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Abstract. The quantum capacity of bosonic Gaussian quantum channels can
be non-additive in a particularly striking way: a pair of such optical fiber type
channels can individually have zero quantum capacity but super-activate each
other such that the combined channel has strictly positive capacity. This has been
shown in Smith et al (2011 Nature Photon. 5 624) where it was conjectured that
squeezing is a necessary resource for this phenomenon. We provide a proof of
this conjecture by showing that for gauge covariant channels a Choi matrix with
positive partial transpose implies that the channel is entanglement-breaking. In
addition, we construct an example which shows that this implication fails to hold
for Gaussian channels which arise from passive interactions with a squeezed
environment.
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1. Introduction

A question at the heart of information theory—classical as well as quantum—is how to transmit
information reliably, given imperfect resources. The means to transmit information are referred
to as the (typically noisy) channel. Its most important quantitative characteristic is how many
units of information can be reliably sent per use in the limit of many uses of the channel. This
number is called the capacity of the channel [1].

For classical memoryless channels, Shannon [2] posed and answered this question in his
groundbreaking work in which he provided a tractable formula for the capacity of any such
channel.

One of the fundamental insights of quantum information theory is that for quantum
channels several distinct capacities can be defined depending on which kind of information
(classical, quantum, etc) is to be sent and which ancillary resources are provided [3]. Moreover,
despite considerable progress, no closed general expression is known for the classical or
quantum capacity. What complicates matters in the quantum world is that quantum correlations
between different channel uses can improve the performance or, mathematically speaking, lead
to non-additivity effects. This has two practical consequences: not only is it in general necessary
to entangle the channel inputs over many uses to fully exploit the capacity of the channel but
also this capacity can in some cases be further enhanced by combining two different channels, so
that their joint capacity exceeds the sum of the two parts. One of the most striking examples of
these effects is the super-activation of the quantum capacity: a pair of channels can individually
have zero quantum capacity, but when combined give rise to a channel whose quantum capacity
is strictly positive [4].

In [5] it was shown that this effect can even occur within the practically most important
class of (bosonic) Gaussian channels. Among others, they describe the transmission of the
continuous degrees of freedom of light in free space and in optical fibers [6] (taking into
account the most common loss and noise mechanisms) as well as the time evolution of quantum
memories which are based on collective excitations in atomic systems [7].

One of the channels used in the construction in [5] can indeed be regarded as a
simple model of a lossy single-mode optical fiber. The second channel, however, involves
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squeezing, an experimentally more demanding interaction arising from processes in which, e.g.
photons are created or annihilated pairwise [8]. Squeezing can be produced by birefringent
materials and selectively reduces the quantum noise associated with certain observables of
the electromagnetic field below its standard quantum value. In [5] super-activation was shown
employing a high degree of squeezing within the interaction between a two-mode system and
its environment—something considerably more difficult to realize than simple loss processes.
Smith et al [5] write: ‘Although an example using only linear optical elements would be
desirable, we suspect, but cannot prove, that none exist.’ The present paper aims to settle this
conjecture in the affirmative.

Currently, there is basically one approach toward super-activation. This is based on the fact
that there are only two classes of channels known, which have provably zero quantum capacity:
channels with a symmetric extension and so-called positive partial transpose (PPT) channels.
Since both classes are closed with respect to parallel composition, the only combination with
a chance of successful super-activation is to take one channel from each class. In this work
we show that if we restrict ourselves to passive Gaussian channels (i.e. those not involving
squeezing), then the set of PPT channels becomes a strict subset of the set of channels with a
symmetric extension, therefore rendering super-activation impossible.

In the following we will first briefly review the main mathematical tools to describe
Gaussian channels and precisely define ‘passive channels’, i.e. the class of Gaussian channels
without squeezing within which we then show that super-activation is not possible.

2. Prerequisites

We begin with recalling basic notions and results needed for our purpose.

2.1. Gaussian states and channels

We consider a continuous variable system of n bosonic modes whose description involves n
pairs of generalized position and momentum operators Qk, Pk which may correspond to the
quadratures of electromagnetic field modes. With the definition R := (Q1, P1, . . . , Qn, Pn) the
canonical commutation relations read

[Rk, Rl] = i (σn)kl 1 with σn :=
n⊕

i=1

(
0 1

−1 0

)
(1)

being the symplectic form.
We associate with every density operator ρ its displacement vector d, with dk := tr [ρRk]

and its covariance matrix 0 with 0kl := tr [ρ{Rk − dk1, Rl − dl1}+], k, l = 1, . . . , 2n. d and
0 contain the first and second moments of the corresponding phase space distribution. The
significance of d and 0 becomes evident as we restrict our attention from now on to Gaussian
states. These are defined as quantum states with a Gaussian Wigner phase space distribution
function, see [9]. The Hilbert space of a continuous variable system is of infinite dimensions.
The restriction to the set of Gaussian states allows for a much simpler description that requires
only a finite number of parameters. In particular a Gaussian state is completely specified by d
and 0, the latter being any real symmetric matrix that satisfies the uncertainty relation

0 > iσn. (2)
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In the following all states are assumed to be centered (i.e. d = 0) since displacements in
phase space are local unitaries in Hilbert space which are irrelevant for our purpose. Gaussian
states form only a small subset of the state space. Yet they provide a good description for
many experimentally accessible states, including coherent laser beams and Gibbs states of
electromagnetic modes.

Now we turn our attention to state transformations, which are mathematically described
by completely positive maps. If such a map is also trace-preserving and preserves the Gaussian
nature of states, it is called Gaussian channel, see [10]. Again neglecting its effect on d it can
be characterized by its action on covariance matrices, which is given by

0 7→ X0XT + Y, X, Y = Y T
∈M2n(R). (3)

For a pair of real matrices X and Y = Y T to describe a bona fide Gaussian channel it is necessary
and sufficient that

Y + i
(
σn − Xσn XT

)
> 0. (4)

Unitary Gaussian evolutions then correspond to Y = 0 and X being real symplectic, i.e. X ∈

Sp(2n,R) = {S ∈M2n(R)| Sσn ST
= σn}. As is well known, every channel can be realized by a

unitary dilation U describing the evolution of the system coupled to an environment in state ρE

ρ 7→ trE

[
U (ρE ⊗ ρ)U †

]
. (5)

For a Gaussian n-mode channel, ρE can be chosen as a Gaussian state of nE 6 2n environmen-
tal modes and U as a (n + nE)-mode Gaussian unitary [11]. Gaussian unitaries are generated by
Hamiltonians that are quadratic in the generalized position and momentum operators Rk and rep-
resent a family of transformations that can be realized, e.g. in quantum optical experiments [12].

On the level of phase space, the evolution of the covariance matrices of environment and
input state, 0E and 0, is governed by the symplectic transformation S and looks like

(0E ⊕ 0) 7→ S (0E ⊕ 0) ST. (6)

In the notation S =

(
S1 S2
S3 S4

)
that reflects the decomposition of the total system into the

environment and the n-modes system, one finds X = S4 and Y = S30EST
3 . Here, S describes

the most general Gaussian coupling between system and environment including, in particular,
squeezing. Since our aim in the following is to analyze capabilities of quantum channels in the
absence of this (in practice very demanding) ingredient, we now proceed to take a closer look
at the simpler set of unitaries generated by passive Hamiltonians.

2.2. The symplectic orthogonal group

Passive Hamiltonians are those given by quadratic expressions in Qk, Pk or, equivalently, in
the annihilation and creation operators ak := (Qk + iPk)/

√
2 and a†

k that commute with the total
particle number operator

∑
k a†

k ak . They take the form

H =

m∑
k,l=1

hkla
†
k al + h.c. (7)

with hkl ∈ C. A unitary Gaussian evolution generated by a passive Hamiltonian as
in (7) corresponds to a symplectic orthogonal matrix S ∈ K (m) := Sp(2m,R) ∩ O(2m,R).
Mathematically, K (m) is the largest compact subgroup of the real symplectic group. Physically,
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it corresponds to the set of operations which can be implemented using beam splitters and phase
shifters only [13]. Note that some of the most common channels such as the lossy channel and
the thermal noise channel can be described by passive Gaussian dilations.

In the following, it is useful to exploit that the group K (m) is isomorphic to the group U (m)

of m × m unitary matrices [14]. This can be verified easily: first one observes that elements
R ∈M2m(R) in the commutant of σm have the form

[σm, R] = 0 ⇔ R = (ri j)
m
i, j=1 with ri j =

(
ai j bi j

−bi j ai j

)
, ai j , bi j ∈ R. (8)

With this result one verifies that the map

3 : U (m) → K (m) (9)

(ci j) 7→ (Ci j), Ci j =

(
<(ci j) =(ci j)

−=(ci j) <(ci j)

)
is indeed a group isomorphism.

At this point we add two observations that will help us later to exploit the particular
structure of real symplectic orthogonals (9). The set

Cn :=

{(
A B

−B A

)∣∣∣∣A, B ∈Mn(R)

}
(10)

together with the operation of matrix multiplication forms a semigroup with neutral element.
As such, it is isomorphic toMn(C). An isomorphism is given by(

A B
−B A

)
7→ A + iB (11)

and finally, for complex square matrices A, B ∈Mn(C) one finds the following criterion for
positive-semidefiniteness: 3(

A B
−B A

)
> 0 ⇔ A ± iB > 0. (12)

Now we combine the passive Gaussian unitaries with

2.3. Properties of Gaussian channels

Definition 1. We call a Gaussian channel ‘passive’ if it can be generated by a m = (nE + n)-
mode passive Hamiltonian H (7) that couples the system to an environment in a Gibbs state ρE

of a passive Hamiltonian H ′:

ρE =
e−β H ′

tr
[
e−β H ′

] , H ′
=

nE∑
k,l=1

h′

kla
†
k al + h.c. (13)

One can show that, as a consequence of the normal mode decomposition of Gaussian states, (13)
is equivalent to

[
0E, σnE

]
= 0, where 0E is the covariance matrix of the Gaussian state ρE and

3 This equivalence can be seen from the similarity transformation
(

A − iB
A + iB

)
=

1
√

2

(
1 i1
i1 1

) (
A B

−B A

)
×

1
√

2

(
1 −i1

−i1 1

)
.
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σnE is the corresponding symplectic form. This implies for passive Gaussian channels

[Y, σn] =
[
S30EST

3 , σn

]
= 0, (14)

as one derives from the block structure of S3 (9) and the analogous structure of the elements in
the commutant of σn (8). Similarly we find [X, σn] = [S4, σn] = 0. This is a useful property; it
implies that the channel commutes with the passive unitary generated by the number operator
(represented on phase space by eiφσn ). Gaussian channels with this property are called ‘gauge
covariant’ [15] and are characterized by matrices (X, Y ) commuting with σn.

Accordingly, all passive Gaussian channels are gauge covariant. Let us add a remark on
our definition of passive channels. Clearly, no active (squeezing-type) interaction is needed
to generate interaction or environmental state. Coupling the system to a Gibbs state for
a passive Hamiltonian includes the typical situation, since both non-equilibrium states and
squeezing Hamiltonians usually require active preparation, which do not naturally occur in the
uncontrolled environment4.

Before stating and proving our main result, we finally need to characterize on the level
of covariance matrices the two types of channels that have been used in the examples of super-
activation. There, two types of noisy channels with restricted capability to transmit entanglement
have been studied. On the one hand, entanglement-breaking channels that, when acting on part
of an entangled state always produce a separable output and PPT channels, that may transmit
entanglement but only in the form of states that remain positive under partial transposition
and thus represent bound entanglement that cannot be locally distilled into pure entangled
states [16, 17]. Since a finite quantum capacity requires the ability to transmit (asymptotically)
pure entangled states, this capacity vanishes for PPT channels.

A Gaussian channel is entanglement-breaking if and only if Y admits a decomposition into
real matrices M and N such that [18]

Y = M + N , M > iσn, N > iXσn XT. (15)

This reflects the fact that any entanglement-breaking quantum channel consists of
a measurement, followed by a state preparation depending on the outcome of the
measurement [19, 20]. As a consequence, every entanglement-breaking channel has a
symmetric extension and therefore zero quantum capacity by the no-cloning lemma [21].

A quantum channel T is called a PPT channel if θ◦T is completely positive, where
θ denotes time reversal, which in Schrödinger representation corresponds to transposition5.
A Gaussian channel characterized by (X, Y ) is PPT iff

Y − i
(
σn + Xσn XT

)
> 0. (16)

Now we are in a position to turn to the question of whether super-activation of PPT and
entanglement-breaking channels is possible in the Gaussian setting without squeezing. The main
technical step is to show that for gauge covariant channels being PPT and being entanglement-
breaking are equivalent.

4 Another plausible definition of passive channels would be to require passive coupling to an environment in
a state that is not squeezed (i.e. 0E has no eigenvalue smaller than 1). This includes our definition but adds
high-temperature Gibbs states of squeezing Hamiltonians. We cannot rule out super-activation for these types
of channels.
5 In phase space, θ corresponds to the transformation 0 7→ θ̃0θ̃T with θ̃ =

⊕n
i=1 diag(1, −1).
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3. Main result

Proposition 2. A gauge covariant Gaussian channel T is entanglement-breaking iff it is PPT.

Proof. Evidently, entanglement-breaking implies PPT, so we have to prove the reverse
implication. To this end it is convenient to reorder the canonical coordinates as
(Q1, . . . , Qn, P1, . . . , Pn). In this notation

σn =

(
1n

−1n

)
and Y =

(
Y1 Y2

−Y2 Y1

)
. (17)

The latter follows from (14) together with (8). Below we omit the index of σn.
We prove first that we can restrict ourselves to the case X = X̂ ⊕ X̂ , where by virtue of

the symplectic singular value decomposition [22] the matrix X̂ is diagonal and non-negative.
Assume, this is not the case. Then we can replace the unitary dilation U associated with T ,
which describes the interaction between system and environment, by U ′

= (1E ⊗ UG)U (1E ⊗

UF). UF and UG are passive unitary evolutions that act only on the system. They correspond
to symplectic transformations F, G ∈ K (n) in phase space. We denote the resulting channel
by T ′. T is PPT iff T ′ is PPT. The same holds for the entanglement-breaking property. We
find

X ′
= G X F =

(
G1 G2

−G2 G1

) (
X1 X2

−X2 X1

) (
F1 F2

−F2 F1

)
, (18)

with F1 + iF2, G1 + iG2 ∈ U (n). Now we can exploit the isomorphism (11) and choose F1,2

and G1,2 such that (G1 + iG2)(X1 + iX2)(F1 + iF2) =: X̂ is the singular value decomposition of
X1 + iX2. Hence, X ′

= X̂ ⊕ X̂ with X̂ diagonal and non-negative.
We will now exploit criterion (15) by showing that the decomposition of Y into M :=

Y − X 2 and N := X 2 obeys the required conditions, which read

N − iXσ XT
= X (1 − iσ)XT > 0,

(19)

M − iσ =

(
Y1 − X̂ 2 Y2 − i1
−Y2 + i1 Y1 − X̂ 2

)
> 0.

The first inequality in (19) follows simply from (1 − iσ)> 0. In order to arrive at the second
inequality we use (12) and rewrite the inequality as

Y1 − X̂ 2
± i(Y2 − i1)> 0 ⇔

Y1 ± iY2 − (X̂ 2
∓ 1)> 0 ⇔

Y1 ± iY2 − (X̂ 2 + 1)> 0 ⇔{
Y1 + iY2 + (X̂ 2 + 1)> 0

Y1 − iY2 − (X̂ 2 + 1)> 0
⇔

Y1 ± i
(

Y2 − i(1 + X̂ 2)
)
> 0.

(20)
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Here we used two elementary facts: (i) a matrix is positive iff its complex conjugate is positive;
and (ii) the sum of two positive matrices is again positive. In the last line, with (12), we recover
the PPT criterion (16)

Y − i(σ + Xσ XT) = Y − iσ(1 + X 2) =

(
Y1 Y2 − i(1 + X̂ 2)

−Y2 + i(1 + X̂ 2) Y1

)
> 0, (21)

which concludes the proof.
ut

Proposition 3. (No super-activation without squeezing). Let T1, T2 be passive Gaussian
quantum channels. If each channel either has a symmetric extension or satisfies the PPT
property, then Q (T1 ⊗ T2) = 0.

Proof. Let Ti (i = 1 or 2) be PPT. Ti is gauge covariant, because it is passive, and according
to Proposition 2 it is thus entanglement-breaking. In particular, it has a symmetric extension,
which then also holds for T1 ⊗ T2. Hence, the combined channel has zero quantum capacity.

ut

4. Passive interactions with a squeezed environment

We now consider an example of a Gaussian channel T for n = nE = 2. T is generated by a
passive interaction, as in (7), but the environment is assumed to be in a mixed squeezed state
ρE (i.e. det 0E 6= 1, 0E > iσ2 and 0E � 14). T will be shown to be PPT but not entanglement-
breaking. We omit the index of 12 and σ2 and choose

0E =
3 +

√
13

2


5 3

5 −3
3 2

−3 2

 , (22)

S =

√
1

3


−

√
21

−1
1

√
21

1
√

21
√

21
1

 . (23)

S represents two beamsplitters: one of transmittivity 2
3 that couples the first system mode to

the first mode of the environment and a second of transmittivity 1
3 that acts between the two

remaining modes. The corresponding (X, Y ), which characterize the Gaussian channel, then
read

X =

√
1

3

(√
21

1

)
, (24)

Y =
3 +

√
13

6


5 3

√
2

5 −3
√

2
3
√

2 4
−3

√
2 4

 . (25)
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Proposition 4. The Gaussian channel determined by (24) exhibits the PPT property but it is not
entanglement-breaking.

Proof. Equations (4) and (16) are satisfied as one verifies explicitly.
It remains to show that T is not entanglement-breaking. With the inequalities (15) in mind

we observe that this is equivalent to

max
(λ,M)∈D

λ < 1, whereD =

 (λ, M) ∈

R×M4(R)

∣∣∣∣∣∣
M = MT,

M > λiσ,

Y − M > λiXσ XT

 . (26)

This is a semi-definite program [23], so that the corresponding dual program can be used to
construct a witness which certifies (26). Its specific form is given in the appendix.

ut

5. Discussion

Super-additivity of channel capacities is one of the surprises between classical and quantum
information theory and its mechanisms and quantitative importance are still poorly understood.
Super-activation of the quantum capacity is one of the most extreme examples of such effects.

In the practically relevant Gaussian setting, super-activation can be achieved using
squeezing, adding to a long list of quantum effects—entanglement generation, metrology,
information coding or continuous-variable key-distribution—whose realization squeezing
enables. In the Gaussian regime, we know that it is sometimes even a necessary resource. This
is the case for entanglement generation [24] and, as we have proven in this work, also for super-
activation of the quantum capacity. In the latter case, however, the proof of necessity relies
on the framework—the basic idea behind the construction of all currently known instances of
super-activation. In order to make a stronger statement, we would need to know whether there
are other types of channels with zero quantum capacity [25].

Another question, which suggests itself, is how much squeezing is necessary within the
given framework. Unfortunately, we do not at the moment see an approach toward settling this
quantitative question.
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Appendix

In the following we show how to certify (26). Note that with the notation Ỹ = 04 ⊕ Y ,
X̃ = iσ ⊕ iXσ XT, M̃ = M ⊕ −M , the two inequalities in the definition of D can be
rewritten as

λX̃ + Ỹ + M̃ > 0. (A.1)
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In the following we confirm (26) by showing that for all (λ, M) ∈ D, λ6 0.94. For this purpose,
let us define the witness matrix �,

� = (A + iB) ⊕ (A + iC). (A.2)

A =


a1 −a3

a1 a3

−a3 a2

a3 a2

 , a =

0.512
0.722
0.592

 ,

B =


b1 b3

−b1 b3

−b3 b2

−b3 −b2

 , b =

−0.212
0.552

−0.368

 ,

C =


c1 c3

−c1 c3

−c3 c2

−c3 −c2

 , c =

 0.39
−0.3
0.368


and state some of its properties:

(i) � is positive definite;

(ii) ∀(λ, M) ∈ D : tr[�M̃] = i tr [(B − C)M] = 0, since (B − C) is anti-symmetric and M is
symmetric;

(iii) tr[�X̃ ] = 2(b1 + b2 + 2
3c1 + 1

3c2) = 1; and

(iv) tr[�Ỹ ] = (1 +
√

13
3 )(5a1 + 4a2 − 6

√
2a3) < 0.94.

Let now be (λ, M) ∈ D. Applying (ii) and (iii) in the first line and (i) together with (A.1) in the
third line leads to

λ − tr
[
�Ỹ

]
= − λ tr

[
�X̃

]
− tr

[
�Ỹ

]
− tr

[
�M̃

]
= − tr

[
�

(
λX̃ + Ỹ + M̃

)]
(A.3)

6 0

with (iv) we obtain λ < 0.94.
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