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Abstract
The purpose of this work is to develop an image-based de-noising algorithm 
that exploits complementary information and noise statistics from multi-
modal images, as they emerge in x-ray tomography techniques, for instance 
grating-based phase-contrast CT and spectral CT.

Among the noise reduction methods, image-based de-noising is one 
popular approach and the so-called bilateral filter is a well known algorithm 
for edge-preserving filtering. We developed a generalization of the bilateral 
filter for the case where the imaging system provides two or more perfectly 
aligned images. The proposed generalization is statistically motivated and 
takes the full second order noise statistics of these images into account.  
In particular, it includes a noise correlation between the images and spatial 
noise correlation within the same image.

The novel generalized three-dimensional bilateral filter is applied to 
the attenuation and phase images created with filtered backprojection 
reconstructions from grating-based phase-contrast tomography. In comparison 
to established bilateral filters, we obtain improved noise reduction and at the 
same time a better preservation of edges in the images on the examples of 
a simulated soft-tissue phantom, a human cerebellum and a human artery 
sample. The applied full noise covariance is determined via cross-correlation 
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of the image noise.
The filter results yield an improved feature recovery based on enhanced 

noise suppression and edge preservation as shown here on the example of 
attenuation and phase images captured with grating-based phase-contrast 
computed tomography. This is supported by quantitative image analysis. 
Without being bound to phase-contrast imaging, this generalized filter is 
applicable to any kind of noise-afflicted image data with or without noise 
correlation. Therefore, it can be utilized in various imaging applications and 
fields.

Keywords: bilateral filter, de-noising, noise covariance, phase-contrast CT, 
edge-preserving filter, multi-channel

(Some figures may appear in colour only in the online journal)

1.  Introduction

Image noise is one of the major factors which can significantly reduce the diagnostic quality 
in computed tomography (CT). As it is bound to the radiation dose, it can be decreased by 
increasing the radiation exposure. Consequently, higher-quality CT images normally imply 
a higher radiation dose applied to the patient, which can be even higher for multi-modality 
CT like dual-energy CT. As extended radiation exposure increases the chance of a radiation 
induced cancer (Brenner and Hall 2007), there is a need for tools to reduce the noise level in 
images while preserving diagnostic information.

One way to improve image quality and to reduce noise is to use iterative reconstruction 
techniques (Koehler et al 2011a, Gaass et al 2012, Noël et al 2013, Hahn et al 2015). Those 
techniques have proven high dose reduction potentials in the clinical arena (Noël et al 2013). 
However, those iterative approaches require increased computation time compared to analyti-
cal reconstructions. A computationally more attractive solution is to use an image de-nosing 
algorithm. For classical absorption-based x-ray CT several methods have been proposed to 
de-noise in projection (Manduca et  al 2009) or in image space (Kalra et  al 2003, Bruder 
et al 2009). The simplest way to achieve reduced noise in images is low-pass filtering. This  
however leads to a loss in spatial resolution and thus often to a loss of diagnostic quality. More 
advanced image-based methods fall into the class of so-called edge-preserving de-noising 
(Kervrann and Boulanger 2006, Chatterjee and Milanfar 2012). The general idea behind this 
type of algorithm is to detect (implicitly or explicitly) edges and to avoid low-pass filtering 
across these edges. The bilateral filter (Tomasi and Manduchi 1998) is one popular member 
of this class. Standard bilateral filtering and its extension for two aligned images exploiting 
their complementary edge information (Koehler and Roessl 2012) assume white noise in the 
image to be filtered.

One limitation in absorption imaging is the availability of only a single signal. However, 
new technologies, such as spectral photon-counting (Roessl and Proksa 2006, 2007) or  
grating-based phase-contrast CT (Pfeiffer et al 2007b, Bravin et al 2013), are on the horizon 
and offer multiple signal bands from a single data acquisition. Especially phase-contrast imag-
ing, which provides absorption, phase, and scattering information, has undergone a remark-
able development (Schleede et al 2012, Grandl et al 2014, Herzen et al 2014). The enhanced 
soft-tissue contrast is particularly useful in computed tomography and yields complementary 
data to standard absorption imaging (Pfeiffer et al 2007a, Herzen et al 2009). Like in all imag-
ing systems, the reconstructed phase-contrast images suffer from noise.
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In this work, we explore the possibility to leverage all available information to generate 
fast and reliable data with reduced noise. We apply a more general approach where a possi-
ble noise correlation is taken into account. For phase-contrast CT, the attenuation image has 
predominantly high-frequency noise, whereas the phase image suffers from lower-frequency 
noise exhibiting a high spatial correlation. The goal of this work is to include this additional 
information into the bilateral filter. We also investigate the advantages of three-dimensional 
(3D) over two-dimensional (2D) filtering. Furthermore, we show the influence of the noise 
covariance on the weighting of neighboring image voxels. Finally, the capability of the pro-
posed algorithm to reduce noise and to preserve diagnostic quality is illustrated on simulated 
data for a multi-inlay soft-tissue phantom and on experimental phase-contrast reconstructions 
of a human cerebellum as well as a human heart artery sample.

2.  Materials and methods

2.1.  Bilateral filtering

The concept of bilateral filtering (Tomasi and Manduchi 1998) is based on a selective weight-
ing scheme for averaging neighboring pixels to achieve a de-noised image. The general form 
of a bilateral filter contains a distance-dependent domain filter part ( )′d x x,  and a gray-value-
dependent range filter part ( ( ) ( ))′r f x f x, :

˜ ( )
( )

( ) ( ) ( ( ) ( ))∫= ′ ′ ′ ′
−∞

∞
f x

N x
f x d x x r f x f x x

1
, , d ,� (1)

with x being the position of the central pixel, ′x  the positions of neighboring pixels, and N(x) 
a normalization factor. While the domain filter accounts for local weighting of neighboring 
pixels the range filter part enforces the value-dependent component to prevent filtering across 
edges. For domain and range filter part normally a Gaussian function is used. It depends either 
on the Euclidean pixel distance or on the pixel value difference:
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with σd being a width parameter of the filter kernel size and σf  the noise standard deviation 
of the considered reconstruction values (e.g. attenuation noise standard deviation σa). The 
Gaussian weighting of gray value differences implies the model of white or uncorrelated noise.

In image processing of colored images three color bands have to be treated. In most cases 
they are saved as red, green and blue band (rgb). When they are filtered separately, the colors 
at the edges of features can be corrupted because the contrast levels in the different bands can 
be very different. Therefore, the transition of colors can vary drastically between bands which 
creates color seams at edges. This can be avoided by transferring the images into the CIE-lab 
color space which is related to the human perception (Tomasi and Manduchi 1998). There, 
combined filtering of the image bands produces best results because small changes in color 
values corresponds to small changes of color in visual perception.

In contrast to de-noising colored images, where noise is assumed to be white and uncor-
related in each band, different modalities x-ray imaging show different noise structures. 
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Grating-based phase-contrast computed tomography shows high-frequency noise in the atten-
uation band and low-frequency noise in the phase band (Koehler et al 2011b). In this work, 
we include the spatial noise distribution in the extended filter approach into the weighting 
process. The different aligned signals of grating-based phase-contrast imaging are from this 
point forward referred to as bands.

The class of bilateral filters applies a selective weighting scheme according to which a 
voxel is averaged with its neighbors to obtain the output image. The relative weight for each 
neighboring voxel depends on the spatial distance and gray-value distance to the central voxel. 
Since a voxel has two bands we consider in the following two voxel positions and two bands 
to derive the relative weight for the averaging process.

This filter approach is developed on the example of grating-based phase-contrast imaging 
and therefore we refer to the volumetric image gray values of the bands by a for attenuation 
and p for phase. However, it is not limited to this particular imaging technique and can be 
applied to any registered multi-band data with or without intra-band (spatial) and/or inter-
band noise correlation.

The general filter formula is derived by investigating the probability of two pixels  
having a certain gray value distance under the influences of noise. Given a vector of gray val-
ues ( )a a p p, , ,1 2 1 2  with their respective noise realizations ( )n n n n, , ,1 2 3 4 , the following Gaussian 
model describes the noise distribution in two voxels in two bands:

( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠∝g n n n n n n n n S n n n n, , , exp

1

2
, , , , , , ,T

1 2 3 4 1 2 3 4 1 2 3 4� (4)

where n1 and n2 are the noise values of the two considered voxels in one band, n3 and n4 the 
noise of the same voxels in the other complementary band. The matrix S is the inverse of the 
noise covariance matrix of the two two-band voxels. In the case of two image bands the cova-
riance matrix C between two voxels is a ×4 4 matrix. Symmetry arguments and the assump-
tion of stationary noise lead to:
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with ( )=s Skl kl being the elements of the inverted covariance matrix. Since the variables are in 
the order ( )a a p p, , ,i j i j  with i being the treated central voxel and j the corresponding voxels of 
the weighting array the upper left ×2 2 sub-matrix represents the spatial noise correlation of 
the first band and the bottom right ×2 2 sub-matrix the spatial noise correlation of the other 
band. The other matrix entries relate to the linkage between the two bands.

The idea for the proposed range filter is to use the marginal likelihood that a certain differ-
ence is observed in the two bands, given the assumption that the true values of the two voxels 
are the same in each band, respectively. Therefore, we introduce the difference of the gray  
values in one band as ∆a and ∆p. Given the assumption that the true values of the two 
voxels are the same, these differences are completely due to noise, i.e. = ∆ −n a n2 1 and 
= ∆ −n p n4 3. After inserting these into (4), the marginal likelihood is calculated by integrat-

ing over all possible noise realizations:
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This equation represents the generalized range filter which takes the noise correlation into 
account by utilizing the inverse covariance matrix. For the case of completely uncorrelated 
noise, the covariance matrix becomes diagonal C  =  cii and therefore, also all off-diagonal  
elements of S vanish. As the diagonal elements of the inverse covariance matrix of uncorre-
lated noise are just the inverse variances of the noise ( =

σ
sii

1

i
2), the range filter boils down to:
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Thus, this cuts down to the multi-band range filter (Koehler and Roessl 2012) except for 
the additional factor of two in the denominator of the exponent. It can be explained by the 
statistically motivated derivation of the filter presented here. The variance of the differences 
∆a and ∆p needs to be used, which is twice the variance of the noise in the band. It also can 
be explained from a different point of view. In a normal Gaussian distribution the statistically 
varying quantity would be subtracted from the mean value of the distribution. Therefore, the 
statistical properties of the gray values apply. Here, we do not subtract a mean value, but a  
different voxel value being also afflicted by statistical fluctuations resulting in a doubled vari-
ance of the distribution.

2.2.  Investigated range filters

We applied the filters to attenuation and phase reconstructions after filtered backprojection 
(FBP). The following equations show the filtered attenuation ã band. The formulation of the 
corresponding filtered phase p̃ is straightforward. The investigated filter based on equation (7) 
is referred to as covariance-based filter which takes additional information from the comple-
mentary band and noise correlations of the datasets into account:
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where xj is the considered voxel in the neighborhood Ni of the central voxel xi. For the exam-
ple of grating-based phase-contrast imaging, the mixed term vanishes in the filter formula as 
attenuation and phase noise are not correlated (Weber et al 2011). However, for other imaging 
modalities with inter-band correlation this might not be negligible. We compared this filter to 
the standard Gaussian bilateral filter, where the image bands are treated separately. The single-
band filter is defined as:
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The multi-band filter (Koehler and Roessl 2012) uses a weighting procedure deduced 
from a common range factor derived simultaneously in both bands. It can be written as:
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It uses the edge information from both bands to recover more reliable weights but does not 
consider noise correlation.

2.3.  Determination of the noise covariance

To derive the full noise covariance matrix, a common approach is evaluating noise in a region 
that is known to contain no signal information. The fundamental assumptions for this approach 
is that the noise in the images is at least approximately stationary (Kak and Slaney 2001).  
In other words the noise properties do not vary across the image. This hypothesis can be veri-
fied for images generated with FBP, keeping in mind that we do not suffer from photon starva-
tion. Additionally, the noise variance in the projections of our measurements, and therewith in 
the image volume, is almost constant across the projections as all objects were submerged in a 
water bath during measurement and do not contain highly absorbing materials.

The covariance analysis in Fourier domain is based on the Wiener–Khinchin theorem 
(Cohen 1998) for stationary processes as considered here as cross-correlation of the sample-
free region of the different bands. For noise analysis, the mean value was subtracted for each 
band and zero padding to the doubled size was performed. The 3D spatial correlation was then 
calculated according to:

( )( ) ( )
=

⋅′ ′−F F F
A

B B

N
,kl

k l

B

1

� (12)

with A being the 3D spatial correlation of the background volume B ( ′B  zero padded) between 
band k and l. It is normalized by the number of voxels in the background region NB and 
F  represents the 3D Fourier transform. For k  =  l the spatial correlation of the noise region 
within each band is called the autocorrelation. The main diagonal elements of the covariance 
matrices (see equation (5)) correspond to the central order of the respective autocorrelation 
(variance). The spatial correlation corresponds to the remaining elements of the covariance 
matrix. For grating-based phase-contrast imaging the inter-band correlation between attenua-
tion and phase Akl vanishes for ≠k l as the attenuation and phase noise do not influence each 
other (Weber et al 2011). This way the covariance matrix is filled with the respective spatial 
autocorrelation depending on the distance to the central voxel for each voxel in the weight-
ing array. The axial correlation is expected to be isotropic with a short-range correlation for 
the attenuation band. The phase image provides long-range linkage due to the low-frequency 
noise originating from the phase integration during reconstruction. Figure  1 exhibits the  
spatial correlation of noise in both investigated signal bands.

As theoretically expected the axial correlation of attenuation is of short range whereas the 
the corresponding phase investigations show long range correlation. Additionally, the FBP 
algorithm would suggest an uncorrelated noise structure in other slices because of its slice-
independent nature. We observed a significant coronal correlation of short range comparable 
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in attenuation and phase which could not be explained by the projection geometry. It stems 
from a correlation between adjacent detector pixels. This originates from charge sharing of 
the photon-counting detector. The effect is caused by a photon with at least the doubled detec-
tor threshold energy triggering two pixels instead of one. This charge sharing correlation of 
1 px range is isotropic in projection space which pursues into the reconstruction via FBP and 
causes the observed vertical linkage. Note, that this effect is consequently also considered in 
the weighting of the covariance-filter.

2.4. Tools for quantitative analysis

2.4.1.  Contrast-to-noise ratio.  A very basic attempt to quantify the quality of noisy images is 
the contrast-to-noise ratio of homogeneous regions. This well known technique compares the 
value difference of two regions of interest to the corresponding standard deviation of the noise:

( )σ σ
=

| − |

+

a a
CNR ,1 2

1

2 1
2

2
2� (13)

where ai are the mean gray values within regions 1 and 2. The σi
2 correspond to the respective 

noise variance. It yields reliable information about noise suppression within flat regions of 
the image. Therefore, a high CNR is desirable. However, the behavior of de-noising filters at 
edges or structures cannot be characterized by CNR.

2.4.2.  Structural similarity index.  A popular way to characterize image quality, if there is a 
reference image it can be compared to, is the structural similarity index. It attempts to quantify 
the image impression for human perception with respect to the reference by means of lumi-
nance, contrast, and structure (Wang et al 2004, Wang and Bovik 2009). It is used in this work 
as:
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The image is characterized via the local mean value μ and the local standard deviation σ 
(within a certain neighborhood of the image). In this formulation f refers to the evaluated 

Figure 1.  The axial and transversal spatial correlation of the attenuation (left side) and 
the phase (right side) noise. They were acquired from a sample-free region of the human 
artery sample. The correlation is shown in a correlation range of [−0.1, 1].

axial correlation coronal correlation
attenuation

axial correlation coronal correlation
phase
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and r to the reference image. Here, σfr corresponds to the local cross-correlation of these two 
images. The constants c c c, ,L C S ensure numerical stability. They are small and set according 
to Wang et al (2004). For perfectly matching image and reference the structural similarity 
is equal to one. Any difference between the two images results in a decreased similarity. 
Therefore, the image quality is superior for higher the structural similarity. However, for this 
evaluation a reference image is mandatory which is often not available.

2.4.3.  Histogram entropy.  The histogram or image entropy is a quantitative analysis tool 
which utilizes the gray value distribution of a given image for quality assessment. It originates 
from the basis of information theory (Shannon and Weaver 1949):

( )∑= −
=

H K p plog ,
k

N

k k
1

� (16)

where pk is the probability density function of the image and K being a normalization constant. 
Here, we apply an estimated probability density function (Parzen window) and normalize it to 
the maximum entropy for the numerical evaluation (Donath et al 2006):
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−
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hN

g n n N
1

log log ,
j

N

j j j
1

2 1

2 2� (17)

  ( )= =
H

H
H NHE with log ,

max
max 2� (18)

with ∆g being the bar width and nj being the number of gray values contributing to the esti-
mated probability density function. The width of the Parzen window is h and the total number 
of contributing pixels is N. An image without any feature information is just white noise which 
results in the maximum entropy Hmax. Therefore, the image contains more feature information 
from an information theory point of view for lower histogram entropy. The histogram entropy 
can also be used for optimization purposes (Schüller et al 2015). Therefore it can be regarded 
as image quality metric.

2.5.  Simulation of a soft-tissue phantom

For characterizing qualitative and quantitative performance of the proposed bilateral filter, a 
soft-tissue phantom with different material inlays is used (Koehler et al 2011b). It is a math-
ematical phantom using inlays with the characteristic values of human tissue in attenuation 
and phase.

2.6.  Scanning parameters

The filters were applied to image data of a human artery and a cerebellum sample which were 
acquired at a symmetric grating-based Talbot-Lau interferometer lab setup with a rotation 
stage, a fixed rotating-anode source and a PILATUS II photon-counting detector. All grat-
ings have a period of 5.4 μm and an inter-grating distance of 80 cm. The distance between 
source and detector is 137 cm and the distance between source and rotation axis is 99 cm 
which translates into almost parallel beam geometry. To avoid phase wrapping the formalin-
fixated samples were put into plastic cylinders (3 cm in diameter) and imaged in a water bath. 
The x-ray tube was operated at 40 kVp resulting in an effective energy of  ≈27 keV. Both 
samples were measured with 11 steps for each of the 1200 projections. The heart artery was 
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imaged at different exposure times per step (long exposure: 3.6 s, medium exposure: 0.4 s, and 
short exposure: 0.144 s). The cerebellum sample was measured with only a long exposure of 
5.0 s per step. From those stepping images absorption and differential phase projection were 
acquired (Weitkamp et al 2005).

3.  Results

Here, we want to assess the performance of the novel covariance-based bilateral filter.  
To achieve optimal filter results, we first investigate 2D slice-based and 3D volumetric filter-
ing in section  3.1. The influence of the extended weighting scheme is also exhibited here 
(see section 3.2). It depicts how the additional information changes the voxel weights. In the 
following sections 3.3–3.5 the filter performance is evaluated on the examples of a simulated 
soft-tissue phantom, a cerebellum, and heart artery sample.

Throughout all filters and samples the domain filter has a width of σ = 4d  px. The uncer-
tainties of the attenuation and phase signal σa and σp for the single-band and multi-band filter 
were measured by calculating the standard deviation of gray values in a region known to con-
tain no change in attenuation values, keeping in mind, that the noise in the image is approxi-
mately stationary. In this example, the regions contain only formalin.

3.1.  Influence of 2D or 3D filtering

For a given range filter, the amount of noise reduction that can be achieved with bilateral filter-
ing is influenced by the width of the Gaussian domain filter part given by the width parameter 
σd. Of course, the wider the domain filter is, the more voxels contribute to the filtered output 
image and the better the noise reduction works. Another option for the implementation of the 
filter is whether to operate on two-dimensional (2D) images independently or to operate on 
the full three-dimensional (3D) volumes. For a given width parameter, many more pixels are 
used for averaging and better noise suppression is expected for 3D filtering. Another impor-
tant aspect is the spatial correlation of the noise in the phase image. It is dominated by low- 
frequency noise, which cannot be removed efficiently by any low-pass filter of reasonable 
size, especially in 2D de-noising of axial slices. Since noise is almost uncorrelated across 
slices, the remaining low-frequency noise in axial images appears as horizontal streaks in 
coronal or sagittal views as shown below.

In figure 2, we illustrate the difference between 2D (axial) and 3D (volumetric) filtering. 
These single-band filtered images have a reduced noise level compared to the unfiltered FBP. 
The 3D filtered slice provides better results due to the larger number of voxels used in the 
domain filter. Additionally the differential phase projections cause low-frequency noise in 
axial slices and introduce strong noise streaks in the coronal slices as expected. These streaks 
are contained in 2D filtering but reduced in 3D de-noising. In all subsequent investigations, 
3D filtering is preferred over 2D filtering because of its improved results.

3.2.  Integrating complementary information

Pure domain filters like a simple Gaussian or mean filter smooth over edges and features of 
the approximate size of their kernel. Bilateral filtering prevents this by taking the gray value 
distance and the noise standard deviation into account. However, if an edge or feature is in 
the range of noise it gets washed out. This unwanted behavior is partially overcome by the 
multi-band or covariance-based filter because they include the combined information of both 
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bands. If this edge or feature (being faint in one band) has a distinct value difference in the 
complementary image band, the two materials can be well separated there which translates 
into an improved overall weighting. To show the influence of the weighting scheme beyond 
the contribution of the Gaussian domain filter part, the range weights of the attenuation image 
obtained by the different bilateral filters are displayed in figure 3. For completeness the weights 
of the single-band covariance filter are also listed there but not pursued further in this work.

The attenuation detail does not show a distinct feature whereas there is an edge in the phase 
image. The weights in figure 3 follow the respective case in equation (19).
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The region of interest shown in the second column in figure 3 contains an edge between 

gray and white matter of the brain sample as clearly visible in the phase image. However, it is 
almost completely hidden by noise in the attenuation image. Consequently, both range filter 
values of the single band filters (illustrated in the two images top right) would smooth signifi-
cantly across the edge. The multi-band and covariance-based filter incorporate the additional 
image band and therefore apply more suiting weights. In addition, the weights of contributing 

Figure 2.  The unfiltered, 2D and 3D single-band filter results of an axial and a coronal 
slice from phase FBP of the human artery sample. The noise level is reduced further 
in 3D filtering than in the 2D case. Additionally, the noise structure in coronal slices is 
partially overcome by 3D de-noising.
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voxels using the full noise covariance matrix are higher than the corresponding ones in the  
single- and multi-band filter. Finally, the voxels around the central voxel of the weighting 
array are less reliable because their noise exhibits a non-negligible correlation. The covari-
ance-based filters account for that by decreasing the weight depending on the noise correlation 
as indicated by the red arrows in figure 3.

Using single-band, multi-band and covariance-based range weights, figure 4 shows a detail 
image view of the artery wall’s attenuation. The feature border, namely the inner wall of the 
artery, is partially obstructed by noise in the unfiltered attenuation image in particular in the 
lower part of the image. It cannot be distinguished from the formalin since the attenuation 
of the formalin inside the vessel is very similar to the attenuation of the vessel wall. The  
single- and multi-band filter reduce the noise level by approximately the same amount, and 
the covariance-based filter decreases noise even further. However, on the inner edges of the 
artery wall the multi-band and covariance-based versions recover a more prominent edge than 
the single-band bilateral filter because the range filter part is influenced by the higher phase 
signal contrast. The best result is achieved by the covariance-based filter combining the small-
est noise level and sharp edges.

3.3.  Filtering results of the simulated soft-tissue phantom

Here, the results of the different filters by means of the simulated soft-tissue phantom 
with multiple inlays are characterized. In figure 5, the filtering results for this phantom are  
displayed for the established bilateral filters and the new covariance-based filter for the absorp-
tion and phase signal, respectively and compared to the unfiltered input volume. Visually, the 

Figure 3.  The weighting contribution of the range filter part for the different filter types 
in an axial image. The images to the left show unfiltered attenuation and phase of a 
human cerebellum sample with a detail zoom. A red box indicates the central voxel 
of the weighting array. The images to the right display the weight of the respective 
filter type for the attenuation image in the value range of [0, 1]. In general, the weights 
including covariances are higher than for the normal case resulting in a stronger 
smoothing. The red arrows highlight the voxels closest to the central voxel, where the 
weight is changed most due to incorporating the covariance information. This can be 
interpreted as weighting correlated voxels less.

attenuation

phase

single-band weights single-covariance weights

multi-band weights covariance-based weights
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covariance-based de-noising outperforms both established filters for both imaging modalities. 
The single- and multi-band filter produce comparable results. Only for one of the inlays in the 
attenuation images the multi-band filter yields superior outcome over the single-band method, 
shown in the detail feature of figure 5. There, complementary edge information introduced 
from the phase prevents from filtering over the inlay edge which is partially hidden in the 
noise.

This visual image impression is supported by the quantitative analysis shown in table 1. 
Here, the contrast-to-noise ratio, the structural similiarity index with respect to a given refer-
ence image, and the histogram entropy are listed. As this is a simulated dataset the noiseless 
phantom is used as reference for the structural similarity index.

The contrast-to-noise ratio increases from the unprocessed input to the single- and 
multi-band results to the covariance-based filter. However, the CNR is not calculated for 

Figure 5.  The attenuation and phase reconstructions of the simulated phantom with 
results of bilateral filtering. The highlighted box shows the position of the detail feature.
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Figure 4.  A detail from an axial slice of the different filter results of the absorption 
signal of an artery wall. The image to the right shows the same detail in the phase image 
to give an idea about the information in the other band.
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the noiseless phantom as the ideal phantom does not have any noise. The structural similar-
ity is calculated with respect to the noiseless phantom reference for all filter results. The 
increasing structural similarity index entailing improved de-noising performance can be 
seen for the attenuation as well as for the phase image. However, the SSIM cannot be inter-
preted as an absolute figure of merit as it is influenced by constants which enforce numerical  
stability. Therefore, only a relative comparison within one imaging modality is possible. The 
structural similarity for the noiseless phantom is perfect ( =SSIM 1.) meaning total similar-
ity because it is compared with itself. A low histogram entropy suggests reduced noise and 
sharp edges which result in sharper histogram peaks. Therefore, low entropy indicates better 
image quality. All numbers identify the covariance-based filter as the best of all investigated 
filters. For this phantom the single-band filter slightly outperforms the multi-band filter for 
each of the investigated quantitative values. This is due to the fact, that during the weighting 
process of the multi-band filter an additional weight of ⩽ 1 is multiplied to all contributing 
gray values. For the central voxel this weight is equal to one because ∆ = ∆ =a p 0ii ii . This 
increases the relative weight of the central voxel which slightly decreases the smoothing of 
the filter. However, this effect is negligible for reasonable sizes of the weighting array and 
the multi-band filter gains improved results at faint edges from incorporating complementary 
information as shown in figure 4.

3.4.  Filtering results of the cerebellum sample

A comprehensive comparison of the single-band, multi-band, and covariance-based filter 
is conducted on the cerebellum sample from which axial and coronal slices are shown in  
figure 6. Obviously, the noise level in both attenuation and phase is reduced by all bilateral 
filters. Single-band and multi-band filters have approximately the same noise level while the 
multi-band filter provides better edge preservation because it considers the additional image 
band. The best results are achieved with the covariance-based filter since the noise level is 
reduced even further without smoothing over the edges. This is especially noticeable in the 
attenuation images where the feature borders often vanish in the noise of the unprocessed 
reconstruction because of the low soft tissue contrast of this signal. In the coronal slices of the 
phase the 3D filtering helps to partially overcome the horizontally oriented noise structure. 
The covariance-based filter yields again the best image quality and feature recovery through 
suppressing the noise.

Table 1.  Quantitative bilateral filter performance: contrast-to-noise ratio, structural 
similarity index and histogram entropy for simulated data.

Unprocessed
Single-
band

Multi-
band

Covariance-
based

Noiseless 
phantom

CNR 10.88 21.33 21.19 31.71 —
Attenuation SSIM 0.461 0.756 0.751 0.869 1.

HE 0.346 0.283 0.284 0.247 0.073

CNR 6.92 13.44 13.35 19.48 —
Phase SSIM 0.844 0.948 0.947 0.972 1.

HE 0.254 0.195 0.195 0.162 0.081

Note: The contrast-to-noise ratio is measured between the material in which the inlays are inserted and a back-
ground region, as the inlays are too small to give a reliable result. For the calculation of the structural similarity as 
well as histogram entropy the background regions outside the main cylinder are excluded.
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3.5.  Filtering results for different image qualities of the heart artery sample

To perform quantitative analysis alongside qualitative investigations, a human heart artery 
sample was measured at different exposure times which is shown in figure 7 as the second test 
case for the different bilateral filter types. Since the sample was measured at different expo-
sure times, the unfiltered long exposures can serve as reference for evaluating the de-noising. 
In addition, the filtered low-quality reconstructions can be visually compared to the unfiltered 
high-exposure references.

All filters reduce the noise level in the images with the best result being achieved by 
the covariance-based filter. The filters which use more bands achieve better results via an 
improved weighting. This is most apparent at the artery walls in the attenuation images where 
the complementary phase band saves the filter from smoothing over faint edges. Additionally, 
the edges appear less jagged in the attenuation with the multi-band and even a little less with 
the covariance-based filter image. This effect can be observed best in the medium exposure 
attenuation or the short exposure phase image at the top border of the specimen. Furthermore, 
the attenuation benefits more from the phase image in this example than the other way around. 
This can be explained by the improved signal contrast of the phase images and by the high 
phase sensitivity of the setup.

Figure 6.  The attenuation and phase reconstructions of the cerebellum sample 
compared with results of bilateral filtering.
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Figure 7.  The attenuation and phase reconstructions of the artery sample of good, 
medium, and poor image quality compared with results of bilateral filtering.
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The quantitative analysis for the experimental results confirms the qualitative and descrip-
tive investigations. Here, the performance of the proposed algorithm is characterized via quanti
tative figures of merit which are given in table 2. The contrast-to-noise ratio, the structural 
similarity index, and the histogram entropy of the covariance-based bilateral filter results and 
are compared to the outcome of established bilateral filters and unprocessed reconstructions.

In this example, the single-band filter has a slightly better CNR than the multi-band method 
only for the phase image. For the attenuation band the CNR of the multi-band filter probably is 
improved, because the selected region (PMMA rod) has a very little CNR (1.07) in the unpro-
cessed image. Therefore, the edge is partially smoothed for the single-band case making the 
region not entirely flat. The higher structural similarity for the multi-band methods suggests 
superior de-noising because of the increased weighting due to incorporating the complemen-
tary band. However, the SSIM evaluation can be slightly biased as the reference image is the 
unfiltered long exposure FBP and not a noiseless image which entails a different noise realiza-
tion. In addition, also the measurements might have been different due to minor instabilities 
between both exposures in the experimental setup. The covariance-based filter yields the best 
contrast-to-noise ratio, structural similarity, and histogram entropy for both image bands. This 
supports the previous findings from the simulated soft-tissue phantom.

4.  Conclusion

We showed that the bilateral filter derived from a statistically motivated model reduces the 
noise level significantly in comparison to the classical formulation. Incorporating more bands 
in the weighting process and thus using complementary data decreases the possibility to 
smooth over faint features, especially when dealing with shorter exposure times. The covari-
ance-based filter accounts for the noise correlation in the image bands and weights voxels with 
positively correlated noise less. For 3D filtering the effect of including off-diagonal elements 
of the inverse covariance matrix is smaller in our application, since only a few voxels in the 
same slice differ considerably in weighting compared to the large amount of uncorrelated 
weights as the noise is not correlated in different axial slices. For the combined filtering of 
attenuation and phase reconstructions the inter-band correlation is negligible because the two 
signals are independent from each other. For other applications however, the impact of using 
the covariance-based filter is expected to be even larger. This could be the case for instance 
in decomposed dual-energy images, where a strong noise correlation is present between the 

Table 2.  Quantitative bilateral filter performance: contrast-to-noise ratio, structural 
similarity index and histogram entropy for human heart artery sample.

Unprocessed
Single-
band

Multi-
band

Covariance-
based

Long  
exposure FBP

CNR 1.07 2.06 2.07 3.08 5.39
Attenuation SSIM 0.425 0.579 0.603 0.690 1.

HE 0.409 0.382 0.382 0.365 0.344

CNR 9.97 18.16 18.13 23.99 48.22
Phase SSIM 0.623 0.748 0.752 0.797 1.

HE 0.403 0.383 0.383 0.375 0.358

Note: The short exposure scan is filtered and the long exposure FBP serves as reference for all structural similar-
ity calculations. The CNR is calculated from a formalin-containing region in the background and one region in the 
PMMA rod (bright circular region in phase FBP) in parts of the volumes not covered by the images. The histogram 
entropy and structural similarity are determined in the circular region inside the main plastic tube to exclude  
possible FBP artifacts in the outer areas.
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photo-electric and the Compton image (Morgan et al 1987, Kalender et al 1988, Gauntt and 
Barnes 1994).

Finally, the proposed extension to the bilateral filter reduces noise significantly and there-
fore has the potential to improve automated segmentation and help in medical diagnostics.
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