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Abstract— Cyber-physical control systems typically consist of
two components: a clocked digital controller and a physical
plant evolving in continuous time. Clearly, the state and input
constraints must be satisfied not only at, but also between
sampling times of the controller. We address this issue by
proposing a robust output feedback model predictive control
approach for sampled-data systems, which are affected by
additive disturbances and measurement noise. To guarantee
robust constraint satisfaction for an infinite time horizon, we
present a scalable approach to compute safe terminal sets.
Based on these sets and using scalable reachability analysis
and convex optimization algorithms, we construct real-time
controllers that explicitly consider all online computation times.
We demonstrate the usefulness of our robust control approach
using a vehicle platooning benchmark from the literature.

I. INTRODUCTION

Over the past few decades, model predictive control
(MPC) has established itself as a very successful approach
for controlling complex dynamical systems, both in academia
and industry [1], [2]. Its considerable popularity can be
attributed to its simple concept and ability to effectively
handle state and input constraints [3], [4]. This is achieved
by iteratively solving an optimal control problem on a
receding time horizon and by applying the optimized input
to the system until the next time step. When using MPC in
safety-critical applications, it is crucial to ensure robustness
against uncertainties. Therefore, robust MPC approaches that
guarantee robust constraint satisfaction despite unknown but
bounded uncertainties are required.

Initially, robust MPC has been applied to linear systems
with state feedback control. Because a min-max optimiza-
tion over feedback policies easily becomes impractical due
to its computational complexity [5], [6], tube-based MPC
approaches have been proposed [7], [8]. The key idea is to
ensure that the state of the system remains within a tube
surrounding the nominal trajectory satisfying the constraints.
Thus, by tightening the constraints appropriately, only the
disturbance-free nominal prediction model is required for
online computations, whereas computationally expensive set-
based operations are performed offline. As a result, tube-
based MPC approaches have been successfully employed in
real-time [9], [10] and various extensions of these approaches
now exist [11], [12]. In addition to state feedback con-
trol, output feedback MPC approaches have been proposed
because the exact measurement of the state is typically
unavailable [13], [14], [15].
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Most literature on robust MPC deals with discrete-time
models. Thus, constraint satisfaction is only guaranteed at
discrete time steps while assuming that the solution of the op-
timal control problem can be obtained instantaneously. How-
ever, in most cyber-physical control systems, a continuous-
time physical plant is controlled by a discrete-time digital
controller. Therefore, robust constraint satisfaction must also
be guaranteed between discrete sampling times. Sampled-
data robust MPC approaches have recently gained popularity
due to their high practical relevance [16], [17]. For instance,
the approach in [8] has been extended to deal with sampled-
data systems in [18]. However, the unknown but bounded
uncertainty is assumed to be constant between two sampling
times, which is unrealistic.

Because most robust MPC approaches suffer from high
computational complexity, centralized methods are typically
inapplicable when handling large systems. For instance,
the computation of a polytopic invariant terminal set is
difficult for large systems because performing the required
set operations of high-dimensional polytopes becomes in-
tractable [19], [20]. Typically, these obstacles can only be
overcome if the control problem can be decomposed into
simpler ones, as in distributed MPC [21], [22]. Instead
of polytopes, ellipsoids are also widely used to analyze
the evolution of the uncertainty based on scalable ellip-
soidal reachability analysis [23]. However, ellipsoids under-
approximate typical box constraints in high dimensions very
poorly [24], [25], increasing conservatism.

This paper is based on our preliminary results presented in
[26], where state feedback control is considered and simple
safe terminal boxes are computed. In this paper, we

« use zonotopes as an efficient set representation;

« compute zonotopic safe terminal sets to guarantee ro-
bust constraint satisfaction for an infinite time horizon;

o explicitly consider the computation time of the online
optimal control problem:;

e propose a real-time robust output feedback MPC ap-
proach for linear sampled-data systems; and

o demonstrate the usefulness of our control approach
using a nine-dimensional benchmark from the literature
with a sampling time of 150 ms.

The rest of this paper is structured as follows: In Section II,
zonotopes as an efficient set representation are introduced
and the control problem is formulated. Based on our reacha-
bility analysis in Section III, our robust output feedback dual-
mode MPC approach is presented in Section IV, followed by
a numerical example in Section V. Conclusions and sugges-
tions for future work are finally provided in Section VI.



II. PRELIMINARIES

In this section, we introduce zonotopes as an efficient set
representation. In addition, we state the control problem.

A. Set representation by zonotopes

A crucial aspect of reachability analysis is the choice of
the set representation, e.g., ellipsoids [23] or polytopes [27].
We use zonotopes as an efficient set representation because
typical box constraints can be exactly represented and the
computational complexity of our reachability analysis re-
duces to O(n3) with n, € N5 denoting the state space
dimension [28], [29]. In addition, zonotopes can be stored
efficiently as matrices.

A zonotope Z C R™Z in generator representation is
defined by

Z={2€R"? | z=c+G),

Ml <1}

where ¢ € R"Z is the center, G € R"2*1(Z) ig the generator
matrix with 7 (Z£) € N denoting the number of generators,
and the infinity norm is defined as the maximum absolute row
sum. To use a more concise notation, we write Z = (c, G).
Based on this definition, it follows that zonotopes are convex,
closed, centrally symmetric polytopes.

According to [30], the Minkowski addition of two zono-
topes 21 = <61,G1> C R"2 and 25 = <C27G2> C R™= and
multiplication by a matrix M € R™*"= are

Z1®Zy={z1+2|2 €2, € 2}
= <C1 + ca, [Gl G2]>,
MZ, = {MZl | 21 € Zl}
= <M C1, M G1> .
The simple structure of these two fundamental operations
enables our reachability analysis to handle large linear sys-
tems [28], [29]. To determine whether Z; is contained in

Zq, 1e., if Z; C Z9, we check whether a matrix I' €
R7(Z2)x1(21) and a vector vy € R7(Z2) exist such that [31]

G1 =Gyl (1a)
cg —c1 = Gay (1b)
I Al <1 (1)

The zonotope containment problem is also known to be co-
NP-complete [32]. In addition, we define the stacking of
Z = <61,G1> C R™21 and 25 = <CQ,G2> C R"22 by

Zl _ C1 G1
=l el)y e
where the number of generators 1 (Z7) and 7 (Z5) is equal.

B. Problem statement
In this paper, we consider time-invariant physical plants
evolving in continuous time according to
#(t) = Az(t) + Bu(t) + w(t), 3)

where z(t) € R™ is the state and u(t) € R™ is the
input at time ¢ € R>(. The additive state disturbance trajec-
tory w(-) is unknown but bounded by the state disturbance

set W C R, i.e., w(t) € W at all times ¢. To use a more
concise notation, we write w(-) € W. In addition, noisy
measurements

y(tr) = Cpa(te) + v(tr)

are obtained at discrete sampling times ¢, = kAt with k € N
and At € R (. Similar to the state disturbance, the unknown
but bounded output disturbance v(¢x) is contained within the
output disturbance set YV C R™v at all sampling times ¢y, i.e.,
v(-) €V.

The disturbed system in (3) must satisfy hard constraints
on the state and input of the form

z()eX
u(-) €U,

(4a)
(4b)

where X C R"* and U4 C R™ are the state and input
constraint sets, respectively. Thus, the continuous-time state
and input trajectories must always remain within X" and U,
respectively.

To formulate a meaningful sampled-data control problem,
we assume that (Ap, Bp, Cp) is stabilizable and detectable,
where Ap = e42t and Bp = (fOAt e dt) B. In addition,
without loss of generality, we assume that W, V, X, and U
are zonotopes containing the origin. In this paper, the control
goal is to steer the system in (3) to a neighborhood of the
origin while minimizing a given cost function and satisfying
the constraints in (4).

III. REACHABILITY ANALYSIS

In this section, we present a clocked digital state estimator
and controller. In addition, we propose an approach to
compute reachable sets for times ¢, + ¢ with ¢ € [0, A¢)
based on a noisy measurement obtained at t;. Subsequently,
we extend this approach to compute reachable sets for the
entire time horizon, i.e., for any ¢t € R>q.

A. State estimation and control

To obtain a discrete-time state estimator, we first exactly
discretize the dynamics in (3), resulting in

z(tg1) = Apz(tr) + Bpu(ty) + wp(ty),

where the discretized state disturbance wp is bounded by
the zonotope Wp C R" [28, Eq. (3.7)]. Instead of using
a computationally demanding set-membership or strip-based
observer [33], [34], we use a simple Luenberger state esti-
mator

f(tk+1) = AD{f(tk) + BDu(tk) + L(y(tk) — CDi‘(tk)),

where L € R™*™ jg a user-defined stabilizing output
injection matrix such that all eigenvalues of Ap — LCp are
contained in the open complex unit disc. As a result, the
dynamics of the state estimation error €(tx) = x(t;) — Z(tx)
and the corresponding error sets are

E(tk+1> = (AD — LCD)6<tk> + wD(tk) — L’U(t;@)
5(tk+1) = (AD — LCD)E(tk) & Wp @ (—LV),
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Fig. 1.  Piecewise constant correction input trajectories @(-|tx—1) and
a(-|tg) for the prediction horizon N = 3.

where the initial error €(ty) lies within the zonotopic initial
error set £(tp) C X containing the origin. Thus, €(t;) €
E(t) for any k € N, resulting in x(tx) € (tx) ® E(tx) and
&(tr) € x(tp) ® (— E(tx)). We also want to mention that
we do not require £(¢p) to be a robust positively invariant
(RPI) set [19], [20], which would imply &(tr+1) C E(tx)
and significantly simplify the reachability analysis [13].

Based on the state estimate Z(ty) at tj, our sampled-data
controller provides a piecewise constant control signal [35].
Similar to [36], we use the simple, yet effective sampled-data
control law

u(t) = u(ty) + Ki(ty) fort € [ty, try1), (5)

where u represents the piecewise constant correction input
that is optimized online, and K € R™«*"= is a user-defined
stabilizing feedback matrix such that all eigenvalues of Ap+
BpK are contained in the open complex unit disc.

In addition, @(-|t;) denotes the correction input trajectory
that is optimized online starting at ¢;, based on Z(t). In
Fig. 1, we illustrate the piecewise constant correction input
trajectories @(-|tx—1) and @(-|tx). Analogous to the definition
of u(-|ty), we denote the predictions of the future state, state
estimate, and input trajectory based on #(ty) by x(:|tr),
Z(-tg), and u(-|ty).

B. First time interval

Based on the control law in (5), the input during [tx, tx+1)
depends on the current state estimate (). To accommo-
date for the state-dependent control input in our set-based
reachability analysis [28], [37], we define an augmented
state 7 € R"= "« [25]. The corresponding dynamics is

G-I ke e

where the piecewise constant control input u(t) is given by
(5). To project a zonotope of augmented states Z C R"=T"u
onto the space of nonaugmented states and inputs, we define
the two matrices

I, = [I 0] € RM=x(netnu)
I, = [0 I] €RmMx(netnu)

where I denotes the identity matrix of appropriate dimen-
sion. For instance, the center and generator matrix of the
zonotope 11, (cz,G ) are obtained by deleting the last n,,
rows of ¢z and G 3z, respectively.

The solution of (6) at t;, + ¢t with ¢t € [0, At) based
on the augmented initial state Z(t;) and state disturbance
trajectory w(-) is denoted by X (f,Z(tx),w(-)) € Rme¥mu,
By considering an augmented initial state zonotope Zinit C
R™= "« and the state disturbance set W, the exact set of
augmented states reachable at ¢; + ¢ is

ﬁexact(ta Znilaw) = {X(tai(tk%w(')) ‘ j(tk) S ZNinita

Because reachable sets cannot be exactly computed for
general linear systems [38], [39], we compute tight zonotopic
over-approximations Rover 2 Rexact according to [28]. Then,
x(t[ty) is guaranteed to lie within II,Rover(t, Zinit, VW) for
any t € [0, At) when choosing

2= atl) © (at0) 2007 O

because of (2) and the following considerations: If the state
estimate of the nonaugmented system in (3) at ¢y is Z(tg), it
follows that z(t) € Z(t;) ®E(tx). In addition, the sampled-
data input is u(t|tx) = @(to|tr) + K& (tx) based on (5).

C. Entire time horizon

Based on Z(ty), u(-|tx), and the previous considerations
for ¢, +t with ¢ € [0, At), the computation of the reachable
set Ruybrig for any tj, +t with ¢ € Rxq is presented in Alg. 1.
Subsequently, this algorithm is briefly described.

Algorithm 1 Computation of the hybrid reachable set
Rybria (¢, Z(tx), a(-[tr), W, E(-)) for t +t with t € R>
InPUt: L, Jz(tk)a a(“k)a W, g()
Output: Zn,
i< 0
Zinic < apply a(loltr), £(tx), E(tr) to (7)
while ¢;,1 <t do _
Zx — HzRover(Atv Zinita W)
11+ 1

o= (q) ® (5.) * (et

end while _
: Zﬁnal — 7—\)«)Ver(t - tia Zinita W)

AN

® 3

In line 2 of Alg. 1, we compute the augmented initial
state set Zin according to (7). In lines 3 to 7, we iteratively
compute reachable sets for steps of At until the specified
time ¢ is no longer greater than ¢;,.; for some 7 € N.
The augmented initial state set Zj,; is updated in line 6
based on the following considerations: (¢;|t%) is contained
in @(t;[te) ® (= E(tkri)) and u(t;|ty) lies within @ (t;|tr) ®
K (z(t;|tk) ® (= E(tkti))) for i € Nso. Finally, in line 8,
the reachable set for the specified time ¢ is obtained.

Thus far, we have only considered reachable sets at certain
points in time. Nonetheless, we must guarantee robust con-
straint satisfaction not only at, but also between two sampling
times. Therefore, we also compute reachable sets for entire



time intervals 7; = [¢t;,t;+1) with ¢ € N. This set is given by

Rgoria (73, & (t), a(-[te), W, E(-))
= U ,ﬁ/hybrid (t7 -%(tk)v a('|tk)7 w, 5())

ter;

and is computed according to [28, Sec. 3.2]. To use a more
concise notation, we write

Ra(. ) = Ty Riybrial- - -)
Ru(. ) = Iy Rugbrial- - -)-

In summary, we can efficiently compute the set of states
and inputs that are reachable at arbitrary points in time and
time intervals based on the state estimate &(tx) at tx. In the
following section, we use these reachable set computations to
propose an efficient robust output feedback MPC approach.

IV. ROBUST OUTPUT FEEDBACK MPC

In this section, we present our robust output feedback dual-
mode MPC algorithm considering a finite prediction horizon
of N € Nyg. In the first mode, we iteratively solve an
optimal control problem on a receding time horizon. We
switch to the second mode when the state of the system
is guaranteed to lie within a safe terminal set. In this
mode, a corresponding safe terminal controller ensures robust
constraint satisfaction at all future times.

First, we explicitly consider the computation time for
solving the optimal control problem online. Second, we
compute zonotopic safe terminal sets with corresponding
safe terminal controllers offline. Third, after introducing
terminal and contraction constraints, we state the optimal
control problem, which is solved online. Finally, we present
our robust output feedback dual-mode MPC algorithm and
propose simplifications for its implementation.

A. Computation time consideration

To ensure the satisfaction of the state and input constraints
in (4), we explicitly consider the nonzero computation time
for solving the optimal control problem online [40]. At the
sampling time t;, = kAt, the available computation time for
optimizing @(-|tx—1) is used, as shown in Fig. 1. Then, we
set

ﬂ(ﬂtk) = ﬂ(t + tl‘tk—l) for t € [to,tl), (8)

and apply the input @(tq|tp—1) + K&(tx) to the system
during 7, while we optimize @(t|ty) for ¢ € [t1,tn). If
the optimization solver requires a longer time than Af to
complete, we abort the optimization prematurely.

If the obtained correction input trajectory @(:|tx) is in-
feasible, we use the remainder of u(-|tx—1) as a backup
solution under the common assumption that an initial feasible
solution (-|to) exists. In this case, we set

a(t]tr) = {S(Htl'tk_l)

If w(t1|tg,—1) equals @ for some ko € N, we apply the
inputs of the safe terminal control trajectory @q(:|tx,,) that

for t € [t07tN—1)

. 9
for t € [thhtN) ©)

guarantees robust constraint satisfaction at all times ¢ > ty,,.
In the following subsection, we present the construction of
this safe terminal controller in more detail.

B. Safe terminal sets and controllers

Ensuring the satisfaction of the constraints in (4) is typi-
cally achieved using the terminal controller u(t) = K& (tx)
for t € 7;, and constructing a polytopic terminal set that is an
RPI set [19], [20]. However, underlying Minkowski additions
and matrix transformations of polytopes become intractable
for large systems.

Instead of constructing an RPI set, we have proposed an
efficient state feedback control approach to compute large
zonotopic safe terminal sets [41]. A set Q(t;) C R™ is
called a safe terminal set if a safe terminal control trajec-
tory @q(-|tr) exists so that robust constraint satisfaction for
an infinite time horizon is guaranteed in case z(tx) € Q(ty).
Subsequently, we briefly present this two-step approach and
state the main modifications that are required to incorporate
output feedback control.

First, we compute a small safe terminal set Q(tx) con-
taining the origin, which is typically not invariant but can be
safely steered into itself in finite time and is closely related
to the minimal RPI set [42]. In particular, we determine some

finite i, € Nsg so that E(tx44, ) C E(tx) and
R (tin, Qtr) @ (- E(t)), 0,W,E()) C Q(t)  (10a)
R (13, Qtr) @ (- E(tr)), 0, W, E())) € X (10b)
R (7i, Utr) @ (- E(t ) ),0,W,E(-)) CU, (10c)

where Q(tr,) = Ro (ti,, X ® (— E(t)),0,W,E(-)) and i €
{0,1,...,ir—1}. In contrast to RPI sets, x(t;, +t) is allowed
to lie outside Q(t;,) for some time ¢ € (0,;, ). Nonetheless,
(10b) and (10c) ensure robust constraint satisfaction during
this period. Therefore, the state and input constraints in (4)
are satisfied if z(t) € Q(t) and Z(t) € Q(tr)®(— E(tk)),
respectively.

Second, to increase the region of operation, we solve a
convex optimization problem whose solution uq (-|t;) safely
steers all states within the optimized large safe terminal
set Q(ty) into Q(ty). As a result, when using the safe termi-
nal controller g in case z(t;) € Q(ty), the satisfaction of
the constraints in (4) is ensured. In the following subsections,
we use these safe terminal sets and controllers to define
terminal and contraction constraints.

C. Terminal constraint

Ideally, we want to add the terminal constraint

to the optimal control problem solved during 7. Although
the zonotope containment condition in (1) provides a way
to solve (11) for large systems, it is computationally too
expensive for most real-time applications. Thus, to speed
up online computations, we decompose (1) into two linear
programming problems. The first one is solved offline, and
the second one is added to the constraints of the optimal
control problem.



First, based on Q(tr1n) = (Co(ty,n)> Gatrsn)) and the
reachable set Ry (tn,0,0,W,E(:)) = (cRisn1> GRisna )
we solve the convex optimization problem

minimize || Tqn | (12a)

Tryin o0
subject 0GR, ni = Gayn) TkanN (12b)
[Fean], <1 (120

offline, where I'y4 n is a matrix of appropriate dimensions.
Second, we add the terminal constraint

CQthrn) — (CRk+N,1 + CRk+N,2) = GQ(tk+N)7/€+N (13a)
[Ty ]l <1 (13b)

to the optimal control problem, where (cg,,.,,0) =
R (tn, &(tk), u(:|tk),0,0), Ty, y denotes the solution of
(12), and 44N is an optimization vector of appropriate
dimension. Based on the superposition principle and (1),
it follows that the condition in (11) is satisfied if (13) is
feasible.

D. Contraction constraint

Inspired by [36], we introduce a simple contraction con-
straint such that convergence to a neighborhood of the origin
in finite time is ensured. Before we present this constraint,
we introduce the distance

IZ]| = min {6 € Rso | Z C 6(0,1)} (14)

between the origin and zonotope Z, where (0,I) is the
unit ball corresponding to the infinity norm. To account for
different orders of magnitude of the state space dimensions,
they can also be weighted accordingly, e.g., using a suitable
diagonal matrix instead of [ in (14).

Based on the contraction distances

d(tz‘tk) =a+ HR;L(twj:(tk)va(|tk)7w7g())| )

where a € Ry is a user-defined contraction parameter that
is typically chosen close to zero, we add the contraction
constraint

N-1 N-—-1
d(tilty) = > d(tiltr—1) < —a (15)
i=1 i=1

to the optimal control problem solved during 7j. Thus,
(15) ensures that Zf\;ld(tﬂtk) is a strictly decreasing
function with respect to consecutive time steps k, implying
the convergence of the state trajectory x(-) to the origin.
As stated in Section IV-A, we use the remainder of the
previous solution @(+|tx—1) as a backup if the optimal control
problem is infeasible. To be consistent with the update of
u(-|tx) in (9), we set
dtit) = {d(ti+1|tk1) fori € {1,2,...,N ~2}
0 fori=N—-1
(16)
if the optimal control problem solved during 7 is infeasible.

E. Optimal control problem

By combining the presented constraints, the online optimal
control problem solved during the time interval 73 is

mirgilmi)ze J(&(ty), ul-|ty)) (17a)

w(-|te

subject to  (8), (13), and (15) are satisfied (17b)
fori e {0,1,...,N —1}:
R (73, &(te), u(-|ty), W,E(-)) € X (17¢)
Ru (7, &(t), al[te). W,E()) U, (17d)

where J is a convex cost function. Because (17) is a convex
optimization problem with linear constraints, it can be solved
efficiently by existing convex optimization algorithms [43].
To reduce online computational effort [7], [11], we tighten
the constraint sets X and U/ in (17c) and (17d) based on the
superposition principle because the time-invariant reachable
sets corresponding to W and £(-) can be computed offline.

F. Algorithm

Finally, we present our robust output feedback dual-mode
MPC approach in Alg. 2, where we iteratively solve the
optimal control problem in (17) in a moving horizon fashion
until the safe terminal controller @, takes over. Subsequently,
we briefly describe this algorithm.

Algorithm 2 Robust output feedback dual-mode MPC

k+1
while d(t1|tk_1) £ « do
u(t) < a(ti|tr_1) + Ka(ty) for t € 7,
(ﬂ('|tk)7d('|tk),rinfeasible) < solve (17)
if 7Tinfeasibie then
(-[tg) < apply a(-[tg—1) to (9)
d(-|ty) < apply d(-[tr—1) to (16)
end if
k+—k+1
end while
ko <+ k
while true do > 2. mode
u(t) < oty — thgltr,) + Ko(ty) for t € 7,
k+k+1
: end while

> 1. mode

R e A A S

—_ e e e
A =

In line 2 of Alg. 2, we check if the unknown state x(¢y)
is guaranteed to lie within Q(¢x) at ;. If this is the case,
we switch to the second mode and apply the inputs of the
safe terminal controller % to the system in lines 12 to 15.
Otherwise, the input that is applied to the system during 7
is updated in line 3 based on Section IV-A. In addition, the
optimal control problem in (17) is solved until ¢;; in line 4.
Its third return value 7jpfeasible 1S @ Boolean flag that is true if
the optimal control problem was infeasible; otherwise, it is
false. In case of an infeasible solution, @(:|t;) and d(-|tx) are
updated based on the feasible backup solution of the previous
time step in lines 6 and 7.

Theorem 1: If an initial feasible solution u(-|tp) with
corresponding d(-|to) and Zf\/:—ll d(t;|t—1) = oo is given at



t1, Alg. 2 steers the disturbed system in (3) to a neighborhood
of the origin while satisfying the constraints in (4). (|
Proof: We must show two things: (i) The constraints

in (4) are satisfied for an infinite time horizon, and (ii) the
system reaches a neighborhood of the origin in finite time.

(i) This part of the proof is mainly based on extending
the optimized correction input trajectory by the safe terminal
control trajectory and using the previous solution as a backup
in case of the infeasibility of (17). Because these ideas follow
standard robust dual-mode MPC approaches [36], this part
of the proof is omitted.

(ii)) Based on Section IV-B, the safe terminal control
trajectory g (-|tx) steers the system to a neighborhood of
the origin if z(t;) € Q(¢) with k € N. If

d(t1]te—1) < @, (18)

which is the condition in Alg. 2 when we switch to use
o (-|tr), x(tr) is guaranteed to be the origin or lie within
Q(ty) based on (14), (16), and the terminal constraint in
Section IV-C. Thus, it remains to show that (18) is satisfied
for some finite k.

If the optimal control problem in (17) solved during 7%, is
feasible, we know that (15) is satisfied, i.e., the contraction
rate of at least « is guaranteed for Zf\:ll d(t;|ty). If it is
infeasible, d(-|tx) is updated according to (16), i.e., it is set
equal to the remainder of the previous contraction distance
trajectory d(-|tx—1). As a result, the contraction constraint
in (15) is simplified to —d(t1|tx—1) < —a. This inequality
holds because the condition in line 2 of Alg. 2 would have
shown that z(ty) € Q(ty). Thus, the contraction rate of « is
also guaranteed in case of the infeasibility of (17). Therefore,
(18) is satisfied for some finite k. |

G. Simplifications

As mentioned in Section III-A, we do not require the initial
error set £(tg) to be an RPI set [19], [20], which would imply
E(tix1) C E(t;) for any ¢ € N [13]. To avoid computing an
infinite number of error sets, we exploit the fact that the set
sequence £(-) typically quickly converges to the minimal
RPI set £(t~), which can be tightly over-approximated by
another RPI set £, [44]. Thus, we can use (1 + )€ as
over-approximation for all £ (5 ;) with ¢ € N by computing
the smallest 3 € R>( such that £ (t,) C (1+ )€ for some
given k € N. Therefore, only a finite number of error sets
must be computed.

Similarly, it suffices to compute a finite number of safe
terminal sets. In particular, we replace € (txy;) with Q (¢x)
for all ¢ € N. It is sufficient to compute only Q(¢x) when
choosing £ = N and remaining in the first mode for the
first N time steps in Alg. 2. In the following section, we use
these simplifications to solve a benchmark problem from the
literature.

V. NUMERICAL EXAMPLE

With the next release of our MATLAB controller synthesis
toolbox AROC [45], which uses our reachability analysis
toolbox CORA [37] to compute reachable sets, we will

TABLE I
STATE, INPUT, AND DISTURBANCE BOUNDS

e@ e(2) () [-10, 10] m

e‘(l),é(Z)7 &(3) [5, 52

a), a® 4¢3 -8, 8]

HORHCIINE) (-8, 8] 1

a(®) -1, 1]zm2

(1) B3) () [-0.05, 0.05] m

v(2) (1) 4(6) [-0.05, 0.05]
eM (t), e® (tg),e(M(tg)  [-0.5, 0.5]m
@ (to),e®) (), e® (tg) [-05,0.5 2
€@ (to), e (t0), e (to)  [-0.5,0.51%

make our robust output feedback MPC algorithm public. All
optimization problems are modeled using YALMIP [46] with
the parameter “allownonconvex” set to 0 and solved using
MOSEK [47] with default parameters. All computations are
performed on a laptop with an Intel Core i7-1185G7 and
32 GB memory.

In this section, we show the effectiveness of our control
approach on the vehicle platooning benchmark in [48].
The dynamics corresponding to the relative motion of the
i™ following vehicle with i € {1,2,3} and its vehicle ahead
is

¢ = qi=1 _ ()
where the relative position error e(*) denotes the difference
between the two vehicles and a given safe reference distance.
In addition, a?) corresponds to the i™ effective acceleration
described by the drivetrain dynamics

o__ Lt o, 1 o

a’ = ia + T, u’,
where T} represents a time constant that is assumed to be
0.5s for all i € {1,2,3} and u? is the i™ control input.
In addition, the acceleration of the leading vehicle a® is
assumed to be an unknown but bounded additive disturbance.
In summary, the state of the platoon is described by = =
[6(1) e (1) o2 52 42 B) £B) a(B)]T’
the control input is u = [u(l) u® u(3)]T, and the
state disturbance is w = [0 a(® 0 O]T. Because
vehicle-to-vehicle communication is assumed, a central
controller with stabilizing state feedback matrix K can be
designed [48].

The output matrix Cp € R®*Y is chosen to be an
identity matrix, where every third row is eliminated, i.e.,
the effective accelerations of all three following vehicles
cannot be measured directly. Thus, the output disturbance is
v = [v(l) 0?2 v(ﬁ)]T. In addition, the state, input,
disturbance, and initial state estimation error bounds are
shown in Table 1.

To enable short solver computation times, we use the
quadratic cost function J = Zf\!ll L(z(titr), ults|t)) +
V(z(tnty)) in (17a), where L(z,u) = z7z + 10u’4,
V(z) = 2"z, and Z(t;]t),) equals Ry (;, &(tk), u(:|tk), 0,0).
Thus, the convex optimization problem in (17) is a quadratic



program [43]. The prediction horizon is N = 20, and the
sampling time is At = 150 ms. The applied correction input
during 7y is 0, the contraction parameter used in (15) is
a = 1073, and the stabilizing output injection matrix L
is obtained by [49, Eq. 16]. In addition, the unknown
nonaugmented initial system state is given by z(tg) =
[—9m 43 7% 9m -4 7% 3m 37 0]

In Fig. 2, we show projections of sets and random trajec-
tories onto relative position and velocity error dimensions.
In addition, we visualize both trajectories @(-) and w(-) in
Fig. 3. Because the maximum computation time for solving
the optimization problem in (17) is always less than At, we
never have to abort the online optimization prematurely.

In comparison, more than 5 min are required to perform
a single Minkowski addition of two nine-dimensional axis-
aligned unit boxes represented in halfspace representation
using the toolbox MPT3 [50]. Since this computation cor-
responds to the simplest case possible, it is obvious that
polytopic methods are unsuitable for handling large systems.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a robust output feedback dual-mode
MPC approach for linear sampled-data systems. Using scal-
able reachability analysis and convex optimization algo-
rithms, zonotopic safe terminal sets that ensure robust con-
straint satisfaction at all times after they are entered are
obtained. Based on these sets, real-time controllers that
steer the system to a neighborhood of the origin despite
unknown but bounded disturbances are computed. In contrast
to existing work, a sampling time of 150 ms is achieved for
a nine-dimensional system without exploiting the sparsity of
the system matrix. In the future, we plan to apply our scalable
methods to learning-based MPC.
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Fig. 2.

Projections of sets and trajectories onto relative position and velocity error dimensions. The initial reachable sets corresponding to @(-|tg) for

all N time intervals and for the last time point are shown in blue and purple, respectively. In addition, 50 random trajectories for the initial solution are
shown in black, and the actual trajectory for ¢ € [0,20] s is shown in red. Moreover, the red and green dots represent the unknown initial state x(to) and
the state estimates along the actual trajectory, respectively. In addition, the orange and green zonotopes correspond to the initial error set £(¢o) and the
safe terminal set Q(tn).
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