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Abstract

Networks of neurons in the brain are shaped by the sensory stimuli that an animal
experiences. The changes induced by such experiences refine the connectivity and
activity in these neural circuits and serve their adaptation to the structure of the
environment. Such adaptation is especially important during development when
fundamental aspects of the neural circuits that underlie behavior are formed. During
so-called critical periods sensory circuits are exceptionally plastic. A perturbation of
the sensory experience during such periods can lead to irreversible defects in sensory
perception throughout life.

Experimental studies have used sensory deprivations, e.g., monocular depriva-
tion, the closure of one eye for times ranging from hours to weeks, to understand
the mechanisms shaping sensory circuits during critical periods. Even two days
of monocular deprivation induce remarkable plasticity in both feedforward and
recurrent connectivity in the primary visual cortex. Measurements of the activity in
the cortex in vivo have shown that firing rates of cortical neurons strongly decrease
and subsequently recover with a specific time course during ongoing monocular de-
privation. Crucially, the timing of suppression and recovery is different in excitatory
and inhibitory neurons.

How do these two experimental observations — the reorganization of synaptic
connectivity and the regulation of activity — relate to each other? I have addressed
this problem using a network model of the cortical circuit that allows measuring
the activity for arbitrary synaptic changes associated with monocular deprivation.
Through systematic scans of the biologically constrained parameter space of synaptic
changes, I investigated how experience-dependent plasticity can regulate the activity
in highly recurrent model networks of sensory cortices.

I found that the operating regime of the network, that is, whether or not dynamics
are stabilized by recurrent inhibition, has a major impact on how facilitation and
suppression of activity distribute in these parameter spaces. In an analytical model
of the average rates of the neural populations, I prove that the mechanism underlying
the different responses is the paradoxical effect only present in inhibition stabilized
networks. This effect is defined by a counterintuitive response of interneurons to
external input. Paradoxical is the property that additional excitation injected into
an interneuron population leads to a decrease of its activity. In a network with one
stabilizing inhibitory population, this effect prevents the time course of suppression
and recovery from being different between the excitatory and inhibitory neurons.
However, inhibitory interneurons in the cortex are not a single, homogeneous class,
but they are distinguished into multiple subtypes with distinct connectivity and
activity patterns. The consensus emerged that most of all cortical interneurons can
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be classified into one of three subtypes. Interestingly, the interaction of multiple
subtypes of interneurons can give rise to circuits in which some subtypes show
the paradoxical effect while others do not show it. I studied the overall ability of
different network structures with a single and with two subtypes of interneurons to
produce the temporally distinct modulation of excitatory and inhibitory firing rates
and analytically characterized the conditions on the network structure that enable
this.

These results generalize earlier work on the paradoxical effect in inhibition sta-
bilized networks to multidimensional perturbations of connections. Furthermore,
these perturbations also target recurrent connections, whose effects have not yet
been established with respect to the paradoxical effect.

I furthermore investigated how spike-timing-dependent plasticity shapes the struc-
ture of networks with multiple interneuron subtypes. Through ongoing stimulation,
strongly connected groups of neurons with similar response properties, so-called
Hebbian assemblies, emerge in such networks. Experiments found that such as-
semblies emerge during development and that their formation is dependent on
sensory experience. I included two streams of inputs, representing sensory signals
and feedback arising from other brain areas. The competition between the two
input streams strongly disturbs the development of Hebbian assemblies, while their
cooperation aids it.

Overall, these results point at an intricate interplay of the operating regime, the
multiplicity of interneuron subtypes, developmental plasticity, and the structure of
the signals impinging onto sensory circuits, and partially uncover the roles of this
interplay for the development of functional networks in the cortex.
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Zusammenfassung

Netzwerke von Neuronen im Gehirn werden durch die sensorischen Stimuli, die
ein Tier erfihrt geformt. Die Anderungen durch diese Erfahrungen verfeinern die
Struktur der Aktivitdt und Konnektivitdt in neuronalen Schaltkreisen so, dass
sie an die Struktur der Umwelt angepasst werden. Besonders wichtig sind diese
Anpassungen wahrend der Entwicklung des Gehirns, wenn fundamentale Aspekte
der neuronalen Schaltkreise entstehen. In sogenannten kritischen Perioden sind
Netzwerke in sensorischen Kortizes ausnehmend plastisch. Wenn die sensorische
Wahrnehmung wahrend solcher Perioden gestort wird, kann es zu irreversiblen
Defekten fiihren, die ein Leben lang anhalten.

Experimentelle Studien haben sensorische Deprivation, z. B. monokulare De-
privation, das Verschlieflen eines Auges von einigen Stunden bis hin zu Wochen,
benutzt, um die Mechanismen, die sensorische Schaltkreise wéhrend kritischer Pe-
rioden formen, zu untersuchen. Schon zwei Tage monokularer Deprivation fiithren
zu erheblicher Plastizitat sowohl in vorwértsgerichteten als auch in rekurrenten
Synapsen im priméren visuellen Kortex. Messungen der Aktivitdt im Kortex in vivo
haben gezeigt, dass die Feuerraten kortikaler Neurone sich mit einem spezifischen
Zeitverlauf wiahrend fortbestehender monokularer Deprivation stark verringern und
danach auf ihr urspriingliches Niveau erholen. Insbesondere zeigt sich, dass der
Zeitverlauf in exzitatorischen und in inhibitorischen Neuronen unterschiedlich ist.

Wie konnen wir diese zwei Arten von experimentellen Beobachtungen — die
Reorganisation der synaptischen Konnektivitat und die Regulation der Aktivitat —
miteinander verbinden?

Ich habe mich mit diesem Problem mit Hilfe eines Netzwerkmodells des kortikalen
Schaltkreises befasst. Das Modell erlaubte mir die Simulation der Aktivitat fiir be-
licbige synaptische Anderungen, die mit monokularer Deprivation zusammenhéngen.
Durch systematisches Abtasten von Parameterbereichen, die durch biologische Kri-
terien umgrenzt sind, habe ich untersucht, wie erfahrungsabhéngige Plastizitat die
Aktivitat in rekurrenten Netzwerkmodellen von sensorischen Kortices reguliert.

Ich fand heraus, dass das Operationsregime des Netzwerks, das heifit, ob die
Dynamik des Netzwerks rekurrente Inhibition zur Stabilitdt benotigt oder nicht,
zentral bestimmt, wie Verstarkung und Unterdriickung der Aktivitét in diesen Pa-
rameterbreichen verteilt sind. In einem analytischen Modell der mittleren Feuerraten
der neuronalen Populationen konnte ich zeigen, dass der Mechanismus, der den
verschiedenen Antworteigenschaften in den verschiedenen Operationsregimen zu-
grundeliegt, der paradoze Effekt ist, der nur in inhibitions-stabilisierten Netzwerken
auftritt. Dieser Effekt ist durch eine kontraintuitive Antwort der Interneurone auf ein
externes Eingangssignal definiert. Paradox ist die Eigenschaft, dass zuséatzliche Exzi-



tation, die in eine Population von Interneuronen injiziert wird, zu einer Verringerung
der Aktivitat dieser Population fiihrt. In einem Netzwerk mit einer einzigen stabil-
isierenden inhibitorischen Population verhindert dieser Effekt, dass der Zeitablauf der
Unterdriickung und Wiederherstellung der Feuerraten sich zwischen exzitatorischen
und inhibitorischen Neuronen unterscheidet.

Allerdings sind inhibitorische Interneurone im Kortex nicht eine einzige homo-
gene Klasse, sondern es gibt mehrere verschiedene Suptypen von Interneuronen mit
unterschiedlicher Konnektivitdt und Aktivitdt. Als Konsens hat sich eine Einteilung
in drei Subtypen etabliert. Interessanterweise kann die Wechselwirkung zwischen
mehreren Subtypen von Interneuronen zu Schaltkreisen fithren, in denen manche Sub-
typen den paradoxen Effekt zeigen und andere nicht. Ich habe die Gesamtfahigkeit,
den unterschiedlichen Zeitablauf der Modulation der Feuerraten in exzitatorischen
und inhibitorischen Neuronen herzustellen, in verschiedenen Netzwerkstrukturen
mit einer einzigen und mit zwei Subtypen von Interneuronen studiert und analytisch
die Bedingungen, die eine unterschiedliche Modulation erlauben, charakterisiert.

Diese Ergebnisse verallgemeinern bisherige Erkenntnisse zum paradoxen Effekt
in inhibitions-stabilisierten Netzwerken hin zu mehrdimensionalen Modifikationen
der Verbindungen im Netzwerk. Insbesondere habe ich auch Modifikationen von
rekurrenten Verbindungen untersucht, deren Rolle im Zusammenhang mit dem
paradoxen Effekt bisher unbekannt ist.

Ich habe auch untersucht, wie synaptische Plastizitat, die vom Zeitpunkt einzelner
Aktionspotenziale abhéngt (spike-timing-dependent plasticity), die Struktur von
Netzwerken mit mehreren Subtypen von Interneuronen beeinflusst und formt. Durch
anhaltende spezifische Stimulation konnen sich Gruppen von stark verbundenen
Neuronen mit dhnlichen Antworteigenschaften in einem Netzwerk bilden, sogenannte
Hebbian Assemblies (Hebb’sche Verbiinde). In Experimenten fand man heraus, dass
sich solche Verbiinde wihrend der Entwicklung des Gehirns bilden und dass ihre
Entstehung von sensorischer Erfahrung abhéngig ist. Ich habe hierbei zwei ver-
schiedene Eingangssignale, die sensorische Signale und Riickkopplungen aus héheren
Hirnarealen reprasentieren, beriicksichtigt. Konkurrenz zwischen diesen beiden
Eingangssignalen stort die Entwicklung von Hebb’schen Verbiinden, wohingegen
ihre Kooperation diese Entwicklung unterstiitzt.

Zusammengefasst zeigen diese Ergebnisse ein komplexes Zusammenspiel des Oper-
ationsregimes, der Vielfalt von Interneuronen, der Plastizitdt in der Hirnentwicklung
und der Struktur der Signale, die auf Schaltkreise in sensorischen Kortizes wahrend
der Entwicklung einwirken. Diese Arbeit tragt dazu bei, die Rolle dieses Zusammen-
spiels in der Entwicklung funktioneller Schaltkreise im Kortex besser zu verstehen.
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1 Introduction

TO Yop a0TO VOELY EGTlv TE %ol glvon
because the same are thinking and being
Parmenides

plolg xpimTecHon QUAET
nature loves to hide itself
Heraclitus

How do physical systems, as us, acquire knowledge and understanding about the
physical structure of the world and themselves? Starting from this problem, central
questions of epistemology become questions about the brain, as the part of our
body that is first and foremost responsible for this acquisition of knowledge. The
brain is involved in this inquiry in a double sense of being the target of the scientific
investigation and the physical structure that primarily undertakes it.

Computations in neural circuits, networks of interconnected neurons, are per-
formed through the dynamics of the activities of the neurons in the network [5,6].
Circuits involved in sensory processing must transform input signals from the senses
into dynamical signals that trigger adequate behavioral responses adapted to the
situation. To execute computations properly, that is, appropriate for the ecological
demands of the animal, the network structure underlying these dynamics, most
prominently the synaptic connectivity is shaped during an extended period of devel-
opment. In mammalian cortical circuits, this development is a multistage process
shaped by a manifold of mechanisms, which are invoked either in parallel or in spe-
cific sequences [7,8]. Circuits for sensory processing in the cortex are fundamentally
shaped by experience, particularly during later stages of development [9,10]. During
so-called critical periods, these developing cortical circuits are particularly suscepti-
ble to sensory experience of the environment [11]. The experience-dependence of
development is a fascinating gateway into investigating how physical systems can
acquire knowledge about their environment. The signals that shall be adequately
processed are the same signals that shape the structure of the processing circuits in
the first place.

Since the seminal work of Wiesel and Hubel, perturbations of an animal’s sensory
inputs by sensory deprivation have been used to experimentally investigate the
mechanisms underlying the high susceptibility of circuits to experience [12,13].
Sensory deprivation includes a varied set of manipulations that disrupt the sensory
experience of an animal during development, either by manipulating the sensory
organ or the environment. In vision, for example, possible ways of sensory deprivation
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are the sustained (in rodents, usually from one day up to ten days), closure of one
eye, or both eyes (monocular and binocular deprivation, respectively). Alternatively,
young animals are also reared in the dark, removing most of the visual experience
even though their eyes are intact.

In my research, I have addressed how the circuit changes induced by sensory
deprivation shape the activity in network models of sensory cortices. I have used
networks of excitatory and inhibitory model neurons whose recurrently generated
activity is a good model of the activity of cortical neurons [14,15] (see also [16]). I
investigated how such circuits respond to sensory deprivation-induced changes and,
in a second step, how they are shaped by activity-dependent plasticity to understand
the mechanisms that shape circuits in sensory cortices during development in an
experience-dependent manner.

1.1 Understanding neural circuit development through
theory and models

Development is a universal feature of multicellular organisms. Cell division and
differentiation underly growth and the emergence of many different tissues. During
the developmental increase in volume and differentiation into areas in the brain,
we find an extensive developmental adaptation of the circuitry performing specific
computations.

Circuits in the adult brain are of enormous complexity, and we barely grasp how
they perform specific computations. Investigating these circuits in their develop-
mental history, at first sight, seems to further burden us with multiple stages of this
exceptionally complex system. So why should one study developing neural circuits?
We may find that the developmental perspective can reduce the complexity we
need to consider. In their developmental history, young animals and their nervous
systems acquire specific capabilities and functions during specific developmental
phases (Fig 1.1). Many of these skills are acquired sequentially. For example,
the topographic order of inputs to the visual cortex emerges before eye-opening,
followed by the development of receptive fields and the selectivity of visual cortical
neurons for bars with a specific orientation during a period just before and after
eye-opening [7,17]. In parallel to the emergence of this orientation selectivity, neu-
rons initially only driven by the contralateral eye start to be also innervated by the
ipsilateral eye (binocularity). However, the matching of the orientation selectivity
of the inputs from the two eyes only emerges after this binocularity of inputs has
developed. Only then fully binocular vision is established.

When we find a capability of the animal, or a specific computational property
of the corresponding neural circuit, to emerge at some point in time, we can
hypothesize that the best candidate circuit elements that implement these functions
are the elements most substantially changing at that time. Therefore, through
studying development, we may constrain our search for the physiological elements
that implement a computation. Related to this is the idea that understanding
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Figure 1.1: Development of visual processing in rodents. Timeline of events in the
development of visual processing in rodents. Before eye-opening (around postnatal day 14),
development is driven by genetic factors and spontaneously generated activity. One week
after eye-opening, the critical period of experience-dependent development starts. Figure
from [7].

the function of a neural system is best approached by understanding the learning
and plasticity mechanisms underlying its function instead of studying a specific
circuit with all its biological detail. The high variability of the circuits in different
individuals, even within an individual over time, can make it seem impossible to
understand how the structure of the circuit underlies its function [18]. Crucially,
differences between circuits in specific parameters may be compensatory responses
to changes in other parameters induced by homeostatic plasticity mechanisms, such
that the combination of multiple differences in the circuitry produces functionally
similar circuits [19]. By understanding the mechanisms that produce functionally
similar circuits with a different microscopic structure, we may be able to understand
the specific structure of the variability and the overarching principle that abstracts
from the microscopic variability. As an engineering example, we may also think of
machine learning approaches. The engineer often primarily controls the network’s
learning mechanisms and global properties, but not the detailed connectivity that
emerges to solve the task.

Theoretical models are a valuable tool to investigate mechanisms in neural circuits
in a way that abstracts from the biological variability to understand the principle
behind a computation in a neural circuit. The mathematical formulation of these
models forces us to be precise and to set up models that are complete and self-
consistent [16]. A further benefit of mathematical models is the fast turnover of
hypotheses. At its best, a computational model can generate, and potentially confirm
or reject, hypotheses at a pace inaccessible to experimental investigation. The goal
of modeling is to gain insight into a process and extract a mechanism hidden within
the system’s complexity. Such a model only includes relevant variables of the process
investigated instead of being a one-to-one mapping of a specific circuit. The challenge
is to include the necessary biological detail without importing confounding factors.
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Whether a circuit element is a relevant mechanism or a confounding factor depends on
the question at hand, that is, in models investigating different circuit levels, different
circuit elements become the relevant mechanistic or causal components. Theoretical
models on multiple levels have generated many insights into the development of
neural circuits [4]. Using a detailed single neuron model with elaborate morphology,
my colleague Jan Kirchner studied the development of the organization of synapses
on individual dendrites and dendritic branches, finding specific conditions for the
emergence of clusters of synapses with similar stimulus preferences [20]. In a
network of biophysically realistic model neurons, yet abstracting from the complex
morphology, it was shown that the development of the ion channel composition of
single neurons changes the mode of information transmission in a network. This
mode changes from a reliable and selective transmission of large and slow fluctuations
of an incoming current to selective transmission of fast fluctuations [21]. On a yet
higher level of abstraction, the physiology of neurons may be reduced to just a
rate input-output relation. On this level, it is possible to study the development
of large and complex populations. In classical work with such a model, Ken Miller
investigated the emergence of different domains in the visual cortex that receive
inputs just from one of the two eyes and the specific distribution of these domains [22].

In my research, I studied the activity emerging in large networks of simplified
spiking neurons. The model abstracts from the physiology of the neurons, such as
elaborate dendrites and interacting ion channels, and reduces each neuron to a single
variable, the membrane potential. However, the spiking behavior is maintained,
meaning that the neurons exchange signals through distinctly timed pulses. The
spike is a causal element of model networks of spiking neurons, even if we describe
the networks on the level of rates [23]. With such simplified neurons, the essential
variables of the system are the parameters of the connectivity, which determine
the activity structure and the dynamics of the network. Through my modeling, I
investigated how changes of the connectivity investigated during sensory deprivation
in previous work shape the activity in networks and how these changes relate to
activity changes characterized in vivo.

1.2 Thesis overview

In Chapter 2, I present the relevant biological and theoretical background of my
research from the neuroscientific literature. My work rests on experimental research
investigating the connectivity in cortical circuits and how it is shaped during
development, specifically how it is influenced by early sensory experience. As the
crucial paradigm, I review relevant results from sensory deprivation experiments. I
then also discuss previous modeling work which investigated sensory deprivation
using multiple network architectures. Finally, I introduce the basics of the type of
networks I used to further our understanding of the organization processes during
experience-dependent development.
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In Chapter 3, I investigate how experimentally observed synaptic changes induced
by two days of monocular deprivation (MD) affect the activity in network models
composed of excitatory and inhibitory neurons. Two days of MD is a comparatively
brief period. It is not long enough to observe complete homeostasis of activity
to the changed input after eyelid closure, yet long enough to observe profound
effects on the activity and connectivity of the cortical circuit. I am specifically
interested in how the observed synaptic changes relate to the experimentally observed
regulation of the cortical activity during the first two days of MD. I use parameter
scans of the potential synaptic changes and extract the whole landscape of firing
rate changes. For these scans, I define ranges of parameters associated with MD-
induced synaptic changes. I then vary multiple parameters in parallel on a grid
spanning the thus defined parameter spaces. Thereby, I extract firing rates for all
potential synaptic changes within these ranges. My research rests on simulations of
large-scale networks composed of spiking neurons and on mathematical analysis of
simplified dynamical models representing the average firing rates of the excitatory
and inhibitory populations. This research shows a strong dependence of the possible
regulation of firing rates on the coupling strengths in the network and specifically
on the stabilizing role of inhibition in the circuit. It will become apparent that a
network of just one excitatory and one inhibitory population is problematic if we
want to explain how synaptic changes in the cortical circuit lead to the regulation
of firing rates observed in experiments in vivo.

In Chapter 4, I thus expand the model to include an additional subtype of
interneurons as a direct extension of the model investigated in Chapter 3. Cortical
circuits are composed of multiple interneuron subtypes, all of which have specific
connectivity and specific functional roles. The main classes of interneurons are
comprised of three subtypes which are major contributors to local cortical processing
[24,25]. My modeling shows that the inclusion of two subtypes of interneurons is
a viable solution to explain how experimentally observed synaptic changes during
brief MD underlie the regulation of firing rates in the animal. I find that the
additional subtype of interneurons directly operates on the mechanism that hinders
the explanation of the firing rate regulation with just one subtype of interneurons,
providing a mechanistic understanding of the necessary elements to model the firing
rates in vivo.

In Chapter 5, I investigate how biologically inspired plasticity mechanisms shape
such a circuit that includes two subtypes of interneurons. For this inquiry, I
use a common framework for learning and development of neural networks with
functionally specific connectivity, namely the training and emergence of Hebbian
assemblies. Such assemblies are groups of neurons that consistently coactivate and
strongly connect with each other, proposed by Hebb as the fundamental units of
neural computation [26]. The strong connectivity among neurons that coactivate
emerges during development in an experience-dependent manner [27,28]. A prevalent
proposal is that they emerge from Hebbian forms of plasticity (recently reviewed
in [29]), colloquially referred to as fire together—wire together (after Carla Shatz). In
models with just one subtype of interneurons, this training has been successfully
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investigated in the literature [30-32]. I extend the model to include biologically
inspired plasticity mechanisms and diversity of interneuron subtypes in large-scale
recurrent spiking networks. I investigate the emergence of Hebbian assemblies and
their consequences for the circuit dynamics under multiple training paradigms.

Finally, I discuss the results in their broader perspective, scrutinize the limitations
of my approaches, and propose future research directions in Chapter 6.



2 Biological and theoretical foundations

Experience-dependent development of cortical circuits plays a significant role in the
refinement of connectivity and processing capabilities of cortical circuits. These
refinements are driven by activity-dependent plasticity of synaptic connections. In
this section, I first introduce the central elements of the visual processing machinery
in mammalian brains (Sec. 2.1). Before visual signals arrive in the primary visual
cortex (V1), they go through multiple stages of neural processing (Sec. 2.1.1). Within
V1, neurons receiving these signals form complex circuits, which, in conjunction with
the preprocessing in the previous stages, shape their functional response properties,
e.g., the selectivity of single cells to respond to the presence of specific features in
the visual scene (Sec. 2.1.2). These functional properties and the circuits underlying
them are not fully established at birth but form during an extended period of
postnatal development that includes multiple stages (Fig. 1.1). At the earliest
stages, before visual experience, the development is driven by intrinsic, genetic
factors and spontaneously generated activity. After these early stages, some of the
response properties of cells found in the adult are established. Thus, to understand
the context and relevance of the circuit development during the later, experience-
dependent stages, which were the focus of my research, I will introduce the structures
that already have formed through the early stages of development (Sec. 2.1.3).

In Sec. 2.2, I introduce the mechanisms acting during experience-dependent stages
of development, most notably in so-called critical periods, during which cortical
circuits are particularly susceptible to perturbations of their sensory environment. To
study the mechanisms and the functional role of these periods of high susceptibility
to the sensory experience of the animal, a rich strand of research used different
paradigms of sensory deprivation. 1 give a brief overview of these paradigms and
some of the insights they produced. My research was primarily concerned with the
effects of monocular deprivation (MD), specifically, its effects on the circuitry in the
monocular portion of the visual cortex (V1m), which is exclusively driven by one of
the eyes. I outline the experimental foundations underlying my research in more
detail in Sec. 2.3.

The study of sensory deprivation has also attracted attention from theory and
modeling. I introduce important insights from the literature in this field in Sec. 2.4.
In Sec. 2.5 I introduce general aspects of the models which I used to study the
effects of sensory deprivation. I studied large-scale spiking networks with excitation
and inhibition that balance each other dynamically, as well as a population-rate
description of the average firing rates in these networks. Specifically, for the spiking
networks the notion of the balanced state and its dynamical consequences is central
(Sec. 2.5.1). T have used simplified rate models to analyze how the different neuron
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types interact on a population level. I introduce the notion and analytical description
of inhibitory stabilization of the excitatory activity in such population-rates models
composed of a single excitatory and inhibitory population (Sec. 2.5.2), and how this
inhibitory stabilization behaves with multiple subtypes of interneurons (Sec. 2.5.3).
Finally, I give a brief outlook for the relations between inhibitory stabilization and
deprivation-induced plasticity in the developing cortex (Sec. 2.5.4).

2.1 Structure and development of the mammalian visual
system

2.1.1 The visual pathway

Many areas of the mammalian brain are involved in the processing of visual infor-
mation. These different areas have rich interconnectivity of feedforward, feedback,
and local recurrent connections [33]. The principal stream of visual information flow
from the outside world to the neocortex can be reduced to a canonical structure of
feedforward signal transmission. Starting at the retina, where visual signals enter
the nervous system, this stream goes through the lateral geniculate nucleus (LGN)
in the thalamus to V1 (Fig. 2.1).

At its entrance into the visual system, active optical components transform and
select visual information, for example, by choosing the depth and localization of
optical focus through a muscle-controlled flexible lens and eye movements. This
initial transformation of, and selection from, all the visual signals in the surroundings
shapes the statistics of the visual inputs the brain receives. These statistics shape
cortical circuits, which are especially plastic during development [4]. However, to
give rise to properly functioning circuits, the plasticity and input statistics must
accord with one another [34], otherwise dysfunctional circuit structure and responses
can result [35].

The retina is the first neural stage of visual processing. It comprises a diverse
set of different, specialized cell types embedded in an elaborate circuitry [36]. The
output of the retina emanates from retinal ganglion cells. Retinal ganglion cells have
particular spatiotemporal response properties, such as selective firing in response
presence of light (ON-cells) or its absence (OFF-cells). Such selectivity often pairs
with a temporal component, where some cell types have transient responses that
signal changes of the luminance conditions in their field of view, or cells with
sustained responses that signal overall brightness [37].

The retinal output is transmitted through the optic nerve to the thalamus,
specifically the lateral geniculate nucleus (LGN). Before the thalamus, the nerves
emanating from either eye cross over to the respective opposite brain hemisphere
(the contralateral hemisphere) in the optic chiasm. In rodents, most of the fibers
from an eye cross to the contralateral hemisphere (Fig. 2.1, left).

Excitatory cells in the LGN, the relay cells, transmit the visual signal further
to V1. The area V1 is a part of the mammalian neocortex, which is, in turn,
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Figure 2.1: The mammalian visual pathway. Structure and comparison between
rodents (left) and primates (right). Regions of monocular vision of the left (blue) and right
eye (red), and the region of binocular vision (purple). Pathway in one hemisphere of the
ipsilateral eye (blue), and the contralateral eye (red). Modified from [39].

a part of the cerebral cortex. A six-layered arrangement of neural cell bodies is
characteristic for the neocortex. As is custom, I will simply use “cortex” to reference
the six-layered neocortex'. The LGN inputs arriving in V1 target the middle layer
4 as the primary input layer and, to a lesser extent, the deep layer 6 [38]. These
projections are excitatory but synapse onto both excitatory and inhibitory cells
in their target location. From the primary input layers 4 and 6, the visual signal
is sent to the upper layer 2/3 and then to higher-order cortices (from layer 4) or
subcortical targets (from the deep layers 5 and 6). The latter also includes feedback
projections involved in recursive thalamo-cortical/cortico-thalamic connectivity.
Due to the crossover in the optic chiasm, the largest fraction of the cells in one
hemisphere of the LGN in rodents, as well as V1, primarily receive signals from the
contralateral eye (Fig. 2.1, red). A minority of the fibers from an eye remain on

!This terminology is not unique, since one should distinguish, first, the cerebral cortex from the
cerebellar cortex, and, second, within the cerebral cortex the six-layered neocortex from the
three-layered paleocortex and the four-layered archicortex.
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the same side of the brain (seen from LGN or V1, this is then the ipsilateral eye,
Fig. 2.1, blue). While the fibers from the different eyes target separate portions of
the LGN, their signals partially mix in V1. Contralateral fibers target cells in all of
V1, whereas the fibers from the ipsilateral eye only target cells in a small portion of
V1. The region in V1 where signals from both sides arrive is the binocular primary
visual cortex (V1b), while the larger part that only receives direct signals from the
contralateral eye comprises the monocular primary visual cortex (V1m). Single cells
in V1b receive inputs from both eyes, where usually one of the two is dominant.
The quantitative aspects of the binocular vs. monocular portions of V1 depend on
the species. While in rodents, we find a large monocular fraction, in primates and
carnivores, most (if not all) of the V1 receives inputs from both eyes. However,
in these species, so-called ocular dominance columns form. These are domains in
which cells are primarily responsive to one of the eyes. The distribution of these
domains has a regular structure [22] and is highly sensitive to the experience of the
animal, especially to monocular deprivation, the sustained closure of one eye [9] (for
more details see Sections 2.2 and 2.3).

Ocular dominance is one among many tuning properties of neurons in V1, ex-
pressing a selectivity of a cell to respond to signals to either one of the eyes. Visual
cortical neurons have a localized receptive field describing the part of the visual
field from which a response of the cells can be elicited, but furthermore also defines
the tuning to more specific characteristics of visual stimuli [40]. Hubel and Wiesel
found that cells in the cat V1 strongly responded to edges of some orientation or
another [40]. Since then, the response to such edges has been investigated extensively,
using drifting gratings as one of the most widespread patterns used for stimulation.
These are circular patches of sinusoidally modulated brightness, building a pattern
of parallel edges. From the properties of these drifting gratings, basic tuning prop-
erties of neurons in V1 can be analyzed, like orientation selectivity, but furthermore
direction selectivity (for moving drifting gratings), spatial-frequency tuning, i.e.,
the selectivity for the speed of the luminance modulation in the drifting grating,
and size tuning, or surround suppression, the selectivity for the total radius of the
drifting grating with some preferred size. These tuning properties are shaped by
the synaptic connections in feedforward and recurrent pathways, and are modulated
by long-range horizontal inputs and higher-order feedback.

Dependent on the species, tuning properties such as the orientation tuning and
the ocular dominance have an orderly distribution within the cortical sheet, called
maps [41]. Probably the most basic and best-preserved of maps (across species) is
the retinotopic map. The positions of the localized receptive fields determine the
selectivity of neurons to be driven only from specific locations in the visual field. The
neighborhood-relations between these receptive fields align with the neighborhood-
relations of the cells: cells that are nearby to each other in the cortex also receive
visual inputs from nearby positions. In primates and carnivores, but not in rodents,
also orientation selectivity of V1 cells is arranged on an ordered map, where cells in
neighboring positions have similar orientation preferences (except around so-called
pinwheels [41]). The distribution of single cells’ selectivities influences the statistics
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of the inputs cortical cells receive from their closest neighbors, with which they form
highly recurrent local circuits.

2.1.2 Circuits in the primary visual cortex

The cortical sheet is densely packed with neurons, the largest fraction of which are
excitatory. Pyramidal cells are the most common morphological type of excitatory
neurons in the cortex, especially in V1 [42]. The excitatory pyramidal neurons
within one layer highly interconnect through synaptic contacts with thousands of
cells [43]. They receive synapses from both local excitatory and local interneurons
at their basal and apical dendrites [24,44].

The large amount of connections suggests a statistical view, that is, to assume that
connections are determined by chance and to focus on the study of expectation values
and variability in ensembles of random networks [45]. However, local circuits in the
cortex are not purely random networks in which the pairs of neurons connecting
are chosen by chance. Rather, certain motifs of connections, especially bidirectional
connections between pairs of cells, where a synapse from either of the neurons targets
the other, are much more likely found in cortex than is expected by chance [46].
This over-representation of bidirectional connections suggests that neurons in the
cortex form Hebbian assemblies [47]. Hebb proposed that neurons with correlated
activity could be more strongly connected than uncorrelated neurons, with groups of
such correlated neurons ultimately forming highly interconnected groups that serve
as the primary computational units in the brain [26]. The emergence of such groups
could be driven by plasticity of connections in the network that increases synaptic
weights based on correlations, referred to as Hebbian plasticity. Using interconnected
groups of neurons as the computational units can be seen as a counterproposal to the
prevalent view of feedforward processing [48]. In the feedforward view, the function
of cells is primarily determined through their tuning properties, the receptive field,
essentially seeing them as feature-detectors that progressively become selective for
ever more complex features along the processing stream, ultimately giving rise
to complex computations such as the categorization of complex scenes [49]. The
assembly view proposes that the selectivity of single neurons is flexible and context-
dependent, shaped by the recurrent interactions within an assembly and between the
assemblies [48]. Although this account emphasizes the recurrent processes, it does
not contradict the fact that cortical neurons have certain feature-detector properties
expressed through their tuning. Beyond the purely statistical over-representation of
bidirectional connections, it was indeed found that neurons in V1, which have highly
correlated receptive fields, do connect with higher weight and higher probability
than neurons whose receptive fields are uncorrelated [50,51].

Even though layer 4 is the primary input layer for visual signals from the LGN,
recurrent connections from excitatory neurons within cortex account for the major
fraction of the excitation which an excitatory neuron in layer 4 receives [52]. Such
strong recurrent excitation, likely to be present in many parts of the cortex, con-
stitutes a strong positive feedback loop that calls for negative feedback to prevent
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runaway activity. A highly diverse set of inhibitory interneurons in the cortex
appears to serve this function.

The most common classification of cortical interneurons into a few non-overlapping
classes that include most of the interneurons present in a circuit is based on molecular
markers. Rudy and colleagues could show that three markers can cover almost all of
the cortical interneurons [25]. These markers are parvalbumin (PV), somatostatin
(SST), and 5HT3aR, a serotonin-receptor. The latter class is frequently further
distinguished into vasoactive-intestinal peptide (VIP) positive interneurons and into
non-VIP interneurons [24].

All of the interneuron classes in this general scheme are heterogeneous, for example,
concerning the morphology of the cells or their electrophysiological properties [53],
but also show similarities that indicate a functional significance of the categoriza-
tion through molecular markers. For example, multiple morphologically defined
interneuron types that express PV, like basket cells and chandelier cells, are classified
as fast-spiking (F'S) type based on their electrophysiological properties [24]. The
fast-spiking property has two sides. First, the spike in itself is indeed faster than,
for example, in an excitatory neuron electrophysiologically identified as regular
spiking. In extracellular recordings, this difference of the properties of single spikes
can be used to classify neurons and, for example, distinguish putative excitatory
from putative PV neurons [54]. The second aspect of the fast-spiking property is
that these cells can maintain a high firing rate without adaptation [24].

Somatostatin-positive (SST) interneurons are morphologically divided into the
Martinotti- and non-Martinotti-cells [24]. The Martinotti-cells are found in layers
2/3, 5, and 6 and have a very distinct morphology with axonal processes targeting
the most upper layers (primarily layer 1) in the visual cortex from cells with somata
as deep as layer 5 or 6 [55]. In contrast, the non-Martinotti-cells mostly reside
in layer 4 and have the axonal projections largely restricted to this layer. These
two cell types are also electrophysiologically distinct from each other. While the
Martinotti-cells show heterogeneous spiking behaviors, e.g., bursting or regular
spiking, the non-Martinotti-cells show primarily fast-spiking behavior, although
with some adaptation of the spiking frequency (called quasi-FS).

However, also some remarkable similarities of neurons within either of these
classes appear [24]. It is robust, for example, that the parvalbumin-positive (PV)
interneurons synapse onto the soma and the axon-initial segment of an excitatory
cell, meaning that they directly control the output of this cell. SST-interneurons,
on the other hand, preferentially target the dendritic tree of an excitatory cell, thus
controlling the input to the excitatory neurons.

Pfeffer and colleagues published an experimental analysis of the connectivity
of the interneuron subtypes defined by these different markers and uncovered its
general patterns [56]. PV-interneurons strongly inhibit other PV-interneurons, along
with excitatory neurons, but they do not inhibit SST- or VIP-interneurons (Fig. 2.2).
They densely connect to nearby excitatory neurons, likely without specificity of
the selectivity of the excitatory neurons [57]. This makes the PV-interneurons
well suited to dynamically stabilize excitation, also suggested by the fact that the
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Figure 2.2: Connectivity of interneuron classes in the primary visual cortex.
Excitatory cells (E, black), and three major classes of interneurons identified by molecular
markers: PV, SST and VIP. Presence of connections determined following [56]. Inputs to
the neuron classes can broadly be classified into feedforward sensory inputs to E and PV, e.g.
from LGN to layer 4 [38], into top-down feedback inputs from higher order cortical centers
to E, SST and VIP [61], e.g. locomotion related inputs to VIP [62], and into long-range
inputs from within the same cortical area to E and SST [59].

PV-interneurons’ output strength onto an excitatory neuron is correlated with
the excitation this cell receives [58]. SST-interneurons do not inhibit other SST-
interneurons, but they do inhibit all other types of interneurons, PV and VIP, as
well as excitatory neurons. Thus, SST-interneurons seem to distribute inhibition
throughout the circuit, which seems consistent with their putative role in surround
suppression of excitatory and PV responses [59,60]. VIP-interneurons appear highly
specialized in inhibition of SST-interneurons.

PV- and SST-interneurons play different functional roles. Optogenetic activation
of either of the interneuron subtypes suppresses the activity of excitatory neurons.
However, while SST-activation leaves orientation tuning of the excitatory neurons
unchanged, activation of PV-interneurons leads to more sharply tuned responses [63].
Underlying this sharpening is a specific form of the modulation of tuning curves.
Subtraction from activity, homogeneous for all activity values, leads to a sharpening
of the tuning (through an iceberg effect), whereas division that scales with the level
of activity leaves the overall tuning sharpness unaffected. The specific form of this
modulation by different interneuron subtypes, specifically PV and SST, elicited
considerable debate [63-65], where the consensus emerged that it is highly dependent
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on the dynamical state and the details of the experimental setup, e.g., the depth of
anesthesia and the laser intensity used in optogenetic stimulation [66].

The different interneuron subtypes receive their inputs from different sources.
PV-interneurons receive strong feedforward drive, for PV-interneurons in layer 4
this drive comes from the LGN [38]. VIP-interneurons are driven specifically by
higher-order feedback. The opposite preference of PV- and VIP interneurons to
be driven by bottom-up vs. top-down inputs was recently used to determine the
hierarchy of cortical areas in sensory processing [67]. Through their inhibition of SST-
interneurons, VIP-interneurons govern contextual disinhibition during locomotion
[62]. SST-interneurons receive negligible inputs from the feedforward pathway, but
also receive higher-order inputs [61, 68], and inputs from higher-order thalamic
nuclei [69].

Although some insights have been gained, research is still ongoing on how the
different properties of these interneuron subtypes, e.g., their connectivity and input
sources, can give rise to the functional roles they play. Modeling can specifically aid
in uncovering how these different aspects interact in highly recurrent networks.

2.1.3 Development of visual circuits, activity and processing

In the earliest embryonic development, many interesting processes take place, like
the formation of the neural tube and its differentiation into different regions or the
emergence of axons and dendrites from neural progenitor cells [70]. However, I will
focus on the refinement of visual circuits after neurons are established, have their
somata in place, and have differentiated axons and dendrites that already connect
neurons into networks. The refinement of the circuits appears shortly before and,
most prominently, after birth.

The eyes of a rodent remain closed until roughly two weeks after birth. During
this time, circuit refinement takes place based on molecular gradients (such as the
Eph/ephrin system), and spontaneously generated activity [17,71]. In the initial
stages, molecular gradients that signal the topographic axes of the cortical sheet
set up the retinotopic maps in the LGN and V1 by guiding axons to their target
locations. In parallel, spontaneously generated activity in the retina also influences
the formation of these maps, as well as receptive field refinement of the single
neurons [8]. Retinal spontaneous activity is highly structured in so-called retinal
waves whose statistical and generating mechanisms progress through multiple stages
that start before birth and last until after eye-opening. The input generated by these
waves propagates throughout the visual system, and likely influences connectivity
refinement along the whole visual pathway [72]. On the level of the cortex, both
spontaneous, intrinsically generated activity that spreads over large areas, as well as
localized events that are driven by the retinal input, emerge [73]. The spontaneously
generated activity of large bursts that synchronizes cells over large areas in the
cortex gradually vanishes and is indistinguishable from mature activity by the time
of eye-opening around postnatal day 14 (P14) [74].
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Driven by this activity, global features such as the retinotopic map, as well as single
neurons’ receptive fields, are established at eye-opening when experience starts to
become a significant factor in the further development of the circuitry. Even though
the neurons already have an established receptive field, the connectivity between
cells is not specific for cells with highly correlated receptive fields at eye-opening [27].
During the first week of visual experience of the mouse (the third postnatal week,
P14-P21), however, neurons with correlated receptive fields become more likely
connected than neurons with uncorrelated receptive fields. The probability of
bidirectional connections increases during this period, making the first week of
sensory experience a possible period for the emergence of the putative Hebbian
assemblies in V1 (see above). Visual experience, however, only contributes a part to
this emergence of selective connectivity, as it also emerges partially when the mice
are kept in the dark during this time [28]. However, some significant differences
of this connectivity between animals raised in the dark and animals with normal
visual experience can be identified: (a) the preferential connectivity between cells
with similar receptive fields is less strongly expressed in animals raised in the dark,
and (b) the reduction of connections between cells with dissimilar receptive fields is
entirely prevented by dark rearing. Together these two factors lead to less selective
connectivity overall.

In parallel with this refinement of the recurrent circuitry, orientation tuning and
ocular dominance further refine [7]. However, especially the binocularity of inputs
and the binocular matching, that is, that inputs from the two eyes impinging on one
neuron have similar receptive fields, further refines in a period of high experience-
dependent plasticity that has been termed the critical period (CP, also the canonical
critical period) [11] (for binocular matching, see specifically [75]).

2.2 The canonical critical period and sensory deprivation

Investigations of the effects of sensory deprivation on the cortical circuit began with
Thorsten Hubel and David Wiesel in the early 1960s when they studied the effects
of long-term lid-closure in kittens [12], and have since then been undertaken in a
range of species and with different forms of deprivation (Table 2.1). Hubel and
Wiesel investigated in these experiments, how the distribution inputs to cortical
cells from either of the two eyes (their ocular dominance) changes if one of the eyes
is closed for extended periods (lasting from a few days to months), called monocular
deprivation (MD). Their research uncovered drastic shifts of this distribution in
favor of the eye that was still functional. Interestingly, these investigations of the
development of specific tuning properties of neurons in V1 were undertaken at the
same time as when these tuning properties were discovered in the first place [9,40].
An important discovery beyond the changes of cell responses induced by deprivation
was the discovery of the critical period [13].

MD can be induced by multiple means, e.g., through closure of one eyelid either by
sewing or gluing, through inactivation of retinal activity in one eye by intra-ocular
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injection of TTX (monocular inactivation), or one eye can be surgically removed
(monocular enucleation). A disadvantage of the latter is that it is not reversible, and
thus, does not allow to investigate if recovery would be possible when the inputs
are restored. A direct extension of these monocular paradigms is to perform either
of them binocularly. Another highly effective paradigm to study the development of
visual cortical circuits is to keep animals in darkness for an extended period (see [10]
for comparison with MD), or even rearing animals in the dark starting before the
onset of vision (dark exposure, dark rearing). Even experimental procedures as
closely related as MD through lid suture or MD through retinal inactivation have
different effects on the developing brain. These differences are driven by differences
in the spatial and temporal correlations on the spike trains in the LGN after MD
of different methods [76]. I refer to MD primarily to mean monocular lid-suture
unless mentioned otherwise. The comparison of experimental results across multiple
monocular deprivation paradigms can be advantageous, but the procedures must be
carefully distinguished because of subtle differences in the plasticity they induce
(Table 2.1).

On the single-cell level, extended MD leads to a loss of responsiveness of the
cortical cells to the deprived eye [10,12,77]. This loss is not apparent in the retinal or
thalamic circuitry but only emerges at the level of the cortex, where it also involves
thalamocortical synapses [9]. This underlies the overall shift in the ocular dominance
distribution within the cortex in favor of the open eye. In animals with an ocular
dominance map (primates and carnivores), MD prevents the normal development of
these maps. After normal development, the domains driven by either of the eyes
have similar sizes and distribute over the cortical sheet in stripes. After MD, the
domains of the deprived eye are markedly reduced as small islands surrounded by
domains selective to the open eye [9] (see also [22,78]).

Rats and mice do not have an ocular dominance map, but the ocular dominance of
the cells also shifts towards the open eye. This shift towards stronger dominance of
the open eye is a two-stage process: within only two days of MD, the responsiveness
to the deprived eye decreases, while only later-on, after five days of MD and more, a
potentiation of responsiveness to the spared (open) eye is observed [77]. Binocular
deprivation on this timescale has little effect [77]. Likely, MD has stronger effects
because it induces competition between a deprived and a spared (non-deprived) input
stream. However, longer binocular deprivation also leads to increased responsiveness
of the cells [81].

Brief MD leads to depression of feedforward synapses onto excitatory neurons
in both Vlm and V1b [81] (for more details on V1m see Sec. 2.3). However, the
responsiveness of fast-spiking interneurons shifts to favor the closed eye during early
MD, which could contribute to the early decrease of responsiveness of excitatory
neurons to the closed eye [79]. With longer MD, also the preference of the fast-spiking
cells shifts towards the open eye.

The depression of feedforward synapses can be either caused by decreased activity
arriving from the closed eye or by a decorrelation of these inputs. Linden and
colleagues found that neither the amount of activity nor its temporal structure in
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Table 2.1: Experimental studies of deprivation-induced plasticity. CP: critical
period, DR: dark rearing, MS: monocular lid suture, MI: monocular inactivation (e.g.,
through injection of TTX into one eye).

Ref. Age, Type Effects
Species
[12] P8 onwards, MS Drastic ocular dominance shifts by MS (1-4
cat months), loss of responsiveness to the deprived
eye in V1
[13] P28-90, cat ~ MS Discovery of a CP for deprivation effects in kit-
ten V1 between P28 and P56
[10] P17-45,rat DR & MS Maturation of visual response properties in V1,
all perturbed by dark rearing, ocular dominance
shift by MS
[76] P28 (CP), MS & MI  Neither MS nor MI change mean rates in LGN,
mouse MI increases the fraction of bursts in LGN fir-
ing, MS decreases cross-correlations while MI
increases them
[77] P28-33 MS & MI  Different ocular dominance shifts for MI and MS:
(CP), mouse MI produces potentiation of open-eye responses,
MS produces depression of closed-eye responses
[78] P27-33 MS Fast changes of ocular dominance within the
(CP), cat first day of MS occur in upper layers 2/3 but
not in input layer 4
[79] P24-32 MS PV shift their preference initially towards the
(CP), mouse closed eye, but later favor the open eye
[80] >P60 (post- MS Upon repeated MS and reopening, single cells
CP), mouse return to their preferred ocular dominance
[81] P21-P28 MS Potentiation of responsiveness to both eyes after
(CP), rat six days of MD requires synaptic scaling and
involves plasticity of intrinsic excitability
[82] P18-21 MS Two days of MS induce potentiation of recur-
(CP), rat rent inhibition in V1m, the plasticity mechanism
underlying is identified
[83] P15-23 (pre- None Plasticity mechanism of inhibitory synapses in
CP & CP), V1m switches sign from depression to potentia-
rat tion at the onset of CP
[84] P15-26 (pre- MS Potentiation of recurrent inhibition after MS
CP & CP), during the CP is expressed in multiple synaptic
mouse properties
[85] P18-28 (pre- MS Onset of CP is accompanied by switch of sign
CP & CP), of inhibitory plasticity also in V1b
rat
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LGN changes upon eyelid closure [76]. Instead, the correlations between LGN relay
cells decrease. The change of correlations rather than average activity levels has
important implications for the nature of the plasticity mechanisms underlying the
competitive plasticity in V1b (see below, Sec. 2.4). In contrast to the closure of
the eye, inactivation through injection of TTX into the eye leads to more bursting
activity and increases correlations of LGN neurons, while mean activity is also
unaffected.

The most dramatic effects of MD occur when it is applied during the CP. In
rodents, this developmental phase starts around the beginning of the third postnatal
week (P21) and begins to decline around the end of the fifth postnatal week (P33-
35) [10]. During the critical period, the shift of the ocular dominance due to MD
can lead to functional blindness on the deprived eye that is irreversible (amblyopia).
This can also appear in children when the eyes are misaligned during development
(strabismus) or when a natural condition effectively leads to monocular deprivation
like a congenital cataract [86]. In the latter case, amblyopia can only be prevented
by surgery early in life, suggesting a CP in humans. MD in adult animals can also
shift the ocular dominance of single cells, but this shift is reversible after re-opening
of the deprived eye [80].

The induction and termination of the CP are driven by the maturation of PV-
interneurons [11]. Enhancing the action of the inhibitory neurotransmitter GABA,
e.g., by application of benzodiazepines, leads to an earlier onset of critical period
plasticity. On the other hand, dark rearing from birth delays the maturation of
GABA function and the onset of the critical period.

Neural circuits are highly plastic throughout development and remain plastic into
adulthood. The CP is not only a period of heightened plasticity but is also governed
by distinct plasticity mechanisms. Lefort and colleagues found a switch in the sign
of plasticity induced by the same electrophysiological protocol at the onset of the
CP [83]. The protocol, originally described in [82], combines a subthreshold depolar-
ization of a postsynaptic excitatory neuron with spikes from a presynaptic inhibitory
fast-spiking cell. They found that this protocol induces long-term depression before
the onset of the CP (animals aged P15-P17) while it induces long-term potentiation
after the onset of the CP (animals aged P21-P23) [83,84]. A further change related
to the onset of the CP they found was that plasticity in the reciprocal synapses,
from excitatory onto inhibitory neurons, cannot be induced by the same protocol
before the onset of the CP, but that the synapses are potentiated through it after
the onset of the CP. Also, in V1b, the plasticity of inhibitory synapses switches sign
with the onset of the critical period for ocular-dominance plasticity [85].

2.3 Monocular deprivation and the monocular primary visual
cortex

The disruption of vision in one eye during development has strong, long-lasting
effects on binocular processing in the adult. It seems natural to study the effects
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of monocular deprivation in V1b, in which inputs from both eyes arrive and are
integrated. However, there are multiple arguments for studying the effects of MD in
Vim.

A quantitative reason is that the major fraction of V1 in rodents, such as rats
and mice as two of the essential mammalian animal models, is monocular.

Secondly, closing the contralateral eye disrupts the one primary source of sensory
signal in V1m. Studying the effects of this closure is an experimentally accessible
path to study how brain areas are possibly “re-purposed” when a brain area can
no longer serve its original function (or degenerate in the long term). For example,
when rats are deprived of vision from birth by enucleation, cells in the visual areas
become responsive to somatosensory stimuli [87]. MD during the critical period
may not be sufficient to induce such drastic shifts but could, for example, lead to an
expansion of inputs from the ipsilateral eye also into the monocular region initially
driven by the contralateral eye.

Thirdly, the plasticity in V1b is driven mainly by competition between the inputs
from the two eyes. The closure of one eye leads to a form of winner-take-all dynamics
in V1b in favor of the open eye. Such competition makes the experimental dissection
of the synaptic basis of the changes in responsiveness to the closed vs. the open eye
(fast loss in responsiveness to the closed eye vs. slower the gain in responsiveness to
the open eye [77]) harder and can confound interpretation of the results. Furthermore,
strong winner-take-all competition is a very distinct form of plasticity, whereas the
plasticity of a single input after a change of its statistical properties represents the
more general case. Finally, as an experimental benefit, the focus on V1m also offers
the opportunity to have the control case of the experiment within the same animal by
measuring activity or plasticity in both hemispheres. The hemisphere contralateral
to the closed eye is the experimental condition, and the ipsilateral hemisphere is the
control case. Given the high variability of many biological characteristics between
individuals, the direct comparison within one animal can reduce this source of
uncertainty.

Despite the absence of a winner-take-all competition, MD also induces strong
plasticity in V1m. It also triggers a sequence of activity changes in the cortex that
progress from an early drop of activity within the first two days of MD, to a later
recovery that homeostatically regulates activity to its baseline level within six to
eight days, with distinct timescales for excitatory and inhibitory activity. How
the experimentally measured plasticity gives rise to the experimentally measured
regulation of activity is not yet understood. This relation was a primary focus of
my research.

2.3.1 Activity in V1m during prolonged MD

Hengen and colleagues studied how the activity in V1m develops during multiple
days of MD in freely behaving animals in vivo [54,89]. These experiments lasted
from days P24-P32 which lie within the CP (Fig. 2.3). During the first three days
of measurement, the activity in the baseline state was monitored, and only then
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Figure 2.3: In vivo activity during monocular deprivation in the monocular
portion of the primary visual cortex (V1m). Normalized firing rates of regular spiking
units (RSU, black, presumably excitatory neurons), and putative fast-spiking cells (pF'S,
red, presumably PV-interneurons). Bars show mean + standard error of the mean (SEM).
Activity from in vivo recordings lasting nine days, between postnatal day (P)24 and P32.
Drop and recovery following MD starting at the evening of P26 (gray shaded area). Figure
redrawn from [54], data extracted using Webplotdigitizer [88].

MD was applied (on the evening of P26). Because the recordings are extracellular,
neuron types can only be identified through the properties of their individual spikes.
The authors were able to distinguish regular-spiking units (RSU), which have the
spiking characteristics of excitatory cells, and putative fast-spiking cells (pFS), that
likely represent PV-interneurons. In the following, I will assume that the electro-
physiologically identified cell types are excitatory neurons and PV-interneurons.

Hengen and colleagues observed a reduction of activity in V1 during the first two
days of MD (Fig. 2.3). A homeostatic recovery of the activity follows this reduction
to the baseline level (before MD), which lasts until roughly five days after MD. At
this point, the average activity is indistinguishable from the activity before MD.
Interestingly, it is not only the overall activity that returns to its baseline level, but
it is indeed single excitatory neurons that return to their individual baseline firing
rates before MD [89]. Single excitatory cells in V1 have an individual firing rate
set-point that is fixed on a timescale of multiple days.

The general pattern of a drop and subsequent recovery of the firing rates is true
for both the excitatory and the fast-spiking inhibitory cells. However, the initial
decrease and subsequent recovery of firing rates happen on distinct timescales for
the two cell types. The average firing rate of excitatory cells is still around their
baseline level on the first day of MD, but it is markedly reduced to around 60%
of this baseline level on the second day of MD (Fig. 2.3, black bars). Recovery is
already visible on the third day, but there might be a slight overshoot of the firing
rates until the rates finally settled on the sixth day. In inhibitory interneurons,
the dynamics of this firing rate regulation of a drop and recovery is faster than in
excitatory neurons. The firing rate of this population drops to around 60% of their
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baseline activity already on the first day of MD and recovers on the second day
(Fig. 2.3, red bars).

Pairwise correlations in the network decrease during the early period of MD,
similarly to the firing rates [90]. Unlike the firing rates, which remain constant in
the control hemisphere (ipsilateral), correlations undergo a developmental increase
during the MD experiment (P27-P31) in the control hemisphere. In the deprived
hemisphere (contralateral), correlations decrease relative to their baseline levels
before the induction of MD during the first two days of MD and then partially
recover back to baseline by the fifth day of MD. The recovery of the correlations
does not only apply to the overall correlations but actually recovers the structure of
the connectivity matrix. A similar recovery of the correlation structure was observed
after re-opening of the eyes in adult animals [80)].

Different from the firing rates and correlations, Ma and colleagues found that the
statistics of avalanches of spikes change immediately after closure of the eye but
recover after two days of MD to their initial state [91]. The baseline state avalanches
express statistics suggesting that cortical firing is in a critical state that maximizes
information capacity and transmission. The recovery of this critical state suggests
that the criticality of the spiking is also a homeostatic set-point.

The fact that the drop of firing rates, as well as of correlations, takes multiple
days to unfold suggests that a lack of input does not generate these activity changes,
as is also apparent from the preserved average activity in LGN just after MD [76].
More likely, the firing rate and correlation changes are driven by a reorganization of
synaptic connections driven by activity-dependent plasticity mechanisms.

2.3.2 Synaptic plasticity in V1m after brief MD

Unfortunately, it is technically not feasible to monitor the development of synaptic
strengths during MD continuously in vivo. Electrophysiological investigation of the
strengths in vitro after 1-2 days of MD uncovered that the first two days induce
profound changes of the synaptic connections, both within V1m and in feedforward,
thalamocortical connections from LGN to neurons in layer 4 of V1m (Fig. 2.4).
The reduction of activity during the first two days of MD could be driven by either
depression of the feedforward synapses that provide the external drive to the network
or by recurrent changes, either depression of recurrent excitation or potentiation of
inhibition within the recurrent circuit. As it turns out, specific synapses in both
feedforward and recurrent pathways undergo plastic changes during the first two days
of MD. Firstly, such brief MD leaves the strength of recurrent connections between
excitatory neurons within layer 4 in V1m unaffected, thus excluding the reduction of
recurrent excitation as one of the possible mechanisms [82,92]. Recurrent connections
between fast-spiking basket cells (the most common type of PV-interneurons with
the highest density in layers 4 and 5 [24]) and excitatory, regular-spiking neurons
potentiated during brief MD [3,82,84] (Fig. 2.4A, B). This suggests the potentiation
of recurrent inhibition to be a major component of the reduction of activity and
responsiveness during the early phases during MD (discussed in [3]).
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Figure 2.4: Synaptic changes induced by two days of MD in rodent V1m.
(A) Paired-patch recordings of excitatory pyramidal cells and fast-spiking (F'S), putative
PV-interneurons demonstrated potentiation of recurrent excitatory synapses onto PV-
interneurons in V1m as well as (B) in the reciprocal, inhibitory synapse from fast-spiking to
pyramidal neurons. Strength was quantified using the peak-amplitude of the postsynaptic
current. (C) Measurement of excitatory inputs through optogenetic stimulation of thalamo-
cortical fibers together with patch-clamp recordings of excitatory pyramidal cells (Pyr) in
V1m (left) demonstrated depression of feedforward synapses (right, quantified using quantal
amplitudes). (D) Measurement of the ratio of total charge arriving in excitatory pyramidal
cells and in nearby PV-interneurons in V1m by paired-patch recordings. This ratio increased
(right), indicating suppression of feedforward synapses onto PV-interneurons. Panels A
and B modified from [82], panels C and D modified from [3] (experiments performed by
Nathaniel Miska).

The potentiation of recurrent inhibition happens in both connections from excita-
tory pyramidal cells (Pyr) to fast-spiking, putative PV-interneurons (Fig. 2.4A), and
in the reciprocal synapse type from fast-spiking to excitatory neurons (Fig. 2.4B) [82].
The authors furthermore investigated the biophysical mechanism of the long-term
potentiation in synapses from PV-interneurons to excitatory neurons. They found a
novel mechanism triggered by a pairing of presynaptic spiking in a PV-interneuron
with a subthreshold depolarization of the postsynaptic excitatory neuron. This
pairing induced potentiation of the inhibitory synapses onto the excitatory neurons
and in the reciprocal synapses. The statistical characteristics of the synaptic changes
(specifically, the coefficient of variation of postsynaptically induced currents and the
paired-pulse ratio quantifying short-term plasticity) were the same when plasticity
was induced using the in vitro protocol as to when it was induced through MD,
suggesting that this plasticity mechanism indeed underlies the potentiation of the
synapses induced by MD. As a further confirmation that the MD-driven potentiation
was based on this mechanism, the authors showed that MD occluded the induction of
synaptic plasticity using their protocol. Maffei and colleagues furthermore excluded
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several factors to contribute to the changes of activity and responsiveness induced
by brief MD in V1m, for example, the connection probability between excitatory
neurons, and changes in synapses from PV to PV interneurons, which were both
found to be unaffected by brief MD.

As an additional assessment of the activity in V1m after two days of MD, Maffei
and colleagues also measured the spontaneous activity in slices and found a reduction
of spontaneous activity of the excitatory cells. Indeed, the changes in spontaneous
activity in vitro can only give an indirect indication of the activity changes in vivo,
but the results align well with the suppression of activity found in excitatory cells
in vivo after two days of MD. Interestingly, in a comparable set of experiments that
were performed clearly before the CP (P15-P17), brief MD increased the spontaneous
activity of the excitatory cells [93]. Increase of activity before the CP vs. decrease
of activity in the CP well aligns with the reversal of the plasticity in the synapses
from PV to excitatory neurons [83,84].

Feedforward synapses from LGN to V1m also undergo plasticity during the first
two days of MD. Thalamocortical synapses impinging onto excitatory neurons
depress (Fig. 2.4C) [3,92], whereas the feedforward E/I-ratio that arrives at an
excitatory cell in layer 4 of V1m increases during the same period (Fig. 2.4D). This
increase indicates that the feedforward synapses onto the strongly feedforward-driven
PV-interneurons in layer 4 also depressed, and that this depression was even more
substantial than the depression of feedforward synapses onto excitatory neurons [3].
A similar pattern of depression of feedforward inputs was also found in the synapses
within V1b going from layer 4 to layer 2/3 [94].

The depression of feedforward synapses found in [3] suggests that the feedforward
pathway also contributes to the reduction of the responsiveness after MD. However,
as I demonstrate in Chapter 3, a network model suggested that the shift of the E/I-
ratio in favor of excitation increases the excitability of the circuit. The interaction
of the recurrently generated dynamics of the network needs to be taken into account
when evaluating the role of the different synaptic changes. With my research, I
investigated in general how these changes in the feedforward and the recurrent
pathways can give rise to the activity changes in vivo. Specifically, since the synaptic
changes were only measured after two days of MD, while the activity is continuously
regulated during these first days, there is a gap of timescales that modeling can
bridge. In the model, I can apply the synaptic changes continuously and evaluate
their effects on the activity, mapping out all potential modulations of the rates these
changes can generate.

2.3.3 Synaptic plasticity in the primary somatosensory cortex after brief
whisker deprivation

Another important sensory deprivation paradigm, which targets the somatosensory
system, is whisker-deprivation (WD). During WD, a subset of the whiskers on one
cheek or both are cut short or completely removed through plucking. Plasticity
induced by MD and WD shows some general similarities, but on the short timescale
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of the first 1-2 days, the two paradigms invoke different mechanisms [95]. Similar
to brief MD, brief WD induces disinhibition in the primary somatosensory cortex
(S1) [96]. However, in contrast to the depression of feedforward inputs from the
LGN to L4 in V1m after brief MD, this disinhibition is driven by a decrease of
the intrinsic excitability of PV-interneurons [97]. The WD studies investigated the
feedforward pathway from L2/3 to L4 within S1, but note that the feedforward
depression after MD is similar from L2/3 to L4 as it is from LGN to L4 [94]. Longer
periods of WD lead to plasticity of both the feedforward and recurrent synapses that
is comparable to the effects of brief MD. Specifically, feedforward inputs from 1.2/3
to L4 onto excitatory synapses as well as onto fast-spiking interneurons depress after
this longer deprivation [98,99]. Recurrent synapses from fast-spiking onto excitatory
neurons potentiate. In short-term WD experiments, a tendency of these synapses
to potentiate was identified, but it did not reach statistical significance [97]. The
long-term in vivo activity following WD has not been measured yet. My modeling
allowed me to investigate the consequences for the activity of the different forms
of plasticity invoked. Specifically, it is not clear if the decrease of the intrinsic
excitability of PV-interneurons has the same effects on activity in the circuit as the
depression of feedforward input synapses.

2.4 Previous modeling of monocular deprivation

The experimental investigation of MD-induced plasticity in synapses and neuron re-
sponsiveness has produced many important insights about the experience-dependent
refinement of cortical circuits. Several modeling studies investigated the different as-
pects of the MD-induced circuit changes, generating mechanistic or phenomenological
insights into the regulation processes taking place in development (Table 2.2).

In one of the early models, Miller and colleagues investigated a phenomenological
model of the formation of ocular dominance domains found in carnivores and
primates [22]. This early study of the formation of ocular dominance domains
was validated, in part, by predicting how the distribution of the domains changes
with prolonged MD during development. Specifically, the authors tested how the
domains of cells responding primarily to the open eye expand, while the domains
of cells responding to the closed eye shrink. In this model, the domains and their
properties emerged from spontaneous pattern formation on a two-dimensional grid
of neurons. Toyoizumi and Miller investigated the conditions of the equalization
of ocular-dominance domains in cat V1 from an initially biased state [100]. Before
the critical period, the domains driven by the contralateral eye are bigger than
those driven by the ipsilateral eye. During the critical period, the sizes of these
domains equalize. Their model could explain the equalization during the CP by
the maturation of intracortical inhibition interacting with a Hebbian plasticity rule.
As it was shown in earlier experimental work, the maturation of inhibition induces
the CP in mice. They could, furthermore, show that the equalization of domains
responding to the ipsi- or contralateral eye is prevented by binocular deprivation and,

24



2.4 Previous models of monocular deprivaion

most importantly, that MD causes a shift towards the open eye, despite the drive
from inhibition towards equalization that they found for the normal development.

In follow-up work, Toyoizumi and colleagues investigated further investigated the
role of the maturation of inhibition in the induction of CP-plasticity [101]. Their
investigation suggested that maturation of inhibition suppresses spontaneous activity
more than visually evoked responses. Through this, learning in the circuit becomes
more dependent on visual experience during the CP and is less dependent on internal
signals. Interestingly, this result proposes that the CP could be induced purely by
the maturation of inhibition with no need to change the plasticity mechanisms. In
this proposal, it is not the plasticity mechanisms that change at the onset of the
CP, but primarily the outcome of experience-dependent plasticity using the same
mechanisms. Note, however, that changes in the plasticity mechanisms were found
at the onset of the CP. Nevertheless, this work proposes an important and exciting
role of recurrent inhibition in MD-induced plasticity. The maturation of inhibition
intensifies competition between inputs from different eyes.

Bono and Clopath further unfolded the role of inhibition in the induction of CP-
plasticity [102]. They found that, beyond the maturation of GABAergic inhibition
in the circuit, the plasticity of excitatory synapses onto inhibitory neurons also plays
a vital role. Blocking of this plasticity could suppress ocular dominance plasticity in
their model. Additionally to the onset of CP through the maturation of inhibition,
they could thus explain the termination of CP-plasticity as an effect of a potential
developmental blocking or fading of plasticity in excitatory onto inhibitory synapses.
This result corresponds with the experimental results that show that plasticity of
excitatory synapses onto inhibitory neurons, both in feedforward and recurrent
pathways, is a crucial component of MD-induced plasticity in both the binocular
and monocular V1. Furthermore, it is interesting that the specific induction protocol
for potentiation of recurrent synapses from excitatory to inhibitory neurons, which
is related to MD-induced plasticity, becomes functional only at the onset of the
CP [83].

Blais, Shouval, and Cooper aimed at a quantitative comparison of heterosynaptic
and homosynaptic plasticity mechanisms through the investigation of the effects of
MD on a single cell’s ocular dominance [103]. In heterosynaptic plasticity, the weight
changes in one synapse influence the weights of other synapses on the same cell [105],
for example, through competition for receptors [106]. An implementation of this is
to enforce a normalization of the overall excitatory weight that can impinge on a
single excitatory cell, which induces strong competition between single synapses on
a single neuron. This type of competition can be considered a spatial competition
of simultaneously active synapses. For homosynaptic plasticity, Blais and colleagues
investigated the Bienenstock-Cooper-Munro (BCM)-rule [107]. Following the BCM-
rule, postsynaptic activity below a certain threshold leads to depression of synapses
(if the presynaptic neuron is active, else the synapse weights do not change), whereas
high postsynaptic activity leads to potentiation. Most importantly, regarding
homeostasis in the BCM-rule, the threshold between depression and potentiation is
a dynamic function of the preceding activity in the postsynaptic neurons. Through
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Table 2.2: Modeling studies of deprivation-induced plasticity, the types of models
used, and some key insights

| Ref.

Model type

Description

[22]

Rate-based recurrent net-
work, plasticity in feedfor-
ward synapses

A model for the emergence ocular dominance
domains and the influence of deprivation on
the domain distributions

[100]

Rate-based recurrent net-
work, plasticity in feedfor-
ward synapses

Maturation of inhibition induces a driving
force towards equal size of ocular dominance
domains, MD counteracts this equalization

[101]

Rate-based feedforward net-
work

Maturation of inhibition can induce a critical
period of plasticity without direct changes
to the plasticity mechanisms

Spiking recurrent network
with biophysical plasticity
mechanisms

Distinct roles for synaptic scaling and plas-
ticity of intrinsic excitability for the recovery
of correlation structure and firing rates dur-
ing ongoing MD

[91]

Probabilistic recurrent net-
work, plasticity in recurrent
synapses

Homeostatic regulation of criticality of spike
avalanches during ongoing MD

[102]

Rate-based recurrent net-
work

An alternative model for the onset of critical
period plasticity to [101] and, additionally,
for its termination

[103]

Rate-based feedforward net-
work

Comparing different forms of plasticity, the
authors find the BCM-rule to be the best
model for ocular dominance plasticity during

MD

[104]

Rate-based feedforward net-
work

Furthers the case for the BCM-rule as model
for MD-induced feedforward plasticity based
on new measurements of the correlations in
LGN in [76] after different forms of depriva-
tion (suture vs. inactivation)
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this dynamical adjustment of the threshold between depression and potentiation,
the plasticity rule itself is plastic (metaplasticity). In the BCM-rule, the competition
between the two inputs is in the temporal domain, whereby the overall level of
activity influences how presynaptic activity changes synapses due to the dynamical
depression /potentiation threshold. If some highly active synapses keep this threshold
high, they can potentiate while forcing other, less active synapses to depress.

The investigation in [103] led to quantitative predictions about the role of noise
and could explain the differences between plasticity induced by monocular or
binocular deprivation. In MD, the open eye keeps the threshold between potentiation
and depression high, thus forcing depression of the synapses from the closed eye.
In binocular deprivation, the threshold decreases, and synapses from the closed
eyes do not change as much as in MD. The BCM-rule has also been used to
explain the difference of plasticity induced by monocular deprivation and monocular
inactivation [104] (see also supplementary discussion to [76]). Using the BCM-rule,
Blais and colleagues could indeed reproduce that monocular deprivation induces a
more substantial shift in ocular dominance than monocular inactivation does [77,108],
and that this can be explained by the different effects on correlations found in [76]
as they interact with the plasticity rule. In contrast, a heterosynaptic rule predicted
the opposite, making the BCM-rule the better explanatory model of the plasticity
in these two deprivation paradigms.

Two recent studies have investigated the long-term regulation and, ultimately,
homeostasis of multiple aspects of network activity and its underlying plasticity
in V1lm during MD. Work from my colleague Wu Yue and others scrutinized the
role of multiple forms of plasticity in the homeostatic recovery of firing rates of
excitatory neurons after around 6 days of MD in large-scale networks of spiking
neurons [90]. Extending the data analyses performed by Hengen and colleagues [54],
Wu and colleagues found that not only rates of single cells are homeostatically
regulated after 6 days of MD, but also the pairwise correlations between cells [90].
Crucially, individual pairwise correlations recover such that subnetworks of highly
correlated neurons are preserved (similar to what has been found in [80] in adult
animals). The recovery of individual pairwise correlations is also reminiscent of
the recovery of individual excitatory firing rates [89]. The model predicted that
different homeostatic plasticity mechanisms cause the homeostasis of rates and the
homeostasis of correlations. The two crucial homeostatic mechanisms were plasticity
of the cell-intrinsic excitability [109] and synaptic scaling [110]. To study firing rates
and correlation structure, Wu and colleagues first imprinted Hebbian assemblies in
the network with multiple interacting forms of plasticity [90]. They drove neurons
in the assemblies by correlated spike trains. Subsequently, MD was modeled by
(a) removing the correlations between input spike trains and (b) depression of
feedforward inputs. These two changes triggered a homeostatic response in the
recurrent connectivity, where different homeostatic mechanisms played different roles.
Wu and colleagues found that the overall homeostasis of the activity after prolonged
MD is based on the interplay of these multiple forms of homeostatic plasticity.
The long-term recovery of excitatory firing rates required plasticity of the intrinsic
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excitability of excitatory neurons, realized through activity-dependent plasticity
of the threshold for action potential initiation. The recovery of the correlation
structure furthermore required synaptic scaling.

In related work, Ma and colleagues investigated the short-term regulation and
homeostasis of firing rates and, as their primary focus, of the criticality of cortical
dynamics [91]. Criticality is a hypothesized property of cortical networks that would
lead to powerful computational capabilities of the networks [111]. In a critical state,
a network is close to a phase transition where the size-distribution of so-called
avalanches of spikes, bouts of spikes that engage a set of neurons in a cascade, follow
a power-law [91]. Their data analysis showed that criticality of cortical spiking is
perturbed immediately after lid suture, different from the rates and correlations that
drop only after 1-2 days. Using a phenomenological model of the cortical circuit,
they could find parameter regimes in which they could reproduce the regulation
of firing rates in vivo. The model also predicted the instantaneous deviation from
criticality and its recovery over the first two days of MD.

Except for the work by Ma and colleagues [91], none of the previous work
investigated the specific activity regulation during the first two days of MD in
V1m. Furthermore, also this work did not investigate how the MD-induced synaptic
changes during the first days of MD directly relate to the activity changes in vivo.
Ma and colleagues could draw conclusions about plasticity mechanisms that seem
necessary for the specific temporal activity regulation. However, they could only
generate this regulation with tightly constrained plasticity parameters and did not
relate it to the actual synaptic changes in the thalamocortical circuits.

My research has focused on connecting these two factors, the specific in vivo
changes of synapses and how they give rise to the regulation of activity. Furthermore,
a goal was to understand the conditions that can generate the observed regulation of
firing rates as robust as possible in terms of the specific synaptic changes. Therefore,
my approach is based on investigating the dynamics of highly recurrent networks
undergoing perturbations in feedforward and recurrent synapses based on the
synaptic changes observed in vivo (Fig. 2.4). The basis of this work comes from our
understanding of the dynamics of highly recurrent networks with excitatory and
inhibitory neural populations.

2.5 Dynamics of recurrent networks

Two important dynamical aspects of highly recurrent networks of excitatory and
inhibitory neurons that are relevant to my modeling approach are the balanced
state [112,113] and inhibitory stabilization [114]. Balance determines the microscopic
statistical structure of spike-trains in recurrent networks. Inhibitory stabilization
has important implications for the dynamics of rate responses. In my work, I
investigated the responses to MD-induced plasticity in spiking-network models that
are in an approximately balanced state and analytically described the rate responses
of these networks and their relation to inhibitory stabilization. In this chapter I will

28



2.5 Dynamics of recurrent networks

thus introduce these two concepts, the balanced state (Sec. 2.5.1) and inhibitory
stabilization (Sec. 2.5.2).

2.5.1 Spiking-networks of excitatory and inhibitory neurons and the
balanced state

Spiking of cortical neurons is irregular, with statistics approximately described by a
Poisson-process [115,116]. In a Poisson process with a constant rate, the occurrence
of an event is equally likely at any time point. Thus, the Poisson process is the
least predictable, most irregular, stochastic point process. Concerning the relation
between different neurons, the firing of cortical neurons appears highly asynchronous,
with low correlations of the spike-trains of pairs of neurons [117,118]. How can such
asynchronous irregular firing be produced in a recurrently coupled network? In the
initial investigation of this problem, it seemed that such an asynchronous irregular
state could not be self-consistent since a neuron driven by excitatory asynchronous
irregular spike-trains fires more regularly than its inputs [115]. Since the irregular
firing of presynaptic cells would produce more regular firing of the postsynaptic cells
that feedback onto the circuit, this state seems impossible as a stable and steady
solution of the activity. The problem is that, even though the inputs are irregular,
the cell’s firing is primarily driven by the integration of the presynaptic excitation,
yielding a drift towards the threshold with only slightly varying integration times.

Contrary to this, a neuron with a subthreshold input current whose firing is
primarily driven by fluctuations of its membrane potential fires irregularly [119].
Van Vreeswijk and Sompolinsky gave the seminal analytical explanation of how such
a fluctuation-driven regime and, consequently, the high variability of the spiking of
cortical neurons can emerge self-consistently in highly recurrent networks [112,113].
They proposed that the cells receive large excitatory and inhibitory currents that
cancel on average, balancing each other (Fig. 2.5A). Nevertheless, the total current,
though balanced on average, will fluctuate in the network. When a neuron is driven
by such a current, its spiking is determined by random fluctuations of the membrane
potential that cross the spiking threshold. This gives rise to irregular spike times of
the single neuron (Fig. 2.5B).

The balanced state and fluctuation-driven regime also have an interesting informa-
tion-theoretic component, summarized by Abbott in [16]. Consider a single neuron
that receives, on average, a large number N of inputs (that number including
the number of synapses and expected number of presynaptic spikes). Since N
is the number of expected inputs, there is O(N) uninformative component, and
only deviations from this expectation transmit information (the fluctuations are
what distinguishes different events). Under the assumption of independence of
the different inputs, the variances sum up, so o2 is O(NN) and, thus, the standard
deviation is O(v/N). Calculating then the fraction of the informative component
(fluctuations) of the mean signal (expected value) is O(1/v/N). Therefore, for many
independent inputs, the informative fraction of the signal a neuron receives is small
(e.g., 1% for N = 10,000, which is on the order of inputs a cortical cell receives).
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Figure 2.5: The balanced state and the fluctuation-driven regime in a simulated
balanced network. (A) In the balanced state, large excitatory (blue) and inhibitory
(red) currents cancel on average and leave only a small residual, but fluctuating, total
current (gray). (B) Spike-times (black triangles) of a neuron subject to such a current are
determined by fluctuations of the membrane potential (black curve) and not a constant
drift of the mean membrane potential — called the fluctuation-driven regime. (A) and (B)
measured in the same neuron and during the same time window.

The inefficiency of this organization from a coding perspective makes it likely that
biological circuits have somehow solved this problem. Two potential solutions are
to either abrogate the requirement for independence and correlate inputs (which
increases the informative fluctuating component) or to reduce the number of inputs
to reduce the uninformative mean component. A third way, which is the solution the
balanced state uses, is to reduce the uninformative mean component by having two
large mean components, excitatory and inhibitory, that cancel each other to only
leave a small uninformative mean component with a comparatively large informative,
fluctuating component.

A central property of the balanced state is that the input-output rate relation
is strictly linear on the population level when the balance is perfect (also termed
tight balance [120]). In simulations of spiking networks, this strict linearity is not
accurate. However, the rate response are phenomenologically well approximated as
threshold linear, a fact I made use of in the analytical investigation of the mechanism
generating the rate responses of the spiking network. Brunel first described the
conditions to generate the asynchronous irregular spiking in recurrent networks
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of leaky integrate-and-fire neurons, along with conditions to find more regular or
more synchronous firing [14]. He furthermore derived the self-consistent mean-field
firing rate in a spiking network of leaky integrate-and-fire (LIF) neurons. Many
other studies have since then extended this work, finding both new insights into the
dynamics of networks of this type [121-124] and into their computational capabilities
that biological neural networks could harness, such as generating sharp, contrast-
invariant orientation selectivity [125,126]. The asynchronous irregular spiking could
even, in itself, represent a highly efficient form of computation, as proposed by
Deneve and Machens [127].

2.5.2 Inhibitory stabilization

Recurrent coupling between excitatory neurons comprises positive feedback that
potentially destabilizes the circuit dynamics. The positive feedback that recurrently
coupled excitatory neurons exert on each other does not destabilize the circuits for
arbitrary small values of excitation. Thus, recurrent circuits without inhibition can
be dynamically stable due to sufficiently small, yet non-zero, recurrent excitation.

Due to the reset of the membrane potential after a spike, neurons generate an
effective negative feedback current [128]. Since this post-spike reset appears for every
spike, it comprises a dynamically adjusting negative feedback that can counteract
positive feedback up to a certain level. In rate models of the average population
activity, this comprises rate-dependent negative feedback. A simple approach to
describe the dynamics is to use a threshold-linear input-output relation, e.g., if
the networks modeled are close to a balanced state (see above). Describing the
rates of the different populations by a time-dependent vector 7(t), where each entry
represents the activity of one population?, the external inputs to each population
by a vector x(t), and the recurrent couplings among the neural populations by a
matrix W, the dynamics of the network in the linear regime is:

Tr(t) = —r(t) + Wr(t) + =(t), (2.1)

where 7 is the intrinsic time constant of the neural populations®. This model is
equivalent to a mean-field description of the average firing rates in a balanced
network of perfect integrate-and-fire neurons, where the constants and couplings
between neurons can be derived from the network connectivity and single neuron
properties (e.g., [129]). The decay term of the firing rate without external inputs
also implies that the resting state of the network is zero. Thus, such networks do
not generate spontaneous activity that is independent of an external drive.

This description can be used for networks with arbitrary many populations of
neurons, either excitatory or inhibitory. The boundary of stability is most easily

2T use as convention boldface letters for vectors and matrices, and regular letters for scalar
variables.

3These timescales can also be different for the different populations. Then the scalar parameter 7
is replaced by a matrix T with the different time-constants as entries on the diagonal and zero
elsewhere. I omitted this detail for simplicity.

31
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accessible considering a single excitatory population coupling onto itself, described
by the scalar equation

Tr(t) = —r(t) + wr(t) + z(t) = (w — 1)r(t) + z(t). (2.2)

This system is intrinsically stable for w < 1, and unstable if the recurrent excitation
exceeds one (w > 1). In this latter case, other sources of negative feedback are
necessary to stabilize the dynamics.

The connectivity of a general network with one excitatory and one inhibitory
population can be described by the matrix:

wrp —wrr

where the parameters w4p describe the strength of the connection from population
B to population A (Fig. 2.6A). Note that I use all parameters wap as positive
numbers, while the excitatory or inhibitory action on the postsynaptic population
is given explicitly through the sign of the matrix entry.

To investigate the stability, one can study the eigenvalues of the Jacobian 7,
which for the dynamics in Eq. 2.1 is:

J=W-T1, (2.4)

where I is the identity matrix of the appropriate dimension (2 x 2 in this case). With
this Jacobian, we can investigate stability using the real parts of the eigenvalues
of the connectivity matrix W. Stability requires that these are smaller than one,
equivalent to the requirement that the eigenvalues of the Jacobian have all negative
real parts: If A is an eigenvalue of W, then A — 1 is an eigenvalue of J. Tsodyks and
colleagues analyzed the role of inhibition for stability in this general circuit [114].
The details of the stability analysis are shown in Appendix A.1. Similar to the
one-dimensional example above (Eq. 2.2), stability of the network requires negative
feedback from the inhibitory population when wgg > 1. When recurrent inhibition
exceeds this bound, sufficiently strong inhibition is necessary to ensure stability.
Note that all the connections are involved in this stability, the loop from excitation
to inhibition (w;g) as well as the inhibitory feedback onto excitation (—wgr) and
even the disinhibitory connections from the inhibitory population onto itself (w;r).

Such a network with unstable recurrent excitation stabilized by recurrently coupled
inhibition is called an inhibition stabilized network (ISN). When excitation is weak
enough to be stable without recurrent inhibition, I call the network non-ISN. The
two cases are also denoted as operating regimes, using as terminology also ISN-regime
and non-ISN-regime to indicate networks that are either inhibition stabilized or
stable without feedback inhibition.

Crucially, the ISN and non-ISN have distinct dynamical properties that only
depend on recurrent excitation. Consider two networks with wggr > 1 (ISN)
and wgp < 1 (non-ISN). Stability permitted, such two networks have qualitative

32
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differences in their dynamics even when all other parameters remain the same.
Most prominently, ISN’s express the so-called paradoxical effect. When an external,
additional current is injected into the inhibitory population, the naive expectation
would be that the firing rate of the inhibitory neurons increases, which will lead
to a decrease of the excitatory firing. This is indeed what happens in a non-ISN.
However, in an ISN, an additionally injected current to the inhibitory population
suppresses not only the firing of the excitatory neurons but also that of inhibitory
neurons. One can derive the effect from the steady-state rates in a model describing
the average rates of the populations.
The steady-state rate g5 of the dynamical system in Eq. 2.1 is (assuming constant
input x):
res = (I— W)fla:. (2.5)
Inverting the matrix (I — W), the solution of the steady-state for arbitrary input

x = (zg,x7)7 is:

(52) = qorw (Mo”0 ) () o

det(]I—W) = (l—wEE)(l—l—wH)+w1EwE[ (2.7)

where

is positive when the network is stable (stability requires this determinant to be
positive as it is det(—J); for a derivation from the eigenvalues see Appendix A.1).
Due to linearity, the change of the steady-state firing rate (Ar,s) upon additional
stimulation of the inhibitory population with a current § can be calculated as the
steady-state rate for the input vector:

() ()0 e

where ¢ is a small external current that can be either positive or negative. The
steady-state for this input vector Arg is the deviation from a baseline firing rate
before injection of the current. The elements of Args can thus be either positive or
negative. The steady-state rate-change for the input Az is

Ar E.ss 1 —WwWEg ](5
’ =— . (2.9)
<Arl,ss) det(H - W) ((1 — IUEE)5>

Thus, the rate of the excitatory population changes opposite to the externally
injected current. To show this response numerically, we can simulate a network of an
excitatory and an inhibitory population and inject a step current to the inhibitory
population (Fig. 2.6A). This simulation confirms that the excitatory rate decreases
when the current injected to inhibition is positive (Fig. 2.6B). The change of the
steady-state of the inhibitory population depends on the sign of (1 —wgg) in Eq. 2.9
and, therefore, the operating regime. In the non-ISN (wgg < 1), the steady-state of
the inhibitory changes in the same direction as the external current: positive input
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Figure 2.6: Dynamical explanation of the paradoxical effect. (A) General network
of excitatory (E) and inhibitory (I) populations. The ISN-regime can be extracted through
the paradoxical effect in response to an input to I. (B) Response to a step current injected
to I in the non-ISN (increased input to I in the time window indicated by blue line). (C)
Same as (B) for the ISN. (D) Nullclines of the non-ISN in baseline state before additional
input to inhibition for E (full black line) and I (full red). The intersection of the lines
determines the steady-state of the dynamics. Additional stimulus to I shifts the nullcline of
E to the left (dashed black) and leads to a new steady-state. (E) Same as (D) for the ISN.
The operating regimes differ in the slope of the nullcline of L.

leads to an increase of the inhibitory firing rate (Fig. 2.6B), negative input would
lead to a decrease. In the ISN, where wgg > 1, the responses are in the opposite
direction to the applied current, the same direction as the excitatory population
(Fig. 2.6C).

The dynamical mechanism underlying the paradoxical effect can be made visible
from an analysis of the nullclines of the system. Starting from Eq. 2.1, one can
derive nullclines for the excitatory and inhibitory populations as the lines on which
the time-derivative of the respective rate is zero:

(o) = ("t e ) () + (52) 2.10)

from which one finds each of the rates of the population as a function of the respective
other rate and the inputs:

1
r% = —wIE((wII—{—l))r]—x[
1
P ( - )
ry = w 1) )rg + 2. 2.11
7 o (wgp —1) )rg + 2k (2.11)
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Plotting these lines in the (rg,77)-plane, we find an explanation of the paradoxical
effect (Fig. 2.6D, E). Increasing the stimulus to inhibition shifts the nullcline of
the excitatory population (7’%, Eq. 2.11) to the left, independent of the network
parameters, and thus, of the regime (Fig. 2.6D, E).

The direction of the inhibitory rate change is then determined from the slope of
the inhibitory nullcline. This slope has a different sign dependent on the operating
regime: in the non-ISN (wgg < 1), the inhibitory nullcline has a negative slope
(Fig. 2.6D), while in the ISN (wgg > 1) it has a positive slope (Fig. 2.6E). In the
non-ISN, the inhibitory rate thus increases when increasing x; (Fig. 2.6B), whereas
it decreases in the ISN, together with the excitatory rate (Fig. 2.6C).

There are two ways to interpret this behavior of the ISN: (a) the inhibitory
population changes in the direction opposite to its additional input, or (b) the
inhibitory population changes in the same direction as the excitatory population.
In a network with a single subtype of interneurons, these two interpretations are
equivalent. In a network with multiple subtypes of interneurons, it turns out that
the latter is more robust for different network structures, as I will show next.

2.5.3 The paradoxical effect with multiple subtypes of interneurons

Litwin-Kumar and colleagues generalized the notion of the paradoxical effect to
networks with multiple interneuron subtypes, inspired by the circuitry in V1
(Fig. 2.7A) [130]. In such networks, external perturbation of one of the subtypes or
combinations does not necessarily decrease the rate of any or of all of the interneuron
populations, nor the excitatory population. For example, for such a circuit based
on the V1-circuitry, some subtypes may increase their rate while other decrease it,
seemingly paradoxical, in response to an additional input to all the interneuron
subtypes even in the non-ISN (Fig. 2.7B). Furthermore, these directions of the rate
changes do not allow to determine the regime, as they are the same in the ISN as
in the non-ISN in the given example (Fig. 2.7C). However, it is still possible to
distinguish the non-ISN and ISN regimes by evaluating the total inhibitory current
the excitatory population receives and comparing this to the change of the excitatory
current that the excitatory population receives. In the non-ISN, the excitatory
current and the inhibitory current the excitatory population receives change in
opposite directions (Fig. 2.7D), while in the ISN, they change in the same direction
(Fig. 2.7E). This is very similar to the behavior of the rates in networks with a single
subtype of interneurons (Fig. 2.6C). Note that with a single excitatory population,
the excitatory current is directly proportional to the excitatory rate. Thus, the
excitatory rate and the inhibitory current change in the same directions in the ISN.

Litwin-Kumar and colleagues gave a straightforward analytical explanation of
this phenomenon [130]. Denoting the elements of the connectivity matrix from
the different interneuron populations X onto the excitatory population E as wgx,
without specifying the number and biological interpretation of the interneuron
subtypes, the change of the current from the interneuron subtypes onto the excitatory
population is the sum of the inhibitory rate changes weighted with the appropriate
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connection strengths onto the excitatory population:

Alp ;=) wpxAr, (2.12)
X

where Ar3’ are the changes of the steady state rates of the different inhibitory
populations.

Without generally solving the steady-state rates, Litwin-Kumar and colleagues
calculated how this current depends on the operating regime. If we have M
interneuron subtypes, one can derive the rate changes Args for a stimulation of the
inhibitory subtypes

Ax = (0,01,...,60)7" (2.13)
from the steady-state
0= (W —1)Ary + Az (2.14)
and thus:
Az = (I-W)Ar,,. (2.15)

Multiplying both sides of this equation with el = (1,0,0...) to extract the first
component of the changes in the excitatory population, its rate and its inhibitory
inputs, one finds:

(wpp — D)Arpe =Y wpxAr¥ = Alg ;. (2.16)
X

This equation expresses the general paradoxical effect with multiple subtypes of
interneurons: change of the excitatory rate (Argss) and the inhibitory current
into the excitatory population (Alg. ;) change in the same direction in the ISN,
where (wgg — 1) > 0. In the non-ISN, this rate and the current change in opposite
directions.

Interestingly, since the operating regime only constrains the weighted sum of the
inhibitory rate changes, there is some potential for different interneuron populations
to respond “non-paradoxically” even in the ISN, or “paradoxically” in the non-ISN,
as shown in Fig. 2.7 for a biologically motivated network.

The discovery of the paradoxical effect was driven by the study of oscillations
in the hippocampus [114]. Tsodyks and colleagues found that excitatory and
inhibitory neurons were in phase during theta-oscillations, which they modeled as
emerging from rhythmic inhibition fed to inhibitory neurons. Without knowing
about the paradoxical effect, the authors expected that the phase shift would
be 180 degrees, where excitatory activity is highest when inhibitory activity is
lowest. That the excitatory and inhibitory populations oscillate with the same phase
could be explained in an ISN. Further indirect evidence came from the study of
surround suppression in V1 in cats [131]. Surround suppression is the effect that
the increase in the size of a high-contrast stimulus facilitates excitatory activity
up to a certain point, but further increase in the size of the stimulus decreases the
activity. A priori, one may expect that the suppression of excitatory responses
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Figure 2.7: The paradoxical effect with multiple interneuron subtypes. (A)
Schematic of the V1-circuit model with multiple interneuron subtypes. In the example,
I inject a step current to all interneuron subtypes at the same time. (B) Rate response
to injection of an additional current to all inhibitory subtypes in the non-ISN. Rates of
interneurons may increase or decrease. Connection strengths as in [130], colors same as
in (A). (C) Same as (B) in the ISN. Directions of the rate changes of any subtype do not
allow to infer the regime. (D) Change of the total excitatory (E, black) and inhibitory (I,
gray) currents received by the excitatory population upon stimulation of all interneurons
subtypes (in the time window indicated by blue line) in the non-ISN. (E) Same as (D) in the
ISN. The total inhibitory current received by excitatory neurons expresses the paradoxical
effect [130].

through larger stimuli emerges from specific recruitment of inhibition. Without
considering the paradoxical effect, this recruitment should lead to an activation
of the suppressing interneurons. However, Ozeki and colleagues found that PV-
interneurons are themselves surround suppressed, which could be explained through
the paradoxical effect. Later work uncovered that surround-suppression of PV does
not necessarily depend on a paradoxical effect in PV-interneurons, but could also
be governed by spatial summation of SST-interneurons, whereby SST-interneurons,
which are not surround suppressed themselves, would suppress both excitatory
and PV neurons [59,60]. Adesnik observed the paradoxical effect in mice related
to surround-suppression by optogenetically driving SST [132]. This study found
that optogenetically suppressing SST-interneurons led to an increase of the overall
inhibitory current consistent with the general notion of the paradoxical effect in
ISNs with multiple interneuron subtypes [130].

A problem for detecting paradoxical effects is that many parameters of the exper-
imental setup can corrupt their observation, for example, the depth of anesthesia or
the intensity and size of the stimulating laser in optogenetic experiments (discussed
in [133]). A crucial factor for finding paradoxical effects is also the recruitment
of inhibitory cells during optogenetic activation [134]. Nevertheless, recent work
directly confirmed the presence of the paradoxical effect in PV-interneurons in the
adult rodent V1 by direct optogenetic stimulation of the PV-interneurons [135].
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The dependence on the recruitment of inhibitory interneurons was confirmed in
this study, as only transgenic mice with high expression levels of the light-sensitive
channel in PV-interneurons showed robust paradoxical effects.

Another study providing direct evidence of paradoxical effects by Mahrach and
colleagues also added a further theoretical aspect to the relation between paradoxical
effects and inhibitory stabilization with multiple subtypes of interneurons. Litwin-
Kumar and colleagues showed that the absence of the paradoxical effect in the
rate response of any of the interneuron subtypes does not prove that a circuit
operates as a non-ISN [130]. Mahrach and colleagues showed that neither does the
presence of the paradoxical effect in the rate response in an interneuron subtype
imply that the circuit operates as an ISN [136]. Paradoxical effects could be present
in some interneuron subtypes also in a non-ISN. However, the generalized notion
of the paradoxical effect based on the total inhibitory current remains valid and is
consistent with this finding.

2.5.4 Inhibitory stabilization in the developing visual cortex

The question of inhibitory stabilization in cortical circuits touches upon the broader
question of the role of feedforward processing vs. the role of recurrence in cortical
computations [133]. High excitatory recurrent coupling is useful for multiple compu-
tations such as pattern completion [29] and amplification of sensory signals [137].
This computational benefit comes at the cost of intrinsic dynamical instability that
requires recurrently coupled inhibition. Dynamical stabilization through inhibition
is a fast mechanism to stabilize the dynamics of networks. Despite the confirmation
of the paradoxical effect in adult animals, it is currently unknown if it is present in
the developing cortex nor if the developing cortical circuits operate in an inhibition
stabilized mode. Through my study of the activity regulation through MD-induced
plasticity, I found distinct roles of inhibitory stabilization (Chapter 3) and the inter-
actions between multiple interneuron subtypes (Chapter 4). MD induces changes
in multiple synaptic pathways, both feedforward and recurrent. My investigations
of MD-induced plasticity thus also led to the investigation of new aspects of the
paradoxical effect and inhibitory stabilization: (a) I study multidimensional pertur-
bations of the circuit that go beyond external inputs to one or multiple subtypes of
interneurons, and (b) I study perturbations of the recurrent circuitry that shape
activity in the circuit in very different ways from external inputs. Investigating
the developmental processes during sensory deprivation thus sheds light on the role
of recurrent interactions and inhibitory stabilization during experience-dependent
stages of development. At the same time, the biological processes uncovered by
sensory deprivation stimulate new insights into general properties of inhibition
stabilized networks.
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3 Effects of deprivation-induced synaptic
changes in network models of the visual
cortex

Remark: Some of the results, figures, and tables in this Chapter are part of an
article entitled Interneuron subtypes enable independent modulation of excitatory
and inhibitory firing rates after sensory deprivation which has been written together
with my supervisor Julijana Gjorgjieva. The article has been uploaded to the
preprint server bioRziv [1] and is currently under review for publication in the
journal Proceedings of the National Academy of Sciences of the United States of
America. The results presented in Section 3.5 are part of an article published in
eLife with Nathaniel J. Miska, Brian A. Cary, Julijana Gjorgjieva, and Gina G.
Turrigiano [3]. All methods, results, figures, and tables from these articles which
are part of this Chapter were my contribution to the articles unless specifically
mentioned otherwise.

3.1 Overview

Two days of monocular deprivation (MD) induce strong plasticity in feedforward,
and recurrent pathways that include excitatory and fast-spiking, putative PV-
interneurons in V1im [3,82,84,93]. At the same time, activity in these two cell
classes is regulated in a specific, temporally distinct fashion: the firing rates of
inhibitory interneurons are suppressed after one day of MD and recover on the
second day, whereas the firing rates of excitatory neurons stay at their baseline levels
on the first day and are suppressed only after two days of MD. They recover back
to their baseline after six days [54,89]. However, since there is a gap of timescales
between the direct measurement of synaptic weights (snapshot after two days) and
the activity regulation (continuously), we do not understand how the continuous
plasticity during the first two days of MD regulates activity. In order to gain a
mechanistic understanding of this process, I first used a spiking network model of
cortical circuits. I systematically studied the effects of all the different changes of
synaptic strengths in the circuit established experimentally in MD experiments. To
develop a thorough mathematical understanding of the mechanisms, I furthermore
studied a population-rate description of the network dynamics that serves as an
effective model of the simulated spiking circuit while allowing analytical treatment
that generalizes beyond specific properties of the circuitry.
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I investigated a broad range of potential MD-induced changes in the spiking
network, studying the synaptic changes independently and interacting with each
other (Sec. 3.2). I characterized the whole landscapes of potential dynamical
responses (Sec. 3.3). Studying these landscapes, I found a fundamental difference in
how ISNs and non-ISNs respond to MD-induced changes, with important implications
for the possible types of activity regulation emerging in these networks. The
difference between the two regimes, ISN and non-ISN; is the recurrent coupling
among excitatory cells. Thus, to investigate the dichotomy in the responses of the
different network types more broadly, I studied a whole range of network setups that
span both ISN and non-ISN regimes with varying degrees of excitatory coupling
in both of the regimes. I introduced multiple measures to quantify the global
structure of the responses (Sec. 3.4). The measures enabled a detailed analysis of
how MD-induced synaptic changes allow a temporally distinct firing rate regulation
in excitatory and inhibitory neurons, with inhibitory changing before excitatory
firing rates.

I also investigated a version of the spiking network that was tuned to reproduce
firing rates in the model system of our experimental collaborators at the Turrigiano
Lab (Sec. 3.5). For this network, I studied the implications of experimentally more
tightly constrained synaptic changes (see also [3]). I tested and compared two
experimental hypotheses regarding the specific roles of the synaptic changes in
the feedforward and recurrent synaptic pathways. My modeling contributed to
strengthening the view that recurrent inhibitory pathways play an essential role
in controlling activity, namely the early depression of activity during brief MD. In
contrast, the synaptic changes in the feedforward pathway have a facilitatory effect
on the activity that contradicts the activity seen in vivo. To demonstrate that this
is not a particular property of a specific parameter setup of the network, I used a
Monte-Carlo approach that covers wide ranges of network parameters and is only
constrained to have suitable firing rates.

A critical feature of the response in the ISN, which I found in both the general
study of the synaptic changes (3.3 and 3.4) and in the Monte-Carlo approach
with experimentally constrained synaptic changes (Sec. 3.5) is a tight coordination
between excitatory and inhibitory firing rates in response to MD-induced synaptic
changes. 1, therefore, developed a rate model that heuristically describes the mean
rates in the spiking network on the level of the populations (Sec. 3.6). This model is
a two-dimensional (semi-)linear dynamical system that can be treated analytically.
Through this analysis, I was able to prove that the differences of the response to
MD-induced plasticity between the spiking network in the ISN and non-ISN regimes
are general properties of these operating regimes (Sec. 3.7). The tight coordination
of firing rates in the ISN is primarily due to the presence of the paradoxical effect.
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3.2 Modeling approach

3.2 Modeling approach

Remark: Some of the results of this section (Fig. 3.1D, Table 3.1 and Eqgs. 3.1-3.8)
have been published before in [1]. The figure panel 3.1D has been modified for
clarity, notation in the equations and table has been adapted for consistency.

3.2.1 General network structure

In layer 4 of V1m, feedforward synapses onto excitatory as well as onto fast-spiking,
putative PV, interneurons undergo substantial plasticity during the first two days
of MD [3]. Furthermore, also the recurrent synapses connecting these two neuron
classes are substantially affected [3,82,93]. Based on this current knowledge about
the synaptic pathways affected by brief MD, the most salient choice for a model is a
simplified network of interacting excitatory neurons and inhibitory PV-interneurons.
In my model, cells of these two classes are randomly and sparsely connected. Sparsity
means, that the total number of presynaptic neurons that connect to a neuron
is small compared to the total number of neurons on the circuit, equivalent to a
small connection probability. Networks with similar structure have been studied
extensively in neuroscience [14,112,121,123,124, and many others] and have given
rise to mechanistic models for multiple computations in cortical circuits, such as
the contrast invariance of orientation selectivity in V1 [125,126] or the stimulus-
dependent reduction of variability observed in multiple cortical areas [138,139].
The synaptic weights within the recurrent circuit are described by two global
parameters: First J, that sets a shared scale of all synapses, excitatory or inhibitory
(called the coupling scale); and second g,., that sets the relative strengths of
inhibitory projections to guarantee overall stability (Fig. 3.1A and Table 3.1). The
connection strengths within and between the excitatory (E) and PV (P) cells are
specific for the pre- and postsynaptic partner in a given connection, schematically
described through a matrix Whe. of synaptic weights W42 from a cell of type B to

a cell of type A:
WEE WEP J gch
Wrec - (WPE W-PP) - <J gTCJ> . (3.1)

The weights in this schematic describe the peak of the postsynaptic conductance
induced in a postsynaptic neuron by a spike in a connected presynaptic neuron.
The network has a connection probability of 10% between neurons where this
postsynaptic conductance is induced. The remaining 90% of potential connections
between cells have weight zero. The different neuron classes are identical in their
intrinsic properties, and all connection probabilities are the same for different
connections types. I simulated networks with a total of 5000 neurons, 4000 of
which are excitatory (80% of all neurons), and 1000 are inhibitory, representing PV-
interneurons. Note that in the matrix Eq. 3.1, inhibitory connections have a positive
sign just like excitatory ones because they represent peak-conductances for specific
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Figure 3.1: Network structure, activity and the paradoxical effect in the spiking
network. (A) Schematic of the connectivity and parameters in the network (default values
in Table 3.1). (B) Spike raster of activity in the network with coupling scale J = 0.1 nS,
showing asynchronous irregular state. (C) Firing rates as a function of R, the firing rate of
both input sources to the network (lateral geniculate nucleus, LGN, and background, BKG).
The blue diamond shows the input rates used in (B). (D) Emergence of the paradoxical
effect in PV-interneurons, and thus transition to ISN, dependent on the coupling scale J.
Additional input to PV-interneurons is implemented through increasing the LGN-input
weights into PV by 5%. The blue diamond shows the value of J used in (B). Panel D
modified from [1].

ions. The actual effect of a presynaptic spike on the postsynaptic neuron, either
excitatory or inhibitory, depends on the distance of the membrane potential to the
reversal potential of the respective ion channel (sodium for excitatory and chloride
for inhibitory synapses, Table 3.1) at the time the spike arrives. The increased
conductance leads to a current of the respective ions through the membrane. The
different ion-currents then have the excitatory (depolarizing, towards the spike
threshold) or inhibitory (hyperpolarizing) effects on the postsynaptic neurons.

With sufficiently strong inhibition, activity in such a network settles in a stable
state of irregular firing of single neurons and asynchronous between different neurons.
This state has thus been termed the asynchronous irregular (AI) state and is
considered a good approximation for the activity in cortical circuits [14,113]. The
network I implemented also shows such Al spiking activity over wide ranges of
parameter choices (example in Fig. 3.1B).

As external input, excitatory spike-trains with Poisson statistics from two external
sources are injected. One of these sources represents the lateral geniculate nucleus
(LGN) in the thalamus, the major source of feedforward input to layer 4 (L4) in V1
and, therefore, of sensory input to V1 overall. Input from this source is sent to both
excitatory and PV neurons with cell-type-specific weights. Experiments have found
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3.2 Modeling approach

that the LGN-input to PV-interneurons is at least twice as strong as LGN-input to
excitatory neurons in both visual and auditory cortices [38]. I incorporated such a
strong feedforward drive to PV-interneurons into the model. Because the absolute
amplitude is uncertain, I choose a common parameter J; for the synaptic weight of
feedforward input to both neuron types and implement the relatively stronger drive
to PV with a multiplicative factor g, (Fig. 3.1A). The second source of external
input pools together multiple sources of potential feedback inputs, e.g., from the
cortical circuit surrounding the local patch implemented in the model or feedback
from higher-order cortical areas. This input is denoted as background (BKG) and
is only injected into excitatory neurons. The synaptic weight of BKG-inputs is
denoted as Jp. The synaptic weights of the external drives can be schematically

described by . .
w + W Js + Iy
Wi = < LGN BKG) _ ( ) 3.9
Wien + Wihke Ifws (32)

for the postsynaptic conductances evoked by externally injected spikes. Spike trains
into each neuron are statistically independent and have the same rate R, = 1000 Hz
regardless of their source (LGN or BKG, Table 3.1). Similar to what is predicted
from the balanced network [113], the input-output relation in this network is
approximately threshold-linear when the firing rates are in a reasonable range
(Fig. 3.1C). Together with the asynchronous irregular spiking statistics (Fig. 3.1B),
this network can thus be considered a biophysically grounded implementation of
the balanced network [113] (but see [140]).

Single neurons are modeled as leaky integrate-and-fire (LIF) neurons. The
membrane potential V;A(¢) of a neuron i in population A € {E, P} follows the
dynamics:

VA
dt
where C,, is the capacitance of the cell membrane, g7, is the conductance and Ep,
the reversal potential of the leak current (Tab. 3.1). The first term on the right hand
side in Eq. 3.3 describes the leak current driving the neuron to the resting potential
E;, when no input arrives in the cell. The total input current to this neuron, I{(¢)
is composed of two factors: an external input current Ifgxt( ) and the currents from
the cells in the populations B € {E, P}, which arise from recurrent interactions

within the network, IAB (#):

7,rec

o — g1+ (BL = VA®) + 1), (3.3)

IZA( ) = Ierxt + ZIZAI"EC (34)

To describe these currents, I denote the general sparse recurrent connectivity
matrix as Cr.c whose entries C{;”fec are (1) non-zero only in case the neurons are
connected in the sparse network and (2) take values dependent on the pre- and
postsynaptic partner according to the schematic in Eq. 3.1 in case they are non-zero.
Every neuron receives a single external spike train with an input weight C w that

depends on the cell class A the neuron belongs to, following the schematic in Eq 3.2,
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3 Effects of sensory deprivation

Table 3.1: Default parameters of the single neurons and networks, and parameters for
modeling the synaptic changes during monocular deprivation. EPSG/IPSG: excitatory/in-
hibitory postsynaptic conductance; LGN: lateral geniculate nucleus; BKG: background;
modified from [1].

Symbol Value/ Description
Range
Cnm 200 pF  Membrane capacitance
Jgr 10 nS Leak conductance
Er —70 mV  Leak reversal potential
Va —50 mV  Threshold potential
V., —58 mV  Post-spike reset potential
Eg 0 mV Excitatory reversal potential
Ep —85 mV Inhibitory reversal potential from PV interneurons
Tsyn 5 ms Synaptic conductance time constant
Ng 4000 Number of excitatory neurons
Np 1000 Number of PV-interneurons
P 0.1 Connection probability between two cells
J 0.1 nS EPSG amplitude ¥ — E and E —PV in the ISN

0.01 nS EPSG amplitude ¥ — FE and £ —PV in the non-ISN
[0.001,0.2] nS Range of EPSG amplitudes £ — E and E —PV for

the systematic quantification across network operating

regimes

Jre 8 Multiplicative factor for IPSG amplitude PV— E and
PV— PV

Js, Jp 0.5 nS EPSG amplitude LGN, BKG — E and scale for EPSG
LGN — PV

9fw 2 Multiplicative factor for strong feedforward EPSG
LGN — PV

R, 1000 Hz Rate of feedforward input spike trains LGN — E and
LGN — PV and of background input spike trains
BKG — F

o [0.5,1.0] Depression of feedforward synapses onto excitatory
neurons

op [0.5,1.0] Depression of feedforward synapses onto PV-
interneurons

(pE [1.0,1.5] Potentiation of recurrent synapses from excitatory

neurons to PV-interneurons

Cep [1.0,1.5] Potentiation of recurrent synapses from PV-
interneurons to excitatory neurons

PEI [1.0,1.5] Increase of feedforward E/I-ratio
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3.2 Modeling approach

and takes the same value for all neurons ¢ belonging to that population. Further
denoting the spike train of neuron j in population B by YjB (t) and the feedforward
input spike train to neuron i by X;(t), we can explicitly write the two components
of the total input current as:

o) = ) Chitelex Y ))[Ep -V (1)]

J
A A
Le(t) = Clige(ex Xi)(0)[Ep - V(1)], (3.5)
where £(t) is an exponentially decaying synaptic kernel, such that a presynaptic
spike causes an instantaneous jump of the post-synaptic conductance, followed by a
decay back to zero. The operation * denotes convolution:

oo

e+ 2)(t) = / e()(t - D)di, (3.6)
— 0o

where x is either of the X; or the YjB.

The network with this connectivity can switch between the ISN and the non-ISN
regimes dependent on the coupling scale J, which is central to my investigation of
the effects of MD-induced plasticity. As a defining property of the ISN, I investigated
the paradoxical effect dependent on J. I simulated the network in an initial setup
to measure the baseline rates. Then, I simulated the network with additional input
to PV-interneurons and measured the relative rate change of the PV-interneurons.
Doing this over a range of coupling scales J, I extracted the curve of PV firing rate
changes in response to additional external input as a function of the coupling scale
J (Fig. 3.1D). For small values of J, the PV-interneurons increased their rate in
response to this additional stimulus, showing the network is a non-ISN. For high
values of J, the PV-interneurons decreased their rate paradoxically in response to
this additional stimulus, showing the network is an ISN.

3.2.2 Implementation of MD-induced plasticity

I implemented the plastic changes following brief MD by introducing four parameters
which I varied systematically (Fig. 3.2). After two days of MD, feedforward synapses
from LGN to L4 in V1m onto both excitatory and PV neurons are depressed [3]
(similarly, also feedforward synapses from L4 to L2/3 within visual cortex in binocular
V1 are depressed [94]). To implement this depression, I changed the synapses from
external input onto excitatory neurons (Js) through multiplication with a factor
0g < 1, such that the weight after MD-induction was dgJs. Similarly, depression
of feedforward inputs to PV-interneurons (original weight gr,,.Js) was implemented
through multiplication with a factor dp < 1, such that the synaptic weight of external
feedforward input after MD-induction was dpg.,Js. Within the recurrent circuit in
layer 4 of V1m, two days of MD lead to potentiation of synapses from excitatory onto
PV neurons and the reciprocal synapse type from PV onto excitatory neurons [82].
I implemented this potentiation in the network through a multiplication of the
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3 Effects of sensory deprivation

Figure 3.2: Connection strengths in the spiking network before and after MD
(A) Connectivity in the baseline network before application of MD. (B) Connectivity in
the network after application of MD.

respective synapses: synapses from excitatory onto PV neurons were multiplied
with a factor (pp > 1, such that the initial weight J changed to (pgJ after MD
induction. The reciprocal synapse from PV onto excitatory neurons was multiplied
by a factor (gp > 1, such that the initial weight g,.J changed to (gpg,.J. Taken
together, plasticity after brief MD changed the recurrent and feedforward weights
(Egs. 3.1 and 3.2) to be:

J gred J Cppgred
bl Jrc md __ EPJrc
Wrec B <J gch> - Wrec N (CPEJ gch > (37)
and
Js + J, opJs + Ji
bl __ s b md __ EJs b
Wffw - < gwas ) 7 Wf‘fw - < 5ngst > ) (38)

where bl denotes the baseline state before any MD-related synaptic changes (Fig. 3.2A)
and md denotes the state after MD-induction (Fig. 3.2B). Note the difference in
how MD affects only a part of the input synapses to excitatory neurons from the
LGN, while BKG input-synapses are unaffected. In contrast to this, all of the input
synapses to PV-interneurons are affected by MD since they are exclusively driven
by LGN input.
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3.3 Landscape of network responses

3.3 Landscape of network responses to MD-induced
plasticity

Remark: The results of this section (Figs. 3.3 and 3.4 and Egs. 3.9 and 3.10) have
been published before with identical content in [1]. The figures have been modified
for consistency, notation in the equations has been adapted for consistency.

To understand the dynamical effects of the synaptic changes, as well as their size and
interactions, I split the four types of synaptic changes into three different classes: (1)
the depression of feedforward inputs onto excitatory and PV-interneurons (6g, dp);
(2) the potentiation of recurrent connections between excitatory and PV-interneurons
(Cep, CpE); and (3) where I combined feedforward and recurrent changes in a reduced
manner to investigate their interaction. Feedforward depression was reduced to an
upward shift in the feedforward E/I-ratio, similar to what has been measured by
Miska and colleagues in synapses from LGN in the thalamus to L4 in V1m [3], and
in feedforward synapses from L4 to L2/3 within the visual cortex [94]. I defined
this direct feedforward E/I-ratio as:

)
P

Thus, it combines both parameters for feedforward plasticity. In order to reduce this
to a one-dimensional measure, I implemented the change in pg; through varying
op for fixed 0g. This increase of the feedforward E/I-ratio was paired with the
potentiation of the recurrent excitatory drive onto PV-interneurons ((pg), also
measured in [3], which effectively yields a decrease of the recurrent E/I-ratio,
giving the parameter pair ((pg, prr) for interacting feedforward and recurrent
plasticity. For each of these three pairs of either feedforward, recurrent, or interacting
feedforward and recurrent synaptic changes, I simulated networks with combinations
of potentiation or depression values on a two-dimensional 21 x 21 grid. The resulting
simulated firing rates after the induction of MD in the circuit were normalized by
the baseline firing rate before any of the synaptic changes to investigate the firing
rate fold changes caused by MD-induced synaptic plasticity.

For each pair (x,y) of synaptic changes in the two-dimensional parameter spaces,
the matrix of fold-changes of the rates of each population A € {E, P} relative to
baseline is: "
Ria(z,y)

RA
where the variables  and y depend on the type of plasticity studied (feedforward:
(x,y) = (0g,dp), recurrent: (x,y) = (Cgp,(pE), interacting feedforward and recur-
rent: (z,y) = (Cpg, prr)). This matrix yields a systematic view of how the different
synaptic changes quantitatively influence activity as they interact with each other. I
plotted the resulting landscape of firing rate fold changes in the respective parameter
spaces as a heatmap. I studied these emerging landscapes for the different cell

T4 (z,y) = (3.10)
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3 Effects of sensory deprivation

types (excitatory and PV) and in different operating regimes of the network (ISN
or non-ISN).

3.3.1 Response in the inhibition stabilized network

I implemented the network in the ISN-regime by setting a sufficiently large coupling
scale J = 0.1 nS (Fig. 3.3A, and Table 3.1). Stabilizing inhibitory connections
scale accordingly, with a relative scale g, = 8 that sets the network in a stable
activity state with dominant inhibition. MD-induced plasticity leads to distinct
structures of the response landscape in feedforward (Fig. 3.3B), recurrent (Fig. 3.3C)
and interacting feedforward and recurrent synaptic changes (Fig. 3.3D). All three
classes of synaptic changes lead to substantial modulation of firing rates in the
ISN, making them a suitable substrate for the significant activity variation observed
during brief-MD in vivo. Second, regardless of this strong modulation of activity,
all the firing rates stay finite. Thus, the MD-induced synaptic changes do not push
the spiking network into an intrinsically unstable regime.

After depression of feedforward synapses (Fig. 3.3B), we find both facilitation
(red) and suppression (blue) of activity of both excitatory and PV neurons relative
to baseline. A linear relationship between the depression of input to excitatory
neurons (0g) and the depression of input to PV-interneurons (dp) distinguishes
the regions of suppression and facilitation. This boundary crosses the point in the
parameter space where no synaptic changes have been induced, corresponding to the
baseline state (upper right corners in Fig. 3.3B). Remarkably, an extended facilitatory
parameter space exists in this MD-induced feedforward plasticity, especially for
PV-interneurons, considering that feedforward inputs only depress. How can this
depression of feedforward inputs lead to an increase in activity? The heatmaps show
that facilitation of activity rests on the depression of feedforward inputs arriving
at PV-interneurons (dp, Fig. 3.3B): for both cell types, decreasing dp leads to
facilitation of activity. In excitatory neurons, this is at first intuitive: depression of
external inputs into the local inhibitory interneurons releases the local excitatory
population of inhibition and thus leads to higher excitatory firing. This intuition
would naively require that the firing rate of the PV-interneurons decreases. Contrary
to this intuition, however, the activity of PV-interneurons themselves increases as
their external drive decreases. Here the fact that the network is an ISN comes into
play. The facilitation of both excitatory and PV firing rates through a decrease of
the drive to PV-interneurons is a form of the paradoxical effect [114]. Decreasing the
input to PV-interneurons facilitates excitatory neurons dynamically first through a
depression of the PV-firing. In the ISN, this facilitation of excitatory firing rates is
so strong that it overcomes the decrease of the input to PV-interneurons, such that
their firing increases, which leads to a final state of increased firing rates of both
populations.

Thus, there is a tight connection between the paradoxical effect and the response
of PV-interneurons to MD-induced feedforward plasticity. This connection explains
how depression of feedforward inputs to the PV-interneurons can yield facilitation of
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Figure 3.3: Response to synaptic changes induced by brief MD in a spiking
network in ISN-regime. (A) Network schematic showing synaptic connections among
neurons with J denoting the overall coupling scale, g,.. the dominance of recurrent inhibition
and gy, the dominance of feedforward inhibition. The parameters to model MD-induced
synaptic plasticity are: depression of feedforward drive to excitatory neurons (dg) and to PV-
interneurons (dp), and potentiation of recurrent excitation to PV-interneurons ((pg) and of
recurrent inhibition from PV to excitatory neurons ((gp). Values of network parameters and
ranges for synaptic changes due to MD are provided in Table 3.1. (B) Network firing rate in
the (0, dp) plane as fold-change of baseline firing rate (top right corner where dg = dp = 1)
for excitatory neurons (left panel) and PV-interneurons (right panel). (C) Network firing
rate in the ((gp, (pr) plane as fold-change of baseline firing rate (bottom left corner where
Cgp =Cpr =1). (D) Network firing rate in the ((pg, prr) plane as fold-change of baseline
firing rate (bottom left corner where (pr = pgr = 1). Here pg; = 0g/dp is the feedforward
E/I ratio. Modified from [1].

their firing rate. Comparing the two heatmaps for excitatory and PV neurons, one
can also see that the distribution of facilitatory and suppressive parameter spaces
in the two populations are very similar (Fig. 3.3B). Specifically, when excitatory
neurons increase their rate, so do PV-interneurons and vice versa. Along the 0 p-axis,
this co-modulation stems directly from the paradoxical effect. However, the tightly
aligned co-modulation of excitatory and PV firing rates in the whole plane is a
generalization of the paradoxical effect.

The potentiation of recurrent connections between excitatory and PV neurons
has a purely suppressive effect in all of the parameter range and for both cell
types (Fig. 3.3C). Any combination of potentiation of synapses from excitatory
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neurons to PV-interneurons ((pg) and of the reverse synapse from PV-interneurons
to excitatory neurons ((gp) suppresses activity below the baseline activity (lower
left corners Fig. 3.3C). For the excitatory population, it is clear that potentiation of
both synapse types increases the inhibition arriving at the excitatory cells. This
increase of inhibition happens either directly, through an increase of the inhibitory
weights impinging on the excitatory cell ((gp), or indirectly, through an increase of
the excitatory drive of the local inhibition ((pg). However, just as in the feedforward
case, the intuition for suppression of excitatory activity through the latter pathway
(Cpp) would rest on an increase of the firing rate of PV-interneurons. But also
the PV-interneurons are suppressed throughout the range of recurrent potentiation
in either of the parameters, most importantly also through potentiation of their
recurrent excitatory drive ((pg). This has not been studied in the previous literature.
My investigation in the following sections showed that this suppression of activity
and, consequently, the aligned co-modulation of excitatory and PV firing rates
for potentiation of recurrent synapses, is based on the same mechanism as the
paradoxical suppression of interneurons due to feedforward depression.

Upon careful inspection, however, there is a slight discrepancy between the
qualitative behaviors of excitatory and PV firing rates: whereas in the excitatory
neurons both parameters have a purely suppressive effect, such that the contours
of equal firing rates lean to the left (Fig. 3.3C, left), the contour for larger values
of (gp and (pg leans to the right for PV-interneurons (Fig. 3.3C, right). Thus,
from the suppressed state of PV firing rates there is a slight facilitation at high
parameter values. This is so because excitatory neurons approach rectification in
this range, and is consistent with the paradoxical effect. Suppression through the
paradoxical effect in PV-interneurons is brought about by a withdrawal of recurrent
excitation through suppression of the excitatory firing rates. However, close to
rectification excitatory firing rates can only be suppressed very little, such that the
additional input, in this case through increased weight, can overcome the effect of
the suppression of the excitatory firing rate. This was studied before for external
feedforward input [135]. Nonetheless, the local facilitatory effect is not strong
enough to bring about facilitation of PV firing rates above the baseline level. Thus,
the firing rates of PV-interneurons are suppressed in all of the plane of recurrent
potentiation, just as the firing rates of excitatory neurons.

For interacting feedforward and recurrent changes, I increased pg; by decreasing
dp while keeping dg fixed, yielding facilitation of both excitatory and PV rates
(Fig. 3.3D). For the recurrent pathway, I made use of the potentiation of synapses
from excitatory to PV-interneurons ((pg) to decrease the recurrent E/I-ratio. This
potentiation leads to a depression of activity in the network (Fig. 3.3C). These
interacting feedforward and recurrent changes of the E/I-ratio show an antagonistic
role of the synaptic changes in the different pathways, with a non-linear boundary
distinguishing the parameter spaces of suppression and facilitation (Fig. 3.3D).

An apparent feature of all the types of synaptic changes is that the firing rates
of excitatory and of PV-interneurons are closely co-modulated: when excitatory
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3.3 Landscape of network responses

rates increase or decrease, the same happens with PV rates. This tight coordination
appears to depend on dynamical processes related to the paradoxical effect.

This phenomenon is deeply problematic when we consider the behavior of the
two cell classes in vivo. The experiments by Hengen and colleagues explicitly point
to a temporally-distinct firing-rate dynamics of the two populations over the time
course of MD. On the first day of MD, PV firing rates drop to a level substantially
below their baseline while excitatory firing rates remain at their baseline (Fig. 2.3,
see [54]). On the second day of MD, PV firing rates recover back to baseline,
being up-regulated from their depressed state, while excitatory firing rates become
suppressed substantially below their baseline.

Qualitatively, it is not clear how these modulations can be achieved in the ISN,
especially the transition from the first to the second day of MD requires modulation
of excitatory and PV firing rates in opposite directions.

Quantitatively, we shall take into account that the boundary between facilitation
and suppression of firing rates in the feedforward and interacting feedforward and
recurrent cases is very close in excitatory and PV neurons, but not exactly the same
in the example case I have shown (Fig 3.3). Some modulation of the firing rates in
different directions would be possible, but only in tightly constrained parts of the
parameter spaces. The regulation of firing rates could potentially be achieved, but
it would require a coordinated fine-tuning of all the synaptic changes. It is possible
that such fine-tuning emerges from orchestrated plasticity mechanisms in the cortex.
However, a more promising direction would be if the network itself allowed an
independent modulation of excitatory and PV firing rates more generically in large
portions of the parameter spaces. Given the connection between the alignment of
responses of the two populations with the paradoxical effect in the ISN, a potential
network structure lending itself to generate such independent modulation of firing
rates is a non-ISN that does not show the paradoxical effect.

3.3.2 Response in the non-inhibition stabilized network

To study the response in the non-ISN, I chose a small J = 0.01 nS (compared
to J = 0.1 nS for the ISN). In this non-ISN, indeed, a very different picture of
the responses to all the different types of MD-induced synaptic changes emerges
(Fig. 3.4). While responses of each cell type in each type of plasticity change to
some degree, the response structure changes more substantially in PV. Specifically,
the firing rate changes of excitatory and PV neurons become quite different from
each other in the non-ISN.

Excitatory neurons have areas in the parameter space in which depression or
facilitation can be induced, and the two regions are separated by a linear boundary
(Fig. 3.4B, left). Qualitatively this is similar to the ISN. However, this linear
boundary shifts substantially while also the strength of the firing rate modulations
is decreased.

The response of PV-interneurons, on the contrary, changes to purely depressive
(Fig. 3.4B, right). In all of the parameter range, the firing rate of PV-interneurons
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Figure 3.4: Response to synaptic changes induced by brief MD in a spiking
network in non-ISN regime. (A) Network schematic showing couplings among cells
and parameters to model MD-induced synaptic changes (see Fig. 3.3). In the non-ISN, .J
has a smaller value than in the ISN (shown responses for J = 0.01 nS) (B) Network firing
rate in the (0g, 0p) plane as fold-change of baseline firing rate for excitatory neurons (left
panel) and PV-interneurons (right panel). In the non-ISN there is no facilitation of activity
of PV. (C) Network firing rate in the ((gp, (pr) plane as fold-change of baseline firing
rate. Facilitation of activity of PV-interneurons is present in the non-ISN. (D) Combined
feedforward and recurrent plasticity: changing the recurrent E/I-ratio through the parameter
CpE, changing the feedforward E/I-ratio as ppr = dg/dp. Network firing rate as fold-change
of baseline firing rate in ((pg, pgr) plane. In contrast to the ISN (see Fig. 3.3), here in the
non-ISN;, the rate changes are opposite over large fractions of the plane. Modified from [1].

depresses below their baseline. Crucially, I found that also depression of feedforward
inputs to PV (0p < 1) suppresses PV firing rates. This behavior is opposite to
the firing rate changes predicted from the paradoxical effect and conforms with
the absence of the paradoxical effect in the non-ISN. Comparing the responses of
excitatory and PV neurons in the non-ISN, we find large parameter spaces that
enable independent or opposite directions of firing rate modulation for the two cell
classes. A natural way to interpret the emerging picture in the non-ISN would be to
produce a state of suppressed PV firing rates combined with excitatory firing rates
that remain at baseline on the first day of MD (MD1) by making use of feedforward
depression.

52



3.4 Quantification of response structure

In response to recurrent plasticity, excitatory neurons show suppression of firing
rates in all of the parameter space (Fig. 3.4C, left), similar to the response in the ISN
(Fig. 3.3C). For PV-interneurons, a facilitatory area in the parameter space emerges
in the non-ISN that was not present in the ISN (Fig. 3.4C, right). The combination
of this facilitatory parameter regime for PV firing rates together with the purely
suppressive response of excitatory neurons is again a possible parameter regimen that
enables the independent modulation of firing rates in the two cell classes. Extending
the idea to produce the state at MD1 using the feedforward depression, it would be
possible to recover PV firing rates through recurrent plasticity (in the facilitatory
area) that necessarily also leads to suppression of excitatory firing rates, producing
a state reminiscent of the second day of MD.

The results for interacting feedforward and recurrent plasticity in the non-ISN
complete this picture of independent or opposite modulation of excitatory and PV
firing rates during brief MD (Fig. 3.4D). In this space of increased feedforward
E/I-ratio (pgr) and decreased recurrent E/I-ratio ((pg), firing rates of the two
cell classes behave exactly opposite. Wherever the network is instantiated in
the parameter space, it can produce either facilitation of excitatory firing rates
paired with suppression of PV firing rates (in the largest fraction of the space), or
suppression of excitatory firing rates paired with facilitation of PV firing rates.

In conclusion, I found that a network of randomly and sparsely connected ex-
citatory and PV neurons can be a suitable candidate to explain the independent
modulation of firing rates in vivo, granted it is a non-ISN. In general, there seems to
be a much larger parameter space that enables independent modulation of excitatory
and PV firing rates in the non-ISN. In order to validate this interpretation and the
role of the ISN /non-ISN distinction, I used a more general account that quantifies
the response structure in the two regimes from a broader perspective.

3.4 Quantification of network response structure to
MD-induced plasticity across operating regimes

Remark: Some of the results of this section (Fig. 3.5 in Sec. 3.4.1) have been
published before with identical content in [1].

The results in the ISN and non-ISN make a role of the operating regime for the
tight coordination of firing rate changes in excitatory and PV neurons very likely.
However, the two networks studied so far are specific cases for coupling scales
J =0.1 nS (ISN) and J = 0.01 (non-ISN). The distinction between non-ISN and
ISN is an important dichotomy. However, it is imposed on a continuum of network
structures, ranging from a very weakly coupled non-ISN to a non-ISN or an ISN
close to the transition between the two regimes, up to a very strongly coupled
ISN. A priori, it is conceivable that the overall coupling scale J shapes the network
responses to synaptic changes induced by MD beyond the simple distinction into
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3 Effects of sensory deprivation

two regimes. To investigate the general role of the coupling scale, I varied J in
more detail on a large range, spanning weakly coupled to strongly coupled networks,
covering both non-ISN and ISN regimes. For all these values of J, I generated the
full landscapes of responses for all three types of synaptic changes (feedforward,
recurrent and interacting feedforward and recurrent, as in Fig. 3.4B-C). To quantify
the firing rate changes globally, I introduced multiple scalar measures that describe
the overall distribution of firing rate changes in the two neural populations and their
relationship.

The first set of measures quantifies the distribution of facilitation and suppression
in the parameter spaces by measuring the area of parameter space in which activity
is facilitated (Sec. 3.4.1). T calculated this normalized to the total range of param-
eters in the simulations, such that we can extract the relative area of facilitation
and suppression at once. Additionally, I quantified the relation of the respective
distributions of facilitatory and suppressive parameter spaces in excitatory and PV
neurons by calculating the normalized area in which both populations are modulated
in the same direction (either facilitation or suppression). This quantification of the
fractional area of co-modulation describes how tightly coordinated the responses of
the two populations are in either direction (facilitatory or suppressive) and thus how
finely tuned synaptic changes must be to allow the independent modulation of firing
rates in excitatory and PV neurons measured in vivo. These quantifications show
that the coordination of the excitatory and PV firing rate changes is indeed a general
property of the ISN, whereas the non-ISN generally allows for more independent
firing rate changes.

A caveat with these measures is that they do not capture the size of the effects,
i.e., the amplitude of firing rate changes, but only their direction. This reduction is
useful to give intuitive measures of the general co-modulation of the two populations
but at the cost of leaving out important information on the strength of modulations.
As a second set of measures, therefore, I quantified properties of the gradient of
responses in the respective parameter spaces, for each neural population separately
and for their relation (Sec. 3.4.2). The absolute direction of the gradient throughout
the parameter space is of limited interest, giving only local relations of the firing
rate changes. However, the length of the gradient measures how strongly firing rates
are modulated overall in the respective plane. I quantified the average lengths of
the gradients of firing rate changes for either neural population in all three types of
MD-induced plasticity. This quantification uncovers a problem of the non-ISN: even
though it permits independent modulation of the excitatory and inhibitory firing
rates, the size of the firing rate modulations is very small for the small coupling
scales in the non-ISN. Thus, the non-ISN calls for very large MD-induced synaptic
changes in order to lead to sufficient suppression of PV on the first day of MD, and,
likewise, their recovery with sufficient simultaneous suppression of excitatory rates
on the second day of MD. Potentially, the large synaptic changes called for in the
non-ISN are beyond what is biologically realistic.

As a third measure derived from the gradient of responses, I also calculated the
angle between the gradients of the two populations (Sec. 3.4.2). This relative angle

o4



3.4 Quantification of response structure

A

b|nar|ze Ogp E

n \ v
PV

> calculate q

overlap

I facilitation
B suppression
Il same sign
[ opposite sign

Norm area

o
o
L

Figure 3.5: Parameter space of facilitation and suppression as a function of the
coupling scale J. (A) Schematic to determine the overlap of facilitating and suppressive
response areas of excitatory neurons and PV-interneurons. The thresholded plane of
responses (as in Figs. 3.3 and 3.4) for both neuron types is used to compute the total
facilitating area and quantify how closely excitatory and PV firing rates follow each other
through the overlap of facilitation and suppression. (B) Network with feedforward depression
only (Figs. 3.3B and 3.4B). Fractional area of facilitation for excitatory neurons (Fg, gray),
PV-interneurons (Fp, blue) and the overlap between excitatory and PV response areas
(Ogp, orange) as a function of the overall coupling scale J. Green diamond shows the value
of J used in Fig. 3.3 (ISN), black triangle shows the value of J used in Fig. 3.4 (non-ISN).
(C) Same as (B) for recurrent potentiation only (Figs. 3.3C and 3.4C). (D) Same as (B)
for interacting feedforward depression and recurrent potentiation (Figs. 3.3D and 3.4D).
Modified from [1].

is another measure that quantifies the coordination between the two populations,
backing up the understanding gained from studying the overlap of the fractional
area of co-modulation.

3.4.1 Parameter space of co-modulation of activity during MD

To extract the distribution of facilitation and suppression, I thresholded the plane
of firing rate fold changes of each population (¥4 (z,y) for A € {E, P}, Eq. 3.10)
at the boundary between facilitation and suppression (Fig. 3.5A). Firing-rate fold
changes above one (¥4(x,y) > 1), corresponding to facilitation of firing rates, are
assigned the value 41 (red region in the binarized plane in Fig. 3.5A). Normalized
firing rates below one (U4(z,y) < 1), corresponding to suppression of activity,
are assigned the value —1 (blue regions in the binarized plane in Fig. 3.5A). The
fractional area of facilitation is then calculated by summing all positive entries in
this thresholded plane and dividing it by the total number of entries. I did this
for excitatory neurons and PV-interneurons independently for the three different
types of MD-induced plasticity: feedforward (Fig. 3.5B), recurrent (Fig. 3.5C), and
interacting feedforward and recurrent plasticity (Fig. 3.5D). The black triangle in
Fig. 3.5B-D marks the value of J used in the non-ISN (Fig. 3.4), the green diamond
in Fig. 3.5B-D marks the value of J used in the ISN (Fig. 3.3).

The fractional area of facilitation for excitatory neurons as a function of the
coupling scale J is shown in gray (Fg). In response to feedforward plasticity, I found
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a continuous increase of Fg, followed by saturation (Fig. 3.5B). For very small values
of J, the change of the feedforward input dominates the response. Since this change
is depressive, the primary direction of the modulation of firing rates is suppression.
Nonetheless, even for the smallest value of J studied, feedforward plasticity can
induce facilitation in specific regions of the parameter space in excitatory neurons due
to the recurrent interaction with PV-interneurons. The fractional area of facilitation
for excitatory neurons will only reach zero when the network is completely decoupled
(J = 0 nS, not shown due to logarithmic scale in J).

For large values of J, the fractional area of facilitation does not reach one,
corresponding to pure facilitation, but saturates at a value Fg < 1. This hints at a
fixed boundary between facilitation and suppression even for J — oo. Intuitively,
it is clear that the depression of direct excitatory inputs into excitatory neurons
(0g < 1) on its own must suppress activity to some degree. This depression can only
be counteracted by depression of excitatory inputs to inhibitory neurons (dp < 1),
given that the two populations interact recurrently to a sufficient level. Note that
this facilitation of excitatory responses through a depression of inputs to inhibition
is independent of the operating regime of the network (non-ISN or ISN) and only
requires recurrent interactions to be present at all.

The fractional area of facilitation of PV-interneurons is shown in dark blue (Fp).
In response to feedforward plasticity, I found this area to be constantly zero until a
certain threshold in J was reached (Fig. 3.5B). Above this specific coupling scale
Fp steeply increases until it also saturates at the same value as F. Crucially, the
value of J where the fractional area of facilitation first becomes non-zero coincides
with the value of J at which the network model transitions into the ISN regime and
first expresses the paradoxical effect (Fig. 3.1D). From the paradoxical effect, we
can also derive the intuition underlying this emergence of a facilitatory area in PV
responses to MD-induced feedforward plasticity (see previous section).

I calculated the area of co-modulation of excitatory and PV firing rates as the
fractional overlap between facilitatory and suppressive areas in the two cell classes.
Starting from the thresholded, binarized planes for both cell classes, in which all
entries have values +1 (facilitation) and —1 (suppression), I multiplied each entry
in the excitatory response plane W¥(z,7) with the corresponding entry in the PV
response plane ¥’ (z,y) (element-wise product). When the firing rates of the two
cell classes are modulated in the same direction, either both being facilitated (41
and +1) or both being suppressed (—1 and —1), the product of the two entries has
the value +1 (black region in the combined plane in Fig. 3.5A). If the firing rates of
the two cell classes are modulated in opposite directions (+1 and —1), the product
has the values —1 (white region in the combined plane in Fig. 3.5A). I calculated
the fractional area of co-modulation, or overlap between facilitatory and suppressive
regions, in the two cell classes from this combined plane of co-modulation. I do
this by summing up all positive entries and dividing this sum by the total number
of entries in the plane. This fractional area of co-modulation as a function of the
coupling scale J is shown in orange (Ogp).
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In response to purely feedforward plasticity, this fractional area of co-modulation of
the two cell classes changes non-monotonically, driven by the two different processes
of the fractional area of facilitation in the two different cell classes (Fig. 3.5B). For
very small values of J, the overlap is very close to one, which is a consequence
of the very small areas of facilitation in both cell classes and, consequently, a
common depression of the firing rates in both cell classes. Nonetheless, because
of the non-zero fractional area of facilitation in excitatory neurons, the overlap is
only in a part of the planes and further decreases as J increases. At the value
of J for which the network transitions from non-ISN to ISN, the overlap reaches
a minimum and increases again for higher values. This increase is driven by the
emergence of a facilitatory region in the PV response. The discontinuity in the
overall behavior of Ogp follows from the sudden emergence of Fp > 0. Together
with the increase of Fp, the fractional area of co-modulation steeply increases until
it saturates at Ogp = 1. For this value of the fractional area of co-modulation,
the two cell classes respond in the same direction in the whole parameter space of
MD-induced feedforward depression, making an independent modulation of the two
firing rates as is observed in vivo impossible.

In response to purely recurrent plasticity, the behavior of the fractional area of
facilitation in excitatory and PV neurons, and the overlap between facilitatory and
suppressive areas between the two cell classes, is dominated by a single process
(Fig. 3.5C). This process is the monotonic decay of facilitatory area in the response
of PV-interneurons (Fp in Fig. 3.5C). For very small J, the PV firing rate almost
exclusively facilitates above baseline. As J increases, this area decays until it reaches
zero. Importantly, the value of J at which the fractional area of facilitation reaches
zero is again the coupling scale at which the network transitions from non-ISN to
ISN, and at which a facilitatory area for PV firing rates first emerges for feedforward
plasticity. Thus, the presence of facilitation in response to recurrent plasticity in
PV firing rates (Fp > 0) depends on the network being a non-ISN. The purely
suppressive effect of recurrent plasticity on PV firing rates in the ISN (Fp = 0)
is governed by a mechanism related to the paradoxical effect. In feedforward and
recurrent plasticity studied separately, the condition for the presence of a facilitatory
area is opposite.

The fractional area of facilitation for excitatory neurons constantly stays at zero
over the whole range of J in response to recurrent plasticity (Fg in Fig. 3.5C). In
both operating regimes of the network, excitatory firing rates exclusively depress
below baseline in response to recurrent plasticity. This fortifies the conclusion from
the two planes for the ISN and ISN (Figs. 3.3 and 3.4). From the combination of
the two behaviors of the facilitatory area in excitatory firing rates, which constantly
stays at zero, and of the facilitatory area in PV-interneurons, which monotonically
decays to zero, the total area of co-modulation monotonically increases to one and
stays there for all higher coupling scales. Thus we find in the ISN that excitatory
and PV firing rates can exclusively be modulated in the same direction through
recurrent plasticity, while in the non-ISN, an independent modulation of the firing
rates is possible.
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3 Effects of sensory deprivation

In response to interacting feedforward and recurrent plasticity, the fractional
areas of facilitation in excitatory and PV neurons and the fractional area of the
co-modulation of the two cell classes all show a pronounced dichotomy between the
non-ISN and ISN (Fig. 3.5D). The area of co-modulation (Ogp) is constantly at
zero for all values of the coupling scale J below the transition to ISN, indicating
opposite directions of firing rate modulations of excitatory and PV neurons in the
non-ISN over the whole parameter space. As the network transitions to ISN, Ogp
jumps to one and remains there for all higher values of J, indicating fully aligned
co-modulation of the firing rates in the two cell classes.

This jump emerges because, for both parameters varied in the space of interacting
feedforward and recurrent plasticity, the response of the PV-interneurons reverses
its direction as the network transitions from non-ISN to ISN. In the non-ISN, the
increase of the feedforward E/I-ratio suppresses PV firing rates while the decrease
of the recurrent E/I-ratio meditated by (pg facilitates PV firing rates (Fig. 3.4D).
In the ISN, the increase of the feedforward E/I-ratio facilitates PV firing rates
while the decrease of the recurrent E/I-ratio meditated by (pr suppresses PV firing
rates (Fig. 3.3D). The combination of the two reversals of the responses in the two
parameters studied in the interacting feedforward and recurrent plasticity generates
a sudden in the response of PV firing rates.

In summary, this quantification shows that the tight coordination of excitatory and
PV firing rates is a property of the ISN with large coupling scales. The ISN generally
permits only narrowly constrained parameter ranges for independent modulation of
the firing rates in the two cell classes, which even shrinks to zero the larger J is. In
the non-ISN with small J, there are generally larger areas in the parameter spaces
that enable an independent modulation of excitatory and PV firing rates.

3.4.2 Response gradients of the MD-induced firing rate changes

The quantification in the previous section only takes the direction of firing rate
modulations into account. For a complete picture, it is necessary to also investigate
the strengths of the firing rate modulations. The different coupling scales in the
different operating regimes are expected to influence not only the distribution of
the direction of firing rate modulations but also the size of the modulations. In
order to globally quantify the size of firing rate modulations in the different types
of MD-induced plasticity, I used the average length of the gradient in the different
response planes for each of the cell classes.

I calculated the gradient of the firing rate fold changes numerically from the firing
rate fold changes U4 (x,%). The two components of the gradient for the population
A € {E, P} at each point (x,y) in the respective parameter space are:

T4z + A,y) — UA(z,y)
A
VU (z, y) = , (3.11)
‘IIA(xay + A) - \IIA(xa y)
A
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3.4 Quantification of response structure

where A is the spacing of the grid underlying the numerically generated plane of
firing rate fold changes W4 (z,y). To calculate the average lengths of the gradients,
I first calculated the lengths of the gradients for each neuron type at each point in
the respective parameter space

la(z,y) = ‘V‘l’A(ﬂfvy) : (3.12)

where A € {E, P} denoted the respective population. I then averaged over all
positions (x,y) in the respective parameter space:

La= <l,4(x,y)> . (3.13)
(z,y)

In Fig. 3.6 the averaged lengths of the gradients were plotted over the range of

coupling scales J for the excitatory (Lg, green) and PV neurons (Lp, light blue).

For pure feedforward plasticity, the average length of the gradient monotonically
increases for both cell classes (Fig. 3.6B). Crucially, for both cell classes it is very
small for small coupling scales J. Essentially, this is true throughout the range of J
that corresponds to the non-ISN (black triangle in Fig. 3.6B marks J = 0.01 nS used
in Fig. 3.4). The lengths then steeply increase for intermediate to large J that span
the ISN regime (green diamond in Fig. 3.6B marks J = 0.1 nS used in Fig. 3.3).

For pure recurrent plasticity, the behavior of the gradient lengths is non-monotonic
and rather complex with respect to the operating regimes (L and Lp, Fig. 3.6C).
Generally, even though both gradient lengths start at a value close to zero for a non-
ISN network with a very small coupling scale (J = 0.001 nS), they are of comparable
size in the non-ISN and the ISN with intermediate values of J (black triangle and
green diamond, Fig. 3.6C). For interacting feedforward and recurrent plasticity, the
curves for the gradient lengths largely resemble those for pure feedforward plasticity,
with very little firing rate fold changes in the non-ISN and large firing rate fold
changes in the ISN (Lg and Lp, Fig. 3.6D).

A further measure of the global response structure is the angle between the
gradients for excitatory and PV firing rate changes caused by MD-induced plasticity
(Pgp, Fig. 3.6A). From the gradients for the two populations at each position in
the parameter space (V¥ (z,y) and VU (z,y)), I calculated the angle between
those gradients at each point as:

bpp(@,y) = cos™ (VI (a,y) - VI (a,y)) (3.14)
which I then averaged over all positions (z,y) in the respective parameter space:
()

This angle ® zp measures how tightly coordinated the firing rate modulations are in
the two cell classes, similarly to the area of co-modulation in the previous section
(Ogp, Fig. 3.5). The conclusions from this quantification are quite similar to the
conclusions from the areas of co-modulation.
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Figure 3.6: Responsiveness of excitatory and inhibitory firing rates to MD-
induced plasticity as a function of the coupling scale J. (A) Schematic for the
extraction of average gradient lengths and angle between gradients for excitatory and PV
responses. We use the length of the gradient as a proxy for the magnitude of responsiveness
of each population to MD-induced plasticity. The angle between the gradients denotes the
amount of co-modulation of excitatory and inhibitory firing rates (0° if the firing rates follow
each other as in the case of high J for feedforward and recurrent plasticity, 90° if the firing
rates are independent of each other as in the case of low J for feedforward and recurrent
plasticity, and 180° if the firing rates are opposite from each other as in the case of low .J for
interacting feedforward and recurrent plasticity). (B) Network with feedforward depression
only. Average gradient length for excitatory responses (Lg, green) and for PV responses
(Lp, blue) as a function of J. The green diamond shows the value of J used in Fig. 3.3
(ISN), the black triangle shows the value of J used in Fig. 3.4 (non-ISN). (C) Same as (B)
for recurrent potentiation only. (D) Same as (B) for interacting feedforward depression and
recurrent potentiation. (E) Network with feedforward depression only. Angle between the
gradients of excitatory and PV responses (Pgp) as a function of J. (F) Same as (E) for
recurrent potentiation only. (G) Same as (E) for interacting feedforward depression and
recurrent potentiation.

For pure feedforward plasticity, the angle between the two gradients is around
90° throughout the non-ISN (®gp, Fig. 3.6E). Thus, for the non-ISN regime, the
firing rate modulations are on average orthogonal, independent of the area of co-
modulation of the two firing rates. Interestingly, even though I found a large area
of co-modulation (Ogp) for very small J (close to zero) in the previous section, the
angle between the gradients shows that firing rates can be modulated independently
within the suppressive regime of firing rate fold changes. The transition in J from
non-ISN to ISN is marked by a decrease of the angle from 90° to 0°. Thus, the
relative independence in the non-ISN is replaced by very tight coordination of firing
rates in the ISN throughout the parameter space. Regardless of the direction in
which we move in the parameter space of feedforward depression, excitatory and
PV firing rates are modulated in the same fashion, independent of whether they are
suppressed or facilitated. The same holds for purely recurrent plasticity, just with a
more smooth change of the angle between the two regimes (Fig. 3.6F).

For interacting feedforward and recurrent plasticity, the dichotomy between the
two regimes is quite pronounced (Fig. 3.6G), similar to what I found for the area
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of co-modulation of the firing rates (Fig. 3.5D). In contrast to the other types of
MD-induced plasticity, the angle between the gradients here is 180° throughout
the non-ISN, indicating not independent but opposite rate modulations (see also
Fig. 3.4D). As the network transitions to the ISN regime, the angle steeply changes
to 0° and remains there for all higher J, again showing a tight alignment of the rate
modulations throughout the ISN regime (see also Fig. 3.3D).

3.4.3 Summary

The investigation and quantification of the structure of the firing rate fold changes
over J confirmed a dichotomy between the non-ISN and the ISN as the major
mechanism underlying either independence or tight coordination in the two cell
classes. It seems that generally, the non-ISN is more suited to generate independent
rate modulations as seen in wvivo. In contrast, the ISN would predict that the firing
rates of the two populations vary together over the course of MD. This is not only
true for the two selected cases shown in Figs. 3.3 and 3.4, but also over wide ranges
of the coupling scale J (Figs. 3.5 and 3.6).

A problem in the non-ISN, however, is that the lengths of the gradients are very
small, especially in feedforward plasticity (Fig. 3.5B). This casts doubt on whether
feedforward plasticity in the non-ISN can modulate firing rates strongly enough to
explain the firing rates modulations in vivo with realistic sizes of synaptic weight
changes. The lengths of the gradients in the ISN leave no doubt that the effects
are strong enough to suppress rates to 60% of their baseline and recover them with
only modest synaptic weight changes.

However, beyond changing the coupling scale J, maybe changing other parameters
in the network could enable independent modulation of firing rates, also in the ISN?
I investigated how robust this coordination in the ISN is if I vary not only J but
also multiple other network parameters that do not directly influence the operating
regime but nonetheless change the network responses.

3.5 Robustness against network parameter variations with
experimentally constrained synaptic changes

Remark: The results of this section (simulation data in Fig. 3.7B and Table 3.2)
have been published before in [3]. The simulation data used in this article have been
replotted here for increased clarity and notation in the table has been adapted for
consistency. The simulation data and methods were my contributions to the article.

Apart from the coupling scale J, all network parameters have been fixed so far.
How robust is the tight coordination between excitatory and PV firing rates in the
ISN when we allow more parameters to change? I addressed this question using a
Monte-Carlo approach in which multiple parameters are varied. I randomly sampled
over large ranges of the relative scale of inhibition g,. and of the feedforward and
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background input rates Rrgny and Rpra (Table 3.2, note that previously I have
used the same rate from the two input sources, while here I also take differing input
rates into account). Furthermore, also the coupling scale J is chosen randomly from
a large range. However, the boundaries of this range are such that the network is
an ISN in all cases.

I generated a large set of networks upon which I then imposed MD-induced synaptic
changes. However, simulating the firing rates on fine-grained grids spanning the
different parameter spaces is not feasible for this whole set of networks. Instead,
I used specific values for MD-induced synaptic changes that match results from
our collaborators in the Turrigiano Lab [3]. The loss of generality this entails at
the same time enabled more direct biological predictions for the relative roles of
feedforward and recurrent plasticity.

I found that (1) overall, the tight coordination of firing rates in the ISN holds, also
when varying multiple parameters simultaneously. However, (2) with experimentally
restricted values of MD-induced synaptic changes, firing rates closely resembling the
state after two days of MD can be generated. Nonetheless, the tight coordination of
excitatory and PV firing rates still prohibits the full sequence of firing rate changes
on the first and second day of MD.

Methods

The network connectivity, number of neurons and their dynamics are the same as in
previous sections (see Section 3.2, specifically Equations 3.3-3.5, parameters provided
in Table 3.2). For the publication, we chose a slightly different setup of inputs for a
specific example that achieves experimentally constrained firing rates of excitatory
(5 Hz) and PV (10 Hz) as proposed by our collaborators from the Turrigiano
Lab [3]. Specifically, feedforward inputs from the LGN and BKG inputs where
injected to both excitatory and PV neurons (Fig. 3.7A), while the relative strength
of LGN input to PV was reduced compared to the previous network (g, = 1.25,
Table 3.2). I varied the overall coupling scale J, but combined this with variation of
the dominance of recurrent inhibition g,., the rate of the feedforward input Rpgn
and the rate of the background input Rpxqg. Values for these parameters were
sampled with a uniform distribution in ranges J € {0.1,0.4} (thus, all networks are
ISN), g € {7,10}, Rrgn € {500,1500} and Rpra € {500,1500}.

In total, I generated 100,000 networks with parameters in these ranges, each
of which was run for 9s to estimate average firing rates. From the networks, I
sub-selected those which have firing rates around 5 Hz for excitatory and 10 Hz for
PV neurons, allowing for £10% of deviation (Fig. 3.7B, left). This constraint is
fulfilled by = 2,500 networks.

On all of these networks, I applied feedforward and recurrent plasticity with
specific values that our collaborators measured in rat V1m layer 4 after two days of
MD. In this circuit, the feedforward E/I-ratio was found to change approximately by
a factor ~ 1.5, which I chose for pg;. The feedforward input synapses to excitatory
neurons were found to depress to 90% of their values before MD (thus g = 0.9,
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Fig. 3.7A, blue). From the shift of the feedforward E/I-ratio together with the
depression of input synapses to excitatory neurons, I inferred the depression of
feedforward input synapses from LGN to PV to be dp = 0.6 (Fig. 3.7A, blue), using
the relation ppr = 0 /dp. 1 first studied the consequences this feedforward plasticity
has on its own for the firing rates in all the sub-selected networks and plotted the
distribution (Fig. 3.7B, middle). In a second step, I also implemented the change of
the recurrent E/I-ratio that was experimentally measured in rat V1m layer 4 in the
same set of experiments. Our collaborators found the recurrent E/I-ratio to decrease
by a factor of ~ 0.73. I implemented the decrease of the recurrent E/I-ratio through
Cpr = 1.5 (Fig. 3.7A, orange). I studied the consequences on the firing rates when
combining feedforward and recurrent plasticity with these specific values for the
firing rates in all the sub-selected networks and plotted the distribution (Fig. 3.7B,
right).

The resulting distributions of firing rates are visualized as box plots, shown for
both populations in all three conditions (baseline, feedforward only, and interacting
feedforward and recurrent). The representation of the data is based on quantiles
of the underlying distribution. The central red line shows the median of the data,
surrounded by a box extending to the first quartiles above and below this median
(interquartile range, IQR). The whiskers extending from the box show ranges
+1.5IQR beyond these quartiles.

The tight coordination of excitatory and PV firing rates is very robust and
random sampling confirms the specific roles of the feedforward and recurrent
E/|-ratios

After the subselection for suitable firing rates from all randomly generated networks,
excitatory firing rates scatter around 5 Hz (Fig. 3.7B, left. Target rate: gray dashed
line), and PV firing rates around 10 Hz (Fig. 3.7B, left. Target rate: gray dotted line).
Increasing the feedforward E/I-ratio to the value measured in [3] (ppr = 1.5 with
0 = 0.9 and 6p = 0.6) leads to strong facilitation of both the excitatory and PV
firing rates (Fig. 3.7B, middle). This confirms my finding of the strong facilitatory
effect of the increase of the feedforward E/I-ratio in the ISN (Fig. 3.3) and shows
that this is a robust feature over large ranges of randomly chosen parameters.

When I applied recurrent plasticity that decreases the recurrent E/I-ratio ((pg =
1.5) in addition to this shift of the feedforward E/I-ratio, both excitatory and PV
firing rates decreased strongly relative to the case with only feedforward plasticity
(Fig. 3.7B, right). Interestingly, the suppression of excitatory firing rates is more
expressed than the suppression of PV firing rates, such that excitatory firing rates
seem to be suppressed even relative to the initial baseline, while PV firing rates are
more modestly suppressed. This setup is reminiscent of the firing rates measured
in vivo on the second day of MD, showing PV firing rates, at least on the verge of
recovery. Thus, the combination of the feedforward and recurrent synaptic changes
measured in [3] on the second day of MD generates firing rates reminiscent of the
ones in vivo on the second day of MD.
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3 Effects of sensory deprivation

Table 3.2: Parameters of the single neurons and networks, parameter ranges for Monte-
Carlo simulation, and parameters for modeling the specific measured synaptic changes
during monocular deprivation in rat V1im layer 4 [3]. EPSG/IPSG: excitatory/inhibitory
postsynaptic conductance; LGN: lateral geniculate nucleus; BKG: background. Modified

from [3].

Symbol Value/ Description
Range

Cm 200 pF Membrane capacitance.

Jgr 10 nS Leak conductance.

Er —70 mV Leak reversal potential.

Vo —50 mV  Threshold potential.

V. —58 mV  Post-spike reset potential.

Eg 0 mV Excitatory reversal potential.

Ep —85 mV Inhibitory reversal potential from PV (P) interneu-
rons.

Toyn 5 ms Synaptic conductance time constant.

Ng 4000 Number of excitatory neurons.

Np 1000 Number of PV-interneurons.

P 0.1 Connection probability between two cells.

J [0.1,0.4] nS EPSG amplitude E — E and E —PV.

Jre [7,10] Multiplicative factor for IPSG amplitude PV— E and
PV— PV.

Jsy Jp 0.5 nS EPSG amplitude LGN, BKG — E, BKG — PV and
scale for EPSG LGN — PV.

9w 1.25 Multiplicative factor for strong feedforward EPSG
LGN — PV.

Rran [500,1500] Hz Range for the rate of feedforward input spike trains
LGN — E and LGN — PV.

Rpra [500,1500] Hz Range for the rate of background input spike trains
BKG — E and BKG — PV.

PEI 1.5 Feedforward E/I-ratio after MD 65 = 0.9 and dp =
0.6

(pE 1.5 Potentiation of recurrent synapses from excitatory
neurons to PV-interneurons, underlying decrease of
reccurent E/I ratio.
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3.5 Robustness against network parameter variations

B Monte-Carlo simulation
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Figure 3.7: Tight coordination between excitatory and PV firing rates is robust
over wide parameter ranges. (A) Network schematic showing synaptic connections
among neurons with J denoting the overall coupling scale, g,.. the dominance of recurrent
inhibition and g¢,, the dominance of feedforward inhibition. The parameters to model MD-
induced synaptic plasticity are: depression of feedforward drive to excitatory neurons (dg)
and to PV-interneurons (dp), and potentiation of recurrent excitation to PV-interneurons
(Cpr). Ranges of network parameters and values for synaptic changes due to MD are
provided in Table 3.2. (B) Monte-Carlo simulation with variation of J, g,. and input rates
(Rran, Rera) over wide ranges. Box-plots (see Methods) for the distribution of baseline
rates (left), rates after feedforward plasticity (middle, blue in A), and after interacting
feedforward and recurrent plasticity (right, blue and orange in A). Data in (B) have been
published in [3] and replotted here.

However, I am also interested in the mechanism that can bring about the tempo-
rally distinct modulation throughout MD, where this firing rate setup of suppressed
excitatory firing rates and recovered PV firing rates is preceded by a state of sup-
pressed PV firing rates while excitatory firing rates are homeostatically kept at their
initial baseline. When we look a the global picture of facilitation and suppression of
firing rates in the two populations, we still see the tight coordination of excitatory
and PV firing rates. After feedforward plasticity, the firing rates of both popula-
tions strongly increase together (Fig. 3.7B, middle). The subsequent application of
recurrent plasticity strongly suppresses the firing rates of both populations together
(Fig. 3.7B, right). Thus, the tight coordination of excitatory and PV firing rates is
a robust feature of the ISN over large ranges of parameter combinations.

With this approach, I could infer a robust role of plasticity in the feedforward
and the recurrent synaptic pathways. As I have shown before, an increase of the
feedforward E/I-ratio strongly facilitates rates in both excitatory and PV populations
in the ISN, while a decrease of the recurrent E/I-ratio strongly suppresses their
firing rates (Fig. 3.3D). From a purely experimental point of view, especially the
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3 Effects of sensory deprivation

contribution of the change of the feedforward E/I-ratio is not trivial to determine.
While the increase of the feedforward E/I-ratio makes facilitation of firing rates
plausible, the fact that this change of the feedforward E/I-ratio comes about through
depression of the feedforward synapses (and thus, through a depression of the total
input) could also make a suppression of firing rates plausible [141,142]. With my
Monte-Carlo approach, I have shown that the shift of the feedforward E/I-ratio
exclusively leads to facilitation of firing rates over large ranges of randomly chosen
network parameters, granted the network is an ISN. Recurrent plasticity, on the
other hand, has a purely suppressive role, which is also robust. The combination
of the biologically measured feedforward and recurrent plasticity can give rise to a
firing rate state resembling the in vivo setting after two days of MD. The major
homeostatic mechanism, the one that keeps firing rates in check, is the decrease of
the recurrent E/I-ratio (see also Discussion in [3]).

3.6 Mathematical analysis of the MD-induced synaptic
changes in a rate description of the balanced network

Remark: Some of the results of this section (Fig. 3.10) and parts of the analysis
(Egs. 3.31 and 3.32) have been published before in [1]. The notation has been
adapted for consistency, and the analysis has been extended.

In order to theoretically analyze the mechanism that underlies the tight coor-
dination of excitatory and PV-firing rates in the ISN, I studied an analytically
tractable model that phenomenologically describes the rates of the different neural
populations. I will first introduce the model structure and analytically derive the
network parameters that lead to an ISN. This condition is identical to the condition
of the emergence of the paradoxical effect (Sec. 3.6.1). I will then introduce the
expressions that describe the effects of MD-induced plasticity on the steady-state
rate of the network (Sec. 3.6.2). I analyzed the dependence of MD-induced firing
rate changes on the operating regime of the network (Sec. 3.7). Specifically, I derived
the conditions to find facilitation of PV firing rates in feedforward and recurrent
plasticity.

The emergence of a facilitatory area in response to feedforward plasticity was
one of the most salient qualitative changes of the firing rate fold changes of PV-
interneurons that happens in the spiking network at the value of the coupling scale
where the paradoxical effect emerges (Fig. 3.5B). Similarly, in response to recurrent
plasticity, the facilitatory area vanished for the PV firing rate changes at the same
value of the coupling scale (Fig. 3.5C). I derived that, as the numerical evidence
suggested, the PV firing rates cannot be facilitated above baseline in response to
feedforward plasticity if the network is a non-ISN. Likewise, the PV firing rate
cannot be facilitated above baseline in response to recurrent plasticity if the network
is an ISN. I also proved that excitatory rates always show a facilitatory region in
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3.6 Mathematical analysis of the MD-induced synaptic changes

response to feedforward plasticity, with a specific linear boundary that approaches
a fixed limit as the coupling scale goes to infinity. Finally, I also proved that
recurrent plasticity can never lead to facilitation of excitatory rates. I derived the
exact conditions on the parameters for MD-induced synaptic changes to facilitate
(or suppress) firing rates in response to either type of plasticity (feedforward or
recurrent) in both the excitatory and PV populations.

3.6.1 Network structure, stability, and the paradoxical effect

A general population-rate model describes the firing rates of multiple interacting
neural populations by the dynamical equation:

7 =—r+ f(Wr+s), (3.16)

where 7 is the vector of different population rates, W is the connectivity matrix of
the network, and s is the vector of external inputs. The function f is a vector-valued
function that describes the input-output relation of the different populations. Based
on the approximate linear-threshold shape of the input-output relation of the spiking
network I have studied (Fig. 3.1C), I used a rectified linear function for f. Taking
the vector & as argument, the different elements f; of the function f are

(3.17)

0 for x; <0
I'yz; for x; >0,

where I'; are the respective slopes of the linear part of the function, which is the
input-output gain of each neural population. I used the same gain I' for both
populations in the network. The rectified-linear population-rate model then follows
the dynamics

" =—r+T[Wr+s]_ . (3.18)

Without loss of generality, I absorbed the scalar factor I' into W and s by rescaling
them. Assuming that the external input drives the network enough so that it is in
the linear regime of the input-output function, the dynamics of the population-rate
model takes the form

T =—-r+Wr+s. (3.19)

In analogy to the spiking network (Equation 3.2), the network is driven by LGN-
and BKG-inputs (Fig. 3.8A). In the rate model, we can write input weights and
rates together in the stimulus vector:

s— <w5”5 * Wb) , (3.20)
g fuwWsTs

where ws and 74 are the input weight and rate for inputs from the LGN, and w; and
rp are the respective weight and rate from the BKG. The variable gy, describes the
relatively stronger LGN-inputs into the PV-population. As in the spiking model, I
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3 Effects of sensory deprivation

Figure 3.8: Connectivity in the population-rate model with a single subtype of
interneurons before and after MD. (A) Connectivity in the baseline network before
application of MD. (B) Connectivity in the network after application of MD.

used ws = wy and ry = rp. Furthermore, the input weights can be absorbed into
the input rates. Since for both populations the input weights and rates are the
same, apart from gy, I use a single variable 7, to describe the external inputs. The

rescaled stimulus vector is:
s= < 2 > (3.21)
Jfwlx

The recurrent connectivity is also structured in analogy to the spiking network
(Fig. 3.8A, spiking see Eq. 3.1). I used w for the coupling scale and « for the
relative scale of inhibition from the PV-population. These parameters represent
the averaged effect of a presynaptic population on a postsynaptic population, in
contrast to the parameters in the spiking case that represent the weight of a single
synapse. Nonetheless, with a grain of salt, we can say the parameters J and w, as
well as g,. and «, are proportional to each other'. The connectivity matrix of the

rate model is:
Wge Wgp w —’yw>
W = = , 3.22
<WpE pr) (w —yw ( )

where both w > 0 and v > 0, and negative signs are explicitly written in the matrix
to denote inhibitory action. For a general analysis, I first derived the conditions for
stability of the dynamics and the analytical expression of the steady-state.

!The proportionality also needs to take the size of the respective presynaptic populations into
account. Furthermore, one needs to consider the activity-dependent effective weight in the
spiking network to derive the actual proportionality, which is not generally possible with
conductance based-synapses as I have used them.
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3.6 Mathematical analysis of the MD-induced synaptic changes

Stability conditions

The Jacobian of the system in Eq. 3.19 is J = W — L. If Ay is an eigenvalue of
the connectivity matrix W, then Ay — 1 is an eigenvalue of the Jacobian W — L.
Therefore, to determine the conditions for dynamical stability in the system, which
requires that all eigenvalues of the Jacobian have real parts smaller than zero, I
investigated the conditions for all eigenvalues of W to have real parts smaller than
one. The eigenvalues of W are:

2
My = _w(’YQ— D (“’(74— 1)
A =0
Ao = —w(y-—1). (3.23)

The first eigenvalue \; is thus equal to 0 independent of the network parameters,
and both eigenvalues are real. From Ay I derived as the only condition for the two
parameters v and w that needs to be fulfilled for stability:

—wy—-1D=wl—-9)<1 <= ’y>1—$. (3.24)

For w < 1 this condition holds for any 7 > 0 since then (1 — 1/w) < 0. Note that
v > 0 simply means inhibitory projections from the second population because I
write signs explicit in the connectivity matrix Eq. 3.22. That ~ can be zero for
all w < 1 while the network is still stable means that in this range of w stability
does not require any inhibition. Thus, a network with w < 1 is a non-ISN, defined
by this property. Stability would even allow the second population to add further
excitation as long as the condition in Eq. 3.24 is fulfilled.

As soon as w > 1, stability requires v > 0. Thus, the network needs non-zero
inhibition for dynamical stability, i.e., it is an ISN, as it was originally termed by
Tsodyks and colleagues [114]. The amount of inhibition necessary for dynamical
stability is determined by the coupling scale w. As a limiting case, for w > 1 we
can state the general lower bound v > 1 since then (1 —1/w) — 1. This means that
for v > 1, the network is stable for arbitrary coupling scale w. This is also directly
visible from A < 0 in Eq. 3.23 while the condition for stability is only the weaker
condition Ay < 1.

Steady state firing rate

The dynamical system described by Equation 3.19 is in a steady state if:
O0=-r+Wr+s. (3.25)

This equation can be solved to give the analytical expression of the steady state
firing-rate that only depends on the connectivity and the external input:

ros = (I— W) s (3.26)
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3 Effects of sensory deprivation

Solving this for my specific connectivity matrix yields
L 1/1 - 2
B0 o) e
Tss n w —w gfwTx

n=det(l—-W)=1-w+yw. (3.28)

with

Stability of the network requires that this determinant is positive, as n = det(—J7).
Most easily, one can show that n > 0 by substituting v with its lower bound for
stability, derived from the requirement that all eigenvalues have positive real parts
(Eq. 3.24):

n>1—w+(1—l)w=o. (3.29)

w
The sign of n was especially important when I studied the direction of steady-state
rate changes. This sign is relevant for both the paradoxical effect (see below) and
for distinguishing facilitatory or suppressive responses to MD-induced plasticity
(Sec. 3.7).

Derivation of the paradoxical effect in the ISN

I calculate the changes of the steady state firing rates (Arys) induced in the two
neural populations through an additional external input & into PV as:

(ATS%) _ 1 <1+7w —Ww) < 21, > _ < 2ry >
Ari n w 1-w JfwTx Jfwre +&
The stimulus baselines subtract from each other, thus, the firing rate changes of the
two populations are:

BR) - O en

Since n > 0, I reduce the firing rate changes and just keep their direction:

. (3.30)

ATSES x —ywé
Arl o« (1 —w)e. (3.32)

S8

For the excitatory population, the sign of the activity change for any stable parameter
set is negative. Thus, the rate change of excitatory neurons is always in the opposite
direction to the current ¢ injected into PV: injecting additional current to PV
(& > 0) leads to suppression of the excitatory firing rate, while withdrawing current
(€ < 0) leads to facilitation of the excitatory firing rate. As an example, I measured
the firing rate changes of the excitatory population when injecting an additional
positive current to the PV population. For arbitrary w, this is negative (Fig. 3.9A,
black). These results are a direct application of the results from [114] to my specific
parametrization of the ISN.
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Figure 3.9: Paradoxical effect in PV-interneurons depends on the coupling scale
w in the population-rate model. (A) Relative change of steady-state rate of PV-
interneurons induced by current injection to PV-interneurons as a function of the coupling
scale w. The rate of each population is normalized to its baseline firing rate before additional
current injection (BL). This is very similar to the behavior of spiking model when changing
J (Fig. 3.1D). (B) Dynamics of the linear population-rate model following the onset of a
step current to PV-interneurons for w = 0.5 (left), w = 1.0 (middle) and w = 1.5 (right).
Colors are the same as in (A).

For the PV-population, the direction of the activity change depends on w. When
w < 1 rates of PV-interneurons change in the same direction as the injected
current (Fig. 3.9A, dark red). This is the originally expected behavior: when
an extra current is injected to the PV-population, its firing rate goes up, which,
consequently, suppresses excitatory firing rates. If w > 1, however, the response
of the PV-population shows the paradoxical effect: injection of an additional
current into PV leads to suppression of their own activity (Fig. 3.9A, dark red).
Equivalently, withdrawal of external current leads to facilitation of activity. I have
shown before that the condition w > 1 is the exact condition for stability to require
non-zero inhibition in my parametrization (Eq. 3.24). Thus, also in this specific
parametrization, the conditions for an ISN and for the expression of the paradoxical
effect are identical [114].

In the ISN, the activity changes in the PV-population are in the same direction
as the rate changes in excitatory neurons, which is opposite to the direction of the
external input current. In the example in Fig. 3.9B, the dynamics leading to this
paradoxical suppression after injection of an additional current shows the dynamical
mechanism underlying this. For all values of the coupling scale w, the PV population
initially responds with an increase of its activity. When w < 1, the firing rate of
the PV population then settles at steady-state activity higher than the activity
before current injection (Fig. 3.9B, left). When w > 1 the PV activity also initially
increases in direct response to the input current but ultimately settles in a steady
state with decreased activity (Fig. 3.9B, right). This decreased steady state is an
effect of the strongly suppressed recurrent excitation. At a critical value of w =1,
the additional external input current and the withdrawal of the recurrent excitation
balance each other so that the PV population goes to its initial steady-state after
the initial transient rate increase (Fig. 3.9B, middle).
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3 Effects of sensory deprivation

3.6.2 Analytic description of MD-induced steady-state activity changes

The synaptic changes induced by brief MD substantially affect both the inputs to
the network and its recurrent connectivity. It is first necessary to analyze if and how
these changes of the network affect stability. I will then derive the general changes
of the steady-state firing rates that follow from this MD-induced plasticity.

MD-induced changes of the network structure and stability

Given the network was stable before MD-induced synaptic changes, which we shall
require for a biologically reasonable model, does MD-induced plasticity potentially
destabilize the circuit? I have used dimensionless parameters for MD-induced
plasticity in the spiking network, which are multiplied with the synaptic weights
in the baseline setup. We can therefore use these same parameters to describe
MD-induced plasticity in the rate model (Fig. 3.8B). Feedforward inputs from the
LGN to both excitatory and PV neurons depress (6p < 1, dp < 1). This depression
affects the stimulus vector (Eq. 3.21 in baseline), specifically the LGN-inputs:

gmd — (“E * 1)”) . (3.33)

5ngwr:r

Recurrent connections from excitatory to PV and the reciprocal synapses from PV
to excitatory neurons potentiate ((pg > 1, (gp > 1). The connectivity matrix
Eq. 3.22 with these changes of recurrent synaptic strengths becomes:

md _ ( w  —Cppyw
wmd — (CpEw " ) (3.34)

Feedforward changes do not affect stability in the linear model since the Jacobian is
only influenced by the recurrent connectivity. Calculating the eigenvalues of the
connectivity matrix with MD-induced synaptic changes W™ T find:

2
A = _w(’Y2— b, \/(w(v; L) S (3.35)

In comparison to the eigenvalues of the connectivity matrix before induction of MD
(Equation 3.23), recurrent potentiation thus leads to a subtractive term ((gp(pr —
1)yw? within the root. This term is always positive for potentiation of the recurrent
synapses. Two different effects on the eigenvalues need to be considered: either
the term in the root becomes smaller but remains positive (if ((eplpr — 1)yw? <
(w(y — 1))2/4), in which case the eigenvalues after MD induction are two real
numbers just as in the case without MD-induced plasticity. Alternatively, the term
in the root becomes negative (if ((gpCpr — 1)yw? > (w(y — 1))?/4), in which case
the connectivity matrix has two conjugate eigenvalues with identical real parts. In
both cases, the largest real part of the two eigenvalues can be derived from the
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: md.
eigenvalue A%

2
xpd = 0= \/(w(’y SOV (ortre - . (3.36)

In the case that this eigenvalue is real (positive term in the root), one can derive
the stability condition

A4 = max (?R(Ai"g)) < 1

2
= w(72_ D +1 > \/(w(fy; b _ (CepCpE — 1)yw?

— wly-1)4+1 > —(Ceplpr — 1)yw’. (3.37)

Stability of the baseline setup before MD-induction requires that the left hand
side is positive (inverting the sign in Equation 3.24 yields w(y — 1) > —1), while
recurrent potentiation renders the right hand side negative. Thus, this condition is
satisfied for arbitrary amounts of recurrent potentiation® of recurrent connections
between excitatory and PV-interneurons, provided the network was stable before
MD-induction.

In the case that the term in the root becomes negative and the eigenvalues are
complex conjugate to each other, both eigenvalues have real part —w(y — 1)/2.
Stability then requires

w(y —1)

——— < 1. 3.38
— < (339)

This condition is independent of the values for recurrent potentiation. It is, in fact,
weaker than the condition for stability in the baseline setup, which is —w(y—1) < 1
(Eq. 3.24). Thus, also in the case of complex-conjugate eigenvalues, the network
after MD-induction is stable if the network was stable in the baseline setup.

In conclusion, for arbitrary values of recurrent potentiation, leading either to two
complex-conjugate or two real eigenvalues, dynamical stability is maintained when
the baseline setup was stable. The system is even stabilized to some degree as the
conditions on stability are becoming weaker than in the network without recurrent
plasticity. This finding is also interesting for the biological role of MD-induced
plasticity. The analysis suggests that the plasticity mechanisms invoked in the
recurrent circuit are stabilizing the dynamics.

2Within the bounds imposed by the condition that both eigenvalues are real.
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3 Effects of sensory deprivation

General steady-state firing rate fold changes following from MD-induced
synaptic changes

Including MD-changes in both feedforward and recurrent synapses, we can calculate
the steady state rate after MD from Eq. 3.26:

TSES,md _ L (1 + yw —CEp’yw> <(5E + 1)’/“95)
rfs’md nmd CPEW l—w 5ngwrx ’

where 7™ is the determinant of I — W™<:

(3.39)

™ =1—w+yw + (Ceplpr — 1)yw?. (3.40)

For (gp = (prg = 1, this determinant is the same as baseline setup (7, Eq. 3.28).
To better distinguish the two determinants, I will call the original determinant from
the baseline setup 1” instead of 7.

The determinant of the negative of the Jacobian in the baseline setup, n®, is
positive when the network is stable®. Recurrent plasticity leads to the addition of a
positive term to n®. Thus, n™¢ is also always positive:

1™ =" + (Ceplpe — Dyw’. (3.41)

From the matrix equation (Eq. 3.39), we find the rates of the two populations to be:

1
TSES,md — W ((1 +yw)(0g + 1)1y — (Epvwépgfwrx>
1
rfs’md = W(CpEw((sE +ry, + (1 — w)(Sngwa). (3.42)

I was most interested in the firing rate changes induced by MD-plasticity relative to
the baseline firing rate, similar to the experimental studies. To better distinguish
the rates in baseline and after MD, I used index bl to denote the rates in the baseline
state before any MD-induced synaptic changes (Eq. 3.27):

1
rfs’bl = W (2(1 + yw)ry — 'ngfwa)
1
Tfs’bl _ W (2wrw +(1- w)gfwrw). (3.43)

The firing rate fold change for a population A € {E, P} for MD-induced plasticity
was calculated the same way as in the spiking network:

A,md

A T'ss
ph =T (3.44)
Tss

3Also derived from the requirement that the largest real part of the eigenvalues is negative
(Eq. 3.29).
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Numerically solving these firing rate fold changes in the different parameter spaces
for feedforward, recurrent and interacting feedforward and recurrent plasticity
reproduced the results of the spiking network very well (Fig. 3.10A-C). This confirms
that the population-rate model with a linear-threshold input-output function is a
good approximation to study the mechanisms underlying the rate modulations in
the spiking networks. Analytically, however, it is easier to study the difference of
steady-state firing rates rather than the ratio. The most important property is the
induction of facilitation or suppression of firing rates above or below baseline. The
relation linking the divisive and the subtractive case, for the case of facilitation of
firing rates, is:

A,md
r -
=251 = Eh=rm ot >0 (3.45)
Tss

To analytically understand the mechanism underlying the tight alignment of
firing rate changes between excitatory and PV neurons in feedforward and recurrent
changes in the ISN, as well as the independent modulation in the non-ISN, I studied
the conditions for MD-induced synaptic changes to induce facilitation or suppression
in the two populations, and how they interrelate with the coupling parameters of
the underlying network, especially w as the parameter defining the operating regime.
The boundary is w = 1 between non-ISN (w < 1) and ISN (w > 1). In general,
the explicit condition for induction of facilitation of firing rates in the excitatory

population, including all MD-induced synaptic changes (ng’md — B 0) is:

E

(1]

1
= W ((1 +yw)(0p + 1)ry — CEP’)/w(Spgfwa>

1
7@ (2(1 + yw)ry — ngfwrm> (3.46)

and for the PV-population (ri;md — Tsps’bl > 0):

_ 1
=P _ W (CPEw((SE + 1)?";p + (1 - w)éngme)
1

I have shown that both 7” > 0 and n™? > 0 for stable systems. This is important
to know so that we can multiply by these determinants without switching signs
or, equivalently, the direction of the inequality. To more clearly and intuitively
understand the role each parameter plays, it is useful to again study the condition
for facilitation separately for feedforward ((dg, dp)-plane) and recurrent ((Cgp, (pE)-
plane) plasticity. The combined feedforward and recurrent changes are a direct
application of these results.
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Figure 3.10: Linear model of the network with a single subtype of interneurons
(PV). (A) Network firing rate for an ISN in the (dg, dp) plane (feedforward depression)
as fold-change of baseline firing rate for excitatory (left) and PV populations (right). (B)
Same as (A) for recurrent potentiation (((gp,(pr) plane). (C) Same as (A) for interacting
feedforward and recurrent plasticity: decrease of the recurrent E/I-ratio through (pg,
increase of the feedforward E/I-ratio as pg;r = dg/0p. (D) Network with feedforward
depression only. Fractional area of facilitation for excitatory neurons (Fg, gray), PV-
interneurons (Fp, blue) and the overlap between excitatory and PV response areas (Ogp,
orange) as a function of overall coupling scale w. (E) Same as (D) for recurrent potentiation
only. (F) Same as (D) for interacting feedforward and recurrent plasticity. (G) Network
with feedforward depression only. Average length of the gradient for excitatory neurons (Lg,
green) and PV-interneurons (Lp, light blue) as a function of overall coupling scale w. (H)
Same as (G) for recurrent potentiation only. (I) Same as (G) for interacting feedforward
and recurrent plasticity. (J) Network with feedforward depression only. Average angle
between the gradients of excitatory PV neurons (P gp, red) as a function of overall coupling
scale w. (K) Same as (J) for recurrent potentiation only. (L) Same as (J) for interacting
feedforward and recurrent plasticity. Note that w in the linear population model is the
equivalent to the coupling scale J in the spiking network. Green diamond in (D-L) shows
the value of the coupling scale (w = 5) used in (A-C). Panels (A-F) modified from [1].
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3.7 Mathematical analysis of the role of the operating regime

3.7 Mathematical analysis of the role of the operating
regime

Remark: Parts of the results of this section have been published before in [1]. The
notation has been adapted for consistency, and the analysis has been extended.

As in the spiking case (Section 3.3), I split up the different types of plasticity,
focusing on the feedforward depression (index ffw) and recurrent potentiation (index
rec). Numerical solution of the linear model shows very good qualitative agreement
of the rate changes produced in the linear rate model with those in the spiking
network, beyond the response plane in the ISN (Fig. 3.10A-C) also in the curves
for the different quantifications I have introduced in Sec. 3.4, for the facilitatory
areas and overlap (Fig. 3.10D-F), the gradient lengths (Fig. 3.10G-I, compare to
Fig. 3.5B-D) and the angle between the gradients (Fig. 3.10J-L, compare to Fig. 3.6).

I have discussed the planes and these curves in detail for the spiking network.
However, it is worthwhile to point out that the most salient changes that relate
to the alignment between excitatory and PV firing rate changes happen in the
linear rate model at exactly w = 1, as predicted from the connection between the
paradoxical effect and these changes in the spiking case.

3.7.1 Conditions on facilitation for feedforward plasticity
Excitatory population
The response to pure feedforward plasticity in the excitatory population is:

_ 1
:ffw = W ((1 +yw)(0p + 1)ry — ’}/’ZU(Sngwa>

1
i (2(1 + yw)ry — ’ngfwrx) > 0. (3.48)
This can be simplified to the condition:
((1+ )6 = 1) = yw(dp — Dgpu) > 0. (3.49)

From this, I derived where in the parameter space of MD-induced feedforward
plasticity, excitatory rates are facilitated. I expressed this as a condition on the
dp-value necessary to induce facilitation for a given dp, that is: the dp at the
boundary between facilitation and suppression as a function of dg.

14 yw
JroYw

op < 1_(1_5E) (350)

On the right hand side of Eq. 3.50 is a term of the form 1 — z. Since (1 —dg) > 0,
w > 0 and v > 0, the term z is positive. Thus, this condition to find facilitation of
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3 Effects of sensory deprivation

the excitatory rate can be fulfilled within the biological constraint that §p < 1, and
facilitation is generally possible for depression of feedforward inputs, independent
of the value of the coupling scale w. The condition for facilitation of excitatory
rates in Eq. 3.50 imposes an upper bound on dp that depends on g, confirming
the numerical insight that for a given depression of feedforward inputs to excitatory
neurons, facilitation can only be achieved if the depression of feedforward inputs to
PV-interneurons is strong enough.

Replacing the inequality in Eq. 3.50 by an equality, I extracted the exact values
of dp that determine the boundary between facilitation and suppression over the
whole range of dg. The family of curves for the boundaries over a wide range of
coupling scales w is plotted in Fig. 3.11B (left).

To extract a global picture of the behavior of this boundary between facilitation
and suppression, two limiting cases in w are important: First, if w — 0: then
(1 +~yw)/gfwyw — oo. Thus, facilitation can only happen for §g = 1 because
otherwise (0g — 1)(1 + yw)/gwyw also goes to —oo and cannot be fulfilled by
dp > 0. This is the analytical expression for the fact that, for very small coupling
scale w, responses of excitatory neurons almost exclusively suppress, and, in the
limiting case of no coupling, exclusively suppress. Second, if w — 00, one can simplify
the linear relationship between dg and dp through (1 +~yw)/grwyw — 1/gf, and

obtain: ) )
op< —0p——+1 (3.51)
Jfw Jfw

which is approached in Fig. 3.11B (left) as w increases. This limit of the boundary
will always leave a part of the parameter space depressive, visible in the fact that the
facilitatory area for excitatory firing rate fold changes saturates at a value smaller
than one for large w (Fp, Fig. 3.10D).

PV-population

The response to pure feedforward plasticity in the PV population is:
_p 1
%= (w@e + Do + (1 = w)dpggurs
1
i (Qwrw +(1— w)gfwrm) >0 (3.52)
from which the simplified condition
(w(aE — 1)+ (1 — w)gsu(0p — 1)) >0 (3.53)
follows. In contrast to the excitatory population, for the PV population it is not

possible for general w to derive the value of ép necessary for facilitation given dg,
because the term (1 — w) switches sign at w = 1. In a first step we can derive:

(w—=1)grwop <w(ég — 1) + (w — 1)gsy. (3.54)
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3.7 Mathematical analysis of the role of the operating regime

To further simplify, we have to distinguish the two different operating regimes: If
w < 1 (non-ISN), the factor (w — 1) on the left hand side in Eq. 3.54 is negative.
Division by it leads to an inversion of the direction of the inequality:

w

op>14+—-—
(1_w)gfw

(1 —90m), (3.55)

where I rearranged terms such that all negative signs are written explicitly. Given
0 < 1, we see that this condition cannot be fulfilled for dp < 1, since we add a
positive term to one on the right hand side of Eq. 3.55. Therefore, there can be no
facilitation of PV firing rates induced by feedforward depression in the non-ISN, as
the quantification of the facilitatory area shows for both the linear model for w < 1
(Lp, Fig. 3.10D) and in the spiking network (Fig. 3.5B).

If w > 1 (ISN) then (w — 1) > 0 and we can divide in Eq. 3.54 by this term
without inverting the direction of the inequality (again all negative signs are written
explicitly)

w

bp<l— —m+—
r (w_l)gfw

(1—-0g). (3.56)
In this case, a positive term is subtracted from one. Thus, in the ISN, PV firing
rates can be facilitated through feedforward depression. Replacing the inequality in
Eq. 3.56 by an equality, I derived and plotted the boundary between facilitation and
suppression (Fig. 3.11B, right). I also show ranges of dp and dp that fall outside
the biological constraint of feedforward depression in order to visualize how the
boundary behaves over the whole range of w. The plot shows how the boundary
falls outside the biological range in the non-ISN but crosses it in the ISN.

The boundary is similar to the condition in the excitatory population (Eq. 3.50).The
emergence and growth of a facilitatory area of PV-responses in feedforward plasticity
is a major driver behind the tight alignment of excitatory and PV-responses in the
whole feedforward parameter space (Fig. 3.5). This can be shown considering the
limiting case w — oo, which yields:

1 1
op< —0g — — + 1. (3.57)
9fw 9fw

This is the same condition as in the case of the excitatory neurons. Thus, the larger
w, the more tightly coordinated are the firing rate changes of the two populations.
For a strongly connected ISN, the firing rates of excitatory and PV neurons are
perfectly aligned.

3.7.2 Conditions on facilitation for recurrent plasticity
Excitatory population

From the steady state rate of the excitatory population in response to MD (Eq. 3.42)
and their baseline steady state rate (Eq. 3.43) the condition to induce facilitation in
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Figure 3.11: The boundary between facilitation and suppression in feedforward
and recurrent plasticity. (A) Extraction of the boundary between facilitation and
suppression. The boundary is defined through the parameter combinations for which rate
after MD is the same as in baseline (white areas left). For further visualization, I only keep
the boundary and dismiss the firing rate fold changes (middle, analytically derived boundary).
I also include non-biological parameter ranges to see how the boundary behaves when we
find no facilitatory area within the biological range of MD-induced plasticity. Blue box
shows biological range (depression of feedforward synapses: 6 < 1 and dp < 1, potentiation
of recurrent synapses: (gp > 1 and (pg > 1). (B) Boundary between facilitation and
suppression for feedforward plasticity in the network with a single subtype of interneurons
as a function of the coupling scale w for excitatory (left, Eq. 3.50) and PV neurons (right,
Eq. 3.56). (C) Same as (B) for recurrent plasticity, based on Eq. 3.62 for excitatory (left)
and Eq. 3.80 for PV (right).

recurrent plasticity follows:

—=E "z

T
—rec — Umd <2(1 + ’}/’LU) - CEP'ngfw> - nizjl (2(1 + 7w) - 7w9fw> >0

& —(Cep —1) — (CPECEP — 1)%1:]77“ (2(1 + yw) — vwgfw) >0, (3.58)

where I made use of of the relation between the determinants in the baseline state
and after MD (Eq. 3.41):

7" =" + (CepCre — 1w’ (3.59)

and of the fact that these determinants are always positive in stable networks. To
further simplify the expression in Eq. 3.58 it is necessary to know the sign of the

factor
w

Ap = gfwnbl(Q(l +yw) —rngfw). (3.60)
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3.7 Mathematical analysis of the role of the operating regime

By definition, w > 0 and gy, > 1. Thus, the term Ag is directly proportional to
the baseline rate (Eq. 3.43, only missing r, > 0). In order to study a biologically
meaningful setup, rates shall be positive in the baseline setup before MD-induced
plasticity is applied. This implies an upper bound for g¢,,

2

Using the shortcut in Eq. 3.60, and knowing that this term is positive, I derived
from Eq. 3.58 the lower bound of {(pr necessary to achieve facilitation of excitatory

rates for a given (gp
—Cep + Ap +1

CepAEp
Due to the non-linear dependencies of (pr on (gp, this condition is not as intuitive to
explain as it was in the feedforward case. However, numerically solving the boundary
between facilitation and suppression (replacing the inequality in Eq. 3.62 by equality)
over large ranges of w shows that there is no solution within the biological ranges
of (gp and (pg, neither for the non-ISN nor for the ISN (Fig. 3.11C, left). This
confirms the results from quantifying the area of facilitation over a large range of w
spanning both operating regimes (Fig. 3.10).

Furthermore, a general proof is possible that excitatory firing rates cannot be
facilitated by recurrent plasticity without using the explicit expression of (pg in
Eq. 3.62. To simplify this derivation, I first substitute in the explicit expression for
the steady state rates (Egs. 3.43 and 3.42, see also Eq. 3.58):

CPE > (3.62)

X1 = 2(14+~w)ry
Xo = Ywgpurs (3.63)

which are both positive by definition. With these substitutions, I can express the
steady state rate in the baseline state as:

SS

PEH 7711,1 (Xl — X2>. (3.64)

I also substitute (gp > 1 in the expression for the steady state firing rate after
recurrent plasticity by:
(ep=1+c¢gp (3.65)

such that we can write:
1
B = (X1 = (1+emp) Xo). (3.66)

The firing rate change induced by recurrent plasticity in excitatory neurons can
then be written as
—FE

—rec

E rec E.bl
ss — Tss

1 1
— W(Xl — (1 +€EP)X2) — ﬁ(Xl — XQ)

= r

md bl md

_ (LMY (x _xy) e
= (n ; )(X1 X5) Xo, (3.67)
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with (X7 — X2) = nPlrEP the rate change EZ  becomes

bl
— N EEP
Bt = <n’"d - 1) ri® - md X2 (3.68)

Since n™? > n? we have (n®/n™? — 1) < 0, and with positive baseline firing rate
the whole first term on the right hand side in Eq. 3.68 is negative. From this, a
positive term is subtracted when recurrent synapses potentiate (¢gp > 0). Therefore,
from this expression, one can conclude that it is impossible to find facilitation in
excitatory neurons after recurrent potentiation, independent of the value of w > 0
and thus regardless of the operating regime (ISN or non-ISN).

PV population

From the baseline steady state rates of the PV population (Eq. 3.43) and their
steady state rates in response to MD (Eq. 3.42) the condition to induce facilitation
in recurrent plasticity can be derived using the same relation between 7™ and 7
as for the excitatory case (Eq. 3.41):

_ r r
:rPeC = T"fd(QCPEw + (1 - w)gfw> — n—;fl(Qw +(1- w)gfw) >0
Jqw

< (Cpe—1) = (CPECEP — 1)2771)1

<2w +(1- w)gfw> >0.  (3.69)
I have shown numerically that the rates of the PV population can facilitate in the
non-ISN in response to recurrent plasticity (Fig. 3.10B and E). In the ISN I did not
find any facilitation of PV firing rates numerically. I will prove that this is indeed a
general property the ISN by showing that the boundary between facilitation and
suppression, specifically the (gp necessary to achieve facilitation of firing rates for a
given (pg does not fall within the biological range.

In a first step, the general mathematical argument that facilitation of PV firing
rates is possible follows the same route as the argument showing that excitatory
rates cannot be facilitated (Eq. 3.68). I used the variables

Y1 = 2wr;
Yo = (1—w)gpuwrs. (3.70)

Using the substitution for (pp > 1

CPE: 1+€PE (371)

in addition, the PV firing rates in the baseline state and after recurrent plasticity
can be expressed as

1
r = o (Y1 + Yz) (3.72)
1
rizee = ol ((1 +epp)Y1 + Y2>,
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3.7 Mathematical analysis of the role of the operating regime

from which the expression for the rate changes Z£ . follows:

=P 7" Py, EPE
e = <77md - 1> Tel + WYI. (3.73)
Similar to the excitatory case in Eq. 3.68, the first term in Eq. 3.73 is negative
because n” < 7™, Contrary to the excitatory case, however, a positive term is
added to this. Thus, generally facilitation is possible. A further insight is that
this facilitation centrally requires epg > 0 or, equivalently, (pr > 1. This is also
biologically reasonable, since (pp describes the potentiation of recurrent excitatory
inputs onto the PV population. To derive the exact boundary between facilitation
and suppression and, more crucially, to proof that facilitation of PV firing rates is
not possible through recurrent plasticity in the ISN, I rewrote Eq. 3.69 with the
abbreviation

~yw
Af,zziﬁg(zuw+(1-—uogfw>. (3.74)

Thus,
Cpe - (1 —CepAp) >1— Ap. (3.75)

The variable Ap is proportional to the PV firing rate in the baseline state and should
thus to be positive for a biologically reasonable setup. However, to proceed further
from this equation, one needs to know the sign of 1 — (gpAp, because this will
determine the direction of the inequality in Eq. 3.75 after division. With (gp > 1
as the only constraint, this is not easily determined. However, since facilitation of
firing rates requires (pr > 1 (Eq. 3.73), I first studied the one-dimensional case by
setting (gp = 1. Solving Eq. 3.75 then yields:

<1 if Ap>1
3.76
CPE{>1if;Ap<1. (3.76)

Thus, if Ap > 1, no facilitation of PV firing rates is possible with potentiation of
the recurrent synapse from the excitatory to the PV population ((pg > 1). For Ap
to be larger than one, and without considering the operating regime, the condition
can be derived

2= gp)w=1)> —(1 =) (3.77)

Since w and + are only constrained by stability and positive firing rates, I derived
from Eq. 3.77 the following: is Ap > 1 for arbitrary w and v, as long as gy, is below
the upper bound necessary to have positive baseline firing rate in the excitatory
population (Eq. 3.61)7 To resolve the inequality Eq. 3.77, one needs to divide by
(w — 1) whose sign depends on the operating regime. In the ISN with (w —1) >0
the boundary follows

2

which is exactly the same condition on gg, as in Eq. 3.61. Thus Ap > 1 in the
ISN as long as the excitatory rate in the baseline state is positive. Therefore, PV
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3 Effects of sensory deprivation

firing rates cannot be facilitated above baseline (Eq. 3.76). Furthermore, with
this proof that Ap > 1 in the ISN, it is possible to prove that also in the two-
dimensional case, allowing (gp to vary, no facilitation can be found. With Ap > 1
and (gp > 1 it certainly holds true that (gpAp > 1. Furthermore, from (gp > 1
and 1 — (gpAp < 0 follows:
1—Ap

(pEg < 1= CapAp < 1. (3.79)
Thus, the argument that recurrent plasticity cannot induce facilitation of PV firing
in the ISN holds generally for the ((gp, (pg)-plane.

For the non-ISN, one can prove that Ap < 1 in the range permitted for gy, using
the same route. The only difference to the proof given above is to start with the
assumption Ap < 1, then the inequality in Eq. 3.77 is the opposite, but division
by (w — 1) does switch its direction (w < 1 in non-ISN). This leads to the same
solution as in Eq. 3.78. It follows that Ap < 1 in the non-ISN and, therefore, that
in this reduced one dimensional derivation based on Eq. 3.76, PV firing rates can
be facilitated above baseline with (pgp > 1.

However, the generalization to two dimensions is not as simple as in the ISN.
With respect to Eq. 3.75, Ap < 1 by no means implies that (gpAp < 1 and thus,
that (pg can induce facilitation for arbitrary values of (gp. However, this also
aligns with my numerical results. The conclusion we can draw is that facilitation is
possible in the non-ISN, but it is not in the whole ((gp, (pr)-plane. Rather, for
any (pr > 1 that induces facilitation in the biological range of recurrent synaptic
plasticity, there will also be a (gp > 1 that overcomes this and will ultimately lead
to suppression of PV firing rates. The trade-off between these two parameters is
visible in the boundary between facilitation and suppression (Fig. 3.11C, right).
I derived the expression for this boundary between facilitation and suppression,
assuming equality. One can solve Eq. 3.75 without considering the sign (1 —(gpAp)
and find

Grr = 7 LA (3.80)

1 —(epAp)
I plotted this in Fig. 3.11C (right) as a family of curves over a range of w spanning
both non-ISN and ISN. The boundary between facilitation and suppression indeed
crosses the biological range of the ((gp, (pr)-plane in the non-ISN, not if the
network is an ISN.

3.8 Discussion

I studied the repertoire of activity changes in recurrent networks undergoing experi-
mentally established synaptic changes during the first two days of MD. Generally,
this repertoire seems rich enough to explain the activity changes measured during
brief MD in vivo. However, the effects strongly depend on the overall recurrent
coupling in the circuit, revealing a dichotomy between the ISN and the non-ISN in
the possible activity changes following MD, specifically for the PV-interneurons.
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3.8 Discussion

Excitatory firing rates during the first two days of MD stay at baseline on the first
day and are suppressed on the second day [54]. In the model, their rate can either be
kept at baseline, be suppressed or facilitated, in different portions of the parameter
space of feedforward depression (Figs. 3.3 and 3.4). In the parameter space of
recurrent potentiation, their firing rate is exclusively suppressed. Interestingly, these
general properties are independent of whether the network is an ISN or non-ISN.
The suppression of the excitatory firing rate could underly their suppression in the
animal on the second day of MD. The parameter ranges that keep excitatory rates
around their baseline could explain the preserved baseline firing on the first day.
Alternatively, a combination of suppression and facilitation through different synaptic
changes could also model the preserved firing rates or their suppression, depending on
the balance between facilitation and suppression. I found an antagonistic interaction
between shifts of the E/I-ratio in the feedforward and recurrent connectivity. For a
large set of networks with randomly generated connectivity parameters, the increase
of the feedforward E/I-ratio robustly drives a strong increase of the network firing
rate, which is counteracted by the suppression of firing rates through a decrease
of the recurrent E/I-ratio (Fig. 3.7B). A possible biological interpretation is that
the feedforward changes destabilize the circuit, driving the firing rates up to boost
the residual, less reliable visual signals arriving in V1 after one eye is closed. The
recurrent plasticity invoked in the biological circuit could be a form of stabilizing,
homeostatic plasticity. I found further evidence that recurrent plasticity plays a
homeostatic role through the analysis of the population rate dynamics, which shows
that recurrent plasticity leads to more stable networks (Sec. 3.6.2).

In contrast to the excitatory neurons, PV firing rates are suppressed on the first
day of MD, but already recover back to baseline on the second day in vivo [54].
In the model, the effect of MD-induced plasticity on the PV firing rates strongly
depends on the operating regime. In the ISN, feedforward plasticity can induce both
facilitation and suppression of PV firing rate, whereas recurrent plasticity induces
only suppression (Fig. 3.3). These types of firing rate changes of PV-interneurons in
the ISN are tightly coordinated to those in the excitatory neurons. In the non-ISN,
feedforward plasticity acts exclusively suppressive on PV firing rates while recurrent
potentiation can induce facilitation and could therefore explain their recovery on
the second day (Fig. 3.4).

The non-ISN allows an independent modulation of the firing rates of the excitatory
and PV neurons in large parts of the parameter space of MD-induced plasticity. In
contrast, in the ISN, the tight coordination of the firing rate changes of excitatory and
PV neurons prohibits an independent modulation of the firing rates for the largest
parts of the parameter space of MD-induced plasticity (Fig. 3.5). Therefore, the
non-ISN seems to be a suitable model for the independent modulation of firing rates
in vivo that was shown in [54]. In the ISN, in contrast, this independent modulation
requires fine-tuned synaptic changes. However, a problem in the non-ISN is that the
amount of the firing rate changes is very small (Fig. 3.6). Firing-rate regulation thus
requires very large synaptic modifications to achieve the same amplitude of firing
rate modulations as has been found in vivo. A second problem of the non-ISN is that
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experimental evidence suggests that cortical circuits are ISN [131,135,136]. However,
none of the studies of the operating regime was conducted in the developing animal.
It not clear if the operating regime of the visual cortex during the critical period
matches with the experimentally investigated operating regime in the adult animal.

Taken together, both the non-ISN and the ISN come with specific problems
that impede their usefulness to explain the full sequence of firing rate changes of
excitatory and PV neurons. The experimental evidence that suggests the cortical
circuit to be ISN raises doubts on an explanation of the independent firing rate
changes in a non-ISN. Furthermore, strong coupling also has computational benefits
that mammalian cortices could make use of [15,133]. For example, strongly coupled
networks with balancing inhibition can explain sharp orientation tuning, even when
neurons in the network are randomly wired, that is, without a requirement to
specifically tune recurrent connections to the different stimulus preferences of the
single cells [125,126]. Such networks also show a very interesting form of amplification
of external signals, called balanced or non-normal amplification [137]. This balanced
amplification enables a network to strongly enhance a signal transiently, leading to
strong amplification that can reliably signal to downstream areas on a behaviorally
relevant timescale. Lastly, independent of the transient amplification, circuits with
strong coupling can respond very fast to external stimulation [112,143]. This would
be a beneficial property for sensory processing in an ecological context.

My analysis has shown that the main mechanism that drives the tight coordination
between excitatory and PV firing rates in the ISN is the paradoxical effect. Thus,
the problem I found for the ISN, this tight coordination, may not be a property of
the strong coupling per se, but of a network in which inhibitory stabilization and
the paradoxical effect underly the exact same condition. This identity is generally
true for networks with only a single population of interneurons [114]. However, a
multiplicity of interneuron subtypes, a prominent property of cortical circuits, has
been shown to enable non-paradoxical responses in certain subtypes of interneurons
also in the ISN [130]. Such a network could combine the computational benefits of
the strong coupling scale with that of a network in which PV-interneurons do not
express the paradoxical effect. I, therefore, extended my model to include another
subtype of interneurons beyond the PV.
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4 The role of interneuron diversity for the
effects of deprivation

Remark: Some of the results, figures, and tables in this chapter are part of an
article entitled Interneuron subtypes enable independent modulation of excitatory
and inhibitory firing rates after sensory deprivation which has been written together
with my supervisor Julijana Gjorgjieva. The article has been uploaded to the
preprint server bioRziv [1] and is currently under review for publication in the
journal Proceedings of the National Academy of Sciences of the United States of
America. All methods, results, figures, and tables from this article which are part
of this chapter were my contribution to the article unless specifically mentioned
otherwise.

4.1 Overview

Circuits in the mammalian neocortex contain many subtypes of interneurons that
play different functional roles [144]. The PV-interneurons I have modeled in the
previous chapter are the most numerous of interneurons in primary sensory cortices.
The second most numerous class are SST-interneurons [24]. Experimental work
made clear that both of these interneuron types, PV and SST, play essential
and distinct roles in shaping the dynamics and functional responses in cortical
circuits [55, 144, 145]. For example, in orientation tuning and surround suppression
in V1 [59,60,63,64], in working memory [146,147] and in the generation of cortical
oscillations [148]. These interneuron subtypes also play a role in the control of
plasticity during development and learning [149-152]. I therefore extended my
network model to include both PV- and SST-interneurons.

A multiplicity of interneuron subtypes makes the relation between the paradoxical
effect in the rates of inhibitory interneurons and the operating regime (ISN or non-
ISN) more complex [130,134] (also outlined in Sec. 2.5.3). The the total inhibitory
current still shows the paradoxical effect in an ISN, but this only constrains the sum
of the rate changes (Fig. 2.7). Thus, different inhibitory subpopulations can behave
non-paradoxically as long as this is canceled and overcome by a paradoxical response
in other subtypes, such that the total inhibitory current shows the paradoxical
behavior [130]. Since it became clear from my results in the previous chapter
that the paradoxical effect in PV-interneurons is a major determinant of the tight
coordination of excitatory and PV neurons, the question emerged if there is a way
that the paradoxical effect could be reversed in PV-interneurons even in an ISN.
Crucially, the question is if such a reversal could be generated with biologically
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justified connectivity, e.g., with SST-interneurons that couple onto the other cell-
types similar to the experimental findings from V1. If this is the case, the follow-up
question would be, whether an ISN with such a “reversed” paradoxical effect could
enable the temporally independent modulation of excitatory and PV firing rates also
in an ISN. In such a setup, one could combine the benefits of both the non-ISN, with
its great potential to independently modulate excitatory and PV firing rates, and the
ISN, with its higher responsiveness that enables sufficiently strong rate modulations
with realistic synaptic changes. Therefore, I investigated the firing rate changes in
an ISN that includes two subtypes of interneurons, PV and SST (Sec. 4.2). The
basic questions I want to ask are: Firstly, can a biologically justified connectivity of
SST-interneurons lead to a reversal of the paradoxical effect in PV-interneurons?
I found that this is indeed possible. Secondly, how does such a reversal of the
paradoxical effect change the response to MD-induced plasticity? I studied the
landscape of potential responses to MD-induced plasticity (Sec. 4.3). In an ISN with
multiple interneurons subtypes, the reversal of the paradoxical effect indeed leads to
a complete inversion of the response landscape of PV-interneurons to MD-induced
plasticity. This inversion of the PV response landscape in an ISN leads to opposite
modulation of the excitatory and the PV firing rates, making this network a suitable
candidate to model the temporally distinct firing rate modulations in vivo, even
when it operates in the ISN regime. To analyze how distinct the firing rate changes
of excitatory and PV neurons are as a function of feedback from SST-interneurons
into the circuit, I did a similar analysis as for the network with a single subtype
of interneurons, where I varied the coupling scale J (Sec. 3.4). For the network
with two subtyoes of interneurons, I quantified how the area of co-modulation
and the gradients of the firing rate modulations behave over an extensive range of
SST-feedback strengths (Sec. 4.4).

I furthermore studied two alternative types of plasticity in the circuit that could
be related to deprivation (Sec 4.5). First, the ISN with multiple subtypes of
interneurons could explain the decrease of the recurrent E/I-ratio (measured in
[3]) also through plasticity in synapses that originate from SST-interneurons. I
investigated the effects of this potential plasticity and found them to be very
similar to the effects of the plasticity involving only the excitatory-PV circuit in the
network with strong SST-feedback (Sec. 4.5.1). Deprivation-induced plasticity has
not been directly measured in synapses originating from SST-interneurons, so this
is a new prediction of our model that points to a different pathway that enables
an independent modulation of excitatory and PV firing rates. Second, beyond MD
I investigated the effects of plasticity identified for a closely related experimental
paradigm to understand experience-dependent developmental plasticity in sensory
cortices, whisker deprivation (WD, Sec. 4.5.2). The deprivation in WD consists
of a partial plucking of whiskers in young animals. This plucking of whiskers
induces substantial changes in the neural circuitry, similar to the sustained closure
of one eye in MD, but in different circuit elements. Crucially, also following WD
plasticity, an increase of the feedforward E/I-ratio is found experimentally. However,
the mechanism underlying this is a decrease of the intrinsic excitability of PV-

88



4.2 Modeling approach

interneurons rather than a depression of direct feedforward inputs [96,97,99]. My
modeling predicted that the effect of the decrease of PV intrinsic excitability is
very similar to the depression of feedforward inputs. This hints at a possible shared
principle of activity regulation involved, regardless of the underlying biophysical
mechanism.

To analytically investigate the circuit that includes both PV and SST interneuron
subtypes, I extended the linear population rate model (Sec. 4.6). I was able to
analytically show the connection between the reversal of the paradoxical effect
and the inversion of the normalized firing rates of PV-interneurons in response to
MD-induced plasticity (Sec. 4.7).

Finally, I summarize the distinct abilities of the different networks with a single
and with two subtypes of interneurons to produce independent or opposite firing
rate changes in excitatory and PV neurons in the spiking network using a Monte-
Carlo approach and directly compare the predictions of the different networks to
experimental data (Sec. 4.8) and discuss the results (Sec. 4.9).

4.2 Modeling approach

Remark: Some of the results of this section (Fig. 4.1A-C, Tables 4.1 and 4.2, and
Egs. 4.1-4.4) have been published before in [1]. The figure panel has been modified
for clarity, notation in the equations and table has been adapted for consistency.

The network with multiple subtypes of interneurons I investigated is a direct
extension of the previous model, with the same sparse connectivity and single
neuron dynamics (Equations 3.3-3.5), but with specific connectivity and coupling
parameters for the SST-feedback. In addition to the Ny = 4000 excitatory and
Np = 1000 PV neurons, I added Ng = 500 SST-interneurons (Table 4.1). To
build on the understanding of the circuit with a single subtype of interneurons,
connections among excitatory and PV neurons have the same weights as before, with
parameters .J for the coupling scale and g,. for the relative strength of inhibition
from PV-interneurons (Fig. 4.1A). SST-interneurons receive recurrent inputs from
the excitatory neurons with synaptic strength J. In contrast to PV-interneurons,
SST-interneurons do not make inhibitory synapses among themselves, nor do they
receive inhibition from PV-interneurons [56]. On the other hand, outputs from
SST-interneurons are send to both excitatory and PV neurons. I included such
SST-outputs to both other neuron classes (excitatory and PV) with a common SST-
feedback strength K. The use of this single parameter allowed me to continuously
transition between the network with a single subtype of interneurons (equivalent to
K =0 nS) and the network with multiple subtypes of interneurons, with adjustable
levels of overall SST-feedback. With indices F for excitatory, P for PV and S for
SST neurons, the matrix schematic describing the recurrent connectivity is (compare
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to Eq. 3.1):
WEE WEP WES J gch K
Wiee = | WPE WPE WPS | = | J g..J K|. (4.1)
WSE WSP WSS J 0 0

In the visual cortex, SST-interneurons receive very little feedforward input from the
thalamus [38], but they receive a variety of external inputs from the surrounding
cortical tissue, pooling over much larger areas than PV [59], and a manifold of inputs
from higher-order cortical areas [61,69]. These inputs provide a background (BKG)
that is independent of the first order thalamic input. BKG is the only external input
delivered to SST-interneurons, with weight J,. The BKG-input is also connected
to excitatory neurons (weight J3), in addition to their feedforward inputs from
LGN (weight Js). PV-interneurons are exclusively driven by strong LGN-input with
weight g, Js. Schematically, the feedforward connectivity is:

Witw = | Wiy + Whke | = | 9rw/s | - (4.2)
Wian + Wike Jb

LGN and BKG inputs are delivered as excitatory spike trains with Poisson statistics.
The spike trains are statistically independent between the neurons. Activity in the
network with this connectivity and inputs is asynchronous and irregular over wide
ranges of SST-feedback K (example in Fig. 4.1B), as is desirable for a model of
cortical circuits. As a function of SST-feedback K, firing rates of excitatory and PV
neurons in the circuit are moderately suppressed but are in an appropriate range
over large ranges of K (Fig. 4.1C). SST-rates are relatively high for very small K,
but also reach a biologically reasonable range for modest K.

I specifically tested the paradoxical effect in PV-interneurons as a function of K
in an ISN (with J = 0.1 nS). With multiple interneuron subtypes, one can study the
paradoxical effect in multiple ways (injecting to both populations, only to PV or only
to SST). Concerning my previous model and the role the paradoxical effect plays in
the firing rate modulations in response to MD-induced feedforward and recurrent
plasticity, I tested the rate change of PV-interneurons in response to an increase
of the external input to PV. In the ISN without or with small SST-feedback, this
leads to a decrease of the PV firing rate (Fig. 4.1D, yellow area). As K increases,
the rate decrease of PV-interneurons becomes smaller until it becomes positive
(Fig. 4.1D, green line). The larger K becomes, the more positive is the response,
and the PV-interneurons react non-paradoxically, even though the network as a
whole is an ISN.

Little is known about how brief MD affects synapses that involve SST-interneurons,
either in the recurrent circuit or in their external inputs. I therefore investigated
the effects of the same MD-induced synaptic changes as in the previous chapter
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4.2 Modeling approach

Table 4.1: Default parameters of the single neurons and connectivity in the network with
two subtypes of interneurons. EPSG/IPSG: excitatory/inhibitory postsynaptic conductance;
LGN: lateral geniculate nucleus; BKG: background;

Symbol Value/ Description
Range

Cin 200 pF Membrane capacitance.

gr 10 nS Leak conductance.

E; —70 mV Leak reversal potential.

Vi —50 mV  Threshold potential.

V. —58 mV  Post-spike reset potential.

Eg 0 mV Excitatory reversal potential.

Ep, Eg —85 mV Inhibitory reversal potential from PV (P) and SST (.5)
interneurons.

Toyn 5 ms Synaptic conductance time constant.

Ng 4000 Number of excitatory neurons.

Np 1000 Number of PV-interneurons.

Ng 500 Number of SST-interneurons.

P 0.1 Connection probability between two cells.

J 0.1 nS EPSG amplitude £ — E, E —PV and £ —SST.

Jre 8 Multiplicative factor for IPSG amplitude PV— E and
PV— PV.

K 1.6 nS IPSG amplitude for SST — E and SST — PV connec-
tions.

[0.1,4.0] nS Range of IPSG amplitudes SST— E and SST—PV

for the systematic quantification across levels of overall
SST-feedback.

Jsy Jp 0.5 nS EPSG amplitude LGN, BKG — E, BKG — SST and
scale for EPSG LGN — PV

9w 2 Multiplicative factor for strong feedforward EPSG
LGN — PV.

R, 1000 Hz Rate of feedforward input spike trains LGN — E and
LGN — PV and of background input spike trains
BKG — E and BKG — SST.
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Figure 4.1: Network structure, activity and the paradoxical effect in the spiking
network with two subtypes of interneurons. (A) Schematic of the connectivity and
parameters in the network (default values in Table 4.1). (B) Spike raster of activity in the
network with coupling scale J = 0.1 nS and SST-feedback K = 1.6 nS, showing asynchronous
irregular state also with strong SST-feedback. (C) Firing rates of excitatory (black), PV
(red) and SST (purple) cells as a function of SST-feedback K. The blue diamond shows the
value of K used in (B). (D) Reversal of the paradoxical effect in PV-interneurons through
SST-feedback in an ISN. Panels (A-C) modified from [1].

(Equations 3.8 and 3.7). The recurrent connectivity changes through MD as:

J gch K J CEPchJ K
J 0 0 J 0 0

(see also Fig. 4.2). The feedforward connectivity changes as:

Js + Iy opds + Jp
Wil =\ guds | = WP = drgruds |- (4.4)
Jb Jb

I investigated the response landscape of firing rate fold changes for this MD-induced
plasticity for K large enough for a strongly reversed paradoxical effect in PV (blue
diamond in Fig. 4.1D). As a further type of plasticity of recurrent connections, I
investigated a potential pathway for MD-induced plasticity involving the output-
synapses of SST-interneurons. A potentiation of synapses from SST onto excitatory
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4.3 Landscape of network responses

Figure 4.2: Connection strengths in the spiking network with two subtypes of
interneurons before and after MD. (A) Connectivity in the baseline network before
application of MD. (B) Connectivity in the network after application of MD.

neurons or a suppression of synapses from SST- onto PV-interneurons could also
underlie the observed decrease of the recurrent E/I-ratio measured at excitatory
neurons (see Discussion in [3]. The matrix describing this hypothetical plasticity is:

J gred K J gred gESK
Wi =7 oed K| = WP =|J g (psK|.  (45)
J 0 0 J 0 0

As for the experimentally established MD-induced synaptic changes, I investigated
the effects of these plastic changes in a systematic scan over the ((ps, (gs)-plane,
from which I obtained a landscape of responses to this hypothetical MD-induced
plasticity.

4.3 Landscape of network responses to MD-induced
plasticity: strong SST-feedback inverts PV response

Remark: The results of this section (Fig. 4.3) have been published before with
identical content in [1]. The figure has been modified for consistency.

As in the case with a single subtype of interneurons, I studied the MD-induced
synaptic changes split up into three different types of plasticity: (1) depression of
feedforward inputs onto excitatory and PV-interneurons (0p < 1, dp < 1, Table 4.2);
(2) potentiation of recurrent connections between excitatory and PV-interneurons
(Cgp > 1, (pp > 1); and (3) interacting feedforward and recurrent plasticity
(Cpe > 1, ppr > 1). In all of these types of plasticity, I simulated the networks on a
two-dimensional grid spanning each respective parameter space, generating multiple
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4 Interneuron diversity and sensory deprivation

landscapes of firing rate fold-changes for each cell type (\IIA(:c, y), Eq. 3.10, with x
and y from the respective parameter spaces and A € {E, P, S}). I simulated all the
networks with multiple interneurons subtypes using J = 0.1 nS, thus they are ISN,
and with strong SST-feedback K = 1.6 nS that reverses the paradoxical effect in
PV-interneurons (blue diamond in Fig. 4.1D).

For feedforward plasticity, excitatory neurons have a facilitatory and a suppressive
region of firing rate modulations distinguished by a linear boundary (Fig. 4.3B, left).
The position of this boundary appears to be the same as in the ISN without SST-
feedback (Fig. 3.3B). Also for recurrent and interacting feedforward and recurrent
plasticity, excitatory neurons respond similar to the network with a single subtype
of interneurons (Fig. 4.3C, D, compare to Fig. 3.3C, D).

Interestingly, the response plane of PV-interneurons in the ISN with two subtypes
of interneurons and reversed paradoxical effect in PV is not comparable to the
response of PV in a non-ISN (Fig. 4.3B-D, compare to Fig. 3.4B-D). Rather, for
all types of plasticity it is inverted relative to the excitatory neurons, showing
facilitatory and suppressive regions in opposite parts of the feedforward parameter
space as the excitatory neurons do (Fig. 4.3B-D, middle). This is also opposite to
the responses of PV-interneurons in the ISN with a single subtype of interneuron
(Fig. 3.3B-D). For feedforward plasticity, one can see the reversal of the paradoxical
effect in the response plane as a purely suppressive action of dp, the depression
of direct external inputs to the PV-interneurons (Fig. 4.3B, y-axis of the middle
plane).

Table 4.2: Parameters for modeling the synaptic changes during monocular deprivation in
layer 4 of V1, as well as for the changes during whisker deprivation in layer 2/3 of S1.

Symbol  Value/ Description
Range

0p [0.5,1.0] Depression of feedforward synapses onto excitatory neu-
rons.

op [0.5,1.0] Depression of feedforward synapses onto PV-interneurons.

CPE [1.0,1.5] Potentiation of recurrent synapses from excitatory neurons
to PV-interneurons.

Cep [1.0,1.5] Potentiation of recurrent synapses from PV-interneurons
to excitatory neurons.

PEI [1.0,1.5] Increase of feedforward E/I-ratio in V1.

(s [1.0,1.5] Hypothetical potentiation of recurrent synapses from SST
to excitatory neurons.

Cps [0.5,1.0] Hypothetical depression of recurrent synapses from SST-
to PV-interneurons.

&y [0,3] mV Increase of firing threshold of PV-interneurons in S1.
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Figure 4.3: Response to synaptic changes induced by brief MD in a spiking
network with multiple subtypes of interneurons in ISN regime (compare to Fig. 3.3).
(A) Network schematic showing synaptic connections among neurons with J denoting the
overall coupling scale, g,. the dominance of recurrent PV-inhibition, g, the dominance of
feedforward inhibition and K the strength of SST-feedback. The parameters to model MD-
induced synaptic plasticity are: depression of feedforward drive to excitatory neurons (dg)
and to PV-interneurons (dp), and potentiation of recurrent excitation to PV-interneurons
(Cpe) and of recurrent inhibition from PV to excitatory neurons ((gp). Values of network
parameters are provided in Tables 4.1 and 4.2. (B) Network firing rate in the (ég, dp) plane
as fold-change of baseline firing rate (top right corner where 65 = dp = 1) for excitatory
neurons (left panel) and PV-interneurons (right panel). (C) Network firing rate in the ((gp,
Cpr) plane as fold-change of baseline firing rate (bottom left corner where (gp = (pp = 1).
(D) Network firing rate in the ((pg, prr) plane as fold-change of baseline firing rate (bottom
left corner where (pg = prr = 1). Here pgr = 65 /0p is the feedforward E/I ratio. Modified
from [1].

SST firing rates are modulated the same way as excitatory neurons for all types
of MD-induced plasticity (Fig. 4.3B-D). This is intuitive since none of the experi-
mentally established plastic changes I applied here directly involved synapses onto
or from SST-interneurons (Eq. 4.3). Thus, the only aspect that changes during brief
MD from the perspective of SST-interneurons is the firing rate of the excitatory
neurons from which they receive recurrent inputs. SST-interneurons therefore closely
follow the excitatory rate in either being suppressed or facilitated. This predicts that
during brief MD, the SST firing rates should be modulated in the same direction as
excitatory neurons, staying at baseline on the first day of MD and being suppressed
on the second day MD.

Beyond this intuitive explanation of why SST firing rate fold changes resemble
those in the excitatory neurons, one can also see an aspect of the paradoxical effect
with multiple subtypes of interneurons at work here, though more general than it was
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4 Interneuron diversity and sensory deprivation

studied before. Previous work generalized the classical paradoxical effect to multiple
interneuron subtypes with the result that the inhibitory current as a whole, i.e.,
the weighted sum of the rates, should show the paradoxical effect. Thus, if specific
interneuron subtypes do not show a paradoxical response, others subtypes should
compensate for this. In the higher dimensional responses to MD-induced plasticity,
I found a similar type of compensation to happen: PV-interneurons change their
firing rates opposite to the excitatory neurons and opposite to how they change in
the ISN without SST-feedback. However, SST neurons, in turn, follow the excitatory
neurons very tightly, reminiscent of the compensation in the paradoxical effect.

Overall, I thus found that a reversal of the paradoxical effect in PV-interneurons
through feedback from SST-interneurons selectively inverted the response of PV-
interneurons to MD-induced plasticity. This leads to opposite firing rate fold changes
in excitatory and PV neurons and is a mechanism to explain the temporally distinct
firing rate modulations of excitatory and PV-interneurons during brief MD in vivo.
In both cases that allow such a distinct modulation, the non-ISN and the ISN with
strong SST-feedback, the central property seems to be a non-paradoxical response
of the PV. The portion of the parameter spaces in which excitatory and PV neurons
are modulated in opposite directions appears to be even larger in the ISN with
multiple interneuron subtypes than it is in the non-ISN. To better understand this,
I quantified the global response structure with varying degrees of SST-feedback K,
on a range that spans networks with a paradoxical and with reversed paradoxical
response in PV-interneurons.

4.4 Quantification of network response structure to
MD-induced plasticity across levels of SST-feedback

Remark: Some of the results of this section (Fig. 4.4 in Sec. 4.4.1) have been
published before with identical content in [1].

How does the selective inversion of PV-responses happen as a function of SST-
feedback K7 Moreover, is the invariance of the excitatory responses that appeared
with the selected plane a feature that generally holds for a wide range of K7 1
addressed these questions using the measures I have introduced for the global
response structure of excitatory and PV-interneurons in the study of the network
with just a single subtype of interneurons (Sec. 3.4).

I used the fractional area of co-modulation of excitatory and PV firing rates
to quantify how much of the respective parameter spaces allow for independent
modulation of the two cell classes as a function of the SST-feedback K (Sec. 4.4.1).
When K increases, there is a general trend towards an independent modulation
of the firing rates of these two cell populations. Using the average lengths of the
gradients for excitatory and PV firing rate fold changes, I quantified how strong the
different firing rate modulations are (Sec. 4.4.2). This is especially relevant as we
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Figure 4.4: Parameter space of facilitation and suppression as a function of
SST-feedback K (compare to Fig. 3.5, where I did the same quantification as a function of
the coupling scale J). (A) Schematic to determine the overlap of facilitating and suppressive
response areas of excitatory neurons and PV-interneurons. The thresholded plane of
responses (as in Fig. 4.3) for both neuron types is used to compute the total facilitating
area and quantify how closely excitatory and PV firing rates follow each other through
the overlap of facilitation and suppression. (B) Network with feedforward depression only
(Fig. 4.3B). Fractional area of facilitation for excitatory neurons (Fg, gray), PV-interneurons
(F'p, blue) and the overlap between excitatory and PV response areas (Ogp, orange) as a
function of SST-feedback strength K. Green diamond shows the value of K used in Fig. 4.3.
(C) Same as (B) for recurrent potentiation only (Fig. 4.3C). (D) Same as (B) for interacting
feedforward depression and recurrent potentiation (Fig. 4.3D). Modified from [1].

found a non-ISN with a single subtype of interneurons to enable independent firing
rate modulations but at the cost of very small responsiveness of the network. In
contrast to this, I found that in the ISN with strong SST-feedback, the network has
sufficient responsiveness also in the regimes where PV firing rate fold changes are
inverted.

4.4.1 Parameter space of co-modulation of activity during MD

I simulated the complete planes of firing rate fold changes in an ISN with constant
J = 0.1 while varying K over the range (K € [0.1,4.0], Table 4.1). From the planes
for all the different values of K, I extracted the fractional areas of facilitation for
excitatory and PV neurons (Fig. 4.4). I used the same method for this analysis as
in Sec. 3.4.1: I thresholded and then binarized the plane of firing rate fold changes
for the excitatory and PV neurons (¥4 (z,y), with A € {E, P}) at 1, the boundary
between facilitation and suppression (Fig. 4.4A). I then calculated the fractional area
of facilitation by summing all entries corresponding to facilitation and dividing this
sum by the total number of entries. The fractional area of facilitation as a function
of SST-feedback K is shown in gray for excitatory neurons (Fg, Fig. 4.4B-D) and in
dark blue for the PV-interneurons (Fp). I then calculated the area of co-modulation
of excitatory and PV firing rates as the fractional overlap between facilitatory and
suppressive areas in the two cell classes. I multiplied each entry in the binarized
excitatory response with the corresponding entry in the binarized PV response
(element-wise product). When the firing rates of the two cell classes are modulated
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in the same direction, the product of the two entries has the value +1 (black region
in the combined plane in Fig. 4.4A). If the firing rates of the two cell classes are
modulated in opposite directions, the product has the values —1 (white region in
the combined plane in Fig. 4.4A). The fractional area of co-modulation is calculated
by summing up all positive entries in this product matrix and dividing this by the
total number of entries in the plane (Ogp, orange, Fig. 4.4B-D).

For small SST-feedback (K = 0.1 nS), the facilitatory areas and the area of
co-modulation are very similar to the areas in the ISN without SST-feedback in all
three different types of plasticity (feedforward, recurrent, and combined feedforward
and recurrent, Fig. 4.4B-D, compare to Fig. 3.5B-D). This confirms that only
sufficiently strong SST-feedback can lead to the complete inversion of the PV-
response. Crucially, the area of co-modulation of excitatory and PV neurons is close
to one, showing the tight coordination of the firing rates in the two populations
typical of the ISN in which PV-interneurons express the paradoxical effect.

For pure feedforward plasticity, the area of co-modulation monotonically decreases
as K increases (Ogp, Fig. 4.4B). This monotonic decrease of Ogp is almost exclu-
sively driven by the change in the fractional area of facilitation for PV-interneurons
(Fp, Fig. 4.4B). Interestingly, Fp does not change monotonically but decays to a
minimum at K =~ 0.6 and then increases again. The fractional area of facilitation
for excitatory neurons (Fg) is almost constant throughout the range of K probed.
Combining these three factors, (1) the monotonic decrease of the fractional area of
co-modulation, (2) the non-monotonic change of the fractional area of facilitation
for PV-interneurons, and (3) the approximate invariance of the fractional area of
facilitation for excitatory neurons, shows that the inversion of the response landscape
of PV-interneurons happens in a two stage process. Increasing SST-feedback K
first leads to a decrease of the fractional area of facilitation for PV-interneurons in
the parts of the parameter space where it originally lies in the ISN (and where it
overlaps with the region of facilitation for excitatory neurons). Further increasing
of K then leads to a reemergence of a facilitatory region for PV firing rate fold
changes in a different portion of the parameter space. This reemergence is central
for the inversion of the distribution of facilitation and suppression as in Fig. 4.3.
The reemergence is also what distinguishes the network with reversed paradoxical
effect through SST-feedback from the non-ISN.

For pure recurrent plasticity, a single process leads from complete overlap of the
facilitatory and suppressive areas (fractional area of co-modulation of excitatory and
PV firing rates Ogp = 1 for small K = 0.1 nS), to no overlap for large K (Ogp = 0,
Fig. 4.4C). Excitatory neurons have zero facilitatory area throughout the range of
K; thus, excitatory neurons are always purely suppressed by recurrent plasticity. In
contrast, the facilitatory area of PV-neurons (Fp) monotonically increases with K
until their rates facilitate in all of the parameter space. For interacting feedforward
and recurrent plasticity, I found the same change from co-modulation of excitatory
and PV-firing rates in the whole parameter space, to zero co-modulation as the SST-
feedback K increases (Fig. 4.4D). Fg is only very little modulated as a function of
K, while I find a pronounced decay of Fp as K increases. Thus, also for interacting
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Figure 4.5: Responsiveness of excitatory and inhibitory firing rates to MD-
induced plasticity as a function of SST-feedback K in a network with multiple
subtypes of interneurons (compare to Fig. 3.6). (A) Schematic for the extraction of
average gradient lengths and angle between gradients for excitatory and PV responses. I
used the length of the gradient as a proxy for the magnitude of responsiveness of each
population to MD-induced plasticity. The angle between the gradients denotes the amount of
co-modulation of excitatory and PV-interneuron firing rates. (B) Network with feedforward
depression only. Average gradient length for excitatory responses (Lg, green) and for PV
responses (Lp, blue) as a function of K. The green diamond shows the value of K used in
Fig. 4.3. (C) Same as (B) for recurrent potentiation only. (D) Same as (B) for interacting
feedforward depression and recurrent potentiation. (E) Network with feedforward depression
only. Angle between the gradients of excitatory and PV responses (Pgrp) as a function
of K. (F) Same as (E) for recurrent potentiation only. (G) Same as (E) for interacting
feedforward depression and recurrent potentiation.

feedforward and recurrent plasticity, the emergence of a large area that allows for
independent modulation of the firing rates of excitatory and PV-interneurons is
governed by the inversion of the PV-response plane.

4.4.2 Response gradients of the MD-induced firing rate changes

I numerically extracted the average lengths of the gradients of the firing rate
fold changes for excitatory and PV neurons and the average angle between those
gradients using the same procedures as described in Sec. 3.4.2. The lengths of the
gradient of excitatory neurons for all three types of plasticity (feedforward, recurrent
and interacting feedforward and recurrent) varied systematically as a function of
SST-feedback K, however, in neither of the cases did it change as drastically as
when I varied the coupling scale J (Lg, Fig. 4.5B-D, compare to Fig. 3.6B-D). For
pure feedforward plasticity, as well as for the interacting feedforward and recurrent
plasticity, I found a monotonic decrease of Lg as K increases (Fig. 4.5B and D). In
recurrent plasticity, this gradient length increased as a function of K (Fig. 4.5C).
However, for all three types of plasticity, the excitatory responsiveness was on the
same order of magnitude over the range of K.

The gradient lengths for PV-interneurons (Lp) varied a bit as a function of K but
also stayed on the same order of magnitude over the whole range of SST-feedback
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4 Interneuron diversity and sensory deprivation

K for all the three types of plasticity (Fig. 4.5B-D), even though the distribution of
facilitatory and suppressive parameter regions is inverted as K increases.

This inversion of the firing rate modulations of PV-interneurons in response
to MD-induced plasticity is also visible as a monotonic increase of average angle
between the gradients of excitatory and PV neurons (®gp) for all the three types
of MD-induced plasticity (Fig. 4.5E-G, compare to Fig. 3.6E-G). In contrast to
the non-ISN, where ®pp was around 90°, for feedforward plasticity (Fig. 3.6E),
in the network with two subtypes of interneurons ®gp reached 180° for strong
SST-feedback (Fig. 4.5E). For purely recurrent depression ®gp only reached up to
90° in the network with two subtypes of interneurons (Fig. 4.5F). This is similar
to the 90° in the network with a single subtype of interneurons (Fig. 3.6F), but it
seems that the angle in the case with multiple interneuron subtypes reaches only 90°
for a different reason: in the network with two subtypes of interneurons, it is due to
a non-monotonicity of the gradient in the plane (see Fig. 4.3C, middle, where the
facilitation of PV firing rates is not monotonically increasing in the (gp-direction,
but has a maximum within the parameter range probed), whereas the rate changes
of excitation is monotonic also in this network with multple subtypes of interneurons
(Fig. 4.3C, left). For combined feedforward and recurrent plasticity, interestingly,
the angle reaches 180° for both cases, the network with two subtypes of interneurons
where the paradoxical effect is reversed due to SST-feedback (Fig. 4.5G) or in a
network with a single subtype of interneurons operating as non-ISN (Fig. 3.6F).

In summary, in an ISN with sufficiently strong SST-feedback, the firing rates of
excitatory and PV neurons are independently, even oppositely, modulated in large
parts of all the different parameter spaces, in stark contrast to the ISN without SST-
feedback. Furthermore, also in contrast to the non-ISN without SST-feedback, this
independence could be achieved without sacrificing responsiveness of the recurrent
circuitry. Interestingly, the independence of the firing rate modulations is achieved
through a selective effect on the responses of PV-interneurons, while excitatory
neurons appear to be only modestly affected by an increase in K. The strong effect
of SST-feedback emerges even though none of the synapses that either impinge on
SST or project from them into the circuit were directly affected.

4.5 Alternative synaptic pathways of deprivation-induced
plasticity

Remark: Some of the results of this section (Figs. 4.6 and 4.7) have been published
before with identical content in [1].

I investigated two other pathways of plasticity in the network with multiple
interneuron subtypes. First, given the strong effect that feedback from SST-
interneurons has on the network response to MD-induced plasticity, one question is
how plasticity in the synapses providing the SST-feedback affects firing rates in the
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4.5 Alternative synaptic pathways

circuit. Specifically, since we know from experiments about the changes of recurrent
synapses between excitatory and PV neurons, we may wonder whether the firing
rate modulations induced by such plasticity of SST-synapses would counteract or
fortify the firing rate modulations induced by the experimentally observed plasticity
that I have investigated in the previous sections. I found that plasticity of SST-
synapses affects firing rates similar to the recurrent plasticity investigated previously,
suggesting that these changes would rather fortify the rate modulations induced by
plasticity in recurrent synapses between excitatory and PV neurons (Sec. 4.5.1).
Second, experimental investigations show that whisker deprivation (WD) also
induces strong plasticity in both feedforward and recurrent pathways, however,
through different mechanisms than MD. WD is an experimental paradigm analogous
to MD that investigates the developmental plasticity in the primary somatosensory
cortex (S1). The sensory deprivation is induced by cutting or plucking a subset of
whiskers that provide the direct sensory input to S1. I investigated the firing rate
modulations induced by these different mechanisms by WD, which primarily affect
the feedforward and recurrent E/I-ratios. The effects of this WD-induced plasticity
are similar to the firing rate modulations that emerged from MD-induced plasticity,
specifically the interacting feedforward and recurrent plasticity (Sec. 4.5.2).

4.5.1 Potential plasticity in SST-outputs

Little is known about plasticity in synapses from SST-interneurons happening during
brief MD during the critical period. However, a decrease of the recurrent E/I-ratio
has been measured directly [3]. This decrease of the recurrent E/I-ratio was driven
by an increase of inhibition in the recurrent circuit. The experimentally established
plasticity of synapses between excitatory and PV neurons is a suitable substrate for
this decrease [82]. However, it is possible that synapses from SST cell also contribute.
Specifically, a potentiation of synapses from SST onto excitatory neurons would
directly contribute by increasing the inhibition impinging onto excitatory neurons.
I studied this in the spiking network model by introducing the parameter (gg > 1
(Fig. 4.6A). Alternatively, a depression of synapses from SST- onto PV-interneurons
could also lead to increased inhibition impinging onto excitatory neurons. Effectively,
synapses from SST to PV could be described as disinhibitory. Depression of these
can increase the inhibition arriving at excitatory neurons through an increase of the
inhibition arriving from the less inhibited PV-interneurons. I studied this in the
spiking network model by introducing the parameter (pg < 1 (Fig. 4.6A).

Analogous to the investigation of the known synaptic changes induced by MD, I
simulated the network on a grid in the two-dimensional ({pg, (rs)-plane (Fig. 4.6B).
In all of the parameter space, the firing rates of excitatory neurons are suppressed,
confirming the intuition that both of the synaptic changes decrease the recurrent
E/I-ratio by an increase of the effective inhibition of excitatory neurons (Fig. 4.6B,
left). Note, however, that the suppression of excitatory firing rates is rather modest
compared to the strong suppression through plasticity in the reciprocal synapses
between excitatory and PV neurons (Fig. 4.3C, left).
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Figure 4.6: Plasticity of outgoing synapses from SST-interneurons affects circuit
dynamics similarly to potentiation of recurrent synapses between excitatory and
PV-interneurons. (A) Network schematic showing couplings among cells and parameters
to model hypothetical MD-induced synaptic changes in synapses from SST-interneurons that
could increase recurrent inhibition received by excitatory neurons [3]: depression of synapses
from SST- onto PV-interneurons ({ps < 1, increasing inhibition through disinhibition
of PV-interneurons) and potentiation of synapses from SST-interneurons onto excitatory
neurons ((gg > 1, directly increasing inhibition of excitatory neurons by SST-interneurons).
(B) Network firing rate in the ((ps,(rs) plane as fold-change of baseline firing rate (bottom
right corner where (ps = (gs = 1). The qualitative effect of this hypothetical plasticity
closely resembles that of recurrent plasticity (Fig. 4.3C). Modified from [1].
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The firing rates of the PV-interneurons are facilitated throughout the parameter
space (Fig. 4.6B, middle), reminiscent of the facilitation of PV firing rates through
the potentiation of the reciprocal synapses between excitatory and PV neurons
(Fig. 4.3C, middle). The firing rates of SST-interneurons are suppressed throughout
the space, again tightly following the firing rate modulations of excitatory neurons
(Fig. 4.6B, right).

In summary, I found that the qualitative effects emerging from these synaptic
changes of synapses outgoing from SST-cells are very similar to the effects of the
recurrent plasticity between excitatory and PV neurons. Instead of counteracting
any of the effects of the experimentally established recurrent plasticity between
excitatory and PV neurons, the potential changes of SST-synapses could work
as a synaptic pathway that reinforces them. In the animal, these two forms of
recurrent plasticity could act in parallel. Alternatively, the potential plasticity I
investigated here could be a redundant synaptic pathway that could be invoked
when the plasticity in synapses between excitatory and PV neurons is perturbed.
In such a case, plasticity in SST-synapses could be an alternative pathway that
governs a similar regulation of activity in the circuit following a perturbation of the
sensory experience or take over the same role in the unperturbed circuit.

4.5.2 Whisker-deprivation induced plasticity in the somatosensory cortex

A single day of WD reduces the feedforward responsiveness of PV neurons and exci-
tatory neurons in layer 2/3 of S1 [97]. This reduction of feedforward responsiveness
appears very similar to the one seen in layer 4 after brief MD [3]. However, it turns
out that the mechanism invoked by brief WD is very different from the one in MD.
Gainey and colleagues have shown that the suppression of feedforward responsiveness
of PV interneurons stems from a decrease of their intrinsic excitability, rather than
from depression of the feedforward synapses onto PV [97]. The decrease of intrinsic
excitability is biophysically implemented through an increase of the firing threshold.
I implemented this in the model by introducing the variable & > 0 (in units mV),
which I added to the firing threshold of the PV-interneurons in the spiking network
(Fig. 4.7A). In a single leaky integrate-and-fire neuron, such an increase of the firing
threshold shifts the neuron’s input-output function to the right, meaning that after
the increase of the firing threshold, stronger inputs are necessary to drive the neuron
above the firing threshold (Fig. 4.7A, inset).

Experiments suggest that this mechanism leads to an increase of the feedforward
E/I-ratio in S1 after brief WD, similar to the increase of the feedforward E/I-ratio
after brief MD in V1m [95,96]. Furthermore, the recurrent E/I-ratio seems to be
reduced, also in a similar fashion in S1 after brief WD as it is in V1 after brief
MD. I implemented this reduction through potentiation of the synapses from PV
to excitatory neurons ((gp > 1). Experiments only found a trend for potentiation
of these synapses that did not reach statistical significance after just one day of
WD [97]. However, prolonged WD (6-12 days) induced robust potentiation of these
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Figure 4.7: Response to whisker-deprivation induced plasticity in the somatosen-
sory cortex (S1) in the ISN with a single and with multiple subtypes of interneu-
rons. (A) Schematic for interacting recurrent and feedforward plasticity in S1: shift in
recurrent E/I-ratio through (gp, shift in feedforward E/I-ratio through increasing firing
threshold of PV-interneurons (£p). Inset: The {-I curve of a single leaky integrate-and-fire
neuron for baseline firing threshold (dark blue) and increased firing threshold (light blue).
The excitability of PV-interneurons is decreased via the parameter &y. (B) Network firing
rate as fold-change of baseline firing rate in ((gp, &) plane in the ISN with one type of
interneurons (PV, compare to Fig. 3.3D) (C) Network firing rate as fold-change of baseline
firing rate in ((gp, &) plane in the ISN with two subtypes of interneurons (PV and SST),
with strong SST feedback K = 1.6 nS (compare to Fig. 4.3D). Modified from [1].

synapses [99]. I, therefore, combined these two circuit changes and simulated the
network on a grid spanning the ((gp, &y)-plane (Fig. 4.7B and C).

Since this is a new type of circuit modification, I first simulated the ISN with only
a single subtype of interneurons (PV). The effect of the interacting feedforward and
recurrent WD-induced plasticity is qualitatively similar to the effect of interacting
feedforward and recurrent MD-induced plasticity (Fig. 4.7B, compare to Fig. 3.3D).
The increase of the feedforward E/I-ratio through &y induces strong facilitation of
both excitatory and PV firing rates, while the decrease of the recurrent E/I-ratio
through (gp suppresses the firing rates. The tightly aligned co-modulation of
excitatory and PV firing rates is also preserved in this type of plasticity in an ISN.
In an ISN with strong SST-feedback K, the overall structure of the excitatory firing
rate modulations remains similar to the ISN without SST-feedback, whereas firing
rate modulations of PV-interneurons are inverted both relative to their response in
the ISN without SST-feedback and relative to the excitatory response (Fig. 4.7C,
compare to Fig. 4.3D).

Even though the increase of the threshold potential of the PV-interneurons is
biophysically very different from the depression of feedforward inputs, the effects on
the circuit activity are the same. Thus, my modeling predicts that the regulation
of activity during early WD, e.g., the first one to two days, could be very similar
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to the regulation of activity during brief MD. The dynamical change of firing rates
during WD has not been measured in vivo, making this a novel prediction from
the modeling. The prediction is, however, dependent on the local circuitry. It is
also possible that in S1, the firing rates of excitatory and PV neurons are regulated
in parallel rather than in a sequence as in V1. Depending on the structure of the
firing rate modulations, one could draw conclusions about the role of SST-feedback
in the developing S1 and how it compares to V1. Generally, the similarity between
the firing rate modulations through the different types of plasticity, specifically
the decrease of feedforward input to PV in V1 and the decrease of the intrinsic
excitability of PV in S1, could point to a shared principle of firing rate regulation
that may be implemented by different means in multiple cortical circuits.

4.6 Mathematical analysis of the network with multiple
interneuron subtypes

Remark: Some of the results in this Section (Figs. 4.9, 4.10 and 4.11A-C) and
analysis (Eqgs. 4.7, 4.8 and 4.25-4.30) have been published before in [1]. Notation
has been adapted for consistency and the analysis has been extended.

With multiple subtypes of interneurons in the spiking network, I found that for
sufficiently strong SST-feedback, the firing rates of excitatory and PV neurons in
the spiking ISN can be modulated independently from each other in response to
MD-induced plasticity (Fig. 4.3). This independence is in contrast to the responses
in the ISN with a single subtype of interneurons (PV), where the firing rate changes
of excitatory and PV neurons closely follow each other (Fig. 3.3). The independence
of excitatory and PV firing rates emerges in the ISN through an inversion of the
responses of PV-interneurons. From numerical observation, this inversion of PV
firing rate changes is related to a reversal of the paradoxical effect, such that, even
in the ISN, PV-interneurons respond non-paradoxically upon additional stimulation
(Fig 4.1D). In this section, I analyzed the responses of the different populations in a
linear rate model that includes PV and SST interneurons. I was able to prove that,
indeed, the reversal of the paradoxical effect is the major driving mechanism that
underlies the inversion of PV firing rate changes.

I extended the population rate model to include PV- and SST-interneurons and
analyzed its stability and steady-state firing rates (Sec. 4.6.1). Specifically, I was
able to calculate the exact conditions on SST feedback that lead to a reversal of the
paradoxical effect in PV (Sec. 4.6.2). Based on this, I analyzed the linear rate model
with MD-induced synaptic weight changes (Sec. 4.6.3). This serves as the basis to
analytically explain how the inversion of PV-responses to MD-induced plasticity
depends on the strength of SST-feedback and the reversal of the paradoxical effect
in Sec. 4.7.
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4.6.1 Network structure and stability

The dynamical equation of the linear population rate model with two interneuron
subtypes is th same as in the network with a single interneuron subtype (Egs. 3.16-
3.19) with the linear dynamical equation

™ =—1r+Wr+s. (4.6)

Recurrent connections between excitatory and PV neurons are not changed when I
introduce SST-interneurons, and are parametrized with the coupling scale w and
relative scale for PV-inhibition «. SST-interneurons receive recurrent excitatory
input with weight w and project to the excitatory and PV populations with weight .
The recurrent connectivity matrix of the population rate model with two subtypes
of interneurons in the baseline state, without MD-induced synaptic changes, is
analogous to the connectivity of the spiking network (compare to Eq. 4.1):

Wege Wgp Wegs wo oYW —K
W= |Wprg Wpp Wps|=|lw —fw -—-k]. (4.7)
Wsg Wsp Wss w0 0

As in the spiking model, I assumed the same rate r, for feedforward, thalamic (LGN)
and background (BKG) inputs (Fig. 4.8A). The excitatory population receives input
from both sources, PV-interneurons receive input only from LGN with relative
weight factor gg,, same as in the network with a single subtype of interneurons.
SST-interneurons receive input only from BKG:

2.7,
s=|gruwrz |- (4.8)
Tx

I analyzed the stability conditions and the steady-state in this baseline setup,
specifically with respect to v and k. Then, I also derived the expression for the
response of all populations in the model to additional stimulation of PV-interneurons.
I expressed the condition for the presence or reversal of the paradoxical effect as a
function of the SST-feedback strength &.

Stability conditions

Stability of the network requires that the real parts of all the eigenvalues of the
connectivity matrix in Eq. 4.7 are smaller than one. The eigenvalues of a three-
dimensional system are slightly more complicated to derive, however, the underlying
symmetry of the network setup aids the derivation. The characteristic polynomial
for the matrix W is

M+ XNwy -1+ =0 (4.9)
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Figure 4.8: Connectivity in the population rate model with two subtypes of
interneurons before and after MD. (A) Connectivity in the baseline network before
application of MD. (B) Connectivity in the network after application of MD.

from which one can factor out one A (therefore, A\; = 0) and solve for the the roots
of the remaining quadratic equation to find the eigenvalues

A = 0 (4.10)

2
Nojs = _w(’y2— 1) n \/(w('y; 1)) e

where Ay/3 converge to the eigenvalues of the network without SST-feedback as
k — 0. The first term in the square-root in Eq. 4.11 is always positive, with a
positive term subtracted that is dependent on the strength of SST-feedback . To
study this in general for all possible (positive) values of k, one has to distinguish
two cases with either complex conjugate eigenvalues that share the same real part,
or with two real eigenvalues.

The eigenvalues Ay /3 are two distinct real eigenvalues if

(w(vy — 1))2.

. (4.11)

R <

In this case, the largest real eigenvalue of \y/3 is the one of corresponding to the
sum rather than the difference:

2
Ao = —w<72_ DN \/(w(7; D), (4.12)

Considering that both k£ > 0 and w > 0, and that wk is subtracted in the root, one
sees that the real part as a function of x has an upper bound given by —w(vy — 1)
(when x = 0), which corresponds to the largest real eigenvalue of the network with a
single subtype of interneurons (Eq. 3.23). Thus, in general, one can already see that
k can only reduce the largest real part. Thus, SST-feedback stabilizes the circuit. If
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K is so big that the eigenvalue becomes a complex number (k > w(y — 1)2/4), the
real part is —w(y — 1)/2 (one half of the largest real part in the network with only
PV), which is the lower bound of the largest real part for arbitrarily large x.

To derive the exact stability condition dependent on w, v and k, I resorted
Eq. 4.12. First, assuming that the eigenvalue Ay is real, one finds

2
\/(w(’y; 1)) —rw <1+ w(72_ 1). (4.13)

To derive the general stability condition with arbitrary x (withing the range of x
for real eigenvalues) is most easily done by squaring both sides. However, one must
distinguish two cases, since it is not a priori clear if the right hand side of Eq. 4.13
is positive or negative. However, the case that the left hand side of Eq. 4.13 is
negative:

w(y —1)

1
+ 2

<0 (4.14)

implies

wiy—1)
2

in which case the network can not be stable for any value of k, because then the

lower bound of the real parts for arbitrary « is larger than stability permits. With

both sides in Eq. 4.13 positive, dynamical stability implies as relation between w,

and k:

1< — (4.15)

1
p>1oy - (4.16)

or, expressed as condition that v and s have to fulfill together:
1
EK+vy>1——, (4.17)
w

where k + 7 describes the overall, summed level of inhibition in the circuit. Interest-
ingly, the condition that the sum k + + has to fulfill for stability is the same as the
condition on v in the network with a single subtype of interneurons (Eq. 3.24).

We therefore find that any x > 0 does not destabilize the circuit, but further
stabilizes it. One can formalize this also for the different operating regimes. For
the non-ISN (w < 1) the condition Eq. 4.17 is always fulfilled for any x > 0 (and
any v > 0), because the right hand side in Eq. 4.16 is negative. The network is
stable without any inhibitory feedback. In the ISN, there are two limiting cases:
At the transition to ISN (w = 1), stability requires k > —~, which is also fulfilled
for arbitrary inhibitory feedback from the SST population (k > 0) and for non-zero
inhibitory feedback from the PV population (v > 0, though this can be arbitrary
small). Second, for w — oo, the specific condition on kK becomes

k>1—7. (4.18)

Specifically, if PV-inhibition in the circuit is strong enough to ensure stability (y > 1
for w — o0), no SST-feedback is required for stability also in this case. If the
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PV-inhibition is not sufficient to ensure stability, a certain level of SST-feedback is
necessary for stabilization.
The eigenvalues Eq. 4.11 are complex conjugate if:

(w(y — 1))2_

; (4.19)

Kw >
Since this defines a lower bound on SST-feedback, this is generally the relevant case
for stronger SST-feedback. The real part of both eigenvalues is:

wly—1)

R(Ayss) = ——

(4.20)
Interestingly, stability in this case of large k is independent of k. However, as in the
case with a single subtype of interneurons, there is a specific condition on ~ given a
certain size of the overall coupling scale w:

w(y—1)

1 - 4.21
> L (4.21)

2
=7 > 1-—
w

which is very similar to the stability condition in the network with a single subtype
of interneurons (v > 1 —1/w, Eq. 3.24). However, the condition here in Eq. 4.22
is weaker, requiring less strong PV-inhibition in the circuit for dynamical stability.
Thus, even though the stability condition itself is independent of x in the case
of complex conjugate eigenvalues, stability requires less PV-inhibition thanks to
sufficient inhibition from SST. However, interestingly this also implies that it is
still necessary to have a certain level of PV-inhibition for dynamical stability even
with very strong inhibition from SST. Even though SST-feedback overall has a
stabilizing effect, the way the SST-interneurons are coupled in the circuit makes
them insufficient to stabilize the dynamics on their own, without any contribution
from PV-interneurons, for arbitrary w.

Steady state firing rate

The steady-state firing rate rys = (I — W)~! . s with the recurrent connectivity in
Eq. 4.7 is:

rk 14+ ~yw —yw —K 2.1y
Pl==-1 wl—k) 1-w+ws —K fwrz | (4.22)
r, " w(1l + yw) —yw? 1—w+yw Ty
where
n=det(I-W)=1-w+w+rw=1-w(l-(y+r)). (4.23)

From the stability condition on the total inhibition v + & in the circuit (Eq. 4.17) it
follows that this determinant 7 is positive for any stable network. To calculate this,
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Figure 4.9: Reversal of the paradoxical effect in PV-interneurons through SST-
feedback (compare to Fig. 3.9). (A) Relative change of steady-state rate of PV-interneurons
induced by current injection to PV-interneurons as a function of SST-feedback k. The rate
of each population is normalized to its baseline firing rate before additional current injection
(BL). (B) Dynamics of the linear population rate model following onset of step current to
PV-interneurons for x = 0.4 (left), x = 0.8 (middle) and x = 1.2 (right). Colors are the
same as in (A). Modified from [1].

one can simply substitute the expression k + 7 by its lower bound 1 — 1/w and find

as lower bound for 7:
1
77>1—w<1—(1—>>:0. (4.24)
w

4.6.2 Reversal of the paradoxical effect

From the general steady state solution (Eq. 4.22) I calculated the response to an
additional drive to the PV-population for all three populations in analogy to the
network with a single subtype of interneurons (Eqgs. 3.30 and 3.31). The rate changes
of the populations in response to a perturbation £ that is injected to PV are:

ArE 1 14+ yw —yw —K 0
ArPl = = wl-k) 1-w+wk —K 13
Ars T \w(1 + yw) —yw? I-—w+yw/ \0
= - (1-w+wk)]. (4.25)
n _,.YwQé-

Since n = det(I — W) > 0 when the network is stable (Eq. 4.24), n can be left aside
for the analysis of the directions of the rate changes following PV-perturbation:

Arfs x  —ywé
Arf o (1 —w+wk)é
x  —yw3€. (4.26)

Ss

Are

Ss

As in the network with a single interneuron subtype, the excitatory neurons’ response
is always in the opposite direction to &. The firing rate of the excitatory population

110



4.6 Dynamics with multiple interneurons subtypes

is suppressed when an additional current is injected to the PV population and
facilitated when the external current to the PV population is reduced (or if a
negative current is injected). This directionality is independent of w, « and, crucially,
independent of k. Note, however, that the amount of rate changes depends on all
of these parameters, also on x that influences n (Eq. 4.24). The activity change of
the SST population is proportional to the rate change of the excitatory population,
with a proportionality factor w. Thus, the SST population always expresses a form
of the paradoxical effect, as its rate changes opposite to the current injected to PV.
Interestingly, this happens in the absence of direct inhibition of the SST population
by the PV population and is driven by a withdrawal of recurrent excitation, as is
the paradoxical effect in the ISN with a single subtype of interneurons.

The response of the PV population is proportional to (1 — w 4+ wk){. Therefore,
the direction of rate changes in the PV depends not only on w, as it did without
SST-feedback (Eq. 3.31), but also on . Assuming the network is a non-ISN, the
PV population always responds with a change of activity in the same direction as &,
since w < 1, for general x > 0. However, in the ISN, where w > 1, the direction of
the response of PV depends on the specific relation between w and k. It responds
with a change of activity in the opposite direction to &, that is, shows the paradoxical
effect, when the condition is satisfied:

w—1

l-w+wk <0 <= /€<T. (4.27)
Thus the paradoxical effect in the PV population can be reversed with sufficiently
strong feedback from SST-cells. More generally: for any w > 1, which induces a
paradoxical effect in PV, there exists a sufficiently large x that leads to a reversal of
the paradoxical effect and thus a non-paradoxical response of the PV population.
This reversal of the paradoxical effect is shown in Fig. 4.9A (red) for a specific
example (w = 5). The steady-state rate after injection of a positive current into PV
is suppressed for small x but facilitated for large k.

Interestingly, the transient response of the PV-population always shows a dy-
namical signature of the paradoxical effect (Fig 4.9B, red). In the network with
small kK = 0.4, the PV firing rate increases directly after the additional stimulus is
delivered and then decreases through the withdrawal of recurrent excitation (black
curve). The PV firing rate ultimately settles in a decreased firing rate, which is the
paradoxical effect (Fig 4.9B, left). This dynamics is very similar in the ISN with a
single subtype of interneurons leading to the paradoxical effect (Fig 3.9B, right).
For large x = 1.2, the activity first transiently increases, driven by the external
stimulus, then decreases, because of the withdrawal of recurrent excitation, but
then increases again and ultimately settles in a steady-state activity higher than
the steady-state before injection of the external stimulus (Fig 4.9B, right). Thus,
the paradoxical effect reverses. The increase of the PV firing rate that leads to the
reversal state after the transient decrease is caused by a withdrawal of recurrent
inhibition from the SST population, whose firing rate decreases throughout the
range of £ (purple). Through this, the network overall (in terms of the summed
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Figure 4.10: Response to synaptic changes induced by brief MD in a linear
model of the network with two subtypes of interneurons (PV and SST) 1:
response planes (compare to Fig. 4.3B-D for correspondence with the spiking case). (A)
Network firing rate for an ISN (w = 5) in the (0g, dp) plane (feedforward depression) with
strong SST-feedback (k = 1.2) as fold-change of baseline firing rate for excitatory (left),
PV (middle) and SST populations (right). (B) Same as (A) for recurrent potentiation
((Cep,CpE) plane). (C) Same as (A) for interacting feedforward and recurrent plasticity:
decrease of the recurrent E/I-ratio through (pg, increase of the feedforward E/I-ratio as
prr = 0g/dp. Modified from [1].

response of all interneuron populations) still shows the paradoxical effect, even when
the PV population responds non-paradoxically.

4.6.3 Analysis of MD-induced steady-state activity changes

Including the MD-induced synaptic changes in the recurrent connectivity matrix of
the population rate model with two subtypes of interneurons, it becomes:

w  —CEpYw —K
Wmd = W(CEP; CPE) = CPE’LU —yw —K]. (4.28)
w 0 0
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4.6 Dynamics with multiple interneurons subtypes

With MD affecting only LGN-inputs, while background input is unchanged, the
feedforward connectivity after applying MD reads:

(5E + 1)7“30
Smd = S((SE, 5p) == 6ngw7'a: . (4.29)
Tx

I have proven that the additional SST-feedback has a stabilizing effect on the
dynamics of the network compared to the network with only a single subtype of
interneurons, expressed as weaker conditions on - that need to be satisfied as Kk > 0
(Egs. 4.16 and 4.22). Furthermore, in the network with only a single subtype of
interneurons, I have also proven that the network after MD-induced plasticity in the
recurrent synapses remains stable for arbitrary amounts of recurrent potentiation
(Egs. 3.37 and 3.38). Therefore, I assumed stability in the network with multiple
interneuron subtypes after induction of recurrent potentiation.

General steady state firing rate fold changes following from MD-induced
synaptic changes

The general solution of the steady state firing rates including MD-changes in both
feedforward and recurrent synapses is

TSES 1 1+ ~yw —CEpyw —k +ywk(lpp — 1)
rk = —— |wlCpp—K) 1-wtuwk wk(l —Cpp) — K
T K w(l+yw)  —Cppyw? 1—w+yw +yw?((pelep — 1)
(5E =+ 1)7“33
5ngw7'a: ; (430)
Tz
where

g™ = det (H - Wmd>
= 1l—w+yw+ rkw— (CEP — 1)n7w2 + (CEpCpE — l)fyw2. (4.31)
This determinant is a combination of the determinant without MD-induced changes
(n in Eq. 4.23) and two terms that are added that depend on MD-induced plasticity.

To better distinguish, I used index bl for the determinant of the recurrent connectivity
without MD-induced plasticity:

nbl = 1l—w+~yw+kw

™ = g — (Cpp — 1)ryw? + (Ceplpe — 1)yw?. (4.32)

113



4 Interneuron diversity and sensory deprivation

From Eq. 4.30, the excitatory, PV and SST firing rates as a function of all four
parameters for MD-induced plasticity follow

ri"t = % : {(1 +yw) (0p +1) = Cppywdpgpw — K +ywr(Cep — 1)}
Ts],as’md = ntﬁd '{W(CPEH)(6E+1)+(1w+wm)5pgfwm+wn(1§p3)}
romd = 777;2‘1 : {w(l +yw) (65 + 1) — (pyw’dpgfw

+(1 —w+yw +yw((prep — 1)) } (4.33)

I studied the changes of activity after MD-induction relative to the baseline state
before MD-induction. Numerically solving the firing rate fold changes shows very
good agreement with the spiking network, including the inversion of PV firing rate
fold changes (Fig. 4.10, compare to Fig. 4.3B-D for correspondence with the spiking
case). As in the case with a single subtype of interneurons in the previous chapter,
I analytically studied the difference between baseline rates and rates after MD,
instead of the ratio that is used for the firing rate fold changes. Using the difference,
the condition for facilitation of firing rates is:

B = Rfmd(xﬁl/) - Riﬁ > 07 (434)

with the baseline rate before MD-induced plasticity:

L % : {2 (L +qw) = ywgpw — Fv}
R AT
PSH ;jl-{2w(1+7w)—7w29fw+(1—w+7w)}' (4.35)

I used these expressions to investigate the inversion of the firing rate fold changes in
the PV-population and how this inversion relates to the reversal of the paradoxical
effect, especially the condition on k leads to this reversal (Eq. 4.27).

4.7 Analysis of the inversion of PV-responses through
SST-feedback

Remark: Some of the results in this section have been published before in [1]. The
notation has been adapted for consistency, and the analysis has been extended.

I studied the conditions for facilitation of the firing rates in the different pop-
ulations for the two types of plasticity, indexed as ffw for feedforward depression
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4.7 Inversion of PV-responses
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Figure 4.11: Response to synaptic changes induced by brief MD in a linear
model of the network with two subtypes of interneurons (PV and SST) 2:
distribution of faciliation and gradients. (A) Network with feedforward depression
only. Fractional area of facilitation for excitatory neurons (Fg, gray), PV-interneurons
(Fp, blue) and the overlap between excitatory and PV response areas (Ogp, orange) as a
function of SST-feedback . (B) Same as (A) for recurrent potentiation only. (C) Same
as (A) for interacting feedforward and recurrent plasticity. (D) Network with feedforward
depression only. Average length of the gradient for excitatory neurons (Lg, green) and
PV-interneurons (Lp, light blue) as a function of SST-feedback . (E) Same as (D) for
recurrent potentiation only. (F) Same as (D) for interacting feedforward and recurrent
plasticity. (G) Network with feedforward depression only. Average angle between the
gradients of excitatory PV neurons (®gp, red) as a function of SST-feedback . (H) Same
as (G) for recurrent potentiation only. (I) Same as (G) for interacting feedforward and
recurrent plasticity. The green diamond in (A-I) shows the value of x used in Fig. 4.10.
Panels (A-C) reproduced from [1]. For correspondence to the spiking case, compare (A-C)
with Fig. 4.4B-D and (D-I) with Fig. 4.5B-G.
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4 Interneuron diversity and sensory deprivation

(Sec. 4.7.1) and rec for recurrent potentiation (Sec. 4.7.2). The focus of this analysis
is the effect of SST-feedback in the ISN. To understand the inversion of the PV firing
rate fold changes in the ISN, it is crucial to study the conditions for the emergence of
a facilitatory area. However, for feedforward depression, it is not sufficient to prove
if facilitation of firing rates can exist for the PV population or if it cannot exist (as
it was for the distinction between the ISN and non-ISN in the previous chapter).
The inversion of the PV-response through SST-feedback rather leads to the fact
that facilitation exists in completely disparate regions of the parameter space before
and after inversion (that is, for weak SST-feedback x vs. strong SST-feedback).
For recurrent potentiation, it is sufficient to prove that facilitation of the PV firing
rates can only exist above a certain strength of SST-feedback x in the ISN, since
no facilitation can be found for this plasticity in the ISN with a single subtype of
interneurons.

4.7.1 Conditions on facilitation for feedforward depression

Excitatory and SST populations

From the firing rate change due to MD-induced feedforward depression (Eq. 4.33
with (gp = (pp = 1), I derived the condition to find facilitation of excitatory firing
rates

=E = pEfw_  Eb
= % {(1+7w)(5E+1) —vwépgfw—/-@}
—% : {2‘ (1+’yw) — YWY fuw —H} >0
= ((1 +yw) (6 — 1) — wg o (0p — 1)) > 0. (4.36)

Interestingly, with a focus on the induction of facilitation or suppression, the terms
that depend on SST-feedback & cancel or can be removed (specifically n). Thus, the
condition for facilitation remains the same as in the network with a single subtype
of interneurons (including its dependence on the coupling scale w). The area in
which facilitation is induced stays constant (Fpg, Fig. 4.11A, compare to Fig. 4.4B).
Nonetheless, the amount of firing rate modulation depends on s through n®, as is
visible in the length of the gradients (Lg, Fig. 4.11D, compare to Fig. 4.5B).

One can derive the boundary as a condition on dp that is necessary to induce
facilitation. From the x-independent condition Eq. 4.36 the same boundary as in
the network without SST-feedback follows (see Eq. 3.50)

1+ ~yw

5p<1—(1—(5E) .
JfwYw

(4.37)

Replacing the inequality with equality, I plotted this boundary in Fig. 4.12B (left).
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4.7 Inversion of PV-responses

For SST-interneurons I derived the condition to find facilitation:

— % : (w(l +yw) (0p + 1) — yw?Spgp, + (1 —w + 7w))
_% ' <2w(1 +yw) — yw’gpw + (1 —w +’yw)> >0
= (w(l +yw) (0p — 1) — yw?gsuw(6p — 1) > 0, (4.38)

which is independent of &, just like 2 (Eq. 4.36). Moreover, one can rearrange this
to find that the relative rate modulation of SST-interneurons is directly proportional
to the one of excitatory neurons (Eq. 4.36):

=5, =w-EE (4.39)

Therefore, the condition to find either facilitation or suppression in SST-interneurons
is the same as in excitatory neurons, and everywhere in the parameter space of
feedforward depression, SST firing rates follow the firing rates of excitatory neurons.
From the way MD affects the model circuit, a simple explanation is that none of
the direct input synapses onto SST-interneurons are affected by MD. With these
synaptic changes, MD can only indirectly affect SST firing rates through modulation
of the firing rate of the presynaptic excitatory population.

PV population

From the firing rate change due to MD-induced feedforward depression (Eq. 4.33
with (gp = (pp = 1) for PV-interneurons as the condition to find facilitation
follows:

S
- L {w(l k) (05 1) + (1= w+ wr)Spgre _H}
—% . {Zw(l — /-;) + (1 —w —i—wf@)gfw — H}
& (=R -1+ (1-w+wr)gndp-1)) >0 (440)

The activity changes relative to baseline have k-dependent terms both modulating
the response to dg and dp. To derive the dp necessary for facilitation for a given
0p, I first rearranged the condition (always writing terms such that negative signs
are explicit):

w(l — k)

(1 —w+wk)dp > (1 —6g)
9fw

+ (1 —w + wk). (4.41)

To further simplify through dividing by (1 —w+wk) we need to consider a number of
cases that switch the direction of the inequality because of division with a negative
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4 Interneuron diversity and sensory deprivation

term. However, replacing the inequality by equality, where we do not need to
consider these cases, the boundary between facilitation and suppression is:

w(l — k)
9fw(l —w + wk)

op=(1-9g) + 1. (4.42)
I plotted this boundary for multiple values of SST-feedback x (Fig. 4.12B, right).
As a function of k, the boundary seems to be rotated in the plane. However, one
needs to consider the inequality in order to know on which side of the boundary the
facilitatory part of the parameter space is.

The sign of (1 — w + wk) in the ISN (w > 1) depends on the relation between
w and k. This sign needs to be considered before division in Eq. 4.41. First, with
Kk = 0, the term is negative because the network is ISN. The size of x necessary
to make this term positive is K = (w — 1) /w, which is exactly the value of x that
leads to the reversal of the paradoxical effect (Eq. 4.27). If k < (w — 1)/w then
(1 —w+ wk) < 0 and division leads to:

w(l — k)

1—(1-—
5P < ( 6E)gfw(w 1 w%})7

(4.43)

where I have written negative signs explicitly and all individual terms are positive
(specifically: (1 —w + wk) = —(w — 1 —wk)). Note that in this range of s for sure
1 — k> 0 (taking into account that (w — 1)/w <1 is true for all w > 0).

The condition to find facilitation in Eq. 4.43 can be fulfilled by feedforward
depression and imposes an upper bound on dp, similar to the ISN without SST-
feedback (Eq. 3.56).

In an intermediate range of x, two conditions on s need to be considered: if
(w—1)/w < k and k < 1: then (1 —w + wk) > 0 while also (1 — k) > 0, thus the
condition becomes
w(l — k)

bp>14+(1-96
P ( E)gfw(l—w—i—wm)

(4.44)

which cannot be fulfilled by feedforward depression. Thus, in this range of k in
the ISN there is no facilitation of PV firing rates. This is shown in the numerical
solution: it is constantly zero for intermediate  in this range (Fp, Fig. 4.11A). In
the example shown, I used w = 5, thus the range of xk goes from 0.8 to 1. Note that
for very strong coupling in the network, as w — oo, this range shrinks to zero as
(w—1)/w— 1.

Finally, for k > 1 then (1 — w + wk) > 0 and (1 — k) < 0, thus we divide by
(1 — w + wk) without resorting it and write negative signs explicit with (k — 1) > 0:

w(k —1)
Grw(l —w+wk)

op > 1—(1—(51_«7) (4.45)

This is more similar to the condition in Eq. 4.43, but with flipped direction. Thus,
one finds a parameter range for dp < 1 that allows facilitation, but facilitation
imposes a lower bound on the depression of feedforward inputs to PV rather than an
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4.7 Inversion of PV-responses

upper bound. That we have for x > 1 the same condition as for small K < (w—1)/w,
but with the direction of the inequality reversed, is the analytical description of the
inversion of PV-responses through SST-feedback.

In the non-ISN, the term (1 — w + wk) is positive for arbitrary . Division yields

w(l — k)

op >1 1-9§ .
P +( E)gfw(l—w—i—w/ﬁ)

(4.46)

However, if this condition can be fulfilled by feedforward depression depends on
the sign of 1 — k: if kK < 1 the condition Eq. 4.46 cannot be fulfilled in feedforward
depression because it would require dp > 1. Thus, in the non-ISN with weak
SST-feedback, feedforward depression cannot induce facilitation, consistent with the
result for the non-ISN with a single subtype of interneurons (equivalent to k = 0).
If Kk > 1 it can be fulfilled. Writing signs explicitly Eq. 4.46 becomes

w(k —1)
Grw(l —w+wk)

op > 1—(1—(55,’) (4.47)
Thus, for strong enough feedback from SST-interneurons, PV rates can be facilitated
above baseline also in the non-ISN. Note however that this condition again imposes
a lower bound on dp.

4.7.2 Conditions on facilitation for recurrent potentiation

In the numerical solution, I found for the excitatory population that the area of
facilitation in response to recurrent potentiation constantly stays at zero throughout
the range of x (Fig. 4.11B). In the PV-population, I found a reversal from a purely
suppressive effect of recurrent potentiation in the ISN to a purely facilitatory effect
for sufficiently large x. This reversal is similar to the one in feedforward depression.
First, a facilitatory area emerges at the value of £ at which the paradoxical effect
reverses (Eq. 4.27). Second, the whole parameter plane is facilitatory when x > 1
(Fig. 4.11B). Using the analytical description of the population rates, I derived the
conditions in k to find this reversal in the PV-population. I found that facilitation
of the rate of the PV population becomes indeed possible in (pr when « is large
enough to reverse the paradoxical effect, and that facilitation is present in both
dimensions ((gp and (pr) when x > 1. I focused on the ISN in this analysis since
facilitation is already possible in the non-ISN without SST-feedback.

Excitatory and SST populations

The the condition to find facilitation of the firing rate of the excitatory population
after recurrent potentiation (with g = dp = 1) is:

=F

—rec

FE.rec E.bl
Tss — Tss

- ,;Ed ' {2(1 +yw) = (ppywgse — K+ ywk(Cep — 1)}
1)~} 20 a8
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4 Interneuron diversity and sensory deprivation
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Figure 4.12: The boundary between facilitation and suppression in the ISN with
multiple interneuron subtypes (compare to Fig. 3.11). (A) Extraction of the boundary
between facilitation and suppression. The boundary is defined through the parameter
combinations for which rate after MD is the same as in baseline (white areas, left). I only
kept the boundary for further visualization and dismissed the firing rate fold changes (middle,
boundary analytically derived). I also included non-biological parameter ranges to see how
the boundary behaves when no facilitatory area within the biological range of MD-induced
plasticity can be found. Blue box shows biological range (feedforward depression: 0 < 1
and 6p < 1, recurrent potentiation: (gp > 1 and (pg > 1). (B) Boundary between
facilitation and suppression for feedforward depression in the network with two subtypes of
interneurons as a function of the SST-feedback x for excitatory (left, based on Eq. 4.37)
and PV neurons (right, based on Eq. 4.42). (C) Same as (B) for recurrent potentiation,
based on Eq. 4.51 for excitatory (left) and Eq. 4.60 for PV (right).

Using the relation between 7,4 and ny; from Eq. 4.32, I derived the expression for
(pg at the boundary between facilitation and suppression for given (gp as

1 -1
tpp = —— + ApSEP (4.49)
CeP CeP
with
1— _
Ap =t ( w4 yw + Kw)(K — Gfw) (4.50)

w(2 —Kk+yw(2 — gfw))

In full generality, the solution in Eq. 4.49 is very complex. To simplify, I replace the
variable g, and use it as a constant with the value I have used for the numerical
solution of the population rate model and in the spiking network gr,, = 2. With
this, Eq. 4.49 simplifies to:

1 l—w+yw (gp—1
CPE = + : :
Cep w Cep

(4.51)
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4.7 Inversion of PV-responses

The boundary is invariant under changes of x, shown in Fig. 4.12C (left). Therefore,
the same conditions for facilitation and suppression hold as in the network without
SST-feedback.

To get a global sense for the general case, especially if facilitation is possible in the
ISN with multiple interneurons subtypes for a given x, I simplified the expression
in Eq. 4.48 without resolving the explicit boundary, as in Sec. 3.7 (Egs. 3.63-3.68)
using the substitution (gp = 1 + egp. With this, Eq. 4.48 can be rearranged:

bl
Efac = ,r_i,rec - rfs’bl = (:md - 1) rfs’bl — €EP Z;i;z (gfw — Ii). (4.52)
For a biologically reasonable solution, the firing rate in the baseline state must be
positive. Thus, assuming n® < n™?, the first term in this simplified expression
of the firing rate changes is negative. Contrary to the case without SST-feedback
(Eq. 3.68), the term subtracted from this is not generally positive. However, as
long as K < gy, it is positive, since then a negative term is subtracted from a
positive term on the right hand side of Eq. 4.52. With gy,, well above one (inspired
by biological measurements I used gy, = 2), this only modestly constrains x with
respect to the inversion of PV which requires £ > 1. Thus, SST-feedback can fully
invert PV-responses without inducing facilitation of the excitatory firing rate in
response to recurrent potentiation.

The condition to find facilitation of the firing rate of the SST population after
recurrent potentiation is

=S S,bl
SS

—rec

S,rec
88

.,
N and{Qw(l +w) = Cppyw?gre + 1 — w +yw + w0 (CpeCEP — 1)}

—%{2111(1 +yw) — ywigp, + 1 —w —|—fyw} > 0.
n
(4.53)

Contrary to the feedforward case, the response of the SST population to recurrent
potentiation is not clearly identifiable as the excitatory solution multiplied with w
(Eq. 4.39), but also contains more complex terms. Specifically, it contains a mixture
term with the product (pr(rp. However, it is possible to derive that the boundary
between facilitation and suppression is the same in the SST population as it is in
the excitatory population.

Using the relation between 7,4 and 7y from Eq. 4.32, I derived the expression
for (pg at the boundary between facilitation and suppression for given (gp as

Cep—1
CeP

1
+ Ag
EP

r = 7 , (4.54)

where from direct resorting of the SST rate changes in Eq. 4.53 first follows

B mw((l + W) (gfw — 2)) + (k= grw(l —w + yw)
As = w(2—k+yw(2 - gfo)) ' (4.55)
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4 Interneuron diversity and sensory deprivation

This Ag has already the same denominator as the fraction in Ag in Eq. 4.50, but
there are two major discrepancies: the solution of Ag furthermore includes a k
added to the fraction, and the fraction has a different numerator. To bring Ag into
a form comparable to Ag, I added a zero to Ag of the form:

w(2 - K+ w2 - gfw))
w(2 —Kk+yw(2 - gfw)) '

O0=k—~r

(4.56)

Adding this zero to Ag, I derived the numerator (leaving out the added & for now):

—kw(2 — Kk +yw(2 = grw)) + kw(l + W) (g0 — 2) + (K — guw) (1 — w + yw)
=(k—gfw)(1l —w+yw + Kw) (4.57)

and thus I find Ag (Eq. 4.55) to be:

(I —w+yw+ kw)(k — gfw)

A =
S=HRT w(2—li+’yw(2—gfw))

(4.58)

So Ag = Ag (latter in Eq. 4.50), and since the equation for the boundary for the
SST population (Eq. 4.54) has the same form as the equation for the excitatory
population (Eq. 4.49), the boundary between facilitation and suppression in the
excitatory and SST populations is the same. From this follows that SST firing rates
will always change in the same direction as the excitatory firing rates.

PV population

The condition to find facilitation of the firing rate of the PV population after
recurrent potentiation is

=P _ P,rec P,bl
Zrec — Tss — Tss
= n:fd'{2w(CPE—/€)—l—(1—w+wm)gfw—m+wm(1—CpE)}
Tx

_W . {Qw(l — /i) + (1 —w—i-w/f)gfw - K} > 0.
(4.59)

From this I derived the boundary between facilitation and suppression using the
same route as for the excitatory and SST populations

_ k(Cgp—1)—Ap+1
Cep — Ap

CPE (4.60)

with
2-r)(1—-w+yw+ Kw)

Ap = .
r yw(2w(l = k) + (1 — w + KW)gfw — K)

(4.61)

This boundary has a complex behavior (Fig. 4.12C, right), primarily because it has
a singularity where (gp = Ap. The term Ap grows linearly in k, with values in
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4.7 Inversion of PV-responses

the range Ap € [0.5,2] for k € [0, 3]. This range of Ap overlaps with the biological
range for potentiation (gp > 1, which I numerically choose as (gp € [1,1.5]. The
inversion of the PV firing rate changes, from purely suppressive in the ISN with
small x to purely facilitatory in the ISN with large s, mainly happens through a
combination of (1) a shift of the singularity and (2) a change of the curvature of the
two branches of the boundary in Eq. 4.60. This is most clearly visible in the switch
in the shape of the curves from convex (gray tones, small k) to concave (red tones,
large k) in Fig. 4.12C (right). Right to and above the gray curves, PV firing rates
suppress, whereas to the right and above the red curves, they facilitate, indicating
the inversion from a purely suppressive effect of recurrent potentiation in the ISN
with small s to a purely facilitatory effect in the ISN with large «.

To more clearly express the emergence of facilitation, and especially its relation
to the reversal of the paradoxical effect happening at k = (w — 1)/w and the full
inversion in feedforward depression happening at x = 1, I studied the rate changes
without resolving the explicit boundary. I simplified the expression in Eq. 4.59 as in
Sec. 3.7 (Egs. 3.63-3.68). With the substitutions (gp = 1 +egp and (pg = 1 +¢pg,
I first calculated:

CepCpe — 1 =¢cEgp+cpr +EppPepE (4.62)
with which I derived as the condition to find facilitation (2L > 0, Eq. 4.59):

0 < ’}/w[HEEP — (egp +epp —I—EEPEPE)] [Qw(l —R)+(1—-w+ /@w)gfw — K]
+epr(l —w+ yw + kw)(2 — K). (4.63)

Replacing the variable g, with the numerical values I have used (g¢, = 2) to
simplify Eq. 4.63 I furthermore find as condition to find facilitation:

0 <yw|kegp — (epp + epr + cppepr)| + epp(l — w+ yw + Kw). (4.64)

Finally, analyzing the two dimensions of recurrent potentiation independently this
condition yields

w —_
if: fi =0 and 0
Eic <0 1 K> " or €gp and epg > (4.65)

if: k>1 for egp >0 and epgp =0.

Therefore, if £ > (w — 1) /w, potentiation of connections from the excitatory to the
PV population ((pr = 1+ epg) facilitates the firing rate of the PV population.
Facilitation in this dimension thus emerges exactly when k is large enough to reverse
the paradoxical effect (Eq. 4.27). If k > 1, also potentiation of connections from
the PV to the excitatory population ((gp = 1+ cgp) facilitates the firing rate of
the PV population. Since (w —1)/w < 1 for all w > 0, the firing rate of the PV
population facilitates for both dimensions of recurrent potentiation when x > 1.
Taken together, in this simplified analysis, I can prove that facilitation becomes
first possible if K > (w — 1) /w, and is present in both dimensions of the recurrent
potentiation if x > 1, consistent with the numerical solution of the facilitatory area
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4 Interneuron diversity and sensory deprivation

in recurrent potentiation (Fp in Fig. 4.11B). Note, however, that this does not imply
potentiation in the whole ((gp,(pr)-plane. For  close to the transition (k ~ 1),
the linear model predicts that strong potentiation of both connections suppresses
firing rates (black curve in upper right corner Fig 4.12C, right). This is an effect of
a naive solution of the purely linear case, which does not consider thresholding such
that all rates are positive, also after recurrent potentiation. For strong potentiation
of both connections, excitatory rates in the naive model become negative. This
suppression does not appear when the positivity of firing rates is properly taken
into account (Fig 4.10B, middle). Thus, taking the threshold into account, the
facilitatory effect of both parameters of recurrent potentiation leads to a purely
facilitatory response in the whole plane or recurrent potentiation (Fp = 1) for k > 1
(Fig 4.11B).

4.8 Independent and coordinated firing rate changes with a
single and with two subtypes of interneurons

To quantify the potential of the ISN with strong SST-feedback to produce indepen-
dent or opposite firing rate changes in excitatory and PV neurons, specifically in
relation to the biological data, I have used a Monte-Carlo approach. This approach
makes use of the systematic study of the effects of feedforward and recurrent plas-
ticity in the spiking network with a single subtype of interneurons (Fig. 3.3) and
with two subtypes of interneurons (Fig. 4.3). I compared the predictions in the
ISN with strong SST-feedback and in the ISN without SST-feedback in the spiking
network (Fig. 4.13). To compare these predictions to the experimental results, I also
extracted the experimental mean and variability from [54] using the open-source
software WebPlotDigitizer [88].

I hypothesized that the changes of correlations in the spiking of LGN neurons [76]
first affect feedforward synapses, followed by a delayed effect on the recurrent
synapses. Therefore, to produce the firing rates on the first day of MD, with
suppressed firing rates of PV while excitatory rates stay at baseline, I selected
parameters for feedforward depression that keep excitatory rates around their
baseline (Fig. 4.3B, white region in the left plane). Specifically, I used the simulated
grid of firing rate fold changes for excitatory neurons (¥4 (z,%), Eq. 3.10) and
extracted the range for g and dp that leads to normalized excitatory rates around
the experimentally measured mean of 1.05, allowing a deviation of +15%. I obtained
an area in the space of feedforward depression that produces excitatory rates
scattering around the target value. I then generated 70 random points in this
defined area and simulated the network with these randomly generated parameters.
With strong SST-feedback, these parameters indeed give rise to suppressed firing
rates in the PV-interneurons, for which were not selected for. Overall I found a
good agreement of the firing rate configuration for the first day of MD compared to
the experimental values (Fig. 4.13, left). In the ISN without SST-feedback, these
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Figure 4.13: The ISN with strong SST-feedback can capture the independent
modulation of excitatory and inhibitory firing rates observed during brief
MD. Firing rates of excitatory (black) and PV (red) neurons after one day of MD (left
histograms) and after two days of MD (right histograms), normalized by the firing rates
before MD-induction. Data are extracted from [54] and reproduced in the spiking network
in the ISN regime that includes strong feedback from SST and in an ISN without SST-
feedback (Methods). Experimental data are mean + SEM, simulation data are mean + SD.
Reproduced from [1].

values for feedforward depression lead to facilitation of the rates for both excitatory
and PV-interneurons.

In a second step, I generated parameters of the recurrent potentiation that can
recover PV firing rates back to baseline on the second day of MD. For each (dg,dp)-
pair used for the first day of MD, I randomly searched one ((gp,(pg)—pair that
facilitates PV-firing rates from their suppressed state to the experimentally measured
value around baseline of 0.99 on the second day of MD, again allowing +15%
deviation. Because recurrent potentiation is purely suppressive in the excitatory
population, this naturally leads to suppression of the excitatory firing rates and,
therefore, a firing rate configuration resembling the firing rates on the second day of
MD in vivo (Fig. 4.13, right). In the ISN without SST-feedback, these parameters
strongly suppressed both excitatory rates and PV rates.

In conclusion, I could reproduce the temporally distinct modulation of firing rates
in an ISN with strong SST-feedback using a simple Monte-Carlo procedure. In the
ISN without SST-feedback, the excitatory and PV firing rates are not modulated
independently but potentiate together on the first day of MD and suppress together
on the second day of MD. This confirms the numerical and analytical results on the
role of SST-feedback to enable independent modulation of the firing rates in an ISN.

4.9 Discussion

I have shown that the introduction of a second subtype of interneurons, SST in
addition to PV, selectively inverts the responses of PV-interneurons in the ISN given
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sufficiently strong feedback from SST in both the spiking network (Fig. 4.3) and in
a linear rate model, taking positivity of firing rates into account (Fig. 4.10). Since
the firing rates of the excitatory and PV populations are tightly coordinated in the
ISN without SST-feedback (Chapter 3), this inversion through strong SST-feedback
allows for independent modulation of the excitatory and PV firing rates, as measured
in vivo, in large parts of the parameter spaces of MD-induced plasticity. Contrary
to this, the ISN with no or weak SST-feedback allows independent modulations of
the excitatory and PV firing rates only in tightly constrained parts of the parameter
space. The large freedom of values for feedforward and recurrent plasticity that
allow a distinct, even opposite, modulation of the firing rates of excitatory and PV
neurons makes the ISN with multiple subtypes of interneurons a natural model to
explain the independent modulation in vivo given sufficiently strong feedback from
the SST-interneurons (Fig. 4.13).

The inversion of PV responses that leads to this independent modulation emerges
from a reversal of the paradoxical effect in PV interneurons, which I demonstrated
numerically in the spiking network (Fig. 4.1D) and analytically in the population rate
description of the network (Fig. 4.9). A prediction from this is that the independent
modulation of firing rates during MD happens in a network in which PV interneurons
do not express the paradoxical effect. This is similar to the prediction from the
non-ISN in the previous chapter, which also enables the independent modulation
through a non-paradoxical response in PV even without SST-feedback. However,
an interesting difference between the predictions from the non-ISN without SST-
feedback and the ISN with strong SST-feedback is the mechanism underlying the
non-paradoxical response of PV. In the non-ISN, it depends on a weak excitatory
to excitatory coupling. In the ISN with multiple subtypes of interneurons, the
non-paradoxical response of PV can also happen with strong excitatory to excitatory
coupling but depends on strong feedback from SST onto the circuit. In this case,
the discrepancy between the experimentally identified paradoxical effect in PV in
adult animals and the model prediction for the developing V1 could be explained by
a strong, transient SST-feedback onto PV-interneurons. While strong SST-feedback
which decreases during development was found in experiments [152], it remains to
be determined if this SST-feedback is strong enough to lead to a non-paradoxical
response of PV in the developing cortex.

A related prediction from the model with multiple interneuron subtypes is that
SST-interneurons tightly follow the excitatory rate changes in response to MD-
induced plasticity. From my modeling and analytical results, I predict that SST-
interneurons are regulated in the same temporal order as excitatory neurons during
the first two days of MD. So far, the rates of SST during MD have not been investi-
gated in vivo. In the extracellular recordings used for the long-term measurement
in [54,89], SST-interneurons are hard to identify. Different morphological subtypes
would either be identified as regular spiking (and thus be pooled with the excitatory
neurons) or fast-spiking (and thus be pooled with PV) [24]. Potentially, chronic
calcium imaging recordings could solve this [80].
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Furthermore, the plasticity of synapses involving SST-interneurons during sensory
deprivation is unknown. One study measured the plasticity of synapses that involve
regular-spiking non-pyramidal units, which are potentially SST-interneurons, during
brief MD [93]. These experiments found that the amplitude of connections from
regular-spiking non-pyramidal interneurons (RSNP) onto pyramidal excitatory neu-
rons increases, while the connection probability from RSNP to pyramidal neurons
decreases. How these two factors would exactly trade of warrants further investiga-
tion. However, the experiments did not involve molecular labeling, thus it is unclear
whether the plasticity measured indeed involves SST-interneurons. Furthermore,
these experiments were conducted in younger animals before the critical period, and
it has been shown that such pre-critical period plasticity involves different mecha-
nisms than critical period plasticity [83,85] (Sec. 2.2 and Table 2.1). In Sec. 4.5.1
I have investigated a related potential form of recurrent plasticity in the synapses
outgoing from SST-interneurons that is consistent with experimental measurements
of an increase of recurrent inhibition impinging onto excitatory neurons [3]. I found
that the effects on the firing rates induced by this plasticity of SST-synapses are
comparable to the firing rate changes induced by synaptic changes in the recurrent
circuit between excitatory and PV neurons (Fig. 4.6). The prediction is that this
hypothesized plasticity could serve as a redundant pathway that either enforces the
effects of the plasticity in connections between excitatory and PV neurons or could
fully take over its role in case of a disruption of the plasticity in these connections,
e.g., in a pathological condition [153,154].

Finally, I also investigated plasticity induced by brief whisker deprivation (WD,
Fig. 4.7). In experiments, WD induces plasticity in different circuit elements (intrinsic
excitability rather than feedforward inputs). However, despite this difference, the
regulation of rates appears very similar when applying interacting feedforward and
recurrent plasticity in the model network that represents either the MD or the WD
changes (compare Figs. 4.3D and 4.7). The activity changes in vivo during brief
MD have not been measured so far, but my modeling would predict a comparable
regulation of firing rates (see also [95]). This prediction may also hint at a common
principle at work in both the somatosensory and visual cortices when their sensory
inputs are disrupted by deprivation.
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5 Spike-timing-dependent plasticity in
networks with multiple subtypes of
interneurons

Experimental work supports the idea that spike-timing-dependent plasticity (STDP)
mechanisms underlie activity-dependent adaptation of synaptic connectivity in a
variety of neural circuits [155-158]. The strength of a synapse undergoing STDP de-
pends on the timing of presynaptic and postsynaptic spikes within a few milliseconds
of precision [155]. In recurrent networks, the synaptic connectivity and the spiking
statistics of the neurons in the circuit shape each other reciprocally [34]. This mutual
dependence of connectivity and activity present in recurrent networks with synapses
undergoing STDP made progress on understanding these systems hard, especially in
highly recurrent networks that require inhibition to stabilize activity [159]. Recent
modeling work, however, could uncover how the interaction of multiple plasticity
mechanisms can lead to recurrent circuits with self-stabilizing connectivity and
activity [30,31,160-162], and used such circuits to explain developmental processes
and computations in the cortex [90,163] (see also [4] for review).

These studies of recurrent, balanced networks with multiple, interacting plasticity
mechanisms opened the possibility to train specific network connectivity that is
self-stabilizing through spontaneous activity, but also flexibly responds to structured
external stimulation [30]. Yet, the diversity of interneuron subtypes has not been
incorporated into such models. I showed in the previous chapters how fundamental
the role of this diversity can be in shaping the activity of cortical networks in
response to developmental plasticity. Therefore, I extended previous research on
balanced networks with plastic synapses to incorporate the diversity of interneuron
subtypes, specifically PV- and SST-interneurons. I have investigated the plasticity
in this circuit using a common theoretical framework to study learning-related and
developmental plasticity: the training and stabilization of Hebbian assemblies [26].
Such assemblies are groups of highly interconnected neurons that share a common
stimulus specificity, for example, neurons with similar orientation preference in V1,
which are strongly connected in rodents [50,51]. The strong connectivity among these
neurons emerges during experience-dependent development [27] (but see also [28]).

A consequence of the strong connectivity between groups of neurons embedded in
a network is that they spontaneously co-activate. This underlies the stabilization
of the connectivity through ongoing long-term potentiation [30]. The spontaneous
activity is highly correlated with evoked responses. In cortical circuits, evidence for
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the existence of such assemblies was found [164]. It has also been established that
they can indeed emerge through Hebbian plasticity in vivo [29].

I will first introduce the model structure that I developed to study the emergence
and modification of Hebbian assemblies in networks with two interneurons subtypes
(Sec. 5.1). Specifically, I introduce the procedures for training the network and the
plasticity mechanisms. Beyond the current literature, I have not only introduced
additional interneuron subtypes, but I have also used two different input streams
(LGN and BKG, as in the previous model for MD). This opens new ways of training
assemblies in these networks, e.g., cooperation or multiple forms of competition
between the two input sources. I investigated the network connectivity that emerges
through multiple training procedures with varying competition between LGN- and
BKG-inputs and studied the structure of spontaneous spiking activity that emerges
(Sec. 5.2). I found that strongly connected Hebbian assemblies can also emerge with
multiple interneuron subtypes when the LGN and BKG inputs cooperate (Sec. 5.2.1).
These assemblies spontaneously reactivate, stabilizing the connectivity. If the two
input streams compete with each other, neurons within an assembly are more
weakly connected, but still, a identifiable connectivity structure emerges (Sec. 5.2.2).
However, the differences in the connectivity within and between assemblies neurons
strongly influences if and how strongly the neurons in the assembly spontaneously
co-activate. Therefore, the structure of the spontaneous activity is highly dependent
on the relationship between inputs from LGN and BKG. I derive the conditions for
training structured connectivity in a network with multiple interneuron subtypes
and interacting input streams. Finally, I briefly discuss the results in Sec. 5.3.

5.1 Modeling approach

5.1.1 Network structure and plasticity

I simulated large scale, sparse networks of leaky integrate-and-fire neurons. The
neurons are connected through conductance-based synapses and follow the dynamics
described in Eqgs. 3.3-3.5. Parameters of single neurons are listed in Table 5.1.
Similar to the work in the previous chapter, I studied a model with one excitatory
population and two subtypes of interneurons (PV and SST). The recurrent synaptic
weights between neurons of the different cell classes follow the schematic (Fig. 5.1A):

WEE wEP WwES Jee Jep JEs
Wiee = | WPE WPP WPS | = T g gred |, (5.1)
WHSE - WP wss J/2 0 0

where the connection weights written in boldface are plastic and follow connection-
type specific STDP rules (see below). The remaining connection weights are
static (do not undergo plasticity) and stay at their initial values throughout the
simulation (Table 5.2). With the initial parameters, spiking activity in the network
is asynchronous and irregular (Fig. 5.1B).
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Figure 5.1: Network structure and training with multiple subtypes of interneu-
rons and STDP. (A) Network schematic showing synaptic connections among neurons.
Triplet STDP and normalization in excitatory to excitatory recurrent connections (Jgg,
teal), inhibitory STDP in PV to excitatory and SST to excitatory connections (Jgp and Jgg,
orange). Remaining connections are static. Input connections from LGN and from BKG
to excitation are structured (dashed lines, see also C). (B) Raster plot of activity before
training, showing asynchronous irregular activity. Only a subset of the total populations
is plotted from excitatory (black), PV (red) and SST (purple) neurons. (C) Structured
inputs to the network. Top: assemblies are defined as groups of neurons that receive the
same inputs. Bottom: During training, neurons of one assembly receive increased inputs
for one second, after which another randomly chosen group is driven. Example case with
the same structure for LGN and BKG inputs. (D) Raster plot of activity during training.
Shown are five seconds with three training epochs of randomly chosen assemblies and two
breaks to allow network activity to settle to its resting state with baseline input. Colors
same as in (B).
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Excitatory plasticity

Plasticity in the model changes synapses within defined bounds (Table 5.2). Recur-
rent connections between excitatory cells (Jgg) are governed by two different plas-
ticity mechanisms: as a spike timing-dependent plasticity I used triplet STDP [165]
(Fig. 5.2, left). Furthermore, as a mechanism that controls the overall excitatory-
to-excitatory coupling strength, I used a heterosynaptic normalization of the total
incoming excitatory weight onto excitatory neurons [105].

Similar to the more common pair-based STDP, in triplet STDP weights of single
neurons are updated dependent on the timing of pairs of spikes in the pre- and
postsynaptic cells (pre—post or post—pre). However, weight updates furthermore
take triplets of spikes into account (e.g. post—pre—post or pre—post—pre). The weight
updates are based on multiple spike detectors in the single neuron that are updated
either by a pre- or postsynaptic spike, and decay with a spike detector-specific
time constant, implementing a memory of the timespan since the last relevant spike
occurred. Triplet STDP is based on four spike detectors: r; and ro that trace
presynaptic spikes, and 01 and 09 that trace postsynaptic spikes. When a respective
spike occurs, at time point tP¢ or tP°!, the respective spike detector is updated by
+1. When no spike occurs, the value of the spike detector exponentially decays to
zero with its specific timescale. The dynamics of all the four spike detectors in the
triplet STDP reads:

dr (t
TJFTdIt() = —ri(t) if:  t AP
ri(t) — rm@)+1 if: t=1¢"

T dr;t(t) = —rot) if: ¢ AP

ro(t) — Tg(t) +1 if: t=1¢""°

doy (t
T 0(:1lt() = —ol(t) if: t £ Pest

o1(t) — oi(t)+1 ifi t=¢"

TydO;t(t) = —opt) if: AP
02(t) — oo(t)+1 if: =P, (5.2)

The values of these spike detectors determine the size of the weight update when a
pre- or postsynaptic spike occurs, giving rise to the specific form of the plasticity
function over the spike-time differences in the pre- and postsynaptic neurons (Fig. 5.2,
left). The amplitudes Ay, set an overall scale of the respective weight update: AQL
and A5 are the amplitudes for spike pair-based potentiation (+) and depression (—),
respectively, and A:}f and A3 are the amplitudes for spike triplet-based potentiation
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Figure 5.2: Functions for modeling excitatory and inhibitory STDP. Left: triplet
STDP used for excitatory synapses onto excitatory neurons (Jgg, Fig. 5.1A). Curves show
the weight changes AJgg induced by 60 spike pairs at the given time delay (At). Colors
of the curves denote the frequency of consecutive pairs. Right: same measure for the
symmetric STDP used for inhibitory synapses onto excitatory neurons (AJg). I used the
same plasticity rule for synapses from PV onto excitatory neurons (Jgp, Fig. 5.1A) and
from SST onto excitatory neurons (Jgg, Fig. 5.1A). Figure from [163].

and depression (Table 5.2). The weight of a synapse w(t) is potentiated when the
postsynaptic neuron spikes:

w(t) — w(t) +r1(t) [AF + AT oo(t — 74)] if: =Pt (5.3)

where 74 is a small positive constant, and the weight update uses oy(t — 74) such
that it is based on the spike detector before its update by the postsynaptic spike.
This can be the simulation time step or, in continuous time, any 74 > 0 [165].

The synapse is depressed when the presynaptic neuron spikes:

w(t) — w(t) — o1(t) [Ay + A3 ra(t — 74)] if: ¢t =" (5.4)

Note that these updates and the corresponding spike detectors are all for a specific,
single synapse w;;(t) connecting neuron j to neuron ¢, but for clarity, I omitted
indices. The dynamics are the same for all excitatory synapses. The triplet STDP
is well suited to study the emergence of Hebbian assemblies because it promotes
the weight increase in bidirectional connections, contrary to a purely pair-based
STDP [47,166].

Learning through purely Hebbian plasticity suffers from an intrinsic instability.
The synapse between two neurons potentiates when a postsynaptic spike follows
closely two a presynaptic spike. However, in the case of excitatory synapses, this
potentiation makes future coincidences more likely as the increased weight leads to a
stronger postsynaptic depolarization. This positive feedback-loop of weight increases
can lead to runaway potentiation of excitatory weights. This can lead to a network
where all synapses go to their upper bound. To prevent this potentiation of all
synapses, and to induce some competition between the synapses, I thus furthermore
used a heterosynaptic plasticity that homeostatically regulates the total incoming
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excitatory weight impinging on an excitatory neuron [167]. This is implemented as
a normalization where from each synapse onto one neuron the average deviation
from the initial total incoming weight is subtracted:

PR (wz’j(t) - wz’j(O))
A0

in

wij(t) — wij(t) — R (5.5)

where Ng is the number of excitatory neurons (Table 5.1) and lcl(;) is the number of
incoming excitatory synapses that the excitatory neuron i receives. This normaliza-
tion keeps the sum of all excitatory synaptic weights onto each excitatory neuron
at the initial level. It is applied as a hard reset to the target value every 20 ms.
Through this, we can also ensure that the network stays in the same operating

regime throughout the training and during spontaneous activity.

Inhibitory plasticity

Normalization induces competition between synapses and aids in imprinting struc-
tured connectivity. But since it only constrains the mean of the input and allows a
wide range of variance of the input weights to one neuron, it is not fit to homeostat-
ically control firing rates to stay at a target level. A particular form of inhibitory
plasticity is a mechanism that enables such firing-rate homeostasis [168]. In my
model, the weights of inhibitory connections from PV- and from SST-interneurons
onto excitatory neurons both follow the same STDP rule, proposed by Vogels,
Sprekeler and colleagues [168]. The rule is based on two spike detectors for pre- and
postsynaptic spikes (z, and x,, respectively). Each spike detector is updated by
+1 when a pre- or postsynaptic spike occurs, and the values of both spike detectors
decay exponentially to zero with a common timescale 7;,;, (Fig. 5.2, right):
Tinh dxgt(t) = —x,(t) if: £
o (t) — x()+1 if: t=1tP*

Tinhdx(;ft) = —xo(t)  if £ ot

To(t) — xo(t)+1 if: ¢ =Pt
(5.6)

The inhibitory weight is potentiated when the postsynaptic excitatory neuron spikes:
w(t) — w(t) + na, if: ¢ =St (5.7)

where 7 is the learning rate. After every postsynaptic spike, the inhibitory weight
is increased, and this increase is the higher the more presynaptic spikes occurred.
When a presynaptic inhibitory interneuron spikes, the weight is updated as:

w(t) — w(t) +n(xo — 2p0Tiny) if:  t =P, (5.8)
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This update defines the target of homeostasis through the inhibitory STDP, with
2p0Tink as the target firing rate of the postsynaptic excitatory neuron. If the
postsynaptic spike detector (x,) is below 2pg7,n, the weight is depressed (Fig. 5.2,
right). This is the case when the time between the last postsynaptic spike and the
occurring presynaptic spike is long, indicative of a low postsynaptic firing rate. If
the postsynaptic rate was high, and z, is high, the inhibitory weight potentiates.

Connectivity in the network develops with all these three plasticity rules acting in
parallel. Hebbian triplet STDP leads to potentiation of excitatory synapses between
neurons with correlated spiking. In contrast to STDP that is only based on pairs of
spikes, the triplet STDP also allows the simultaneous strengthening of reciprocal
synapses between two cells, necessary for the emergence of Hebbian assemblies [166].
Normalization of excitatory synapses prevents runaway potentiation of excitatory
synapses and induces competition between synapses that connected highly correlated
neurons vs. synapses that connect weakly correlated neurons. Inhibitory STDP
homeostatically regulates firing rates in the network and ensures inhibition that
stabilizes the dynamics of the network. I used structured external inputs to train
connectivity.

5.1.2 Inputs and training

Input connections from LGN and BKG are static in the model. Excitatory neurons
receive inputs from the LGN and BKG sources, while PV-interneurons are exclusively
driven by strong LGN-inputs. SST receive exclusively BKG inputs (Fig. 5.1A).

All neurons receive independent spike-trains with Poisson statistics, where spike
trains from both the LGN and BKG have a rate R, in the baseline state throughout
the simulation (i.e., before, during, and after training). Training is implemented
through subsequent activations of assemblies. When an assembly is activated during
training, the rates of both inputs from LGN and BKG to an excitatory neuron in
one assembly are increased by R, (receiving a total rate of R, + Rget, Table 5.1).
External inputs to all inhibitory neurons of either subtype are increased during such
stimulation epochs in a balanced fashion, such that the relation of the mean inputs
to the overall excitatory population and the inhibitory populations is preserved.
Thus, during stimulation epochs, the rate of external input to the interneurons is:
fz/ts =Ry + R]\a;tv
where M = 20 is the number of assemblies in the excitatory population. I defined
an assembly by randomly selecting 5% of the excitatory neurons for all M groups
(Fig. 5.1C, top). The members of the assemblies defined through LGN-inputs are
chosen randomly for each assembly and independently across assemblies. This
procedure leads to some random overlap of the assemblies. Most neurons belong
to one single assembly, some belong to multiple assemblies, while others belong to
none.

During training, single assemblies are activated for one second. After a break of
one second, where no group is specifically driven, and only baseline input is delivered,

R

(5.9)
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Table 5.1: Neuron parameters in the network with multiple interneuron subtypes
undergoing STDP.

Symbol Value/ Description

Cnm 300 pF Membrane capacitance

Jgr 15 nS Leak conductance

Er -66 mV  Leak reversal potential

Vo -52 mV  Threshold potential

V. -60 mV  Post-spike reset potential

Eg 0 mV  Excitatory reversal potential

Ep,Eg  -75mV Inhibitory reversal potential from PV (P) and SST (S)
interneurons

Tref 5 ms Absolute refractory period

Tsyn 2 ms Synaptic conductance time constant

4000 Number of excitatory neurons

1000 Number of PV-interneurons

0.1 Connection probability between two cells

20 Number of assemblies in the network

Ng

Np

Ng 500 Number of SST-interneurons
p

M

€

0.05 Probability of any excitatory neuron to belong to any as-

sembly
R, 2 kHz Rate of the external input outside a stimulation phase
Raet 2 kHz Rate increase of the external input during a stimulation
phase
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Table 5.2: Connection weights and plasticity parameters in the network with
multiple interneuron subtypes undergoing STDP. Top: Synapse weights, both initial
and the range for learning if applicable. Middle: Parameters for the triplet STDP of
excitatory synapses. Bottom: Parameters for the symmetric inhibitory STDP.

Symbol Value/ Description
Range

Weights

JEE [0.1,10] nS Interval of weights between excitatory (E) neurons,
undergoing triplet STDP and normalization

Jz%t 1 nS Initial weight of connections among F

Jep [0.1,150] nS Interval of PV— E inhibition, undergoing inhibtory
STDP

Jg”]} 15 nS Initial weight of connections PV— E

JEs [0.1,105] nS Interval of SST— FE inhibition, undergoing inhibtory
STDP

Jggt 15 nS Initial weight of connections SST— F

JpE 1 nS Weights of E =PV connections, not undergoing STDP

JsE 0.5 nS  Weights of F —PV connections, not undergoing STDP

Jpp, Jps 15 nS  Weights of PV—=PV and SST—PV

triplet STDP

T+ 16.8 ms Time-constant of the presynaptic spike detector, trace
for spike-pair detection (r;)

T_ 33.7 ms Time-constant of the postsynaptic spike detector, trace
for spike-pair detection (o01)

T 101.0 ms Time-constant of the presynaptic spike detector, trace
for spike-triplet detection (r2)

Ty 125.0 ms Time-constant of the postynaptic spike detector, trace
for spike-triplet detection (02)

A; 7.5710 nS  Amplitude of spike-pair based potentiation

A5 7.072 nS Amplitude of spike-pair based depression

A?{ 9.373 nS Amplitude of spike-triplet based potentiation

Ag 2.374nS Amplitude of spike-triplet based depression

inhibitory STDP

TI 20 ms Time-constant of the pre- and and the postsynaptic
spike detector

n 1 Learning rate

20 1 Hz Target rate of the postsynaptic cells
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another randomly chosen assembly receives increased input (Fig. 5.1C, bottom, and
Fig. 5.1D). This is repeated until all assemblies were driven once, defining one trial.
The training consists of 15 trials, with a total of 300 stimulation epochs and 300
breaks in-between. The whole simulation consists of three stages. (1) In an initial
period before training, I let the network activity settle for five seconds. (2) I then
trained the networks for 600 seconds. (3) After training, the network is simulated
for another 600 seconds to collect data about the spiking statistics and development
of the connectivity without training.

In a first step, LGN and BKG assemblies are the same, with the same neurons
contained and input-rate increase at the same times (Sec. 5.2.1). This is equivalent
to highly cooperative feedforward inputs from LGN and feedback (BKG) inputs
from higher-order areas (comparable, e.g., to perfect predictions of the neurons that
an upcoming sensory stimulus will drive). From a pure modeling perspective, it is
equivalent to train with just one structured input source. In a second step, I varied
the spatial and temporal relationship between the two input structures (Sec. 5.2.2).
The spatial relation should be understood in terms of the neurons belonging to
one group. I compared the case with the exact same groups for LGN and BKG
inputs (as outlined above) with a case where groups from LGN and BKG are chosen
independently, such that the overlap of the groups is at chance level. For both of
these cases of spatial overlap (perfect spatial correlation or no spatial correlation,
i.e., random overlap), I also varied the temporal relation. When defining the same
groups from LGN and BKG, we may drive them simultaneously to induce strong
cooperation. In contrast, one can also drive them at independently chosen random
times to induce temporal competition. I study all four combinations of spatial and
temporal perfect correlations vs. no correlations.

All simulations are performed using custom code from the Lab written in Julia,
originally adapted for multiple interneuron subtypes by Marcel Jiingling. I analyzed
connectivity and activity in the network using Python.

5.2 Training Hebbian assemblies in a network with multiples
subtypes of interneurons

5.2.1 Emergence of Hebbian assemblies in networks with multiple
subtypes of interneurons

When LGN and BKG inputs cooperate, the excitatory strengths (or weights) within
the assemblies strongly increase during training (Fig. 5.3A, black). Due to normal-
ization of the total excitatory strength each neuron receives (Eq. 5.5), the average
excitatory connection weights between neurons in different assemblies decrease
(Fig. 5.3A, gray), while the overall mean excitation is kept constant (Fig. 5.3A, blue).
Note that the decrease of inter-assembly weights is much less pronounced because
the decrease affects connections from all neurons onto the neurons of one assembly,
i.e., from all neurons in the other 19 assemblies, and the neurons that do not belong
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Figure 5.3: Trained Hebbian assemblies in a network with multiple interneuron
subtypes (PV and SST). (A) Mean connection strengths between neurons within an
assembly (intra, black), between neurons in different asseblies (inter, gray) and overall
average excitatory strength (mean, blue). Light-gray dashed line: end of training. (B)
Average inhibitory connection strength onto all excitatory neurons from PV-interneurons
(red) and from SST-interneurons (purple). (C) Raster plot of activity after training of
excitatory neurons (black), PV-interneurons (red) and SST-interneurons (purple). (D)
Matrix of cross-correlations between assembly neurons, sorted by assembly membership.
(E) Histogram of pairwise-correlations of spike trains of excitatory neurons, logarithmic
y-scale.

to any assembly. When training ends, connection strengths do not quickly return
to the level from before training but remain strong with only a modest reduction.
Thus, stable assemblies can be imprinted into the network.

Inhibitory projections from either subtype strongly potentiate during training
(Fig. 5.3B). This potentiation is driven by the high rates of excitatory neurons
during stimulation epochs, although the rates are, on average, very close to the
target rate. Interestingly, projections from SST-interneurons steeply increase to a
high-level during training and then saturate (Fig. 5.3B, purple), while projections
from PV-interneurons increase more slowly but keep increasing throughout the
simulation (Fig. 5.3B, red). In a test-simulation running for longer, I find that
also PV-projection strengths saturate after long enough time, without affecting the
conclusions presented here.

The continued increase of PV-projection weights after the end of training is driven
by transient increases of the spontaneous rates. These emerge from spontaneous
reactivations of the imprinted assemblies, which also stabilize the excitatory connec-
tivity within assemblies (Fig. 5.3C). Biologically, these reactivations of imprinted
assemblies resemble the spontaneous correlations between cortical neurons which are
correlated also during stimulus evoked activation [164]. Grouping the neurons by
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Figure 5.4: Emerging connectivity with competing assembly structures. (A)
Mean connection strength of neurons within an assembly, averaged over all LGN-assemblies.
Shaded area: standard deviation of the mean connection strengths within the different
assemblies. Different training cases with perfect spatial and temporal correlations of the LGN
and BKG input groups (S1T1, blue, compare with Fig. 5.3A), with no spatial correlations
but perfect temporal correlations (SOT1, purple), with perfect spatial correlations but no
temporal correlations (S1TO0, green) and with neither spatial nor temporal correlations
(SO0TO, gray). Note that I only show intra-assembly weights here. Inter-assembly weights
decrease by a small amount according to the heterosynaptic normalization (as shown in
Fig. 5.3A). (B) Average inhibitory connection strength onto all excitatory neurons from
PV-interneurons (dashed lines) and from SST-interneurons (full lines). Colors same as in
(A).

their stimulus preferences, in the model represented by assembly membership, the
matrix of instantaneous cross-correlations has a block-diagonal shape (Fig. 5.3D).

As a consequence of these reactivations of assemblies, inducing high correlations
between neurons within the same assembly while neurons in different assemblies
fire primarily asynchronous, the distribution of correlations has a long tail towards
few strong correlations (Fig. 5.3E). However, it is not bimodal as one might expect
from the matrix in Fig. 5.3D.

5.2.2 Competing inputs perturb the emergence of reliable spontaneous
reactivations

In the next step, I studied the emerging connectivity and activity in the network when
the two input streams are not perfectly correlated and, therefore, potentially compete
rather than cooperate. Competition between the assembly structures from the LGN-
and the BKG-inputs can be induced in two ways, spatial or temporal. I chose the
spatial or temporal correlations either at zero (no spatial overlap of assemblies;
temporal co-activation of them at chance level) or one (identical assemblies; identical
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times of activation). Removing only temporal correlation of inputs leads to variable
combinations of assemblies belonging to the same set that are driven simultaneously
during training. Removing only the spatial correlations leads to fixed associations of
independently defined assemblies. Removing both spatial and temporal correlations
leaves no comprehensible relation between the two input streams apart from the
internal consistency within each input stream. Including the case in the previous
section, which I also consider for comparison here, I thus have four combinations.
To denote these different cases, I used the shortcuts: S1T1, SOT1, S1T0, and SO0TO,
where S denotes the spatial component and T the temporal component, with the
numbers pointing to the correlation value.

Training the network in these different scenarios, I found that some increase of
the connection strengths among neurons within an assembly is visible in all cases
(Fig. 5.4A). I calculated the mean of excitatory connections within each of the
assemblies (as in Fig. 5.3A), and then plotted the mean and standard deviation of
these assembly means. I did this calculation with respect to the assemblies defined
by the LGN-inputs. It is equivalent for the assemblies defined by BKG-inputs.

Although the excitatory weights increase within assemblies in all cases, the case
S1T1 stands out in developing by far the strongest connections (Fig. 5.4A, blue).
Overall, the other three cases show comparable increases of these strengths, with
some slight quantitative differences. From the other three cases, the case S1T0
develops the strongest intra-assembly weights (Fig. 5.4A, green), while SOT1 develops
the weakest (Fig. 5.4A, purple). Thus, it appears that the spatial overlap is more
important for the development of strongly connected Hebbian assemblies than
the consistency of their temporal co-activation. Interestingly, when independent
assemblies are driven at independent times (S0T0), the weights are in between these
cases, suggesting that removing the temporal correlation from spatially uncorrelated
assemblies reduces their competition (Fig. 5.4A, gray).

The development of the inhibitory projections from SST-interneurons does not
show any qualitative differences, though the overall level of these weights is different
for the different cases. In all of them, the potentiation of SST-projections onto
excitatory neurons is largely established by the end of the training (gray dashed
line) and remains constant or saturates soon after the end of training (Fig. 5.4B,
full lines). In contrast, inhibitory projections from PV-interneurons show some
dynamics also after the training. Specifically, again the case S1T1 is distinct with
PV-weights further increasing after training (Fig. 5.4B, blue dashed), while in all
other three cases, the PV-weights decrease after the training ended (Fig. 5.4B, green,
purple and gray dashed).

This decrease of PV-weights might be connected to differences in the spontaneous
activity after training. While in the S1T1-case, very strong reactivations of the
imprinted assemblies dominate the spontaneous activity (Fig. 5.5A, left, see also
Fig. 5.3C), the rasters of all other three cases appear much more homogeneous, largely
asynchronous irregular (Fig. 5.5B-D, left), with only some occasional reactivations
in the cases SOT1 (Fig. 5.5B) and S1T0 (Fig. 5.5C). Explicitly plotting the rates of
the different assemblies confirms the impression from the raster (Fig. 5.5A-D, right).
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Figure 5.5: Emerging activity with competing assembly structures. (A) Left:
Raster plot of spontaneous activity of excitatory neurons from nine assemblies (sub-selected
for better visibility) in the network with perfect spatial and temporal correlations of the LGN
and BKG input groups (S1T1). Right: instantaneous rates of all different assemblies during
spontaneous activity, colors indicate different assemblies. Assemblies shown are chosen
according to LGN-inputs. Assemblies according to BKG-inputs behave equivalently. (B)
Same as (A) in the network with no spatial correlations but perfect temporal correlations
(S0T1). (C) Same as (A) in the network with perfect spatial correlations but no temporal
correlations (S1T0). (D) Same as (A) in the network with neither spatial nor temporal
correlations (SOTO0). Note the different ranges of rates in the different cases (right plots). In
the S1T1-case (A, right), single assemblies strongly activate up to 30 Hz and are clearly
distinguished from random fluctuations, while in the S0T0-case (D, right), rates only
fluctuate a few Hertz around a steady rate.
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Figure 5.6: Statistics of spontaneous activity with competing assembly structures.
(A) Histogram of the coefficients of variation (CV’s) of the single neurons in the network with
perfect spatial and temporal correlations of the LGN and BKG input groups (S1T1, blue),
in the network with no spatial correlations but perfect temporal correlations (SOT1, purple),
in the network with perfect spatial correlations but no temporal correlations (S1T0, green)
and in the network with neither spatial nor temporal correlations (S0TO, gray). The three
histograms S0T1, S1TO and SOTO lie on top of each other and have much smaller CV than
SIT1. (B) Histogram of the smoothened assembly rates (compare right panels in Fig. 5.5).
Both x- and y-scales are logarithmic. Colors same as in (A). (C) Autocorrelation-spectrum
of the smoothened assembly rates in the different training scenarios. Colors same as in (A).
The lines for SOT1, S1T0 and SOTO lie very close to each other and show a much faster
decay of the autocorrelation than S1T1.

I have plotted the mean rates of the different assemblies, derived from the spike
trains binned with a time window of 5 ms and convolved with a box-shaped filter of
15 ms width.

Interestingly, the reactivations are more pronounced in SOT1 than in S1TO,
although the mean of the excitatory weights in SOT1 is smaller than in S1T0. When
the assemblies are defined independently for LGN- and BKG-inputs, but pairs of
LGN- and BKG-assemblies are co-activated consistently (SOT1), the excitatory
neurons are effectively embedded in larger assemblies. Thus, even though the mean
is smaller in this case, the total excitation impinging on each neuron from within
this larger, combined assembly can still be stronger. Furthermore, inhibition from
SST-interneurons follows a different trend: it is smaller in SOT1, where assemblies
are more strongly co-activated, than it is in the S1T0-case. SST-inhibition likely
also contributes to the suppression of spontaneous rate increases that occur with
the assembly reactivations. Together, these two factors could explain the more
pronounced spontaneous reactivations in SOT1.
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5 STDP with multiple subtypes of interneurons

To analyze the properties of the emerging activity in more detail, I first calculated
the coefficient of variation (CV) of the single neurons’ inter-spike intervals in the
different cases (Fig 5.6A, left). To calculate the CV, I extract all inter-spike intervals
of one neuron ¢ and calculate the mean (u;) and standard deviation (o;) of the
histogram of all inter-spike intervals. The CV is the ratio of the standard deviation
and the mean (o0;/u;). Doing this for each excitatory neuron independently, I
extracted a histogram of the CVs in the network. In the asynchronous irregular
regime, the spike trains of single neurons have Poissonian statistics, which implies
that the CV of the inter-spike intervals in a single neuron is close to one'. If a
neuron fires in a more bursting fashion, that is, it has long breaks between spikes at
some times and very fast sequences of spikes at other times, the CV of the inter-spike
intervals is above one. The presence of assemblies that switch between a baseline
state of low rate, and an activated state with high rates (visible in Fig. 5.5A),
could induce such a super-Poissonian CV. Indeed, in the S1T1-case, the CVs of
the different neurons in the network distribute around a value clearly above one
(2.058 + 0.578, mean+standard deviation of the histogram of CVs, Fig 5.6A, blue).
In contrast, the lack of substantial reactivations of assemblies in the other three cases
entails that the CVs of the neurons take values close to one, without clearly visible
quantitative differences between the different cases (mean + standard deviation
of the histograms of the CVs for the different cases: SOT1: 1.053 £+ 0.098; S1T0:
1.033 +0.092; SOTO0: 1.036 £ 0.091).

I further confirmed the underlying bimodal rate distribution using the histogram
of the assembly rates. Taking the convolved rates (as shown in Fig 5.5, right) and
extracting the histogram of the different rate values each assembly takes over time, I
find bimodality in the S1T1-case, while in the other cases, the rates have a unimodal
distribution (Fig 5.6B).

The bimodal rate distribution is a consequence of the bistability of the assembly
activations. The activated and the inactivated state of an assembly are stable
states of this assembly [138]. Assemblies in the network would stay in one of these
two states indefinitely unless they are pushed towards the other. In the finite-size
networks I simulated, this push emerges from the fluctuations within the network,
thus inducing a state of metastability, with abrupt jumps between the activated and
inactivated states emerging spontaneously during ongoing, spontaneous activity [169].
Such metastable dynamics induces a slow autocorrelation timescale [138]. I found a
marked increase of the autocorrelation timescale of the convolved firing rates in the
S1T1-case (Fig 5.6C, blue) in comparison to all other cases, which have virtually
indistinguishable timescales and show a much faster decay of the autocorrelation of
the rates.

In conclusion, even though the connectivity shows signs of strengthened connectiv-
ity underlying Hebbian assemblies in all the different training cases, the evaluation

LAn alternative measure is the Fano-factor of the spike-counts in a time-window of a given size,
which is also one for Poissonian statistics. This is, for example, used in [138] to quantify
variability of rates in a network with Hebbian assemblies in different conditions.
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of the activity only confirms a dichotomy between a scenario in which feedforward
inputs from the LGN and feedback inputs from BKG strongly cooperate (S1T1)
and the other cases where they either compete in the spatial or in the temporal
domain, or in both.

5.3 Discussion

Little is known about plasticity in highly recurrent spiking networks with multiple
interneuron subtypes. I found that stable, self-activating assemblies can emerge in a
network with multiple interneuron subtypes through training (Fig. 5.3), extending
previous work carried out with a single subtype of interneurons [30,32,160]. The
inhibitory STDP serves as a controller of the excitatory firing rates. Therefore, in
the network where synapses from two interneuron subtypes follow this STDP rule,
the rate is regulated by two, potentially competing, controllers. This is a new aspect
of this model, and it is not clear a priori if stable connectivity and activity can
be achieved when both PV and SST synapses undergo STDP that is tailored to
homeostatically control firing rates such as the symmetric rule I used [168] (Fig. 5.2).
To avoid an artificially unstable situation, I used the same target rate for synapses
from both interneuron populations. This is also in accordance with the observation
that excitatory neurons have a firing rate set-point [89]. Based on this, I would argue
that the target rate should be defined postsynaptically, at the level of the excitatory
neuron, because the alternative would be that a single interneuron somehow signals
a target rate for each of its synapses made onto different excitatory neurons. With
such matching target firing rates, stable activity is reached in the network.

I also followed this approach, to use the same plasticity for synapses of either in-
hibitory subtype, in order to reduce the difference between PV- and SST-interneurons
to their coupling in the circuit and, crucially, the sources of their external inputs
(Fig. 5.1). However, even with the same target rate, the interaction of the two
controllers (plastic synapses from PV- and SST-interneurons) could induce insta-
bility of the connection weights, which could, for example, oscillate, especially if
the controllers act at different timescales. In the simulations, I see stable average
inhibition emerging. In future work, however, it might be vital to investigate this
problem more carefully, as it may be necessary for biological reasons to investigate
different parameters of the STDP in synapses from PV- and from SST-interneurons,
or even different plasticity rules in the two cell classes [170-172].

In conjunction with the diversity of interneurons, also the diversity of input
streams driving cortical neurons becomes important, since interneuron subtypes
participate in subtype-specific ways in these different signaling streams [61]. In my
model, I introduced two input streams representing feedforward inputs from the
LGN and a general input stream of feedback information (BKG). I found pronounced
self-activating assemblies only in the case when these two input streams cooperate,
such that the same groups of neurons are driven at the same points in time during
training (Fig. 5.5). Competition between the two input sources reduces the average
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connection strengths within assemblies. Connections between neurons within the
same assembly (either defined from LGN- or BKG-inputs) still potentiate above the
baseline level, but this potentiation is considerably weaker than when the two input
sources cooperate (Fig. 5.4).

In the cases that include competition, I could not find marked statistical signatures
of spontaneous self-activations of the imprinted assemblies (Fig. 5.6). A direction
one could take from here is to study the emerging structure with more subtle
competition, for example, using intermediate cases between perfect overlap and
complete statistical independence of the assemblies driven by LGN and BKG. It could
also be necessary to use more subtle statistical measures to distinguish the cases I
have studied so far and to scrutinize their dynamical differences. My investigations
of the CV’s of single cells in the network and the temporal statistics of the rates of
assemblies only showed a dichotomy between the case where the two inputs streams
cooperate with a perfect spatial and temporal correlation, and all other cases where
the input streams either compete in space or in time (Fig. 5.6).

In recent work, Lagzi and colleagues investigated how the presence of PV- and SST-
interneurons influences the formation and maintenance of assemblies with plasticity
observed in mouse orbitofrontal cortex, and compared this to a circuit that only
includes PV-interneurons [172]. The experimental results in this study showed that
synapses from PV-interneurons have plasticity according to the symmetric STDP
rule, whereas synapses from SST-interneurons follow an antisymmetric STDP in this
part of the frontal cortex. In their model with multiple subtypes, they introduced
assembly specific SST-interneurons and global feedback from PV-interneurons.
Based on the plasticity rules and the induced correlation structure following from
the connectivity, Lagzi and colleagues could show that SST-interneurons develop
lateral inhibition between the assemblies, while PV-interneurons provide homeostasis
of firing rates. Interestingly, the lateral inhibition from SST-interneurons drove a
differentiation of the PV-population into PV-subpopulations with outputs tuned to
different assemblies [172].

In my approach, I did not specify SST- or PV-interneurons to belong to any
specific assembly. I rather studied how the “collision” of LGN- and BKG-inputs in
the excitatory population shapes the emerging assembly structure, both in terms
of connectivity and spontaneous activity. The aspect of how feedforward inputs,
representing sensory drive, and background inputs with assembly structure that
could, e.g., represent predictions of sensory inputs from higher-order cortical or
thalamic centers, interact, was not investigated in [172]. In future work it would be
most interesting to merge these aspects in a single model, where the single interneuron
subtypes could receive assembly-specific inputs that conform with the sources of
their primary inputs (LGN vs. BKG), and investigate how connectivity motifs of
local or lateral inhibition and disinhibition may emerge and shape spontaneous
dynamics and processing capabilities of the network.
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In my research, I investigated the interplay of strong recurrent connections in
networks, especially the role of the operating regime, the multiplicity of interneuron
subtypes, and synaptic plasticity. I found that understanding this interplay is
vital to apprehend how deprivation-induced plasticity shapes activity in visual
cortex, and especially identified the paradoxical effect as one of the fundamental
mechanisms. The role of the paradoxical effect for computations in adults has
already been recognized (reviewed in [133]). However, it has not been investigated
in the developing cortex with its exceptionally high plasticity in response to sensory
experience. In this chapter, I first summarize the main results and their relation
to previous results from the literature, with a focus on the paradoxical effect and
the interaction of multiple interneuron subtypes (Sec. 6.1). I will then outline the
limitations of my model concerning some important biological mechanisms which
I have not integrated into the network model and possible implications of these
mechanisms (Sec. 6.2). I will then discuss future directions to investigate the role
diverse interneurons play in shaping cortical computations, specifically PV and
SST, and experience-dependent plasticity (Sec. 6.3). Finally, I conclude with some
thoughts on the larger context into which this work fits (Sec. 6.4).

6.1 Interneuron diversity and deprivation-induced plasticity

The focus during my doctoral research was the regulation of activity in cortical
circuits undergoing sensory deprivation and how the activity regulation can be gener-
ated by deprivation-induced plasticity (Chapters 3 and 4). The existing connectivity
of the model networks strongly interacts with the specific synaptic changes taken
from the experimental study of the visual cortex during monocular deprivation
(MD), an important paradigm for the study of plasticity during experience-dependent
brain development. Additionally, I also considered the effects of plasticity in the
somatosensory cortex induced by whisker deprivation (WD). Through simulation
and analysis, I was able to uncover how the paradoxical effect with a single or
with multiple subtypes of interneurons governs the possible responses in circuits to
experimentally identified plasticity:

1. In an ISN with a single subtype of interneurons, the rate changes generated
by MD-induced plasticity are tightly coordinated between the excitatory and
PV-interneurons. This tight coordination impedes the independent modulation
of their firing rates observed in vivo, where inhibitory rates drop on the first
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day of MD and recover on the second, whereas excitatory rates stay at their
baseline level on the first day and only drop on the second day [54].

2. In a non-ISN with a single subtype of interneurons, independent modulation
of firing rates is possible. However, the weak recurrent coupling causes much-
reduced responsiveness of this network to the MD-induced synaptic changes.

3. Sufficiently strong feedback from SST-interneurons in an ISN with two subtypes
of interneurons leads to a reversal of the paradoxical effect in PV-interneurons
and an inversion of the responses of PV-interneurons to MD-induced plasticity.
This means that excitatory and PV firing rates can be modulated in opposite
directions and can thus be temporally modulated in the same sequence as
measured experimentally after MD.

4. Analysis of a linear population-rate model proves that the coordination between
excitatory and PV neurons is driven by the emergence of the paradoxical
effects. Opposite modulation becomes possible through the reversal of the
paradoxical effect in PV-interneurons through SST-feedback.

5. Furthermore, this analysis shows that the reversal of the paradoxical effect
is always possible in a stable network, with finite SST-feedback strength
sufficient in networks with arbitrarily strong couplings among excitatory and
PV neurons.

6. Although brief WD invokes plasticity mechanisms different from those invoked
by brief MD, my model shows similar regulation of activity in both cases.
Specifically, I found tight coordination of excitatory and PV firing rates in an
ISN with a single subtype of interneurons and an inversion of the PV response
with strong SST-feedback. Thus, I predict that the firing rates during ongoing
WD are modulated in S1 in the same temporal sequence as firing rates in V1
during MD.

Based on these results, I can make testable predictions about the circuitry
and population responses during MD. First, I predict that PV should respond
non-paradoxically to stimulation during the critical period to robustly enable the
independent modulation of excitatory and PV firing rates. This could be directly
tested in animals during the critical period using optogenetic stimulation in the same
way as in adult animals [135,136]. Further analysis would need to clarify if such
a potential non-paradoxical response of PV-interneurons would be caused by the
operating regime, that is, if the cortical circuit is non-ISN during the critical period,
or if it is caused by strong SST-feedback in an ISN. The distinction could be made by
specifically investigating the inhibitory currents that impinge on an excitatory cell
before and after optogenetic stimulation of interneurons [130] (see also Appendix A.2).
Given that in the adult circuit PV-interneurons do show the paradoxical effect,
either case would be a transient phenomenon of the developing circuit. Interestingly,
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strong SST-feedback onto PV-interneurons has been experimentally identified in
the developing cortex during the first postnatal week [152].

The network model shows close coordination of the activity changes in excitatory
and SST neurons in response to deprivation-induced plasticity. Therefore, the model
predicts that the same time-course of suppression and recovery in excitatory and
SST neurons would be observed during brief MD. In recordings with extracellular
electrodes, SST cannot be isolated easily, as their spike shape falls either into the
fast-spiking class (overlapping with PV-interneurons) or the regular spiking class
(overlapping with excitatory neurons), dependent on the morphological subtype
of SST-interneurons [24]. Potentially, chronic calcium imaging could be used to
observe the activity of labeled SST-interneurons during MD [80].

The comparison to the effects of plasticity induced by WD showed that the
regulation of activity is very similar in both types of deprivation-induced plasticity.
My model, therefore, predicts that activity during brief WD could be regulated
similarly to MD. This similarity of activity changes upon WD and MD suggests a
shared principle in both types of deprivation that serves the regulation of activity
and the adaptation to changes of the sensory environment.

My research builds on existing results about the paradoxical effect in inhibition
stabilized networks, especially [130] and related work [134,136,173]. My work
contributes multiple novel aspects to our understanding of the role of the paradoxical
effect and the interactions between multiple interneuron subtypes in cortical circuits:

e It is not a priori clear that the operating regime or the paradoxical effect
should play a role in the dynamics of rate regulation uncovered by experiments
during brief MD. The relations I found strengthen the view that paradoxical
effects and the form of inhibitory stabilization present in the circuit are a
fundamental property of the dynamics of neural circuits, appearing in multiple
biological contexts.

e The response to a simultaneous perturbation of feedforward inputs to excitatory
and inhibitory neurons has not been addressed by previous work on the
paradoxical effect. I found that the general characteristic of the paradoxical
effect that excitatory and inhibitory rates change in the same direction upon
stimulation of the inhibitory neurons gives an intuitive understanding of the
coordination of excitatory and PV firing rates. I have shown how this principle
leads to a tight alignment in the whole plane of feedforward changes.

e Sensory deprivation severely affects recurrent connections in the circuit. Pre-
vious work on the paradoxical effect focused on the effects of perturbations
of external (feedforward) inputs to inhibitory neurons. How the paradoxical
effect impacts the response to these recurrent changes in the network has not
been addressed by previous work. Interestingly, the paradoxical effect drives a
similar alignment between excitatory and inhibitory rates in the recurrent as
in the feedforward synaptic changes.
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e My analysis includes a general understanding of the interaction of the overall
coupling scale, the strength of PV-connections, and SST-feedback, that goes
beyond the basic understanding of the paradoxical effect for a single specific
inhibitory connectivity based on experimental data.

Inspired by the fundamental impact of interneuron diversity on the effects of
deprivation-induced plasticity, I furthermore explored the emergence and mainte-
nance of Hebbian assemblies in networks with multiple interneuron subtypes and
the effects of these assemblies on the emerging spiking statistics (Chapter 5). The
characteristics of the connectivity and spiking of the emerging assemblies when
the network is trained with a single input structure are consistent with previous
work on plasticity in large-scale spiking networks with a single subtype of interneu-
rons [30, 32, 160]. However, competition between multiple input structures that
serve as a model of the different input streams profoundly changes the emerging
connectivity as well as spiking. Different interneuron subtypes engage in these
different input streams in subtype-specific ways. This model requires further in-
vestigation, but it already shows that the interaction of multiple input streams in
networks with multiple interneuron subtypes shapes circuits in specific ways. The
consequences of this interaction for the circuit structure could underly different
processing capabilities of networks in different regions that, on a coarse level, start
with similar structures, but are shaped by different signals in experience-dependent
development, for example, primary and secondary sensory areas.

6.2 Including further biological aspects of cortical circuits
with diverse interneuron subtypes

Introducing the diversity of interneurons is one step to integrate the real complexity
of cortical circuits into models. Adding SST-feedback to the prevalent models with
a single subtype of interneurons fundamentally altered the response to MD-induced
plasticity. Depending on the research question, there are several aspects of the
biological circuit to be considered. Starting from my results and other results from
the literature, crucial factors for future work on the effects of sensory deprivation
could be: (1) the subcellular specificity of interneuronal targeting, especially of
PV- and SST-interneurons, (2) additional interneuron subtypes, prominently VIP-
positive interneurons, and (3) the implementation of plasticity mechanisms, such as
spike-timing-dependent plasticity, homeostatic scaling, or intrinsic plasticity, that
continuously shape the circuit. I briefly outline these aspects and their potential for
future research.

6.2.1 Subcellular specificity of interneuronal targeting

Synapses from PV-interneurons preferentially target the soma or the axon-initial
segment, whereas SST-interneurons target the apical dendrite. I have studied
networks of point neurons, represented by a membrane potential that is equally
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affected by all synapses independent of their potentially different positions on the
postsynaptic neuron. The introduction of two interneuron subtypes could make a
neuron structure that differentiates between the soma and the dendrite vital. While
synapses directly on the soma or axon initial segment are in a position to strongly
suppress the output of the excitatory neurons, dendritic synapses interfere already at
the level of the inputs from other excitatory neurons that impinge on the dendrites.
In the simplest scenario, the different placement of the synapses primarily influences
the effective synaptic weight, which would be accounted for in my model through the
variation of the different synaptic weight parameters (e.g., J for the coupling scale
and K for SST-feedback). More likely, however, the active integration properties of
dendrites will lead to more complex phenomena that shape the interaction of the
activity with synaptic changes induced by deprivation [174]. Active dendrites induce
strong nonlinearities in the integration and response of single neurons [175]. Although
the balanced state entails linear responses of the network [113] (see also Sec. 2.5.1),
nonlinear synaptic integration can lead to nonlinear network responses also in
the balanced state [176]. Recent modeling work has shown that the nonlinearity
in recurrent networks induced by nonlinear synapses allows networks to switch
the operating regime between ISN and non-ISN without long-term changes of the
synaptic weights [177]. Integrating synaptic nonlinearities in networks with diverse
interneuron subtypes, including the subcellular specificity of their targeting in the
context of MD, is, therefore, an interesting direction for future studies.

6.2.2 Increasing interneuron diversity

PV and SST are two from a much larger set of interneuron subtypes, albeit overall
the two most numerous in cortex [24]. Apart from the much more elaborate
distinction into morphologically defined subtypes, which entails multiple subtypes
also for each of the interneuron subtypes defined by genetic markers, the third
large class of molecularly identified cortical interneurons expresses the serotonin-
receptor 5HT3a (abbreviated as 5HT3aR). Out of these, especially VIP-interneurons
have been experimentally implied in cortical computations, e.g., in mediating
disinhibitory higher-order feedback during locomotion or due to the context a signal
is embedded into [62,178]. This disinhibitory feedback is due to the fact that VIP-
interneurons primarily engage in reciprocal inhibition with SST-interneurons but do
not seem to directly project to PV-interneurons or excitatory neurons (Sec. 2.1.2).
Thus, their activation inhibits SST-interneurons and through this likely disinhibit
excitatory neurons. However, the exact effects in complex circuits still require
further investigation.

A number of models with multiple interneuron subtypes have been set up intro-
ducing three classes of interneurons, PV, SST and VIP [130,136,173,179]. I have
followed a route of introducing the diversity of interneurons successively, building
on a network with a single subtype, and scrutinizing the role of the addition of a
second one (see also [172,180,181]). This enabled a detailed understanding of the
changes of network responses that are brought about by a simple case of interneuron
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diversity. The additional introduction of VIP-interneurons would be an important
next step and could be done building on my results with careful consideration of
the interaction of PV- and SST-interneurons already present in the circuit.

In the context of my research, it would be most interesting to investigate how
the introduction of VIP affects the presence or absence of the paradoxical effect in
PV-interneurons and how this plays out in the response to MD-induced plasticity.
It could be the case that VIP-interneurons amplify the effects of SST, in which
case my results for the role of interneuron diversity could stand largely unmodified.
However, VIP-feedback that inhibits SST-interneurons could also interfere with
the reversal of the paradoxical effect in PV through SST-feedback that I have
found. A general investigation would require to study under which conditions
VIP-interneurons prevent the reversal of the paradoxical effect due to SST-feedback.
VIP-feedback could still be highly permissive to allow the reversal, as I have found
it with two subtypes of interneurons. However, likely some conditions that prevent
this reversal could exist in a circuit with three subtypes of interneurons. It should
be scrutinized if these conditions can be fulfilled in the developing brain. If such
conditions exist, this would not necessarily refute my results. Rather, an interesting
scenario that enriches the repertoire of responses could emerge. The reciprocal
inhibition between SST- and VIP-interneurons could give rise to a form of winner-
take-all competition that allows a switch between different states in which either
SST- or VIP-feedback dominate the response properties of the circuit [182], allowing
the circuit to switch between states. How MD affects such a dynamical interaction
of the subtypes needs to be determined.

Finally, it is important to point out the limitation through the parametric sim-
plification I have used for the connections between excitatory neurons and diverse
interneurons. I defined synaptic connections, their strength, and probability between
the different populations in the network by a minimal number of parameters that
allows to independently investigate the roles of the different interneuron subtypes.
Biological networks are unlikely to follow such simple schematics and thus likely re-
quire systematic investigation, including more degrees of freedom in the connectivity.
However, I believe that the study of simplified models can produce understanding
that applies to a variety of neuronal circuits across different brain areas. The
parametric study in a few dimensions allows us to abstract from the details of any
particular circuit and to gradually uncover principles of the neural dynamics and
computations emerging in brains that may be applicable across brain regions and
species.

6.2.3 Including ongoing plasticity with biologically inspired mechanisms
to study the trajectory of activity regulations

An important direction to extend my research would be to combine interneuron
diversity and biologically inspired plasticity mechanisms, such as STDP in excitatory
and inhibitory synapses, with a focus on MD. The deliberate modification of weights
of non-plastic synapses in my model allowed me to explore the effects of plasticity
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in an unbiased way, with any combination of weight changes in any of the different
synapses (Chapters 3 and 4). Using this freedom of exploration, I specifically
investigated how the rate modulations found in vivo can be achieved with the
highest robustness, without a requirement for fine-tuning of the specific parameters.
When using biologically inspired learning mechanisms, the configurations of the
weight changes are much less under control.

Such mechanisms have been investigated with a single subtype of interneurons by
Wu et al. [90]. Wu and colleagues focused on the long-term homeostasis of firing rates
without modeling the detailed regulation of rates during the first two days of MD.
They also found that correlations drop during early MD and are homeostatically
regulated back to their baseline after prolonged MD, restoring not only average
levels of correlation but also detailed correlation structure [90]. Extending my
work, it would be interesting to study the specific trajectory of modulations of
the rates and correlations during the first two days of MD and how this could be
generated by biologically inspired mechanisms. The relations between the potential
regulations of activity and the interaction between multiple interneuron subtypes
that I investigated could be combined with the insights from [90]. Specifically, Wu
and colleagues found that homeostasis of rates depends on intrinsic plasticity of
excitatory neurons, while the recovery of correlation structure depends on synaptic
scaling.

Ma et al. [91] used biologically inspired plasticity mechanisms to generate the
sequence of firing rate changes. They found that the plasticity parameters to
achieve this are tightly constrained. Thus, along the lines of my research to find
the network structure that allows the opposite modulation of firing rates in wide
ranges of the parameter spaces of MD-induced plasticity, finding a network that
more robustly could generate the experimentally observed regulation of rates than
the one investigated by Ma et al. with ongoing plasticity seems desirable. The
counter-proposal would be that a multitude of interacting plasticity mechanisms
exactly achieves such fine-tuning of synaptic changes through their interactions [31].

The combination of previous work, especially [90,91], with my results could
guide the formulation of a model of the plasticity underlying the regulation of
activity during early MD with biologically inspired plasticity mechanisms in a
network with multiple interneuron subtypes. I have studied the action of biologically
motivated plasticity mechanisms in a network with multiple subtypes of interneurons
(Chapter 5). The learning of Hebbian assemblies in this network is not fundamentally
different from the learning in a network with a single subtype of interneurons [30],
specifically in the case where feedforward and background inputs drive the same
groups of neurons at the same time (Sec. 5.2.1). Biologically-inspired, ongoing
plasticity in a network with a defined operating regime could be used to investigate
how plasticity leads to distinct rate regulation and homeostatic recovery. Beyond
firing rates, it would be most interesting to understand how interneuron diversity
affects the regulation of correlations.
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6.3 Feedforward and feedback processing in local cortical
circuits

6.3.1 The effects of deprivation on signal processing in cortical circuits

I have investigated how activity levels can generally be regulated in V1m through
the MD-induced synaptic changes. A different direction would be to investigate the
functional role of these synaptic changes. Specifically, how may the processing of
incoming signals in a circuit change after MD-induced plasticity? My model showed
that the increase of the feedforward E/I-ratio increases excitatory firing rates. Thus,
a hypothesis would be that the plasticity of feedforward synapses could, despite
its depressive nature, amplify the signals arriving in V1m after the eye is closed
because it increases the feedforward E/I-ratio. Recurrent plasticity of the inhibitory
pathways would then have a major homeostatic role, such that the combination of
feedforward and recurrent plasticity allows amplification of signals while average
activity levels are kept at normal levels.

Eyelid suture likely decreases the visual information due to blurred vision through
the closed eyelid. This should not be misunderstood as a decrease of the average
activity level of LGN-cells, as this is not the case [76]. An experimental hint at how
this blurred vision affects visual signals is the decrease of the correlations between
neurons in LGN after eyelid suture [76]. Correlations between spikes of thalamic
neurons contain relevant information about the properties of visual stimuli [183],
and, especially at the population level, such changes of the correlations can have
large effects on the information encoded and on the best strategy to decode this
information [184]. Also, within V1, average firing rates show little dependence on
the general presence or absence of visual input as they are similar during prolonged
periods of light and of darkness [185]. Transitions between light and darkness only
lead to transient deviations. Similar to the effect of eyelid-closure in LGN, darkness
decreased pairwise correlations compared to the light-condition. Both of these
results point at a role of pairwise correlations in the encoding of visual scenes and
their disruption through the removal of visual stimulation either through MD or in
darkness.!

One way to investigate processing in this context is to study rate fluctuations
rather than average activity levels that contribute to pairwise correlations. For
example, balanced amplification is a fast, transient form of amplification of signals
that emerges in the ISN-regime with strong recurrent excitation [137]. In an ISN
with a single subtype of interneurons, strong and fast amplification of excitatory
input pulses, or any brief fluctuation of the inputs to the excitatory population
in favor of excitation, can be achieved, but it has not yet been investigated with
multiple interneuron subtypes. Specifically, it would be interesting to investigate

nterestingly, intra-ocular application of TTX increased pairwise-correlations in LGN in [76].
This could reflect a dominance of intrinsically generated activity when visual input is completely
lacking compared to the case where it is reduced. The correlations of purely intrinsically
generated activity could be a side effect of recurrent coupling or shared higher-order inputs.

154



6.3 Feedforward and feedback processing in local cortical circuits

how the reversal of the paradoxical effect in PV-interneurons affects the strength of
amplification. More generally, it remains yet to be investigated how the interaction
of multiple interneuron subtypes, in general, affects the amplitude and timescale of
the amplification. In this framework, also the effects of MD-induced plasticity on
the signal amplification could be investigated.

The recurrent inhibitory plasticity acting during MD could also contribute to a
sharpening of the tuning of responses, both in healthy development with normal
visual experience and after deprivation, when stimuli are blurred. In the study of MD-
induced plasticity, Maffei and colleagues discovered a plasticity mechanism where
potentiation of inhibitory synapses is induced by the combination of depolarization
of the postsynaptic excitatory cell and firing of the presynaptic inhibitory cell,
and this mechanism most likely underlies the potentiation of inhibition after brief
MD [82]. The induction of this plasticity is furthermore prevented by coincident
spiking of the pre- and postsynaptic cells. Thus, it is not primarily dependent on
the relative timing of spikes as in STDP but resembles a voltage-dependent synaptic
plasticity rule [186, 187]). Functionally, the induction protocol suggests that this
plasticity can sharpen responses of excitatory neurons by increasing inhibition on
cells that are weakly driven by some stimulus, such that they are depolarized below
threshold but not enough to spike consistently. These weakly driven cells would be
strongly suppressed after induction of the inhibitory plasticity until their spiking
responses are completely suppressed. In contrast, the consistently spiking cells,
those that are strongly selective to this stimulus, would not be suppressed. Together,
these two processes would lead to sharply tuned excitatory responses. The blurring
of the sensory signals seems a powerful paradigm to invoke this plasticity even more
strongly than in normal visual experience.

6.3.2 Control of the mode of signal processing by specific interneuron
subtypes

I have started to investigate the structure emerging in circuits with multiple interneu-
rons subtypes shaped by multiple interacting plasticity mechanisms. A biological
question one could investigate in this framework is how PV and SST interact to
control the activity of assemblies with respect to the reliability of cortical responses.
Recent experimental studies have started to uncover the role of interneuron subtypes
in this context [188-191].

Agetsuma and colleagues showed that optogenetic suppression of PV-interneurons
increases the overlap of different assemblies activated by different stimuli [188].
When PV-interneurons are suppressed, the responses to different stimuli are less
distinguishable, leading to a decreased reliability in the representation of stimuli.
These experiments did not directly investigate the role of SST, however, other
experiments have shown that SST strongly suppress PV in different cortical areas
[192,193]. The suppression of PV through SST could have similar effects on the
circuit dynamics in vivo as the optogenetic suppression of PV. Indeed, Rikhye
and colleagues showed in a different context that the suppression of PV through
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optogenetic activation of SST is sufficient in their case to produce the same effects as
the direct optogenetic suppression of PV [189]. They investigated the direct interplay
between the two interneuron subtypes in the control of trial-to-trial reliability.
Optogenetic suppression of PV-interneurons increases the trial-to-trial reliability
in response to natural movies, and the suppression of PV through optogenetic
activation of SST yields the same effect.

These results point at an intricate interplay of PV and SST in controlling the
mode of output. The circuit could be imagined as being either in a mode of well-
distinguished but unreliable (over trials) assemblies, representing distinct stimulus
patterns (high PV-activity), or in a mode of overlapping ensembles, less suited
to distinguish patterns, but reliable over repeated encounters of the same pattern
(high SST activity, with suppressed PV activity). The different influences of PV
and SST on the discrimination of assemblies on the one hand, and the trial-to-trial
reliability on the other, could resemble two modes of the faithful representation
of the visual world: (1) strong discrimination between (similar) stimuli, which is
achieved with non-overlapping ensembles emerging from PV activation, and (2) the
reliable identification across encounters of the same visual scene (which will vary
on each encounter), achieved with similar responses across trials produced by SST
activation.

Why cortical circuits may implement these modes can be hypothesized from
the input sources of the two inhibitory populations: PV are strongly driven by
direct feedforward input, so their activity is tied to the dominance of thalamic drive.
Such dominance of thalamic drive could push the network in a state of accurate
representation, resembled by well-distinguished ensembles responding to different
stimuli. SST in turn are strongly driven by lateral inputs, providing context to the
local patch of visual input. Such contextual information could push the network
in a state where it encodes a visual scene less accurately but more reliably [194].
Reliability across trials is relevant if the animal has prior information that contains
what the behavioral consequences of a certain encounter should be, consistent with
the observations that SST also receive higher-order feedback. Potentially, it is
less important how exactly a scene looks when contextual information is available
because this is already partially known, but rather what it means across encounters.

To study this in a model, one could compare the spontaneous activity and driven
responses during activation and inactivation of either of the interneuron subtypes.
The overlap of ensembles in these different conditions is accessible through the
correlation structure of the network. Reliability could be accessed using an approach
presented in [195], where it was shown that even in a network that globally appears
chaotic and unreliable, intermittent periods of reliable single-cell firing coexist with
periods of unreliable firing.

6.3.3 Control of tuning of single neurons by specific interneuron subtypes

The investigation of the effects of PV and SST activity in the control of cortical
ensembles in a structured spiking network could also be further used to shed light
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on the controversial issue of tuning of interneuron responses and the specificity of
their connections. Both PV- and SST-interneurons have been found to have either
tuned or untuned responses [196-198]. The same holds true for the connections
PV-interneurons receive from local excitatory cells [199-202].

Through investigating the development of Hebbian assemblies in a network con-
taining both of these interneuron classes, we may be able to unravel some of the
conditions under which connection specificity in interneurons could emerge and
what the consequences of activating specific interneurons would be in different
circuits with tuned or untuned interneurons. Kuhlman and colleagues found a
specific developmental effect in the responses of PV-interneurons [203]: while the
PV-interneurons have high orientation tuning at eye-opening, this tuning is lost
during the subsequent development. Such untuned inhibition is well suited to control
the exclusive activation of only a single assembly at a time, which will suppress all
others through a spread of PV inhibition across excitatory cells of different tuning.
That PV-interneurons are delivering this type of inhibition is also suggested by the
results in [188].

Interestingly, Cottam and colleagues measured that SST-activation could unmask
a tuning of PV-interneurons which is not visible during normal activity in the circuit
[193]. The resulting tuned activation of PV-interneurons could further strengthen
the effects of their suppression found optogenetically, as it opens opportunities for
excitatory cells from multiple assemblies to become active simultaneously. Tuning
of cells, their coupling into assemblies and the conditions for the developmental
emergence of both these properties are most likely highly interwoven and may be
best investigated from a comparative perspective across species [204].

6.4 Final remarks

Developmental plasticity dependent on experience is crucial for the adaptation of
animal behavior to a changing environment, and perturbation of sensory experience
exposes the mechanisms underlying this adaptation. Critical periods of heightened
plasticity governed by distinct mechanisms play an important role in the development
of sensory processing, and maybe also in human psychiatric disorders [205]. Critical
period plasticity influences, for example, the E/I-ratio in cortical circuits [3,94]. This
suggests a potential connection to the development of autism spectrum disorders, as
one hypothesis about the physiological changes underlying autism is an altered E/I-
ratio, recently studied by comparing multiple mouse models of autism phenomenology
[206]. The alterations of the E/I-ratio could be related to autism-associated genes
that influence homeostatic plasticity [207]. A critical period of heightened plasticity
that shares some similarities with the developmental critical period plasticity also
seems to follow a stroke and could be important for, at least partial, recovery [208]
(but see [209]).

Understanding critical period plasticity thus plays an important role in under-
standing computations in the healthy brain and how these are changed in disease.
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The plasticity during critical periods shapes excitatory and inhibitory connections
in feedforward and recurrent circuits. My research has shown that the operating
regime, defined by the level of recurrent excitation and the role that inhibition
plays in stabilizing the network, crucially shapes how activity in cortical circuits
is controlled by critical period plasticity based on the presence or absence of the
paradoxical effect. The rich interactions between multiple interneuron subtypes add
a further layer to this as they allow a decoupling of the paradoxical effect from the
operating regime in certain interneuron subtypes, potentially driven by transient
inhibitory circuitry in the developing cortex. Accordingly, the inhibitory circuitry
itself is highly plastic during the critical period and shaped by the sensory experience
of the animal. These insights contribute to an unfolding rich panorama of inhibitory
interactions in the developmental emergence of functional cortical circuits.
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A.1 Stability in an excitatory-inhibitory network with general
connectivity

The connectivity of a general population-rate network with one excitatory and one
inhibitory population is:

W= (“’EE _“’Ef> , (A.1)

WiE  —WIT

where w4p is the strength of the connection from population B to population A.
Since the Jacobian of this system is J = W — I, we can calculate the conditions for
stability from the eigenvalues of W. Stability requires that the largest real part is
< 1. We find the eigenvalues of W from solving the characteristic polynomial of
this general connectivity matrix

det(W — Al = AQ—)\(wEE—wH) — WEEW]] + WEJWIE (A.2)
to be
A\ _ WeB—wir (wpp — wir)?
2 = T 5 1 + WEEWIT — WEJWIE
_ 2
wEE2 wip i\/(wEEjl‘wH) Cwprwre. (A.3)

Whether the eigenvalues are two real eigenvalues or a conjugate pair of complex
numbers, stability always requires that at least the fraction outside the square-root
in Eq. A.3 is smaller than one, which implies:

wprp < 24+ wyr. (A.4)

Note that this condition is equivalent to the stability condition that the trace
of the Jacobian is negative. If the eigenvalues are two complex conjugate values
(wprwrp > W), this is already all that needs to be fulfilled for stability.
Note, however, that the assumption of conjugate eigenvalues rests on a condition
on wgrwrg, which describes the strength of the reciprocal loop between excitation
and inhibition. The eigenvalues are complex conjugate when this is strong. An
interesting implication of the condition in Eq. A.4 is that for wgg > 2 inhibition of
inhibition (wrr > wgg — 2 > 0) is required for stability. In [114] it was pointed out
that the role of such disinhibitory connections was not clear at the time, while it
was known that such connections are present in the cortex.
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If the two eigenvalues are real, the largest eigenvalue is A; and stability requires:

WEE — W wgg + wrr)?
= e \/(EE4H) — wapors < 1. (A5)
Resorting this and squaring both sides' we get:
(wepp +wrr)? 2 —wpg +wiy
4 WeIwiE < —

2
= (wgp +wir)® —dwprwip < (2 —weE + wip)
= wWgpgp —wir +wgpwir —1 < wgrwrg. (AG)

Resorting the left hand side in the last line in this Eq. A.6, it follows:
(wEE—l)(w11+1) < WEJWJIE. (A7)

This relation, which is equivalent to the condition that the determinant of the
Jacobian is positive, proves that for wgg < 1 no reciprocal connections between
excitation and inhibition are necessary to provide dynamical stability because then
the left-hand side in Eq. A.7 is negative and is thus fulfilled for all wap > 0 (Note
that the condition (wy; > wgg — 2) is always fulfilled in this case). For wgg > 1,
reciprocal connections between excitation and inhibition are necessary to provide
dynamical stability. Therefore, also for general connectivity, the network is an
ISN for wgg with suitable inhibitory connectivity. The paradoxical effect generally
emerges at the value of recurrent excitatory coupling where inhibition becomes
necessary for dynamical stability (Eq. 2.9).

A.2 Paradoxical change of the total inhibitory current in the
network with multiple subtypes of interneurons

Litwin-Kumar and colleagues provided the original insight into generalized paradox-
ical effects with multiple subtypes of interneurons [130]?. They found that the rate
changes of any single interneuron subtype (or any subpopulation of interneurons,
see [134]) is not sufficient to decide if the network under consideration is a non-ISN
or an ISN. What distinguishes the two operating regimes is the total inhibitory
current received by the excitatory population: in the ISN, this inhibitory current
changes in the same direction as the excitatory rate. In the non-ISN, it changes
in the opposite direction. This holds for arbitrary many interneuron subtypes,

1One can proof that both sides in the second step, when I square, are positive. It follows from
the condition that A1 < 1 requires at least wgr < 2 + wrr. This is the same condition as
0 <2 —wgg + wrr. Thus, the inequality does not change its direction upon squaring.

2Note that this generalization of the paradoxical effect is different from the one I developed. In
my work, I have provided an account of the paradoxical effect beyond the original work by
Tsodyks et al. [114] by (a) considering two-dimensional perturbations and (b) applying such
perturbation in both feedforward and, crucially, also recurrent synaptic pathways.
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and arbitrary connectivity [130]. The criterion is equivalent to the rate changes
of the inhibitory population in networks with a single subtype of interneurons, as
in the classical paradoxical effect investigated by Tsodyks and colleagues [114].
However, with multiple subtypes of interneurons, the different subpopulations can
change their rate in any direction because the operating regime only constrains the
weighted sum of the rate changes. The individual rate changes are weighted with
the respective connection weight in the connectivity matrix. After a brief recall of
the general result from [130], I derive these currents for the specific model I have
studied with two subtypes of interneurons (Sec. 4.6.2), and show that the currents
indeed change paradoxically also when the paradoxical effect in PV-interneurons is
reversed through SST-feedback.

As a reminder for the general case (see also Sec. 2.5.3), I denote the elements
of the connectivity matrix from the different interneuron populations X onto the
excitatory population E with Wgyx, without specifying the number (say m) and
biological interpretation of the interneuron subtypes. The linear dynamics following

a perturbation is:
dAr

T T (W - H) Ar+b (A.8)
with the general connectivity matrix
Wegeg —Wpx, -+ —Wegx,
Wgeneral = : ’ . (Ag)
Wx,.E e =Wx,x,,

We consider an arbitrary perturbation targeting the interneurons
b= (O’blab%"' 7bm)T' (AlO)

The excitatory rate change and inhibitory current into the excitatory neurons follow
from multiplying the steady-state of Eq. A.8 with the vector e; = (1,0,---,0)7:

(WEE — 1)AT%§ = Z WEXiArﬁi = AIE<—I7 (A.ll)
i=1

where the A7 are the changes of the steady-state rates of the different interneuron
populations and Ary’ the steady-state rate change of the excitatory population.
The generalized notion of the paradoxical effect follows from the fact that the
inhibitory current is equal to the excitatory rate change multiplied by 1 — Wgg. The
excitatory population is stable without recurrent inhibition for Wrr < 1 (non-ISN)
and unstable for Wgg > 1 (ISN).

In my model I have used the connectivity matrix

Wee Wgp Wegs wo—Yw  —K
W = WPE pr WPS =|lw —yw —K (A.12)
Wsg Wsp Wss w 0 0
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for a network with two subtypes of interneurons. The parameter w defines the
operating regime in this network, while suitably chosen v and k guarantee stability
for arbitrary w. To prove consistency with the previous results, I have calculated
the inhibitory current following an external input to PV-interneurons. Furthermore,
I have calculated the responses to the two other possible perturbations: a current
injection to only SST-interneurons and a current injection to both interneuron
subtypes.

A.2.1 Current after perturbation of PV-interneurons

The steady-state rates after injection of an additional current to PV-interneurons
change as (see Eq. 4.25):

Ary 1 1+yw —yw —K 0
Arg |l = —| w(l-kr) 1-wH4wk —K 13
Arg T \w(1 + ~w) —yw? 1 —w+yw 0
—Ywé
= — | (1-w+wr)|, (A.13)
—yw*¢

where 7 = det(I—W) > 0. Thus, this determinant does not influence the direction of
the rate changes. As discussed in detail in Sec. 4.6.2, sufficiently strong SST-feedback
can reverse the direction of rate change of the PV-population in an ISN. The change
of the inhibitory current (Alg. s) after stimulation of the PV-interneurons with
the connectivity in Eq. A.12 is:

Al = WEPATf:?-i-WEsATgvs

1
= E(fyw- (1 —w+w/<c)§—f£"7w2§) (A.14)
which simplifies to:
w(l —w
Alp. = 7(77)5. (A.15)

This derived current behaves consistently with the results from [130]: in the ISN
(w > 1), the current change has the opposite sign than the external current &, which
means it changes in the same direction as the excitatory rate (e.g., decrease when
we inject a positive current to PV). In the non-ISN (w < 1), the current change has
the same sign, changing in the direction opposite to the excitatory rate. Therefore,
also in my model, the direction of the current change depends on the operating
regime of the circuit. The direction of the current change is independent of x and
behaves paradoxically regardless of whether PV-interneurons show the paradoxical
effect without (or with weak) SST-feedback, or if it is reversed through strong
SST-feedback.
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A.2.2 Perturbation of SST-interneurons and both interneuron
populations simultaneously

We can furthermore derive the rate changes and the corresponding changes of the
inhibitory currents, following the injection of an additional current to (a) SST-
interneurons only and (b) to both subtypes.

Injection of an external current to the SST-interneurons causes the rate changes

Arg 1+ yw —yw —K 0
Arg |l = —| w(l—-k) 1-w+wk —K 0
Arg w(1l 4+ yw) —yw? 1 —w+~yw £
— k€
= - —k& . (A.16)
(1 —w+w)g

Thus, PV-interneurons always respond with a negative rate change to this injection,
independent of the operating regime and the strnegth of SST-feedback (as long
as it is non-zero). The direction of the SST-interneurons’ rate change depends on
the operating regime and the role of PV-interneurons in stabilizing the network.
Specifically, stabilization of the dynamics through PV-interneurons requires v >
(w — 1)/w, and therefore the SST-interneurons respond non-paradoxically to an
external rate perturbation when PV-interneurons are sufficient to stabilize the
network independent of the strength of SST-feedback. Note that general stability of
the network requires 7 + £ > (w — 1) /w, but that the derivation of this condition is
only possible if v is non-zero.

Following this perturbation of the SST-interneurons, the inhibitory current changes
as:

Alg. 1 = VVEPAT%Z9 + WEsAngS
1
= %(vw-fi£+/€-(1—w+’yw)£)

- “iﬁ”@ (A.17)

where the direction of the current change depends on the operating regime, consistent
with [130].

Injection of an external current to both the PV- and the SST-interneurons causes
the rate changes:

Ary 1 1+w —yw -k 0
Arg |l = —| w(l—k) 1-w+wk —K 13
Arg " w(1l 4+ yw) —yw? 1—w+~yw £
—(yw+ k)¢
= - | QA—w+wsk—r)E |. (A.18)
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The excitatory rate changes in the opposite direction to &, but the directions of
the firing rate changes of the inhibitory populations depend on the interplay of the
different parameters of inhibitory feedback and the operating regime. The behavior
is best visible by bringing the inhibitory rate changes into the forms (removing 7):

Ary < £(1—w)(l—k)
Ary o« &1 —w)(1+yw) (A.19)

which show that the rate changes of the SST-interneurons only depends on the
operating regime, whereas the PV firing rate changes depend on both the operating
regime and, as in the case of a current injection only to PV-interneurons, the
strength of SST-feedback. For x < 1, PV-interneurons respond paradoxically in
the ISN, while x > 1 leads to a reversal of the paradoxical effect. Interestingly,
in the non-ISN, the value of SST-feedback can also generate a paradoxical effect
in PV-interneurons as the rate changes become opposite to £ for k > 1. This is
consistent with the findings from [136], where it was shown that the presence of a
paradoxical effect does not necessarily imply that the network is an ISN.
The inhibitory current to excitatory neurons follows:

Algc; = WgpAry + WrsArg
1
_ g(vw-<1_w+m_n>s+/~c-<1—w+vw—7w2>5))

_ Lw+t ’2(1 —w), (A.20)

consistent with the generalized paradoxical effect in [130]: the inhibitory current
changes in the same direction as £ in the non-ISN and opposite direction to & in the
ISN.

A.3 Variations of the spiking network with two subtypes of
interneurons

A.3.1 Adding background inputs to PV-interneurons

My original setup in chapter 4 was based on the idea that SST-interneurons receive
inputs from other sources than the LGN, and that PV-interneurons do not receive
inputs from these sources. E.g. SST integrate inputs over larger areas in cortex
than PV [59, 210], receive higher-order cortical feedback and neuromodulatory
inputs [61,68], and inputs from higher-order thalamic nuclei [69]. BKG-input to
excitatory neurons can also be considered to stem from one or multiple of these
sources. However, that BKG projects to both excitatory and SST neurons does not
imply in any way that neurons in the two populations receive shared, correlated
input or the like. Both excitatory and SST neurons are driven by uncorrelated
spike trains with Poissonian statistics. PV-interneurons likely also receive some
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higher-order feedback and neuromodulatory inputs, although the extent is not clear.
In this context, it appears important to test the effect of background inputs to PV.

Additional input to PV-interneurons strongly suppresses firing rates in all pop-
ulations. Therefore, concurrently with the introduction of BKG-inputs to PV, 1
increased the inputs to excitatory neurons. The most important feature of the
BKG input in my model remains: that it is not affected by MD-induced plasticity.
The new vector of input weights with input from background to PV and increased
background input to excitatory neurons is (compare to Eq. 4.4):

Js + 2,
Waw = | grwds + b | - (A.21)
0+ Jp

I found that adding background inputs to PV-interneurons does not affect the
response to MD-induced synaptic changes in the feedforward, recurrent, and inter-
acting feedforward and recurrent cases (Fig. A.1, compare to Fig. 4.3). As long
as the firing rates are at appropriate levels before the induction of MD-induced
plasticity, I find the inversion of the PV response planes also when PV receive the
background.

A.3.2 Connection from PV- to SST-interneurons

Direct projections from PV to SST interneurons have been found to be very weak in
V1 [56]. The measured interaction strength suggests no relevant synaptic connectivity,
with comparable size to the connections from SST onto other SST, where the
consensus seems that synaptic contacts between these are absent [24]. Accordingly,
in my primary model, I have set both SST to SST and PV to SST connections to
zero, as in many model networks of V1 that include multiple subtypes of interneurons
[130,173] and in similar models for A1 [179,180]. However, Jiang et al. [53] report
connections between PV-interneurons and SST-interneurons, although with smaller
probability than the classically modeled connections (like SST to PV, or PV to PV).
Based on these results, Mahrach and colleagues [136] investigated the effects of this
connection from PV to SST on paradoxical effects in a V1 circuit model, but find
that it does not affect excitatory and PV responses qualitatively.

Since connections from PV to SST have been confirmed experimentally in [53], I
also tested the effect of adding them in my model with two subtypes of interneurons.
The matrix describing the recurrent connectivity in this case is (compare to Eq. 4.1):

J g K
W=|J gJ K|, (A.22)
J greJ/2 0

where all parameters have the same values as in chapter 4 (J = 0.1, g, = 8, K = 1.6,
see Table 4.1). Based on the smaller connection probability reported in [53], I chose
the PV to SST synaptic strengths smaller than the other PV output synapses.
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Figure A.1: Qualitative structure of firing rate fold-changes is preserved when
BKG inputs also drive PV-interneurons. (A) Network firing rate in the (g, dp)
plane as fold-change of baseline firing rate (baseline in top right corner) for excitatory (left
panel), PV (middle) and SST neurons (right) in the network with strong SST feedback
(K = 1.6 nS). (B) Network firing rate in the ((gp,(pr) plane as fold-change of baseline
firing rate (baseline in bottom left corner). (C) Network firing rate in the ((pg, prr) plane
as fold-change of baseline firing rate (baseline in bottom left corner).

Nonetheless, even this weight substantially affects the baseline activity, so I expect it
to be sufficient to test the effects of this connection on the response of the network.

The additional inhibition from PV to SST can strongly suppress baseline firing
rates in all populations, though most strongly in SST. The resulting low firing rates
of SST are problematic concerning facilitation of PV firing rates following MD-
induced plasticity, since the facilitation of PV firing rates is based on a release of the
PV-interneurons from inhibition by SST-interneurons. If SST-rates are too low, this
release cannot happen. Thus, I adapted the inputs to the model to increase firing
rates. As in the previous section, I increased the background input to excitatory
neurons (using a factor of 1.3), which effectively adjusted overall activity levels. I
modified the vector of input weights to be (compare to Eq. 4.4):

Js +1.3J,
Wayw = gwas +0]. (A.23)
0+ Jp

Firing rate changes following MD-induced synaptic changes remain qualitatively the
same in this network when inhibition from PV to SST is added (Fig A.2, compare
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Figure A.2: Qualitative structure of firing rate fold-changes is preserved when
PV-interneurons inhibit SST-interneurons. (A) Network firing rate in the (6g, dp)
plane as fold-change of baseline firing rate (baseline in top right corner) for excitatory (left
panel), PV (middle) and SST neurons (right) in the network with strong SST feedback
(K = 1.6 nS). (B) Network firing rate in the ((gp,(pr) plane as fold-change of baseline
firing rate (baseline in bottom left corner). (C) Network firing rate in the ((pg, prr) plane
as fold-change of baseline firing rate (baseline in bottom left corner).

to Fig. 4.3). Thus, consistent with the findings from [136], I found that addition of
this connection does not affect my conclusions about the role of SST-feedback on
the response of PV-interneurons.
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