 0 or

1. In figure 6±22, only the minimum boxplot value of environment 3 is 0 while all other

minimum and maximum boxplot values have the value of 0 or 1. However, in all these

cases, there are outliers taking the value 0 or 1. While in environment 1, 3, and 4, all

minimum and maximum boxplot values of the Srot component are farer away from 0 or

1 than in figure 6±7, both values of environment 2 are nearer to 0 or 1.

The mean reward for each episode of each environment is shown in figure 6±23. As in

figure 6±8, the values are fluctuating. In contrast to it, however, the regression straight

is rising in all four environments. Also, the minimum slope of the straights is higher than
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(a) First episode of each environment (b) Last episode of each environment

Fig. 6±21: Rewards received in first and last episode of each environment of dataset
21-11-12 14-18-56

Fig. 6±22: Boxplot of reward components of each environment of dataset 21-11-12 14-
18-56
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Fig. 6±23: Mean reward for all episodes of each environment of dataset 21-11-12 14-18-
56

the maximum slope in figure 6±8 and the maximum slope is twice as high as in figure 6±

8. The slope values are still near to 0 but an overall rising trend can be observed for

all environments. The highest mean reward of all environments was observed in the

last episode of environment 3. Since it was partially discussed in detail in the previous

paragraphs, the detailed analysis of this episode will only include figures which were

not discussed yet.

6.2.2 Detailed analysis of last episode of environment 3

The components of the rewards in the last episode of each environment are shown in a

boxplot in figure 6±24. While the Dtrans in environment 4 has an extremely high median

value of almost 1 and a relatively small interquartile range of only slightly above 0.2, in

environment 3, the Dtrans component shows relatively low mean of 0.75 and median

of 0.8. In all environments, the Dtrans component has the second-highest mean and

median value. The Drot component again takes almost only values of 1 in all four envi-

ronments and hence has both the highest mean and median value of the components

in all environments. The Strans component shows a very high interquartile range from

0.15 to 0.8 in environment 3 while having a low one from 0.2 to 0.5 in environment 4. In

environments 1 and 4, it has the lowest mean and median values and in environment 2

the lowest mean value of the components. In environment 2, it has the second-lowest

median value and in environment 3 both the second-lowest mean and median values

of all components. The Srot component shows very different behavior in the four en-
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Fig. 6±24: Boxplot or reward components of last episode of each environment of
dataset 21-11-12 14-18-56

vironments. In environment 1, it has a relatively high mean and median, both being

approximately 0.7. In environment 4, the mean and median values of approximately 0.6
are also relatively high. However, more outstanding in environment 4 is the interquar-

tile range of the Srot component which is the greatest of all components and almost

as high as the ones of the other three components combined. In environment 2, the

mean and median value the Srot component of approximately 0.4 are a little lower than

the 0.5 observed for all environments over the whole training as shown in figure 6±22.

The interquartile range is about as large as the ones observed for the whole training

in all environments. The Srot component in environment 3 is highly interesting due to

its low mean and median values of approximately 0.1 and its low interquartile range of

also approximately 0.1. The maximum value of the boxplot of the Srot component in

environment 3 is approximately 0.25, a very low value compared to the ones from the

whole training where 0.9 was the smallest value. Also, the maximum outlier value was

observed below 0.6 while in each environment there were outliers observed at 1 for the

Srot component.

Figure 6±25 shows the rewards over the last episode of each environment. Environ-

ment 3 shows the most positive rewards whereas environment 1 barely shows any. No

similarities can be identified between the environments. Also, no correlations are ob-

served between positive rewards and the actions chosen as visualized in figure 6±18.

The observation made for figure 6±14, that the rewards often stay constant for seg-

ments of negative rewards but not for positive ones, can be supported. In figure 6±14,
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Fig. 6±25: Rewards over last episode of each environment of dataset 21-11-12 14-18-56

the first negative reward after a positive segment often had a higher absolute value

than the following negative rewards. This cannot be observed in figure 6±25. Although

this phenomenon can also be observed as for example at the negative reward segment

starting at timestep 300 of environment 2, the opposite, i.e., the first negative reward

after a positive segment being of a smaller absolute value than the following ones, is

more common. The negative reward segment starting at timestep 300 of environment

3 is an example for that.

The rewards over the last episode of each environment divided into components are

shown in figure 6±25. As in figure 6±11, the positive rewards are caused by Dtrans,

Strans, and Srot all taking relatively low values. Very high rewards as received around

timestep 600 in environment 3 are even caused by the Strans and Srot components be-

ing almost 0. The observation made for figure 6±15 that negative reward segments

with constant combined reward are caused by constant component values can be sup-

ported. The very low mean and median values as well as the low interquartile range

of the Srot component in environment 3 as observed in figure 6±24 lead to very small

subtractions caused by the Srot component in environment 3.

6.3 Corrected reward components for dataset 21-11-12 14-18-56

As described at the beginning of this chapter, in the data shown above an error was

made in the calculation of the reward components. Using the trajectory recorded, a

corrected version of the rotational reward components is calculated for dataset 21-11-
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Fig. 6±26: The rewards over the last episode of each environment of dataset 21-11-12
14-18-56 divided in components

12 14-18-56. Although this corrected version could not be used to train the agent,

corrected versions of the figures showing the reward components were created. These

will be compared to the uncorrected versions in the following.

Figure 6±27 shows the corrected reward components boxplot. Compared to figure 6±

22, as expected, the rotational components show different behavior and the transla-

tional ones do not. Especially the Drot component is different since it shows values

different than 1 in the corrected boxplot. Even though the median is still 1, the in-

terquartile range has increased from 0 to approximately 0.1. Also, the minimum of the

boxplot for the Drot component has changed from previously 1 to 0.7 in the corrected

version. The mean of the Drot component has lowered from 1 to 0.9. In figure 6±7,

below the minimum of the boxplot for the Drot component, there were only few outliers.

In contrast to that, in figure 6±27 there are many outliers all the way from the minimum

boxplot value to 0. The Srot component does not show as many differences between

figure 6±27 and figure 6±7 as the Drot component. Its median and mean stay at approx-

imately 0.5 in all environments. The interquartile range, however, has slightly increased

from approximately 0.2 to approximately 0.25. As in figure 6±22, the environments still

do not show major differences to each other.

The differences to the uncorrected version are even larger for the boxplot of the reward

components of the last episode as shown in figure 6±28. Compared to the uncorrected

version in figure 6±24, the interquartile range of the Drot component has increased in
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Fig. 6±27: Corrected boxplot of reward components of each environment of dataset
21-11-12 14-18-56

all four environments. Since it was 0 for all environments in the uncorrected version,

no environment shows a correlation for the Drot component between the uncorrected

and the corrected version. In environments 1 and 4, even the median of the Drot

component is lower than 1 while in environments 2 and 3 it still is 1 as in the figure

for the uncorrected version and the whole training as shown in figure 6±27. While

in environments 2 to 4, the Drot component’s mean is still at 0.9 as in the figure for

the whole training, in environment 1, it is lower than 0.8. In environments 2 to 4, the

minimum boxplot value of the Drot component for the last episode is higher than the

one for the overall training. Environment 1, however, shows a very low minimum boxplot

value smaller than 0.2 for the Drot component. In all environments, there are outliers

below the minimum boxplot value of the Drot component. However, they are not as

dense as in the figure for the whole training. The Srot component’s boxplot shows a

much larger interquartile range compared to the whole training and also compared to

the uncorrected version. The Srot component’s mean and median were approximately

0.5 in all environments in the figure for the whole training. For the last episode, this can

only be observed for environments 3 and 4. While the Srot component’s mean is still

0.5 in environment 2, the median is 0.4 as are the mean and median in environment 1.

The interquartile range of the Srot component is much larger in all four environments

than for the whole training. Environment 2 shows the maximum interquartile range

for the Srot component of the four environments with a value of 0.6. Compared to

the uncorrected version, in no environment a correlation can be identified for the Srot
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Fig. 6±28: Corrected boxplot or reward components of last episode of each environ-
ment of dataset 21-11-12 14-18-56

component, neither for mean or median nor for the interquartile range.

Figure 6±29 shows the corrected version of the rewards over the last episode. In the

uncorrected version as shown in figure 6±25, an overall fluctuating behavior without

any correlations between the environments was identified. This can be confirmed by

the corrected version. Some positive reward segments of the uncorrected version can

also be identified in the corrected version. An example is the positive reward segment

around timestep 300 in environment 2. Others from the uncorrected version, for exam-

ple the one at timestep 1000 in environment 2, cannot be observed in the corrected

version. Meanwhile, new positive reward segments can be identified in the corrected

version, for example at time step 300 in environment 1. The uncorrected and the cor-

rected version therefore show some correlations but also some differences.

6.4 Reward function for good trajectory

In the following, an almost perfect trajectory from previous studies of Franceschini [6]

will be evaluated with the reward function. For that purpose, the recorded trajectory

in file 08d56b02-9451-4bbd-9cf7-f030228ecd6f.nc was used. This trajectory was com-

puted with a tested version of the DIFODO algorithm. The trajectory projected in a

best-fit plane and the best-fit circle for the same are shown in figure 6±30a. The trajec-

tory seems to align perfectly with the best-fit-circle, of which it covers about two thirds.

The points of the trajectory are dense. In figure 6±30b, the start of the trajectory shown
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Fig. 6±29: The corrected rewards over the last episode of each environment of dataset
21-11-12 14-18-56 divided in components

in figure 6±30a is enlarged. In this version, the points of the trajectory do not lay per-

fectly on the best-fit-circle but are still all very near to the same. The distance between

the points is unregular, i.e., some points lie in groups with a small distance between

them while others are separated from other points.

Figure 6±31a shows the yaw, pitch, and roll angles of the trajectory shown in figure 6±

30a.For a perfect reward in the rotational components, the yaw and roll angles would

need to be constant while the pitch angle would need to rise linearly following the red

line displayed in the figure. At the beginning of the episode, the roll angle’s line jumps

between −180 and +180 multiple times. One single jump from −180 to +180 can be

observed for the yaw angle around timestep 700. At the beginning of the episode, both

the yaw and the roll angle are rising respectively falling with a small slope, besides

the mentioned jumps for the roll angle. The yaw angle has a value of approximately

0 and the roll angle of approximately −180 during these timesteps. In the second

quarter of the episode, however, both angles switch their values. During this switch,

both lines look almost like one half of a sinus-curve. After the switch, both values

stay approximately constant for the rest of the episode, besides the mentioned jump in

the yaw angle’s curve. The pitch angle follows the red line during the first third of the

episode, i.e., it shows the expected trend during the first third of the episode. From the

second third of the episode on, however, it starts decreasing with about the slope it was

increasing with before. This change is observed at the same timesteps, the yaw and

roll angle switch their values. From that point on, the pitch angle is decreasing linearly
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(a) Good trajectory and best-fit circle for
the same

(b) Enlargement of start of good trajectory
on the left

Fig. 6±30: Good trajectory, best-fit-circle, and enlargement of the start of the trajectory

until the end of the episode. Figure 6±31b shows an enlargement of figure 6±31a. In

contrast to figure 6±30b, no groups can be observed. Instead, the points fluctuate a

little, i.e., some points behave contrary to the overall trend. Hence, the distance on

the degree axis is also fluctuating. The points do not have a constant distance here.

Because of the fluctuations, the direction to get from one point to the next one, i.e., the

one of the next timestep, is alternating.

After the description of the trajectory itself, it will now be evaluated with the reward

function. For that purpose, figure 6±32 shows the rewards over the episode divided in

components in figure 6±32a and a boxplot of the reward components in figure 6±32b.

The total reward is fluctuating a lot, but approximately −0.5 for most timesteps of the

episode. However, there are also few positive rewards, some of which are even higher

than 0.5. Even though the Dtrans and Drot components are 1 for almost all timesteps,

their mean is about 0.9 for the Dtrans and 0.95 for the Drot component. Both components

show outliers over the whole range of the reward spectrum, i.e., from 0 to 1. The Strans

and Srot components in contrast show values different than 1 much more frequently.

The interquartile range of the Strans component reaches from 0.2 to 0.6. The mean and

median of this component are at approximately 0.4. The Srot component shows higher

values. Its interquartile range is between 0.4 and 0.8 while the mean and median are

at approximately 0.6. Both the boxplot for the Strans and the one for the Srot component

have their minimum at 0 and their maximum at 1. The Dtrans and Drot components

show no change over the episode. In contrast to that, the Strans and Srot component

show a trend looking somewhat like a sinus-curve. The Strans component starts with a

subtraction of 0.5, i.e., a reward component value of 1, at the beginning of the episode

of which it decreases to almost 0 around timestep 800, from where on it increases

again. The Srot component shows the inverse behavior. It starts with almost 0 at the
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(a) Rotation of good trajectory with ex-
pected behavior for perfect reward

(b) Enlargement of rotation of good trajec-
tory

Fig. 6±31: Rotation of good trajectory

beginning of the episode, increases to a subtraction approximately of 0.5, i.e., a reward

component value of 1, around timestep 800, from where on it decreases again.

6.5 Iterating the number of parallel environments

Figure 6±33 shows the performance for different number of parallel environments mea-

sured in timesteps per second. It consists of two training runs and the mean of those.

The maximum number of parallel environments is 6 since the largest memory available

at the Condor GPU cluster was exceeded by 7 or more parallel environments. While

the two runs show large differences in places and there are even declines in the curves

such as between environment 3 and 4 of the second run, the mean value increases

roughly linearly. The mean performance for 6 environments is about 4.8 timesteps

per second. The mean performance observed in figure 6±33 also matches the perfor-

mance observed for 4 parallel environments by the datasets analyzed in more detail

where performances of 3.47 and 3.10 timesteps per second were observed.

6.6 Iterating the learning rate

In figure 6±34, the mean reward of each episode of each environment for different

values for the leaning rate are shown. The values range from 0.1 to 1e−06 and are

divided by 10 between each step. All runs were conducted for 125000 timesteps and

used images taken by the Intel Realsense D435. For the learning rate 0.001, NaN

rewards were received and overwritten with 0 in episodes 7, 17, and 18. The re-

ward components in the corresponding timesteps had the following values: Dtrans =
1.0, Drot = 1.0, Strans = NaN, Srot = NaN . In the training with learning rate 1e−05,

NaN rewards were received in episode 6. The components had the following values:
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(a) Rewards of the good trajectory divided
in components

(b) Boxplot of reward components of good
trajectory

Fig. 6±32: Reward components of good trajectory

Fig. 6±33: Performance for different number of parallel environment showing linear
performance increase with number of episodes
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Dtrans = 1.0, Drot = 1, Strans = NaN, Srot = 0.32. The value for Srot was changing over

the timesteps in which NaN rewards were received but all other component had con-

stant values. For the learning rate 1e−06, NaN rewards were received and overwritten

in episodes 5, 7, and 13. The rewards component values for all observed timesteps

with NaN rewards were: Dtrans = 1.0, Drot = 1.0, Strans = NaN, Srot = NaN . Due to

the low number of episodes the training ran for, the influence of 0 mean rewards on the

regression line is relatively high. Thus, in case mean rewards of approximately 0 were

observed, two regression lines ± one including the respective rewards and one which

does not ± were plotted.

The mean reward for a learning rate of 0.1 as shown in figure 6±34a clearly shows a

declining trend in all environments. The slope of the regression lines varies between

−0.0038 in environment 2 and −0.0055 in environment 1.

For a learning rate of 0.01 as shown in figure 6±34b, however, an increasing trend can

be identified in all environments. In environments 2 and 3, the slope of the regression

line is relatively low with values of 0.0005 in environment 2 and 0.0015 in environment 3.

In environments 1 and 4 in contrast, the slope is relatively high with values of 0.0036 in

environment 1 and 0.0067 in environment 4. This is the highest slope value observed

in any of the environments shown in figure 6±34 together with the one of environment

4 of figure 6±34f showing the mean reward for a learning rate of 1e−06. The latter one,

however, includes the 0 mean rewards observed during the training while the slope

value not taking the 0 mean rewards into account is 0.0063.

Figure 6±34c shows the mean rewards for a learning rate of 0.001. When considering

the 0 mean rewards, the trend is increasing in all four environments with a slope value

between 0.0028 in environment 2 and 0.0057 in environment 3. If the 0 mean rewards

are not considered, however, the trend is not that clear. In environments 1 and 4, the

trend is almost constant with slope values of 0.0003 in environment 1 and 0.0001 in

environment 4. While the regression line in environment 3 is ascending with a slope

value of 0.0021, it is declining in environment 2 with a slope value of −0.0013.

The trend for a learning rate of 0.0001 as shown in figure 6±34d cannot be clearly

identified since the regression line is falling in environment 1 while rising in environment

2, 3, and 4. The absolute value of the slope in environment 1 however is lower than

the ones in the other environments with a value of only −0.0014 while the slope values

in the other environments range between 0.0030 and 0.0063. Episode 6 does not show

outstanding high mean rewards although NaN rewards were received in this episode.

Instead, episode 6 in environment 2 does even show a much lower mean reward than

episodes 5 and 7. In the other environments, episode 6 does not show outstanding

mean reward values.

In figure 6±34e, the mean rewards for a learning rate of 1e−05 are shown. An overall

trend cannot be identified since the regression line is rising in environments 1, 3, and

4 and falling in environment 2. The highest slope is observed in environment 1 with

0.0034 and the second highest in environment 4 with 0.0012. In environments 2 and 3,

the absolute slope value is below 0.001.
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The mean reward for a learning rate of 1e−06 is shown in figure 6±34f. For both the

regression line with and without consideration of the 0 mean rewards, the trend cannot

be clearly identified. In environment 1, both lines are approximately constant with

slope values of 0.0002 for the regression line considering the 0 mean rewards and

−0.0004 for the one which does not. Although both regression lines are slowly rising in

environment 2, the slope values of 0.0012 and 0.0006 are relatively low. In environment

3, both regression lines are declining, the one considering the 0 mean rewards with a

slope of −0.0023 and the one which does not with a slope of −0.0029. The absolute

slope values in environment 4 are the highest one observed in figure 6±34f and the

highest ones observed in all environments of figure 6±34 in their respective categories.

The regression line which does not consider the 0 mean rewards has a slope value of

0.0063 while the one which takes the 0 mean rewards into account shows a slope value

of 0.0067.

(a) Learning rate 0.1 (b) Learning rate 0.01

Fig. 6±34: Mean reward of each episode of each environment for different learning
rates
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(c) Learning rate 0.001 (d) Learning rate 0.0001

(e) Learning rate 1e−05 (f) Learning rate 1e−06

Fig. 6±34: Mean reward of each episode of each environment for different learning
rates
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7 Discussion

The following will discuss whether the developed toolchain with RL is suitable to evalu-

ate the usage of RL in the RACOON-Lab’s toolchain once the DIFODO algorithm or an

alternative is successfully tested. It will discuss adoptions to make, especially for the

parameters tested in detail. Special focus will be laid on the reward function and the

evaluation functions.

7.1 Expressiveness of figure types

The first part of the discussion focuses on the expressiveness of the figure types. The

figure types’ expressiveness is ranked in three categories: as an individual figure, com-

pared to figures of the same type, and compared to or combined with figures of other

types. The criteria for the categories are shown in figure 3±1.

7.1.1 Action histograms

There are two types of action histograms: The first one ± the action histogram of whole

training figure type ± takes all actions of the whole training into account. The second

one ± the action histogram of individual episode ± takes only actions of one episode

into account and also distinguishes between the environments.

The first one gives an overview of the actions chosen over the whole training. This

can be used to determine the most- and least-chosen actions. In case the figure

looks somewhat like figure 6±1, where one action is clearly the most dominant, af-

ter a long training, this might be an indication to use this action as a general option in

the RACOON-Lab’s toolchain even without the usage of RL. It however needs more in-

dications to actually consider this option, for example that the action has a high reward

and is applied constantly over the whole training. The expressiveness of the individual

figure will be ranked with − since it only gives an overview, which is considered a less

relevant information, and any further information needs to be verified with other figures.

Since this is a figure that can be created only once per training, it is a single-time fig-

ure type. When comparing two figures of this type, one might observe clear overall

differences between the trainings but may lack to accurately show small differences.

These overall differences are considered a less relevant information. The first were

demonstrated in the description of figure 6±16. The expressiveness of the figure when

being compared to figures of the same type is hence ranked with −. For the purpose

of comparing the figure with episodes evaluated in more detail, the diagram is highly

useful, since deviations of individual episodes from the overall behavior can be easily

identified. These episodes could be for example especially well- or poorly-performing

episodes identified using the mean reward figure type. This was done in the descrip-

tion of figure 6±2. This can be done multiple times per training since it is possible for

each episode. Differences between especially well- or poorly-performing episode and

the overall behavior are considered a relevant information. Also, figures of this type can

be used in combination with figures of the reward histogram of whole training type to
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get a hint about the differences between trainings, which is considered a less relevant

single-time information. The expressiveness when being compared to or combined

with figures of other types is thus ranked with o.

The second type of action histograms displays the actions chosen in all environments

of an individual episode. As an individual figure, this histogram can be used to de-

termine differences between the environments. This can be very useful in case one

environment performed significantly better or worse than the others. The figure can

therefore be used to check whether the performance differences are the result of a

difference in the actions chosen over the episode, which is considered a relevant in-

formation that is also clearly observable. The expressiveness of the individual figure is

hence rated with o. This figure type cannot only be compared to the same figure type

from other trainings but also to ones from the same training for a different episode,

thus it is a multi-time figure type. This, for example, could be a comparison of two

well-performing episodes in which similarities would be searched. The same can be

done for poorly-performing episodes. Both are considered relevant information. The

expressiveness when being compared to figures of the same type is therefore ranked

with +. As already mentioned above, the action histogram of an individual episode can

be used to identify deviations from the overall behavior when being compared to the

action histogram of the whole training. This is considered to be a relevant information.

Figures of the action histogram of individual episode type can be used in combination

with figures of the Reward histogram of episode and Reward components of episode

types. This might give an overview of which actions are responsible for high or low

rewards or reward components. Both are considered a less relevant information as

they are only overviews. The expressiveness when being compared to or combined

with figures of other types is hence ranked with +.

7.1.2 Actions over episode

The actions over episode figure type shows the actions of each environment of an indi-

vidual episode over the timesteps of the episode. As an individual figure, it can be used

to determine whether differences in the rewards for the environments of an episode are

a result from the timestep where the actions were applied. That is considered to be a

relevant information that is clearly observable. Partially, it can also be used for similar

purposes as the action histogram of individual episode figure type, i.e., to determine

differences in the number of applications of the actions in the environments. In com-

parison to this figure type, however, the actions over episode figure type will only be

useful for a broad overview, which also is not that easy to read out of the figure. This is

considered to be a hint to less relevant information. The two figure types hence should

be used in parallel, as both can be used to understand differences in the rewards for

the environments of two figure types, regardless of which episode or training they are

from. The expressiveness of the actions over episode figure type is rated with +. Be-

fore evaluating the expressiveness of the figure type in the two remaining categories,

it should be noted that any comparison between two figures of this type is meaningful

only when the lookback is the same for both. Like the action histogram of individual

episode figure type, this figure type can be compared to figures of the same type from
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both other episodes of the same training and episodes from another training. It thus

is a multi-time figure type. Similar to the action histogram of individual episode, inter-

esting episodes, for example very well- or poorly-performing ones, can be compared

to each other to search for explanations of the good or bad performance. However,

this is quite difficult relative to comparing two figures of the action histogram of indi-

vidual episode figure type, since the timestep at which a certain behavior occurs could

depend on certain conditions for the input image, such as the presence of reflections

in these images. Both explanation of well- and poorly-performing episodes are never-

theless considered to be a relevant information. As for the individual episode, a broad

comparison of the actions chosen in the episodes and environments can also be made,

which is considered to be a less relevant information since it is only an overview. The

expressiveness of this figure type compared to figures of the same type is rated with

+. This figure type can be very well compared to other figure types showing informa-

tion over episodes, i.e., the rewards over episode and rewards over episode divided

in components figure types. Using this combination, the timesteps with high or low

rewards could be explained with the actions chosen near to that timestep. However, if

the lookback of the actions over episode figure type is too high, this might be difficult.

Since any lookback over 1 makes a perfect understanding of what caused the reward

impossible but the figure type gets almost useless if the lookback is set to 1, a com-

promise needs to be made. The Rewards over actions figure type already addresses

the correlation of rewards and actions. Therefore, the decision is made for a higher

lookback. Although not a perfect one, an understanding of which actions caused a

reward is still possible, especially for segments of rewards, with the combination of

the actions over episode and rewards over episode or rewards over episode divided in

components figure types. The correlation between both actions chosen and rewards

received and action chosen and reward components received are considered to be rel-

evant information. The expressiveness of the actions over episode figure type is rated

with +.

7.1.3 Rewards over actions

Figures of the Rewards over actions type show a boxplot of the rewards received for

each action over the whole training. As an individual figure, this can be useful to

determine which action led to high rewards and which to low ones. This is considered

to be a relevant information. Additionally, the spread of the rewards and hence the

constancy of the same can be extracted from figures of this type, which is considered

a less relevant information. The number of applications of each action is also given

in this figure type, which was considered to be a relevant information above. The

individual expressiveness of this figure type is ranked with ++. This figure type can

only be created once per training and is thus a single-time figure type. When being

compared to figures of the same type of another training, similarities and differences in

the rewards for the episode as well as the spreads for the same can be identified. The

first is considered relevant information since it can be used to determine which actions

are useful and which are not. With that knowledge, one might be able to optimize the

actions, for example by tuning the parameters of the Percentile filter. The comparison

of the spreads of the boxplots are considered to be less relevant information. The
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expressiveness of this figure type when being compared to figures of the same type is

therefore rated with −. This figure can barely be combined with figures of other types.

The expressiveness of this figure type in the respective category is hence rated with o.

7.1.4 Reward histograms

There are two types of reward histograms. Similar to the action histograms, the first ±

the reward histogram of whole training type ± takes all rewards of the whole training

into account while the second one ± the reward histogram of individual episode type

± takes only the ones of one episode into account and also distinguishes between the

environments.

The first type as an individual figure gives an overview of the rewards received during

the training. The shape of the distribution gives an overview of the overall reward

structure. This information is clearly observable but considered less relevant. The

expressiveness of this figure type individually is hence ranked with −. Figures of this

type can only be created once per training which is why the figure type is a single-time

one. When comparing a figure of this type to one of the same, one should make sure

to compare only figures for trainings with a similar number of timesteps. Otherwise,

in case the rewards improved over time, one would expect the two figures to look

differently and a the results of a comparison would therefore be compromised. The

comparison of two figures of the reward histogram of whole training type can point

out differences in the reward structure of the two trainings. This is considered a less

relevant information. Comparing multiple figures of this type can also show relevant

information regarding the reward function. If the peak for all figures is the same, one

might want to find out why that is. The expressiveness of the rewards histogram of

whole training figure type is rated with −. A comparison of figures of this type with

figures of the second reward histogram type can point out interesting information. For

example, one can identify how well- or poorly-performing episodes, as found with the

mean reward figure type, differ from the overall reward structure. this again might be

useful to evaluate the reward function or to explain the well- or poor performance. It

is thus considered a relevant information and, as the second reward histogram is a

multi-time figure type, can be done multiple times per training. The expressiveness of

this figure in the last category is rated with o.

The second type of reward histograms displays the rewards received in all environ-

ments of an individual episode. When used individually, it can show differences be-

tween the environments for that episode, which is especially useful for episodes in

which one environment performed much better or worse than the others. An analy-

sis of the reward structure for the episode might help to explain these performance

differences. It is therefore considered a relevant information, which is also clearly ob-

servable. The figure type is hence rated with o in the first category. Since this figure

type is available for each episode of a training, it is a multi-time figure type. Compared

to figures of the same type, similarities in the reward structure for both well- and poorly-

performing episodes can be identified. Both are considered relevant information, both

for evaluating the reward function and the training. The expressiveness of the reward

histogram of individual episode figure type compared to figures of the same type is
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rated with +. As mentioned in the previous paragraph, figures of this type can be used

to show differences in the reward structure of an individual episode to the overall train-

ing. That is considered a relevant information. As mentioned for the action histogram of

individual episode figure type, both figure types for the same episodes can combined

to get an overview which actions are responsible for high or low rewards. This is con-

sidered to be a less relevant information. The expressiveness of the reward histogram

of individual episode figure type is thus rated with o.

7.1.5 Reward components boxplots

There are two types of reward components boxplots which both distinguish between

the environments: the first ± the reward components boxplot of whole training figure

type ± shows a boxplot for each reward component over the whole training. The second

± the reward components boxplot of individual episode figure type ± does the same for

an individual episode.

Figures of the first type can be used to get a deeper understanding of the rewards.

Not only the mean and median value but also the interquartile range as well as the

maximum and minimum values can be identified for each reward component. All of

these are considered to be highly relevant since they can be used to evaluate the re-

ward function. Via the boxplot they are also clearly observable and comparable. In the

two figures of this type that were analyzed in the results chapter, no clear differences

between the environments could be identified. For trainings with more timesteps, the

differences would probably get even smaller. Hence, the combination of the data of

all environments in one boxplot is proposed for future applications. Nevertheless, the

expressiveness of the reward components boxplot of whole training figure type is rated

with ++. This figure type can only be created once per training and is therefore a

single-time figure type. A comparison with a figure of the same type from another

episode is useful to evaluate the reward function’s components in detail since changes

to the reward function should never be made based on only one training. This thus

is considered to be relevant information which is why the figure type is rated with −
in the second category. Figures of this type can be compared to figures of the re-

ward components boxplot of individual episode very well. This is especially useful for

well- or -performing episodes which can be identified using the mean reward figure

type. These comparisons can be used for the evaluation of the reward function and

are hence both considered to be relevant information. Since the reward components

boxplot of individual episode figure type can be created for each episode of a training,

this comparison is a multi-time one. The expressiveness of the reward components

boxplot of whole training figure type is rated with +.

The second type of reward components boxplots individually is useful for comparing

well- or poorly-performing environments to others of the same episode. This will be

useful to find out how high and low rewards are composed, which again can be used

to evaluate the reward function. Both are therefore considered relevant information,

which are clearly observable. The figure type is thus rated with ++ in the first category.

As already mentioned in the paragraph above, this figure type is a multi-time one since

it can be created for each episode of a training. Comparing two figures of the reward
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components boxplot of individual episode type is especially interesting for well- and

poorly-performing episodes because the differences will point out which components

are most relevant for high or low rewards. Both are considered to be relevant informa-

tion. Hence, the figure type is rated + in the expressiveness when being compared to

figures of the same type category. The same episodes can also be compared to the

boxplot of the overall training which will also assist in finding the most influential reward

components. This relevant information leads to a rating of + in the third category.

7.1.6 Mean reward

The mean reward figure type shows the mean reward of each episode of each environ-

ment and a regression line and its slope. As an individual figure it can be used for three

main reasons: First, the regression line shows the training trend, i.e., if the RL agent

improves over the training. This information is necessary to determine whether the

usage of RL in the RACOON-Lab’s toolchain makes sense. Second and third, the best

and worst performing episodes can be identified using this figure. These information

are crucial to further analyze these episodes as described above. The expressiveness

of the mean reward figure type individually is rated with ++. The figure is created once

per training what makes the figure type single-time. Comparisons with other figures of

this type are useful to compare the performance of two trainings, which for example

could be interesting to see which agent to train further. Also, such comparisons can

be used to optimize parameters such as the learning rate as done in figure 6±34. Both

information are considered to be relevant. The expressiveness of the figure type when

being compared with figures of the same type is rated with o. As described above the

mean reward figure type is used to identify interesting episodes which can then be

further analyzed with other figure types. Although that is a combination of two figure

types, it was not treated as category 3 to avoid that some figure types such as reward

histogram of individual episode can only be rated in that category. Thus, even though

the mean reward figure type is commonly used in combination with other figure types,

this is not represented in the last category, which is why the figure type is rated with

−− in the same.

7.1.7 Reward over episode

The reward over a single episode of all environments are shown in figures of the reward

over episode type. Individually, this figure can mainly be used to compare the environ-

ments. If all environments have a low reward at some point of the episode, this could

be caused by reflections in or bad quality of the input images during these timesteps.

This information is clearly observable and considered relevant which is why the expres-

siveness as an individual figure is rated with o. Since figures of this type can be created

for each episode of a training, it is a multi-time type. Comparing multiple figures of this

type, especially those for well- and poorly-performing episodes as observed with fig-

ures of the mean reward type, could show similarities. If all well-performing episodes

for example would still show badly performing segments, they are probably caused by

reflections in the input images at the respective timesteps. This could be the reason

to offer another action to the RL agent since the existing ones were not able to handle
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the reflections. The information is therefore considered relevant which leads to a rating

of o in the second category. Together with the figures of the action over episode type

from the same episode, a figure of the reward over episode type can be used to search

correlations between rewards and actions chosen to receive them. As above, this in-

formation is considered relevant which is why the expressiveness of the reward over

episode figure type when being compared to or combined with figures of other types is

rated with o.

7.1.8 Reward over episode divided in components

Like the reward over episode type, the reward over episode divided in components type

shows the rewards of each timestep of an episode of each environment. Additionally,

the rewards are divided in components. Since the total reward of each timestep is still

clearly observable in this figure type, all the information that can be identified using the

reward over episode type can also be identified with this figure type. Thus, only addi-

tional information will be listed in this rating. However, the ratings for this figure type will

include the information that can be identified with both figure types and will therefore

be at least as high as the ones for the reward over episode type. In the first category,

figures of the reward over episode divided in components type additionally shows the

reward components. This information can be used to identify the differences between

the reward components of high and low rewards. This information is considered rele-

vant since it can be used both to evaluate the toolchain and the reward function. The

expressiveness of the reward over episode divided in components individually is hence

rated with ++. This figure type can be created for all episodes of a training. It thus

is a multi-time figure type. Comparing multiple figures of this type can show whether

the components of high or low rewards are the same for different episodes. Using

this information, the most influential reward component can be identified for example.

The first is considered to be relevant and the second less relevant. The figure type is

therefore rated with + in the second category. In the third category, additional to the

information observable with the reward over episode type, correlations between reward

components and the actions chosen can be identified when comparing the figures to

the respective actions over episode figure. This information is also considered relevant

since it can be used to evaluate both the toolchain and the reward function. The ex-

pressiveness of the reward over episode divided in components figure type when being

compared to or combined with figures of other types is hence rated with +. Since all the

information of the reward over episode figure type is also clearly observable with this

figure type, the further usage of the reward over episode figure type is not reasonable.

7.1.9 Summary

Table 7±1 summarizes the ratings of all figure types in the three categories. Even

though table 3±1 lists the criteria upon which the ratings were made, it is not fully

objective. Especially the decision which information to consider relevant and which

less relevant is still dependent on the author. Interestingly, there are figure types which

have a high rating in all categories but also figures which have a high rating in one

category and low ones in the other two. An example for the first is the reward over
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episode divided in components type. For the second, the rewards over actions type

stands as an example. Although figure types showing high ratings in all categories

seem even more useful, figures rating good in only one category are still necessary

since the relevant information they show cannot be observed otherwise. Besides the

reward over episode type, the information of which can be clearly observed in the

reward over episode divided in components type, all figure types are considered to be

useful and proposed to use in future projects of the RACOON-Lab.

7.2 Reward function

7.2.1 Impact of the correction of the reward function

As mentioned at the beginning of chapter 6, the results presented in chapters 6.1, 6.2,

6.5, and 6.6 were recorded with an error in the reward function which influenced the

rotational components, i.e., Drot and Srot. In chapter 6.3, the corrected versions of

the figures showing reward components for one of the datasets were described and

compared to the uncorrected versions. For the whole training clear differences could

only be observed for the Drot component. These, however, were not larger than the

differences between the figures for the two datasets 6±7 and 6±22. The following will

evaluate the influence of the error on the validity of the results presented in chapter 6.

Chapters 6.1 and 6.2 do not rely on the accuracy of the data since they are only meant

to demonstrate the capabilities of the different figure types. So, although most figures

show incorrect data due to the error in the reward function, the intended purpose is still

fulfilled for these chapters. The discussion of the figures’ expressiveness in chapter 7.1

thus stays valid.

The rewards for the good trajectory in chapter 6.4 were calculated with a corrected

version of the reward function. Therefore, the error had no impact on the data. The de-

scription of the results and their discussion in chapter 7.2.2 therefore stay valid without

any limitations.

In chapter 6.5, the number of parallel environments was iterated. The reward was not

addressed in this chapter. The error in the reward function is not expected to have an

impact on the performance of the toolchain. Thus, the results presented in chapter 6.5

and the discussion of the same in chapter 7.3.1 stay valid without any limitations.

Chapter 6.6 shows the results of an iteration of the learning rate. These depend on the

total reward and hence affected by the error in the reward function. The impact of the

error is expected to be small since the differences of the corrected version of boxplot of

the reward components compared to the uncorrected version were not larger than the

ones between the boxplots of the two datasets. Nevertheless, any conclusion made

in 7.3.2 that is based on the data described in chapter 6.6 is only valid to a limited

extent.
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Tab. 7±1: Summary of figures’ expressiveness

Figure type

Expressiveness

of the

individual

figure

Expressiveness of

the figure when

being compared to

figures of the same

type

Expressiveness

when being

compared to or

combined with

figures of other types

Action histogram of

whole training
− − o

Action histogram of

individual episode
o + +

Actions over

episode
+ + +

Rewards over

actions
++ − −−

Reward histogram

of whole training
− − o

Reward histogram

of individual

episode

o + o

Reward

components

boxplot of whole

training

++ − ++

Reward component

boxplot of individual

episode

++ + +

Mean reward ++ o −−

Reward over

episode
o o o

Reward over

episode divided in

components

++ + +
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7.2.2 Evaluation of the reward function

In the following, the reward function and its component will be discussed. Problems

in the current reward function are observed and a proposal is made how to adopt the

reward function to address these problems.

Most important for the evaluation of the reward function are the results presented in

chapter 6.4. Here, according to the best-fit-circle-metric developed by Rehn in [16], a

good trajectory was analyzed with the reward function. The trajectory is considered

good according to the metric developed by Rehn because the distance of the trajec-

tory’s points from the best-fit-circle is very low. The orientation of the points on that

trajectory is not considered by this metric. The reward function used in this thesis as

introduced in chapter 4.3 compares the observed velocity and angular velocity to ref-

erence ones calculated with parameters set during the recording in the RACOON-Lab.

It considers not only the coordinates, but also the orientation of the points of the tra-

jectory. In contrast to the metric developed by Rehn, it can be evaluated before the

trajectory was fully observed, i.e., it can be used as a dense reward.

With figure 6±32 it gets clear that a trajectory which was considered to be good by the

metric developed by Rehn does not necessarily receive high rewards by the reward

function used in this thesis. In fact, the trajectory analyzed in chapter 6.4 receives a lot

of negative rewards. Compared to other episodes analyzed in detail such as the last

episode of dataset 21-11-12 14-18-56 as shown in figure 6±25, it actually performed

worse. The reward signal used in this thesis thus does not seem to be a good metric

for evaluating the correctness of a trajectory. The following will discuss why that is

the case. For that purpose, the intent behind the four components of the reward and

difficulties in practice will be analyzed. Afterwards, a conclusion is drawn and an option

to handle the difficulties is proposed.

The Dtrans component checks that the absolute value of the velocity of the chaser is

similar to the one of the reference velocity known from the recording, which is constant.

In practice, this means that all points of the trajectory need to have a set constant

distance. The trajectory analyzed in chapter 6.4 does not fulfill this criterion as proofed

by the high values of the boxplot for the Dtrans component in figure 6±32b. Even if

the distance was not set and it would be only evaluated whether the points of the

trajectory have a constant distance, the trajectory analyzed in chapter 6.4 would not

have performed well. The reason for that is that the points of the trajectory do not

have a constant distance as observed in figure 6±30b. If the trajectory calculated with

DIFODO is circular, the points of this trajectory do not necessarily seem to be evenly

spaced. Fluctuations in the distance of the points of a trajectory are expected when

using a algorithm like the DIFODO. According to the metric developed by Rehn, a

good trajectory does not need to fulfill the criterion of the Dtrans component. In an

application of the RACOON-Lab’s toolchain, a constant distance of the points of the

trajectory also is not a criterion. Hence, the Dtrans component would only be useful for

perfect trajectories with constant distance between the points but does not seem very

useful to evaluate the quality of a trajectory. Therefore, using it to evaluate the action

chosen by the RL agent does not make sense.
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The Drot component serves the same purpose as the Dtrans component but for the

angular velocity. It compares the absolute value of the angular velocity calculated from

the rotations computed by the DIFODO algorithm to the one of the reference angular

velocity, which is constant. As observed in figure 6±31b, the rotations computed by the

DIFODO do not have constant distance on the degree axis, which the Drot component

uses to compute the angular velocity. As for the Dtrans component, these fluctuations

are not unexpected when using an algorithm like the DIFODO. The metric developed

by Rehn does not take the rotations into account. For the reward signal, they were

intended to ensure the circularity of the trajectory. With fluctuating angles, however,

this intent cannot be fulfilled by the Drot component. Therefore, it is neither useful to

evaluate the quality of a trajectory nor to measure the performance of an action chosen

by the RL agent.

The reward’s Strans component compares the direction of the computed velocity vector

to one of the reference velocity vector. Since the reference velocity vector is constant,

this component in its current version does not measure the circularity of the trajectory.

The changing behavior observed in figure 6±32a is caused by this constancy since the

calculated velocity has to be rotating in order to make a circular trajectory. An easy

adoption seems to be to rotate the reference velocity vector with a rotation matrix by

γref , i.e., by the angle the chaser is expected to turn between two timesteps. However,

one major question remains open: with which value for the reference velocity to start. If

the velocity rotates by exactly γref every timestep the Strans component would be con-

stant over the episode. If the reference velocity was chosen incorrectly at the beginning

of the episode, this constant value would not be 0. In the extreme case that the ref-

erence velocity vector points exactly in the opposite direction of the calculated velocity

vector, the Strans component would be 1 for the whole episode. In figure 6±32a, for

example, the ideal reference velocity to start with would have been turned −800 times,

i.e., 800 times in the opposite direction in order to minimize the Strans component since

the minimum Strans component value for the non-rotated reference velocity vector was

observed at timestep 800. It is impossible to know the ideal number of rotations for the

velocity vector before the total trajectory was observed. Even an estimate is impossi-

ble to make a priori. Hence, the Strans component cannot be adopted in a way that it

actually measures the circularity of the trajectory. Additionally, the fluctuations of the

points of the trajectory observed in figure 6±30b might also influence the direction of

the calculated velocity vector and thus also the Strans component of the reward. There-

fore, it does not make sense to use the Strans component of the reward to evaluate

the actions chosen by the RL agent. To evaluate the quality of a complete trajectory,

however, it could be adopted since the a priori knowledge is available here as long as

the fluctuations are manageable.

The direction of the reference angular velocity is compared to the one of the calculated

angular velocity by the Srot reward component. The latter one is calculated using the

changes of the three rotational angles. This component aims to measure the circularity

of the trajectory, just like the Strans component but with different data. For a perfect Srot

component, the pitch angle would need to rise linearly and the other two angles would

need to be constant. For the first timesteps of figure 6±31a, this was approximately
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the case which is why the Srot component in figure 6±32a is low for these timesteps.

In the second half of the episode, the yaw and roll angles are almost constant but the

pitch angle is decreasing linearly. Therefore, the Srot component shows high values

in figure 6±32a for the second half of the episode. This component, in contrast to the

Strans component does not need knowledge which is unavailable a priori. However,

the rotation angles computed by the DIFODO algorithm and used to calculate this

component are not as accurate as necessary. The change in the pitch angle as well as

the switch of the yaw and roll angle as observed in figure 6±31a underline that. In the

metric developed by Rehn, the rotation of the chaser is not included. If knowledge of

the rotation of the chaser is necessary for the intended use-case of the RAOON-Lab’s

toolchain, an adopted, less fluctuating version of the Srot component might be suitable

to be used as a metric for the rotation. In that case, the adopted version would also be

suitable to be one component of a reward function.

To summarize: the current components do not align with the metric developed by Rehn.

Hence, a trajectory which is considered good by the metric developed by Rehn can get

negative rewards by the reward function of this thesis as observed in chapter 6.4. The

Dtrans, Drot, and Srot components mainly suffer under the fluctuations and unequal

distances of the points and rotations of the trajectory and cannot be used as part of

a reward function as long as this problem exists. Since the DIFODO algorithm or an

alternative are not expected to output trajectories without any fluctuations, the problem

needs to be addressed by a the reward function itself. The Strans component is not

useful as a component of the reward function since it needs to be rotated and the

ideal starting value for the reference velocity is crucial but unknown a priori. It can

still be adopted as part of a metric to evaluate a complete trajectory as long as the

fluctuations are manageable since the ideal starting value for the reference velocity

can be calculated in that case. One option to handle the fluctuations could be to not

take the difference between two sequential points of the trajectory but over a a larger

span of for example 10 points. The idea is that the fluctuations would arguably be

lower and thus might not influence the reward components that much. The training of

the RL agent could not start immediately but only after enough points of the trajectory

were observed. Since these 9 additional timesteps without training the RL agent for

the example of a 10 points span would not make much of a difference in episodes

of more than 1000 timesteps, the author considers this a minor problem. If this or

another handling of the fluctuations works, the reward function could still be dense but

more helpful to actually train the RL agent, once the implementation of the DIFODO

algorithm was tested.

7.3 Parameters

In chapters 6.5 and 6.6, parameters were iterated. The following will discuss these

results and propose how to set them in a future usage of the toolchain.
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7.3.1 Number of parallel environments

The number of parallel environments was iterated between 1 and 6 for two training runs.

The resulting performance measured in timesteps per second are shown in figure 6±

33 together with the mean values. While the values of the trainings are fluctuating, the

mean value is rising linearly from 1 to 6 parallel environments. The fluctuations seem to

be typical performance fluctuations. A rising performance for a higher number of par-

allel environments was expected. However, this trend is limited by the GPU’s capacity

which typically is expected to be the limiting factor for ML applications. Figure 6±33

shows that this limit is not reached by 6 parallel environments. This is probably caused

by a slow performance of the DIFODO implementation used in this thesis which suffers

under low parallelization of the code. Therefore, the processing of one image takes

almost 1s which is very slow compared to the 30 frames per second reached by the

DIFODO implementation used in previous studies in the RACOON-Lab.

As long as that is the case, the number of parallel environments should be set as high

as possible with the memory limitation of the cluster. With the current job sizes avail-

able, the memory limit for the largest job size was reached by 6 parallel environments.

When either the DIFODO implementation or the job sizes of the cluster are updated,

a new iteration of this parameter should be executed to find the optimal value for the

number of parallel environments. The iteration of the number of parallel environments

thus is a suitable option to optimize this parameter and is introduced as part of the

developed toolchain.

7.3.2 Learning rate

The learning rate was iterated in figure 6±34 with a step factor of 10. One would expect

a smaller learning rate to ensure a training improvement, probably with smaller perfor-

mance. The results in figure 6±34 cannot confirm this expectation. This is arguably

caused by the reward function which does not seem to work well with fluctuating co-

ordinates and rotation angles as observed in the discussion of the reward function in

chapter 7.2.2. Additionally, the implementation of the DIFODO algorithm used in this

thesis was not tested and therefore may not perform as the original implementation.

This could be an additional factor for the unexpected behavior of the learning curves in

figure 6±34.

An optimal value for the learning rate cannot be observed in figure 6±34. Hence,

as soon as the reward function was improved and the DIFODO implementation was

tested, a new iteration should be made to find the optimal value for the learning rate.

However, the mean reward figure type seem to be suitable for that purpose and thus

serves as a part of the toolchain to optimize the learning rate.
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8 Conclusion

In this thesis, the first steps towards the usage of RL for depth image enhancement

in the RACOON-Lab’s toolchain have been taken. The objective of this thesis as de-

scribed in chapter 3 was to build a tool capable of evaluating the usage of RL for depth

image enhancement in the RACOON-Lab’s toolchain as well as to test and verify the

same as far as possible with the untested implementation of the DIFODO algorithm.

A toolchain to train the RL agent was proposed. The SB3 implementation of the PPO

algorithm was chosen. A dense reward function built of four components was selected.

The components measure the difference of the absolute value and direction between

the observed and expected velocity and angular velocity. A RL environment was im-

plemented following the Gym interface of OpenAI which can be used independently

of the RL algorithm and implementation used in this thesis. Five actions have been

proposed for the agent: Do nothing, a Adaptive threshold filter, a IP Basic filter, a Me-

dian filter and a Percentile filter. The toolchain was implemented for an execution on

the chair’s Condor GPU cluster. This implementation was tested and verified as far

as possible with the untested implementation of the DIFODO algorithm, i.e., a training

improvement could not be observed.

Additionally, figures to evaluate both the training of the RL agent and the toolchain

itself have been proposed. Functions were implemented to automatically create the

same using the data recorded during the training and demonstrated with two datasets.

The figures’ expressiveness has been discussed and ranked in three categories: .

Especially figure types showing the reward components, i.e., the reward components

boxplots and the reward components divided in components figure type, have proven

to be very useful to evaluate both the agent’s performance and the toolchain.

Furthermore, the reward function was tested with a trajectory calculated by the DI-

FODO implementation used in previous studies of the RACOON-Lab. The test showed

large differences between the metric used in previous studies of the RACOON-Lab

and the reward function used in this thesis. In the discussion, fluctuations in the points

and rotation angles calculated by the DIFODO algorithm were identified as the main

reason. These make the reward function in the proposed state unsuitable to determine

the quality of a trajectory. Therefore, it was proposed to adapt the reward function to

compute the difference over multiple timesteps instead of only one in future studies of

the RACOON-Lab.

8.1 Outlook

The next step for the evaluation of the usage of RL in the RACOON-Lab’s toolchain

would be to adopt the reward function. Any adoption of the reward function should

from now on be verified with existing trajectories before being used for the training. This

is meant to validate the desired functionality under the data quality of the trajectories

calculated by the DIFODO algorithm.
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As soon as an adopted reward function was verified and the DIFODO implementation

was tested and verified to work as intended, the toolchain can be used to train a RL

agent for depth image enhancement. Before starting a long training, it is recommended

to tune the learning rate parameter using the proposed learning rate iteration.

The next step would be to perform multiple long trainings of the RL agent with probably

several millions of timesteps. With the current performance of the DIFODO implemen-

tation used in this thesis, a long training with millions of timesteps would take weeks

due to the low parallelization in the DIFODO implementation. Thus, either enough time

for training should be planned in or a more performant implementation of the DIFODO

algorithm should be used.

Once long trainings have been recorded, the proposed figures should be used to eval-

uate the same. The training should be extended until no further training improvement

can be observed. The performance of the toolchain using the trained RL agent should

then be compared to the toolchain which does not use RL in order to fully evaluate the

usage of RL for depth image enhancement in the RACOON-Lab’s toolchain.

The depth image filters used in this thesis have parameters which were fixed as part

of this thesis, such as the maximum percentile of the Percentile filter. The developed

toolchain does not offer any option to tune these. Since they are heavily influencing

the performance of the RL agent, future studies of the RACOON-Lab should develop a

framework to tune these parameters or let the RL agent choose them too.

Another proposal besides the evaluation of RL for the RACOON-Lab is to enhance

the metric currently used in the RACOON-Lab by a orientation measurement. In an

application of the toolchain not only the coordinates but also the orientation will be of

interest. An adoption of the Strans component of the reward function used in this thesis

could be a valid candidate for that orientation measurement.
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A.1 Dataset 21-11-11 04-41-55

Actions chosen over whole training Actions chosen in last episode

Actions over last episode Reward histogram over whole training
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Reward histogram first episode Reward histogram last episode

Boxplot of rewards over actions
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Boxplot of reward components over
whole training Mean reward of each episode

Reward histogram episode 6 Reward histogram episode 13
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Reward histogram episode 20 Reward histogram episode 25

Reward histogram episode 33 Reward histogram episode 34

Page 106



Results of all datasets

Reward histogram episode 36
Boxplot of reward components of episode
20

Actions chosen in episode 20 Actions over episode 20
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Rewards over episode 20
Rewards over episode 20 divided in com-
ponents

A.2 Dataset 21-11-12 14-18-56

Actions chosen over whole training Actions chosen in last episode
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Actions over last episode Reward histogram over whole training

Reward histogram first episode Reward histogram last episode
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Boxplot of rewards over actions

Boxplot of reward components over
whole training Mean reward of each episode
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Boxplot of reward components of last
episode Rewards over last episode

Rewards over last episode divided in components
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