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Abstract 

 

The increasing number of diet-related diseases presents a major public health concern. Within 

the developed countries this is especially caused by the intake of unhealthy foods. The food 

selection is a complex process which can be affected by various factors. An important factor 

is stress. Stress can influence the quantity as well as the quality of the food intake. The ongoing 

development of mobile health applications (mHealth apps) provides the opportunity to address 

this topic and support healthier dietary patterns in stressful situations. The aim of the present 

thesis was to investigate characteristics of the potential user group and to identify requirements 

for the development of a digital advisor focused on stress-induced dietary behavior. 

The online survey on 1,222 participants (31.5 ± 12.8 years) revealed, that about 46 % of the 

participants show a hypophagic reaction to stress (eat less) and 42 % show a hyperphagic 

reaction to stress (eat more). The remaining 12 % are insensitive to the influence of stress. 

The vulnerability to stress-induced changes of the dietary behavior was associated with sex, 

body mass index (BMI), eating motives and personality facets. The app analysis indicated that 

nutritional values and intake recommendations estimated by currently available apps deviated 

from the values of the national nutrition databases and recommendations of the nutrition 

societies. The apps’ content gets generated based on the data obtained. Missing or imprecise 

data affect the apps’ quality. The results of the quality assessment showed that especially the 

quality domains skill development and aesthetic require to be improved. Regarding stress 

related aspects, the literature overview revealed twelve non-invasive stress indicators. The 

indicators can be assigned to the categories physiology, behavior and subjective perception. 

Smart devices like smart watches or wristbands can be used to capture these indicators. The 

highest stress detection rate of 89 % was achieved by the combination of various stress 

indicators.  

For the development of a stress-focused digital dietary advisors, the precise collection of 

nutritional and stress data is fundamental. The integration of features like barcode scans or 

the combination of diverse sensor data simplifies the collection process. A target group 

orientated development approach can improve the apps’ usability. Considering all aspects 

mentioned, an effective digital dietary advisor to support healthy dietary patterns in stress 

situations can be developed and implemented. 
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Zusammenfassung 

 

Die steigende Anzahl an ernährungsbezogenen Krankheiten gehört zu den größten Public 

Health Problemen weltweit. Ursache hierfür ist innerhalb der Industrieländer besonders der 

Verzehr von ungesunden Lebensmitteln. Die Auswahl von Lebensmitteln ist ein komplexer 

Vorgang, welcher durch eine Vielzahl von Faktoren beeinflusst wird. Ein wichtiger Faktor ist 

Stress. Der Einfluss von Stress kann sowohl die Quantität wie auch Qualität der konsumierten 

Lebensmittel verändern. Die fortschreitende Entwicklung von Gesundheits-Applikationen für 

mobile Endgeräte (mHealth Apps) bietet die Möglichkeit diese Thematik zu adressieren und 

gesunde Ernährungsweisen in Stresssituationen zu unterstützen. Das Ziel dieser vorliegenden 

Arbeit war es, Merkmale der potenziellen Nutzergruppe zu erforschen und Anforderungen für 

die Entwicklung eines digitalen Ernährungsberaters mit dem Fokus auf stressbedingtes 

Ernährungsverhalten zu identifizieren. 

Die Online-Umfrage mit 1.222 Teilnehmern (31,5 ± 12,8 Jahre) hat gezeigt, dass 46 % der 

Teilnehmer eine hypophage (essen weniger) und 42 % eine hyperphage (essen mehr) 

Reaktion auf Stress zeigten. Die restlichen 12 % zeigten sich unempfindlich gegenüber dem 

Einfluss von Stress. Die Vulnerabilität für stressbezogene Veränderungen des 

Ernährungsverhaltens war mit Geschlecht, Body Mass Index (BMI), Essmotiven und 

Persönlichkeitsfacetten assoziiert. Die Analyse aktueller Ernährungsapps hat ergeben, dass 

die mittels Apps erfassten Nährstoffdaten und Zufuhrempfehlungen von den Werten nationaler 

Nährstoffdatenbanken und Ernährungsgesellschaften abwichen. Basierend auf den 

erhobenen Daten wird der Inhalt der Ernährungsapps generiert. Fehlende oder ungenaue 

Daten beeinflussen die Qualität der Apps. Die Ergebnisse der Qualitätsbewertung zeigten, 

dass besonders in den Bereichen Fähigkeitsentwicklung und Ästhetik Verbesserungsbedarf 

besteht. Für die Integration stressbezogener Aspekte wurden mittels Literaturüberblick zwölf 

nicht-invasive Stressindikatoren identifiziert. Die Indikatoren der Kategorien Physiologie, 

Verhalten und subjektives Empfinden können mittels smarter Geräte, z.B. Smartwatches oder 

smarter Armbänder, erfasst werden. Die höchste Stresserkennungsrate von 89 % wurde durch 

die Kombination verschiedener Indikatoren erzielt. 

Für die Entwicklung eines stressbezogenen digitalen Ernährungsberaters ist die exakte 

Erhebung von Ernährungs- und Stressdaten grundlegend. Diese wird durch den Einsatz von 

Features wie Barcode-Scan oder durch die Kombination von Daten verschiedener Sensoren 

erleichtert. Durch ein zielgruppenorientiertes Entwicklungsdesign kann die 

Benutzerfreundlichkeit verbessert werden. Unter Berücksichtigung aller genannten Aspekte 

kann ein effektiver digitaler Ernährungsberater zur Unterstützung gesunder Ernährungsweisen 

in Stresssituationen entwickelt und implementiert werden. 
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1  Introduction 

 

1.1  Dietary risk factors 

Unhealthy diets are still a main risk factor for the development of noncommunicable diseases 

(NCDs) like diabetes, cancer and heart diseases [1]. In 2019, unhealthy dietary behavior 

accounted for 3.48 million deaths in women and 4.47 million deaths in men as well as for 

105 million disability-adjusted life years (DALYs) in central and eastern Europe, central Asia 

and most of China [2]. The main dietary risks comprise low intakes of fruits, vegetables, whole 

grains, nuts, milk, fiber and seafood omega-3-fatty-acids and high intakes of red or processed 

meat, sugar, trans fatty acids and sodium [2, 3].  

Intake recommendations for these food groups and nutrients are provided by the national 

nutrition societies to facilitate healthy dietary behavior. Recommendations for Germany are 

released by the German Nutrition Society (Deutsche Gesellschaft für Ernährung e.V. - DGE) 

in form of ten rules for a wholesome diet (e.g., five portions of fruit and vegetables per day, 

reduction of salt and sugar intakes) [3]. In Germany, dietary recommendations for daily fruit 

consumption are met by 55.6 % of women and 38.7 % of men on average, whereas 

recommendations for daily vegetable consumption are met by only 42.5 % of women and 

25.3 % of men [4]. 

Non-wholesome diets and overage caloric intake combined with low physical activity lead to 

an increase of the body mass index (BMI) [2]. Reference values for energy intake for an adult 

population range from 1700 kcal/day (female person, older than 50 years, low physical activity 

level) to 3100 kcal/day (male person, aged between 19 and 25 years, high physical activity 

level) [5]. Between 1975 and 2014 the global mean BMI raised by 2.5 kg/m² in men (21.7 kg/m² 

to 24.2 kg/m²) and 2.3 kg/m² in women (22.1 kg/m² to 24.4 kg/m²), accompanied by an 

increased prevalence of obesity by 7.6 percentage points in men (3.2 % to 10.8 %) and 8.5 

percentage points in women (6.4 % to 14.9 %) [6].  

The World Health Organization (WHO) highlights the importance of a healthy diet to reduce 

the risk of NCDs [7]. To achieve a healthy diet, energy intake and energy expenditure need to 

be well-balanced and food choices should be diversified to ensure a sufficient supply with 

essential nutrients [1]. An important influential factor of the maintenance of a healthy dietary 

behavior is stress. It can trigger changes in the food intake behavior reflected by e.g., an 

increase of the overall energy intake, which can contribute to a higher risk for the development 

of diet-related NCDs [8]. 
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1.2  Stress  

1.2.1  Stress – Definition 

A variety for definitions of stress exists. Seyle (1976, p. 137) defined stress as “the nonspecific 

response of the body to any demand made upon it” [9]. Stress is also correlated with a person’s 

capability “to meet, mitigate, or alter these demands” (Lazarus et al., 1985, p.770) [10].Stress 

is triggered by demands of endogenous as well as exogenous stressors [11]. Stressors can 

occur in different types of daily life hassles (e.g., financial stressors, health stressors, work 

overload or interpersonal tensions) [12]. The presence of any stressor threatens the 

homeostasis of the organism and prepares the body for a “fight or flight” reaction [13]. As a 

response to the perceived threat, a cascade of changes is started. For the stress reaction 

process the sensory system of the brain, the hypothalamic-pituitary-adrenal (HPA) axis and 

the sympathetic adrenomedullary system (SAM2), are activated [14]. If the stimulus is classified 

as potential stressor, relevant stress hormones are released, which further provoke an 

increased cardiac output and blood pressure to support the blood flow from skin and gut into 

the skeletal muscles [14]. Energy provisioning is centered towards the brain and skeletal 

muscles [15]. As a result, stress-related biomarkers increase (e.g., serotonin in blood, 

dopamine in urine, cortisol in salivary and blood) [16]. Additionally, various physiological and 

behavioral stress responses like increased heart rate (HR) or heart rate variability (HRV), 

elevated blood pressure, electrodermal activity (EDA), decreased sleep quality and variation 

in voice locals can be measured [17, 18]. Repeated or continues activation of these acute 

stress responses can be maladaptive [19]. As a result, consequences on health like sustained 

increased blood pressure or vascular hypertrophy can occur [20]. 

Seyle (1976) further described stress as “the spice of life” referring to its contrasting effect [9]. 

Stress can be typified as eustress or distressed. Eustress is associated with positive feelings, 

a good health status and agreeable effects (e.g., increased physical performance as 

achievement of physical exercise). Contrary, distress is related with negative feelings, bad 

health status and pathological effects [9]. The impact of stress on health can be a risk factor 

for the development of several diseases. Consequences occur in the area of mental health, 

especially stress-induced mental overload, burnout, depression and sleep disturbances are 

widespread [21]. Physiological responses to stress, like increased heart rate and blood 

pressure, can manifest and cause long-term cardiovascular diseases [22]. 

The procedure of the stress response is subject to individual differences regarding the intensity 

or severity as well as controllability of a stressor and response stereotypes [15]. The intensity 

of the perceived stress is related to the coping behavior. Coping describes the process of 

managing “demands that are appraised as taxing or exceeding the resources of the person” 

(Lazarus & Folkmann, 1984, p. 141) [23]. The coping process can include social, religious, 
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emotion regulation and positive emotional aspects. Adequate coping can mitigate the stress 

impact [24]. Besides, different types of personality perceive stress dissimilar. Increased stress 

exposure is attributed to neuroticism personality, whereas a reduced stress perception is 

associated with the personality type conscientiousness [25]. 

1.2.2  Stress – Consequences on eating behavior 

In the context of nutritional behavior, maladaptive stress responses can cause serious 

illnesses. In the moment of stress, all processes of the organism are focused on a fight or flight 

reaction, accompanied with a suppression of hunger, induced by the corticotropin-releasing 

hormone (CRH) [26, 27]. After the stressful event is overcome the release of glucocorticoids 

(e.g., cortisol) restimulates the appetite [28, 29]. Thus, changes in the eating behavior and food 

choice can occur. Stress is associated with an increased snacking behavior and decreased 

consumption of other meal types [30, 31]. Additionally, the reward system is triggered in the 

context of stress. The desire for “mood-enhancing foods” is reinforced and so-called “comfort-

foods” are consumed to satisfy that desire [32]. Especially stress-related preferences for 

unhealthy high palatable foods, which are low in nutrients, were determined [33]. Comfort foods 

are characterized by high levels of fat and sugar and low nutrient density [34]. Highly preferred 

comfort foods are potato chips, ice cream and cookies  [35]. In the cause of a stressful event 

the food choice basis is shifted from nutritional to emotional needs [36]. Conscious, healthy 

nutritional claims are neglected and unhealthy habitual food choices become predominant [37]. 

Individual differences effect the nutritional response to stress. About 80 % of the population 

change their eating behavior in relation to stress [30]. 38 % are classified as stress-induced 

overeaters (people with hyperphagia) and 42 % are classified as stress-induced undereaters 

(people with hypophagia) [30]. 

The influence of stress on the dietary behavior is mediated by various factors. Women tend to 

be more vulnerable to stress-induced eating, leading to greater numbers of calories consumed 

after a stressful event [28]. There is also a mediating effect of age and gender on the 

preference for certain comfort foods, indicating that women as well as people of younger age 

favor snack-like comfort foods over hearty meals [38]. Women were found to be more sensitive 

to stress-induced eating than men [39]. Additionally, adequate coping mitigate the effect of 

stress-induced eating behavior and serves as buffering effect for the perception of stress in 

general [40, 41]. Furthermore, the dieting status mediates the influence of stress on the dietary 

behavior. Dieting or restrained eating behavior were found to be associated with unhealthy 

stress-induced eating patterns [39, 42]. 

The stress-induced consumption of unhealthy foods and the tendency to overeat (intake 

exceeds metabolic needs) contribute to weight gain and obesity [26, 43]. Furthermore, stress-
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induced eating constitutes a risk factor for the development of prediabetes and diabetes [43]. 

Besides, symptoms of eating disorders have been reported, as a response to stress [44]. 

Unhealthy stress-induced dietary patterns and their (long-term) health consequences affect a 

great proportion of the population and contribute to serious health issues. Actions to address 

this health problem need to be undertaken. In the era of digitalization, information and 

communication technologies (ICTs) are used to provide health information and are 

implemented to empower individual health promotion [45]. They offer the potential to reach a 

broad range of the population and provide stress-eating focused health interventions via 

technical everyday life companions.  

 

1.3  mHealth  

1.3.1  mHealth – Definitions 

The health care sector enhances with the progress in digitalization, contributing to the 

emergence of the field of electronic health (eHealth). eHealth is defined as “cost-effective and 

secure use of information and communication technologies in support of health and health-

related fields, including health-care services, health surveillance, health literature, and health 

education, knowledge and research” (WHO, 2021) [46]. A special field of eHealth is mobile 

health (mHealth), comprising digital health services supported by smart mobile devices (e.g., 

mobile phones, wearables) [47]. The main characteristics of smart devices are the features, 

which enable context-awareness through sensor-based environmental data (e.g., microphone, 

accelerometer) and connectivity with other (smart) devices or networks [48]. mHealth provides 

the opportunity to address a broad range of target groups and contexts to deliver services that 

aim to improve the health access, knowledge and behavior of the users [49]. Primary used 

functions to improve health aspects are tracking and clinical feedback data as well as 

reminders and alerts for the system-user relationship [50]. 

1.3.2  mHealth – Functions 

The main purpose of mHealth technologies is to capture, process and communicate health-

related data [51]. Thereby, the accurate data collection is essential for further data procession 

and output generation. To capture relevant health data, features for active or passive self-

tracking of physiological as well as behavioral parameters are implemented [51]. Active 

tracking requires the user to engage with the device and manually input relevant information 

[52]. For passive tracking data gets generated via smart devices worn on the body or integrated 

within a smartphone, to process the data a synchronization with other devices can be 

necessary [53]. Smart wearables have been developed to collect time and place specific data 

[54]. Tracking devices can be applied at all parts of the human body to enable health monitoring 
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(e.g. heart rate, blood pressure), chronic disease management, diagnosis and treatment (e.g. 

diabetes, depression) as well as support rehabilitation (e.g. stroke) [55]. The devices’ sensing 

areas can be divided into physiology, activity and environment [56]. The most widespread 

physiological sensors record heart rate and body temperature. Furthermore, blood pressure 

and oxygen saturation as well as blood sugar and blood volume pulse can be captured 

(Figure 1). The field of activity is dominated by motion and gestures as well as proximity 

detection, additionally body acceleration can be assessed. Location sensors are most 

frequently used devices to capture environmental information like air temperature, altitude, 

light and sound can be recorded [56]. 

 

Figure 1: Sensor-based monitoring of physiological signals. Adopted from Rodrigues et al.(2018) [57]. 

 

1.3.3  mHealth – Behavior Change Techniques 

The collected (sensor-based) data gets further processed by the smart device itself or specific 

accompanied software [58]. The generated system output of mHealth applications (apps) 

provides an overview of measured health parameters and can additionally include features to 

support sustainable changes to the individual’s behavior [59]. Therefore, many health-related 

apps already integrate effective behavior change techniques (BCT) [54]. Most common 

physical activity, dietary behavior or disease specific (e.g., HIV) outcomes are addressed by 

digital behavior change interventions (DBCI) [60]. Table 1 presents most frequently integrated 

categories of BCT within mHealth apps and a description on how these are used within DBCIs. 
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Table 1: Most frequently used BCTs within mHealth. 

BCT taxonomy Description of usage within DBCI 

Goals and planning Specific health outcomes defined as goal (e.g., weight loss), 

grocery list for healthy shopping or (increased physical activity, 

workout plan) 

Feedback and monitoring Visual display of self-monitoring health parameter (e.g., chart of 

weight measurements or nutrient intakes) feedback whether 

recommendations are met 

Reminders and alerts Push-notifications as reminders to record food intake or drinking 

Social support Forums or online community 

Shaping knowledge Information on health behavior (e.g., benefits of specific foods or 

nutrients for the body) 

Comparison of behavior Competitions or challenges for goal achievements 

Reward and threat Trophies for goal achievements 

BCT taxonomies based on Abraham & Michie et al. (2008) [60]. 
Description of usage within DBCI according to Tham et al. (2020) and Lister et al. (2014) [53, 61]. 

 

1.3.4  mHealth – Quality aspect 

The rapid progress of digitalization in the health care sector entails a growing number of 

commercially available health-related apps. In the multitude of available mHealth apps, great 

variances in terms of quality exists. According to the International Organization for 

Standardization (ISO, 1994) quality is defined as “the totality of features and characteristics of 

a product or service that bear on its ability to satisfy stated or implied needs” [62]. To assess 

these features and characteristics quality classifications are deployed. According to the 

German Federal Office for Information Security (Bundesamt für Sicherheit in der 

Informationstechnik - BSI) a demarcation between health apps, medical apps and digital health 

applications (Digitale Gesundheitsanwendungen – DiGA) is performed [63]. DiGAs are listed 

in the DiGA directory and its details are legally regulated within the Digital Health Appliance 

Ordinance (Digitale Gesundheitsanwendungen-Verordnung – DiGAV) [64]. Appropriate DiGAs 

are medical devices, which are CE-marked. To receive the CE-mark, DiGAs need to fulfill 

certain requirements (e.g., support recognition, treatment, alleviation of diseases and injuries) 

defined in Section 33a of the German Social Code Book V (Fünftes Buch Sozialgesetzbuch, 

SGB V) [65]. Pursuant to the Digital Healthcare Act (Digitale-Versorgungs-Gesetz -DVG) 

DiGAs can be prescribed by healthcare professionals as “app on prescription”. According to 

the DVG these “apps on prescription” need to meet requirements regarding quality, data 

protection and security [66]. Furthermore, the compliance with the international standard for 

software architecture ISO/IEC/IEEE 42010 promises appropriate levels of security and privacy 

[67]. Based on a systematic literature review including healthcare professional websites, the 

following criteria for mHealth standards were detected: usability, privacy, security, 
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appropriateness, suitability, transparency and content, safety, technical support and updates 

as well as technology [68]. A great number of assessment tools to evaluate the quality of 

health-related apps has been developed. These tools cover a broad range of quality aspects 

and are therefore very heterogenous regarding their content, focus, terminology and valuation 

[69-71]. 

Evidence on mHealth interventions still needs to be further assessed. Randomized controlled 

trials (RCTs) on the effectiveness of mHealth interventions demonstrated significant 

differences between mHealth intervention groups and control groups. For example, mHealth 

interventions were found to improve mental health parameters (resilience, personal growth, 

positive relationships and anxiety) [72]. Furthermore, significant positive effects of mHealth 

interventions on sedentary time and BMI were found in RCTs [73, 74]. 

1.3.5  mHealth – Current market situation 

mHealth content can be disseminated through various mobile devices like smart phones or 

wearables (e.g., smartwatches, wristbands) [75]. For these ICTs apps are being developed to 

offer health-related services which are based on user input and provide health-related output. 

mHealth apps can be accessed via commercial App Stores like Google’s Play Store or Apple’s 

App Stores. Within these stores, the health apps are assigned to the categories ‘Health & 

Fitness’, ‘Lifestyle’, ‘Food & Drink’ and ‘Medical’. Across all categories, over 85 % of the health 

apps are available free of charge or at a low price (less than 1 €) to download [76]. Almost 

every second smartphone owner uses mHealth apps. Most of all, tracking apps of body and 

fitness data (e.g., heart rate, steps) are used, followed by informational apps on health, fitness, 

weight and nutrition and apps which generate motivational and behavioral advice based on 

tracked data [77]. The increasing use of mHealth apps is reflected in the forecasted mobile 

health market growth rate of about 36 % from 2020 to 2026 [78].  

Most of the downloaded health-related apps can be assigned to the field of prevention 

(89.6 %), followed by self-management (about 8 %), diagnosis (1 %) and therapy (1 %) [79]. 

In the context of health prevention, mHealth services address the fields of health promotion by 

providing services to motivate and support a healthy lifestyle (e.g., health and fitness apps, 

online-courses) or enable health care communication (e.g., consultation with health 

professionals, self-help panels) [80]. Likewise, mHealth apps can be used to provide individual 

or disease specific treatment plans from therapists and physicians [80]. mHealth apps can be 

further distinguished into the following types: remote monitoring apps (e.g., real-time tracking 

of heart rate, blood pressure, blood glucose level), clinical and diagnostic apps (e.g., lab 

results, electronic health records), healthy living apps (e.g., sleep, exercise), clinical reference 

app (e.g., ICD-9 and -10 reference documents) and productivity apps (e.g., mobile charting, 

healthcare scheduling) [81]. 
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1.3.6  mHealth – Nutrition 

In the field of mHealth app-based prevention, nutrition is one of the most frequently 

downloaded usage contexts (28 %), followed by women health (15 %) and relaxation (13 %). 

Only the field of physical activity obtains higher download numbers (39 %) [79]. 34 % of 

mHealth app users apply health or fitness apps for motivation to eat and drink healthier and 

29 % use these technologies to lose weight [82]. Recently most used concepts of nutrition-

related apps are dietary intake counters, restaurant finders and recipe apps [83].  

1.3.6.1  mHealth – Nutrition – Dietary intake  

Accurate data collection is the basis for digital tools to process and communicate health-related 

data [51]. In the context of nutrition, the dietary behavior and related parameters (e.g., physical 

activity level interrelated with energy expenditure) are captured via mobile devices [84]. 

Existing dietary intake assessments have been enhanced from their original paper-pen-based 

versions into digitalized tools [85]. Most frequently used dietary intake assessment methods 

are food frequency questionnaires (FFQs), 24-h recalls (24 HRs) and food records (FRs) [86]. 

All these tools are subject to specific bias and can be tiresome for the participants to complete. 

For example, FFQs can record the food intake of the previous month and are therefore prone 

to recall bias, additionally extensive food lists prolong the completion time [86]. The integration 

within mHealth devices makes these assessments ubiquitous and therefore more time- and 

cost-effective [85]. 

Physical activity parameters are already captured automatically through integrated step 

counting features based on accelerometer or global positioning system (GPS) data [87]. 

Whereas nutritional assessments mainly rely on self-reports, which need further user effort for 

completion. The majority of nutrition apps provide input features like manual text entry fields 

or preselected item shortlists [88]. The effort to collect data can be reduced by integrating semi-

automatic functions like barcode-scanning or voice-recordings within these apps. To fully 

automatically capture the dietary intake, sensors recording and analyzing eating gesture, 

chewing or swallowing sounds and motions are used [89]. The usage of sensors placed on the 

body (e.g., wristbands) aims to further reduce reporting biases and therefore improve the 

continued dietary monitoring [90]. In general, the use of digital approaches to assess dietary 

behavior enables real-time food recording, which not only improves the accuracy of captured 

data, but also represents a cost- and time-effective alternative to paper-pen methods with 

decreased user effort and increased user acceptance [85]. 

Additionally, to the way the data is recorded, various characteristics of intake data like food 

groups and eating occasion need to be considered. As stated by the DGE some food groups 

(e.g., fruits and vegetables) are the basis for the daily diet, whereas the intake of other food 

groups (e.g., meat or sweets) should be limited [3]. Furthermore, the tracking of at least two 
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eating occasions a day has been found to be positively associated with primary nutritional 

outcomes (weight loss) [91]. 

1.3.6.2  mHealth – Nutrition – System output 

The collected data are further processed by the nutrition apps. The objective of most dietary 

apps is to analyze the dietary intake and eating behavior to provide feedback to the user. 

Feedback commonly includes estimates of caloric intake (53 %), followed by details on 

macronutrient (44 %) and micronutrient estimations (14 %) [92]. Therefore, energy and nutrient 

values as well as information on the portion size and contextual data need to be appraised to 

estimate the individual’s food intake [92]. On the basis of age and gender, intake reference 

values for macro- and micronutrients vary [93]. Integrated databases are used to calculate the 

individual energy and nutrient intakes [94]. Food composition data for the German population 

are compromised within the Bundeslebensmittelschlüssel (BLS) which is provided by the 

Federal Ministry of Food and Agriculture (Bundesministerium für Ernährung und 

Landwirtschaft) [95]. App analyses revealed that between 65 % and 75 % of the analyzed apps 

integrated food databases to calculate energy intakes [88, 96].  

Apps are also capable to calculate the daily energy turnover of users and provide feedback on 

the energy intake in relation to the individual energy expenditure To estimate the individual 

energy expenditure, information on parameters influencing the basal metabolic rate (e.g., age, 

sex, body height, weight, muscle mass) and on physical activity is needed [97]. Therefore, 

most of the diet apps gather specific user data to calculate the individual’s energy expenditure 

[98]. 

As a final step, the processed nutrition related data are communicated to the user. 

Communicated content can provide meal suggestions, information on caloric status, healthier 

alternatives or warnings (e.g., salt warnings linked to blood pressure monitoring) [99]. The 

provided output is related to the objective of the regarded nutrition app. A multitude of diet-

related apps are focused on weight loss and caloric counting, other apps center on healthy 

eating or disease-related specificities [87]. Consequently, especially energy intake and 

expenditure as well as nutritional status are displayed by the majority of the nutrition-related 

apps. This is also reflected in the users’ intention for dietary app usage, where the achievement 

of dietary goals is a key factor concerning usage intention [100, 101]. To meet users’ 

expectations, nutrition apps target to change the users’ dietary behaviors. Therefore, effective 

BCTs (e.g., goal setting, monitoring and feedback, education) are already integrated within a 

various nutrition apps [102, 103].Users BCT engagement was found to be positive associated 

with mHealth intervention outcomes [104]. Still not all nutrition related apps utilize BCT 

techniques [105]. 
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Intake calculations and the effectiveness of mHealth interventions on nutrition-related 

outcomes were appraised for the quality assessment of the system output. For the validation 

against standardized reference methods weighted food records (WFR) or 24 h recalls and 

doubly-labelled water (DLW) are applied and assessed based on national food composition 

data bases. Results reveal correlations between national food composition databases and 

nutrition tracking apps between 0.73 and 0.96 for total carbohydrates, protein and fat and 

between 0.57 and 0.93 for sodium, total sugars, fiber cholesterol and saturated fatty acids 

[106]. Furthermore, investigated diet apps differ from reference methods between 8.4 % and 

23.1 % regarding energy content [88, 107]. Considering the effects on nutritional outcomes, 

nutrition-based mHealth groups showed greater reduction in energy and nutrient intake (fat, 

sugar, salt) and greater increases in fruit and vegetable consumption compared to groups 

using traditional paper-based dietary record methods [98, 108, 109]. Furthermore, significant 

positive changes in primary outcomes (weight loss, waist circumference, behavior change) as 

well as in secondary outcomes (acceptability, blood pressure) were achieved using mHealth 

apps [110]. 

1.3.7  mHealth – Stress 

As mentioned above, stress is an influential factor of the dietary behavior. Therefore, the 

current state of stress-related mHealth apps should be further investigated. Stress is one of 

the main indications for DiGAs regarding prevention and health promotion [80]. On the one 

side, stress-related mHealth approaches comprise the recording of stress responses. A 

multitude of commercially available smart devices include features to capture stress-related 

biomarkers [111]. Sensors integrated into smart wearables (e.g., wrist band, smart watch, 

chest strap) for example measure changes in heart rate (HR) variability (HRV), blood volume 

pulse (BVP), blood pressure (BP) and electrodermal activity (EDA) [111]. Additionally, 

behavioral patterns like facial expression, body posture or keyboard striking are captured via 

smart sensors to assess stress exposure [111]. 

On the other side, stress-related mHealth systems also focus on the management of stress. 

In general, common ways to treat stress are pharmacological approaches, relaxation and 

meditation techniques, neuromuscular relaxation and biofeedback treatments as well as 

respiration control exercises [112]. Most frequently used stress management techniques within 

commercial stress-focused apps are music and sounds (20 % to 30 %) as well as breathing 

and meditation/mindfulness (15 % to 27 %), only few apps include bio signals (e.g., heart rate 

control) [113, 114].  

Just like for nutrition apps, the validity of the stress assessment itself is evaluated against a 

standard reference method and the effect of applied interventions on stress parameters is 

investigated. In the context of mHealth, stress is most commonly assessed via self-reporting 
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items (e.g., 5-point-likert scale or Yes/No- decision question) and compared against validated 

stress assessment measures like the perceived stress scale (PSS) [115, 116]. Changes in 

HRV and EDA are recorded by smart wearables and used to accurately detect stress [117]. 

Accelerometer data as well as verbal data were also found to detect stress with an accuracy 

of up to 71 % [118-120]. 

The usage of stress-management apps can reduce the stress level (measured by validated 

stress assessment scales and objective bio signal parameters) as well as improve the overall 

well-being [121, 122]. Furthermore, unhealthy eating patterns in the context of stress can be 

reduced and healthy food choices improved through the use of these apps [123]. 
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2  Aim 

 

Unhealthy dietary patterns in the context of stress and their resulting health consequences are 

concerning a great proportion of the population. The emerging field of mHealth offers a solution 

to address this target group via techniques of our everyday life and deliver preventive 

strategies for the topic of stress eating. This approach could be implemented in form of a digital 

dietary advisor focused on stress-eating. Therefore, the primary aim of this work was to identify 

the characteristics of the potential user group of stress-induced overeaters. The second 

objective was to assess the quality of currently available nutrition apps and define necessary 

elements in this field. The third objective was to assess existing options of stress measurement 

in the context of mHealth. Finally, requirements for the development of a digital dietary advisor 

should be derived from the results. On that account the following research steps were 

undertaken: 

• Step 1 – Characterization of the potential user group of a stress-focused digital dietary  

advisor 

A digital dietary advisor focusing on eating occasions in the context of stress might be 

especially helpful to people who increase their dietary intake due to stressful events. 

The aim was to identify relevant characteristics of this “stress-eater” target group to 

better understand the potential users and to consider these characteristics for the 

development of a digital stress dietary advisor approach. 

• Step 2 – Identification of relevant mHealth quality aspects 

Currently a great variety of mHealth services in the field of nutrition exists. The selection 

of effective approaches can be overwhelming and needs standardized guidelines. In 

this context, the aim was to identify validated quality assessments for mHealth solutions 

and highlight aspects for an overarching quality appraisal. 

• Step 3 – Exploration of mHealth based stress indicators and measurement aspects 

The possibilities to detect stress via mHealth-related smart measurement enhance. 

Therefore, the aim was to identify stress indicators and explore the smart solutions to 

measure the selected indicators.  
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3  Methods 

 

3.1  Survey on characterization of stress-induced hyperphagia 

3.1.1  Survey – Development, revision and design 

The aim of the survey was to investigate stress-eating behavior in a sample of German citizens. 

It was developed by an interdisciplinary team of researchers of public health nutrition science, 

nutritional science and computer science. As an online-survey, it offers a time-saving and low 

cost way to reach a broad population and achieve greater statistical power [124]. The formation 

process was iterative. To improve the completion process for the participants, surveys need to 

be structured into main sections [125]. This survey was subdivided into introductory, main and 

final part. Within the introductory part, information about the research project, protection of 

privacy and voluntary participation were provided and digital consent (checkbox) was queried. 

The main survey part compromised aspects of nutrition behavior, stress, stress-eating, 

technical parameters, personality, sociodemographic and anthropometric data. The final part 

displayed the acknowledgements and an opportunity for participants’ feedback. Most survey 

items were issued as short and easy to understand questions with closed, open, single or 

multiple-choice answering options. Filter questions were integrated if appropriate to simplify 

the completion of the survey [126]. SoSciSurvey platform (V 3.1.06) [127] was used to create 

the online version of the survey.  

A pre-test was performed to check the comprehensibility and appropriateness of the survey 

items [126]. Ten project-independent persons (aged 35.8 ± 9.9 years) pre-tested and 

evaluated the preliminary version of the survey between October and November 2020. Based 

on the evaluation results and the participants’ feedback some survey items were rephrased 

and the total survey length was shortened.  

3.1.2  Survey – Final Questionnaire 

The final questionnaire consisted of 38 items (Appendix), the distribution of survey items 

across the different survey topics is displayed in Table 2.  

This work focused on the identification of possible associations with stress-overeating 

characteristics, accordingly non-relevant items (e.g., technical parameters) were neglected. 

The present investigation comprised 13 survey items, including five psychometrical tools 

(nutrition: The Eating Motivation Survey -TEMS [128]; stress: Perceived Stress Scale -  PSS 

[115]), Stress Coping Inventory -SCI [129]; stress-eating: Salzburg Stress Eating Scale -SSES 

[130]; personality: Big Five Inventory – BFI-10 [131]). 
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Table 2: Survey items - overview final survey and extraction for publication. 

Survey topics Final survey 
Number of items  

Extraction for 
publication  
Number of items 

Nutrition 1 1 

Stress 4 3 

Stress-eating 17 3 

Technical aspects 6 - 

Personality 1 1 

Sociodemographic and anthropometric data 9 5 

 

Changes of the nutritional behavior in response to stressful events were appraised using the 

Salzburg Stress Eating Scale (SSES) [130]. Based on the SSES scores (mean score range 

1- 5), participants can be allocated into three different response types: ‘eats less when 

stressed’ (score < 3), ‘eats the same amount as usual’ (score = 3) and ‘eats more when 

stressed’ (score > 3) [130]. Besides the validated assessment, participants were asked to 

subjectively evaluate their response to stress and categorize themselves as stress-overeater 

or non stress-overeater. A literature search was performed to identify comfort foods (and 

beverages), which are preferably consumed in stressful situations. The 13 preselected comfort 

foods are chocolate & confectionery, sweets, ice cream, cake, cookies, chips & crackers, 

salted nuts, fries, fast foods (burger, curry sausages or pizza), alcohol, sugar sweet beverages, 

energy drinks and coffee [132-134] and were presented within a closed-list. Participants were 

asked to indicate the frequency of their individual selection of each presented comfort food. 

The Perceived Stress Scale (PSS) [115] was applied to assess participants’ stress. The PSS 

captures the frequency of specific stress-related feelings and thoughts within the previous 

month. Sum scores of the ten items (single item score range 0-4) are calculated. Higher sum 

scores are associated with a higher amount of perceived stress. 

The Stress and Coping Inventory (SCI) [129] was used to determine individual strategies of 

coping. The SCI comprises ‘Positive Thinking’, ‘Active Stress Coping’, ‘Social Support’, 

‘Keeping Faith’ and ‘Increased Alcohol and Cigarette Consumption’. Sum scores are 

calculated for each strategy, based on item score ranges between 1 and 4. Higher scores 

indicate greater relevance of the respective strategy within the individual coping process [129]. 

Additionally, own items were integrated into the survey to capture the stress frequency and 

potential stressors.  

The participants eating motives were investigated to address their nutritional behavior. The 

eating motives were assessed using The Eating Motivation Survey (TEMS) [128]. The TEMS 

comprises the following 15 eating motives: ‘Liking’, ‘Habits’, ‘Need & Hunger’, ‘Health’, 

‘Convenience’, ‘Pleasure’, ‘Traditional Eating’, ‘Natural Concerns’, ‘Sociability’, ‘Price’, ‘Visual 

Appeal’, ‘Weight Control’, ‘Affect Regulation’, ‘Social Norms’ and ‘Social Image’. The output, 
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mean scores between 1 and 7, reveals the relative importance of the motives. Higher mean 

scores indicate greater relative importance of the respective motive [128]. 

The Big Five Inventory (BFI-10) was used to assess the participants’ personality [131]. The 

BFI-10 scores determine the importance of the five dimensions ‘Openness’, 

‘Conscientiousness’, ‘Extraversion’, ‘Agreeableness’ and ‘Neuroticism’, regarding the 

individual personality. For evaluation mean scores for each dimension (two items per 

dimension) are calculated (range 1-5). Higher mean scores indicate greater contribution of the 

respective dimension to the individual’s personality [131].  

3.1.3  Survey – Recruitment and Performance 

The survey was registered in the German Register of Clinical Studies (Registration number: 

DRKS00023984) and approved by the Ethical Committee of the Technical University of Munich 

(ethical vote: 729/20 S). Potential participants were recruited digitally using homepages, 

mailing lists and social media accounts of the involved institutes and further corporations to 

display study information. Online recruitment offers the chance for a vast reach within the 

population, but neglects people not internet versed [124]. The sampling was performed in a 

convenient way, allowing people to participate based on the interest on the survey topic [135]. 

Participants needed to fulfill the following inclusion criteria: full of age (18+ years), able to read 

and write in German, present digital approval to declaration of consent and protection of 

privacy. Appropriate participants were provided with an online link to the digital survey 

questionnaire. The survey data were checked for integrity and plausibility. Respondents with 

missing or seemingly invalid data (e.g., BMI < 17 kg/m² or > 50 kg/m²) were excluded from the 

analysis. Commonly, people who change their eating behavior due to stressful situations are 

defined as stress eaters [136]. Within this manuscript, respondents are categorized according 

to the SSES evaluation and only participants who ‘eat more’ when stressed, are hereinafter 

referred to as stress-overeaters, while the remaining participants are summarized as non 

stress-overeaters (stress-undereaters and stress-insensitive eaters). The open online survey 

was conducted between January and April 2021. Participant flow is presented in Figure 2. 
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Figure 2: Participant flow chart. 

 

3.2  Overview stress indicators and smart measurements  

3.2.1  Stress overview 

The review was conducted to identify and evaluate stress indicators and related smart 

measurements. Firstly, a literature review was performed to determine appropriate stress 

indicators. Secondly, ways to measure selected stress indicators were contemplated. 

3.2.2   Literature search 

Scientific literature was searched to compile a broad overview of the available literature on 

stress indicators and their smart measurement techniques. Within the research process not all 

criteria for a systematic literature review, specified by the PRISMA statement [137], were 

applied. Instead, a comprehensive literature search was performed. The search was 

conducted between December 2018 and February 2019. For the first step of the literature 

research, fundamental scientific works were identified [138]. Reviews on the measurement of 

acute distress were searched within the scientific data bases PubMed and Web of Science as 

well as in Google Scholar. The search terms “stress”, “measure”, “monitor”, “detect”, “track”, 

“assess” and “review” were used and Boolean operators [139] were applied to best 

concatenate the search terms. In a second step, the literature search was expanded and an 

additional in-depth search was performed based on further data base keyword search and 

evaluation of the bibliography of relevant identified articles [138]. The acquired literature was 

then scanned according to predefined in- and exclusion criteria: 
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• study population of healthy adults, 

• study setting within laboratory or field trial, 

• focus on distress or acute stress, provoked by general stressors (e.g., validated stress 

tasks, everyday life), 

• use of non-invasive measurement techniques, 

• publication date between 2000 and 2019. 

The publication date was specified between the years 2000 and 2019. The smart measurement 

technologies addressed in this paper rely on the wireless interoperation between devices. The 

establishment of standards for the implementation of Bluetooth can therefore be considered 

as a precondition. The development of Bluetooth is dated around the turn of the millennium 

[140], which is why only papers published after 2000 have been considered for this review 

paper. 

Besides ascertained reviews, single original papers cited in those reviews were selected for 

further analysis. After appropriate stress indicators were extracted, a further investigation on 

the suitability to measure the selected indicators with smart devices was performed. The 

indicators were categorized and narratively summarized. Within main categories indicators 

were grouped into different subcategory areas (e.g., organs or behaviors) and associated 

(smart) measurement tools were listed.  

 

3.3  Quality assessment of nutrition apps 

3.3.1   App quality analysis 

The app quality analysis was conducted to assess the quality of prime example apps to 

illustrate current nutrition app quality standards and identify communalities and limitations of 

existing quality assessment tools. Therefore, nutrition apps first needed to be ranked based 

on their star rating and the number of installations and then a quality rating was performed. 

Commercially available nutrition apps state January 2020 were considered. The quality 

assessment was carried out by two independent nutrition experts after familiarization and 

thorough app testing. 

3.3.2  App ranking 

The German version of the Google Play Store was used to select potential apps for the 

analysis. On January 30th, 2020, all apps identified by the keyword “nutrition” were extracted, 

including their number of installations, user star-rating, number of reviews and additional 

information (e.g., date of last update, provider, developer). Apps with specific target 
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populations (e.g., pregnant women, cancer patients) were excluded. The remaining apps were 

ranked according to their number of installations, their 5-star user rating in descending order 

and their number of reviews. To cover a broad range of currently offerings, apps of different 

levels of user ratings were selected. For the final analysis four apps of high user rating (number 

of installs > 1.000.000, user rating > 4-star), four apps of medium user rating (number of installs 

> 50.000, user rating = 2 to 4-star) and two apps of low user rating (number of installs < 50.000, 

user rating < 3-star) were included. For all apps the (free) basic version was used for the in-

depth analysis. Additionally, the app ranking positions were compared to the researchers 

extracted list of the previous year with the state of January 10th, 2019 (Table 3).  

Table 3: Top 10 of keyword search "nutrition" in German Google Play Store (2019 vs. 2020). 

App name  Rank 2019 Rank 2020 

Calorie Counter – MyFitnessPal (MyFitnessPal Inc.) 1 2 

8fit Workouts & Meal Planner (Urbanite Inc.) 2 6 

Calorie Counter by FatSecret (FatSecret) 3 3 

Lifesum – Diet Plan, Macro Calculator & Food Diary 
(Lifesum) 

4 7 

Noom: Health & Weight (Noom Inc.) 5 9 

Lose Weight in 30 Days (Veev Apps) 6 X 

Fabulous – Motivierend! (TheFabulous) 7 12 

YAZIO Caloric Counter, Nutrition Diary & Diet Plan (Yazio) 8 8 

Weight Loss Tracker & BMI – akti BMI (aktiWir GmbH) 9 X 

Barcoo – QR Scanner (Offerista Group GmbH) 10 x 
Hits were sorted in descending order according to the number of app downloads, user's average star 
ratings and number of ratings. X= apps that were not listed in 2020. 

3.3.3  Quality rating 

The quality of the selected apps was assessed using validated and previously published quality 

assessment tools for (health) apps. A preceding literature search revealed three assessment 

tools commonly used in the context of mHealth apps: 

1.) the App Quality Evaluation (AQEL) instrument, a checklist to evaluate an app’s 

educational quality and technical functionality [141] 

2.) the Mobile App Rating Scale (MARS), a questionnaire to classify the quality of mobile 

health apps [142] 

3.) the ENLIGHT score, a comprehensive quality and therapeutic potential evaluation tool 

for mobile and web-based eHealth interventions [143]. 

All assessment tools consisted of different quality categories. The AQEL score includes the 

categories: behavior change potential, support of knowledge acquisition, skills development, 

app functions, app purpose, appropriateness for target audience and appropriateness to 

satisfy users’ expectations. Answers are converted to a 10-point scale and mean scores are 

estimated. Higher scores indicate a higher quality (scores ≥ 8 equate high quality). The MARS 
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estimates an overall score containing engagement, functionality, aesthetics and information. 

Scores are rated on a 5-point scale (1 = inadequate and 5 = excellent) and mean scores for 

each MARS categories are calculated. The AQEL and MARS tools were used to their full 

extent.  

The AQEL assessment was applied via an online survey [144] coded in Qualtrics (version 

2017, Provo, UT). ENLIGHT provides subscales which can be applied independently. To best 

address the aim of this work, checklist items focusing on general app quality (credibility, privacy 

explanation, basic security) were extracted and subscales based on therapeutic aspects were 

disregarded. Credibility mean scores range between 1 and 10 (1= ‘can’t be accounted for’ and 

≥ 8 ‘excellent’). User privacy scale ranges between 0 and 8 points and security scale between 

0 and 4 points. For both scales, lower scores indicate greater data protection or security.  

For all assessment tools, scores were calculated according to their manuals. Then intra-app 

variability was addressed comparing the results of the three assessment tools of the same 

app. Afterwards, inter-app variability was determined comparing the results of the same 

assessment tool between all ten selected apps. 

Besides general app quality aspects, the nutritional-related content of the apps was evaluated. 

In detail, the nutritional information provided by the apps and intake recommendations were 

analyzed. Since not all apps provide the same amount of nutritional information, the evaluation 

was focused on the “Big 5” (content of energy, fat, carbohydrates, protein, sodium), provided 

by all apps examined. Five food items of different categories available in Germany were 

preselected (cornflakes, wild rice cooked, potato bread, gumdrops, raspberries) (Table 4). 

 Table 4: Nutrient values for selected food items based on the German Nutrient Data Base (BLS). 

Food item, BLS code Calories 
(kcal) 

Fat 
(g) 

Carbo- 
hydrates (g) 

Protein 
(g) 

Sodium 
(mg) 

Cornflakes, C515000 360.0 0.6 79.7 7.7 960 

Wildreis gekocht (wild rice, 
cooked), C353132 

134.0 0.4 26.9 5.3 2.0 

Kartoffelbrot (bread, potato), 
B710400 

243.0 1.3 48.8 8.0 330.0 

Gummibonbons (gumdrops), 
S360000 

348.0 0 78.6 6.6 62.0 

Himbeere roh (raspberries), 
F302100 

34.0 0.3 4.8 1.3 1.0 

 

To compare the results, the same amount of each food item was entered into each of the 

selected apps. The generated nutritional information was then compared against the German 

Nutrient Database (Bundeslebensmittelschlüssel; BLS) [95], on the basis of the DACH 

reference values for nutrient intakes (DACH = Germany, Austria and Switzerland) (Table 5) 

[93].  
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Table 5: Intake recommendations by the German Nutrition Society (DGE) for selected nutrients. 

“Big5”-nutrient Energy 
(kcal/day) 

Fat 
(g/day) 

Carbohydrates 
(g/day) 

Proteins 
(g/day) 

Sodium 
(mg/day) 

Recommendations 
German Nutrition Society 

1800 45-80 225-275 48 1500 

Recommendations are related to a female person, 38 years, 165 cm in size, 70 kg in weight and low 
level of physical activity (PAL value=1.4) 

Additionally, a standardized user profile based on data of an average German women [145] 

(female, 38 years old, 165 cm in size, 70 kg in weight and with a low level of physical activity, 

PAL value=1.4) was created (Figure 3) to obtain intake recommendations for the “Big 5”. 

These were then contrasted with the DGE guidelines [93]. 

 

 

 

 

  

 

 

 

3.4  Statistical Analysis 

The consumption frequencies of preselected comfort foods were generated based on a 5-point 

Likert scale ranging from 0=never to 4=very often. Answers ‘often’ and ‘very often’ (3 and 4) 

were considered as positive value and answers ‘sometimes’, ‘seldom’ and ‘never’ were 

considered as negative value for the consumption of the comfort food. Positive values were 

dummy coded with 1 and negative values received the dummy coding 0. Descriptive statistics 

(frequencies and percentages), non-parametric tests for subgroup analysis (Kruskal–Wallis 

test and Wilcoxon signed-rank test) and inferential statistics (linear regression, z-standardized) 

and responding effect sizes (eta squared, Cramer’s V) [146] were estimated using Microsoft 

Excel 2016 (Microsoft Corp) and R 3.6.0 (R Foundation). P-values of p ≤ 0.05 were considered 

as indicating statistical significance [147].  

 

 

. 

Miss App-Test 

• Sex: female 

• Age: 38 years 

• Height: 165 cm 

• Weight: 70 kg 

• Activity level: low (PAL = 1.4) 

Figure 3: Female use case for content analysis of selected nutrition apps. 
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4  Results 

 

4.1  Publication 1: Stress-induced hyperphagia: empirical characterization of 

stress-overeaters 

Stress-induced overeating affects a great part of our population, still little is known about 

individual characteristics (e.g., stress perception, coping, eating motives, comfort foods, 

personality types) having an impact on stress hyperphagia. This online survey aimed to identify 

associations between relevant individual characteristics and stress-induced overeating of 

adults in Germany. 

Overall, 1,222 adults (female 80.8 %, 31.5 ± 12.8 years, BMI 23.4 ± 4.3 kg/m²) across 

Germany participated in the online survey. 42.1 % were categorized as stress-overeaters and 

57.9 % as non stress-overeaters (78.9 % stress-undereaters, 21.1 % stress-insensitive eaters) 

according to their SSES scores. Female participants had a significant higher SSES mean score 

(m = 3.1 ± 0.8) than males (m = 2.9 ± 0.6); p < 0.0005). BMI was found to be positively 

correlated with SSES score r (1220) = 0.28, p < 0.005. The association between age and 

SSES was not significant (p = 0.60). SSES score classification was positively associated with 

subjective classification (stress-overeater and non stress-overeating), X² (1, 1222) = 488.05, 

p < 0.005 and frequencies of stressful events (daily, few times a week, few times a month, 

seldom, never) X² (6, 1222) = 53.98, p < 0.005, V = 0.149. There was no significant difference 

between stress-eating subgroups with respect to stress coping (SCI). Eating motives (TEMS) 

‘habits’ (b = 0.105, t = 4.263, p > 0.005), ‘health’ (b = 0.072, t = 2.727, p = 0.006), ‘weight 

control’ (b = 0.056, t = 2.149, p = 0.032) and ‘affect regulation’ (b = 0.448, t = 0.026, p < 0.005) 

were found to positively predict SSES scores and ‘hunger’ (b = -0.065, t = -2.596, p = 0.010), 

‘traditional eating’ (b = -0.065, t = -2.616, p = 0.009), as well as an  ‘agreeableness’ personality 

(BigFive) (b = -0.051, t = -2.113, p = 0.035) were found to negatively predict SSES scores, 

R² = 0.3048, F(8,1213) = 67.92, p < 0.005. Scores for ‘neuroticism’ personality (BigFive) were 

significantly higher for stress-overeaters compared to stress-insensitive eaters (Δ = 0.2, 

p = 0.01, n² = 0.006). Across the total sample, top three most preferred comfort foods were 

‘chocolate & confectionery’ [stress-overeaters 70.9 %, stress-undereaters 33.0 %, stress-

insensitive eaters 30.2 %, X² (2, 1222) = 177.0, p < 0.005, V = 0.380)], ‘coffee’ [stress-

overeaters 52.4 %, stress-undereaters 41.4 %, stress-insensitive eaters 42.3 %, X² (2, 

1222) = 14.1, p < 0.005, V = 0.108)] and ‘cookies’ [stress-overeaters 36.9 %, stress-

undereaters 14.9 %, stress-insensitive eaters 16.1 %, X² (2, 1222) = 76.8, p < 0.005, 

V = 0.251)]. 

These findings emphasizes that stress-induced overeating affects a great proportion of the 

(surveyed) population. Especially, women and people with a high BMI were found to be 
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vulnerable to stress eating. Additionally, eating motives and personality traits need to be put 

into focus, when designing stress-eating intervention. 

 

Contribution: The doctoral candidate was in joint charge of the design and development of the 

survey and had the main lead in data analysis, prepared tables and figures and drafted and 

revised the manuscript. 

Kaiser, B., Gemesi, K., Holzmann, S. L., Wintergerst, M., Lurz, M., Hauner, H., Groh, G., 

Böhm, M., Krcmar, H., Holzapfel, C., & Gedrich, K. (2022). Stress-induced hyperphagia: 

empirical characterization of stress-overeaters. BMC Public Health, 22(1), 100. 

https://doi.org/10.1186/s12889-021-12488-9 [148]  
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4.2  Publication 2: Nutrition Apps on Focus: A Qualitative Assessment 

In the digital age the development of apps focusing on the topic of nutrition rapidly progresses. 

Comparing our hits for the keyword “nutrition” within the Google Play Store it gets obvious that 

there is a high rate of movement and fluctuation. 40 % of the top 50 apps in 2019 (based on 

number of installs and user ratings) vanished in 2020 and were replaced by new apps.  

Ten apps covering different levels of popularity and user ratings were selected for further 

analysis. The results of the analysis using the AQEL score showed that eight of out ten apps 

scored high quality (score ≥ 8) for app purpose [Average Score (AS) = 8.7]. For the category 

app function an AS of 6.5 was obtained. The categories behavior change potential and support 

of knowledge acquisition yielded only scores of medium quality (AS = 5.3 and 5.6). The 

category with most potential for improvement was skill development (AS = 2.8).  

According to the MARS tool, none of the examined apps achieved an excellent (score = 5) 

quality rating. MARS scores for investigated apps ranged between 4.5 and 2.4. Putting a focus 

on the quality domains, the overall AS was best for functionality (4.0) and lowest for aesthetics 

(3.5). 

The ENLIGHT tool showed high scores for credibility, with excellent scores (score ≥ 8) for three 

apps. In the field of data protection requirements regarding user privacy and data security 20 % 

of the investigated apps achieved high scores. 

Additionally, the apps’ nutritional content was further examined. The accordance with the 

German Nutrient Database (BLS) ranged between 57 % and 20 % agreement across 

examined apps. All apps provided information on energy but not all displayed further 

information about the selected nutrients. The same was found for the intake recommendations, 

only six of ten apps provided intake recommendations for specific nutrients. All apps showed 

deviations from the intake recommendations of the German Nutrition Society (DGE) in both 

directions (lower and higher). 

The analysis revealed a great variety of the quality of the examined nutrition-related apps. The 

broad range of different qualities was found regarding app features in general (e.g., function, 

data protection) as well as specific nutritional content (e.g., nutrient and intake information). 

Different quality categories and distinct scoring systems inhibit the comparison of the results 

of the applied quality assessment tools. This indicated that the tools are suitable to assess 

different parts of quality on a stand-alone basis, but that an overarching quality assessment 

tool is needed. For the development of a new tool additional app quality indicators should be 

considered. Especially, the source and credibility of third party-content and related links need 

to be put into focus. Furthermore, the nutrient database integrated in those apps need to be 

examined regarding target population (country of origin) and topicality. 
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Contribution: The doctoral candidate was in charge of the design of the app selection and 

quality analysis, prepared tables and figures and drafted and revised the manuscript. 

Kaiser, B. M., Stelzl, T., & Gedrich, K. (2020). Nutrition Apps on Focus: A Qualitative 

Assessment. European Journal of Public Health Studies, 3(1), 9-33. 

https://doi.org/http://dx.doi.org/10.46827/ejphs.v3i1.67 [149] 

  



RESULTS 

25 
 

4.3  Publication 3: Nutrition and stress. Overview of selected stress 

indicators and smart measurement techniques 

Stress still remains a risk factor for the development of certain noncommunicable diseases 

(NCDs) like cardio-vascular diseases. The development of technology-based ways to assess 

stress proceeds quickly. Within a literature search, seven reviews addressing stress indicators 

and their smart measurement techniques were extracted. The identified stress indicators 

covered objective as well as subjective topics. The indicators were assigned to five main 

categories: biochemistry, physiology, behavior, perception and context.  

The preliminary extraction yielded a total of 25 different stress indicators across all categories. 

They were further differentiated based on the ability to be measured non-invasively using smart 

devices, especially smartphones and wearables. This led to a final pool of twelve indicators to 

be further examined. Most selected indicators were categorized as physiological indicators. In 

this category stress was measured via skin (conductance and temperature), heart activity 

[heart rate variability (HRV)] and blood volume pulse (BVP)], lung (breathing rate) and voice 

(voice variances). The main smart technologies used to capture stressful events were chest 

straps, smartwatches and fitness trackers. The discrimination ranged between 90% accuracy 

for breathing rate captured by a chest strep and 44 % sensitivity for skin temperature via smart 

wristband. The measurement accuracy could be further improved by combining different stress 

indicators and jointly analyzing their results. Regarding behavioral indicators, especially ICT- 

usage and sleeping behavior were found to be reliable. Smartphone usage behavior could be 

used to detect stress with an accuracy of 55 %. The sleeping duration, captured via 

smartphone, was found to have a significant inverse association with stress.  

Additionally, subjective stress perception is obtained via validated questionnaires integrated 

into smart technologies (e.g., smartphone applications). The four main questionnaires used to 

detect subjective stress within the considered literature are Daily Stress Inventory, (DSI), 

Perceived Stress Questionnaire (PSQ), Perceived Stress Scale (PSS) and Stress Appraisal 

Measure (SAM1). Furthermore, stress types can be characterized based on various validated 

questionnaires on stress related eating behavior like the Salzburg Stress Eating Scale (SSES). 

This overview distinguished selected physiological and behavioral parameters as best 

indicators of stress to be measured via smart techniques. Additionally, questionnaires to 

capture the subjective stress perception are helpful tools to address the effect of stress. Single 

indicators are already reliable on their own. Nevertheless, best accuracy to discriminate 

between stress and non-stress situations is achieved via the combination of different stress 

indicators. 
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Contribution: The doctoral candidate co-designed and performed the review, managed and 

analyzed the results, prepared tables and figures and drafted and revised the manuscript. 

Kaiser, B., & Holzmann, S. H., H Holzapfel, C Gedrich, K. (2020). Nutrition and stress. 

Overview of selected stress indicators and smart measurement techniques. Ernahrungs 

Umschau 67(5), 98-107. https://doi.org/10.4455/eu.2020.017 [150] 
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5  Discussion 

 

5.1  Characterization of the potential user group of a stress-focused digital 

dietary advisor  

Stress remains an important influential factor for the dietary behavior. Different effects of stress 

on individuals’ eating behaviors have long been on scientific focus. Scientific evidence has 

shown that the majority of the population changes their eating behaviors in the context of 

stress, only about 8 % are unaffected by stress exposure, whereas 48 % show a hypophagic 

reaction and 44 % show a hyperphagic reaction to the experience of stress [151]. This is in 

line with the findings of Kaiser et al. (2022), estimating 12 % of study participants to be stress-

insensitive eaters, 45% to be hypophagic eaters and 42 % to have an hyperphagic reaction in 

the context of stress [148]. Stress-induced overeating can lead to weight gain and obesity, 

increasing the health risk for example for diabetes and the metabolic syndrome [152]. 

Undereating in contrast can lead to malnutrition and further health consequences like nutrient 

deficits in the long term. As mentioned before, stress not only influences the amount of the 

foods eaten, but also the diet quality towards unfavorable highly palatable and energy dense 

food items, increasing the risk of diet related NCDs [153]. Derivatively, health promotion 

approaches tackling stress-induced unhealthy eating patterns are needed. Regarding the 

development of a stress-focused digital dietary advisor the potential target group needs to be 

further analyzed and relevant characteristics identified. It has been shown that the 

consideration of the target group’s interests and specifies within the development process of 

mHealth apps improves the perceived usability and usage motivation [154].  

Research has been performed to identify predictors of the stress-eating behavior. The 

prevalence of higher stress-induced food intake increases with the level of perceived stress 

[155]. Results of the cross-sectional study by Vidal et al. (2018) indicate that the association 

of perceived stress level and the intake of unfavorable foods gets modified by gender [156]. 

The results of Mikolajczyk et al. (2009) present significant changes on the frequency of food 

consumption and perceived stress in women but not in men [157]. The results by Kaiser et al. 

(2022) showed only a very small 4 % difference of SSES scores between men and women 

(p < 0.005) [148]. Contrastingly, the results by Siervo et al. (2018) highlight that men change 

their eating behavior towards unfavorable foods in the context of stress as well and should 

therefore not be neglected [158]. In relation to mHealth applications, women show significantly 

higher interest in health and lifestyle apps than men [159]. Based on the clusters of Sanders 

et al. (2019) it can be assumed that clusters of younger participants show higher stress scores 

[160]. The study by Kaiser et al. (2022) yielded divergent results with no significant association 

of SSES scores and age [148]. 
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As a consequence of increased food intake, the risk of stress-induced weight gain increases 

[161]. The results of the study by Tomiyama et al. (2011) show that BMI is significantly higher 

in the group of high stress participants compared to the low stress group [162]. The results by 

Kaiser et al. (2022) are in agreement with previously described studies, demonstrating a 

positive correlation between SSES and BMI (r (1220) = 0.28, p < 0.005) [148]. This highlights 

the need for action since a high BMI is associated with the development of diabetes and the 

metabolic syndrome [163]. The results by Kaiser et al. (2022) show that especially high-caloric 

sweet foods, including chocolate and cookies, are preferred as stress comfort foods [148]. This 

is in line with current research, indicating an increased intake of highly palatable energy dense 

foods, especially high in sugar and fat, due to the perception of stress [164, 165]. In more 

detail, stress was found to increase appetite, especially for sweet as well as crunchy and salty 

foods [166]. 

Besides the mentioned aspects, personality has been shown to be associated with individual 

stress perception. Especially, people with a neurotic personality seem to have a high 

vulnerability to stress [167]. Furthermore, high scores in neuroticism were found to be related 

with disordered eating [168]. Research focusing especially on personality domains and stress-

induced eating patterns could not be identified. However, the results by Kaiser et al. (2022) 

demonstrate that hyperphagic participants achieved higher scores within the personality 

domain of neuroticism [148]. Ervasti et al. (2019) applied an online questionnaire to investigate 

the relationship between personality types and the interest to use stress management apps 

[169]. The results revealed a significant positive correlation between the interest in stress 

management app usage and neuroticism [169]. Neuroticism was also found to be a positive 

predictor for the checking frequency of the smartphone [170].  

A stress-focused digital dietary advisor has the potential to operate context aware and reach 

people, who are vulnerable to over-eating in situations of high stress (e.g., work, home). As 

mentioned above, a neurotic personality as well as a female sex were found to be predictive 

for stress-eating. Both groups have already been shown to be interested in mHealth apps, 

which makes these groups more accessible for a digital advisor. However, other factors like 

BMI, which were found to be harder to approach, need to be considered to tailor the digital 

advisor to a broad range of potential users. 

 

5.2  Quality requirements for mHealth solutions addressing stress and 

nutritional behavior 

The number of mHealth apps, also in the context of nutrition, has been skyrocketing within the 

last years. Still concerns of the quality and effectiveness of these mHealth apps exist [75] and 

numbers of DiGAs listed within the DiGA directory are still low (n = 28, dated 20.01.2022) [171]. 
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From a scientific point of view, many attempts have been undertaken to evaluate mHealth apps 

and develop standardized quality assessment tools. Muro-Culebras et al. (2021) conducted a 

systematic review of evaluation tools for mHealth apps [70]. Reviewed tools focused on 

usability, engagement, aesthetics and functionality as well as reliability, validity, 

responsiveness and interpretability [70]. The frequently used Mobile App Rating Scale (MARS) 

for example includes engagement and aesthetic [142], whereas the App Quality Evaluation 

(AQEL) instrument puts behavior change potential and app purpose on focus [141]. Still quality 

evaluation tools need to be refined and further quality aspects (e.g., user-centered approach, 

validation, focus on mobile apps) should be included [70]. The results by Kaiser et al. (2020a) 

support this conclusion, suggesting additional quality parameters regarding the trustworthiness 

and appropriateness of topic specific content as well as of third party-content [149]. 

Nonetheless, existing quality assessment tools can be used to evaluate various quality aspects 

in current mHealth apps. McKay et al. (2019) performed a rating of health and well-being apps 

[172]. Out of the 344 analyzed apps 23 were assigned to the topic of healthy eating promotion. 

The results present an average overall MARS score of 2.7 out of 5 and the highest domain 

score for accuracy of description (in app store) of 3.8 and the lowest MARS score of 2.1 for 

quantity of information [172]. Bardus et al. (2016) performed a content analysis on 23 popular 

health and fitness apps [173]. An average overall quality score (MARS) of 3.2  was estimated 

with functionality as highest domain (4.0) and information quality as lowest domain score (2.0) 

[173]. McAleese & Papadaki investigated the quality of apps including the Mediterranean diet 

[174]. The average overall quality (MARS) score of the 93 apps analyzed was 3.0 ± 0.46 with 

highest scores for functionality (4.0 ± 0.45) and lowest scores for engagement (2.4 ± 0.62) 

[174]. This is in line with the results of the app quality assessment by Kaiser et al. (2020a), 

presenting the highest MARS scores in the domain of functionality (4.0). However, the lowest 

app quality scores were estimated for the domain of aesthetics (3.5) [149]. Ahmed et al. (2021) 

conducted a content analysis on apps comprising a dietary approach low in Fermentable  

Oligo-, Di-, Monosaccharides and Polyols (FODMAPs) [175]. The content analysis was 

focused on nine eligible apps out of 1304 screened apps. Analyzed apps yielded a high overall 

app quality MARS score (3.6 out of 5) and highest AQEL average score for app purpose 

(7.4  out of 10) and lowest AQEL average score for skills development (2.4) [175]. These 

results are reflected within the analysis by Kaiser et al. (2020a), estimating the highest AQEL 

quality score for app purpose (8.7) and the lowest for skill development (2.8) [149]. 

For a stress-focused digital dietary advisor, especially quality domains, which achieve low 

quality scores so far, should be put into focus. Skill development should be focused on 

nutritional knowledge acquisition including information on dietary guidelines and diet-related 

health consequences [176]. The results by Samoggia & Riedel indicate that the usage of a 

nutrition-information app increases the subjective as well as objective nutrition knowledge 
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[177]. Improvements on app aesthetics include layout, interactivity, presentation and graphics 

[178]. 

 

5.3  Current state of mHealth services addressing nutritional behavior  

Evidence on the effectiveness of digital dietary apps to improve eating behavior is mounting. 

Research has shown significant changes in primary nutritional outcomes as results of digital 

dietary interventions. Digital dietary tools were found to be associated with greater weight loss 

and increased intake of healthy foods (e.g., fruits and vegetables) as well as decreased intake 

of unfavorable foods and nutrients (e.g., chocolate snacks and saturated fat) compared to 

traditional self-monitoring tools [179-181]. Furthermore, it has been shown that the usage of 

mHealth apps results in a decrease in energy intake in a sample of obese and overweight 

individuals [182]. Nevertheless, evaluations of mHealth apps revealed a great need for quality 

improvement regarding the content of those apps (e.g., inaccurate food composition 

databases) [183]. 

In the context of mHealth dietary tools, food intake parameters need to be presented in 

adherence to public guidelines and recommendations. About 30 % of smartphone-based 

dietary assessment tools used within scientific studies integrate food databases to estimate 

the users’ food intakes [184]. Ferrara et al. (2019) reviewed the top seven diet-tracking apps 

based on user ratings and installation numbers and compared the energy and nutrient intake 

estimations with the food composition database of the United States Department of Agriculture 

(USDA) [185]. The analysis of a 3-day diet revealed an overestimation for protein (average 

difference 10 %), energy (average difference 1 %) and carbohydrates (average difference 1 %) 

and an underestimation for fat (average difference -7 %) [185]. The analysis of MyFitnessPal, 

one of the most popular apps within the ‘health & fitness’ category, displayed an 

underestimation of the mean energy intake by 1863 kJ/d (sd = 2952 kJ/d, p < 0.005) [186]. On 

the contrary, Ambrosini et al. (2018) found no significant difference between energy intake 

estimations of 50 adults comparing a commercial smartphone app with 24 h recalls [187]. The 

majority of the participants (83 %) even preferred using the app over completing the 24 h 

recalls obtained via telephone interviews [187]. The results of the study by Kaiser et al. (2020a) 

show a great discrepancy regarding nutritional estimates of the investigated apps and the 

accordance to the BLS, showing an accordance of less than 20 % for the majority of the apps 

[149]. Based on the available data, overestimation (positive deviation between 18 % and 50 %) 

as well as underestimation (negative deviation between -13 % and – 50 %) was found across 

all apps. Nutrient values could not be estimated for all apps, because of missing information 

about included references or food composition information [149]. Maringer et al. (2019) confirm 

these results by highlighting great variances in the number of provided nutrient values across 
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various apps [188]. Incomplete intake data might cause imprecise nutrient estimations. 

Divergent values could be generated due to different underlying country-specific food 

composition databases or user-specific customization of the integrated food lists [189]. Another 

reason for varying estimations could be the applied intake features, leading to differences in 

the volume estimation. Whereas manual data input and barcode scan are commonly used 

within dietary apps, photo-based intake assessments still face usage difficulties (e.g., detection 

markers, used plate sizes) [190]. Additionally, reminders and notifications can be used to 

improve data input and reduce underreporting. Pirolli et al. (2017) showed a positive effect of 

reminders in the context of achieving behavioral goals and highlight the importance of the right 

timing to display those reminders [191]. 

Based on the intake data, the individual’s dietary behavior is estimated and displayed. In the 

context of unhealthy stress-related dietary patterns, features need to be integrated to achieve 

long term dietary behavior change. Commonly applied BCT-based features are self-

monitoring, feedback, gamification, goal reviews, social support, and educational information 

[192]. The integration of BCTs within diet-related apps was furthermore found to be positively 

associated with the app quality [174]. Especially, good user experience and intention (e.g., 

reaching a health goal) support the long-term engagement of mHealth apps [193]. This needs 

to be considered for the development of a stress-focused digital dietary advisor. As a start, 

country specific food data bases adapted to the target group need to be integrated. These data 

bases need to be updated regularly and the completeness of the information needs to be 

checked. Additionally, the input burden for the user can be reduced by using precise (semi) 

automated techniques (e.g., barcode scan). BCT features like goal setting can further improve 

the engagement of a digital advisor and improve its long-term effectiveness. 

 

5.4  Current state of mHealth services addressing stress  

As mentioned before, stress is a context factor that can influence the individual’s dietary 

behavior and trigger unhealthy eating patterns. Therefore, stress-related aspects of mHealth 

tools need to be put into focus, including aspects of stress detection as well as stress 

management. 

The in-time stress interventions rely on accurate stress detection. In this context, relevant 

stress indicators measurable by smart devices need to be identified. Considering the potential 

of smart devices to continuously capture user data, relevant indicators need to be narrowed 

down to unobtrusive measurement ways. Within laboratory settings, novel systems are 

developed to validly measure participants’ stress levels. However, these systems often consist 

of various technological modules which need to be connected to special software for data 

analysis, therefore the application outside the laboratory setting is inconvenient. For an 
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appropriate use in everyday life, stress detection and the integration of stress measurement 

techniques within at hand devices is necessary. The advancement of wearable devices led to 

a growing number of features and functions to detect vital signs [194], integrated within a 

variety of smart devices [195]. Up to now, evidence on commercial stress indicator tracking is 

still scarce and protocols for standard test procedures are missing [196]. Nevertheless, 

commercial devices already include sensors to capture physiological stress indicators. 

Thiebaud et al. (2018) investigated the accuracy of heart rate measurements of wrist-worn 

devices of different brands. The results indicate mean error rates between 1 % and 8 % [197]. 

In line with that, the results of Can et al. (2019) show high accuracy (85 to 90 %) for heart rate 

and electrodermal activity measurements of wrist-worn commercial devices [198]. Used for 

stress classification, a greater accuracy was shown for the combination of HR and EDA data 

(92 %) compared to the separate consideration of the modalities (86 %) [198]. This gets 

supported by the results of the overview by Kaiser et al. (2020b), demonstrating an improved 

detection accuracy for the combination of various stress indicators [150]. Additionally, 

behavioral indicators were found to be suitable for the detection of stress. In an ICT context 

especially, smartphone related behavioral indicators need to be put into focus. Ciman et al. 

(2018) investigated participants smartphone usage gestures and estimated an accuracy for 

stress detection between 63 % and 88 % [199]. Bogomolov et al. (2014) additionally included 

weather conditions and personality data into their stress recognition system and achieved an 

accuracy of about 72 % [200]. These results indicate that physiological and behavioral data 

captured by wearable devices as well smartphones can already be used to detect stress. 

Nevertheless, the accuracy of this systems still needs to be improved. Besides software-based 

enhancements, further adaptions are necessary to reduce missing data due to unsuitable and 

unfitting wearables [198]. This can also be seen in relation to innovative sensor-equipped 

clothes and jewelry, which still need further improvement to reliable capture relevant 

(physiological) signals [195]. 

Based on accurate stress detection, various apps have been developed to address stress 

management. Most of the existing apps focus on mindfulness and meditation or breathing 

control techniques [201]. Based on results of RCT studies, intervention groups using 

mindfulness focused apps were found to have significantly lower stress levels as well as 

greater stress reduction [123], compared to the respective control groups. The results of 

Huberty et al. (2019) demonstrated a significant negative interaction between the usage of 

their mindfulness meditation app and the perceived stress level [202]. Weber et al. (2019) 

showed a significant improvement on stress and wellbeing in users of mHealth apps on mental 

health [203]. Still, the majority of existing apps focused on stress management lack scientific 

validation. The results of the systematic review by Lau et al. (2020) revealed that only about 

2% of investigated apps were examined within original research publications [204]. This gets 
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supported by the results of Peake et al. (2018) finding that only about 5 % of health 

technologies provide scientific validation [205]. 

For the development of a stress-focused digital dietary advisor, validated stress detection 

methods should be integrated and combined with validated stress management techniques. 

 

Strength & Limitations 

This work focused on relevant aspects to identify requirements for the development of a digital 

dietary advisor concentrating on stress-induced unhealthy eating patterns. An online survey 

was performed to find characteristics of people with stress-induced hyperphagia, which 

present the potential target group for the planned digital dietary advisor. Although the survey 

covered a broad spectrum of possible stress-eating predictors, not all relevant aspects (e.g., 

dieting status) were included. Further research on additional characteristics is needed to better 

understand the target group. Additionally, the applied cross-sectional study design does not 

reveal the causality and only allows conclusions on the relationship between investigated 

parameters. As often observed within nutrition related research, female participants are 

overrepresented. An additional study with a higher percentage of male participants is needed 

to enhance insight into the matter. 

An app analysis was conducted to address the quality of available nutrition related apps. 

Investigated apps were selected from all levels of download and rating. Nevertheless, a 

selection bias cannot be precluded. Further analysis including additional apps would be helpful 

to sharpen the results. 

In the context of stress, a literature overview was performed to identify stress indicators and 

their smart measurements. It needs to be mentioned that additional indicators (e.g., blood 

parameters) exist, which were not included within this study. Due to the rapid emerging in the 

field of smart technologies, the completeness of relevant smart measurements cannot be 

claimed.
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6  Conclusion and Outlook 

 

A great proportion of the population is sensitive to the influence of stress regarding their eating 

behavior. The survey on the characterization of stress-induced overeaters revealed that the 

vulnerability to stress-induced dietary changes can be associated with some of the investigated 

characteristics. Considering the implementation of a stress-focused digital dietary advisor for 

this target group, a female sex and neurotic personality seem to be more approachable than 

other characteristics. For the development process a user-centered approach including further 

identified characteristics (e.g., high BMI, eating motivations, male sex) should be undertaken 

to address the complete target group. Additionally, the current status of mHealth apps on the 

topics of nutrition and stress need to be considered. A stress-focused digital dietary advisor 

needs to firstly record the dietary behavior adequately by using validated input features as well 

as target group specific nutrition data bases and recommendations. Secondly, the advisor 

needs to detect stress correctly, which is best enabled by the combination of multitude stress 

indicators and validated mHealth features. An intervention to support healthy food choices in 

the context of stress should combine dietary recommendations and features for stress 

management including BCTs.  

At present, the focus of mHealth apps has not yet been put on dietary behavior in the context 

of stress. Further research is essential to improve current mHealth quality and develop a 

stress-focused digital dietary advisor. 
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