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Abstract. We examine the time evolution of cold atoms (impurities) interacting
with an environment consisting of a degenerate bosonic quantum gas. The
impurity atoms differ from the environment atoms, being of a different species.
This allows one to superimpose two independent trapping potentials, each being
effective only on one atomic kind, while transparent to the other. When the
environment is homogeneous and the impurities are confined in a potential
consisting of a set of double wells, the system can be described in terms of
an effective spin-boson model, where the occupation of the left or right well
of each site represents the two (pseudo)-spin states. The irreversible dynamics
of such system is here studied exactly, i.e. not in terms of a Markovian master
equation. The dynamics of one and two impurities is remarkably different in
respect of the standard decoherence of the spin-boson system. In particular,
we show: (i) the appearance of coherence oscillations, (ii) the presence of
super and subdecoherent states that differ from the standard ones of the
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spin-boson model, and (iii) the persistence of coherence in the system at long
times. We show that this behaviour is due to the fact that the pseudospins
have an internal spatial structure. We argue that collective decoherence also
prompts information about the correlation length of the environment. In a
one-dimensional (1D) configuration, one can change even more strongly the
qualitative behaviour of the dephasing just by tuning the interaction of the bath.
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1. Introduction

The reasons for the great interest in the physics of ultracold atoms in recent years are
manifold. On the one hand, experimentalists have reached an unprecedented control over
the many-body atomic state with very stable optical potentials and by the use of Feshbach
resonances, which allow one to change the scattering length of the atoms [1]. In this context,
the tremendous experimental results that have been achieved include: the observation of the
superfluid-Mott insulator transition for bosons [2], one-dimensional (1D) strongly interacting
bosons in the Tonks–Girardeau regime [3] and Anderson localization [4, 5]. On the other hand,
new experimental challenges come from different theoretical proposals for using this system for
quantum information processing [6] and as a quantum simulator of condensed matter models
(see for example [7]–[9] and references therein).

Not only can ultracold atoms simulate Hamiltonian systems, but such systems also offer
a way to engineer non-classical environments. Thanks to the flexibility of quantum gases, a
broad range of regimes of irreversible dynamics of open quantum systems and in particular of
spin-boson systems can be explored [10]–[12].

In the present paper, we propose a new method by which an instance of the spin-
boson model [13] can be realized with a suitable arrangement of interacting cold atoms. In
particular, we analyse a system consisting of cold impurity atoms interacting with a degenerate
quantum gas of a different atomic species. This setup makes possible the superposition of
two independent trapping potentials, each being effective on one atomic species only, while
transparent to the other. When the quantum gas is homogeneous and the impurities are confined
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in a potential composed of double wells, the system can be described in terms of an effective
spin-boson model, where occupations of the left or right well represent the two (pseudo)-spin
states. At variance with other setups, where the role of the pseudospin is played by the presence
or absence of one particle in a trapping well [14], by the vibrational modes of a single well [15]
or by internal electronic levels [12], in our case each pseudospin has a spatial dimension,
namely the separation between the two minima of the impurity double well. This introduces an
effective suppression of the decoherence due to low-frequency modes of the environment and
leads to unusual and interesting phenomena, like oscillations of coherence at finite times and
the survival of coherence at long times. Further novel features appear when one considers the
irreversible collective decoherence of a systems of two impurities. In this case, we still predict
the existence of subdecoherent and superdecoherent states, but with the interesting fact that their
role is exactly the opposite from what one observes in conventional spin-boson systems. Further
interesting features appear when one considers how the collective decoherence rates change as
a function of the impurities’ separation and the effects of dimensionality of the system.

In discussing our investigations, for the sake of simplicity we shall consider an
experimental setup where the impurity atoms are trapped by a periodic (optical) lattice. We
would like to stress, however, that our findings do not depend on the lattice properties (e.g.
periodicity) but on the numerical results. Other setups, such as microtraps on atom chips or
quantum dots, just to mention a few, can be equally envisaged.

2. The Hamiltonian

Our system is composed of a cold quantum gas of bosonic atoms and a sample of cold atoms
separated from each other and immersed in the quantum gas. In presenting our investigations, we
shall use the words ‘reservoir’, ‘bath’ and ‘environment’ as synonyms to indicate the quantum
gas, since its properties are not the focus of the present paper.

The second-quantized form of the Hamiltonian of the impurities + bath system takes the
form (see also [16])

Ĥ = Ĥ A + Ĥ B + Ĥ AB, (1)

where

Ĥ A =

∫
d3x 9̂†(x)

[
p2

A

2mA
+ VA(x)

]
9̂(x) (2)

is the Hamiltonian of atomic impurities, described by the field operator 9̂(x) in the trapping
potential VA(x), which creates a set of double wells of size 2L and separated by a distance 2D,
see figure 1,

Ĥ B =

∫
d3x 8̂†(x)

[
p2

2mB
+ VB(x) +

gB

2
8̂†(x)8̂(x)

]
8̂(x) (3)

is the Hamiltonian of the bath, composed of N � 1 bosons, represented by the field operator
8̂(x) and confined by a trapping potential VB(x) and gB = 4π h̄2aB/mB is the boson–boson
coupling constant, with aB the scattering length of the condensate atoms, and

Ĥ AB = gAB

∫
d3x 9̂†(x)8̂†(x)8̂(x)9̂(x) (4)
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Figure 1. A Bose–Einstein condensate (yellow region) confined in a shallow
harmonic trap VB(x) interacts with cold impurity atoms each of which is trapped
in a double well potential VA(x) (grey circle). The distance between two wells in
the same trap is 2L and the distance between adjacent traps is 2D.

describes the interactions between the impurities and the bath; here gAB = 2π h̄2aAB/mAB

is the coupling constant of impurities–gas interaction, with aAB the scattering length of the
impurities–gas collisions and mAB = mAmB/(mA + mB) their reduced mass. Both impurity and
bath atoms are described in the second-quantized formalism. The field operator of the atomic
impurities

9̂(x) =

∑
i,p

âi,pϕi,p(x) (5)

can be decomposed in terms of the real eigenstates ϕi,p(x) of impurity atoms localized on the
double well i of the potential VA(x) in the pth state, with energy h̄ωi,p and the corresponding
annihilation operator âi,p. We assume that the wavefunctions of different double wells have a
negligible common support, i.e. ϕi,p(x)ϕ j 6=i,m(x) ' 0 at any position x.

We treat the gas of bosons following Bogoliubov’s approach (see, for instance, [17]) and
assuming a very shallow trapping potential VB(x), such that the bosonic gas can be considered
homogeneous. In the degenerate regime, the bosonic field can be decomposed as

8̂(x) =

√
N0 80(x) + δ8̂(x) =

√
N0 80(x) +

∑
k

(
uk(x)ĉk − v∗

k(x)ĉ†
k

)
, (6)

where 80(x) is the condensate wave function (or order parameter), N0 < N is the number of
atoms in the condensate and ĉk, ĉ†

k are the annihilation and creation operators of the Bogoliubov
modes with momentum k. For a homogeneous condensate 80(x) = 1/

√
V , V being the volume.

Its Bogoliubov modes

uk =

√
1

2

(
εk + n0gB

Ek
+ 1

)
eik·x

√
V

, (7)

vk =

√
1

2

(
εk + n0gB

Ek
− 1

)
eik·x

√
V

(8)
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have energy

Ek =
[
2εkn0gB + ε2

k

]1/2
, (9)

where εk = h̄2k2/(2mB) and n0 = N0/V is the condensate density. As one can see from (9),
low-energy excitations have phonon-like (wave-like) spectrum, whereas high-energy excitations
have particle-like spectrum. The condition for wave-like excitations is εk � n0gB, i.e. k �

4
√

πn0aB, or equivalently k � 2mBcs/h̄, where cs =
√

n0gB/m is the speed of sound at zero
temperature. Note that |uk| = 1/

√
V and |vk| = 0 describe the limiting case of N � 1 non-

interacting bosons, each with energy Ek = εk.
Inserting equations (5) and (6) into the Hamiltonian (1) we obtain

Ĥ A =

∑
i,p

h̄ωi,pâ†
i,pâi,p (10)

for the impurities,

Ĥ B = HCond + Ĥ Bog (11)

for the quantum gas, with

HCond = N0

∫
d3x 8∗

0(x)

[
p2

2mB
+ V B(x) +

gB

2
N0|80(x)|2

]
80(x) (12)

for the condensate and

Ĥ Bog =

∑
k

Ekĉ†
kĉk (13)

for the collective excitations (Bogoliubov modes) of energy Ek in the condensate, and

Ĥ AB = gAB

∑
i

∑
p,q

â†
i,pâi,q

[
N0

∫
d3xϕi,p(x)ϕi,q(x)|80(x)|2

+
√

N0

∑
k

ĉk

∫
d3xϕi,p(x)ϕi,q(x)

(
8∗

0(x)uk(x) − 80(x)vk(x)
)

+
√

N0

∑
k

ĉ†
k

∫
d3xϕi,p(x)ϕi,q(x)

(
80(x)u∗

k(x) − 8∗

0(x)v∗

k(x)
) ]

(14)

for the interaction Hamiltonian; the terms that are quadratic in the Bogoliubov excitation
operators ĉ, ĉ† give negligible contributions and have been omitted. The first term in (14)
describes transitions between impurities’ vibrational states due to the condensate, whereas
the remaining terms describe similar transitions induced by the collective excitations in the
condensate. In a homogeneous condensate, transitions between different vibrational eigenstates
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of the impurities induced by the condensate are suppressed, while all vibrational states ϕi,p(x)

get an energy shift δωi,p,

gAB N0

∫
d3x |80|

2(x)ϕi,p(x)ϕi,q(x) =

{
0, for p 6= q,

n0gAB
≡ δωi,p, for p = q

(15)

so the contribution of the first term in (14) can be included in the definition of ωi,p.
In the limit of deep, symmetric wells in each double well and separated by a high-energy

barrier, the tunnelling between the adjacent wells is suppressed. In this regime, the ground states
ϕi,L and ϕi,R of, respectively, the left and right wells of double well i are well separated in space
with vanishing spatial overlap, their coupling to the excited states becomes negligible and the
total Hamiltonian further simplifies into

Ĥ =

∑
i,

∑
p=L,R

h̄ωi,pn̂i
p +
∑

k

Ekĉ†
kĉk +

∑
i

h̄
∑

p=L,R

∑
k

[
�i

p,kĉk + �i∗
p,kĉ†

k

]
n̂i

p, (16)

where we have defined the coupling frequencies

�i
p,k ≡

gAB
√

n0

h̄
(|uk| − |vk|)

∫
d3x |ϕi,p(x)|2eik·x (17)

and n̂i
p ≡ â†

i,pâi,p is the number operator of impurities in the double well i in the well
p = L, R.

We consider the case where each double well is occupied by at most one impurity atom.
This allows us to describe the occupation of the left and right wells of each site in terms
of pseudospin states. Introducing the Pauli operators as n̂i

L = (1 − σ̂ i
z )/2, n̂i

R = (1 + σ̂ i
z )/2, the

Hamiltonian (16) takes the form of the independent boson model [18]

Ĥ =

∑
k

Ekĉ†
kĉk +

h̄

2

∑
k

{[∑
i

(
�i

R,k − �i
L,k

)
σ̂ i

z +
∑

i

(
�i

R,k + �i
L,k

) ]
ĉk

+

[∑
i

(
�i∗

R,k − �i∗
L,k

)
σ̂ i

z +
∑

i

(
�i∗

R,k + �i∗
L,k

) ]
ĉ†

k

}
, (18)

where a constant energy shift has been omitted. We note that spin-boson systems with
larger spin values can be realized in the same way with higher occupation of the double
wells.

The effects due to quantum noise on coherent superpositions of states of a double well
spin-boson Hamiltonian have been analysed in the Markovian regime. In [19]–[21] the effects
of a cold atom reservoir has been analysed, while [22] has considered the effects of scattered
photons, taking into account also the role of the inter-well separation. As we will show in
the following section, for our system it is possible to carry out a full analysis of the impurity
dynamics, going beyond the Markov approximation.

3. Exact reduced impurities dynamics

The dynamics due to the spin-boson Hamiltonian (18) is amenable to an exact analytical solution
and is characterized by decoherence without dissipation [23]–[25]. The time-evolution operator
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Û (t) = exp [−iĤ t/h̄] corresponding to the Hamiltonian (18) can be factorized into a product
of simpler exponential operators,

Û (t) = exp

[
−

i

h̄

∑
k

Ekĉ†
kĉkt

]

× exp

[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)
ĉ†

k −

∑
k

(∑
i

Ai∗
k (t)σ̂ i

z + α∗

k(t)

)
ĉk

]

× exp

ih̄2
∑

k

fk(t)<
∑

i j

(
�i

R,k − �i
L,k

)(
�

j∗
R,k − �

j∗
L,k

)
4E2

k

σ̂ i
z σ̂

j
z



× exp

ih̄2
∑

k

fk(t)<
∑

i

(
�i

R,k − �i
L,k

)∑
j

(
�

j∗
R,k + �

j∗
L,k

)
2E2

k

σ̂ i
z



× exp

ih̄2
∑

k

fk(t)

∑
i

(
�i

R,k + �i
L,k

)∑
j

(
�

j∗
R,k + �

j∗
L,k

)
4E2

k

 , (19)

where the functions

fk(t) =
Ek

h̄
t − sin

Ek

h̄
t, (20)

Ai
k(t) =

h̄
(
1 − eiEkt/h̄

)
2Ek

(
�i∗

R,k − �i∗
L,k

)
, (21)

αk(t) =
h̄
(
1 − eiEkt/h̄

)
2Ek

∑
i

(
�i∗

R,k + �i∗
L,k

)
, (22)

have been introduced for ease of notation. Details of the derivation of (19) for the time-evolution
operator are given in appendix A. As in this paper, we are interested in the irreversible collective
decoherence of the impurities we will focus our attention on the conditional displacement
operator

ÛD(t) =

∏
k

Ûk,D(t), (23)

Ûk,D(t) ≡ exp

[(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)
ĉ†

k −

(∑
i

Ai∗
k (t)σ̂ i

z + α∗

k(t)

)
ĉk

]
. (24)

Indeed this operator is the one responsible of the decoherence of impurities as it induces
entanglement between them and the reservoir. Labelling the state of the impurities as |{n p}〉 =

|{n1, n2, n3, . . .}〉 with n p = 0, 1 denoting the presence of the atom, respectively, in the left or
right well, the matrix elements of reduced density operator of the impurities are

ρ{n p},{m p}(t) = exp
[
−0{ni },{mi }(t)

]
ρ{n p},{m p}(0) exp

{
i2{n p},{m p}(t)

}
× exp

{
i4{n p},{m p}(t)

}
exp

{
i1{n p},{m p}(t)

}
. (25)
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Assuming that each mode of the bosonic environment is in a mixed state ρk at equilibrium at
temperature T the decay exponent contains all the information concerning the time dependence
of the decoherence process and takes the form

0{ni },{mi }(t) = h̄2
∑

k

(
1 − cos Ek

h̄ t
)

E2
k

∣∣∣∣∣∑
i

[mi − ni ]
(
�i

R,k − �i
L,k

)∣∣∣∣∣
2

coth
βEk

2
(26)

with β = 1/KBT . The phase factors 2{n p},{m p}(t), 4{n p},{m p}(t) and 1{n p},{m p}(t), whose specific
form is given in appendix B, do not play any role in the decoherence [26]. They contain,
however, interesting information on the effective coupling between the pseudospins induced
by the condensate and will be analysed in a future paper [27].

4. Results for the decoherence

As mentioned in the introduction, we shall assume that the impurity atoms are trapped by
an optical (super)lattice, whose form can be controlled and varied in time with great accuracy
[28, 29]. The coupling frequencies �i

p,k are accordingly evaluated in appendix C assuming an
optical lattice, with identical, double wells in each site, and deep trapping of impurity atoms
in their wells, with identical confinement in each direction. Atomic wavefunctions can then be
approximated by harmonic oscillator ground states of variance parameter σ =

√
h̄/(mω) [30],

where ω is the corresponding harmonic frequency. As will be clear shortly, σ acts as a natural
cutoff parameter, quenching the coupling with high-frequency modes.

Specifically, we consider 23Na impurity atoms trapped in a far-detuned optical lattice
and a 87Rb condensate. The condensate density is n0 = 1020 m−3, the lattice wavelength is
λ = 600 nm, and we have taken 2L = λ/2 and D = 2L . The depth of the optical lattice is
described by the parameter α ≡ V0/ER, V0 being the optical lattice potential maximum intensity
and ER = h̄2k2/(2m) the recoil energy of impurity atoms in the lattice; in our evaluations we
put α = 20. Finally, we assume aAB = 55a0 [31], where a0 is the Bohr radius, for the scattering
length of impurities–condensate mixtures. This parameter can be modified in laboratory with
the help of Feshbach resonances.

4.1. Single impurity decoherence

We first examine the decoherence exponent of a single impurity

00(t) ≡ 0{0},{1}(t) ≡ h̄2
∑

k

(
1 − cos Ek

h̄ t
)

E2
k

coth
βEk

2

∣∣�1
R,k − �1

L,k

∣∣2 . (27)

This quantity, which will be a useful benchmark in our analysis of the collective decoherence of
impurity pairs, already shows interesting features. Assuming, from now on, that the condensate
is at temperature T = 0, we obtain

00(t) = 8g2
ABn0

∑
k

(|uk| − |vk|)
2 e−k2σ 2/2

sin2 Ek
2h̄ t

E2
k

sin2 (k · L) . (28)
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Figure 2. 00(t) versus time for a single impurity atom interacting with free
bosons (solid line) and with a bosonic condensate (dashed line) in three
dimensions. The inset shows 00(t) for very short times 06 t 6 2 µs.

We note the dependence of 00(t) on the length L, where 2L is the distance between two wells
within each site. The presence of the factor sin2(k · L) supresses the effect of the reservoir modes
at small k. This is clearly understandable: environment modes whose wavelength is longer than
L cannot ‘resolve’ the spatially separated wells within each site. The consequences of this fact
will be clear shortly. Replacing the sum over discrete modes to a continuum with the usual
rule V −1

∑
k → (2π)−3

∫
dk, choosing x as azimuthal axis and using well-known relations for

Bogoliubov modes [32], we finally obtain

0c
0(t) =

2g2
ABn0

π2

∫
∞

0
dk

[
k2e−k2σ 2/2

sin2 Ek
2h̄ t

Ek (εk + 2gBn0)

](
1 −

sin 2kL

2kL

)
. (29)

The superscript c is to remind us that we are dealing with impurities interacting with a
condensate. For the special case of a bath of non-interacting bosons 0n.i.

0 (t) is obtained from
(29) simply imposing gB = 0 and Ek = εk. Let us point out that the spectral density, which
reads

J (ω) ≡

∑
k

|�R,k − �L,k|
2δ(h̄ω − Ek), (30)

has a nontrivial form, which at small frequencies, scales as ωd+2 for the interacting case, where
d is the dimensionality of the condensate, and as ωd/2 for the non-interacting case. It is worth
noticing that while the former case is always superohmic, the latter is subohmic, ohmic and
superohmic depending on the dimensionality of the environment. Note that the high power in
J (ω) is due to the fact that the bath has to ‘resolve’ the structure of the impurity, formally again
the factor sin2(k · L). Furthermore, as already pointed out, no ad hoc cutoff frequency ωc needs
to be inserted but appears naturally in the decaying exponential of variance σ in (29).

Figure 2 shows clearly that the impurity maintains much of its coherence at long times.
Such survival is due to the above-mentioned suppressed effect of soft modes, which are

New Journal of Physics 11 (2009) 103055 (http://www.njp.org/)

http://www.njp.org/


10

responsible for the long time behaviour of 00(t), and is more pronounced when the environment
consists of a condensate than in the case of a reservoir consisting of free bosons. This can be
intuitively described in terms of greater ‘stiffness’ of the condensate whose Bogoliubov modes
are less displaced by the coupled impurity. The condensate is even able to give some coherence
back to the impurity, since 0c

0(t) is not monotonic in time. Oscillations of coherence in spin-
boson systems were predicted in [24] (and even earlier, in a different context, in [33]).

We can distinguish three stages in the dynamics of the 00. In the first stage 00(t) ∝ t2, as
can be easily seen from a series expansion of (29). This very short stage, shown in the inset
of figure 2, corresponds to coherent dynamics. The second stage corresponds to a Markovian
behaviour, i.e. 00(t) ∝ t , and lasts a few tens of microseconds. Finally, in the third stage
00(t) saturates to a stationary value. This behaviour calls for particular caution in treating
an environment of (free or interacting) bosons as a Markovian reservoir for atomic impurities
immersed in it, which is clearly not the case in the present situation.

4.2. Collective decoherence of two impurities

Decoherence of quantum systems in a common environment is characterized by collective
decoherence. It is well known that two spins interacting with the same bosonic reservoir
with a spin-boson interaction Hamiltonian like the one discussed in this paper show sub- and
superdecoherence [23]. Put simply, the decoherence rate of the two spins is not simply 200(t)
but, according to the initial state of the spins, much smaller or larger. In this final section of the
present paper, we analyse the specific features of collective decoherence in our system.

For two pseudospins, three decoherence parameters appear in the density matrix elements
independently of the exact form of the impurities’ state. One is 00(t) and appears in
elements such as ρ0,0;0,1(t), ρ0,1;1,1(t), etc which corresponds to individual dephasing of each
impurity atom; two more parameters 01(t) and 02(t) appear in elements such as |ρ0,0;1,1(t)| =

exp [−01(t)]|ρ0,0;1,1(0)| and |ρ0,1;1,0(t)| = exp [−02(t)]|ρ0,1;1,0(0)|, and corresponds to decay of
the coherences between states with the particles in the same or in the opposite side, respectively,
of the double well. For two pseudospins at distance 2D = 4L , these two parameters are

01(t) ≡ 0{0,0},{1,1}(t) = h̄2
∑

k

(
1 − cos Ek

h̄ t
)

E2
k

coth
βEk

2

∣∣(�1
R,k − �1

L,k + �2
R,k − �2

L,k

)∣∣2
= 32g2

ABn0

∑
k

(|uk| − |vk|)
2 e−k2σ 2/2

sin2 Ek
2h̄ t

E2
k

sin2 (k · L) cos2(k · D), (31)

02(t) ≡ 0{1,0},{0,1}(t) = h̄2
∑

k

(
1 − cos Ek

h̄ t
)

E2
k

coth
βEk

2

∣∣(�1
R,k − �1

L,k − �2
R,k + �2

L,k

)∣∣2
= 32g2

ABn0

∑
k

(|uk| − |vk|)
2 e−k2σ 2/2

sin2 Ek
2h̄ t

E2
k

sin2 (k · L) sin2(k · D). (32)
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Figure 3. 01(t) (dashed line), 02(t) (dotted line), and 200(t) (solid line) versus
time for a pair of impurity atoms at a distance 2D = 4L (see text), immersed
in a condensate (left) and in an environment of free bosons (right) in three
dimensions.

Calculations similar to those performed for 00 give for a condensate environment

0c
1(t) =

2g2
ABn0

π2

∫
∞

0
dk k2e−k2σ 2/2

sin2 Ek
2h̄ t

Ek (εk + 2gBn0)

×

(
2 − 2

sin 2kL

2kL
+ 2

sin 2k D

2k D
−

sin 2k(L + D)

2k(L + D)
−

sin 2k(D − L)

2k(D − L)

)
≡ 200(t) − δc(t), (33)

0c
2(t) =

2g2
ABn0

π2

∫
∞

0
dk k2e−k2σ 2/2

sin2 Ek
2h̄ t

Ek (εk + 2gBn0)

×

(
2 − 2

sin 2kL

2kL
− 2

sin 2k D

2k D
+

sin 2k(L + D)

2k(L + D)
+

sin 2k(D − L)

2k(D − L)

)
≡ 200(t) + δc(t). (34)

In the above equations, it is easy to identify the term δc(t) which quantifies the deviation to
the dechoherence exponent 200 typical of the decoherence of two impurities interacting with
independent environments. Note that while 00 depends only on L, i.e. on the spatial size of
the double well, δ depends nontrivially on L ± D, i.e. on the distance between the impurities of
different wells. As before the special case of a bath of non-interacting bosons 0n.i

1 (t), 0n.i .
2 (t)

are obtained from the above equations (33) simply imposing gB = 0 and Ek = εk.
As in the case of single impurity decoherence the impurities do not loose all their

coherence: 01 and 02 saturate to a stationary value that can be varied with the help of
Feshbach resonances. Furthermore figure 3 shows that in a system of two impurities coherence
oscillations appear, both for interacting and non-interacting bosons in the environment (even
more pronounced oscillation are shown in figure 5). Such coherence revival is due to the
collective nature of the coupling, as quantified by δc(t) (δn.i .(t) for free bosons). As shown
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Figure 4. δc(t) (dashed line) and δn.i .(t) (solid line) versus time for a pair of
impurity atoms in a 3D environment. The inset shows δ(t) for very short times
06 t 6 2 µs.

in figure 4 also the δ(t) are characterized by three different timescales comparable to those
analysed for 00(t). In the first stage, the difference |δ(t)| is negligible, since the presence of
each impurity cannot have modified yet the environment seen by the other one; in the second
stage, corresponding to the Markovian dynamics, the difference |δ(t)| steadily grows up; and in
the third stage it decreases, reaching a stationary value.

For a pair of impurities we observe super- and sub-decoherences; however, with a
peculiarity which is characteristic of the system here considered. Indeed we observe sub-
decoherence in 01 ≡ 0{0,0},{1,1} and super-decoherence with 02 ≡ 0{1,0},{0,1}, at variance with
what one observes in a standard spin-boson model, where their role would be exchanged [23].
This different behaviour is due to the particular configuration of our system: 01 gets contribution
from superpositions of the states |0, 0〉 and |1, 1〉, where the atoms sit in wells with identical
distance, whereas the states |0, 1〉 and |1, 0〉, contributing to 02, correspond to atoms sitting in
wells with different separations.

Further insight on the features of the collective decoherence is gained by considering the
decoherence of impurities sitting in sites which are at a larger distance than 2D = 4L = 600 nm.
In figure 5, we plot the decoherence exponents for impurities trapped in lattice sites at distances
2D = 8L , 16L and 40L , respectively. These plots suggest the following picture: initially the
impurities decohere independently, as if they were each immersed in its own environment; at
some later time, the environment correlations due to the impurities act back on them and give
rise to oscillating deviations from 200(t). The onset time of these oscillations depends on the
separation: the larger the separation, the later the onset. On the other hand, the correlations
become weaker as the distance increases and the oscillations become consequently smaller in
amplitude. At large separation (here, approximately 40L), the parameters 01 and 02 are hardly
discernible from 200, since the environment correlations induced by the impurities vanish.
Similar features in a related context are reported in [34]. In summary, 01(t) and 02(t) also
prompt information about the correlation length of the environment.
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Figure 5. 01(t) (top) and 02(t) (bottom) versus time for a pair of impurity atoms
interacting with a bosonic condensate (left) and with free bosons (right) in three
dimensions for different distances between the impurities: 2D = 8L (dash-dotted
line), 2D = 16L (solid line), and 2D = 40L (dashed line); 200(t) (dotted line)
is also shown for comparison.

4.3. Decoherence in one dimension

Finally, we examine the decoherence process in a 1D condensate. Since, as previously discussed,
the spectral density (30) is superohmic for an interacting gas, but subohmic for a free Bose gas,
we expect qualitative different results for the two cases, in contrast to the 3D case. The decay
exponents in one dimension γ (t) become

γ c
0 (t) =

4g2
ABn0

π

∫
∞

−∞

dk

[
e−k2σ 2/2

sin2 Ek
2h̄ t

Ek (εk + 2gBn0)

]
sin2 kL (35)

for one impurity and

γ c
1 (t) =

4g2
ABn0

π

∫
∞

−∞

dk

[
e−k2σ 2/2

sin2 Ek
2h̄ t

Ek (εk + 2gBn0)

]
sin2(kL) cos2(k D)

≡ 2γ0(t) − δc(t), (36)

γ c
2 (t) =

4g2
ABn0

π

∫
∞

−∞

dk

[
e−k2σ 2/2

sin2 Ek
2h̄ t

Ek (εk + 2gBn0)

]
sin2(kL) sin2(k D)

≡ 2γ0(t) + δc(t) (37)

for two impurities in a condensate. The behaviour of these parameters critically depends on the
nature of the environment, see figure 6. In particular, decoherence in a 1D sample of free bosons
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Figure 6. γ1(t) (dashed line), γ2(t) (dotted line), and 2γ0(t) (solid line) versus
time for a pair of impurity atoms immersed in a condensate (left) and in an
environment of free bosons (right) in one dimension. The separation between
two impurity atoms is 2D = 4L .

becomes Markovian, in agreement with the naive expectation, due to its subohmic spectral
density.

5. Conclusions

We have shown how a system of impurity atoms trapped in an array of double wells, interacting
with a cold atomic gas, is described, in a suitable regime, by a spin-boson Hamiltonian.
The specific nature of our system, in which the pseudospins associated with the presence of
an impurity in the right/left well of each site have a spatial dimension, introduces peculiar
features in the decoherence of a single impurity as well as in the collective decoherence,
with the persistence of coherence at long times, the presence of coherence oscillations and
counterintuitive super/subdecoherent states.

We have shown in particular that for a three-dimensional bath one never has a Markovian
behaviour. A 1D bath is in this respect more interesting since one can go from a non-Markovian
to a Markovian behaviour just by tuning the interaction of the bath.

As a final comment we would like to say a few words about the role of the quadratic
terms in the Bogoliubov operators which we have neglected in our derivation of Hamiltonian
(14). Although a detailed study of their effects is beyond the scope of the present paper, we
would like to point out that their effects are negligible with respect to the linear terms we
have analysed here. One can show that their inclusion amounts to taking into account elastic
scattering of Bogoliubov particles, which is simply responsible of an energy shift, inelastic
scattering processes and Bogoliubov pair creation and annihilation. In these two latter additional
terms the length of wave vectors k that can play some role in the impurities’ dynamics is limited
from below by the finite size of the condensate and from above by cutoff parameter σ−1. It can
be shown that, in this frequency range, the coupling constants of the neglected processes are,
for the values of parameters assumed in our analysis, three orders of magnitude smaller than
the coupling constants h̄�i

n,k of the linear terms. As a consequence, a rough estimate leads us
to suppose that any possible relevant effect of the quadratic terms in the Hamiltonian would
become apparent at timescales that are three orders of magnitude larger than those examined in
this paper.
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Appendix A. Disentangling the time-evolution operator

The factorization of the time-evolution operator Û (t) = exp[−iĤ t/h̄] is often an impossible
task. When the Hamiltonian contains operators forming a Lie algebra the transformation of
Û (t) into a product of simpler exponential operators is however possible in some cases [35].
Here, we show a practical way to transform Û (t), which we write as

Û (t) = exp

[
−

i

h̄

∑
k

Ekĉ†
kĉkt

]
exp

[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)
ĉ†

k

]

× exp

[
−

∑
k

(∑
i

B i
k(t)σ̂

i
z + βk(t)

)
ĉk

]
Û R(t), (A.1)

where Û R(t) is to be determined, as well as the quantities Ai
k(t), B i

k(t), αk(t) and βk(t). Since at
t = 0 the time-evolution operator Û reduces to the identity operator, Ai

k(0) = B i
k(0) = βk(0) =

αk(0) = 0. All unknown quantities can be found with the help of the relation

Ĥ = ih̄
[
dÛ (t)/dt

]
Û−1(t), (A.2)

which holds for any time-independent Hamiltonian and of the relation

eX̂ Ŷ e−X̂
= Ŷ + [X̂ , Ŷ ] + 1

2 [X̂ , [X̂ , Ŷ ]] + 1
6 [X̂ , [X̂ , [X̂ , Ŷ ]]] + · · · (A.3)

for arbitrary operators X̂ and Ŷ . After inserting the expression (A.1) for the time-evolution
operator Û (t) in the right-hand side of (A.2), a comparison with the Hamiltonian (18) leads to
the expressions

Ai
k(t) =

h̄
(
�i∗

R,k − �i∗
L,k

)
2Ek

(
1 − eiEkt/h̄

)
, B i

k(t) = Ai∗
k (t), (A.4)

αk(t) =
h̄
∑

i

(
�i∗

R,k + �i∗
L,k

)
2Ek

(
1 − eiEkt/h̄

)
, βk(t) = α∗

k(t) (A.5)

for A(t), B(t), α(t) and β(t), and to the differential equation

d

dt
Û R(t) = −

∑
k

(∑
i

Ḃ i
k(t)σ̂

i
z + β̇k(t)

)(∑
j

A j
k(t)σ̂

j
z + αk(t)

)
Û R(t) (A.6)

for the unknown exponential operator Û R(t), which we write as

Û R(t) = exp

[
−

∑
k

(∑
i j

η
i j
k (t)σ̂ i

z σ̂
j

z +
∑

i

µi
k(t)σ̂

i
z + εk(t)

)]
. (A.7)
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A comparison with (A.6) gives

η̇
i j
k (t) = Ḃ i

k(t)A j
k(t), ε̇k(t) = β̇k(t)αk(t), µ̇i

k(t) = Ḃ i
k(t)αk(t) + β̇k(t)Ai

k(t) (A.8)

that is

η
i j
k (t) = −ih̄

(�i
R,k − �i

L,k)
(
�

j∗
R,k − �

j∗
L,k

)
4Ek

[
t +

ih̄

Ek

(
1 − e−iEkt/h̄

)]
, (A.9)

εk(t) = −ih̄

∑
i j(�

i
R,k + �i

L,k)
(
�

j∗
R,k + �

j∗
L,k

)
4Ek

[
t +

ih̄

Ek

(
1 − e−iEkt/h̄

)]
, (A.10)

µi
k(t) = −

ih̄

2Ek
<

[ (
�i

R,k − �i
L,k

)∑
j

(
�

j∗
R,k + �

j∗
L,k

) ] [
t +

ih̄

Ek

(
1 − e−iEkt/h̄

)]
. (A.11)

Moreover, using Glauber’s relation

exp

[∑
k

gkĉ†
k

]
exp

[
−

∑
k

g∗

kĉk

]
= exp

[∑
k

(
gkĉ†

k − g∗

kĉk

) ]
exp

[
1

2

∑
k

|gk|
2

]
(A.12)

the two exponentials linear in Bogoliubov operators can be merged into

exp

[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)
ĉ†

k

]
exp

[
−

∑
k

(∑
i

B i
k(t)σ̂

i
z + βk(t)

)
ĉk

]

= exp

{[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)
ĉ†

k −

∑
k

(∑
i

Ai∗
k (t)σ̂ i

z + α∗

k(t)

)
ĉk

]}

× exp

{
1

2

[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)(∑
j

A j∗
k (t)σ̂ j

z + α∗

k(t)

)]}
(A.13)

and the contribution of the last exponential can be included in UR(t). Performing some
commutations where it is possible, the time-evolution operator becomes

Û (t) = exp

[
−

i

h̄

∑
k

Ekĉ†
kĉkt

]
exp

[
−

∑
k

(∑
i j

η
i j
k (t)σ̂ i

z σ̂
j

z +
∑

i

µi
k(t)σ̂

i
z + εk(t)

)]

× exp

[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)
ĉ†

k −

∑
k

(∑
i

B i
k(t)σ̂

i
z + βk(t)

)
ĉk

]

× exp

{
1

2

[∑
k

(∑
i

Ai
k(t)σ̂

i
z + αk(t)

)(∑
j

A j∗
k (t)σ̂ j

z + α∗

k(t)

)]}
. (A.14)

Finally, the exponential operators that do not contain bath operators commute, so the time-
evolution operator can be further modified into the final form (19).
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Appendix B. Derivation of the dynamics of the impurities

The action of Û k,D(t) on a pure state of the whole system is

Û k,D(t)|{n p}〉〈{m p}| ⊗ ρkÛ †
k,D(t) = |{n p}〉〈{m p}| ⊗

× exp

[(
−

∑
j

A j
k(t)(−1)n j + αk(t)

)
ĉ†

k −

(
−

∑
j

A j∗
k (t)(−1)n j + α∗

k(t)

)
ĉk

]
ρk

× exp

[
−

(
−

∑
j

A j
k(t)(−1)m j + αk(t)

)
ĉ†

k +

(
−

∑
j

A j∗
k (t)(−1)m j + α∗

k(t)

)
ĉk

]
(B.1)

and the density matrix elements ρ{n p},{m p}(t) of the impurities are obtained by tracing over the
bath,

ρ{n p},{m p}(t) = exp
{
i2{n p},{m p}(t)

}
exp

{
i4{n p},{m p}(t)

}
ρ{n p},{m p}(0)

×〈{n p}|

∏
k

TrB,k

{
Û k,D(t)|{n p}〉〈{m p}| ⊗ ρkÛ †

k,D(t)
}

|{m p}〉, (B.2)

where TrB,k denotes the trace over each Bogoliubov mode of the environment and the phases

2{n p},{m p}(t) = h̄2
∑

k

fk(t)

4E2
k

∑
i j

<
(
�i

R,k − �i
L,k

) (
�

j∗
R,k − �

j∗
L,k

) [
(−1)ni +n j − (−1)mi +m j

]
, (B.3)

4{n p},{m p}(t) = h̄2
∑

k

fk(t)

E2
k

<

∑
j

(
�

j∗
R,k + �

j∗
L,k

)∑
i

(
�i

R,k − �i
L,k

)
(ni − mi) (B.4)

come from the unitary operators in (19). Performing cyclic permutation inside the trace and
using the identity exp(M̂) exp(N̂ ) = exp(M̂ + N̂ ) exp[M̂, N̂ ]/2, which holds for operators M̂
and N̂ that commute with their commutator, the trace TrB,k in (25) becomes

exp

[
i=

(∑
j

A j
k(t)(−1)n j − αk(t)

)(∑
j

A j∗
k (t)(−1)m j − α∗

k(t)

)}

×TrB,k

{
exp

[
2
∑

i

(ni − mi)
(

Ai
k(t)ĉ

†
k − Ai∗

k (t)ĉk

) ]
ρk

}

≡ exp
{
i1{n p},{m p}(t)

}
TrB,k

{
exp

[
2
∑

i

(ni − mi)
(

Ai
k(t)ĉ

†
k − Ai∗

k (t)ĉk

) ]
ρk

}
.

(B.5)

The trace over the thermal bath of the displacement operators is well-known [23],

TrB,k

[
exp

{
gkĉ†

k − g∗

kĉk

}
ρk

]
= exp

{
−

|gk|
2

2
coth

βEk

2

}
, (B.6)

where β = (kBT )−1, and leads to equation (25).
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Appendix C. The coupling constant in a deep optical lattice

In a deep optical lattice, the ground state wavefunctions of each well can be approximated with
those of harmonic oscillators,

ϕi,N (x) =
1[

π 3x2
0 y2

0 z2
0

]1/4 exp

[
−

(x − xi,N )2

2x2
0

−
(y − yi,N )2

2y2
0

−
(z − zi,N )2

2z2
0

]
. (C.1)

Here N = L, R, and x0 =
√

h̄/(mωx), y0 =
√

h̄/(mωy), and z0 =
√

h̄/(mωz), where the ω’s are
the trapping frequencies of the harmonic trap approximating the lattice potential at bottom of
L and R wells of the lattice site i . The coupling frequencies (17) of the spin-boson model then
become

�i
n,k =

gAB
√

n0

h̄
(|uk| − |vk|)

∫
d3x |ϕi,L(x)|2eik·x

=
gAB

√
n0

h̄
(|uk| − |vk|) e−k2σ 2/4eikx xi,n , n = L, R (C.2)

having assumed identical confinement in the three directions, σ = x0 = y0 = z0.

References

[1] Bloch I 2005 J. Phys. B 38 S629
Bloch I 2005 Nat. Phys. 1 23
Bloch I 2008 Nature 453 1016

[2] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[3] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004

Nature 429 277
[4] Billy J et al 2008 Nature 453 891
[5] Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M

2008 Nature 453 895
[6] Jaksch D, Briegel H-J, Cirac J I, Gardiner C W and Zoller P 1999 Phys. Rev. Lett. 82 1975
[7] Jaksch D and Zoller P 2005 Ann. Phys. 315 52
[8] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen De A and Sen U 2007 Adv. Phys. 56 243
[9] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885

[10] Recati A, Fedichev P O, Zwerger W, von Delft J and Zoller P 2005 Phys. Rev. Lett. 94 040404
[11] Griessner A, Daley A J, Clark S R, Jaksch D and Zoller P 2007 New J. Phys. 9 44
[12] Klein A and Fleischhauer M 2005 Phys. Rev. A 71 033605
[13] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[14] Garcia-Ripoll J J and Cirac J I 2003 New J. Phys. 5 76
[15] Charron E, Tiesinga E, Mies F and Williams C 2002 Phys. Rev. Lett. 88 077901
[16] Klein A, Bruderer M, Clark S R and Jaksch D 2007 New. J. Phys. 9 411
[17] Stringari S and Pitaevskii L P 2003 Bose–Einstein Condensation (Oxford: Oxford University Press)
[18] Mahan G D 1990 Many-Particle Physics (New York: Plenum)
[19] Micheli A, Jaksch D, Cirac I J and Zoller P 2003 Phys. Rev. A 67 013607
[20] Dalvit D A R, Dziarmaga J and Zurek W H 2000 Phys. Rev. A 62 013607
[21] Louis P J, Brydon P M R and Savage C M 2001 Phys. Rev. A 64 053613
[22] Huang Y P and Moore M G 2006 Phys. Rev. A 73 023606

New Journal of Physics 11 (2009) 103055 (http://www.njp.org/)

http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nature07126
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevLett.82.1975
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.94.040404
http://dx.doi.org/10.1088/1367-2630/9/2/044
http://dx.doi.org/10.1103/PhysRevA.71.033605
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1088/1367-2630/5/1/376
http://dx.doi.org/10.1103/PhysRevLett.88.077901
http://dx.doi.org/10.1088/1367-2630/9/11/411
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1103/PhysRevA.62.013607
http://dx.doi.org/10.1103/PhysRevA.64.053613
http://dx.doi.org/10.1103/PhysRevA.73.023606
http://www.njp.org/


19

[23] Palma G M, Suominen K-A and Ekert A K 1996 Proc. Soc R. A 452 567
[24] Reina J H, Quiroga L and Johnson N F 2002 Phys. Rev. A 65 032326
[25] Braun D 2002 Phys. Rev. Lett. 89 277901

Braun D 2005 Phys. Rev. A 72 062324
[26] Averin D V and Fazio R 2003 JETP Lett. 78 1162
[27] DeChiara G, Cirone M A, Palma G M and Recati A 2009 in preparation
[28] Anderlini M et al 2007 Nature 452 448
[29] Sebby-Strabley J, Anderlini M, Jessen P S and Porto J V 2006 Phys. Rev. A 73 033605
[30] Jaksch D, Bruder C, Cirac J, Gardiner C and Zoller P 1998 Phys. Rev. Lett. 81 3108
[31] Weiss S B, Bhattacharya M and Bigelow N P 2003 Phys. Rev. A 68 042708
[32] Castin Y 2001 Coherent Atomic Matter Waves (Les Houches Summer School Session LXXII) ed R Kaiser,

C Westbrook and F David, pp 1–136
see also http://arXiv:cond-mat/0105058

[33] Hu B L, Paz J P and Zhang Y 1992 Phys. Rev. D 45 2843
[34] Doll R, Wubs M, Hänggi P and Kohler S 2006 Europhys. Lett. 76 547
[35] Wei J and Norman E 1963 J. Math. Phys. 4 575

Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer)

New Journal of Physics 11 (2009) 103055 (http://www.njp.org/)

http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1103/PhysRevA.72.062324
http://dx.doi.org/10.1134/1.1644314
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevA.68.042708
http://arXiv:cond-mat/0105058
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1209/epl/i2006-10326-y
http://dx.doi.org/10.1063/1.1703993
http://www.njp.org/

	1. Introduction
	2. The Hamiltonian
	3. Exact reduced impurities dynamics
	4. Results for the decoherence
	4.1. Single impurity decoherence
	4.2. Collective decoherence of two impurities
	4.3. Decoherence in one dimension

	5. Conclusions
	Acknowledgments
	Appendix A.  Disentangling the time-evolution operator 
	Appendix B.  Derivation of the dynamics of the impurities 
	Appendix C.  The coupling constant in a deep optical lattice 
	References

