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Abstract

Cells dynamically change their molecular state in many situations, including development,
the cell cycle, the circadian rhythm, and regeneration. Single-cell assays allow us to de-
scribe this state with unprecedented resolution; for example, single-cell RNA sequencing
(scRNA-seq) quantifies the expression level of all genes. However, cells are destroyed upon
sequencing, making it difficult to use these assays to study continuous processes that ide-
ally require us to measure the same cell a few times. This fundamental difficulty has fueled
the development of many mathematical methods that use ensembles of single cells at dif-
ferent internal states to reconstruct the average trajectory of a "typical cell," a concept
known as trajectory inference. Recent experimental innovations, including RNA velocity
[1] and lineage-tracing assays, provide new opportunities to improve trajectory inference;
however, their harmonization with established modeling paradigms presents new mathe-

matical challenges that need to be addressed.

The first innovation we considered in this thesis is RNA velocity [1]; a strategy to estimate
the direction of expression changes based on the ratio of nascent versus mature transcripts.
Essentially, RNA velocity approximates a high-dimensional vector field in the state mani-
fold which points in a cell’s future direction. We introduced the CellRank framework and
showed how it combines RNA velocity with expression similarity into a Markov chain to
robustly estimate initial and terminal states of cellular state changes as well as fate prob-
abilities and driver genes. Applied to regeneration and reprogramming data examples,
we showed how CellRank generalizes trajectory inference beyond normal development, a
setting that most previous methods were limited to. The assumptions of the RNA velocity
model do not hold in every biological system; in an effort to make CellRank widely appli-
cable, we extended it towards other estimates of directed differentiation, thus transforming

CellRank into a unified framework for single-cell fate mapping.

The second innovation we considered is lineage-traced scRNA-seq data which simultane-
ously contains molecular state and clonal history. We introduced moslin, an optimal-
transport-based method to efficiently combine lineage with gene expression information to
obtain more accurate couplings of cells across time points. On simulated data, we con-
firmed that this strategy recovers ground-truth couplings more accurately compared to
methods that only use gene expression or lineage information and competing methods that
combine both sources of information. Applied to C. elegans developmental data, we showed
how a combination of moslin with CellRank recovered known decision driver genes. For
time-course data with only gene expression information, we greatly accelerated previous
approaches and made them applicable to much larger datasets. moslin is part of moscot,

a new spatio-temporal framework for scalable optimal transport applications in single-cell



genomics.

CellRank and moslin extend trajectory inference towards new experimental approaches
and massive datasets. They enable gaining a deeper understanding of dynamical processes

in biology based on single-cell genomics assays.



Zusammenfassung

Zellen dndern ihren molekularen Zustand dynamisch in vielen Situationen, unter anderem
in der Entwicklung, dem Zellzyklus und in Regenerationsprozessen. Einzelzell-Methoden
erlauben uns, diesen molekularen Zustand detailgetreu zu messen; zum Beispiel kann
die Einzelzell-Sequenzierung (scRNA-seq) die Expression jedes Gens messen. Allerdings
werden Zellen in diesem Prozess zerstort, dies erschwert die Anwendung von Einzelzell-
Methoden zur Untersuchung kontinuierlicher Prozesse. Hierzu wiirde man die gleiche Zelle
gerne mehrere Male vermessen. Dieses fundamentale Problem hat zur Entwicklung vieler
mathematischer Methoden beigetragen, welche aus Zellen in unterschiedlichen Zustanden
eine "typische" Zell-Trajektorie rekonstruieren. Dieses mathematische Konzept wird als
"Trajektorien-Rekonstruktion" bezeichnet. Neue experimentelle Errungenschaften erweit-
ern die Moglichkeiten der Rekonstruktion, allerdings schafft die Integration von neuar-
tigen Datenmodalitdten mit bestehenden Modelierungskonzepten mathematische Heraus-

forderungen, fiir die Lésungen gefunden werden miissen.

Die erste experimentelle Neuerung, mit der sich diese Arbeit beschéftigt, ist “RNA ve-
locity”; eine Strategie, mit welcher die Anderung der Genexpression aufgrund der Ra-
tio von neuer zu alter mRNA geschétzt werden kann. Wir stellen CellRank vor und
zeigen, wie mit dieser Methode ein Markov-Prozess aus RNA velocity und Ahnlichkeit
in der Genexpression aufgestellt werden kann. Mithilfe dieses Markov-Prozesses schétzen
wir die Anfangs- und Endzusténde zelluldrer Prozesse sowie die Entscheidungswahrschein-
lichkeiten und Entscheidungsgene. Wir zeigen anhand von Regenerations- und Reprogram-
mierungsbeispielen, dass CellRank in Situationen jenseits normaler Entwicklung angewandt
werden kann; dies war mit bisherigen Methoden groftenteils nicht méglich. Die Annah-
men hinter RNA velocity gelten nicht in jedem biologischen System, um CellRank den-
noch vielseitig einsetzen zu kénnen erweitern wir die Methode mit anderen Strategien zur
Abschitzung gerichteter Differenzierungsprozesse. Dadurch wird CellRank zu einer allge-

meinen Methode um Entscheidungsprozesse in Einzelzellen zu untersuchen.

Die zweite experimentelle Neuerung, mit der sich diese Arbeit beschéftigt, sind Ansétze,
welche Genexpression und Abstammung gleichzeitig in Einzelzellen messen. Wir stellen
moslin vor und zeigen, wie diese Methode Optimalen Transport anpasst, um effektiv
Abstammungs- mit Genexpressionsdaten miteinander zu kombinieren; dies ermdglicht uns,
genauere Verkniipfungen von Zellen iiber experimentelle Zeitpunkte hinweg zu rekonstru-
ieren. Wir zeigen auf simulierten Daten, dass unser mathematisches Modell besser funk-
tioniert als alternative Strategien die entweder nur Abstammungs-, nur Genexpressions-
daten oder eine Mischung aus beidem verwenden. Auf echten C. elegans Daten demonstri-

eren wir, wie moslin und CellRank miteinander kombiniert werden kénnen um Entschei-



dungsgene zu finden. Fiir Zeitreihen-Datensétze mit ausschlieflich Genexpressionsinfor-
mationen stellen wir eine neue Implementierung bereit, welche deutlich schneller ist als
vorhergehende Methoden und somit auf erheblich grofere Datensétze angewandt werden
kann. Wir integrieren moslin in moscot, unserem neuen Software Paket fiir skalierbare

Anwendungen von Optimalem Transport in der Einzelzellgenomik.

CellRank und moslin erweitern die Mdoglichkeiten der Trajektorien-Rekonstruktion hin zu
neuen experimentellen Ansétzen und groferen Datensédtzen. Die Methoden ermdglichen
tiefere Einblicke auf dynamische Prozesse in der Biologie, welche mithilfe von Einzelzellgenomik

vermessen wurden.
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Chapter 1

Introduction

The cell is the fundamental unit of life, and many processes in biology unfold at the level of
individual cells. Thus, to gain new insights into how cells develop, make decisions in health
and disease and react to external stimuli, we need to measure the molecular properties
of individual cells. For a long time, technical limitations made this difficult: individual
molecules like proteins or messenger RNAs (mRNAs) are small and usually available at
low copy numbers only, complicating their detection in single cells. The situation started
to change in 2009 when Tang et al. |2] introduced single-cell RNA-sequencing (scRNA-seq)
and applied it to 9 cells. Since then, there has been a “single-cell revolution”; advanced
molecular amplification and single-cell isolation techniques increased cellular throughput

and sensitivity while lowering costs. Current studies sequence up to 4M single cells [3].

While initially focused on gene expression, single-cell technologies have been extended to
the epigenetic, proteomic, and even multi-modal settings. These extensions have led to
numerous biological insights, including a better understanding of SARS-CoV-2 [4, 5] and
embryogenesis [6, 7|. Large international consortia, including the human cell atlas [8|
(HCA) and the LifeTime initiative [9], make use of single-cell technologies to further our
understanding of the cellular makeup of the human body and the dynamical processes

underlying health and disease, respectively.

While single-cell technologies have advanced in several ways, they still share the common
limitation that cells are destroyed upon sequencing. This is problematic as many processes
in biology are continuous, for example, the development of hematopoietic stem cells towards
differentiated immune cell types [10] or the regeneration of lung epithelial cells after injury
[11]. Ideally, we would like to repeatedly measure the molecular state of the same cell
while it undergoes such a process. This would enable us to link early molecular differences
within a cell population to eventual fate outcomes and allow us to pinpoint the moment at
which fate decisions are established. However, single-cell technologies yield static snapshots

rather than trajectories of molecular state.

Since the early days of scRNA-seq, computational approaches have been developed to piece

together static snapshots into trajectories; this problem is known as trajectory inference [12,
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13] (TT). The basic idea is that most biological processes unfold unsynchronized across cells;
thus, while we only have access to one observation per cell, these observations represent
different positions along an underlying trajectory. Aligning static molecular snapshots of
many different cells along the latent trajectory structure therefore allows us to reconstruct
the dynamics of a typical cell. While many computational methods have been suggested
for this task, most of them fall short of recovering the direction of the trajectory and thus
remain limited to relatively simple scenarios where the direction is known a priori. This
thesis introduces two new computational methods, CellRank [14] and moslin [15], which
address this challenge by combining classical trajectory inference ideas with new sources
of directionality and lineage information; in particular, CellRank includes RNA velocity

[1, 16] and moslin includes lineage-tracing data [17].

1.1 Dynamics from cross-sectional single-cell data

Single-cell technologies yield measurements of cellular state, including gene expression,
chromatin accessibility, protein availability or clonal identity, and sometimes even combi-
nations of different molecular layers in multi-modal assays. Computational methods for
trajectory inference compare these cellular states; if two cells A and B are similar in molec-
ular state, they are placed close to each other on the reconstructed trajectory, reflecting
the assumption that biological processes unfold gradually in small steps [18]. However,
such similarity-based approaches do not reveal whether cell A goes to B or B goes to A. In
well-studied systems, this is known and the trajectory can be manually directed by pro-
viding a root cell that signals the algorithm where the trajectory should start. In contrast,
there exist many less-well studied clinically relevant systems such as reprogramming, re-
generation, or cancer, where the direction is unknown and single-cell sequencing combined

with classic T1 provides limited insights only.

Alternative approaches exist to uncover directionality; these are based on cell-intrinsic
properties or on time-series experiments. For example, the central dogma of molecular
biology states that DNA is converted into RNA which in turn is converted into protein,
with intermediate processing steps [19]. Thus, if molecular information for at least two
stages in this sequence of processing steps is observed in the same cell, we can compare
corresponding quantities to predict the future cellular state over a short time scale. RNA
velocity is such an approach; it compares the amount of mRNA at two different processing
stages [1, 16]. Alternatively, in time series experiments, it is reasonable to assume that
cells from earlier time points should be placed before cells from later time points, thus

introducing directionality [20]. We briefly review both approaches below and highlight
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their current shortcomings.

1.1.1 RNA Velocity estimates the current state of gene regulation

In normal development, during the cell cycle and in disease, cells adapt their molecular
state according to external signals or internal needs by up or down-regulating the expression
of specific genes. scRNA-seq measures how many mRNA molecules corresponding to each
gene exist in a given cell; however, it does not reveal whether a gene is currently up or
down-regulated. RNA velocity compares corresponding mRNA levels in earlier and later
processing stages to reveal the current state of gene regulation [1, 16]. In particular,
it posits a simple biophysical model for immature (unspliced) molecules u(t) and mature
(spliced) molecules s(t); the model is fitted to observed counts, and RNA velocity is defined

as the time derivative of spliced molecules, i.e., v(BNA) = (g /dt.

This elegant approach yields directional information at no additional experimental burden;
however, the information is noisy, very high dimensional and reliable only over short time
scales. It is currently an open question how to combine RNA velocity with gene expression
similarity to robustly uncover directed, high-dimensional trajectories that reflect cellular

fate choice’s stochastic nature.

1.1.2 Single-cell lineage tracing recovers clonal relations and gene ex-
pression

Time-series experiments introduce directionality to cross-sectional data; on average, cells
in earlier time points correspond to earlier biological process stages. To match cells from
earlier to later time points, computational methods have been developed that successfully
recover trajectories if expression distributions across adjacent time points are similar but
are challenged by large differences [20]. Further, these methods are challenged by hidden
variables, such as epigenetic fate priming, which manifests itself in measured gene expres-
sion profiles only with a time delay [10]. In contrast, single-cell lineage tracing (scLT)
approaches label cells with heritable DNA “scars” which may be used to delineate fate re-
lations over long time intervals [17]|. Genetic scars are read out in a sequencing experiment,
jointly with gene expression information. Computationally combining the two sources of
information is currently an open question; solving it for destructive in-vivo time series ex-
periments requires an approach that relates clonal information only within one time point

while comparing gene expression across time points.
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Research question and contributions

1.2.1 Research question

The central research question of this thesis is how to integrate RNA velocity and lineage-

tracing information into trajectory inference to gain more accurate insights into cellular

dynamics, especially in complex situations like regeneration and reprogramming. We break

down this question into individual challenges as follows:

(i)

(iii)

(iv)

RNA velocity is an elegant approach for recovering directional information at no
additional experimental cost. However, it is a noisy, high-dimensional estimate, and
it is currently unclear how it can be distilled into a robust, stochastic representation

of cellular dynamics in high dimensions.

Given such a representation, an open question remains how it can be used to au-
tomatically detect a biological process’s initial, intermediate and terminal states.
Further, how can such a representation be used to model the gradual nature of fate

establishment during which cells proceed from multi-potent to uni-potent states?

Besides RNA velocity, alternative approaches for estimating directionality for single-
cell data have been suggested. Combining these into one unified framework would

greatly accelerate progress in studying fate decisions with single-cell data.

Time series experiments provide a reasonable estimate for directionality; previous
approaches have successfully applied optimal transport [21] to link cells from earlier
to later time points. However, these approaches scale poorly in cell numbers and are

thus challenged by the size of current datasets.

Time series experiments can be supplemented with clonal information through scL.T
approaches; however, computational methods are missing that exploit both gene
expression and clonal information to faithfully link cells across time points and derive

robust trajectories.

1.2.2 My contributions

I address these challenges in my thesis. My contributions can be grouped into two cate-

gories:
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(i)

Markov chain-based modeling of directed cellular dynamics through one unified
framework called CellRank which overcomes the limitations of classic TI when ap-
plied to complex systems with unclear directions. CellRank consists of kernels, which
construct a Markov chain based on data modalities including RNA velocity and gene
expression similarity, and estimators, which derive biological insights based on the

Markov chain representation.

Optimal transport-based modeling of single-cell genomics data through one unified
framework called moscot. moscot contains estimators for various mapping problems,
including temporal and spatial problems which frequently arise. This thesis focuses
on the temporal problem of mapping large single-cell datasets across time points,

possibly including joint lineage readout.

For the first category, I make the following contributions:

(i)

(iii)

(iv)

I introduce CellRank’s VelocityKernel, a KNN-based approach to estimating a
transition matrix given RNA velocity and gene expression similarity, propagating

uncertainty. This contribution addresses challenge (i).

I adapt Markov State Models (MSM) to the single-cell context. I use them as a
CellRank estimator to coarse-grain the Markov-chain into initial, intermediate, and
terminal macrostates. Further, I introduce a new way to compute fate probabilities
which scales to larger datasets than previous approaches. This contribution addresses

challenge (ii).

I apply my proposed model to mouse embryonic fibroblast (MEF) reprogramming
[22|, pancreas development, [23| and lung regeneration past injury [11]. I predict a
novel dedifferentiation trajectory; in collaboration with Janine Schniering and Her-
bert Schiller, we validate the existence of previously unknown intermediate states on

the trajectory.

I extend CellRank by introducing the PseudotimeKernel, the CytoTRACEKernel and
the RealtimeKernel, allowing the framework to use almost any source of prior direc-
tional information when setting up the Markov chain. This contribution addresses

challenge (iii).

For the second category, I make the following contributions:

(i)

I introduce moscot-time, an optimal transport-based model which scales much better
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than previous approaches, thus enabling the application to current datasets contain-

ing large cell numbers. This contribution addresses challenge (iv).

I introduce moslin, a Fused Gromov-Wasserstein-based model that uses both inter-
individual expression similarity and intra-individual lineage relationships when map-

ping cells across time. This contribution addresses challenge (v).

In collaboration with Zoe Piran and Michal Klein, I show how moslin outperforms
competing approaches on simulated and real data. We apply moslin to Caenorhabdi-

tis elegans (C. elegans) embryogenesis [24], where it recovers known lineage drivers.

As parts of my contributions have already been published in peer-reviewed journals or are

in the process of review or preparation, Chapter 3 and Chapter 4 of this thesis are to some

extent identical to or correspond to the following publications:

(i)

Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H.,
Ansari, M., Schniering, J., Schiller, H.B., Pe’er, D. and Theis, F.J., 2022. CellRank
for directed single-cell fate mapping. Nature Methods, pp.1-12.

Weiler P.*, Lange, M.*, Klein, M. and Theis, F.J., 2022. A unified framework to

study single-cell fate decisions. In preparation.

Lange, M.*, Piran, Z.*, Klein, M., Theis, F.J. and Nitzan, M., 2021. Mapping

lineage-traced single-cells across time-points. NeurlPS LMRL workshop contribution.

Lange, M.*, Piran, Z.*, Klein, M.*, Spanjaard, B.*, Junker, J.P., Theis, F.J. and
Nitzan, M., 2022. Mapping lineage-traced single-cells across time-points. In prepa-

ration.

Klein, D.*, Palla, G.*, Lange, M.*, Klein, M.*, Piran, Z.*, Gander, M., Meng-
Papaxanthos, L., Nitzan, M., Cuturi M., Theis F. J., Mapping cells through time

and space with moscot. In preparation.

Note that “* denotes an equal contribution; specifically, my contributions to these publi-

cations are as follows:

()

I designed and developed the method, implemented a CellRank prototype, analyzed
the data, and wrote the manuscript with contributions from co-authors. Further, I

contributed to the pyGPCCA implementation.
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(ii) I designed and developed the method, implemented prototypes, coordinated the
project, and analyzed the data presented in this thesis in collaboration with Philipp
Weiler and Michal Klein.

(iii) I designed and developed the method, wrote the manuscript in collaboration with

Zoe Piran, and performed CellRank analysis on moslin’s couplings for C. elegans.

(iv) I designed and developed the method, coordinated the project, and interpreted re-

sults.

(v) I designed the overall framework, developed the temporal approach, coordinated the

project, and interpreted results.

Furthermore, my doctoral research contributed to the following publications, which are

not included in this thesis:

(i) Bergen, V., Lange, M., Peidli, S., Wolf, F.A. and Theis, F.J., 2020. Generalizing
RNA velocity to transient cell states through dynamical modeling. Nature biotech-
nology, 38(12), pp.1408-1414.

(ii) Strunz, M., Simon, L.M., Ansari, M., Kathiriya, J.J., Angelidis, 1., Mayr, C.H.,
Tsidiridis, G., Lange, M., Mattner, L.F., Yee, M., Ogar, P., Sengupta, A., Kukhte-
vich, I., Schneider, R., Zhao, Z., Voss, C., Stoeger T., Neumann, J.H.L., Hilgendorft,
A., Behr, J., O'Reilly, M., Lehmann, M., Burgstaller, G., Kénigshoff M., Chapman,
H.A., Theis, F.J. and Schiller H.B., 2020. Alveolar regeneration through a Krt8+
transitional stem cell state that persists in human lung fibrosis. Nature communica-
tions, 11(1), pp.1-20.

(iii) Tritschler, S., Biittner, M., Fischer, D.S., Lange, M., Bergen, V., Lickert, H. and
Theis, F.J., 2019. Concepts and limitations for learning developmental trajectories

from single cell genomics. Development, 146(12), p.dev170506.

(iv) Erhard, F., Baptista, M.A., Krammer, T., Hennig, T., Lange, M., Arampatzi, P.,
Jiirges, C.S., Theis, F.J., Saliba, A.E. and Délken, L., 2019. scSLAM-seq reveals core
features of transcription dynamics in single cells. Nature, 571(7765), pp.419-423.

While these publications are not explicitly included in my thesis, the following connections

exist:

(i) publication (i) generalizes the idea of RNA velocity to transient populations, a crucial

step to make the CellRank model of Chapter 3 widely applicable. I contributed to
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the development of validation metrics of the proposed scVelo model. In Section 2.5

of this thesis, I present the RNA velocity model in a new unified form.

(ii) publication (ii) serves as an application example of the CellRank method in Chap-
ter 3. I contributed a velocity analysis of plasticity among club and alveolar-type
cells in Fig. 6b. In the CellRank publication, I predict a dedifferentiation trajectory

not described in the original publication.

(iii) publication (iii) gives an intuitive overview of the topic of trajectory inference; I
contributed the section "The concepts of pseudotime and trajectory inference". In

Section 2.4 of this thesis, I present an alternative introduction to the topic.

(iv) publication (iv) introduces a strategy for metabolic labeling of single cells, an al-
ternative to RNA velocity. I contributed towards benchmarking RNA velocity with
metabolic labeling in Fig. 2b,c. In Section 2.5 of this thesis, I describe metabolic

labeling techniques.

1.3 Outline

In Chapter 2, we describe single-cell data modalities and recap mathematical background
on Markov chains and optimal transport which is relevant for Chapter 3 and Chapter 4,
respectively. We give an overview of previous approaches to trajectory inference, including
RNA velocity.

In Chapter 3, we introduce the CellRank framework, in particular the VelocityKernel,
which derives a Markov chain from RNA velocity, as well as the GPCCAEstimator, which
coarse-grains the dynamics into interpretable macrostates. We apply the model to MEF
reprogramming [22], pancreas development 23], and lung regeneration [11], where we pre-
dict and experimentally validate the existence of new intermediate cell states. We further
show how to extend the CellRank framework to include other sources of directionality,
including pseudotime [25], the CytoTRACE score [26], and real-time information [20].

In Chapter 4, we introduce the moscot framework, in particular, the moscot-time and
moslin models with maps cells across time points for scRNA-seq and scL'T data, respec-
tively. moslin is a Fused Gromov-Wasserstein-based model that uses both clonal relations
and gene expression; we show that it outperforms competing approaches on both simulated
and real data. Applied to C. elegans embryogenesis [24], we demonstrate how moslin un-
covers trajectories and putative decision driver genes. Finally, in Chapter 5, we summarize

our contributions and discuss directions for future research.



Chapter 2

Background

We open this chapter by introducing single-cell assays and corresponding analysis ap-
proaches with a focus on biological questions and how they can be addressed using either
data modality (Section 2.1). Further, we discuss Markov chains (Section 2.2) and opti-
mal transport (Section 2.3) which provide mathematical background for Chapter 3 and
Chapter 4, respectively. We combine the data (Section 2.1) with the methods (Section 2.2
and Section 2.3) when reviewing the field of trajectory inference (Section 2.4) where we
highlight how Markov chains and optimal transport have previously been used to recover
cellular dynamics. Finally, we present RNA velocity as a possibility to overcome the prob-

lem of uncertain directions in classic trajectory inference (Section 2.5).

Notation. We denote vectors by lower-case bold face symbols (e.g. x), scalars by lower-
case, non-bold symbols (e.g. x) and matrices by upper case, non-bold symbols (e.g. X).

Vector elements appear non-bold, i.e. x;.

2.1 Single-cell genomics

Single-cell assays open the door to study cellular heterogeneity which was masked in prior,
population-based (bulk) assays [27]. The cell is the fundamental unit of life, and many
biological processes can only be studied by probing individual cells for their molecular
markup; for example: how cells make decisions when they change their state, from naive
to differentiated [6, 7] (development), from normal to cancerous 28] (tumor evolution),
from differentiated cell type A to B [29] (transdifferentiation), from differentiated back to
pluripotent [20] (reprogramming) from injured back to healthy [11] (regeneration). These
decisions are executed at the level of individual cells based on intrinsic properties of the
cell [30] (e.g., gene expression, DNA accessibility), external stimuli [31] (e.g., signaling,
tissue composition), and stochasticity [32| (e.g., fluctuations of molecular counts). Under-
standing cellular decision-making in health and disease enables designing therapies that
intervene when normal mechanisms are perturbed, i.e., gene and cell therapies [9, 33].

Different single-cell technologies have been developed to study cellular states at differ-
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ent molecular levels. We focus on the technologies relevant for later chapters: single-cell
RNA-sequencing (scRNA-seq) [2, 34, 35|, which probes gene expression, and single-cell
lineage tracing technologies (scLT-seq) [17], which jointly probe lineage history and gene

expression. We introduce both technologies along the following questions:

(i) molecular layer studied, related biological questions.
(ii) experimental basics, how does this technology function.
(iii) data specifics: dimensionality and distributions.

(iv) computational approaches: how is the data used to address biological questions?

Further modeling paradigms. This thesis is focused on studying dynamical biologi-
cal processes through the lens of single-cell genomics; accordingly, we will exclude many
single-cell modeling paradigms which are not immediately relevant. These include data
integration and reference mapping [36-38|, genetic and molecular perturbations [39-44],
spatial technologies and related computational approaches [45-48], tissue, organ, patient
and cohort variation [5, 49, 50|, cell-cell communication [51-53| and gene regulatory net-

work inference [54-56|, among others.

Further data modalities. Besides scRNA-seq, further assays have been developed that
probe different aspects of molecular makeup at single-cell resolution. These include pro-
teomic assays like flow and mass cytometry (e.g. CyTOF [57, 58]) as well as epigenetic
assays like Chip-Seq [59, 60] and CUT&Tag [61-63| for histone modifications and tran-
scription factor occupancy, respectively, Bisulfite-Seq for DNA methylation [64-66] and
single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) [67]
for chromatin accessibility. Recently, uni-modal assays have been extended towards multi-
modal assays which probe more than one molecular layer in the same single cell; these

include

for P and T: CITE-seq [68] and REAP-seq [69].

for T and C: 10x multiome, scM&T-seq [65], SHARE-seq [70], Paired-Seq [71], sci-
CAR [72| and SNARE-seq [73]

for C and P: ASAP-seq [74].

for P, T and C: DOGMA-seq [74]
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where P, T, and C denote aspects of the proteome, transcriptome, and epigenome, respec-
tively. Multi-omic single-cell approaches have recently been reviewed by Stuart and Satija
[75].

The methods we introduce in Chapter 3 and Chapter 4 are fundamentally based on cell-cell
distances; for CellRank, these are used to build a KNN graph (Subsection 2.1.2) while for
moslin, they are used to define a cost function (Section 2.3). Thus, while our application
examples from Chapter 3 and Chapter 4 are based on transcriptomic scRNA-seq readout,
the methods we introduce generalize to further data modalities by adapting the definition
of the distance metric to the corresponding data modality. We make this explicit when

deriving cell-cell distances from learned representations (Subsection 2.1.2).

2.1.1 Single-cell RNA-sequencing (scRNA-seq)

Molecular layer and biological questions. scRNA-seq probes gene expression in sin-
gle cells, typical output is a count matriz X (B) ¢ NéVCXNg , where N, is the number of cells,
Ny is the number of genes and X i(]R ) counts the number of mRNA molecules corresponding
to gene j detected in cell ¢. Throughout this thesis, we use the symbol X to refer to unbi-
ased measurements of cellular state; we denote by superscript the modality we refer to, e.g.
(R) for scRNA-seq. scRNA-seq was the first single-cell technology to be employed at scale
[77] and can be used to address a multitude of biological questions, ranging from unbiased
descriptions of cellular state (e.g. detecting rare and transitional cell types [78], dissecting
cellular heterogeneity [79]) via regulatory mechanisms in health and disease (e.g. gene
regulation [55]) to the inference of cellular trajectories in continuous biological processes

(e.g. trajectory inference, Section 2.4).

Experimental basics. scRNA-seq counts messenger RNA (mRNA) molecules; these
are created from a DNA template by RNA polymerase in a process called transcription,
transported to the ribosome in the cytoplasm, and in turn serve as a template to produce
a protein in a process called translation (Figure 2.1a,b). Besides their function as an inter-
mediate product between DNA and protein, RNA molecules also serve various regulatory
processes in the cell [80]. Typically, mRNA counting is based on sequence complementary
- mRNA molecules are extended at their 3’ end with a stretch of repeated adenine ("A")
nucleotides in a process called polyadenylation. By synthesizing a long stretch of repeated
thymine ("T") nucleotides into a poly(T) primer, mRNA molecules can be bound ("A"

binds to "T") and their information content can be read out in a sequencing machine.

Critically, cells must be equipped with unique cell barcodes before sequencing to achieve
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Figure 2.1: Experimental basics of droplet-based scRNA-sequencing a. Simplified
overview of an animal cell. b. Central dogma of molecular biology [19]; colors denote the
alphabet of DNA and RNA given by different nucleotides, opposite ends of DNA and mRNA
are referred to by 3' and 5" ends. DNA is transcribed to mRNA in the nucleus (a), mRNA is
transported to the ribosome (a) and translated into proteins. During translation, mRNA nu-
cleotides are processed in groups of three referred to as codons; each codon corresponds to one
of 20 amino acids, some examples are shown. c. Input to droplet-based sequencing protocols
like Drop-seq [35] or 10x chromium [76]: cells and microbeads tags. d. Simplified workflow of
droplet-based scRNA-seq. Adapted from the following templates: “Structural Overview of an
Animal Cell”, "Central Dogma", "CITE-seq Workflow", by BioRender.com (2022). Retrieved
from https://app.biorender.com/biorender-templates.

single-cell resolution. Different experimental protocols exist for this purpose; early ap-
proaches isolated individual cells in microwell plates (plate-based technologies, e.g. Smart-
seq2 [81], Smart-seq3 [82], MARS-Seq [83]), which have been extended to droplet based
technoloiges (Figure 2.1c,d) (e.g. Drop-Seq [35], inDrop [34], 10x Chromium [76]), com-
binatorial indexing based technologies (e.g. sci-RNA-seq [84], SPLiT-seq [85]) and even
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combinations of combinatorial indexing with droplet technologies (e.g. scifi [86]); these
technologies differ in sensitivity and cellular throughput (see below). All datasets in this

thesis have been generated using droplet-based technologies (Figure 2.1c,d).

Once individual cells have been barcoded, mRNA molecules are amplified in a process
called polymerase chain reduction (PCR) [77]. Most approaches label individual mRNA
molecules prior to this process with unique molecular identifiers (UMIs) [87] to be able
to distinguish between biological and technical copies of mRNA molecules (amplification
bias).

Once the sequences have been read by the sequencing machine, algorithms are employed to
align the mRNA fragments against the reference genome (e.g. human or mouse) in order
to associate each mRNA with the gene it has been derived from. After some additional
error correction techniques, e.g. filtering empty droplets or droplets with more than one
cell (doublets), the final cont matrix X(®) is constructed. We refer to Ziegenhain et al.
[88], Zhang et al. [89], Svensson et al. [90], and Mereu et al. [91] for comparisons of different

experimental approaches.

Cellular throughput and sensitivity. A typical scRNA-seq experiment yields a count
matrix X ¢ Név <*No \where the number of genes Ny is about 20k - 30k depending on
the organism. The number of cells NV, increases constantly from year to year, varies across
experimental technologies, and is generally lower for plate-based technologies (approx. 1k
- 50k cells) [81-83] and higher for droplet- and combinatorial indexing based technologies
(approx. 10k - 4M cells) [3, 34, 35, 76, 92|. Another important consideration is the
sensitivity of a technique, i.e. the probability of capturing a particular mRNA molecular
present in the cell and converting it into a complementary DNA (¢cDNA) molecule present
in the sequencing library [88]. In a benchmarking study of 13 commonly used scRNA-
seq techniques, Mereu et al. [91] show that method sensitivity varies widely, with plate-
based Quartz-seq2 [93] and Smart-seq 2 [81] as well as droplet-based 10x Chromium [76]
performing best overall. All scRNA-seq techniques yield sparse count matrices X (%) albeit

at varying, sensitivity-dependent levels.

Statistical distributions for scRNNA-seq data. scRNA-seq data is subject to var-
ious sources of biological (e.g. transcriptional bursting [32], cell-to-cell variation [94])
and technical noise [95] (e.g. limited and variable detection sensitivity), thus appropriate
statistical models must be employed when describing the data. In principle, single-cell

gene expression is count data with empirically observed gene-specific overdispersion, thus,
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a Gamma-Poisson distribution, also referred to as Negative-Binominal (NB) distribution

seems appropriate,

o =it (at5) (k) @

with mean and inverse-dispersion parameters p € R and « € Ry, respectively [96]. The
NB distribution can be motivated mathematically by considering the biological process of

gene expression [97-99].

In the early days of plate-based scRNA-seq, there has been concern about the fraction
of zeros observed in single-cell data compared to bulk (population-based) assays; this
concern exists to this day in parts of the community. Accordingly, computational models
have been developed that reserve special treatment to excess zeros, also termed dropouts,
including differential expression methods [100, 101| or dimensionality reduction methods
[102, 103]. Further, imputation techniques [104, 105] were developed which replace zero
values with other values that are deemed more likely and the zero-inflated negative binomial
distribution [106] (ZINB) became a popular noise model for scRNA-seq data.

In contrast to this development, novel computational tools [107-110] demonstrated that
for droplet-based scRNA-seq data, no zero inflation is observed and in fact, the simpler NB
distribution describes the data just as well as the more complex ZINB distribution. While
it was initially argued that plate-based scRNA-seq gives rise to zero inflation while droplet-
based scRNA-seq does not [111], the difference was later attributed to the presence of UMIs
[87]: while the distribution of read-counts (no UMIs) is zero-inflated, the distribution
of UMI counts is not zero inflated [112, 113|, possibly because UMIs deflate counts of
genes with particularly high PCR amplification bias [112]. Note that major droplet-based
protocols include UMIs. The community arrived at the conclusion that read-count scRNA-
seq data (e.g. SMART-seq2 [81]) should thus be modeled using the ZINB distribution while
UMI-count scRNA-seq data (e.g. 10x Chromium [76], Drop-seq [35], inDrop [34], Smart-
seq3 [82]) should be modeled using the NB distribution. Modern latent-space models like
scVI [96] or DCA [114] reflect this consensus by offering both distributions. All data
considered in this thesis is UMI-count data, thus, when appropriate, we employ the NB

distribution.

2.1.2 Computational approaches for scRNA-seq data

The field of computational models for scRNA-seq data is vast and constantly expanding,

the scrna-tools.org database recently celebrated the addition of tool number 1,000 [129].
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Figure 2.2: Representation learning and sample-centric analysis a. Starting from a cell-
by-gene count matrix X, analysis usually starts with quality control (QC) where low-quality cells
and certain genes (e.g. lowly detected genes, mitochondrial genes, ribosomal genes, cell-cycle
genes, etc) are removed. In the next step, highly variable genes (HVGs) are selected to increase
the signal-to-noise ratio. These first two steps yield a reduced count matrix X’. In pipeline
approaches like SCANPY [115] or Seurat [116-119], sequential transformations are then applied
to X' to arrive at an N;-dimensional representation Z(!). In contrast, end-to-end approaches
like DCA [114] or scVI [96] use autoencoders or variational autoencoders (VAEs) to learn Z(?)
in a bottleneck layer. We illustrate the VAE approach here where an encoder network is trained
to learn an amortized variational approximation g4 of the posterior latent distribution while a
decoder network learns the data likelihood py given the latent representation [120]. This is a
simplified illustration, largely omitting the size factors [; and batch labels s;. b. Given an N;-
dimensional representation Z, we illustrate three common sample-centric downstream analysis
techniques which often rely on an intermediate (KNN)-graph G of the data. Left: visualization
in two-dimensions using non-linear dimensionality reduction like UMAP [121-123], t-SNE [124,
125] or diffusion maps [126-128], we overlay expression of gene j. Middle: clustering to detect
cell types or states, we show cell types A, B, and C. Right: Tl to uncover continuous trends in
the data. We show two terminal states, T} and 15, as well as fate probabilities towards them.
DC, diffusion components [128].

We refer to Ziegenhain et al. |77, Luecken and Theis [130], and Vieth et al. [131] for com-
prehensive reviews and restrict ourselves here to introducing the main modeling paradigms

to learn cellular representations which are relevant for later chapters: pipeline approaches
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vs. end-to-end approaches (Figure 2.2a).

Both pipeline, as well as end-to-end approaches, yield N;-dimensional cell representations
Z € RNXNifor N << N, which are better suited for some downstream analysis tasks com-

pared to the original gene expression matrix X ()

because they are much lower-dimensional
(i.e. they suffer less from the curse of dimensionality [132]) and have been corrected for
some sources of unwanted technical variation (e.g. batch effects, library size, etc.). The
central idea is that distances measured in Z using e.g. euclidean distance are more meaning-

ful compared to distances measured directly in X ()

, this enables cell-centric downstream
analysis tasks which rely on a robust definition of cell-cell distances including clustering,
visualization and trajectory inference (Figure 2.2b). Using a cell-cell distance metric, many
of these approaches approximate the phenotypic manifold of sampled cellular states with a
graph G that connects each cell to its K nearest neighbors, known as a K-nearest neighbors

graph (KNN graph).

In the following, we review pipeline and end-to-end approaches to compute low-dimensional
representations Z, KNN graph G construction as well as clustering and visualization. We
describe trajectory inference, a central theme of this thesis, later on (Section 2.4) once the
mathematical concepts of Markov chains (Section 2.2) and optimal transport (Section 2.3)

have been introduced.

Pipeline approaches for representation learning. Pipeline approaches like python-
based SCANPY [115] or R-based Seurat [116-119] apply sequential transformations to the
raw count matrix X to arrive at an Nj-dimensional representation Z € RNe*Ni: these
transformations usually include (Figure 2.2a):
(i) quality-control filtering of cells and genes [130],
(ii) count normalization to correct for sequencing depth [95, 133-135],
(iii) log-transformation to stabilize the variance [130],

(iv) filtering to highly-variable genes |76, 116, 117],

(v) regressing out unwanted sources of continuous variation due to e.g. the cell cycle or

the percentage of mitochondrial reads [116],
(vi) scaling to unit variance [130],

(vii) correcting for discrete technical variation termed batch effects [36, 117, 136-141],
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(viii) computing a lower-dimensional representation Z (typically 30-100 dimensions) us-
ing principal component analysis (PCA), independent component analysis (ICA), or
variants thereof [130].

Endless variations of this workflow exist |77, 130, 131|, and individual steps have been
the topic of intense debate, e.g. log transformation [142|. Rather than modeling raw
counts using the negative binomial distribution from above, most pipeline approaches aim
at transforming the data into a space where it looks more "normal" such that a method

like PCA may be applied which assumes normally distributed data [132].

End-to-end approaches for representation learning. In contrast to pipeline ap-
proaches, end-to-end approaches act directly on the raw count matrix (filtered to highly
variable genes) and output a latent representation Z of the data within one consistent
modeling framework which makes them better suited to handle uncertainty (Figure 2.2a).
Two poplar end-to-end methods, DCA [114] and scVI |96], are based on autoencoders and
variational autoencoders [120, 143, 144], respectively. scVI formulates a generative model
of the data,

(s, 24, li]si) = p(xi|zi, i, 8i) p(zi,lilsi), (2.2)

for gene expression vector x; € N¥s_ latent representation z; € R (N; = 10 by default
[96]), cell-specific scaling factor I; € R, and one-hot encoded batch covariate s; € {0,1}7
for B batches (e.g. datasets from different labs, individuals, experimental protocols, etc) .
The likelihood is given by an NB distribution,

N,
p(wi|zi, li, i) = 11,2 NB (25| po (2, 81)5 bi, o) (2.3)

where pg : RM x {0,1}% — Ay, is a neural network with parameters 6 referred to as

decoder or generative network, Ak is the probability simplex in K dimensions,

K
Ag = {aeRf:Zaizl}, (2.4)

i=1

and o € ]R_]Xg acts as a gene-specific inverse dispersion parameter of Equation (2.1). Using
the probability simplex Ay, ensures that pg(z;, s;) can be interpreded as gene frequencies

per cell, i.e. relative contributions of a gene to a cell. The prior factorizes over z; and I;
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and is given by

p(zi,li|si) = p(z:) p(li|s:)
= N (210, I1) log N (Lils 10, sT1)) | (2.5)

for batch-specific 1", 10" ¢ Rf which represent the the library size mean and variance in

log-space, respectively. Computing the posterior distribution,

(i, 24, li|si)

(@ils0) (2.6)

p(zi, lilxs, si) =

is intractable and Lopez et al. [96] revert to the mean-field amortized variational approxi-

mation

ap(2i, lilwi, 8i) = qp(zil @i, 8i) qp(lili, si) (2.7)
with the two terms,
qs(zil@i, 8i) = N (zilpg (@i, 5:), diag (03 (2, 51))) (2.8)
L, s5) = log NV (119 (24, 8:), 1) (2, 4 2.9
Q¢( z|mza32) og 1| ® (m1731)7 P (mlasl) , ( . )

for mean and variance neural networks, ,u¢,0§) - NNo x {0, l}B — RN, referred to as
inference or encoder networks, and scaling factor mean and variance neural networks,
l((b“ ), lgfz) - NN {0, l}B — R, where ¢ denotes the set of all parameters these networks
define. Note that in the formulation above, the encoder has access to the batch labels s;,
which is by default not the case in the original scVI model, however, subsequent models like
TotalVTI [145] do include such a link which appears to increase data-integration performance
empirically. The model parameters «, 6, ¢ are trained by maximizing the evidence lower

bound (ELBO), which lower bounds the marginal likelihood p(x;|s;),
Zlogp(wifsi) > Z Ey,(zidilwis) P(Ti|2i 1is 80)]

- Z (KL [gg(zi| i, 8:) | p(2:)] + KL [qg(lili, 80) || p(li]si)]) . (2.10)

(2
using variants of mini-batched stochastic gradient descent (SGD), i.e. Adam [146]. Many
extensions of the VAE approach for scRNA-seq representation learning exist, e.g. to im-

prove interpretability [147, 148], to include perturbations [39-41| and cell-type labels [149]

or to transfer learned representations and labels across datasets [38].
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Representation learning for other molecular layers. We stated in the introduction
to this section that the methods we introduce in Chapter 3 (CellRank) and Chapter 4
(moslin) generalize beyond scRNA-seq data by adapting the definition of cell-cell distances;
this translates directly into adapted representation learning techniques. Both pipeline, as
well as end-to-end approaches, have been extended to other data modalities. For example,
for the popular scATAC-seq [67] modality, Signac [150], EpiScanpy, [151] and ArchR [152]
have been suggested as pipeline approaches and PeakVT [153] has been suggested as an end-
to-end approach. An advantage of end-to-end approaches is that they can be adapted easily
to other data modalities by changing the likelihood function p(a;|z;, l;, si) (Equation (2.3)).

For the multi-modal setting, Seurat v4 [118] and Muon [154] have been suggested as pipeline
approaches, and TotalVI [145] (proteins and RNA, e.g. CITE-seq [155] and REAP-seq
[69]) as well as MultiVI [156] and Multigrate [157] (chromatin accessibility and RNA, e.g.
SHARE-seq [70] and 10x multiome) have been suggested as end-to-end approaches. Thus,
representation learning approaches are available that allow us to derive robust cell-cell

distances beyond scRNA-seq data; these may be used to generalize CellRank and moslin.

Similarity graph construction from single-cell data. Given a low-dimensional rep-
resentation Z obtained from either pipeline or end-to-end approaches, a common way to
construct similarity graphs in the single-cell field is via weighted K-nearest neighbor (KNN)
graphs G = (V, E) for vertices (or nodes) V given by the set of sequenced cells and edges
in E connecting neighboring cells. Undirected edge weights are stored in the symmetric

NexXNe
R c c
+

adjacency matric W € . To compute W, the following steps are usually employed:

(i) for each cell i, compute distances to its K-nearest neighbors based on an initial

distance metric, e.g. Euclidean or cosine similarity.

(ii) symmetrize the KNN relations such that cells ¢ and j are nearest neighbors if either

1 is a nearest neighbor of j, or j is a nearest neighbor of 3.

(iii) compute an adjacency matrix W based on the symmetrized distances containing
similarity estimates between neighboring cells according to the manifold structure
using e.g. a Gaussian kernel [128] or the UMAP method [121, 158].

KNN graphs can be computed efficiently for large cell numbers using recent approximation
algorithms [159, 160|. Note that KNN graphs give rise to sparse adjacency matrices which
enable downstream computations like clustering or visualization to scale very well with the

number of cells.
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Visualization. Cells can be visualized in two or three-dimensional scatter plots known
as embeddings (Figure 2.2b). They provide a high-level summary of the data where each
cell is visualized as a dot, colored according to clusters, gene expression, or other cell-level
covariates. In principle, such embeddings can be computed with the pipeline or end-
to-end approaches for representation learning by choosing N; = 2 or 3; however, it has
been found that these approaches do not preserve local neighborhood information well and
are challenged by subtle differences in expression states. Thus, dedicated dimensionality
reduction techniques have been suggested which provide informative visual summaries of
the data [130]. The most popular techniques, t-SNE [124, 125|, UMAP [121-123| and
diffusion maps [126-128|, are based on KNN graphs. While t-SNE and UMAP optimize
an objective that encourages correspondence of low-and high-dimensional neighborhoods,

diffusion maps are a spectral approach based on Laplacian eigenmaps (Section 2.2.5).

Despite their widespread use, two- or three-dimensional cell embeddings are intensely de-
bated because they are prone to over-interpretation [161]. In particular, neighborhood-
based methods like t-SNE and UMAP do not provide an accurate summary of global
data topology [161-164|. For this reason, in Chapter 3, we argue against projecting high-
dimensional velocity vector fields into two-dimensional embeddings for trajectory inter-
pretation and present CellRank as an alternative approach that operates directly in high-
dimensional space. In this thesis, we use two-dimensional embeddings to provide a visual
summary of the data but avoid deriving biological hypotheses from them. We refer to
Heiser and Lau [162] for a recent benchmark of dimensionality reduction methods in the

single-cell field.

Clustering. While TI reveals continuous cell heterogeneity (Section 2.4), clustering re-
veals discrete cell heterogeneity including groups of cells related by type, disease state,
cell-cycle phase or metabolic state (Figure 2.2b). Clustering approaches from an integral
part of most single-cell analysis workflows and accordingly, a vast amount of clustering
approaches have been suggested. These approaches range from classic K-means |78, 165|
via hierarchical clustering [166, 167], mixture models [168], and ensemble models [169]
to graph-based models [170-172|; see Kiselev, Andrews, and Hemberg [173| for a recent

review.

Despite this variety, the overwhelming majority of published studies employ one of two
graph-based community-detection approaches, Louvain [170, 172] or Leiden [171]|. These
approaches have been found to perform very well for single-cell data [130, 173], they scale
to very large (greater than 10M) cell numbers [170] and they are accessible via major single-
cell platforms including SCANPY [115] and Seurat [116-119]. Both approaches optimize
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modularity, a measure that encourages intra-cluster edges and penalizes inter-cluster edges
[170, 174, 175].

2.1.3 Single-cell lineage tracing (scLT)

The single-cell assays introduced above, including scRNA-seq, suffer from the fact cells
are destroyed upon sequencing. Hence, when using these assays to study continuous bio-
logical processes in a time-series context, computational methods are frequently employed
to reconstruct likely relationships between cells in early and late time points based on
gene expression similarity (Section 2.4). To guide this challenging reconstruction problem,
experimental techniques have been developed that record clonal relationship among cells.
While early methods were labor-intensive, limited to transparent organisms, and relied on
manual observation of individual cells in time-lapse microscopy [179], recent approaches
are sequencing-based and make use of heritable genetic barcodes [180]. While a multitude
of such approaches exists, we focus on those that fulfill the following two criteria which are

essential to link molecular features to fate outcome in Chapter 4:

(i) methods that achieve single-cell resolution,

(ii) methods that give joint lineage and state (scRNA-seq) readout.

Whenever we use the term “single-cell lineage tracing” (scLT), we refer to methods that
fulfill these two criteria. Experimental strategies for scLLT have recently been reviewed in
Wagner and Klein [17], Baron and Oudenaarden [180|, Moreno-Ayala and Junker [181],
and Olivares-Chauvet and Junker [182].

Molecular layer and biological questions. scLT approaches jointly record cellular
state and lineage relations, typical output is a state matrix X (B as well as a barcode set
B = {b1,...,bn,}, where each b; is given by a string that can be used to relate cells with
respect to their clonal history. The nature of B and how it can be used depends on the
lineage tracing technique and the experimental design. Lineage tracing techniques can be
categorized into prospective and retrospective approaches, where the former makes use
of engineered barcodes while the latter makes use of naturally occurring mutations (Fig-
ure 2.3a). Time-resolved experimental designs can be categorized into clonal resampling
and independent clonal evolution, which assay cells from the same or different clones across

several time points, respectively. (Figure 2.3b).

scLT approaches are frequently used to study fate decisions in complex biological systems
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such as zebrafish [176-178, 183] and mouse [184, 185] embryonic development, regeneration
[186], directed differentiation [187], neurogenesis [188, 189], or tumor evolution [190-192].
To give just one example, scL.T approaches applied to tumor evolution revealed how epige-
netic properties grant fitness advantages to certain clones under therapy-induced selective

pressure [28].

Prospective scLT. In prospective scLT, heritable barcodes are introduced to the DNA
such that they can be read out later on in a sequencing experiment (Figure 2.3a). Ap-
proaches differ in whether the introduced barcodes are static or dynamic over time, i.e.

accumulate additional mutations.

Static barcoding approaches are mostly based on retroviral delivery and are limited in the
clonal diversification they can capture. If static barcodes are only delivered at a single
time-point (e.g. LARRY [10] or TREX [188]), then no clonal substructure can be inferred.
Additional rounds of barcoding at later time points can increase sub-clonal resolution (e.g.
CellTagging [22]).

Dynamic barcoding approaches resolve clonal substructure at high resolution through con-
tinuously evolving barcodes, either through CRISPR/Cas9 induced deletions and inser-
tions (indels) or by using transposons. The first CRISPR-based methods demonstrat-
ing this principle were scGESTALT [176], LINNAEUS, [177] and ScarTrace [178]. While
early applications focused on zebrafish embryonic development and regeneration [176-178,
186], the principle has meanwhile been adapted to mouse development [184, 185] and can-
cer progression in orthopedic [191, 192] and genetic mouse models [190]. The utility of
transposon-based systems for dynamic scL'T has been demonstrated in early zebrafish de-
velopment using TracerSeq [183]. Dynamic barcoding approaches are particularly suited
for in-vivo applications because they uncover high-resolution clonal substructures without

the need for repeated labeling as in static approaches.

Retrospective scLT. Retrospective scLT approaches rely on naturally occurring so-
matic mutations in either nuclear or mitochondrial DNA and can therefore also be applied

in humans, something that is not possible for their prospective counterparts (Figure 2.3a).

Nuclear DNA-based approaches aim to reconstruct lineage history mostly based on single
nucleotide variants (SNVs), copy number variations (CNVs), LINE-1 retroelements, or
microsatellite variations [180]. As nuclear somatic variations in healthy tissue are very

rare, these approaches are mostly restricted to cancer applications where mutation rates
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are much higher [193-195]. However, even in systems with elevated mutation rates, it
remains difficult to couple nuclear approaches to unbiased state readout at high cellular
throughput. One challenge is the length of nuclear DNA, making it difficult to detect
mutations. Targeted approaches circumvent this problem by focusing on a few (1-3) known
mutations (e.g. Genotyping of Transcripts, GOT [196]), however, recording such a low

number of mutations is not sufficient to confidently reconstruct clonal relations.

Mitochondrial DNA based approaches have two key advantages over nuclear DNA based
approaches: first, the mitochondrial DNA is much shorter (5 orders of magnitude), making
it much easier to detect mutations, and second, mutations in mitochondrial DNA are
much more common (by about a factor 10-100 [197-200]). While initial approaches were
plate-based and costly [201, 202|, the technique has meanwhile been extended to yield
droplet-based ATAC (mtscATAC-seq [203]), RNA (MAESTER [204]), ATAC and protein
(ASAP-seq [74]) and ATAC, RNA and surface protein (DOGMA-seq [74]) readout. Recent
applications have focused on detecting pathological mitochondrial mutations [205] and

identifying clonal substructure in chronic lymphocytic leukemia [28].

Clonal resampling. In clonal resampling, the aim is to observe the same clone (cells
sharing the same barcode) across several time points, i.e. for a single phylogenetic tree,
we aim to observe some ancestral nodes, besides the leaf nodes (Figure 2.3b). This setting
is well suited to link the molecular state of early cells (e.g. CD34+ progenitor cells in
hematopoiesis) to the eventual fate outcome of their sister cells (e.g. Monocytes or Neu-
trophils) [10]. As this approach relies on the repeated sampling of clonally related cells, it
is mostly applicable to in-vitro settings, [10, 22, 187], in vivo transplantation settings [10|
or in vivo regenerative systems like human PBMC and CD34+ samples [28, 206] or the
zebrafish fin [178].

Independent clonal evolution. Beyond the transplantation and regenerative settings
discussed above, applying time-series scL'T in vivo requires independent clonal evolution,
i.e. different individuals, sequenced at different time points with independent clonal evo-
lution proceeding in each animal (Figure 2.3b). For example, Hu et al. [186] use the
LINNAEUS system (prospective, CRISPR-based dynamic barcode generation) to study
zebrafish heart generation. Barcoding is initiated during early development, heart injury
is induced and fish are raised to adulthood. The barcoded heart cells are harvested at
either 3, 7, or 30 days post-injury, thus creating a barcoded time series of independent

clonal evolution.
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Data specifics. The aim of the moslin model presented in Chapter 4 is to link cells
across time points for in-vivo studies, thus, we focus on independent clonal evolution de-
signs which give high-resolution clonal diversity without repeated cell sampling. The most
promising experimental approaches to achieve this are prospective dynamic scL'T based on
CRISPR/Cas9 mutations and retrospective scLT based on mitochondrial mutations. With
respect to the additional state readout these methods yield, the data-specific considerations
for scRNA-seq from above hold.

In addition, barcode-specific sources of noise for the CRISPR/Cas9 approach include bar-
code homoplasy, i.e. unrelated cells acquiring the same barcode by chance, and barcode
degradation, i.e. large deletions erasing prior indels. Further, it remains difficult to con-
trol the barcoding rate in both space (tissue/organ) and time (mutation rate/division
rate). Mitochondrial DNA based approaches face some unique challenges, including hetero-
plasmy (related to the high copy number of the mitochondrial genome), relaxed replication
(mitochondrial DNA is replicated all the time, not just in one defined cell-cycle phase),
mitophagy (selective degradation of damaged mitochondria through a process called au-

tophagy) as well as random assignment of mitochondria to daughter cells [28].

Computational approaches. Computational approaches for scL'T data from indepen-
dent clonal evolution include methods to reconstruct lineage trees from individual time
points [207, 208], methods to infer unobserved ancestral states, [209] and one method,
called LineageOT [210], to link cells across time points using lineage and gene expres-
sion information. Lineage OT, which is most relevant to our discussion in Chapter 4, has
been developed as an extension of the Waddington OT [20] algorithm (Section 2.4) to take
lineage relationships into account when mapping cells from earlier to later time-points. Lin-
eageOT takes as input time-series scRNA-seq data with phylogenetic trees reconstructed
independently for each time point. When computing probabilistic couplings across pairs
of time points, LineageOT corrects expression profiles in the later time point based on lin-
eage similarity. This assumes a model in which cells of the same lineage randomly diffuse
over short time scales and thus their earlier expression can be approximated by shrinking

clonally related cells towards each other.
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Figure 2.3: Overview of single-cell lineage tracing (scLT) techniques and experimental
designs. a. Experimental techniques can be split into prospective and retrospective approaches;
some examples are given. We focus on single-cell technologies which give joint state X (%) and
lineage readout, highlighted in the inlet. b. Overview of common experimental designs; four
time points are indicated on the horizontal axis. Dots (circles) denote observed (unobserved)
cells, squares denote barcodes, and crosses denote mutations. Dots and circles are colored
according to time. Left: clonal resampling with repeated static barcoding at time points %
and ¢; and sequencing at time points t1,t2 and t3. Barcode combinations can be used to
link cells from the same clone across time points. Cells can be unobserved either because
they died (e.g. through apoptosis) or because they have not been sampled for sequencing.
Right: independent clonal evolution for two cells dynamically barcoded (using e.g. a CRISPR
editing system [176-178]) at time ¢y which are sequenced at t3 and ¢3, respectively. Mutations
accumulate independently in the two trees. In both clonal resampling and independent clonal
evolution, we omit the additional state readout.
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2.2 Discrete-time Markov chains

While the previous section explained scRNA-seq and scLT data as well as common analysis
approaches, the next two sections provide mathematical background necessary to develop
the new methods of later chapters: discrete-time Markov chains (this section) for CellRank
(Chapter 3) as well as optimal transport (Section 2.3) for moslin (Chapter 4). This section
loosely follows Tolver [211] and Bressloff [212] in describing Markov chains in discrete time
over discrete and finite state spaces. Concepts we explain here, such as random walks,
absorption probabilities, and spectral graph theory, have been used in methods prior to
CellRank (e.g. DPT |213|, Palantir, [25] and PBA [214]) as we explain in our overview of

trajectory inference approaches (Section 2.4).

2.2.1 Definition of a Markov chain

We consider the sequence {Xo, X1, ...} of discrete random variables, where each X; can
take one of the N values in the statespace S = {0, 1, ..., N —1}. If this process satisfies the
Markov Property,

P[X; =n|Xi—1,.... Xo] =P[X; =n|X;_4] , (2.11)

for all 1 > 1 and n € S then we call it a Markov chain [211] (MC). It this notation, P [A]
defines the probability of event A.

Transition matrix. We describe the evolution of the MC using the transition matriz
T e ]Rﬂy *N which is defined as

Tpj =P [Xip1 = j|1Xi =14 V(,j) € S*. (2.12)

We assume that the process is time-homogeneous which means that T is constant with
respect to [. Note that T" is a real, non-negative row-stochastic matrix, i.e. T; ; > 0 Vi, j €
S? and ) ;i Tig =1 Vi € §. We can visualize T in a directed, weighted graph called the
state graph G where nodes represent states and edges represent possible transitions among

them, weighted by the corresponding transition probability in T (Subsection 2.2.5).
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Initial distribution. To uniquely define the distribution of the MC for all [ > 0, we
need to specify the initial distribution ¢ € RN,

¢ =P[Xg=1i WVieS. (2.13)

The MC is uniquely defined by specifying the pair (T, @).

I-step transition probabilities. One can show using the Chapman—Kolmogorov equa-
tions that the l-step transition probabilities are given by powers of the transition matrix
T, ie.

P [XloJrl = j‘Xlo = Z] = Til,j . (2'14)

Taken together, this allows us to find the probability vector of the process at an arbitrary

time [ > 0 as

(P[X;=0],P[X;=1],..,P[X;=N—-1)) =o' T'. (2.15)

2.2.2 Properties of Markov Chains

We introduce properties that are important to studying the long-term evolution of MCs

(Subsection 2.2.3), this is relevant to identifying initial and terminal states in Chapter 3.

Communication classes and irreducibility. Define a path on an MC as a sequence
of transitions between states which taken together has a probability greater than zero. We
define state i to be accessible from state j iff there exists a path to get from j to i. Iff 7 is
accessible from j and the converse holds as well, we say ¢ and j communicate and we write
i <» j. Communication defines an equivalence relation in the state space S [211]. We may

use communication between states to define a disjoint partition of the state space,

K
S={]J¢. (2.16)
k=0

We call the resulting partitions Cx communication classes. In the equivalent setting of
directed graphs (Subsection 2.2.5), these objects are known as strongly connected compo-
nents and can be identified efficiently in time O(N) using Tarjan’s algorithm [215]. If an
MC is composed of a single communication class, we call it irreducible, otherwise, we call

it reducible. Many of the theoretical results we introduce below only hold for irreducible
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MCs. In practice, when dealing with reducible MCs, it is therefore helpful to restrict the

MC to one of its communication classes at a time such that it becomes irreducible.

Hitting and return time. Given any state ¢ € S, define the hitting time of ¢ as the

first time visiting 7. Mathematically, we define
H; == inf{l > 0| X; = i}. (2.17)

When we additionally condition on the process starting in sate i, we refer to H; as the
return time. Using the return time, we can differentiate between two different kinds of

communication classes.

Recurrence and transience. A state i € S is called recurrent iff the probability of

returning to the state in finite time is 1, i.e. iff
P[H; < 0| Xg=1]=1. (2.18)

Otherwise, we call state i transient. Recurrent and transience are class properties, i.e.
either all states i € Cj, are recurrent, or they are all transient (Thm. 11 in Tolver [211]).
Therefore, we may speak of recurrent classes and transient classes. Intuitively, we never
leave a recurrent class once we entered it. Denote a recurrent class by R and a transient
class by 7. If a recurrent class consists of just one single state, we call this state an

absorbing state.

Period of a state. For a given state ¢ € S, define M to be the set of the lengths of
all possible paths which start and end in ¢. Then, the period of state ¢ is the largest
non-negative integer that divides all elements of M. If a state has period 1, we call it
aperiodic. Periodicity, like recurrence and transience, is a class property, so we may speak
of the period of a class (Thm. 18 in Tolver [211]). We may further call a class aperiodic if

it has period 1, and periodic otherwise.

Ergodicity. We call an MC ergodic if is irreducible and aperiodic. Given the definitions
of irreducibility, recurrence, transience, periodicity, and ergodicity, we are in a position to

study the long-term evolution of an MC.
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2.2.3 Limiting behavior of a Markov chain

In many practical single-cell applications, we are interested in the long term evolution of
a biological process described by a Markov chain, i.e. in the limit

llirgol[” (X7 =1], (2.19)
for a given state ¢ € S. For a general MC, this limit does not exist. If the limit does exist,
it is unique and we call the resulting probability distribution the limiting distribution of
the MC. Intuitively, an MC for which there exists a limiting distribution will forget its
initial conditions in the long-run regime, i.e. the probability of being in any state i for
I — oo will not depend on the initial distribution ¢. Given that we can describe [-step
transitions by T, this is equivalent to studying the behavior of Tll ; as I — oco. In the

following paragraph, we present a special case where a limiting distribution exists.

Limiting distribution for an ergodic Markov chain. If the MC is ergodic, i.e.
irreducible and aperiodic, then the limit of Equation (2.19) exists and is given by the

expression

1
lim P [X; = i]

= 2.20

where the term in the denominator on the right hand side (RHS) is the expected return

time introduced in Equation (2.17) [211]. Given this result, the following questions remain:

(i) how do we compute the RHS of Equation (2.20)?
(ii) how does this extend to periodic MCs?

(iii) how does this extend to reducible MCc?

To address these questions, we introduce invariant measures.

Invariant measures. A non-negative vector w € Rf which satisfies the following sys-

tem,

T = ZﬂjTj,i Vi € S, (2.21)
JjES
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is called an invariant measure of the transition matrix T'. If 7 is a probability distribution

(i.e. it sums to one), we call it an invariant distribution, often also a stationary distribution.

Computing invariant measures. For an irreducible MC, existence and uniqueness of
an invariant measure can be shown via the Perron-Frobenius Theorem [216] (Section A.1
in Appendix A). From the definition given in Equation (2.21), it is clear that an invariant
measure 7 should be a non-negative vector that has the property of being invariant under

the linear transformation represented by 7', i.e. we require
' T=1x". (2.22)

Therefore, an invariant measure for T associated with an irreducible MC is given by the

non-negative left eigenvector with eigenvalue 1, which is unique up to multiplication.

Connecting invariant measures to the limiting distribution. We are now in a
position to address question (i) from above by connecting the limiting distribution to the

invariant distribution. For an ergodic MC and for any state ¢ € §, it holds:

1
lim P[X; =i]=m =

—_— 2.23
l—o0 E [HZ‘XO = Z} ’ ( )

where 7 is the unique invariant distribution solving Equation (2.21), see Thm. 23 in Tolver
[211] for a proof. In other words, for an ergodic MC, we simply compute the left eigenvector

to eigenvalue 1 of T" and ensure m; > 0 and ), m; = 1.

Periodic Markov chains. We turn to irreducible but periodic MCs to address question
(ii). For such MCs, we may still compute an invariant distribution but this will not
represent the limiting distribution of the process. The intuitive reason is that in the long
run, the process will converge to some cycling behavior where the position in the cycle
depends on the initial distribution. In that sense, the chain does not forget its initial
conditions. However, for an MC of period d > 1, we may define the average distribution

over a period of length d via

lim P [Xl = l] + P [Xl—H = Z} +..+P [Xl-l—d—l = Z]

=0 d ’

(2.24)

for an arbitrary ¢ € S (Thm. 26 in Tolver [211]|). Let m; denote the value of the above
limit for a given state i. If ), m; = 1, then 7 is the unique invariant distribution of the

MC. In other words, in the case of an irreducible but periodic MC, we can still link the
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long-run behaviour of the process to its invariant distribution, we only have to interpret o
as the average distribution over one complete period in the limit [ — oco. This addresses

the second question.

Reducible Markov chains. In order to address question (iii), we need to partition the
state space of the MC into its recurrent and transient classes, 7. and Ry, respectively. Let

(X1)1>0 be a reducible MC with state space S. In general, we may partition S as follows:

C D
s=J7 U URra. (2.25)
c=1 d=1

for C € Ny transient and D € Ny recurrent classes. For the number of states in each of

these partitions, we define
N =T, N =|Rq V(c,d)€{l,..,C} x {1,.., D}. (2.26)
For any state ¢ in any of the 7T, transient classes, the following intuitive result holds:

lim P[X; =i =0, (2.27)
l—o0
irrespective of the choice of initial distribution, see Thm. 25 in Tolver [211] for a proof.

Therefore, we may in the following restrict our attention to recurrent states and classes.

Limiting behavior of recurrent states for reducible Markov chains. For a recur-
rent state j in any of the R4, the limiting behavior will necessarily depend on the initial
distribution. However, if we restrict the MC to one recurrent class R4 at a time, it will be
irreducible in that restriction, and all of the results for irreducible MCs hold. In particular,
let () ¢ RNLSlR) be the limiting distribution of the MC restricted to recurrent class Ry.
Define 7 ¢ RN as the vector filled with elements of 7w(#) in the indices corresponding
to R4 and zero elsewhere. Then (D) will be an invariant distribution to the unrestricted
MC. In this way, we may define a set of vectors V = {ﬁ'(l), - ﬁ'(D)}. These vectors form
a non-negative basis for the left 1-eigenspace of 1. Note that any linear combination of
the vectors in V will always be a left eigenvector to eigenvalue 1, and any convex combi-
nation of the vectors in V will be an invariant measure for the MC. We see from this that
for reducible MCs, the invariant measure is no longer unique but can be made unique by

focusing on individual recurrent classes.
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2.2.4 Absorption probabilities for a Markov chain

In this subsection, we are interested in describing irreducible MCs with transient and
recurrent classes. Once the MC enters one of the recurrent classes, it will never leave
again, i.e. it’s 'absorbed’ by that class. Given that the MC is initialized in a transient
state ¢, we would like to know how likely the MC is to be absorbed by each of the recurrent
classes. This is relevant to computing fate probabilities of cells towards different terminal
states in a biological process in Chapter 3. For this purpose, in Theorem 2.1, we reproduce
the statement of Thm. 28 from Tolver [211].

Theorem 2.1 (Absorption probabilities). Consider an MC with transition matriz T €

RNXN - We may rewrite T as follows:
T 0

s ol (2.28)

where T and Q are restrictions of T' to recurrent and transient states, respectively, and S is
the restriction of T to transitions from transient to recurrent states. The upper right zero
1s due to the fact that there can be no transitions back from recurrent to transient states.
We define the matriz M € RN*N wiq

M:=(I-Q)". (2.29)

Then, the ij-th entry of M contains the expected number of visits the process makes to state
j before absorption, conditional on initialization in state i. M 1is usually referred to as the

fundamental matriz of the MC. Further, the matriz
A=T-Q)'s, (2.30)

in the j-th entry contains the probability of j being the first recurrent state reached by the
MC, given that it started in i.

Proof. See Thm. 28 in Tolver [211]. O

Absorption probabilities to recurrent classes. Note that we can apply Theorem 2.1
to situations where we are not interested in absorption probabilities to individual recur-
rent states but rather to recurrent classes by summing up absorption probabilities for all

constituent recurrent states of a recurrent class.
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2.2.5 Spectral graph theory

MCs can be analyzed in terms of their associated state graph, equally, certain graphs
can be analyzed in terms of associated Markov chains, a principle that is used in many
trajectory inference algorithms (Section 2.4). Given a similarity graph G of the data
(Subsection 2.1.2), MC formulations and spectral properties can be used to derive distance
metrics [213] and embeddings [126-128| of the data. For a general introduction to the topic,
we refer to Von Luxburg [217] and Haghverdi [218] which we follow in this exposition.

Graph laplacians. To study properties of the KNN similarity graph G, we introduce the
graph laplacian matrix L € RNe*Ne as well as its two normalized variants, LOw) [(sym) ¢
RNexNe yig

L=D-W, (2.31)
L™ = p7'L=1-D7'w, (2.32)
LM = p=12pp-1/2 = 1 _ p~12Wp-12, (2.33)

for the diagonal node-degree matriz D € RNe*Ne with entries D;; = 25\7;1 Wi; Vi. The
normalized laplacians carry the superscripts rw and sym because they are tightly connected

with random walks and are symmetric, respectively.

Laplacian eigenmaps and diffusion maps. Consider the problem of embedding cells
{x1,..,xy,} for z; € NVo in N; dimensions for N; << Ny such that their similarity
captured by the adjacency matrix W is preserved. Denoting by Y € RNeXNi the low-

dimensional representation of the data, the problem may be written as

Ne
i 2 : T T
min - E 1 Wi ||Yi: = Y5.|]* = min trace(Y ' DY) st.Y DY =1, (2.34)
27]:

where the constraint Y ' DY = I ensures existence of a unique solution. It can be shown
[219] that the solution is given by a set of vectors Y = [yi.,...,yn,] which satisfy the

following eigenvalue problem,

Ly; = ADy;, (2.35)
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or equivalently,
LW gy = Ay, . (2.36)

In particular, for eigenvalues and right eigenvectors of LU™) 0 = X\ < Xy < ... < AN,
and 1, ..., ¥n,, respectively, the solution is given by the set of (appropriately normalized)
right eigenvectors {a,...,¥n,+1}. The representation Y is called a laplacian eigenmap.
Intuitively, it makes sense to exclude the first eigenvector 11 as it corresponds to the

constant vector of ones,
L1=(I-D'W)1=1-1=0, (2.37)

for 1 =[1,..., 1]T € RMe. In the single-cell community, laplacian eigenmaps are widely
used under the name diffusion maps [126, 128] where the adjacency matrix is constructed
using a Gaussian kernel with density dependent scaling parameter and additional density

correction [126] to account for non-uniform sampling of cells from the phenotypic landscape.

Diffusion distance. Random-walk based properties can also be used to define robust
distance measures [126, 127, 218|, we introduce the transition matrices corresponding to

the graph laplacians from above,

T = D~'w | (2.38)
7™ — p=12Wwp=1/2 (2.39)

To define a distance between sampled data points x; and x;, consider the probability of a

random walk starting in @x; to reach x; in exactly t steps, given by

Ne
t
T =" Al onitn (2.40)
k=1

For eigenvalues and eigenvectors v; and ¢y of T | respectively, normalized such that
gb;—qu =0;5. As TYm) is symmetric, left and right eigenvectors are identical. Further, v

and ¢y, are related to the eigenvalues are eigenvectors of LOW) via

vi=1-M\, (2.41)
¢i = D'/, . (2.42)
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This can be seen easily by writing
TE™) DY24py; = D™V2Wap; = DYV2L0W s = (1 — A) DV 24, . (2.43)

Using the t-step transition probabilities as a feature representation, we define the diffusion
distance [126] as

N,
o m)t )t < )t )t 2
Ddigy(i, ) = |IT2™ = 7™ = 3 (1™ - 1) (2.44)
k=1

which may be rewritten using Equation (2.40) as

Ne¢

Diigs(i,5) = Y ' (dni — bks)° (2.45)
k=1

(2.46)

In Section 2.4, we review diffusion pseudotime [213|, an extension to diffusion distance

that is frequently used in the single-cell field.

2.3 Optimal transport maps between distributions

Many problems in single-cell genomics involve mapping distributions over sampled cells
from one space to another; this can be achieved in a probabilistic manner using optimal
transport (OT). For example, in the temporal domain, we can only measure each cell
once (Section 2.1), thus we obtain cross-sectional measurements at discrete time points
which we have to link probabilistically to follow the evolution of cells from early to late
stages [20]. In the spatial domain, experimental assays vary in the number of genes they
can measure and the spatial resolution they achieve. Two extreme examples would be
scRNA-seq, which measures all genes without any spatial resolution, and early microscopy
approaches, which measure only around 10 genes, albeit at cellular (or even sub-cellular)
spatial resolution. OT can be used to couple these two data modalities to infer expression

values for the unobserved genes at cellular spatial resolution [220].

The original notion of OT was introduced by the French mathematician Gaspard Monge
in 1781 who considered the problem of moving a pile of sand to a hole where the shape of
the pile and the hole are prescribed and a certain cost is associated with moving each grain

of sand from source to target locations. This problem is known as the Monge problem; it
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leads to a constrained non-convex optimization problem that is not guaranteed to have a
feasible solution in general [221]. Kantorovich [222] in 1942 famously proposed to relax the
transport problem by allowing probability mass from a source destination to be split across
several target destinations, thus evolving from deterministic transport maps to probabilistic
couplings. OT is based on a rich body of mathematical theory and can be formulated for
general (continuous) measures which must not be probability measures. In this section,
however, we focus on the theory relevant to Chapter 4, i.e. discrete probability measures
within the Kantorovich relaxation, and some extensions. We refer to Peyré and Cuturi

[221] for an excellent overview of OT which we follow in this exposition.

2.3.1 The Kantorovich relaxation of Optimal Transport

For probability vectors (equivalently, histograms) a € An and b € Ayy, define the corre-

sponding discrete measures a and [ as
N
a(@) =) aide, (2.47)
i=1
M
Bly) = bidy, , (2.48)
j=1

with respect to source and target locations, (x;,y;) € X x Y for all (i,5) € {1,..., N} x
{1,..., M} where X, C R (Figure 2.4a). OT over discrete probability measures seeks to
find a coupling matrix P € ]Rf xM transporting mass from « to 8 in a way that is optimal
with respect to a cost function ¢ : X x Y — Ry where c¢(;, y;) is the cost associated with
moving a piece of unit mass from location x; to y;. The set of feasible couplings, given
by those matrices P that satisfy the marginal constraints imposed though the probability

vectors a and b, may be written as
Ula,b) = {P eRVM: Ply =a, PT1y = b} , (2.49)

for constant-one vectors 1y and 1,7 of lenghts N and M, respectively. With this at hand,
we can state the Kantorovich relaxation of the OT problem as follows:

Le(a,B) = i C,P), 2.50

c(a, B) ng]l&b)< ) (2.50)

for cost matrix C' € RY*M with C;; = c(x;,y;) and (C, P) = >_i; CijPij. Following

Peyré and Cuturi [221], we make the dependency of the OT problem L. on the cost

function ¢ explicit. In case the cost function c is related to a proper distance metric d via
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c(xi,yj) = dP(xi,y;), i.e. the cost is given by the p-th power of a distance metric, we

define the p- Wasserstein distance as
W,(a, B) = Lap(a, B)P, (2.51)

where Lgp is defined as in Equation (2.50). We refer to Peyré and Cuturi [221] for an
overview and to Chen et al. [223] for a single-cell application of Wasserstein distances to

describe patient-level variation in terms of single-cell gene expression.

The objective function defined in Equation (2.50) is linear with constraints given by the
N + M equality constraints imposed though U(a, b), thus it defines a convex linear pro-
gram whose solution is in general non-unique. Various strategies have been suggested to
solve Equation (2.50), among them network flow solvers and the auction algorithm [224],
however, all of these remain limited to finding a solution in time O(N?3) for M = N, omit-
ting logarithmic factors. This poses a scalability issue for applications in current single-cell
genomics datasets which frequently contain hundreds of thousands of cells. Further, prac-
tical limitations include the difficulty to adapt these algorithms to run on GPUs and to be
differentiable.

Entropic regularization. To overcome these practical limitations, consider the follow-

ing entropically regularized [225| variant of the OT problem,

Lifaf) = min | (P.C) ~ cH(P), (2.52)

for regularization strength € > 0 and entropy term

H(P):=—=Y Pj(logP;—1). (2.53)

ij

In contrast to the unregularized problem, Equation (2.52) is e-strongly convex and thus
possesses a unique global optimum. Further, for ¢ — 0 and ¢ — oo, Peyré and Cuturi [221]

and Cominetti and Martin [226] show the following asymptotic results:

Li(a,B) — L fore — 0, (2.54)

P. — ab' for e — 0o, (2.55)

where P. refers to the solution of the regularized problem with regularization parameter
€. In particular, these results show that for small €, the regularized problem approximates

the unregularized problem while for large €, the coupling converges to the outer product
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of the two marginals, which is closely related to the Mazimum Mean Discrepancy distance
commonly used in generative models for distribution matching, see Lotfollahi et al. [40]
for a single-cell application. To solve the regularized OT problem of Equation (2.52), we

reproduce the following proposition from Peyré and Cuturi [221]:

Proposition 2.1 (Solution to the regularized OT problem). The unique solution to the

reqularized OT problem introduced in Equation (2.52) can be written as
Pz'j = uiKZ'jvj V(Z,j) S {1, ,N} X {1, ey M} s (2.56)

for the associated Gibbs kernel K;; = exp (—Cj;/€) and scaling variables (u,v) € RY x RY

to be inferred.

Proof. The Lagrangian associated with the regularized OT problem of Equation (2.52)

reads
E(P, f,g) = (P,C) — H(P) ~ (f,Ply — a) — (9. PT1x ~ b) . (2.57)

for Lagrange multipliers (f,g) € RV x RM. Setting the first derivative with respect to the

coupling matrix equal to zero (first order optimality conditions) yields

£'§:Cij+elogﬂj—fi—gj;0, (2.58)
which is equivalent to

Py = efileq=Ciileqgile — ofil€fro9ile 7 (2.59)
thus u; = efi/¢ and v; = edile. ]

Sinkhorn algorithm. The form of the solution outlined in Proposition 2.1 can be used
to construct an algorithm that iterates between scaling the rows and the columns of a
candidate matrix. Impose therefore the marginal constraints of the feasible set U(a, b) on

a solution in the form of Proposition 2.1,

diag (u) Kdiag (v) 1y = a, (2.60)
diag (v) K "diag (u) 1y = b, (2.61)
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which can be simplified to give

u © (Kv)=a, (2.62)
vo (K'u)=b, (2.63)

with ® denoting elements-wise multiplication. Iteratively solving these equations gives rise

to Sinkhorn’s algorithm,

a
o0+ oot (2.64)
b
(I+1) .
v = T (2.65)

where the division is applied element-wise. Yule [227] originally suggested iterations of this
form, Sinkhorn [228] proofed their convergence and Cuturi [225] suggested applying the
algorithm to solve entropically regularized OT problems which gives rise to a differentiable
solution. Note that Sinkhorn’s algorithm is well suited to run on GPUs since it only relies

on matrix vector products.

Cuturi et al. [229] recently used JAX [230] to implement Sinkhorn’s algorithm in their
Optimal Transport Tools (OTT) software package; OTT thus allows for just-in-time com-
pilation, GPU acceleration, online cost function evaluation, and automatic differentiation.
In contrast to the linear programming algorithms introduced above, Sinkhorn runs in time
O(N?) for N = M, omitting logarithmic factors. Thus, solving the regularized (Equa-
tion (2.52)) rather than the unregularized (Equation (2.50)) OT problem offers both prac-
tical and theoretical advantages. In Chapter 4, we introduce moscot-time and moslin,
two methods which makes use of OT'T’s Sinkhorn implementation to link cells across time
points. OTT’s superior implementation translates into moscot-time outperforming pre-
vious methods that link cells across time both in terms of compute time and memory

requirements by a large margin.

2.3.2 Extensions of optimal transport

Applications in single-cell genomics require two further extensions of the regularized OT
problem, we follow Peyré and Cuturi [221] in their presentation. First, cells proliferate
and die while they differentiate which should be reflected in the marginal distributions a
and b. However, as the rates of cellular growth and death are difficult to estimate based
on scRNA-seq data, we relax the marginal constraints which leads to unbalanced optimal
transport. Second, cells measured by different experimental technologies, such as spatial

and non-spatial assays, reside in different metric spaces and cannot be compared directly
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via a cost function c. Thus, we allow for pairwise comparisons only within the source and

target spaces which leads to Gromov-Wasserstein optimal transport (GW).

Unbalanced optimal transport. To relax the marginal constraints, consider a gen-
eralization of the regularized OT problem by adding divergences Dy between marginal

constraints and row/columns sums of P to the objective function,

L (a, B) = Perﬁglw (C, P) + 11 Dy(Plar|a) + 9 Dy(P " 1x5|b) — eH(P), (2.66)

+
where the parameters 7,7 > 0 control the weight given to the soft marginal constraints
[221, 231]. This is a generalization of the original entropic OT problem of Equation (2.52)
as in the limit 7,7 — o0, one recovers the original problem. A generalized version of
the Sinkhorn algorithm may be applied to solve Equation (2 66); of particular importance
in practical applications [20] has been the case Dy(-|-) = KL[-||-] for which the Sinkhorn

updates read

a \nr
ul = (Kv()) T (2:67)
T2
b To+e€
+1) ._

We refer to Liero, Mielke, and Savaré [231] for a treatment of the theory behind unbalanced
OT and to Chizat et al. [232] for the derivation of practical algorithms. The generalized
Sinkhorn algorithm provides an efficient solution to unbalanced OT problems which fre-

quently arise in single-cell genomics [20].

Gromov-Wasserstein optimal transport (GW). In standard OT, we assume that
point clouds {1, ...,zx} and {y1, ..., yas } corresponding to bins in the histograms a and b
may be compared using the cost function c(-, ), i.e. X and Y correspond to the same metric
space, giving rise to the cost matrix C'. To relax this assumption, consider a situation where
vectors {z;}¥.; may be compared using the cost function ¢¥ and vectors {y;}; may be
compared using the cost function ¢, but no direct comparisons of vectors in X and ) are

possible. Using these cost functions, we define the entropically regularized GW problem,

‘C’E,cx,cy( = Penllfuzlz b) Z L Z] ’ Ckl l - EH(P) (269)
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for cost matrices Ct € RfXN, CcY e RfXM with C’{}( = Y (z;,xj), C,%; = (yr, y)
and distance metric L. The solution to (the unregularized version of) Equation (2.69)
defines the Gromouv-Wasserstein distance between two metric spaces, each equipped with a
probability distribution. This distance has been introduced by Mémoli [233] as an extension
to the Gromov-Hausdorff distance [234|, combined with entropic regularization by Peyré,
Cuturi, and Solomon [235] and Solomon et al. [236] and used in the single-cell field e.g. for
data integration across modalities [237]|. Equation (2.69) defines a non-convex, constrained,
smooth optimization problem in P; before discussing its optimization, we introduce one

further generalization.

Fused Gromov-Wasserstein optimal transport. In many practical applications, one
encounters problems that possess characteristics of both OT (Equation (2.52)) and GW
(Equation (2.69)); consider for example spatial imputation of gene expression data: given
gene expression values in X’ and spatial coordinates in ), these cannot be compared directly
and require a GW treatment. However, when expression values for a few genes are also
known in the spatial domain (e.g. through a spatial transcriptomics assay [238]), the
problem of mapping cells based on gene expression similarity between the two domains
takes an OT form [220, 239]. Thus, problems of this kind require a combined objective
function where some sampled features may be compared across spaces while others may
only be compared within one space (Figure 2.4b,c). This kind of problem is known as
Fused Gromov-Wasserstein (FGW), defined as

L% (. B) = Per% K L(C¥,CY) PP+ (1— )Y CipPy — eH(P), (2.70)
ikl ik

where « € [0,1] controls the weight given to the OT versus GW terms, the within-space
cost functions ¢¥ and ¢ are defined for these features {z;}¥ ; and {y;}}, which may
not be compared across spaces and the across-space cost function ¢ is defined for these
features («},y,) which may be compared across spaces [240]. For a = 1, we recover the

GW problem introduced above.

Introducing the 4-tensor [235],

T(C*,C¥)ijm = L (C55,C}) (2.71)

17
allows us to rewrite Equation (2.70) in shorter form,

€,a o . X Yy
EL,cX,cy,c(a’B) = Pg(l]l(rclz,b)a (T(CH,C¥)@ P, P)+ (1 —a)(C,P)—eH(P) (2.72)
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with tensor multiplication defined via

(T ® P), Z,Ejklpkl (2.73)

This tensor product may be computed in time O(N?3) for M = N for a class of separable
loss functions L, including /2 loss and the KL divergence [235].

FGW optimization. Following Peyré, Cuturi, and Solomon [235], we use projected

gradient descent with iterations

where Projg%mb)(ﬁ’) = argminpeg(q,p) 2_ij Fij 108 (Pij/]%j> is a KL projection operator, 7
is a step size, J is the FGW objective function defined in Equation (2.70) and ® denotes

element-wise multiplication. The gradient of the objective function may be written as
VJ=(1-a)C+aT(CY,CY)aP, (2.75)
while the KL projection can be solved via an OT problem [241],

Projg%a b) (P) = argmin <—610g P, P> —eH(P). (2.76)
’ PcU(a,b)
Using Equation (2.75), Equation (2.76) and setting 7 = 1/¢, we can re-write the update
rule of Equation (2.74) as

PUH) = argmin <(1 —a)C + o/T(CX, Cy) ® PW, P> —eH(P), (2.77)
PecU(a,b)
which is the entropically regularized OT problem of Equation (2.52), solved efficiently at
each iteration for an evolving cost matrix using the Sinkhorn algorithm 220, 225, 235|. The
algorithm outlined here is applicable to both GW (o = 1) and FGW « € (0,1)) settings.
The major computational bottleneck is the update of the tensor product of Equation (2.73)
required at each update of Equation (2.77), which runs in time O(N?) for N = M.
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Figure 2.4: Optimal transport for single-cell genomics. a. Optimal transport problem
between source a(x) and target 5(y) distributions [221]. Circle area denotes probability mass
in the source a and target b histograms. The Kantorovich relaxation seeks to find a coupling
matrix P from the set of feasible couplings U(a, b) which is optimal with respect to a cost
function. b. lllustration of the objective function for a Fused Gromov-Wasserstein problem,
defined in terms of both incomparable (top) and comparable (bottom) spaces. While direct
sample-level comparisons are possible for features in the same space (expressed through cost
matrix C'), only within-space comparisons are possible for features in incomparable spaces
(expressed through cost matrices C* and C7). c. Spatial mapping as formulated in novoSpaRc
[220] provides a single-cell example for a Fused Gromov-Wasserstein problem. Cells in the
scRNA-seq reference (left) are mapped to a tissue geometry (right) on the basis of a structural
correspondence assumption between gene expression and physical distance (Gromov-term) as
well as gene expression similarity (Wasserstein-term). Panel (c) inspired by Nitzan et al. [220].
reg., entropic regularization; GEX, gene expression; ref., reference.

2.4 Trajectory inference learns continuous representations from

snapshot data

Single-cell assays like scRNA-seq provide unbiased measurements of cellular state. In an
ideal scenario, one would be able to repeatedly apply these assays to the same cell to study
the resulting trajectory. However, scRNA-seq and many related assays are destructive; each
cell can only be measured once. Thus, to study continuous biological processes with these

techniques, computational methods must be employed which reconstruct the dynamics of
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a typical cell from snapshot measurements of many different cells, a problem known as
trajectory inference (TI). TI problems have received considerable interest in the single-cell
community early on and accordingly, many methods have been developed for this task.
Here, we limit our attention to methods that are widely used and which are relevant for
Chapter 3. We refer to Saelens et al. [12] and Deconinck et al. [242] for comprehensive
method benchmarks and to Tritschler et al. [13] for an in-depth introduction to the concept
of TI.

Basic idea of TI. TI methods make use of the fact that many biological processes unfold
unsynchronized across cells, therefore, even when sequenced at the same wall-clock time,
cells are in different stages internally and these stages can be aligned to reconstruct the pro-
cess at hand. Different methods aim to reconstruct different types of biological processes
- while early methods focused on one-dimensional, linear trajectories, later methods ex-
tended the focus to more complex, branching, and multifurcating trajectories via discrete
and, more recently, probabilistic assignments (Figure 2.5a-c). The concepts introduced
here can be used to study different biological processes including differentiation, repro-
gramming, regeneration, and cancer. However, they do not provide information about the
direction of the biological process and thus remain limited to situations where the direction
of the process has been established otherwise. In practice, this limits their applicability
mostly to normal development. We extend upon these methods in Chapter 3 where we

explicitly incorporate directionality.

2.4.1 Early methods focus on linear trajectory structure

Given a matrix of cell state measurements, i.e. X sequenced at one or more experi-
mental time-points, linear T1 estimates a one-dimensional pseudotime coordinate T € [0, 1],
where 0 and 1 correspond to the beginning and end of the biological process, respectively.
Among the earliest methods to estimate pseudotime were Wanderlust [18] and Diffusion
Pseudotime (DPT) [213]. Both methods compute pseudotime by constructing biologi-
cally meaningful distance measures using random walks on the phenotypic manifold. To
approximate the phenotypic manifold, both methods start with KNN similarity graph con-
struction (Subsection 2.1.2), however, they differ in how they measure distances along this
graph. While Wanderlust uses iteratively refined shortest path distances from a set of
sampled waypoint cells, DPT adapts the diffusion distance from Coifman and Lafon [127]

(Subsection 2.2.5) to be scale-free, i.e. it averages over random walks of all possible lengths.



2.4. TRAJECTORY INFERENCE 45

linear branching - discrete branching - probabilistic time-series

Ik; pseudotime branch assignment fate probability
feature space o] ] @ uncommitted @to A @to B ACC—=B 000 cell types/states
e.g. Wanderlust, DPT e.g. Monocle, Wishbone, e.g. PBA, Palantir e.g. WOT, Pseudodynamics

Slingshot, PAGA

Figure 2.5: Trajectory inference in single-cell genomics. a-c. Coordinate system indicates
(low-dimensional) feature representation, black outline denotes state manifold, dots denote cells
colored according to pseudotime (a), discrete branch assignment (b) or probabilistic branch as-
signment (c). a. Pseudotime approaches infer a latent time-assignment; examples: Wanderlust
[18] and DPT [213]. b. Discrete branching approaches infer a backbone trajectory that cells
are assigned to; they assume the existence of a discrete "branching point". Cells before this
point are labeled as "uncommitted". We show two hypothetical terminal states A and B as
well as cells differentiating towards them. Examples: Monocle 1-3 [27, 92, 243], Wishbone
[244], Slingshot [245] and PAGA [175]. c. Probabilistic branching approaches circumvent the
assumption of a discrete branching point by computing a probabilistic branching probability,
also called fate probability, per cell. Examples: PBA [214] and Palantir [25]. d. Temporal
approaches relate cells measured at two or more experimental time points. Examples: WOT
[20] and pseudodynamics [246].

Thus, we consider TEYm' for ¢ — 0o and define the accumulated transition matriz M as

%) N, '
M = Z (T(sym) _ ¢1¢1|—>t _ Z <1 Vi > ¢z¢;r (2.78)

=1 i—2 —

The geometric series in Equation (2.78) would not converge had we not removed the
eigenspace corresponding to eigenvalue v = 1 — A; = 1 — 0 = 1 [213]. Using the ac-

cumulated transition matrix M, DPT distance between cells ¢ and j is defined via

Ne 2
Dilicd) = Mo = M3 = Y- (175} (= (2.79)
k=2

Pseudotime can now be defined for each cell ¢ by computing DPT distance from a manually

annotated root cell 7, i.e.
7; = Dapt (%0, 1) Vi, (2.80)

with appropriate normalization such that 7; € [0,1]Vi. In contrast to other scale-free
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graph-based distance measures like the commute time, DPT has more favorable asymptotic
properties as for N, — 0o, the commute time only conveys information about local density
rather than data geometry [213, 247|.

2.4.2 Discrete models of branching

Pseudotime inference allows cells to be placed along a one-dimensional trajectory, this
limits the scope of such methods to "linear" biological processes. To model biological
processes where cells can choose among one or more fates or branches, a multitude of

extensions has been proposed; these usually follow a common pattern:

(i) project cells into a low dimensional space Z (Subsection 2.1.2),

(ii) construct a backbone trajectory, i.e. a graph that represents the average deterministic

part of the observed dynamics,

(iii) align cells to this graph, either to the nodes, to the edges, or to a mixture of both.

We introduce the most common methods below in terms of these three major steps.

Cell-based: Monocle 1, Monocle 2, and Wishbone. The following methods con-
struct the backbone trajectory (ii) directly on the level of sampled cells. Monocle [27]
performs independent component analysis (ICA) to embed the data in a low dimensional
space (i), constructs a minimum spanning tree (MST) in this space, and computes the
longest path through the MST (MST diameter), which serves as the trajectory backbone
(ii). To compute pseudotime, geodesic distance along the MST diameter is computed,
making use of PQ trees [248] to handle uncertainty in the assignment (iii). Branches are
detected by traversing the PQ tree for alternative paths. Monocle has been extended in
version 2 [243] to use reversed graph embedding [249] to define a principal graph that
defines the backbone trajectory (improves step ii). Wishbone [244] uses diffusion maps
(Subsection 2.2.5) for dimensionality reduction (i), defines the branched trajectory back-
bone through normalized graph cut segmentation (ii), and uses Wanderlust to compute a

pseudotime which is refined after branch assignment (iii).

Cluster-based: Slingshot, PAGA and Monocle 3. The following methods construct
the backbone trajectory on the level of clusters that aggregate individual cells. Slingshot

[245] can be coupled with any dimensionality reduction technique (i) and also with any
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clustering method to group cells in Z space. An MST computed among the set of cell clus-
ters (using a covariance-scaled euclidean distance measure among clusters means) serves
as the trajectory backbone (ii). Going back from cluster- to cell-level, slingshot extends
principal curves [250] to simultaneous principal curves which are fit to the cell sets corre-
sponding to each branch in the MST. Pseudotime is assigned by orthogonal projection of
cells onto the curves (iii). Simultaneous fitting of principal curves ensures that pseudotime

values are consistent across principal curves prior to branching events.

Similar to slingshot, Probabilistic Approximate Graph Abstraction (PAGA) [175] allows
any dimensionality reduction and clustering technique to be used (i). A KNN graph G
(Subsection 2.1.2) is abstracted to a cluster-level graph G* by comparing observed inter-
cluster edges with expected inter-cluster edges under a model of random edge allocation.
The abstracted graph G* contains high-confidence edges among clusters and serves as the
trajectory backbone (ii). The authors suggest computing pseudotime by adapting DPT to
the case of disconnected graphs, essentially extending Equation (2.79) to the case of several
eigenvectors ¢; corresponding to eigenvalue 1 [175]. In Monocle 3 [92], the authors build on
these ideas by embedding cells in a low-dimensional UMAP space [121, 122] (i), clustering
cells, and computing an abstracted PAGA graph (ii) which serves as a guide to principal
graph construction using the SimplePPT algorithm [251]. To compute pseudotime, cells
are projected onto the principal graph (iii).

2.4.3 Probabilistic models of branching

The TT methods introduced above generalize the simple pseudotime approaches we saw
first to branched topologies, however, they model fate decisions as discrete events in time
via hard assignments of cells to the branches. Before the decision point, usually referred
to as branching point, cells are assigned to the same branch whereas after, they reside on
different branches. In contrast, recent epigenetic studies [252-254| support a continuous in-
terpretation of fate decisions: cells gradually transition from multipotent, i.e. naive stages,
towards unipotent, i.e. differentiated stages. During this transition, various epigenetic
modifications gradually restrict fate choice until cells reside on a path leading to a single
fate outcome. Recent computational methods cater to this change in paradigm and model

fate choice as a continuous process.

PBA connects the Fokker-Planck equation to spectral graph theory. Population

Balance Analysis (PBA) [214] describes continuum cellular dynamics via a Fokker-Plack
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equation,
de 1
a2V r 2.81
5~ gDV etV(eVE)+  Re, (2.81)
drift sources and sinks
diffusion

for cell state density c(z,t) : X X [to, tmax] — R4 with state-coordinate x € X for gene
expression space X C R™s and time-coordinate ¢ € [tg, tmax]. Equation (2.81) describes
changes in cell-state density ¢(z,t) over an infinitesimal volume in gene expression space
(left hand side) via three terms on the right hand side:

(i) diffusion term: stochastic fluctuations in gene expression which drive cells from high-
density to low-density regions with diffusion strength D € Ry, assumed to be a

constant.

(ii) drift term: directed motion of cells according to the potential function F' : X — R,

which can be seen as a mathematical expression of Waddington’s epigenetic landscape
[255].

(iii) sources and sinks term: cellular growth (e.g. proliferation) and death (e.g. apoptosis)
at state-dependent rate R(z) : X — R.

To arrive at this description, PBA makes the following assumptions:

(i) cellular dynamics are Markovian, only the current state x € X is informative for
predicting future states (Section 2.2). This implies that z, i.e. the gene expression
state, encodes all there is to know about the cell, in particular, there are no hidden

variables.

(ii) there are no oscillatory gene expression dynamics, the directed part of the dynamics

can thus be described via the gradient of the potential function F'.

Violations to both assumptions are frequently observed in practice, i.e. epigenetic marks
encode cellular memory (i) and the cell cycle or the circadian rhythm give rise to oscillatory
gene expression dynamics (ii). However, given only gene expression samples from the cell-
state density c(z, t), avoiding these assumptions renders the problem of dynamical inference

ambiguous - the same observed data can support several dynamical models [214].

In scRNA-seq experiments consisting of a single time point, we do not have access to
the rate of change of cell state density dc/dt, thus, the authors make a third simplifying

assumption:
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(iii) The biological system is in steady-state, i.e. dc/0t = 0.

Despite these assumptions, solving Equation (2.81) exactly is impossible using current
numerical solvers for data dimensionalities encountered in scRNA-seq data. Instead, the
authors make use of a recent result from Ting, Huang, and Jordan [256] which relates Equa-
tion (2.81) to a Markov chain constructed on samples of ¢(x,t). In particular, the authors
build a KNN graph G and compute the graph laplacian matrix L™ (Subsection 2.2.5).
They define a potential V =1/ 2L(TW)+R, where L) denotes the pseudoinverse of LW,

NeX Ne
R+

and a Markov chain transition matrix 7" € with elements

T, = o VimVi)/D (2.82)

for all cells ¢ and j which are neighbors in G and zero otherwise. Ting, Huang, and Jordan
[256] show that in the limit N, — oo, this Markov chain converges to the continuous process
described in Equation (2.81). Equipped with Equation (2.82), the authors model gradual
fate decisions by fixing a set of terminal cell states and computing absorption probabilities
(Subsection 2.2.4) towards these. Thus, each cell is assigned a set of fate probabilities to
transition towards any terminal state. This naturally allows cells to gradually transition
from initial states (fate probabilities towards several terminal states) to terminal states

(fate probability towards a single terminal state). PBA’s main limitations are

(i) both R and D are unknown and difficult to estimate in practice.

(ii) many biological systems of interest are not in a steady state.

Palantir uses pseudotime for graph construction. Palantir [25] heuristically over-
comes these limitations with an adjusted Markov chain construction based on precomputed
KNN graph G with adjacency matrix W and pseudotime 7. In particular, Palantir biases

graph edges in G to point in the direction of increasing pseudotime,

Wi formj > 71— o0
T, = (2.83)
0 otherwise,

for all cells ¢ and j which are neighbors in G and zero otherwise. Palantir uses the local
scaling parameter o; to reflect uncertainty in pseudotime inference by retaining some graph
edges that point into the pseudotime past. Terminal states are identified via outliers in the
invariant distribution 7 of 7' (Subsection 2.2.3). Asin PBA, fate probabilities towards them

are computed via absorption probabilities (Subsection 2.2.4). Palantir’s main limitations
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are

1 € choice o seudotime 1S restricte (0] alantirs own seudotime 1mivin (]
i) the choice of pseudotime is restricted to Palantir’ pseudotime, limiting th

method’s application to situations where other pseudotime methods work better.

(ii) for pseudotime construction, a root cell must be manually provided by the user,

limiting the application to datasets with unknown initial states.

(iii) Palantir’s implementation of absorption probabilities does not scale well to large cell

numbers.

(iv) Palantir ignores information provided by real experimental time points.

We show in Chapter 3 how limitations (i-iii) can be overcome and we outline below how

other methods overcome limitation (iv).

2.4.4 Including temporal information

While some biological systems, including adult hematopoiesis [10] and mouse adult neu-
rogenesis [257], are in a dynamical steady state, many others, including embryonic de-
velopment [6, 258] and regeneration [11], are not, thus necessitating to sequence cells at
different experimental time points in a time-series experiment (Figure 2.5d). The methods
introduced above are not well adapted to this setting; while some are only applicable to
steady-state systems [214], the majority simply ignore the extra information provided by
experimental time labels [25, 175, 213].

To explicitly make use of this information, Schiebinger et al. [20] introduced Waddington
Optimal Transport (WOT), a method which uses unbalanced OT (Subsection 2.3.2) to
compute coupling matrices between pairs of time points. Let ¢; and to represent such a
pair of time points containing N and M cells, respectively. For cost matrix C € RNV*M
containing lo distances in a local PCA representation computed for just the N + M cells

in the two time points (ignoring potential further time points), WOT solves

£57(0,B) = min (C,P)+nKL[Ply | a] + 7KL {PHN [ b} —eH(P), (2.84)
PeR}

using the generalized Sinkhorn algorithm of Subsection 2.3.2 with 71,7, ¢ and H defined

as in Section 2.3. While the right marginal b is chosen to be uniform, b; = 1/MVj €

{1,..., M}, WOT adjusts the left marginal to accommodate for cellular growth and death
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between ¢ and ts,

gla;)" "
N N\t1—t2
Zj:l g(:c])

Vie{1,..,N}, (2.85)

a; =

where ¢ : NV — R is modeled as the expected value of a birth-death process with pro-
liferation at rate §(z) and death at rate §(x), thus g(x) = e?@) =) for (x) and §(x)
estimated from curated marker gene sets for proliferation and apoptosis, respectively. The
unbalanced OT framework accounts for uncertainty in the estimation of g (Section 2.3);
by default, 71 is chosen small (71 &~ 1) to allow variation from the adjusted left marginal
a while 75 is chosen large (7o ~ 50) to strictly enforce the uniform right marginal b.
A sequence of time points can be coupled by computing pairwise coupling matrices and

matrix-multiplying these to yield long-range couplings.

The WOT model has meanwhile been extended to incorporate prior information from RNA
velocity [1, 16] (Section 2.5) via dynamical OT [259] and continuous normalizing flows
[260] in TrajectoryNet [261]. Applying WOT in practice is challenging if there is a large
number of cells (approximately greater than 10-20k) per time point due to both time and
memory scaling quadratically in cell numbers. Further, while the (generalized) Sinkhorn
algorithm can be efficiently executed on GPUs, WOT relies on a custom implementation
that only runs on CPUs. In Chapter 4, we introduce moscot-time, an adaptation of
the WOT model which overcomes these scalability limitations through both engineering-
type innovations (e.g. GPU support, online cost-function evaluation) as well as recent
theoretical innovations (low-rank factorizations [262, 263]), cumulating in linear time and
memory complexity and the applicability to truly large datasets. Further, we extend the

model to take into account experimental barcoding information [176-178| with moslin.

In Fischer et al. [246|, the authors propose an alternative view of including temporal
information with the pseudodynamics model; an approach that uses a convection-diffusion
equation to describe the evolution of cell density in one-dimensional pseudotime space
along experimental time including terms for cell growth and death. While this method is
not concerned with mapping individual cells from earlier to later time points, it provides

insights into deterministic versus stochastic aspects of T-cell maturation.

2.5 RNA velocity

The approaches to trajectory inference introduced in the previous section cover a wide

range of biological use cases, from linear to bi- and multifurcating trajectories with either
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discrete or probabilistic fate assignments. However, they fall short of assigning directions
to the recovered trajectories - this is easy to illustrate in the case of DPT, where we had
to manually provide the root cell, but it holds much more generally for all similarity-based
approaches to TI. That is because the similarity between two cells, be it on the gene
expression level, the chromatin accessibility level, or any other molecular level, does not

reveal which cell is likely to transition into the other.

The assumption we make in similarity-based TI is that cellular state changes proceed
gradually with many intermediate steps, thus we can use the ensemble of sampled snapshots
to reconstruct the underlying continuum of gene expression changes by connecting and
ordering cells that are similar. However, the user needs to define where this ordering
should start, i.e. they have to provide the set of initial states. Further, in situations
where similarity does not imply an actual transition, these TI methods will output false
predictions. Thus, similarity-based TI is mostly limited to well-studied systems in normal
development where initial states are known and prior knowledge can be used to prevent

false predictions by guiding the analysis (Figure 2.6a).

For de-novo prediction of the direction of cellular state changes, Manno et al. [1] introduced
RNA velocity based on a single-cell model of the mRNA life cycle. Genetic information
on the DNA is structured into genes, each gene codes for one protein (ignoring the extra
diversity achieved through post-transcriptional and post-translational modifications). Each
gene is further divided into two kinds of genetic regions: exons, which are translated into
the actual protein, and introns, which serve regulatory functions. Introns are removed
from transcribed mRNA molecules in a process called splicing, thus, each mRNA exists
in either the unspliced or spliced state (Figure 2.6b). Manno et al. [1] showed that all
major scRNA-seq techniques capture both spliced and unspliced molecules, the exact ratio
depends on the technology but spliced counts are much more frequent. Relating these two
internal states to one another reveals the direction of gene regulation: high (low) unspliced

to spliced count ratio is indicative of up- (down) regulation.

To formalize the notion introduced above, consider the following model of splicing kinetics:

®—>u73—>®, (2.86)
v

qon/off

on/off and converted

where unspliced molecules u(t) are created with transcription rate a
into spliced molecules s(t) with splicing rate /3, which in turn are degraded with degradation
rate 7. We make the assumption that the degradation of unspliced mRNA molecules u(t)
in the nucleus is negligible compared to the other reactions [264]. Let 8 = [a°*/°% 5 ~]T

denote a vector of these parameters. While this model is gene-specific, we omit the corre-
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sponding subscript j everywhere in this section and focus on just a single gene. Following
Li [265], let Py (t) be the probability to have m unspliced and n spliced molecules at time

t, i.e.
Prn(t) =P [(u(t), s(t)) = (m,n) € N*] . (2.87)

With this definition, we can describe the process illustrated in Equation (2.86) as a con-
tinuous time Markov process on the discrete state space S = N? with chemical master
equation (CME) (Section A.2 in Appendix A) given by

APy
0Py 1~ Pu) (2.88)

+ /B [(m + 1)Pm+1,n—l - umm]
+v[(n+1)Prynt1 — nPpy) -

The CME is given by a set of infinitely many coupled ordinary differential equations
(ODEs), each describing the probability evolution for one combination of spliced and un-
spliced molecules (m,n). In the following, we make use of this model to offer a unifying
perspective on various approaches that have been introduced for RNA velocity analysis. We
structure this into forward models, describing how observations (u, s) are generated given
parameters, and inference schemes, describing how parameters 6 are computed given ob-
servations. For the remainder of this section, let * denote a measured quantity and - an

estimated parameter.

2.5.1 Forwards models

Two of the models we describe in the following require aggregate descriptions of the fully
stoachstic CME dynamics, we therefore derive an equation for arbitrary uncentered mo-
ments of the system state (m!n*) by multiplying Equation (2.88) with m!n* and summing

over m and n,

k

l
d(??;;?;) = Zaon/off ((m + 1)lnk — mlnk> Pmn (289)

m,n
+0 (m(m —DYn+ 1)k - ml'an) P

+7 <n(n —1)Fm! — mlnkﬂ) P,
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which can be rearranged [16] to read

d(m!n*)

_ on/off I N A
7 « <(m +1)'n" —m'n > (2.90)

+ B<m <(m —Din+1)k - mlnk>>
+ 'y<n ((n —1)fEm! — mlnk)> .

We make use of this result in the following paragraphs for different values of [ and k.

Deterministic - first-order moments. By using Equation (2.90) for first order mo-

ments with m 4+ 1 = 1, we obtain,

d< >_ on/o —
5 /o —B(m) and — -~ = B(m) - (n), (2.91)

i.e. a deterministic version of the RNA velocity model we introduced in Equation (2.86)

which may be used to define RNA velocity as follows,
d
o Z A gy (2.92)
The solution to the first order moment equations for 8,7 > 0 and 8 # <, subject to

u(0) = g, s(0) = s, is given by

oon/off

(u(t)) = uge P + (1—e P, (2.93)

on/off on/off __
a A" — Bug (e -t _ e—ﬁt)
)

(s(8)) = soe "+ ——— (1= e7") + ———5

see Section A.3 in Appendix A for a derivation.

Including covariance - second-order moments. Including second order moments is
a simple way to introduce some stochasticity to the system while ensuring the equations

remain solvable in closed form. By using Equation (2.90) for second order moments with
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m + | = 2, we obtain,

—5 = a®° M (2m + 1) + B(m — 2m?) (2.94)
d<ZZn> _ aon/oﬁ<n> + 6<m2 —mn — m> _ ,y<mn> ’ (295)
d<CZ2> = B2mn+m) 4+ y(n — 2n2> . (2.96)

These equations can be combined with first-order moment equations and solved in closed

form, following the general procedure described in Section A.3 in Appendix A.

Fully stochastic - solving the CME. Rather than solving simplifying, aggregate de-
scriptions of the system given by moment equations, the CME itself can be solved in closed
form (Section A.4 in Appendix A). This yields a fully stochastic description of the system,
however, it assumes absolute molecule numbers which we do not have access to in practice
as scRNA-seq assays only sample a small fraction of available mRNA molecules in the cell
(Section 2.1). Thus, one either has to introduce an additional sampling or scaling step to a
CME-based model or revert to aggregate descriptions, given e.g. by the moment equations.

We proceed with the latter option in the following description of parameter inference.

2.5.2 Parameter inference

In practice, we observe unspliced and spliced counts, m,n € NV, for a particular gene
j with no temporal resolution, i.e. we do not know which time ¢ an observation (7, 7;)
corresponds to. Moments of different orders (mink) for fixed cell i are approximated by

considering cells which are neighbors of i in a KNN graph G. Let (m!n*) € RNe denote a

vector of such empirical, graph-based moments. Empirical RNA velocity for cell ¢ becomes
RNA . .
of N = Bl — (i) (2.97)

Two approaches to fit parameters for the RNA velocity models have been explored, these

are

(i) steady-state approaches, in which we suppose a (sub-) population of sampled cells is
in steady-state. Model parameters can be inferred by fitting a simplified model with

no temporal dependency on this population.

(ii) dynamical approaches, which simultaneously aim to infer the latent temporal assign-

ment as well as model parameters, thus considering all cells, not just the ones in
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steady-state.

Many biological systems involve either none or very few steady-state cells; even if they do
involve these, it is difficult in practice to decide whether a given cell is in steady-state or
not. Thus, while steady-state approaches are computationally easier to fit, they remain
limited to fewer biological settings. In the following, we present two steady-state [1, 16] as
well as one dynamical [16] approach to RNA velocity parameter inference based on moment

equations.

Steady-state approximation for first-order moments. The simplest approach to
solve the first order moment equations for the unknown model parameters, 8 and =, is to
nondimensionalize by dividing trough 8 and defining 7/ = ~/3, v/(BNA) = y(RNA) /3 The

steady state approximation yields
0= o'B®NY = (;m) —4/(n). (2.98)

The parameter 7/ can be estimated from empirical data through maximum likelihood
estimation (MLE) with statistical model

p((ma)|', () = N ((ma) |y (), 02) (2.99)

for constant variance o2. The associated negative log-likelihood for the entire dataset reads
Ne

L(Y) = —2log TN\ N ((1h) |y (), o) = Z ((rh;) — 7'(7%))2 + const. (2.100)
i=1

Minimizing £ with respect to +' gives the solution

Y2 (@) Ay

L St ) () (2.101)

Manno et al. [1] suggested this approach in their original RNA velocity publication and

implemented it in the Velocyto software package.

Steady-state approximation for second-order moments. The second-order mo-

ment equation for d(n?)/dt in steady-state can be used as additional information when
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estimating ' [16], leading to the system

(m) = /(). (2.102)
2(mn) + (m) =~ (2<n2> —(n)) (2.103)

which may be re-written as y =+ for

, ar;::[ () ] (2.104)

To estimate 4/ from empirical data {&;, ;l)i}fv:cl, consider the following model,

T
v [2<mn) + (m)

p@ilY, &) = N (9aly &, %) (2.105)

where we included the covariance matrix ¥; to account for correlation among the compo-

nents of y. The negative log-likelihood for the entire dataset becomes

Nc

L) = —2log Hf\[:cl (Gily/ &3, %) = z:(:l)Z — &) TS (g — +/@) + const.  (2.106)
=1

where we treat Y; as constant because it is estimated prior to the fit from the residuals of

an ordinary least squares (OLS) fit. Minimizing £ with respect to v/ gives

. 1

= . 2.107
s e, o

We suggested this approach in Bergen et al. [16] and implemented it in the scVelo software
package.

EM inference for first-order moments. The steady-state approaches yield velocity

'BNA) which are not comparable across genes as the implicit scaling factor g

estimates v
varies among them. Further, they provide no information on the actual model parameters
6 but only on the ratio 4/ = /8 and they remain limited to biological systems with
large steady-state populations. Thus, in Bergen et al. [16], we suggest a dynamical model
which fits the time-dependent solution to first order moment equations (Equation (2.91))
directly to empirical moments {(mn;), (’fm}fvzcl in an EM-framework [266| which iterates
between optimizing model parameters @ and latent time and state assignments ¢; and k;,
respectively (Figure 2.6c). The states k; denote the different phases of splicing kinetics,

i.e. on-state, off-stage or steady-state.



58 CHAPTER 2. BACKGROUND

In the M-step, given inferred latent time #; and state &; assignments, a normally-distributed

likelihood given by

p(fciw, 0'27 tNZ', ]NCZ) = N (@Z"wa%i (tNZ), O'2I> s (2.108)
is optimized for the model parameters 6, where &; := [(1;), (7;)]T denotes empirical mo-
ments, g i (t;) = [(mg 1, (), (ng i, (FE)]T is the state k; and parameter 6 dependent

solution to the first order moment equations (Equation (2.91)) at time point ; and o is a

gene specific variance term.

In the E-step, given parameter estimates é, time ¢; and state k; assignments are computed
by minimizing the distance between each observed sample @&; and the phase-trajectory

given by g, (t:).

Gene-specific time assignments are aggregated towards one latent time value per cell
which serves as a pseudotime (Section 2.4). With RNA velocity defined as before (Equa-
tion (2.92)), estimating model parameters with the dynamical model ensures that velocities
are comparable across genes by fixing the time scale of aggregated latent time. We sug-
gested the dynamical model in Bergen et al. [16] and implemented it in the scVelo software

package.

2.5.3 Downstream usage of velocities

RNA velocity yields an estimate of transcriptional regulation ’US{NA) = d(n;;)/dt for each
gene j in every cell ¢ which can be used to linearly extrapolate a cells current state into

the future.

Visual inspection of projected velocity vectors. The original Velocyto [1] method
projects velocities into two-dimensional (2D) embeddings where they are visualized as
arrows that point towards a cell’s future state. The projected vector fields are frequently
used for visual trajectory inference, i.e. to determine what the eventual fate of a cell may
be. This is problematic as 2D embeddings frequently obscure biological variation from
the original space [161-164], projected vector fields are overly smooth, and do not permit
uncertainty quantification and aggregation of local velocity information into global fate
decisions by visual inspection is error-prone. The single-cell genomics field has reached
a consensus that clustering cells in 2D or 3D representations must be avoided [130], and
similarly, we argue that two or three-dimensional velocity projections must not be used to

address detailed questions of trajectory inference.
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Quantitative approaches to interpreting velocity vector fields. To find the ini-
tial and terminal states of the biological system, Velocyto defines a velocity-based Markov
process which is iterated until convergence, an equivalent procedure to computing the
invariant distribution 7 (Section 2.2). This approach yields a distribution where cells fre-
quently visited by the Markov process are expected to have larger entries; however, it is
unclear how individual initial and terminal states can be computed in such a way. Alterna-
tive approaches for quantitative analysis of velocity vectors have been suggested including
Dynamo [267], VeloDyn, [268] and CellPath [269]. Dynamo learns a functional form of the
velocity field using a sparse approximation to regularized vector field learning [270]. Meth-
ods from dynamical systems are applied to the reconstructed vector field to find initial and
terminal states as well as fate probabilities, largely ignoring the stochastic nature of fate
decisions and the uncertainty in velocity vectors. VeloDyn, which also uses dynamical sys-
tems approaches, takes velocity uncertainty into account via bootstrap sampling, however,
it is limited to 2D PCA embeddings and cannot compute fate probabilities. CellPath com-
putes trajectories in high-dimensional space via a sampling strategy that involves meta-cell
aggregation, greedy trajectory selection, and custom pseudotime assignment. The algo-
rithm is heuristic with no theoretical basis and ignores velocity uncertainty. In Chapter 3,
we present CellRank, a method that systematically aggregates velocities into long-range
fate predictions and computes individual initial and terminal states without relying on 2D

embeddings.

2.5.4 Extensions and alternatives

RNA velocity is a proxy for the current state of transcriptional regulation which is fun-
damentally based on recovering both spliced and unspliced counts from the same cell.
Recovering a sufficient amount of unspliced transcripts across many genes is difficult in
practice as the processes of polyadenylation and splicing happen mostly simultaneously
[271] (Section 2.1). As a consequence, the majority of unspliced counts are due to internal
priming events where the poly(T) primer binds to poly(A) stretches in intronic regions of
the unspliced transcript |1, 272, 273|, rather than to the poly(A) tail as is the case for
spliced transcripts. This means that the expression level of unspliced counts for a certain

gene could depend on a number of factors, including
(i) the length of the gene [272],
(ii) the number and length of intronic regions within the gene,
(iii) the amount of poly(A) stretches within introns,
)

(iv) the relative position of poly(A) stretches within an intron,
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all of which result in biases that are difficult to diagnose and impossible to control exter-
nally. If genes that are important for a certain biological process lack sufficient unspliced
counts for any of the reasons outlined above, their velocity estimate will be wrong and the
overall velocity of the cells in this system will be dominated by potentially uninformative
genes with large numbers of unspliced counts. To circumvent this limitation, RNA velocity
type models have been formulated for other molecular layers, and metabolic labeling has

been adapted to the single-cell setting as an experimental alternative to RNA velocity.

Further limitations to RNA-velocity type models have been reviewed and assessed recently
by Bergen et al. [274], Gorin et al. [275]|, and Marot-Lassauzaie et al. [276].

Extension to other molecular layers. The RNA velocity model has been extended
to include protein [277] and ATAC [278] information by adding extra reactions to the
model of Equation (2.86). Alternative formulations have been suggested for just chromatin
accessibility [279] or multimodal RNA and ATAC data [70].

Metabolic labeling as an experimental alternative. Where RNA velocity relies
on unspliced and spliced counts as a proxy for new and old mRNAs, metabolic labeling
directly labels mRNA molecules produced after a certain time point tg, thus creating an
experimental label for new versus old mRNAs. The approach has been coupled to high-
throughput sequencing in bulk [280-282| and computational models have been developed
which correct for experimental measurement noise when quantifying the proportion of new
versus old transcript counts per gene from sequenced reads [280, 283]. Further, metabolic
labeling has been adapted for plate-based (scSLAM-seq [284], NASC-seq [285] and scEU-
seq [286]), combinatorial indexing (sci-fate [287]) and droplet-based (scNT-seq [288]) single-
cell technologies and used in RNA-velocity type models to estimate the state of gene
regulation [267]. Currently, the main limitation of these technologies is that they are
difficult to set up and limited to in-vitro systems. In contrast, RNA velocity requires no
additional experimental work and can be applied to in-vivo systems. For a review of single

cell metabolic labeling techniques, we refer to Olivares-Chauvet and Junker [182].
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Figure 2.6: RNA velocity from spliced and unspliced counts. a. lllustrating the pitfalls
of classic T| using pancreatic endocrinogenesis [23] as an example; each dot denotes a cell in
UMAP embedding, colored according to either cluster (top left) or pseudotime (rest). b. Central
dogma of molecular biology of Figure 2.1; dashed box highlights an intermediate processing
step of mRNA called splicing during which introns (black triangles) are removed and exons
(colored boxes) remain. Alternative splicing can lead to different outcomes, three examples
are shown. c. RNA velocity makes use of the time delay between spliced and unspliced
stages of mMRNA captured in standard protocols; scVelo's dynamical model of splicing kinetics
uses the first-order moment approximation to the CME and an EM-scheme for parameter
inference. Panel (b) adapted from the following templates: "Central Dogma" and "mRNA
Splicing Types" by BioRender.com (2022). Retrieved from https://app.biorender.com/
biorender-templates. Panel (c) adapted from Bergen et al. [16].
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Chapter 3

CellRank generalizes trajectory infer-

ence

Cells undergoing dynamical state transitions in biological processes including development,
regeneration, reprogramming, and cancer, typically do so in a highly asynchronous manner
[18]. scRNA-seq successfully captures the resulting heterogeneity, but it loses lineage rela-
tionships because each cell can be measured only once (Section 2.1). This prompted the
development of computational approaches to reconstruct pseudotime trajectories [12, 18,
25, 27, 213, 244, 245| which build on the observation that developmentally related cells tend
to be similar in their gene expression profiles (Section 2.4). Pseudotime approaches have
been used extensively for ordering cells along differentiation trajectories and for studying

cell-fate decisions.

However, computational trajectory inference typically demands prior biological knowledge
to determine the directionality of cell state changes, often by specifying an initial cell [214],
thereby limiting its applicability to normal developmental scenarios with known cell-fate
hierarchies. RNA velocity [1] has been shown recently to alleviate this problem by recon-
structing trajectory direction based on the spliced-to-unspliced mRNA ratio (Section 2.5).
This promising approach has been generalized to include transient cell populations and
further molecular modalities [16, 277, 278|; however, estimated velocity vectors are noisy
and their interpretation has been limited mostly to low-dimensional projections. These do
not easily reveal long-range probabilistic fates or allow quantitative interpretation (Sec-
tion 2.5).

In this chapter, we present CellRank, a method that combines the robustness of similarity-
based trajectory inference (Section 2.4) with directional information from RNA velocity
(Section 2.5) to learn directed, probabilistic state-change trajectories for normal or per-
turbed conditions. In particular, we demonstrate how CellRank overcomes the challenges

outlined in Section 1.2:

e we address challenge (i), the need for robust representations of cellular dynamics

that originate from noisy RNA velocity estimates in Section 3.2 where we introduce
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the VelocityKernel, a method to compute a Markov transition matrix from RNA

velocity and gene expression similarity.

we address challenge (ii), the identification of initial and terminal states and the
description of fate establishment in Section 3.3 where we adapt ideas from Markov
state modeling to coarse-grain the Markov chain and present a salable approach to

compute fate probabilities with the GPCCAEstimator.

we address challenge (iii), the need for a unifying framework to model cellular fate
decisions that incorporates various estimates of directionality in Section 3.1 where
we introduce CellRank’s modular design as well as in Section 3.5 where we extend
this modular design with the PseudotimeKernel, the CytoTRACEKernel, and the

RealtimeKernel.

We demonstrate and benchmark our contributions in practical applications to MEF repro-

gramming [22], pancreas development [23], and lung regeneration [11] in Section 3.4. This

chapter corresponds to, and is in part identical, with the following publications:

(i) Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H.,

Ansari, M., Schniering, J., Schiller, H.B., Pe’er, D. and Theis, F.J., 2022. CellRank
for directed single-cell fate mapping. Nature Methods, pp.1-12.

(ii) Weiler P.*, Lange, M.*, Klein, M. and Theis, F.J., 2022. A unified framework to

study single-cell fate decisions. in preparation.

Note that “** denotes an equal contribution.

3.1 The CellRank modeling framework

With CellRank, we aim to automatically detect the initial, terminal and intermediate states

of a biological system and to define a global fate map that probabilistically assigns each

cell to these states. The fate map enables us to compute trajectory-specific gene expression

trends which we visualize in several ways. We make the following assumptions:

e On the gene expression level, daughter cells are generally similar to their mother cells.

State transitions proceed gradually along a low-dimensional phenotypic manifold

from initial via intermediate to terminal states.
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e cellular sampling covers all intermediate states such that the entire state change

trajectory is covered with no "gaps".

e while an individual cell’s memory is stored in epigenetic modifications, we describe

averaged cellular dynamics that occur without memory.

e we have access to an estimate of the direction of cell state changes, for example, from
RNA velocity.

On the basis of these assumptions, we model cellular state transitions using a discrete-time
Markov chain (X;):>0 where each state is given by an observed cellular profile (Section 2.2).
To define the Markov chain, we compute a transition matrix 7 € RNeXNe which describes
how likely each cell is to transition into another; we describe this process for RNA velocity

in Section 3.2 and for other modalities in Section 3.5.

Identifying initial, terminal and intermediate states. In order to define an initial
(terminal) state, consider an ensemble of molecular profiles which, when taken together,
characterize the starting (end) point of one particular state-change trajectory. Intermediate
states are defined analogously via an ensemble of molecular profiles which characterizes a
point in between initial and terminal states on the state-change trajectory. To identify
initial, intermediate and terminal states, we coarse-grain the transition matrix 7" into

macrostates and an associated coarse-grained transition matrix 7' (Section 3.3).

Fate probabilities towards macrostates. We define the fate probability of cell i to
reach macrostate j € {1, ..., N;;,} for N,,, the number of macrostates, in biological terms as
the probability that cell ¢ executes a series of regulatory programs which adapt its pheno-
type to match the phenotype of cells that reside in macrostate j. We are typically interested

in fate probabilities towards macrostates which are either terminal or intermediate.

Mathematically, we translate this to the probability that a random walk initialized in
cell i reaches a cell from macrostate j before reaching any cell from another macrostate.
In CellRank, we efficiently compute these probabilities in closed form using absorption
probabilities (Section 3.3).

3.1.1 Kernels and estimators

As outlined above, there are three main steps to the CellRank workflow:
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(i) Compute transition probabilities among observed cells (Figure 3.1a-d). These proba-
bilities quantify how likely a cell in a given state is to adapt its gene expression profile
to that of a target cell. We aggregate the transition probabilities in the transition

matrix 1" and use it to model cell-state transitions as a Markov chain.

(ii) Coarse-grain the Markov chain into macrostates of cellular dynamics (Figure 3.1e)
and aggregate coarse-grained transition probabilities in T. Using this matrix, we

classify macrostates into initial, intermediate, and terminal states.

(iii) Compute fate probabilities towards a subset of the macrostates (Figure 3.1f). We
compute the probability of each cell transitioning into each of the selected macrostates;

these values are returned in a fate matrix F'.

We designed a modular interface around these three main steps, structuring CellRank into
kernels and estimators (Figure 3.2). While kernels compute a transition matrix based
on various input data modalities (step i), estimators compute initial and terminal states,
fate probabilities, and possibly other Markov chain derived quantities that can be used to
generate biological insights (steps ii and iii). This design choice is crucial to CellRank -
it allows any kernel to be combined with any estimator, thus enabling a vast amount of
applications in a flexible manner. Moreover, the modular interface makes it easy to extend

CellRank in two principal directions:

(i) extension towards new single-cell data modalities by including new kernels.

(ii) extension towards new trajectory descriptions that generate different hypotheses by

including new estimators.

We introduce our kernels in Section 3.2 (VelocityKernel and ConnectivityKernel) as
well as in Section 3.5 (PseudotimeKernel, CytoTRACEKernel and RealtimeKernel). We
further introduce our GPCCAEstimator in Section 3.3 and we showcase applications of

kernels and estimators in Section 3.4.

Kernel arithmetics. A single kernel may not be able to capture all that is necessary
to describe the biology in a given dataset. We thus provide a convenient way to combine
different kernels, each capturing one aspect of cellular dynamics, into one joint dynam-
ical representation given by an aggregate transition matrix. For any two kernels ki, ko,

CellRank implements their global combination via

k=aki+ (1 —a)ks, (3.1)
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for a weight parameter a € [0,1]. Under the hood, the kernel API computes the corre-

sponding normalized linear combination of the transition matrices stored in each kernel.

Exploiting sparsity. Besides modularity, achieved through kernels and estimators, a
second key design principle of the CellRank framework is sparsity. All kernels presented
in this thesis yield sparse transition matrices T, either because they are KNN graph-
based (ConnectivityKernel, VelocityKernel, CytoTRACEKernel, PseudotimeKernel), or
because they employ an adaptive thresholding strategy (RealtimeKernel). Further, the
GPCCAEstimator exploits sparsity in all major computations (Section 3.3). The efficient
use of sparsity allows CellRank to scale to very large datasets; we show in Section 3.4 how
the GPCCAEstimator computes macrostates and fate probabilities on a 100k cell dataset in

a few seconds.
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Figure 3.1: Main steps of the CellRank workflow, illustrated for RNA velocity data. a-
c. Based on spliced and unspliced molecular counts (a), a KNN graph (b, Section 2.1.2) as well
as RNA velocity (c., Section 2.5) are computed. d. Both sources of information are combined
into a transition matrix 7" (Section 3.2). e. The transition matrix 7" is coarse grained into a set
of macrostates. The associated coarse-grained transition matrix 1" classifies macrostates into
initial, intermediate and terminal states (Section 3.3). f. Fate probabilities denote how likely
each cell is to reach each terminal state (Section 3.3). g-h. By combining any precomputed
pseudotime (g) with fate probabilities, trajectory-specific gene expression trends are computed
(Section 3.3). Figure reproduced from Lange et al. [14].
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Figure 3.2: Modular design of the CellRank framework. We differentiate between features
that were present in the first version of CellRank [14] (CellRank 1.0, blue) and recent extensions
(CellRank 2.0, orange).
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3.2 CellRank’s ConnectivityKernel and VelocityKernel

To compute transition probabilities among cells, we make use of gene expression similarity
and of RNA velocity; the former defines the global topology of the phenotypic manifold
while the latter directs local movement on this manifold. We start by motivating our treat-
ment of velocity and gene expression data, proceed to introduce the ConnectivityKernel
(Section 3.2.1) and VelocityKernel (Section 3.2.2) and conclude with a strategy to prop-

agate uncertainty in the velocity vectors (Section 3.2.3).

Transition matrix construction in the presence of noise. scRNA-seq yields noisy
gene expression profiles (Section 2.1); as RNA velocity is computed on the basis of these
noisy profiles, it represents a substantially noisy quantity itself (Section 2.5). In particular,
the unspliced transcripts required to estimate velocity vectors are very sparse and their
abundance varies depending on the gene structure (Section 2.5). In addition, choices made
in the preprocessing pipeline, e.g. for alignment, heavily impact the final velocity estimate

[289]. We adopt four strategies to cope with uncertain velocity estimates:

e in the VelocityKernel, we restrict the set of allowed transitions to those consistent
with the KNN-graph-defined topology of the phenotypic manifold (Section 3.2.2).

e we use a stochastic formulation based on Markov chains to describe cell-state tran-

sitions.

e we combine RNA velocity information with trancriptomic similarity as captured by
the ConnectivityKernel (Section 3.2.1).

e in the VelocityKernel, we propagate uncertainty in v; into the transition matrix
(Subsection 3.2.3).

Combining velocity with transcriptomic similarity. For applications to scRNA-seq
data with RNA velocity information, including the applications of Section 3.4, we globally
combine the ConnectivityKernel with the VelocityKernel using the strategy outlined
in the previous section where we give a weight of 0.2 to the ConnectivityKernel which we
have found to increase robustness to noisy velocity vectors. We show in Section 3.4 that

CellRank’s results are robust with respect to the exact weight parameter used.

In Li [265], the authors provide mathematical motivation for this kernel combination. They

describe cellular dynamics as a stochastic differential equation (SDE) using a chemical
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Langevin equation [290] where the drift term is given by a velocity vector field. Upon
decomposing the vector field into equilibrium and non-equilibrium parts, they interpret

the kernel combination as weighting between these two contributions.

3.2.1 The ConnectivityKernel

The transition matrix 7(°) computed by the ConnectivityKernel is equivalent to the
transition matrix 7Y™ described in Section 2.2.5 in the context of the Diffusion distance,
i.e. it represents symmetric, gene-expression distance-based transition probabilities and is

computed based on a KNN graph G computed in some latent representation Z.

3.2.2 The VelocityKernel

The computation of a transition matrix in the VelocityKernel is based on the same KNN
graph G used by the ConnectivityKernel above. However, in the VelocityKernel, RNA

velocity information is used to direct edges in the graph.

Directing the KNN graph based on RN A Velocity. We direct the edges in G using
RNA velocity information; neighboring cells whose displacement is better aligned with
the direction prescribed by the velocity vector get higher probability. Specifically, for cell
i with gene expression x; € N¥¢ and velocity vector v; € N¥s_ consider its neighbors
N; = {1,2,...,K;} with gene expression profiles {x1,x2,...,xx,}. Note that the graph
construction of Subsection 2.1.2 leads to a symmetric KNN graph where K is not constant
across cells but K; > KVi € {1,...,N.}. For each neighboring cell j € N;, compute the
corresponding state-change vector with cell i, 8;; = x; — x; € NNs. Next, we compute
Pearson correlations ¢; € [—1,1]% of v; with all state change vectors via
(8ij — 15;5) T (v; — 19;)

cij = - e [—1,1]% 3.2
Y Isij — 15| lvi — 1 =1 (3.2)

where 5;; and v; are averages over the state change vector and the velocity vector, re-
spectively (Figure 3.3a,b). A value of 1 means perfect (positive) correlation between the
observed displacement between the reference cell and a nearest neighbor and the gene

expression change predicted by the local velocity vector.

The VelocityKernel supports alternative ways of computing similarity between state
change and velocity vectors including the cosine and dot product schemes suggested in Li
[265]. In the same work, the authors study the convergence of the discrete velocity schemes

towards their continuum limit in the infinite sample setting; in this limit, the evolution of
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probability density in state space can be described by a Fokker-Planck equation [265].
Transforming similarities into transition probabilities. To use the vector ¢; as a

set of transition probabilities to neighboring cells, we need to make sure it sums to one

and it is positive. For a given cell 7, define the set of transition probabilities p; € A, via

exp(ocij) (3.3)

Dij = . )
Yoty exp(ocik)

which is known as a softmaz function where ¢ > 0 is a scalar constant that controls how
centered the categorical distribution is around its most likely value, i.e. around the state-
change transition with maximum correlation. We repeat this for all (7, j) which are nearest

neighbors in G to compute the transition matrix 70Y) € RNexNe,

/" velocity vector
--- KNN graph
for each cell i , .

N Vi 0.3f 0.5
i A.® L —®
---- L 0.1 i
[ @ Jo

; exp(corr(v;, §; ;))
@, W @

7 e ”, exp(corr(v;, §;1))

Figure 3.3: Main steps of the VelocityKernel. a. Synthetic example; each dot represents
a cell in high dimensions colored by cell type, black arrows denote RNA velocity. b. One
particular cell i is compared with its neighbors by computing the Pearson correlation between
the velocity vector v; and the state change vectors §;;. Correlations are normalized to yield
transition probabilities. Figure adapted from Lange et al. [14].

Automatically determine 0. We reasoned that the value of o should vary with Pearson
correlations observed between velocity vectors and state change vectors; thus, we use the

following heuristic choice:

1

= nedian({eg| Vi) (34)
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Accordingly, if the median absolute Pearson correlation observed in the data is large
(small), we use a small (large) value for o. For sparsely sampled datasets where velocity
vectors only roughly point in the direction of neighboring cells, we upscale all correlations.
Typical values for o we compute this way range from 1.5 for the lung example [11] to 3.8

for the pancreas example [23] of Section 3.4.

3.2.3 Propagating velocity uncertainty

Thus far, we treated individual velocity vectors as deterministic quantities, i.e. we assigned
no measurement error to them. However, this is problematic as RNA velocity is estimated
on the basis of spliced and unspliced gene counts, which are noisy quantities. Hence, the
velocity vectors v; themselves should be treated as random variables which follow a certain
distribution and this should be taken into account when estimating transition probabilities.
A possible solution to this would be to employ Monte Carlo (MC) sampling; however, this
would incur large computational costs through repeated computations. To get around this
problem, we construct an analytical approximation to the MC scheme. The analytical
approximation only has to be evaluated once and we can omit the sampling. We show in
Section 3.4 that the analytical approximation gives very similar results to the MC scheme

and improves over a deterministic approach by a large margin.

Modeling the distribution over velocity vectors. To propagate uncertainty, we need
to model the velocity vector distribution i.e. we need to quantify the uncertainty present
in velocity vectors estimated by scVelo [16] or velocyto [1|. Preferentially, these packages
would model uncertainty in the raw spliced and unspliced counts to propagate it into a
distribution over velocity vectors. However, that is currently not the case; alternative ap-
proaches include using Fischer-information [132] or the profile-likelihood [291] to estimate
uncertainty in the estimated model parameters (aon/ off 3, ~v); this can easily be propagated

into velocity estimates using standard error propagation.

CellRank is based on scVelo which currently uses the derivative-free Nelder—-Mead algo-
rithm [292] for optimization; therefore, we choose a different path and model uncertainty
directly on the level of velocity vectors. We make an assumption about the velocity-vector
distribution and set expectation and variance based on neighboring velocity vectors. To
ease notation and to illustrate the core ideas, we drop the subscript ¢ in this section and

focus on a fixed cell and its velocity vector v. Suppose that v follows a multivariate normal
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(MVN) distribution,

with mean vector u € RN and covariance matrix 3, € RMo*No. The MVN is a reason-
able choice here; velocities can be both positive and negative and they are approximately
symmetric around their expectation. Further, we assume a diagonal covariance matrix
corresponding to gene-wise velocity independence. This is a reasonable assumption as
gene-wise velocities in both velocyto [1] and scVelo [16] are computed independently. To
compute values for g and >,, consider the current cell and its K nearest neighbors. To
estimate p and the diagonal elements of ¥, we compute first and second-order moments

for the velocity vectors of these neighboring cells.

Approximating the expected transition matrix. We compute the expected value
of transition matrix entries given the distribution over velocity vectors (Figure 3.4a,b).
For a particular draw v from the distribution in Equation (3.5) and a set of state-change
vectors s;, we compute a vector of probabilities p € Ak as outlined above. We denote the

mapping from v to p by h,

h:RN 5 Ak, (3.6)
v— h(v)=p.

We may formulate our problem as finding the expectation of h when applied to v, i.e.

E[h(v)]yn(usy) - (3.7)

In order to derive an approximation, expand the i-th component of h in a Taylor-series

around p,
hi(v) = hi(p) + Vg hi()|u(v — p) + %(v — 1) T Vohi()|u(v — p) + Ov —p)* . (3.8)
Define the Hessian matrix of h; at v = p as
H =V hi(v)],0.- (3.9)
Taking the expectation of h; and using the Taylor-expansion,

B [ha(0)] ~ hi(i) + 5E (0~ ) THO (o — )] (3.10)
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The first order term cancels as E [v — p] = 0. We simplify the second-order term by

explicitly writing out the matrix multiplication,

Ny

E|w-m B —w| = > HIEw - m);v - ), (3.11)
7,k=1

where we moved the expectation inside the sum and the matrix element outside the expec-
tation as it does not involve v. For j # i, the two terms inside the expectation involving
v are independent given our distributional assumptions on v and the expectation can be
taken separately. Using again the fact that E [v — p] = 0, the sum equals zero for j # i.
It follows

Ny ‘ Ny )
ST HIE (v - p)(v ZH YE (v - )Y =Y H) Varfy] . (3.12)
Jik=1 j=1

In summary, our second-order approximation to the transition probabilities, given the

distribution over v, reads

NQ
B [hi(v)] ~ hi(e) + % SO Var (] (3.13)

j=1
We repeat the above procedure for all components ¢ and for all cells to obtain the second-
order approximation to the expected transition matrix given the distribution over velocity
vectors. To compute the Hessian matrices H® of Equation (3.13), we use automatic dif-
ferentiation as implemented in JAX [230] rather than hard-coding the derivatives. This
ensures our approach is independent of the function used to compute transition probabil-
ities given velocity vectors - one can use Pearson correlations as suggested above or any

other differentiable similarity measure.

Approximating the expected final quantities. We arrive at our final quantities of
interest, i.e. macrostate assignments and fate probabilities (Section 3.3), through using
the expected transition matrix and proceeding as in the deterministic case (Figure 3.4c).
We check that this approximation scheme gives very similar results to a fully stochastic
approach based on MC sampling (Section 3.4). The MC approach is also available through
the VelocityKernel interface by setting mode=’sampling’ in the method call to compute
the transition matrix. Thus, the user may choose conveniently between two options: (i)
a fast approximate method given by our analytical approximation and (ii) a slower, but

asymptotically exact method given by MC sampling.
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Figure 3.4: Uncertainty propagation in the VelocityKernel. a. Each dot represents a
cell in high-dimensional gene expression space, two terminal states (A and B) are circled. A
reference cell 2o with noisy velocity vector v as well as nearest neighbors {x;}%_, are indicated.
b. Propagating the distribution in v changes transition probabilities to nearest neighbors. c.
Adapted transition probabilities have an effect on downstream quantities like fate probabilities.
Figure adapted from Lange et al. [14].

3.3 The GPCCAEstimator

Combining the VelocityKernel with the ConnectivityKernel as outlined in the previous
section yields a robust description of cellular dynamics from a scRNA-seq dataset with
RNA velocity information in form of a transition matrix 7. In this section, we intro-
duce various methods to interpret this matrix within the context of Markov chains. We
start by coarse-graining 7" into macrostates of cellular dynamics (Section 3.3.1), proceed
with computing fate probabilities (Section 3.3.2) and conclude by presenting various bi-
ologically motivated use cases of fate probabilities (Section 3.3.3). We packaged these
methods into the GPCCAEstimator; they may be applied to any transition matrix, includ-
ing the ones from Section 3.2 and Section 3.5. For Markov transition matrices computed
outside the CellRank framework, we enable applying the GPCCAEstimator through the

PrecomputedKernel which accepts any external transition matrix as an input.

3.3.1 Coarse-graining the Markov chain

The transition matrix T defines a Markov chain among the set of observed cells; however,
it is difficult to directly interpret 7" in terms of biological trajectories because T is a fine-
grained, noisy representation of cell state transitions. Therefore, we seek to reduce T to its
essence: macrostates representing key biological states and their transition probabilities
among each other. We accomplish this using Generalized Perron Cluster Cluster Analysis
(GPCCA) [293-296], a method originally developed to study the dynamics of protein
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Figure 3.5: Main steps of the GPCCAEstimator. a. A synthetic example consisting of
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fate probabilities towards the two terminal states. Figure reproduced from Lange et al. [14].
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folding. We adapt this method to single-cell genomics data and utilize it to project the
large transition matrix 7 onto a much smaller coarse-grained transition matrix 7' that
describes transitions among the set of macrostates. Macrostates are defined through a

X N,

membership matrix y € Rfc where N, denotes the number of macrostates. Rows

Xi: € An,, contain the soft assignment of each cell to the set of macrostates.

Generalized Perron Cluster Cluster Analysis (GPCCA). The aim of the GPCCA
method is to project the large transition matrix 7' onto a much smaller coarse-grained
transition matrix 7', which describes transitions between macrostates of the biological
system [293, 294| (Figure 3.5a-d). For the projected dynamical process to be Markov, we

require the projection to be based on an invariant subspace of T, i.e. a subspace W for
which

T'eeWVreW. (3.14)

In the case of a reversible T, real invariant subspaces are spanned by the eigenvectors of
T [297]. However, many of the transition matrices constructed by CellRank kernels are
in general irreversible, this holds in particular for the VelocityKernel. The eigenvectors
corresponding to irreversible matrices are in general complex; since the GPCCA method
can not cope with complex vectors, we revert to the real Schur decomposition to define

real invariant subspaces [293, 294, 298]. The real Schur decomposition of 7" is given by
T=QRQ", (3.15)

where columns of the matrix Q € RNe*Ne represent the Schur vectors while the Schur form
R € RNexNe i5 quasi-upper triangular [299]. The matrix R has 1-by-1 or 2-by-2 blocks on
the diagonal; 1-by-1 blocks correspond to real eigenvalues and 2-by-2 blocks are associated

with pairs of complex conjugate eigenvalues.

Invariant subspaces of the transition matrix. Columns of the matrix () correspond-
ing to real eigenvalues span real invariant subspaces. Columns of the matrix () correspond-
ing to pairs of complex conjugate eigenvalues span real invariant subspaces only when
considered jointly, but not if they are separated. Particularly, for columns g; and g of
@ belonging to a pair of complex conjugate eigenvalues, the space Wy = span(gj, qi) is
invariant under 7', but the individual g; and g are not [300]. Different dynamical prop-
erties of T can be projected onto T depending on the constructed subspace. For Schur

vectors associated with real eigenvalues close to 1, metastabilities are recovered; for Schur
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vectors associated with complex eigenvalues close to the unit circle, cyclic dynamics are
recovered [293, 294]|. Both options are available through the GPCCAEstimator, defaulting

to the recovery of metastabilities.

Projecting the transition matrix. Let Q € RVe*Nm be the matrix formed by selecting
N, columns from @ according to a given criterion (cyclicity or metastability). Let x €

RNexNm he a matrix obtained via linear combinations of the columns in Q, i.e.

X =QA, (3.16)

RNm*Nm — Rows of the matrix y define macrostate

for invertible rotation matrix A €
membership; we describe both x and A in more detail below. In order to obtain the

projected transition matrix, we use an invariant subspace projection [293, 294],

T = (x"Dx)""(x' DPx), (3.17)

for D, the diagonal matrix of a weighted scalar product. We require the Schur vectors
in Q to be orthogonal with respect to this scalar product, i.e. QT DQ = I with the N,,,-
dimensional unit matrix I, to yield the required projection based on an invariant subspace.
Note that the diagonal elements of D are in principle arbitrary; they may be chosen to rep-
resent some distribution over cellular states, e.g. the stationary distribution (Section 2.2).
If we choose the uniform distribution, which is the default in the GPCCAEstimator, we

ensure an indiscriminate handling of cellular states.

Properties of the invariant subspace projection. We define the coarse-grained tran-
sition probabilities among macrostates via an invariant subspace projection (see Equa-
tion (3.17)) of the original, large transition matrix onto the set of macrostates. More
precisely, the transition matrix T is projected onto a low-dimensional invariant subspace
defined by the membership vectors in x which are linear transformations of the Schur
vectors (Equation (3.16)). A consequence of the invariant subspace projection is that the
projection error vanishes; the propagation operation commutes with the coarse-graining
operation (293, 301].

To put it differently, for an initial density over cell states, the following two procedures
yield the same result: (1) propagating the distribution over cell states using the original
transition matrix 7" and projecting the propagated distribution onto our set of macrostates,

(2) projecting the initial cell distribution onto the macrostate level and propagating it using
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the coarse-grained transition matrix 7. From this, it follows that the projected, coarse-
grained Markov chain preserves the slow time scales of the process, i.e. the transitions

between metastable subsets of the phenotypic manifold [293].

Computing the membership vectors. In principle, it is possible to use any invertible
rotation matrix A in Equation (3.16). However, we aim to interpret the columns of x as
membership vectors that define assignment weights for the N, cells to the N,,, macrostates.
Therefore, we seek a rotation matrix A that minimizes the overlap between membership
vectors in y, i.e. a rotation matrix A that minimizes off-diagonal entries in x' Dy. For

matrix S € RVm*Nm defined via
S=(D"'x"Dy), (3.18)

this is equivalent to maximizing trace(S) where D € RNV=m*Nm ig g diagonal matrix which

row-normalizes the expression with

Nim

Di=Y (x"Dx) . (3.19)

1,
j=1 !

When aiming to recover metastability by selecting Schur vectors with real eigenvalues
close to one, maximizing trace(S) can be interpreted as maximizing the metastability of

the macrostates in the system. In practice, we minimize the objective function given by
In,, (A) = Ny, — trace(S) . (3.20)

Note that S is a function of A, this can bee seen by substituting Equation (3.16) into
Equation (3.18). The objective function defined in this way is convex on the feasible set

and bounded below by zero [297]. We must minimize fy,, with respect to the constraints
Xij > 0V(i,7) € {Ll,..., N} x{1,..., N, }, (positivity) , (3.21)

ZXU =1Vie{l,..,N.}, (partition of unity). (3.22)
J

We can re-express the conditions of Equation (3.21) and Equation (3.22) using Equa-

tion (3.16) and a result from Weber [302] in terms of A, the invertible rotation matrix, and
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Q, the matrix of selected Schur vectors, via

N,
Al ) = — ZG{E}??NC} ;Qli A Vi€ {1, ..., Ny}, (positivity),  (3.23)
Np,
A(i,1) =61 — > Aij Vi € {1,..., Ny}, (partition of unity).  (3.24)
§=2

Optimizing Equation (3.20) subject to the constraints of Equation (3.23) and Equation (3.24)
is tricky; we perform unconstrained optimization on Asg.n,, 2:n,, by imposing the constraints
after each iteration step. This transforms the unfeasible solution into a feasible solution
[297]. However, as this approach is non-differentiable, we use the derivative-free Nelder-
Mead method [292] as implemented in the Scipy routine scipy.optimize.fmin [303| for

the optimization.

Positivity of the projected transition matrix. The projected transition matrix
T can have negative elements if macrostates largely overlap. A suboptimal number of
macrostates N, is typically the cause of this issue; adapting N, resolves the problem. We
may interpret T as the Markov-transition matrix among the set of macrostates as long as

it is non-negative withing numerical precision [293].

Tuning the number of macrostates. The number of macrostates N, can be chosen
using a number of different approaches including the eigengap heuristic or the crispness of
the solution & = trace(S)/N,, [297] (Figure 3.5b); the larger £, the less macrostates overlap
and the better the solution. These options are available trough the GPCCAEstimator.

Scalable Python implementation of GPCCA. Following the original MATLAB im-
plementation [296], we designed GPCCA as a general algorithm in Python and created an
independent package for it called pyGPCCA [304]. While pyGPCCA serves as the backbone for
the GPCCAEstimator, we anticipate it to be used outside the single-cell community as well,
e.g. in the study of protein conformational dynamics. A bottleneck in the implementation
of pyGPCCA was the scalability of the Schur decomposition. A full Schur decomposition has
time complexity O(N2) and would be infeasible to compute for modern single-cell datasets.
We overcome this challenge by computing only those Schur vectors which are required for Q
through an iterative, Krylov-subscpace-based algorithm implemented in the SLEPSc [305,
306| toolbox. The algorithm optimally exploits sparsity in 7" induced by the KNN graph
G which forms the basis of many CellRank kernels, including the VelocityKernel. Over-
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all, exploiting sparsity in this way reduces computational complexity to be approximately
linear in the number of cells (Section 3.4). This allows us to apply the GPCCAEstimator to

very large cell numbers.

T identifies terminal states. To identify terminal states, we search for the most stable
macrostates according to the coarse-grained transition matrix T (Figure 3.5d). Define
the stability index SI; of a macrostate ¢ € {1, ..., N,,,} through its corresponding diagonal

element in 7T,

and classify macrostates as terminal for which SI; > egr with es;1 = 0.96 by default; this
is a method parameter that can be adjusted by the user. This mechanism is motivated
by the intuition that cells in terminal populations are unlikely to transition to cells which
reside in other populations; they distribute the vast majority of their outgoing probability

mass to cells from their own terminal population.

T identifies initial states. To identify initial states, we introduce the coarse-grained

stationary distribution ™ € Ay, given by
T=x'm (3.26)

where 7 € Ay, is the stationary distribution of the original transition matrix 7 (Sec-
tion 2.2). The coarse-grained stationary distribution 7t describes the long-term evolution
of the Markov chain given by P. It assigns large (small) values to macrostates that the
process spends a large (little) amount of time in when run for an infinite amount of time.
As such, we may use it to identify initial states by looking for macrostates that are assigned
the smallest values in 7. This is motivated by the intuition that initial states are states
that the process is unlikely to visit again once it left them. The number of initial states is

a method parameter which we set to one by default.

T identifies intermediate states. We classify the remaining macrostates as interme-
diate; these have neither been detected as initial nor terminal. Biologically, these states

correspond to intermediate, transient cell populations on the trajectory of state change.
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Handling reducible Markov chains. For most CellRank kernels, transition matrix
construction ensures that, as long as the underlying KNN graph G is connected, the re-
sulting Markov chain is irreducible (Section 2.2). For the VelocityKernel, this is a con-
sequence of allowing transitions against the direction dictated by the local RNA velocity
vector with a small probability. However, for non-connected G, the resulting Markov chain
will be reducible. Applying the GPCCAEstimator to reducible Markov chains is unprob-
lematic; communication classes can be identified from T and the computation of 7 and 7

can be restricted to one communication class at a time.

3.3.2 Computing fate probabilities

On the basis of the soft assignment of cells to macrostates by y and the identification of
terminal states through T, we compute how likely each cell is to transition towards these
terminal states. Let N; be the number of identified terminal states. While the below
computations apply to all macrostates, let us assume for the sake of clarity that we are

only interested in fate probabilities towards terminal states.

Problem setup. For each terminal state t € {1,..., N}, we choose f cells which are
strongly assigned to t according to x, i.e. we extract the corresponding column from y
and we calculate the terminal index set R; of cells which have the largest values in this
column of y. If cell 4 is assigned to the terminal index set Ry, we assume it is well-suited to
characterize the terminal macrostate ¢t. We store indices corresponding to remaining cells
in the transient index set 7. The index sets {R¢|t € {1,...,N;}} and T form a disjoint
partition of the state space S = {1,..., N.} (Section 2.2). For each cell i in T, we would
like to compute a vector of probabilities f; € Ay, which specifies how likely this cell is to
transition into any of the terminal states characterized trough {R:};. We accumulate the
f; column-wise in the fate matrix F € RN*Nt: rows corresponding to cells in any of the

{R:}+ are assigned the corresponding indicator vector.

Fate probabilities through absorption probabilities. We define fate probabilities
in our context as absorption probabilities on the Markov chain (Section 2.2), i.e. the fate
probability of cell ¢ to reach terminal state tg is computed as the absorption probability of
a random walk initialized in state ¢ to reach the terminal index set Ry, before reaching any
other terminal index set R¢. In order to compute absorption probabilities, we approximate
the terminal index sets as recurrent classes, i.e. we remove any outgoing edges found
in these sets. We then apply Theorem 2.1 of Section 2.2, which, for each cell i € T,

yields absorption probabilities towards each of the f cells in each of the IV; recurrent index
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sets. We aggregate these to yield absorption probabilities towards the recurrent index sets
themselves; this is achieved by summing up absorption probabilities towards individual

cells in these sets (Figure 3.5¢,f).

Computing absorption probabilities efficiently. A naive implementation of absorp-
tion probabilities has time complexity O(N?2) due to the matrix inversion in Theorem 2.1.
This inevitably fails for large cell numbers. We alleviate this by re-writing Equation (2.30)

of Theorem 2.1 as a linear problem,
(I-Q)A=S. (3.27)

Note that @ is very sparse for all CellRank kernels as it describes transitions between
nearest neighbors. Per row, ) has approximately K entries where K is the number of
neighbors used in KNN graph construction. To exploit this level of sparsity, iterative
solvers are appealing as their per-iteration cost applied to this problem is linear in N, and
K. However, to apply an iterative solver, we must rewrite Equation (3.27) such that the

right-hand side is vector-valued,

(I = Qar = s1, o (I = Q)ag, = 73 (3.28)

where f Ny is the total number of cells that are assigned to approximately recurrent classes.
We use the iterative GMRES [307] algorithm to solve these individual problems because it
efficiently makes use of sparsity structure. We use the PETSc implementation [306] which
makes use of efficient message passing, among other practical performance enhancements.
Lastly, we parallelize solving the f Ny linear problems. In combination, the tricks introduced
here allow us to rapidly compute absorption probabilities even for very large cell numbers
(Section 3.4).

3.3.3 Biological use cases of fate probabilities

Once fate probabilities have been computed, they can be used to answer a number of
biological questions; we present four use cases in this section: (1) visualization of the phe-
notypic manifold in a 2D circular embedding, guided by each cell’s probability of reaching
each terminal state, (2) the quantification of multi-lineage potential, (3) the identification
of genes which may be crucial for a certain lineage decision and (4) the visualization of

smooth, trajectory specific gene expression trends.
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Visualizing fate probabilities through circular embeddings. This presentation
follows work by Velten et al. [308] which in turn is based on circular a posteriori projections
[83]. Let F € RNe*Nt by the matrix of fate probabilities for N, cells and N; terminal states
such that F;. € Ay, represents fate probabilities for cell 7. We aim to find a two dimensional
arrangement of cells that reflects their fate probabilities; therefore, we arrange the terminal
states evenly spaced around the unit circle and assign each terminal state an angle a;. We

transform each cell’s fate probability vector Fj. into a 2D representation (z;,y;) by using
T; = Z fitcosay (3.29)

t
yi = Z firsinoy. (3.30)

t

The final representation depends on the order in which we arrange terminal states around
the unit circle. To find a good ordering, we compute pairwise similarities among fate
probabilities F!; and we choose the arrangement that maximizes the set of pairwise sim-
ilarities. This ensures that similar terminal states are placed next to each other. We use

cosine correlation to quantify similarity by default.

Quantifying multi-lineage potential. During development, cells gradually transition
from multi-potent (naive) towards uni-potent (differentiated) states; potency can be quan-
tified in CellRank to assess each cell’s position on the state-change trajectory. We provide

two ways of quantifying multi-lineage potential on the basis of computed fate probabilities:

e through H(F;.), the entropy over fate probabilities (called ’diffusion potential’ in
Palantir [25])

e through KL [E I ﬂ, the KL divergence between fate probabilities F; . and the mean
per-lineage fate probability across cells f; = 1/N,. Y, Fj; (called 'priming degree’ in
STEMNET [308])

Intuitively, H (F; ) quantifies how far from uniform the distribution F; . is and KL [Fi,: I ﬂ
quantifies how far from the average fate distribution F;. is. The higher H(F;.) and the
lower KL [Fi’; [l ﬂ, the less committed a cell is. If initial cells already have a dominant
direction of fate bias, we suggest using the KL divergence; it will increase monotonically
as cells move from initial to terminal states while the entropy will reach its maximum at

some point in between initial and terminal states which comes closest to uniform.
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Uncovering putative decision-driver genes For finding putative fate-determining
genes, we compute Pearson correlations between expression levels of a set of genes and fate
probabilities. We use correlation values to sort genes and consider high-scoring genes as
potential driver genes. By default, we include all genes which have passed pre-processing
gene filtering thresholds. The computation of correlation values can be restricted to a
set of pre-defined clusters if one is interested in driver genes acting in a specific region
of the phenotypic manifold. We implement two options for computing p-values for the

correlations, using either a Fisher transformation or a permutation test.

Visualizing trajectory-specific gene expression trends. Combining fate probabili-
ties with any pseudotemporal measure like DPT [213] or Palantir’s pseudotime [25] (Sec-
tion 2.4) allows us to infer trajectory-specific gene expression trends. CellRank does not
compute a pseudotime itself but it can guide pseudotime algorithms by providing the initial
state. To visualize trends, we fit Generalized additive models (GAMSs) to gene expression
values which have been imputed by borrowing information from neighboring cells via a
KNN graph. Using GAMs allows us to flexibly model many different kinds of gene trends
in a robust and scalable manner. We fit the expression trend for trajectory ¢ (associated

with terminal state ¢ € {1, ..., N¢}) in gene j via
zij = Po+ f(m) Vi: Fiy >0, (3.31)

where z;; denotes expression of gene j in cell ¢, 7; is the pseudotemporal value of cell 7 and
F' is the fate matrix. We use cubic splines for the smoothing functions f by default; these

have been shown to be effective in capturing non-linear relationships [309].

For visualization of the smoothed trend, we select 200 equally spaced points along pseudo-
time and predict gene expression using the fitted model of Equation (3.31) on this test set.
To estimate gene trend uncertainty, we use the standard deviation of the residuals of the
fit [310]. For the fitting of Equation (3.31), we provide interfaces to both the R package
mgcv [311, 312] as well as the Python package pyGAM [313]. We parallelize gene fitting to

scale well in gene numbers.

3.4 Validation, application, and benchmarking

In this section, we apply the machinery developed to real scRNA-seq data examples, in

particular, we use the ConnectivityKernel and the VelocityKernel to compute a joint
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transition matrix 7" and we identify initial and terminal states and fate probabilities us-
ing the GPCCAEstimator. We start by validating our framework on lineage-traced in-vitro
MEF reprogramming data [22| (Section 3.4.1), proceed with an application to in-vivo
pancreas development [23| (Section 3.4.2), benchmark the framework on the same data
(Section 3.4.3) and conclude with an application to in-vivo lung regeneration [11]| (Sec-
tion 3.4.4).

Data pre-processing. All datasets considered in this section were preprocessed follow-
ing standard SCANPY and scVelo workflows (Section 2.1); we filtered to genes that have
at least 20 counts in both spliced and unspliced modalities, we normalized the total counts
to be the same across cells, we log-transformed the data and computed a PCA representa-
tion in the space of the top 2000 highly variable genes (we kept the PCA from the original
publication for the lung example [11]). Using the top N; = 30 principal components, we
computed a K = 30 (K = 50 for the lung) nearest neighbor graph G, used throughout
CellRank’s kernels. To compute velocities, we run scVelo’s dynamical model of splicing
kinetics, i.e. the EM algorithm applied to first-order moment equations to recover both

modal parameters as well as latent time assignments (Section 2.5).

Cell type classification and low-dimensional visual embeddings. For all data
examples, we kept the cell-type labels that were supplied with the original publications.
Two-dimensional data representations for purely visual purposes (not supplied to CellRank
kernels) were obtained as follows: for the MEF example [22|, we kept the original t-
SNE embedding, for the pancreas example [23|, we computed a PAGA-initialized UMAP
[121, 175] while for the lung [11], we computed a BBKNN [141] batch-corrected UMAP
(Section 2.1).

CellRank parameters. For all data examples, we computed a joint transition matrix T’
by combining the ConnectivityKernel with the VelocityKernel with weights 0.2 and 0.8,
respectively. The kernels were supplied with a KNN graph G and velocity vectors computed
as described above. The VelocityKernel was run with automatic kernel-width parameter
o identification and analytical noise propagation (Section 3.2). The GPCCAEstimator was
run for a custom number of macrostates (indicated below for each data example), guided
by the eigengap heuristic. The fate probabilities towards a subset of macrostates were
computed using the fast linear-solve approach (Section 3.3). We illustrate in the pancreas
example that CellRank’s results are robust with respect to small changes in the key pre-

processing parameters (Section 3.4.2).
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3.4.1 Validation on a lineage-traced MEF reprogramming timecourse

To validate our proposed method, we applied CellRank to an in-vitro study of 48,515 MEFs
reprogramming towards induced endoderm progenitors [314] (iEPs) across six time points
[22]. We expect only around 1% of cells to successfully reprogram (marked by Apoal) and
the other cells to enter a "dead-end" state (marked by Colla2) [22]| (Figure 3.6a). This
dataset is equipped with CellTagging lineage tracing labels that can be used to infer clonal
relationships among cells, thus providing ground truth on the ultimate fate (successful
versus dead-end) of early cells [22]. We were interested to see how well CellRank’s fate

probabilities recovered ground truth reprogramming outcome in this challenging setting.

CellRank recovers successful and dead-end states. We computed velocities using
scVelo [16] and projected them on the original t-SNE embedding of Biddy et al. [22]
(Figure 3.6b). Projected velocities were uninformative of a path towards the successful
state, most likely because the reprogramming signal is too subtle to be picked up in a two
dimensional representation. CellRank’s macrostates, in contrast, included both a dead-end

and the rare successful state (Figure 3.6¢,d).

CellRank predicts reprogramming outcome. When we compared fate probabilities
towards these states with lineage-tracing derived labels (Figure 3.6¢e), we found that fate
probabilities were highly predictive of reprogramming outcome. As expected, predictive

accuracy decreased for earlier days in the time course (Figure 3.6f).

Fate probabilities were compared to CellTag derived ground-truth labels from the original
publication [22] via a classification task. The ground-truth labels were binary (successful
versus dead-end) and available for a subset of the cells. We restricted the comparison to
days 12, 15, and 21 where ground-truth labels were available for 374, 582, and 1,312 cells,
respectively. There were more ground-truth labels available for dead-end cells than for
successful cells which can give rise to misleading classification accuracy. To make make

proportions even, we subsampled dead-end cells.

For the classification task, we randomly assigned 60% of labeled cells per day into a training
set and the remaining cells into a test set. The final cell sets contained 208 (124 training
/ 84 testing), 308 (184 training /124 testing) and 652 (391 training / 261 testing) cells
for days 12, 15 and 21, respectively. We trained logistic regression classifiers for each day
independently to predict the ground-truth success/dead-end labels based on CellRank’s

fate probabilities on the training set using the scikit-learn implementation [316].
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To quantify predictive performance, we visualized receiver operating characteristic (ROC)
curves for each day on the test set. In short, ROC curves are computed by iterating over
the decision threshold which is used to classify points as successful/dead-end, recording
and plotting the true positive rate (TPR) against the false positive rate (FPR) for each
decision threshold [317]. For each day, we also compute the area under the ROC curve
(AUC); a measure between zero and one which summarized the entire ROC curve into a
threshold-independent value. An AUC of 1 corresponds to perfect classification and 0.5

corresponds to random guessing (an uninformative classifier).

3.4.2 Application to pancreas development

Moving from in-vitro to in-vivo settings, we applied CellRank to a scRNA-seq dataset of
E15.5 murine pancreatic development [23]. A UMAP [122| representation with original
cluster annotations and scVelo-projected velocities recapitulated the main developmental
trends [16] (Figure 3.7a); cells traverse trajectories from an initial cluster of endocrine
progenitor cells (EPs) expressing the transcription factor neurogenin 3 (Neurog3 or Ngn3)

at low levels towards alpha, beta, epsilon and delta cell fates.

We computed CellRank’s transition matrix 7', coarse-grained it into 12 macrostates (Fig-
ure 3.7b) and computed the associated coarse-grained transition matrix T (Figure 3.7c).
Macrostates, annotated according to how much they overlap with orthogonal gene expres-
sion clusters, comprised all developmental stages in this dataset, from an initial Ngn3°¥
EP state, to intermediate Ngn3"e" EP and Fev+ states, to hormone-producing terminal

alpha, beta, epsilon, and delta cell states.

The GPCCAEstimator identifies initial and terminal states. According to the coarse-
grained transition matrix T, the three most stable states were the alpha (SI = 0.97), beta
(SI = 1.00) and epsilon (ST = 0.98) macrostates which were accordingly labeled as terminal
by the GPCCAEstimator, consistent with known biology (Figure 3.7d). Additionally, we
recovered one relatively stable (SI = 0.84) macrostate which largely overlapped with delta
cells. We identified the Ngn3'°"¥ EP; state as initial because it was assigned the smallest
value in 7 (2 x 107%). Well-known marker genes confirm our automatic identification of
initial and terminal states, including Ins! and Ins2 for beta, Gcg for alpha, Sst for delta,
and Ghrl for epsilon cells and ductal cell markers Anza2, Sox9, and Biccl for the initial
state [23, 318] (Figure B.1 in Appendix B).



90 CHAPTER 3. CELLRANK

Fate probabilities recover expression trends of driver genes. We computed fate
probabilities and visualized them in a fate map, a scatter plot in which each cell is colored
according to its most likely fate with color intensity reflecting the degree of lineage priming
(Figure 3.7e). This analysis correctly identified the beta-cell fate as dominant within the
Ngn3hieh EP cluster at E15.5, consistent with known biology [23] (Figure 3.7e, inset).
Using a cell within the Ngn3'°Y EP; macrostate as the starting state for Palantir [25],
we ordered cells in pseudotime and overlaid the expression of master regulators Arz [318§]
(alpha), Pdx1 [319] (beta) and Hhez [320] (delta), and the lineage-associated gene Irs4
[321] (epsilon) (Figure 3.7f) to chart trends based on CellRank’s fate probabilities. We
found all of these genes to be upregulated correctly when approaching their corresponding

terminal populations.

Robustness analysis. We wanted to evaluate the robustness of CellRank’s results with

respect to the following key pre-processing parameters:

the weight given to the ConnectivityKernel versus the VelocityKernel (Section 3.1).
e the number of neighbors K used for KNN graph construction (Subsection 2.1.2) .

e scVelo’s gene-filtering parameter min_shared_counts which determines how many

counts we require for a gene in both spliced and unspliced layers.

e scVelo’s gene filtering parameter n_top_genes which determines how many highly

variable genes are included in the velocity computation.

e the number of principal components N; used for KNN graph construction (Subsec-
tion 2.1.2)

We varied one parameter at a time and computed macrostates as well as fate probabilities.
We then compared fate probabilities for different values of the parameter by computing
pairwise Pearson correlation among all possible pairs, separately for each lineage. We al-
ways computed sufficient macrostates so that the alpha, beta, epsilon, and delta states
were included. The precise location of the terminal states changed slightly across param-
eter combinations; for this reason, the correlation values we report reflect the robustness
of the entire CellRank workflow, including the computation of terminal states and fate
probabilities. In addition to the 5 pre-processing parameters, we were interested to see
how much fate probabilities change when we randomly subsample to 90% of cells. We sub-

sampled 20 times, computed macrostates and fate probabilities, and compared pairwise,
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as above. We found that all components of CellRank were extremely robust to parameter

variation and random subsampling of cells (Figure B.2 in Appendix B).

Uncertainty propagation increases robustness to noise. We used the pancreas
dataset to illustrate the effects of uncertainty propagation (Figure 3.8a). We selected
two cells, one from a low noise region where velocity vectors of neighboring cells often
agree and one from a high noise region. To compute transition probabilities towards
nearest neighbors with the VelocityKernel, we used a deterministic approach that does
not propagate uncertainty, our analytical approximation and MC sampling (Section 3.2.2).
Differences between deterministic and stochastic transition probabilities were greatest in
the high noise region; this highlights how uncertainty propagation automatically down-
weights transitions towards cells in noisy areas where individual velocity vectors are less
trustworthy (Figure B.2b). We confirmed that our analytical approximation gives very

similar results to the exact sampling scheme (Figure B.2¢,d).

We further checked whether propagating uncertainty increased robustness with respect
to key pre-processing parameters, using as an example the number of neighbors K. We
fixed the terminal state assignment and computed pairwise correlations with and without
uncertainty propagation in the VelocityKernel. Next, we performed a one-sided Wilcoxon
signed-rank test separately for each lineage using the scipy [303] implementation with an
exact distribution for the test statistic. This test assumes independently distributed paired
data. In our case, pairs are given by correlations of fate probabilities for two different
numbers of neighbors K, computed with and without uncertainty propagation. We assume
these to be paired as the same number of neighbors yields similar correlation values with
and without uncertainty propagation. We found that propagating uncertainty leads to
increased robustness of fate probabilities with respect to K; we show similar results for

other pre-processing parameters in the original publication [14] (Figure B.3 in Appendix B).

3.4.3 Benchmarking against other methods

We evaluated the impact of including velocity information by benchmarking CellRank
with similarity-based methods that provide cell-fate probabilities (Palantir [25], STEM-
NET [308] and FateID [322]) and a velocity-based method that computes initial/terminal
states (velocyto [1]) on the pancreas data. Only CellRank correctly identified both initial
and terminal states (Figure 3.9a). Palantir requires user-provided initial states and only
identified 2 out of 4 terminal states, and STEMNET and FatelD cannot determine either
initial or terminal states. Velocyto cannot identify individual initial or terminal states,

but outputs distributions for initial and terminal states which only overlap with beta and
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Ngn3!°" EP cells, respectively (Section 2.5). Next, we supplied all methods with CellRank’s
terminal states and tested cell fate probabilities, finding that only CellRank and Palantir
correctly identified beta as the dominant fate among Ngn3"&? EP cells (Figure 3.9b). Ve-
locyto does not provide fate probabilities. For lineage-specific gene expression, CellRank
and Palantir correctly predicted trends for key lineage drivers, whereas FatelD failed to
predict upregulation of Pdz1 along the beta lineage; we show similar results for more genes
in the original publication [14]. STEMNET and velocyto cannot compute gene expression
trends (Figure 3.9¢).

We also compared runtime and memory usage on the MEF reprogramming dataset [22]
from Section 3.4.1 because it contained more cells (full dataset: 100k cells) than the pan-
creas dataset. (Figure 3.9d). CellRank took about 33 sec to compute macrostates on this
large dataset. For fate probabilities, the (generalized) linear model STEMNET was fastest,
as expected, taking only 1 min, while CellRank took about 2 min and Palantir took 1h 12
min. FatelD on 90k cells took even longer and failed on 100k cells due to memory con-
straints while velocyto was the slowest, exceeding our time budget of 10k seconds for cell
numbers exceeding 40k. Results for memory usage were similar, with CellRank requiring
3 and 5 times less peak memory than Palantir and FatelD, respectively, to compute fate
probabilities on 100k cells (Figure 3.9¢). Only STEMNET required even less memory. The
most memory-hungry method was velocyto, requiring more memory on 40k cells than any
other method on 100k cells.

3.4.4 Application to lung regeneration

In regenerative settings, the typical assumption of unidirectional transitions to more differ-
entiated states does not hold; we applied CellRank to murine lung regeneration in response
to acute injury [11] to demonstrate its ability in this challenging context. The scRNA-seq
example comprised 24,882 lung alveolar and airway epithelial cells, sequenced at 13 time
points spanning days 2-15 past bleomycin injury (Figure B.4a,b in Appendix B) with
Drop-seq [35], a lower resolution single-cell platform (Section 2.1). High plasticity between
epithelial cell types has been observed when homeostasis is perturbed and the tissue en-
vironment changes, including injury-induced reprogramming of differentiated cell types to
bona fide long-lived stem cells in the lung [325] and other organs [326]. In our current
model of airway cell lineage hierarchy, multipotent basal cells give rise to club cells, which
in turn can give rise to secretory goblet and ciliated cells [327]. Interestingly, Tata et al.
[325] have shown that ablation of basal stem cells can cause luminal secretory cells to ded-
ifferentiate into fully functional basal stem cells. Here, we applied CellRank for unbiased

discovery of unexpected regeneration trajectories of airway cells.
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Marcostates and fate probabilities for airway epithelial cells. We computed
scVelo velocities, applied CellRank and identified 9 macrostates that were used to compute
fate probabilities (Figure 3.10a,b). Fate probabilities assigned high multilineage potential
to MHC-II+ club cells; this is in agreement with previous results [11] (Figure 3.10c). Fo-
cusing our analysis on airway cells, we identified three macrostates in ciliated cells, one in
basal cells, and one in goblet cells. In agreement with lineage tracing experiments [328],
we observed a high probability for club cells to give rise to ciliated cells (Figure 3.10c).
The goblet cell macrostate was distinguished from club cells by the expression of specific
mucin genes, including Muc5b and Mucdac, as well as secreted proteins involved in innate
immunity, including Bpifb! (Figure B.4c). Analysis of fate probabilities towards basal and
goblet states revealed that, surprisingly, goblet cells are likely to dedifferentiate towards
Krt5+/Trp63+ basal cells (Figure 3.10c,d and Figure B.5 in Appendix B).

CellRank predicts goblet to basal dedifferentiation. We computed a diffusion map
restricted to goblet and basal cells to study the trajectory at higher resolution (Figure B.6a
in Appendix B). We confirmed that the proportion of basal cells increases over time and
that gene-wise velocities support the dedifferentiation hypothesis (Figure B.6b,c). Using
the GPCCAEstimator and the coarse-grained stationary distribution 7, we identified early
cells in the transition which we used to compute a pseudotime with Palantir (Figure B.7 in
Appendix B). We combined pseudotime with basal-fate probability to define stages within
the dedifferentiation trajectory in the data subset (Figure 3.10e), splitting cells that had
at least 66% probability of reaching the basal state into three equally sized pseudotime
bins. Stage 1 consists of goblet cells characterized by high expression of the goblet marker
Bpifb1. Stage 2 comprises an intermediate set of cells that express both Bpifb! and the
basal marker Krt5. Stage 3 consists of terminal basal cells, characterized by the basal

markers Krt5 and Trp63, and no expression of Bpifb! (Figure 3.10e).

Immunofluorescence confirms novel intermediate cell states. Our novel model
of goblet cell dedifferentiation predicts that after injury, the proportion of cells in stage 2
should increase as these represent intermediate cells in the dedifferentiation bridge towards
basal cells. To validate this prediction, we assessed Bpifb1, Krt5 and Trp63 expression
by immunofluorescence of mouse airway epithelial cells on days 10 and 21 post-bleomycin
treatment, as well as in untreated animals (Figure 3.10f). We found cells from stage
1 (goblet) and stage 3 (basal) in both control and treated mice. However, we found
intermediate stage 2 cells only in 10-day post-treatment mice (Figure 3.11g). Moreover, we

also found triplet positive cells which only appeared after injury (see the original publication
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[14]). Goblet cell hyperplasia, an increase in the number of mucous secreting cells in the
airways, is a prominent feature in several chronic inflammatory conditions [329]. The
novel dedifferentiation trajectory to basal stem cells that CellRank analysis predicted is
unexpected; it suggest a route for generating multipotent stem cells in the resolution phase

of the regenerative injury response.
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96

CHAPTER 3. CELLRANK

c

Ngnslow o |n|t|a|
EP[1-3] terminal S
R
b Ngn3lew EP[1-3] 06
o Ngn3high :
Beta Fev+ z EP[1-4] 04
& .
Ngnahiah EP[1-4] Ep’;ﬁ(‘)’; 02
, "% Delta Alpha
Ngn3 low EP % Delta 0.0
Beta
Ngn3 high EP ﬁ Epsil
« Fev+ Aloha pstion transition probability
i Beta P among macrostates
o Alpha >
o Delta
Epsilon f
Alpha
d #
Beta
e \\ ) O Epsilon
\‘ ‘l
POT '\
3 < Alpham Delta
7&? Beta-0.71

_ v
1 normalized gene i
expression low

Epsnon average fate among 00

Delta (AU} Ngn3hish EP cells
Figure 3.7: Delineating fate choice in pancreatic development. a. UMAP of E15.5
mouse pancreatic development with scVelo projected streamline velocities. Colors correspond
to published cluster annotations [23]. CellRank provides additional insights regarding (i) the
fate of early cells, (ii) the identification of terminal states and (iii) likely progenitors of terminal
fates (boxed insets). b. Soft assignment of cells to macrostates. Cells are colored by the most
likely macrostate; color intensity reflects the degree of confidence, and grey cells reside between
multiple macrostates. c. Coarse-grained transition probabilities between macrostates. Terminal
macrostates are circled in red and the initial Ngn3'°" EP; macrostate is circled in yellow. d.
Highlight of the 30 most confidently assigned cells for each initial and terminal macrostate,
colored according to (b). e. UMAP displaying probabilities for reaching alpha, beta, epsilon,
and delta terminal fates. Fates are colored as in (b), with darker color indicating elevated
probability. Inset shows mean fate probabilities of cells in the Ngn3"&h EP cluster marked with
a dashed line. f. Smoothed pseudotime gene expression trends; each colored trend is weighed
by GPCCAEstimator-computed fate probabilities as indicated for the lineage determinants Arx
[318] (alpha), PdxI [319] (beta), and Hhex [320] (delta) as well as the lineage associated gene
Irs4 [321] (epsilon). We show for each gene and trajectory the trend leading up to the indicated
terminal population. Right column, expression values for the corresponding gene in the UMAP.
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method, and on the y-axis is gene expression. We show one smoothed trend per trajectory for
CellRank and Palantir and a smoothed trend along just the beta trajectory for FatelD. CellRank
and Palantir correctly identify Pdx1 upregulation along the beta lineage. FatelD fails to do
so while STEMNET [308] and velocyto do not offer options to visualize lineage-specific gene
expression trends. d,e. Boxplots comparing computational runtime (d) and peak-memory usage
(e) on the MEF reprogramming dataset [22] for different methods. We split the dataset into
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dots represent outliers. Figure reproduced from Lange et al. [14].
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Figure 3.10: CellRank predicts a novel dedifferentiation trajectory in murine lung
regeneration. a. UMAP of 24,882 epithelial cells from 13 time points colored according to
cluster annotations [11]. Streamlines show projected scVelo velocities and the box highlights
a subset of airway cells. b. CellRank computed macrostates. c. Circular projection [83, 308]
of cells according to fate probabilities towards the macrostates shown in (b). Boxes highlight
goblet cells likely to reach the basal terminal state (i), MHC-114 club cells with high multi-lineage
potential (ii) and club cells likely to transition to ciliated cells (iii). d. Cells in UMAP colored by
CellRank-computed fate probabilities towards the basal cell macrostate, showing a route from
goblet to basal cells e. The dedifferentiation stages are characterized by the expression of Bpifb1
(goblet), Krt5 (early basal), and Trp63 (late basal); stage 1 corresponds to goblet, stage 2 to
intermediate, and stage 3 to basal cells (bottom). f. Immunofluorescence stainings for Bpifbl
(green), Krt5 (red), Trp63 (white), and DAPI (blue) in mouse lung tissue sections 10 days past
bleomycin injury. We detect cells from the intermediate stage 2 (Bpfib1+/Krt5+/ Trp63-) in
bleomycin-injured lungs (yellow squares and arrowheads). Scale bars represent 50m, 10um for
zoom-in images. In each panel, dotted boxes are magnified at the bottom, and solid-boxed cells
are magnified at the right, showing individual and merged channels. Representative images are
derived from two independent biological replicates. Figure adapted from Lange et al. [14].
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Figure 3.11: Quantification of stage abundance post-injury. a. Quantification of stage-
dependent cell abundance in wild type (PBS), 10 days post bleomycin injury (bleo d10), and
22 days post-injury (bleo d22) mice. We quantified ten independent pulmonary airway regions
per condition over 2 biologically independent experiments. Bleo d10 is significantly enriched
for stage 2 cells (Nested One-Way ANOVA with Tukey's multiple comparison test, P < 1073).
Figure adapted from Lange et al. [14].
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3.5 Extensions of the CellRank framework

The previous sections introduced CellRank, a modular framework to study cellular state
transitions, and showcased its performance in a number of applications. To derive the
transition matrix 7', we made use of gene expression similarity and RNA velocity through
the ConnectivityKernel and the VelocityKernel, respectively. While this combination
successfully captured known biology in the MEF [22| and pancreas [23| examples and
predicted new biology in the lung example [11], there are challenges to velocity-type models

which limit the applicability of this approach in practice.

Limitations of RNA velocity. We touched upon the main limitation in Section 2.5;
RNA velocity depends on unspliced count abundance which is biased by gene structure.
Other limitations include its dependency on the time scales of splicing kinetics which
cannot be controlled externally, batch effects which currently cannot be corrected for in
velocity data, and high noise levels which in practice only allow for moment-based modeling.
Besides these experimental challenges, computational challenges include a lack of velocity
models which estimate time- and state-dependent transcriptional parameters a®/°ff 3, ~
to account for phenomena such as transcriptional bursting [274, 330], or models which

include gene-gene interactions rather than fitting each gene individually.

CellRank, through the combination of VelocityKernel and ConnectivityKernel, allevi-
ates some of these challenges by using a KNN graph to regularize velocity vectors, propa-
gating noise, and using a stochastic formulation. Nevertheless, we had very little success
applying this approach to systems like hematopoiesis where velocity vectors are systemati-
cally biased. The reason for this bias is currently under debate; in developmental settings,
transcriptional bursting has been identified as a possible cause [330]. For example, on a
dataset of CD34+ human bone marrow cells [25], RNA velocity vectors point in the op-
posite direction the known ground truth in the system despite sufficient overall capture
of unspliced transcripts (33%) ( Figure 3.12a,b). We speculated this may be caused by a
cluster of common lymphoid progenitor cells (CLPs) which form an outlier in phase por-
traits and heavily bias scVelo’s parameter fits (Section 2.5 and Figure 3.12c). However,
upon removing CLPs and re-running the model, velocities remained largely inconsistent
with ground truth (Figure 3.12d), possibly due to a number of top-likelihood genes which
require time- and state-dependent velocity parameters currently not supported by scVelo’s
model of splicing kinetics (Figure 3.12e) [274, 330).
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Figure 3.12: RNA velocity is systematically biased for hematopoiesis. a. t-SNE embed-
ding of CD34+ human bone marrow cells, each dot denotes a cell, colored according to original
cluster annotations [25]. Arrows denote the ground-truth direction of differentiation which is
known for this well-studied system. (HSC: hematopoietic stem cell, MK: megakaryocyte, CLP:
common lymphoid progenitors) b. RNA velocity, displayed as streamlines in the embedding of
(a). Orange (blue) outlines highlight incorrect (correct) velocity flow. The pie chart in the
top-right corner displays the proportion of spliced and unspliced transcripts. c. Top-likelihood
genes according to scVelo's likelihood-based dynamical model [16] (Section 2.5); x-axis (y-axis)
shows spliced (unspliced) counts, each dot denotes a cell, colored according to clusters as in
(a). CLP cells form an outlier in all fits and bias inference. d. Upon removing CLPs, projected
velocities remain largely inconsistent with ground truth. e. Top likelihood genes as in (c)
upon removing CLPs; ANKI1 and PVTI show different dynamics between Erythroid clusters
and the rest, RPS16 has the inverse time assignment, possibly due to bursty kinetics [274, 330]
and ANGPTI1 shows different dynamics between HSC clusters and the rest. Phase portraits
computed by Philipp Weiler.

CellRank’s modular design overcomes the limitations of RNA velocity. Cell-
Rank overcomes the limitations of RNA velocity by implementing kernels that estimate
the direction of cellular state changes in the absence of velocity information. We introduce

three of these additions here:

e the PseudotimeKernel draws on the vast amount of methods developed for pseu-
dotime inference (Section 2.4); it uses their output (the pseudotime) to bias graph

edges to point in the direction of cellular state changes (Section 3.5.2).

o the CytoTRACEKernel extends the PseudotimeKernel to situations where no pseu-
dotime can be computed, possibly because the root cell is unknown. As a proxy

for pseudotime, it computes the CytoTRACE score, an unsupervised measure of
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developmental potential [26] (Section 3.5.3).

e the RealtimeKernel makes use of real-time information where it is available to direct
cellular state changes; it interfaces with an optimal transport-based method [20] to

compute couplings P across time-points (Section 3.5.4).

Besides these new kernels, which allow applications to new settings, we also introduce new
shared kernel methods, i.e. functionalities that are implemented in a base kernel class and
which are inherited by every derived kernel. These functionalities include random walk

simulations as well as embedding projections of the transition matrix 7.

Downstream of transition-matrix computation, the GPCCAEstimator is agnostic with re-
spect to kernel choice; it works for any (sparse) cell-cell transition matrix 7. Thus, the full
functionality demonstrated in the context of the velocity applications can be transferred
to the new setting. Moreover, the kernel arithmetics introduced in Section 3.1 extend to
the new kernels, making it possible to combine diverse sources of directionality within the

unified CellRank framework.

3.5.1 Methods available in every CellRank kernel

We introduce two visual approaches to qualitative transition matrix interpretation which

are available through every CellRank kernel.

Random walk simulation. Random walks can be initialized in random cells or in a
predefined cluster of "early" cells, they can be stopped after a certain number of steps or
when they reach a predefined set of clusters. Random walks can be plotted in any 2D

embedding and provide a qualitative first check of the dynamics captured by T'.

Projection of the transition matrix into a 2D embedding. FEmbedding projections
have been very popular for the visual interpretation of high dimensional RNA velocity
vector fields 1, 16] and can be extended to any KNN-graph-based CellRank kernel (applies
to all kernels but the RealtimeKernel). An embedding projection of T is given by a
2D vector field, visualized in any low-dimensional embedding. While we argued against
these projections as the sole method to analyze velocity data, we advertise them as part
of an analysis workflow that starts with a more intuitive interpretation and proceeds to

quantitative analysis through the GPCCAEstimator.

To compute the projected vector v; € R? for embedded cell z; € R? according to T,
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consider its neighbors N; = {1,2, ..., K;} in the KNN graph G. Suppose these neighbors
have embedded profiles {z1, 22, ..., 2k, }. The 2D embedding coordinates can be computed
using any dimensionality reduction technique, including t-SNE [124, 125|, UMAP [121,
122] and PCA. We define the projected vector via

1 Zi — 2
v; = T — — ) —2———, (3.32)
2 ( Kz) 1z — =i

JEN;

where substracting 1/K; ensures that the projection is zero for uniform transition prob-
abilities to nearest neighbors. CellRank can visualize the vector field itself or smoothed
versions thereof, using e.g. a Gaussian kernel over a grid [1], or scVelo’s popular stream-
plots [16]. In the following, we show examples for kernel projections into low-dimensional
embeddings for the PseudotimeKernel (Figure 3.14b) as well as the CytoTRACEKernel
(Figure 3.16d).

3.5.2 The PseudotimeKernel

The motivation for developing the PseudotimeKernel was to make use of the vast amount
of methods available to compute pseudotemporal orderings of cells [12] and to integrate
their output into CellRank. Pseudotime can be computed robustly for systems with a single
known initial state with unidirectional transitions out of this state towards a set of terminal
states. Examples of this setting are given by adult hematopoiesis [10, 25| and many
developmental systems [258]. Albeit the initial state being known, the GPCCAEstimator

can be applied to such settings to identify terminal states and to compute fate probabilities.

Computing the transition matrix. Given a KNN graph G and any precomputed vec-
tor of pseudotimes 7 € [0,1]V¢, the PseudotimeKernel biases edges in G to point into
the direction of increasing pseudotime. This is similar to the Palantir [25] model; however,
while Palantir discarded edges that point into the "pseudotime past", the PseudotimeKernel
employs an adaptive scheme that gradually down-weights graph edges in the pseudotime
past (Figure 3.13).

In particular, consider reference cell 2; € RYs with nearest neighbors A; = {1,2,..., K;}

according to KNN graph G. Suppose G is weighted with (sparse) adjacency matrix W €

RchNC reflecting cell-cell similarity on any molecular layer (Section 2.2.5). Using the

precomputed vector of pseudotimes T € [0, 1]NC

, define the pseudotime displacements
ATy = (1, — 7j) V5 € Nj. We compute a directed version W’ of W by adaptively down-

weighting graph edges that point into the pseudotime past, WZ/J = f(AT;;)W;; for weighting
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function f : R — R, given by

1 AT >0,

f(ATij) = 9 AT“ <0 (333)
17 ’

v 1+ebATij

where we use default values of b = 10 and v = 0.5. The trajectory inference method
VIA [331] used a similar scheme to adaptively weight graph edges in G. Transition prob-
abilities T" are computed from directed similarities W' by softmax normalization as in the
VelocityKernel (Section 3.2.2). The resulting transition matrix 7" is sparse and allows

for rapid application of the GPCCAEstimator.
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Figure 3.13: The PseudotimeKernel directs KNN graph edges. Schematic of the
PseudotimeKernel; cell-cell similarities from the adjacency matrix W of a KNN graph are
biased into the direction of increasing pseudotime 7 by means of a weighting function f.

Application to adult hematopoiesis. Applications of RNA velocity to the hematopoi-
etic system have not been successful to date; velocity vectors often point in opposite direc-
tions to the expected, known developmental hierarchy. To demonstrate this, we computed
RNA velocity for a dataset of steady-state adult hematopoiesis [25] and projected the veloc-
ity vectors into the original t-SNE embedding (Figure 3.14a). As expected, the projected

vectors consistently pointed opposite to the ground-truth direction.

For developmental hematopoiesis, the problem of biased velocity estimates has been at-
tributed to "bursty" expression kinetics which are not captured by the current model of the
mRNA lifecycle [330] (Section 2.5). For the example of adult (steady-state) hematopoiesis
we discussed above (Figure 3.12), we speculated this system might require state- and time
dependent kinetic rate parameters. Further, there may be a mismatch of the time scales
of hematopoiesis and splicing kinetics or informative genes for the process might not give

rise to sufficient unspliced counts as a result of their gene structure (Section 2.5).
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To overcome the challenge of biased velocity vectors, we applied the PseudotimeKernel,
using as input a cell-cell similarity KNN graph G as well as Palantir’s pseudotime which has
been shown to capture the biology of this system well [25] (Figure 3.14b). We projected
the resulting transition matrix 7" onto the original t-SNE embedding using the generic
kernel projection method presented above. The projected transition matrix, visualized
via streamlines in the embedding, captures the gradual commitment of hematopoietic
stem cells (HSC) towards the various endpoints in this system, including Monocytes and
Erythroids. When we further applied the GPCCAEstimator for a quantitative assessment
of the dynamics, we successfully recovered all initial and terminal states in the system
(Figure 3.14b).

Ground truth RNA velocity
HSC 1
HSC 2
CLP
Dendritic
Megakaryocyte
@ Precursors
Erythroid 1
@ Erythroid 2
@ Monocyte 1

=== Wrong direction .-+

TSNE, = = Correct direction reeeeeee”

Pseudotime (Palantir) KNN graph

-----

O Terminal
TSNE; ') nitial

Figure 3.14: The PseudotimeKernel captures adult hematopoiesis a. Left: t-SNE em-
bedding of cells from the adult hematopoietic system; embedding coordinates and cluster an-
notations as in the original publication [25]. Arrows indicate the known developmental hier-
archy. Right: scVelo-computed RNA-velocity estimates projected into the t-SNE embedding
and shown as streamlines. b. Palantir's pseudotime is combined with the KNN graph in the
PseudotimeKernel to compute transition probabilities; an embedding projection of T is con-
sistent with ground truth and the GPCCAEstimator finds the correct initial and terminal states.
Visualizations in (a) and (b) created jointly with Philipp Weiler.
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3.5.3 The CytoTRACEKernel

Following the success of the PseudotimeKernel, we wanted to enable a similar transition
matrix construction in situations where no precomputed pseudotime 7 is available, possibly
because the initial state is unknown or because multiple initial states exist. An alternative
approach to pseudotime construction which requires no prior knowledge and which can
handle several initial states is given by the CytoTRACE score |26], a heuristic measure of
developmental potential between zero and one where naive (differentiated) cells are assigned
large (small) values. For CytoTRACE score given by 7/ € [0,1]Ve, we use 7 := 1 — 7' as a

pseudotime and proceed with transition matrix construction as for the PseudotimeKernel.

The CytoTRACE score. CytoTRACE is based on the assumption that on average,
stem-like cells express more genes (at low levels) than differentiated cells because their
chromatin is regulated less tightly [26]. While this assumption is likely to hold in many
developmental systems, it is incorrect in most perturbed or steady-state systems. Within
developmental systems, cycling populations challenge this assumption as they express more
genes than their quiescent counterparts, without necessarily being more stem-like. Thus,
we recommend applying the CytoTRACEKernel to developmental systems and to look out
for cycling populations to make sure they are classified correctly. Based on the assumption

that stem-like cells express more genes, the method performs the following steps:

(i) For each cell ¢; € NVs, count the number of expressed genes n; = Z;V:gl 1 (x5 > 0)

for indicator function 1 (). Let m € N™¢ be a vector containing these integers.

(ii) For each gene j, compute Pearson correlation of its expression across all cells, X (R). j e
N”e with the number of genes expressed per cell n. Let the set J contain the indices

j corresponding to the top M genes with the highest positive correlation.

(i) Let X' € RNexNy represent a matrix of imputed gene expression values, computed
using a method like MAGIC [104] or scVelo’s moment function [16]. Compute the
average expression level of the genes in J according to X’ via ¢; .= 1/M jeJ Xi ;.
The final CytoTRACE score 7/ is a normalized version of ¢, i.e. 7/ := ¢/ max({) €
[0, 1]Ve; we call T := (1 — 7') the CytoTRACE pseudotime.

The raw signal is contained in the number of genes expressed per cell n, steps (ii) and (iii)
can be understood as post-processing/smoothing steps which the authors of the original
publication have empirically shown to enhance performance across a wide set of examples
[26]. The number of top genes to be included is set to M = 200 by default.
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Adaptation of the CytoTRACE score. In order to use the CytoTRACE score within
the CytoTRACEKernel to direct KNN graph edges, we had to adapt it because (i) the orig-
inal method was written in R, while CellRank is written in python, and (ii) the original
implementation relied on an imputation step which was inefficient and did not scale well
with cell number. In our adaptation, we used scVelo’s moment function [16] for the impu-
tation step, which is a simple KNN-based neighborhood smoothing that scales extremely
well with cell numbers. We validated that our adapted implementation performed at least
as well as the original implementation in a number of benchmark examples where a notion

of ground truth was available (Figure 3.15a-c).

ground truth original reimplementation

[ 750

500 CytoTRACE i
“_ embryo time [ 250 " & pseudotime Il

1.0 é

e bone marrow 10x (0.95)

bone marrow smartseqg2 (0.85)
0.8 ° o ciliated neurons (0.97)
e hypodermis and seam (0.93)
» muscle and mesoderm (0.94)
o zebrafish (0.92)
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0.6 0.8 1.0
reimplementation

Figure 3.15: Faithful adaptation of the CytoTRACE score. a. Original t-SNE embedding
of 22,370 muscle and mesoderm cells from C.elegans embryos, colored according to develop-
mental stage which serves as a proxy for ground-truth cellular ordering [24]. b. Same t-SNE
embedding, colored according to the original CytoTRACE pseudotime (left) and our adaptation
(right). c. Systematic comparison of CytoTRACE implementations across 6 datasets, each
shown as one dot. This includes two bone marrow datasets [332], three datasets of different
aspects of C.elegans embryogenesis [24] (ciliated neurons, hypodermis and seam and muscle
and mesoderm) as well as one developmental zebrafish dataset [333]. On the x- and y-axis,
we measure Spearman rank correlation between average CytoTRACE score and ground truth
developmental staus per dataset-defined stage for the adapted and the original implementation,
respectively. Additionally, we report the Pearson correlation between the two scores for each
dataset in parenthesis in the legend, validating that (i) both scores achieve a similar agreement
with ground truth and (ii) the two scores are similar.
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Application to early zebrafish development. We applied the CytoTRACEKernel to
a Drop-seq [35] dataset of zebrafish embryogenesis [333] containing 694 embryos harvested
across 12 stages of early development. When we projected scVelo-computed velocities on
the original force-directed embedding, they displayed very noisy patterns, largely pointing
opposite to the known direction given by stage progression; this was particularly pro-
nounced for the axial mesoderm lineage (Figure 3.16a). An explanation for these noisy
velocities could be given by the low fraction of unspliced reads which was only at 3%
(Figure 3.16b); this value is low even for Drop-seq [35], which usually results in somewhat

lower unspliced read fraction (about 10-20%).

Focusing on the axial-mesoderm lineage (Figure 3.16¢), we applied the CytoTRACEKernel;
the resulting CytoTRACE pseudotime largely followed the ordering prescribed by experi-
mental stages. Next, we used this score to direct graph edges and computed a transition
matrix T. When we projected T into the original embedding using the method described
above and visualized transitions with streamlines, we visually observed a good correspon-
dence with stage progression (Figure 3.16d). To interpret these results in a quantitative
fashion, we applied the GPCCAEstimator to T and compared with cluster labels from the
original publication (Figure 3.16e). Macrostates contained the two terminal states (Pre-
chordal Plate and Notochord) as well as the initial state (Early Blastomeres). When we
computed fate probabilities towards the two terminal states, these revealed gradual lineage

commitment in agreement with the force-directed embedding (Figure 3.16f).

3.5.4 The RealtimeKernel

Many scRNA-seq datasets contain samples taken at different (experimental) timepoints;
these provide additional information on the direction of cellular state changes which we
ignored in the kernels presented so far. We discussed the Waddington Optimal Transport
[20] (WOT) method in Section 2.4 which uses optimal transport (OT) to link cells across
timepoints; this approach provides an explicit strategy to include timepoint information.
In this section, we introduce the RealtimeKernel which wraps around WOT and allows the
resulting coupling to be interpreted as a Markov transition matrix within the CellRank
framework. We build on this work in Chapter 4 where we greatly accelerate WOT in

moscot-time and include lineage-tracing information in moslin.

From couplings to transition matrices. Given two timepoints ¢; and ¢;4.1 with N and
M cells, respectively, application of WOT yields a coupling matrix P € Rf *M which prob-
abilistically relates cells at the two timepoints. For uniform left marginal a € Ay with

a; = 1/N Vi, the coupling P may be re-normalized to yield a row-stochastic transition
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matrix T' € ]Rﬂ\r] *M  For non-uniform left marginal a, re-normalization ignores informa-
tion contained in a such as cellular growth- and death-rates - a current limitation of the
RealtimeKernel (Section 2.4).

Combining within- timepoint with across timepoint transitions. Given a time
series sScCRNA-seq dataset with timepoints t; for i € {1,...,1}, WOT computes pairwise
coupling matrices Ptitiv1) which are translated to pairwise transition matrices T'(ti-ti+1)
by the RealtimeKernel. To combine these into one large transition matrix 7T spanning
all time points, we place the individual T(i"ti+1) on the first super-diagonal of the large T’
(Figure 3.17a). This yields a transition matrix 7" in which every cell from the final timepoint
t; represents an absorbing state in the Markov chain; every random walk terminates as soon
as the final time point is reached (Section 2.2). To allow random walks to diffuse within the
final time point, we apply the ConnectivityKernel to the final time point and place the
resulting transition matrix in the corresponding diagonal spot on the large 7" (Figure 3.17b).
Similarly, to allow random walks to transition within each timepoint rather than moving
directly to the next, we apply the ConnectivityKernel to each remaining earlier timepoint
and include the resulting transition matrices on the diagonal (Figure 3.17c). The final
transition matrix 1" explicitly includes timepoint information and allows transitions both

within- as well as across (subsequent) timepoints.

Sparsifying coupling matrices to accelerate computations. The large transition
matrix 1" constructed as above contains dense blocks on the super-diagonal resulting from
re-normalized coupling matrices Pitin): these are dense as they have been computed using
entropically regularized OT in WOT [20] (Section 2.3). However, this is problematic as the
GPCCAEstimator is designed for sparse matrices; the computations of both macrostates,
as well as fate probabilities, exploit sparsity through iterative algorithms which apply
matrix-vectors products. For large dense matrices, application of the GPCCAEstimator
becomes prohibitively expensive from a computational standpoint. In order to overcome
this challenge, we implemented an adaptive thresholding scheme that excludes entries in
the individual couplings P®iti+1) if they fall below a certain threshold, thus sparsifying
the couplings before converting them to transition matrices P(i-ti+1) We used an in-vitro
reprogramming dataset [20] to validate that fate probabilities towards fixed macrostates
were extremely similar with and without the thresholding scheme. In particular, for each
one of the four terminal states considered (Neural, iPSC, Stromal, and Trophoblast), the
correlation between fate probabilities computed with and without the thresholding scheme

was above 0.99. However, the computation time for both macrostates and fate probabilities
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was reduced by about one order of magnitude when we used the adaptive thresholding

scheme.

Application to MEFs reprogramming towards iPSCs. We applied our transition
matrix construction from above to a timecourse dataset of MEFSs reprogramming towards
induced pluripotent stem cells (iPSCs) and a few other endpoints including Neural, Tro-
phoblast, and Stomal fates [20]. The dataset contained 18 days with dense temporal
resolution (sequenced at least every 12h, Figure 3.18a). When we computed a transition
matrix T" using the RealtimeKernel and visualized it in a force-directed embedding using
random walks of 200 steps, we found most random walks to terminate in the expected final

cell states (Figure 3.18).

To gain further insights into the reprogramming process, we applied the GPCCAEstimator
and computed 6 macrostates which contained mostly cells from later days and overlapped
with the expected terminal states (Figure 3.18¢c). Focusing on the Neural 1, TIPS, Tro-
phoblast, and Stomal macrostates, we computed fate probabilities and found that only a
small, distinct set of cells has the potential to successfully reprogram towards IPS cells, as

shown in the original publication [20] (Figure 3.18).

To further validate fate probabilities, following the original publication [20], we computed
log-odds ratios to transition towards IPS versus any other state and visualized these across
timepoints. When we overlaid both Oboz6 expression, a TF known to be involved in the
reprogramming process |20, as well as cell type annotations, we found that cells in the
mesenchymal-to-epithelial transition (MET) preferentially reprogrammed towards IPSCs
and expressed Oboz6, a finding consistent with the original publication [20] (Figure 3.18e).
Finally, we correlated both Trophoblast as well as Neural fate probabilities with gene ex-
pression and arranged genes in the plane according to their correlation values (Figure 3.18f).
We found that correlation values recapitulated gene importance for Trophoblast and Neu-
ral fates shown in the original publication. As expected, genes implicated in Stromal fate

establishment correlated negatively with both Trophoblast and Neural identities.
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Figure 3.16: The CytoTRACEKernel captures early zebrafish development. a. Force-
directed graph drawing from the original publication of 33,519 cells of early zebrafish devel-
opment, colored according to 12 developmental stages [333]. Arrows correspond to projected
scVelo-velocities, smoothed on a regular Gaussian grid [16]. Zoom-in highlights the axial-
mesoderm lineage where arrows point opposite to ordering given by stages. b. Low fraction
of unspliced reads could explain the problems with velocity arrows. c. Zoom-in to the axial
mesoderm lineage of (a), colored by stage. d. Application of the CytoTRACEKernel; embed-
ding colored according to CytoTRACE pseudotime (left) and projected transition matrix in a
stream plot (right) e. Axial-mesoderm lineage colored by original cluster annotations [333] f.
Application of the GPCCAEstimator; showing for three macrostates the top 30 cells assigned
to each (left), fate probabilities towards the Prechordal Plate (middle) and towards Notochord

(right).
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Figure 3.17: The RealtimeKernel combines within- with across-timepoint transitions
a. Schematic heatmap of a joint transition matrix T including four timepoints. Sequen-
tial transitions between subsequent timepoints are given by application of WOT [20], re-

sulting in pairwise transition matrices Tt(i];zﬂ on the super-diagonal. b. Application of the
ConnectivityKernel to the final timepoint ¢4 yields transition matrix Tt(le including this

matrix on the diagonal allows transitions between final cells. c. Similarly, application of the
ConnectivityKernel to earlier timepoints yields transition matrices Tt(qc;z which we include
on the diagonal. The final transition matrix combines within time-point with across time-point
transitions. Visualizations (a.-c.) created in collaboration with Philipp Weiler.
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Figure 3.18: Combining the RealtimeKernel with the GPCCAEstimator a. Original
force-directed embedding of 41,473 MEFs reprogramming towards iPSCs across 39 timepoints
spanning days 0-18 in a serum condition [20], colored according to coarse cell types (left) and
time points on a black (early) to yellow (late) color scale (right). b. Black lines indicate random
walks, simulated using the RealtimeKernel transition matrix 7. Black (yellow) dots denote
random walk start (end) points. c. Showing for each of 6 computed macrostates the 30 most
confidently assigned cells (top) as well as macrostate composition over timepoints (bottom).
d. Fate probabilities towards the 4 macrostates indicated with circles in (c). e. Log-odds ratio
of fate probabilities towards IPS vs. other across timepoint; each dot denotes a cell, colored
according to cell type (top) or the binarized expression of Obox6 (bottom). f. Scatter plot
of Trophoblast vs. Neural 1 fate probabilities; each dot denotes a gene, colored according to
mean expression level. We annotated genes that have been implicated in the reprogramming
process in the original publication [20] and colored them by the corresponding cell type [20].
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3.6 Summary and discussion

In this chapter, we introduced CellRank, a flexible framework for Markov chain-based
modeling of single-cell data. In particular, we introduced the VelocityKernel and the
ConnectivityKernel which may be combined to yield a robust representation of noisy
cellular dynamics as captured by RNA velocity |1, 16] (challenge i and contribution i).
Further, we showed how the GPCCAEstimator builds on such a representation to identify
initial and terminal states and to estimate fate probabilities which enable a number of
downstream applications (challenge ii and contribution ii). We showed how the combi-
nation of VelocityKernel, ConnectivityKernel, and GPCCAEstimator recovers known
biology for MEFs reprogramming towards iEPs [22] as well as for pancreatic development
[23] and how it predicts new biology for lung regeneration [11] (contribution iii). Besides
RNA velocity, the PseudotimeKernel, the CytoTRACEKernel, and the RealtimeKernel
enable the application of the CellRank framework to other data modalities which we show-
cased on adult hematopoiesis [25], zebrafish development [333] and MEFs reprogramming
towards iPSCs [20] (challenge iii and contribution iv).

CellRank’s key design principles. The implementation of the CellRank framework
followed two key design principles: modularity and sparsity. First, modularity is achieved
by structuring the framework into kernels and estimators; it allowed us to easily extend the
framework towards new estimates of cellular state changes with the kernels of Section 3.5.
Further, it makes it easy for others to contribute to the CellRank framework; for exam-
ple, Zhang et al. [334] interface from their StationaryOT method to CellRank through
an external kernel, our mechanism for including community contributions. We actively
encourage and support such contributions through contribution guidelines and contribu-
tion tutorials. Second, sparsity is baked into all KNN-graph-based kernels (all kernels but
the RealtimeKernel) and is achieved through thresholding in the remaining kernels (only
the RealtimeKernel). The GPCCAEstimator makes use of sparsity throughout all compu-
tations and scales to large datasets, as we have shown in our comprehensive benchmark
(Section 3.4.3).

CellRank generalizes trajectory inference. Similarity-based trajectory approaches
have been mainly limited to studying biological processes in which the starting cell and
direction are clear (Section 2.4). In contrast, CellRank generalizes beyond normal devel-
opment; we showed how the combination of ConnectivityKernel and VelocityKernel

successfully recovered lineage-derived ground truth during in-vitro MEF reprogramming
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towards iEPs [22] and predicted a novel goblet-to-basal cell dedifferentiation trajectory
upon lung injury [11]. We experimentally validated the existence of a novel intermediate
state between goblet and basal cells; however, the direction of the proposed trajectory still

needs to be confirmed with lineage tracing.

Current limitations and outlook. CellRank currently has a few limitations on the
kernels side; for example, the RealtimeKernel requires the left marginal to be uniform,
otherwise, information about cellular growth and death rates is lost. We anticipate over-
coming this limitation with an adjusted Markov chain construction. A promising direction
to overcome RNA velocity limitations in some biological settings is to make use of metabolic
labeling data (Section 2.5); this has recently been pioneered by the dynamo method [267]
and can be included in CellRank via a new kernel. Further, multi-modal data, in particu-
lar, shared RNA and ATAC readout, can be used to reason about the direction of cellular
state changes; this has recently been suggested by Ma et al. [70] and Li et al. [278] and

could likewise be included via a new kernel.

In terms of estimators, the current GPCCAEstimator assigns fate probabilities to each cell
on the basis of its probability to reach a certain macrostate, however, it does not consider
the path the cell takes towards this macrostate. Situations in which this is important to
describe and understand biology include transcriptional convergence, i.e. several paths
leading to the same cell state [7]. To model transcriptional convergence, we envisage

constructing a new estimator based on transition path theory [335] (TPT).

Once fate probabilities have been computed, CellRank currently supports a simplistic
way to identify putative lineage drivers via correlation with gene expression. However, to
identify genes that show a specific activation pattern, e.g. periodic, towards a particular
terminal state, we envisage building an interface to methods that support more advanced
differential expression tests in pseudotime, in particular TradeSeq [336]. TradeSeq could
benefit from CellRank’s fate probabilities to define different trajectories leading up to

terminal states.



Chapter 4

Mapping lineage-traced cells across time

Many biological processes do not unfold in a dynamical steady-state and thus require time-
series experimental designs to capture the entire state change trajectory. Experimental
time points provide a good proxy for directionality; on average, cells captured at earlier
time points correspond to earlier states on the trajectory. As cells are destroyed upon
sequencing, computational methods like WOT [20] (Section 2.4) have been developed to
reconstruct couplings from earlier to later cells. In the previous chapter, we introduced
CellRank’s RealtimeKernel which builds on WOT to allow both within time point as
well as across time point transitions and we showed how such an approach successfully

recovered macrostates and fate probabilities (Section 3.5).

However, there exist limitations to the WOT approach: first, both compute time and
memory scale quadratically in cell number, and second, couplings become ambiguous when
distributions between gene expression states are too different [20] or when hidden variables
dominate the state change trajectory [10] (e.g. epigenetic fate priming not observed in
scRNA-seq data). The first limitation is of practical nature; as scRNA-seq datasets are
constantly increasing in cell number, it is important for computational methods to keep
up. However, especially the quadratic memory complexity means that in practice, modern
datasets simply will not fit into memory. The second limitation is more fundamental; many
biological processes require additional information on the cell level such that populations
can be matched reliably across time points. Such information is currently not taken into

account in purely gene expression-based methods like WOT.

In this chapter, we present multi-omic single-cell optimal transport tools, (moscot), a
framework that unlocks optimal transport (OT) for large-scale applications in single-cell
genomics. moscot can be applied to mapping problems in both time and space; we focus
on the temporal applications in this thesis. In particular, we demonstrate how moscot

overcomes the challenges outlined in Section 1.2:

e we address challenge (iv), the scalability of OT-based matching of cells across time
points in Section 4.2 where we introduce moscot-time, an adaptation of the WOT

approach which achieves linear time and memory complexity in cell number.
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e we address challenge (v), the need for computational methods which exploit both
clonal information as well as gene expression to faithfully match cells in Section 4.3
where we introduce moslin. Our approach is based on a Fused Gromov-Wasserstein
formulation which combines within time point lineage similarity with across time

point gene expression similarity.

We demonstrate and benchmark the proposed moslin model in practical applications to
simulated data and C. elegans embryogenesis [24] in Section 4.4. This chapter corresponds

to, and is in part identical, to the following publications:

(i) Lange, M.* Piran, Z.* Klein, M., Theis, F.J. and Nitzan, M., 2021. Mapping

lineage-traced single-cells across time-points. NeurIPS LMRL workshop contribution.

(i) Lange, M.* Piran, Z.*, Klein, M.*, Spanjaard, B.*, Junker, J.P., Theis, F.J. and
Nitzan, M., 2022. Mapping lineage-traced single-cells across time-points. In prepa-

ration.

(iii) Klein, D.*, Palla, G.*, Lange, M.* Klein, M.* Piran, Z.*, Gander, M., Meng-
Papaxanthos, L., Nitzan, M., Cuturi M., Theis F. J., Mapping cells through time

and space with moscot. In preparation.

Note that “*¢ denotes an equal contribution.

4.1 The moscot modeling framework

OT has found numerous applications in single-cell genomics, including mapping cells across
time points [20, 210, 261, 334, 337, 338|, mapping cells from molecular to physical space
[220, 339], aligning spatial transcriptomics samples [340], integrating data across molecular
modalities [237, 341], learning patient manifolds [223, 342| or mapping cells across different
experimental perturbations [343] (Figure 4.1a). These applications use different variants
of OT, including classic OT |20, 210, 223, 334, 337, 341] (Subsection 2.3.1), Gromov-
and Fused Gromov-Wasserstein [220, 237, 339, 340] (GW and FGW, Subsection 2.3.2),
barycenters [340], neural OT [343], surrogate OT [261, 338] and convolutional OT [342],
and are implemented using various backends to solve the final OT problem including the
python-based optimal transport toolbox [210, 220, 237, 334, 337, 339, 340, 344] (POT),
pyKeOps [334, 345|, pyTorch [338, 341, 342] as well as custom python implementations
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[20, 342| and the R-based transport [223] package. Despite the obvious success of OT-
based solutions to problems in single-cell genomics, their community-wide adaptation is
currently hindered by a fractured tools landscape with implementations split across various
backends, most of which are not compatible with the SCANPY [115] ecosystem and do no

scale well to large datsets.

A unified, scalable framework for OT-based analysis To overcome these chal-
lenges, we propose the moscot framework. moscot consists of problem-specific estimators
which interact with the wider SCANPY ecosystem to set up an OT problem for a biological
problem at hand; the OT problem is passed to an external OT backend where a solution is
computed and returned to the estimator object where further analysis is enabled through

analysis mixins (Figure 4.1b).

This modular design offers unified access to OT-based solutions for single-cell genomics
problems and overcomes the challenge of a fractured tools landscape with incompatible
APIs. For the OT backend, we interface with the optimal transport tools (OTT) package
which is implemented in JAX [230], a python framework that allows for GPU acceleration,
just-in-time compilation (jitting), and automatic differentiation. These engineering-type
advantages, jointly with theoretical improvements in OTT we describe below, allow moscot
to overcome the scalability problems of most OT implementations. While moscot currently
implements both spatial as well as temporal estimators, we focus on the temporal domain

in this thesis and restrict all further expositions to this setting.
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Figure 4.1: OT in single-cell genomics and moscot. a. OT has found numerous ap-
plications to problems arising in single-cell genomics. Icons correspond to figures reproduced
from the original publications. b. Overview of the moscot framework. Users interact with
domain-specific problems (currently temporal and spatial), these are translated into OT prob-
lems by the OT problems class and solved by an OT backend (currently Optimal transport
tools, OTT). The solution is passed back to the domain-specific problems classes via a solver
output interface. Downstream analysis is enabled through analysis mixins, these can be
(partially) shared across domain-specific problems. To set up the domain-specific problems and
to offer downstream analysis, we interface with the wider SCANPY [115] ecosystem including
squidpy [45], scvi-tools [346], CellRank[14] and AnnData [347]. Visualization in (b) created in
collaboration with Dominik Klein.
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4.2 Scaling up WOT with moscot-time

To couple cells across time points, moscot-time solves the same unbalanced OT problem
as WOT [20] (i.e. Equation (2.84) in Section 2.3). We follow WOT in their definition of the
adjusted left marginal distribution a to accommodate cellular growth and death; however,
we deviate in the definition of the cost function ¢ between adjacent time points. Where
WOT measures distances using an /o norm in a local PCA space, computed just for cells
in the two time points (Section 2.3), moscot-time measures distances using an lo norm in
a global scVI [96] latent space, using all cells in the time-series experiment. Thus, by using
a non-linear latent representation, moscot-time is better positioned to capture non-linear
dynamics in the data and to account for potential batch effects between replicates within

one time point.

The bottleneck in any method like WOT [20] that uses OT to link cells across time points
are the matrix-vector products Kv and K 'u in the (generalized) Sinkhorn iterations
[221] for scaling vectors u € RN v € RM (Section 2.3). For simplicity, suppose the
number of cells in both time points is the same, i.e. N = M. For precomputed Gibbs
kernel K = exp(—C/¢) with cost matrix C € Rf *N' " this results in both memory and
compute time time scaling quadratically in V. In practice, compute time may be reduced
by running computations on GPUs; however, memory becomes the bottleneck as GPUs
typically have much less memory compared to CPUs. Moreover, WOT is based on a custom
OT implementation that can only be run on CPUs. In moscot, we tackle the scalability

issue from two complementary angles:

e we use engineering-type improvements to run computations on GPU with linear

memory complexity.

e we exploit theoretical advances to restrict the rank of coupling matrices [262, 263,

348|; this results in linear time and memory complexity.

These improvements have been implemented in OTT separately from our work on moscot;
we interface with OTT in the backend (Figure 4.1b). While the first set of improvements
leads to the exact same solution of the convex OT problem, the second set of improvements
is an approximation that will impact the quality of the obtained solution; we quantify this

tradeoff in numerical experiments.
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4.2.1 Engineering-type improvements for large-scale GPU application

In principle, all moscot models can be run on GPU as OTT is implemented in JAX [230]
which offers GPU acceleration throughout. In practice, however, the quadratic memory
complexity of storing the kernel K leads to out-of-memory problems even on modern GPUs
for moderately-sized datasets (see below). OTT employs a trick to circumvent this issue;
rather than storing the entire kernel K, matrix-vector products with K are computed
element-wise by evaluating the cost function ¢ on the fly. Consider computing [Kv]; =
K; v = exp(—c(x;,Y)/€) v; this only requires evaluating the cost to transport mass from
x; to any sample y; which has linear memory complexity in cell number (Figure 4.2a).
OTT calls this mode online evaluation; we call the alternative of pre-computing the entire

C and K matrices offline evaluation to clearly separate between the two.

4.2.2 Low-rank factorizations yield linear time and memory complexity

While the engineering improvements introduced above allow the application to large datasets
through GPU acceleration with linear memory complexity, they still suffer from quadratic
time complexity. To overcome this limitation, various authors have suggested approxima-
tions to the Sinkhorn iterations that yield linear time complexity. Altschuler et al. [349]
suggest computing a low-rank approximation to the kernel matrix K using the Nystrom
method [350]; their approach remains limited to squared euclidean cost functions ¢, is
non-differentiable and only works for large regularization strength € where inner iterations
remain positive. Scetbon and Cuturi [351] suggest an alternative way of computing low-
rank approximations to K via random positive feature projections; while their approach
is differentiable and works for a larger range of € values, it remains limited kernels of a

certain form.

Forrow et al. [348] suggest a different route that imposes low-rank constraints on the feasible
set of couplings U(a, b) rather than on the kernel matrix K. Their approach leads to an
elegant solution via a barycenter problem; however, it remains limited to squared euclidean
cost functions c. Scetbon, Cuturi, and Peyré [263] generalize this approach to arbitrary
cost functions c¢; their proposed solution is differentiable and applicable for a wide range
of € values, including no entropic regularization (¢ = 0). This approach is implemented in
OTT and available through moscot; we refer to it as low-rank Sinkhorn. It has meanwhile
been extended from the classic OT to a (F)GW setting [262] which is also implemented in
OTT and available to FGW-based moscot models like moslin.

For the low-rank Sinkhorn approach, following Scetbon, Cuturi, and Peyré [263] define the
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nonnegative rank of a coupling matrix P € RfXM to be

q
rk, (P) = min{q’P:ZRi,rk(Ri) =1, R; 20} : (4.1)
=1

for rank rk. For » > 1, we make use of this to define the set of rank-r couplings via
U(a,b,r) ={P € U(a,b)|rtki(P) <1}, (4.2)

where U(a, b) is the set of feasible couplings defined in Section 2.3. The rank-constrained

feasible set U(a, b, r) allows us to formulate the low-rank OT problem via

L£er —  mi P.C) — ¢H(P). 4.3
M (a, B) Pe%l(lz?,b,r)<’ ) — ¢H(P) (4.3)

An explicit characterisation of couplings P in U(a, b, ) is given by
P=Qdiag(1/g) R forg € A}, Q € U(a,g), ReU(b,g), (4.4)

where A} denotes the r-simplex with strictly positive elements. Using this factorization,
Scetbon, Cuturi, and Peyré [263] derive a mirror descent optimization scheme for the low-
rank OT problem of Equation (4.3); the time- and memory bottleneck in this algorithm
is given by matrix-matrix multiplications of the form CR and CTQ for Q € RV*" and
R € RM*" Thus, without any assumptions on the cost matrix C, the low rank approach

remains at memory complexity O(MN) and time complexity O(NMr).

To improve upon this complexity, assume that C' itself admits a low-rank factorization of

the form
C =AB" for A e RV*P B e RM*D (4.5)

such that matrix-matrix multiplications CR = A(BTR) and CTQ = B(ATQ) can be
evaluated in memory O ((D + r)(M + N) + Dr) and time O (rD(N + M)), i.e. both linear
in the total cell number N + M. In particular, such a factorization can be obtained if the
cost results from the application of a squared euclidean cost function, i.e. C' = ¢(X,Y) =

|X — Y||3. In such a case, C may be written as
C=ply, +1yq —2X'Y, (4.6)

for p == [||z1|[3, ..., ||zn][3] and q = [||y1l]3, .-, [lyar]|3]. The desired factorization is ob-
tained by defining A == [p,1y,—2X"] € RN*WN+2) B = [1,/,q,Y ] € RM*(Ni+2) for
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cells ; and y; embedded in some latent space of dimension V;. In general, low-rank fac-
torizations of cost matrices C' can be computed in linear time using randomized algorithms

as long as the cost function ¢ is given by a proper distance metric [263, 352, 353].

Different flavors of moscot-time in practice. We compared peak memory consump-
tion (on CPU) and compute time (on GPU) for different flavors of moscot-time (offline
versus online as well as full rank vs. rank constrained) with WOT [20] on data simulated
using TedSim [354], a simulation tool for temporal single-cell data (Figure 4.2b). Mem-
ory was benchmarked on CPU for simplicity; GPU memory is expected to behave very
similarly. WOT was run on CPU throughout as it does not support GPU acceleration.
Our dataset contained 164k cells in total, we subsampled to various fractions to study
scalability with respect to increasing cell numbers. All computations were run by Dominik
Klein.

For peak CPU memory consumption on the full dataset, WOT and moscot (offline) re-
quired 229 and 129 GiB of memory, respectively (Figure 4.2b). While moscot (offline)
performed much better, 129 GiB still exceeds available memory on almost all modern
GPUs. As expected, the online mode overcame this challenge, requiring less than 2 GiB
on the full dataset. Low-rank approaches performed similarity, requiring between 6 GiB
(r =1000) and 1 GiB (r = 50). Thus, both the online mode of moscot as well as low-rank
approximations require an order of magnitude less memory compared to the original WOT

[20] approach enabling the application to datasets containing millions of cells.

For GPU compute time on the full dataset, WOT took 52 minutes while moscot (offline)
failed due to memory limitations, as outlined above (Figure 4.2b). Note that WOT was
run on CPU as the implementation does not support GPU acceleration. moscot’s online
mode resolved the memory problem encountered in offline mode and finished in under 1

minute. Moreover, all low-rank approaches finished in under 1 minute.

As low-rank approaches solve an approximation of the original OT problem, we were
interested in comparing the accuracy of the obtained coupling across different ranks r
(Equation (4.3)). We employed a benchmarking task termed geodesic interpolation in the
original WOT publication [20]: given three time points t;, t;+1 and ;12 in a sScRNA-seq
time series dataset, hold out the middle one ¢;,1, compute a coupling between ¢; and ¢;42
and use this coupling to interpolate the cell-state distribution at the middle time point
ti+1. The distance between the interpolated and the real, held-out distribution at ¢;11 is
measured in terms of Wasserstein-1 (W7) distance in gene expression space (Section 2.3),

the lower this distance the better the computed coupling. Following the WOT approach, we
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considered two baselines: the W7 distance between two experimental replicates sequenced
at t;+1 ("Baseline", represents approximate best-case distance) as well as the distance
obtained by considering an uninformative (random) coupling between t; and ;12 ("Null

1", represents an approximate worst-case distance).

The outer time-points t; and ¢;;2 we considered contained 3,678 and 3,799 cells, respec-
tively. As expected, accuracy was at the level of random guessing for extremely low ranks,
r = 1, and approached full-rank performance for higher ranks, r &~ 100 (Figure 4.2c). The
method was robust to the exact rank r used as long as it was high enough; for » > 10,
variations in accuracy became very small. The highest accuracy, corresponding to the low-
est W1 distance between distributions, was reached for » = 100, the second-highest rank
considered. In that case, the distance obtained for low-rank was slightly lower than the
distance obtained for the full-rank approach. This highlights the fact that low-rank reg-
ularization can lead to better performance in practice due to better statistical properties,

i.e. it is less prone to overfitting [263, 348].

The scalability improvements we introduced in this section are important to take advantage
of the increased resolution offered by ever-increasing cell numbers in current single-cell
experiments; in particular, they enable the moslin model of the following section to be

applicable to large datasets.
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Figure 4.2: moscot-time scales up the temporal mapping problem. a. Comparison of
offline (left) versus online (right) cost function evaluation. On the top row, heatmaps visualize
the matrix-vectors products Kv employed in Sinkhorn iterations, evaluated batch-wise (left)
or row-wise (right). On the bottom row, consider two time-points ¢y and ¢; with just 2 and
3 cells, respectively. While in offline mode, we pre-compute the cost of transporting mass
from any sample at to to any sample at t; (left), these cost-evaluations are iterated over
for samples at ¢y in online mode (right). b. Comparison of peak memory consumption on
CPU (left) and compute time on GPU (right) across WOT and different flavors of moscot on
TedSim [354] simulated data for a total of 164k cells. Methods denoted by * cannot be run on
GPU by design; OOM denotes an out of memory error. c. Accuracy comparison for low-rank
approaches on MEF reprogramming data in terms of geodesic interpolation [20]. Bar height
denotes the TW; distance between interpolated and held-out distributions. "Null 1" denotes a
random coupling that satisfies the marginal constraints, and "Baseline" refers to the distance
between two experimental replicates at the same time point. Comparisons in (b) and (c) were
run by Dominik Klein.
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4.3 moslin for scLT data

Coupling cells across time points purely on the basis of gene expression similarity is chal-
lenging when state distributions are very different or when hidden variables like epigenetic
fate priming are present [10, 20|; scLT provides additional information which can guide
the coupling process [17]. For destructive in-vivo experimental designs, each time point
corresponds to a different replicate/individual. High-resolution clonal relationships are
best captured with prospective dynamic barcoding approaches [176-178| or with retro-
spective mitochondrial lineage-tracing approaches |74, 201, 204, 206] (Figure 4.3a and
Subsection 2.1.3), giving rise to the independent clonal evolution setting: while gene ex-
pression can be compared across time points, lineage relationships are only valid within

one time point.

With moslin we combine both sources of information into a joint model; our inputs are
given by gene expression profiles, captured lineage barcodes and marginal distributions
over cell states at two time points ¢; and t;. The model outputs a coupling matrix P
relating cells at the two time points which may be used for further analysis in CellRank
through the RealtimeKernel (Section 3.5 and Figure 4.3b,c). To compute P, we formulate
a FGW problem; let CM) ¢ Rf *Noand ¢ ¢ Rﬂ‘f *M- capture lineage distance at ¢; and
ty for N and M cells, respectively. We compute C(*) by reconstructing a lineage tree at
t; on the basis of sequenced barcodes using Cassiopeia [207]; lineage distance is captured
by the shortest path distance among cells in the tree. Further, let C € RV*M define a
cost matrix computed on the basis of gene expression distance between cells in ¢ and to;
by default, we use lo distance in an scVI [96] latent space. With these definitions, the

objective function reads

€0 . . 1 ~2)
L] ex oy (. B) = plmin o o L (Cij O ) PP+ (1-a) %;Cikpik —eH(P),

(4.7)

where « is a tunable parameter that controls the weight given to lineage similarity within
a time point versus gene expression similarity across time points and € represents the
degree of entropic regularization applied (Figure 4.3d). For optimization, we employ the
mirror descent scheme of Section 2.3 which we access though OTT. The moslin model
is implemented in moscot and is accessible through our unified API. Further, it takes

advantage of the scalabilty improvements outlined above (Section 4.2).
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Figure 4.3: moslin maps lineage-traced single-cells across time points. a. Prospective
dynamic barcoding approaches based on CRISPR/Cas9 use random insertions and deletions to
record complex lineage relationships. b. Schematic of moslin inputs (left) and outputs (right).
Inputs consist of gene expression matrices, barcode arrays (bcs) and marginal distribution at ¢;
and t5. The output is a coupling matrix P satisfying the marginal constraints, shown here as
a heatmap. c. The coupling matrix P can be used for downstream analysis e.g. in CellRank
to follow cell-state trajectories across time points. d. Visualization of the moslin objective
function (left) as well the objective function itself (right). On the left, dots denote cells, colored
according to time point as in (b). Dot size corresponds to marginal distribution weight at t;
and t, respectively. Cells are observed in barcode space (top) and in gene expression space
(bottom). While gene expression similarity, captured in M, can be compared directly across
time points, lineage similarity, captured by C() and C'®) at ¢; and to, respectively, can only
be compared pairwise. The objective function on the right includes terms for lineage similarity
within a time point, gene expression (GEX) similarity across time points as well as entropic
regularisation. Figure adapted from Lange et al. [15].

4.4 Benchmarks and applications of the moslin model

Our moslin model makes use of both gene expression as well as lineage information when

mapping cells across time points; we compared it to models that just use gene expres-
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sion (OT objective function) or lineage (GW objective function) information on simulated
data (Subsection 4.4.1). In addition, we compared moslin with LineageOT [210], the
only competitor for this data type (Subsection 2.1.3), on both simulated and real data
(Subsection 4.4.2).

4.4.1 Benchmarks on simulated data

We turned to a simple simulation setup introduced in the original LineageOT publication
containing four different topologies of time series datasets containing just two time points
each [210] (Figure 4.4a). The ground truth coupling between early and late cells in known
for this data; we compared it to the couplings inferred by either method via the mean
between ancestor and descendant errors ("mean error"). The ancestor (descendant) error
is computed by using the inferred coupling to compute a W distance between inferred and

ground-truth ancestors (descendants) for the observed late (early) cells.

GW and moslin perform well for ground-truth lineage information. In the first
experiment, methods were supplied with lineage distances computed for the ground truth
tree obtained from the simulation (Figure 4.4b). In this setup, OT had the highest mean
error, followed by LineageOT. Both moslin as well as GW consistently outperformed
LineageOT; GW for partial convergent as well as mismatched cluster topologies even out-

performed moslin.

moslin outperforms competing methods for noisy lineage information. In real-
ity, we do not have access to the ground truth tree; therefore, we investigated in a second
experiment how methods performed when supplied with lineage distances computed along
a lineage tree inferred on the basis of simulated lineage barcodes (Figure 4.4b). As ex-
pected, this had no effect on the performance of OT as it does not make use of lineage
information. GW in this setup performed much worse and had the largest mean error in
all but the mismatched cluster topology. This is due to the fact that GW does not have
access to gene expression information and must compute a coupling purely based on noisy
lineage distances. In contrast, both LineageOT and moslin were much less affected by
the noisy lineage information since they use gene expression for regularization. moslin

consistently had the smallest mean error, outperforming LineageOT on all topologies.

TedSim for realistic scLT data. While our first experiments were conducted on simple

simulated data containing only two genes, we next turned to a more realistic simulation
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setup provided by TedSim [354], a simulation tool dedicated to scLT data. The three key

parameters in TedSim are given by

o the asymmetric division probability p,: the probability that a mother cell gives rise
to two different daughter cells, one of which resembles itself while the other one is

more advanced along the differentiation trajectory.

e the step size: the distance the "advancing" daughter cell in an asymmetric division
event travels along the differentiation trajectory, i.e. a measure of differentiation

pace.

e the stochastic silencing rate: the amount of noise injected into simulated lineage

barcodes.

In our experiments, we fixed the asymmetric division rate p, = 0.4 and varied the remaining
two parameters. As TedSim’s simulations involve a ground-truth lineage tree, we used the
mean error introduced above to measure discrepancies between inferred couplings and the

ground-truth coupling given by the simulated lineage tree.

moslin outperforms LinegeOT on TedSim simulated data. In the first experiment,
we kept the stochastic silencing rate fixed at 0.05 and varied the step size between 0.2 and
1.0. Across this range, moslin consistently outperformed LineageOT in terms of lower
mean error (Figure 4.4c). Further, moslin was less affected by the step size compared
to LinegeOT. In a second experiment, we kept the step size fixed at 0.6 and varied the
stochastic silencing rate between 0 (no noise in barcodes) and 0.2 (noisy barcodes). Across
the range, moslin achieved lower mean error compared to LineageOT (Figure 4.4c). As ex-
pected, the mean error of both methods increased as we injected more noise into simulated

lineage barcodes.

4.4.2 Application to C. elegans embryogenesis

Going beyond simulation studies, we applied moslin to a scRNA-seq time course of C.
elegans embryonic development [24]. Following the approach suggested in Forrow and
Schiebinger [210], the known lineage tree [179] of C. elegans provided lineage distances
required for the GW term in moslin and was used to compute the mean error as in
the simulation studies above. In Packer et al. [24], the authors mapped gene expression
profiles of individual cells to the known lineage tree. Thus, while the tree is known, there
is uncertainty in the mapping and the relationship between lineage nodes and expression

profiles is noisy.
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Figure 4.4: moslin outperforms LineageOT on simulated data. a. Four simulated
time series datasets [210]; each dot denotes a cell in 2D gene expression space (only 2 genes
simulated), colored according to early or late time point. Grey lines indicate ground-truth
coupling. b. Comparison of OT, GW, LineageOT [210] and moslin on the four simulated
topologies of (a) for true tree (left) and fitted tree (right) lineage distances; bar height indicates
mean error between inferred and ground-truth couplings. c. Comparison of LineageOT and
moslin on TedSim [354] simulated data for varying step size (left) and varying stochastic
silencing rate (right). Computations run by Zoe Piran and Michal Klein; figure adapted from
Lange et al. [15].

moslin outperforms competing approaches on all time points. Initially, we fo-
cused on the couplings between pairs of individual time points. We found that moslin
outperformed LineageOT and OT for mapping cells across all developmental time points
(Figure 4.5a). GW showed great diversity in performance, sometimes achieving the small-
est mean error (390/450 min) while other times achieving by far the largest mean error
(270/330 min). This highlights the sensitivity of GW to lineage distances as it does not
consider gene expression in addition. moslin compensates for errors in lineage distances

through gene expression similarity and derives accurate couplings for all time points.

We next zoomed in on the 210/270 min pair of time points where we identified a group of
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cells for which moslin’s ancestor error was much lower than LineageOT’s (Figure 4.5b).
Specifically, while moslin accurately mapped cells from the “ABarapa” to the “ABarapa-
pap” lineage, LineageOT incorrectly identified cells from the “ABaraaaaa”, “ABaraaaap”,

“MSaaaap” and “MSaaapp” lineages as ancestors [24].

moslin combined with CellRank identifies putative driver genes. Taking a more
global perspective, we used moslin to compute couplings for all pairs for time points
and chained these together by matrix multiplication. This gave a global coupling across
time points we used as input to CellRank’s RealtimeKernel. On the basis of the global
coupling, we used the GPCCAEstimator to compute fate probabilities towards a cluster of
GLR cells (Figure 4.5¢). Among the 15 highest correlated genes with GLR fate probability,
we found let-381 and ceh-34, both of which have been implicated in GLR development [24]
(Figure 4.5d). This highlights the ability of moslin to identify putative decision driver

genes for real scRNA-seq time course data.
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Figure 4.5: moslin outperforms LineageOT in mapping C. elegans data. a. Mean
error shown as a bar chart for different methods across time points coupled. b. UMAP [121,
122] visualization of cells with embryo time 210 — 270 min colored by embryo time (left) and
the difference between LineageOT's and moslin's ancestor error (right). Red (blue) values
imply moslin(LinegeOT) performs better. The black arrow highlights a group of cells for
which moslin's mean error is much smaller. Inlets show ancestors of the marked population as
predicted by the ground truth coupling (top), LineageOT (middle), and moslin(bottom). While
moslin successfully recovered the correct ancestor, LineageOT predicts four incorrect ancestor
populations. c. UMAP visualization colored by embryo time (left, dashed line marks GLR cells)
and CellRank predicted fate probabilities towards GLR cells based on moslin's coupling (right).
d. UMAP visualizations colored by gene expression of putative decision driver genes towards
GLR cells as identified by CellRank. Computations in (a) and (b) run by Zoe Piran and Michal
Klein, collab for (c); figure adapted from Lange et al. [15].

4.5 Summary and discussion

In this chapter, we introduced moscot, a flexible framework for Optimal transport (OT)
based modeling of single-cell data. While moscot is applicable to both spatial and temporal
domains, we focus on the temporal applications in this thesis. In particular, we introduced
moscot-time, an extension to the original WOT method [20] to link cells across time

points which overcomes previous scalability limitations through linear time and memory
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complexity in cell number (challenge iv and contribution i). Further, we showed how
moslin increases mapping accuracy by combining within time point lineage similarity with
across time point gene expression similarity for in vivo scLT experimental designs (challenge
v and contribution ii). We showed how moslin outperforms simpler OT-based models as
well as the competing LinegeOT [210] method in two simulation scenarios and how it can
be combined with CellRank to recover putative driver genes in C. elegans embryogenesis

[24] time course data (contribution iii).

4.5.1 moscot for OT in single-cell genomics.

moscot is a general framework to enable OT-based solutions to common problems in single-
cell genomics. Its implementation follows a modular layout which offers two key advantages

over competing OT solutions:

e improvements in the OT backend, e.g. faster approximate OT solvers, are imme-
diately available to a range of biological problems defined in the frontend. These
improvements are not limited to contributions from the single-cell community as the
current OT backend is given by OTT [229] which is gaining popularity in the general
ML community. Further, our backend-agnostic problem definitions in the frontend
allow for further OT packages to be made available in the backend such as POT [344]
or GeomLoss [355].

e extensions or additions to the problems frontend are possible with minimal effort;
data loading/writing from AnnData objects [347], the solution of the OT problem,
and many downstream analysis tasks are taken care of by moscot. The remaining task
is the key modeling question: how can the biological problem at hand be translated
into an OT problem? Thus, developers of OT-based solutions can focus on the
main modeling task if they choose to include their contribution within the moscot

framework.

We make sure that the resulting OT problem is solved fast and reliably with OTT in the

backend, through GPU acceleration, just-in-time compilation, and low-rank factorizations.

Current limitations and outlook The entire moscot framework is currently based on
the default notion of OT which is tied to the samples that are supplied in the data; the
computed coupling is specific to these samples and cannot be generalized to new, incoming

samples. In other words, OT does not generalize beyond the training data distribution.
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While this is sufficient to address many open questions in both temporal and spatial do-
mains, there exist applications such as perturbation mapping where one is interested in

evaluating sample/perturbation combinations not observed in the training data.

OT can be extended towards generative mappings with Neural OT [356, 357]; the idea is
to define a Monge map between two spaces based on the dual formulation of OT, i.e. using
two potentials f and g that are learned by an input-convex neural network [358] (ICNN).
The theoretical basis for this approach is given by Bernier’s theorem which relates primal
and dual OT formulations [359]. Neural OT has been applied to perturbation mapping
for single-cell data with CellOT [343] and could be included as an alternative backend in

moscot.

Beyond extensions and additions to our OT backend, we actively encourage additions to
moscot’s frontend for biological problems to provide a unified API to access OT solutions
that have been suggested for data integration [237, 341|, patient manifolds learning [223,
342 or perturbation mapping [343].

4.5.2 moscot-time for large scale time-series scRINA-seq datasets.

We showed how moscot-time outperforms the competing WOT model [20] when mapping
cells across time-points in terms of both compute time and memory required to solve the
OT problem; in particular, moscot-time required an order of magnitude less memory. In
future work, we aim to demonstrate these advantages on a practical scRNA-seq time-series
example containing millions of cells where previous approaches are no longer applicable.
Further, an aspect we did not explore in this thesis is moscot-time’s flexible definition of
the cost function which allows easy adaptation to other data modalities such as scATAC-seq
or multi-modal SHARE-seq [70], CITE-seq [155] or DOGMA-seq [74] data. To adapt the
cost function, we need a notion of cell-cell distance which is appropriate for the given data
modality; this can be achieved using modality-specific representation learning techniques
including TotalVI [145], PeakVI [153], MultiVI [156] or multigrate [157] (Section 2.1.2).

Current limitations and outlook. The main limitation in the current approach is
that time points are linked pairwise; when linking ¢; with ¢;11, we ignore all other time
points. When we chain together these pairwise couplings to obtain a global coupling,
this introduces discontinuities at each time point - an unrealistic model for real cellular
dynamics. To overcome this limitation, Lavenant et al. [360] devised the global WOT
(gWOT) model which formulates a joint optimization problem involving all time points

and infers smooth trajectories. Future work could involve adapting the moscot-time model
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to consider a joint optimization problem in a similar manner.

4.5.3 moslin for in-vivo scLT data.

We demonstrated how moslin can be applied to real scRNA-seq data in the C. elegans
example; however, lineage distances were derived from the ground-truth lineage tree rather
than from an actual CRISPR/Cas9 lineage tracing experiment. We are currently investi-
gating an application to real experimental scLT data for zebrafish heart regeneration [186]
assayed using the LINNAEUS method [177]. Our initial results look promising and reca-
pitulate the lineage origin of transient fibroblast subpopulations suggested and validated

in the original publication [186].

Current limitations and outlook. The main limitation we are currently facing for the
moslin model is the difficulty to define within time point cost functions for the GW term
in the presence of experimental replicates. The problem is that lineage barcodes are only
comparable within each respective replicate. For just two replicates, a possible workaround
consists in first solving an FGW problem across replicates within one time point and
using the resulting coupling to heuristically define a cost function; however, this does not
generalize well to more than two replicates as it requires solving many FGW problems
which becomes prohibitively expensive. An alternative we are currently evaluating is the
computation of a barycenter at each time point from all available replicates [221]; this
represents an "average" sample in terms of both gene expression and lineage similarity.
Given two barycenters, one at either time point, the default moslin model can be applied

to compute a coupling between them.

Another limitation of moslin is scalability; by default, compute time and memory scale
cubically and quadratically for an FGW problem, respectively. While we resolved the
quadratic memory complexity in moscot-time through online cost function evaluation
(in OTT), the equivalent is not possible for moslin as the mirror descent scheme leads
to varying cost matrices between Sinkhorn updates. A possible solution is given by low-
rank factorizations which have recently been extended from classic OT to (F)GW objective
functions and are now implemented in OTT [262]. However, this requires careful evaluation
of mapping performance as a function of the rank r, the balance parameter «, and entropic

regularization strength e which we are currently investigating.
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Summary and outlook

Technological innovations over the past few years have turned single-cell genomics into a
powerful lens to study dynamical biological processes; this thesis presented computational
tools to support this endeavor. In particular, we made contributions along two main cat-
egories: Markov-state and optimal transport-based modeling of cellular trajectories. The
research question formulated in Chapter 1 is motivated by recent technological advances,
i.e. RNA velocity [1, 16] and dynamic genetic in-vivo barcoding [176-178|, and revolves
around establishing modeling paradigms that jointly make use of these novel data modal-
ities and existing concepts developed for scRNA-seq data. We implement our theoretical
contributions in two python packages, CellRank and moscot, and demonstrate their advan-
tages over existing methods across a range of simulated and real data examples. Further,
we show how both approaches can be used to formulate novel hypotheses about biological
mechanisms and we experimentally validate one such hypothesis for CellRank on lung re-
generation data [11, 14]. We summarize our contributions and discuss open questions in

this chapter.

5.1 CellRank for directed single-cell fate mapping

In Chapter 3, we introduced the CellRank [14]| framework and showed how it derives a
robust Markov-chain representation of RNA velocity |1, 16] and gene expression similarity
through a combination of VelocityKernel and ConnectivityKernel. Building on this
representation, we introduced the GPCCAEstimator to infer initial and terminal states, fate
probabilities, and various downstream quantities such as putative decision driver genes. We
demonstrated the success of this analysis pipeline on MEF reprogramming [22|, pancreas
development [23] and lung regeneration [11] data. However, there are limitations to this
approach which stem from RNA velocity not being applicable to some biological systems.
For example, we showed how RNA velocity infers a directionality for adult hematopoiesis
which is opposite to the known ground truth [25]. CellRank’s modular design enabled
us to overcome this limitation by introducing new kernels which make use of pseudotime

(PseudotimeKernel), the CytoTRACE score [26] (CytoTRACEKernel) or real-time informa-
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tion (RealtimeKernel) to make CellRank widely applicable. We demonstrate the success
of our new kernels on adult hematopoiesis 25|, zebrafish development [333], and MEF

reprogramming [20].

CellRank has been taken up enthusiastically by the community with over 55k downloads
to date and published applications to various biological systems including lung develop-
ment [361], relationships among splenic Treg precursors [362], immune response in chronic

obstructive pulmonary disease [363], and endoderm formation during gastrulation [364].

Outlook. We discussed some directions for further research in Section 3.6; these included
kernels for novel data modalities such as metabolic labeling [284-288] or multi-modal data
[70-73|, estimators to describe different paths through phenotypic space and fine-grained
approaches to identify genes with specific dynamics. All of these can be tackled within the

CellRank framework on the basis of discrete Markov chains.

However, a promising direction for future research is generative models that can attribute
cellular fate decisions to particular gene regulatory events, i.e. transcription factor bind-
ing, in a more causal manner. While these regulatory interactions appear to be difficult
to estimate from observational data alone, interventional data containing e.g. CRISPR
knockouts with shared transcriptome readout [42, 43|, represent exciting new possibilities.
A use-case of generative fate-mapping tools is cell-fate engineering; given a desired target
cell-type A, these tools could help in designing optimal reprogramming routes, i.e. combi-
nations of transcription factors that need to be up or down-regulated at specific times to
achieve an optimal yield of cell type A. Cell-fate engineering has important applications
in designing faithful disease models [365, 366| and in curing diseases related to the loss of
particular cell types such as neuronal subtypes for Alzheimer’s disease [367, 368| or beta
cells for diabetes type 1 [369]. The CellOracle |54] and Capybara [370] methods represent

promising steps in this direction.

5.2 moscot for scalable applications of OT to temporal single-
cell data

In Chapter 4, we introduced the moscot framework with a focus on temporal applications.
In particular, we introduced moscot-time, a model to estimate probabilistic couplings for
cells sequenced at different time points. We showed that moscot-time can be applied

to datasets that were inaccessible to previous methods due to scalability limitations in
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both compute time and memory. For complex cellular dynamics, gene expression sim-
ilarity across time points might not be enough to recover accurate couplings. For this
challenging setting, we introduced moslin which supplements gene expression information
with lineage relationships recorded through dynamic genetic barcoding techniques [176—
178]. We demonstrated in applications to simulated and real data how our FGW objective
function efficiently combines within time point lineage information with across time point
gene expression information. In particular, we showcased on C.elegans developmental data
how moslin can be combined with CellRank’s RealtimeKernel to infer putative decision
driver genes. moslin is part of the moscot framework and benefits from its consistent and

easy-to-use API.

Outlook. We discussed some directions for further research in Section 4.5; these included
barycenter computations to handle experimental replicates in moslin, low-rank approaches
to accelerate the optimization of the FGW objective function, and neural OT to generalize
beyond the training distribution. From an experimental point of view, dynamic genetic
lineage tracing approaches remain difficult to set up and are currently only available for
a few model organisms; to make moslin more widely applicable, it could be adapted for
mitochondrial lineage tracing data which is experimentally easier to obtain due to recent
technological innovations |74, 201, 204, 206]. This entails adapting the cost function to
account for the specific sources of noise encountered in mitochondrial lineage tracing data
(Subsection 2.1.3).

From a modeling perspective, an important consideration for mitochondrial lineage tracing
data is experimental design; the most exciting use-cases for the technology are regenerative
systems in humans (e.g. blood [28, 206]) which cannot be studied using any prospective
scLT' technology. However, this corresponds to the clonal resampling rather than the
independent clonal evolution setting. In an effort to describe such an experimental design
with moslin, the model should be extended towards an alternative objective function
which relates both lineage barcodes as well as gene expression across time points, inspired

by recent methodological advances [338, 371].

Long-term, multi-modal temporal readout should be coupled to spatial readout to obtain
a more holistic view of cellular development including various molecular layers as well as
the effects of spatial proximity; such datasets are starting to emerge [372|. Spatio-temporal
studies enable us to go beyond the isolated view of individual cells and allow us to study
their interaction with surrounding cells, i.e. including spatially-dependent cell-cell com-
munication. Models should be adapted to include both external stimuli as well as internal

regulatory elements when modeling fate choice in a spatio-temporal context. More fun-
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damentally, future single-cell assays may be able to overcome the limitation of destroying
cells when measuring genome-wide expression levels; this would allow entirely new insights
into the regulatory underpinnings of fate decisions and provide exciting opportunities for
mathematical modeling. Improvements in fluidic-force microscopy have recently enabled

the first steps in this direction with live-seq [373].

To conclude, this thesis introduced two new modeling frameworks based on Markov chains
and optimal transport which generalize trajectory inference beyond normal development
and enable more scalable and accurate couplings of cells over time points, respectively.
The frameworks extend previous efforts towards multi-view single-cell data with temporal
and lineage resolution as well as estimates of the current direction of differentiation. We
anticipate these methods will play an important role in using single-cell genomics data to

learn about cellular dynamics and fate choice.



Appendix A

Background theory

A.1 Perron-Frobenius Theorem

This section reproduces the Perron-Frobenius Theorem [216] which ensures the existence
and uniqueness of invariant measures for Markov chains. The theorem itself is not only
defined for Markov chains but more generally for real-square matrices A € RY*N_ There-
fore, before stating the theorem, we generalize some of the notions from Section 2.2 to real

square matrices A.

Definition A.1 (Non-Negative Matrix). If A;; > 0Vi,j € {1,...,n}, then we call A a

non-negative matrix.

Definition A.2 (Irreducible Matrix). Let A be a real square matriz. Then A is irreducible
if it cannot be conjugated into block upper triangular form using a permutation matriz P,

1.€.

., . (B C
PAP 7&(0 D) (A1)

where B and D are non-trivial, i.e. they have a size greater than zero.

If A is non-negative, we can associate it with a weighted, directed graph G with N vertices
where edge weights between vertices 7 and j are given by A; ;. In this case, A is irreducible

if and only if G is strongly connected. We call A reducible if it is not irreducible.

Definition A.3 (Period of an Index). Let A be non-negative and fix an index i. Define
the set M = {m : (A™);; > 0}. Then the period h(i) of i is the greatest common divisor
of the set M.

Note that if A is non-negative and irreducible, h(7) is the same for all i and we can define
the period h of A as the period of any of its indices. If the period of A is one, we call it

aperiodic. Further note that if any diagonal element of A is positive, A is aperiodic.
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Theorem A.1 (Perron-Frobenius Theorem for irreducible matrices). Let A € RV*N pe

irreducible and non-negative. Let further r = p(A) be the spectral radius and h be the period
of A. Then the following hold:

(i) r is a positive, real eigenvalue of A called the Perron-Frobenius eigenvalue
(i) r is simple and both left and right eigenspaces associated with r are one-dimensional

(1ii) There exist left and right eigenvectors w and v associated with r which have only

positive components

(iv) A has exactly h complex eigenvalues with absolute value r. Each of these has algebraic
multiplicity one. Further, each of these eigenvalues has the form rexp(i2wl/h) for
1€{0,1,....,h —1}.

Proof. See Perron [216]. O

Existence and uniqueness of invariant measures. Consider an irreducible MC with
transition matrix 7' € Rf *N with the usual row normalization 3 ; Tij = 1 Vi. From the
row normalization, it follows that the vector e = (1,...,1)7 is a right eigenvector of T
with eigenvalue 1. Suppose that there exists a right eigenvector v with eigenvalue |A| > 1.
It follows that the vector Mlv = T'v has exponentially growing length for n — oo, thus
there exist (7,j) with TZ-IJ > 1, a contradiction to the fact that T! describes the I-step
transition probabilities of the MC. Therefore, p(T') = r = 1 is the spectral radius of 7" and
by Theorem A.1, there exists a unique (up to multiplication) non-negative left eigenvector

w associated with r such that w'T = w'.

A.2 Deriving the CME for RNA velocity

A common way to derive CMEs is to relate the system state at two nearby time points ¢ and
t + dt. In particular, we consider events which contribute towards P, (t + dt), i.e. events
which lead to the system being in state (m,n) at time ¢ 4 dt, conditional on the system
state at time t. The probability Pp,,(t) is defined as in Equation (2.87) in Section 2.5 of
the main text, in particular, we write u(t) = m for unspliced molecules and s(t) = n for
spliced molecules to simplify equations. Note that we only consider processes which are

linear in dt, i.e. first order contributions. For the RNA velocity model, these include
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(i) the system was in state (m,n) at time ¢, no transcription, splicing or degradation
happened in dt. This happens with probability (1 — adt)(1 — Bdt)™ (1 — ~vdt)™.

(ii) the system was in state (m — 1,n) at time ¢ and one transcription event happened

in dt. This happens with probability adt.

(iii) the system was in state (m,n + 1) at time ¢ and one degradation event happened in
dt. This happens with probability (n + 1)vdt.

(iv) the system was in state (m + 1,n — 1) at time ¢ and one splicing event happened in
dt. This happens wiht probability (m + 1)3dt.

We combine these 4 contributions to yield an expression for P, (t + dt),

P (t 4+ dt) = Ppp(t)(1 — adt)(1 — pdt)™ (1 — ~vdt)"
+ Pr—1n(t)adt
+ Ppypt1(n+ 1)ydt
+ Pryin—1(m+1)Bdt
+O(dt?).

Re-arranging terms, removing higher-order contributions and taking the limit dt — 0 gives

Wonnll) — o (t)(c+ mB +m)
+ P10
+ Prnn+1(n+1)y
+ Pot1n-1(m +1)8, (A.2)

which can be re-arranged into the final form of Li et al. [278] which was given in Section 2.5.

A.3 Solution to the moment equations for RNA velocity

The system of ODEs which results from computing moments up to a certain order (mFn!)
of the CME of Equation (2.88) in Section 2.5 is closed, i.e. moments of a certain order
0 = l4+k do not depend on higher-order terms but only on lower (and same) order terms. As
the differential equations are also linear, they can be solved in closed form, without making
e.g. the usual moment closure approximation. We outline below the general procedure and

show how to apply it to first-order moments.
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General procedure. Define x to be the vector of all moments (m*n') up to a certain

order o = [ + k and write the system in matrix form as

dx
—=A b A3
5 = AT+, (A.3)

for coefficient matrix A € RE*F for E, the number of equations and moments of given
order, and b € R¥, a constant vector. Equations of this form can be solved by finding
the general solution to the homogeneous equation, dx/dt = Ax, and combining it with a
particular solution to the nonhomogeneous equations, dx/dt = Ax + b. The Ansatz x =
ve shows the general solution to the homogeneous equation is given by the eigenvectors
v® and eigenvalues A9 of A, while a particular solution to the nonhomogeneous equation

is given by a constant vector = g. Combining the former two leads to the solution
z(t) =Y evPeMt 1 g, (A4)
%

for constants ¢; to be determined using the boundary conditions.

A.3.1 Solution to the first order moment equations for RNA velocity

As outlined above, define x(t) == [(u(t)), (s(t))]" € R2. Further, suppose 3,7 > 0 and

B # ~v. The first order moment equations from Section 2.5 may be written

dx
—=A b
dt T 0,

for matrix A € R? and vector b € R? given by

General solution to the homogeneous equation. Using the ansatz x = ve™ yields

\ve = Ave

S v = Av,
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as e > 0Vt. Thus, A and v are eigenvalues and eigenvectors, respectively, of A. Solving

for these gives

2D = _pg A2 =y

=8 0
o= | B , v = .
1 1

Accordingly, the general solution to the homogeneous equation reads
T = clfv(l)e’\(l)t + 020(2)6)\(2)t ,

for constants c1,co € R, to be determined later using the initial condition.

Particular solution to the the nonhomogeneous equation. As the nonhomoge-

neous part does not involve ¢, we use a constant vector as ansatz,

z(l)=g,

for g € R2. Substituting this into the nonhomogeneous equation yields

with solution given by g = [of’n/ off /3 qon/off/ 7T

Enforcing the initial condition. Combining the above two, the general solution to the

nonhomogeneous equation is given by
(1) (2)
T = cl'v(l)eA by CQ’U(Q)Q)\ by g.

Using the initial condition x(0) = =z gives the following system of equations for the

unknown ¢ = [c, ca] "
Ve=x9p—g

for matrix V := [v(1), v(?)] € R?*? with solution given by

aon/oﬁ_BuO
c = . B—v
/%84~ (yso—B(s0+u0))

v(y—8)
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Combining all pieces gives the solution to the initial value problem,

_ on/off on/off
o1(t) = (ﬁuoa) ot AT

g g
on/off on/off on/off
() = 2 /o — Bug R /oT8 4+ y(vso — B(s0 + ug)) oty & / ’
B—n (v = B) gl
which may be simplified to read
on/off
z1(t) = uge Pt + a (1—e Py, (A.5)

on/off _ on/off g _ on/off
Z'Q(t) = (O[BUO) e_ﬁt + (Oé /8 BVUO) e—'yt + Soe_-yt + [0

B—a vy —B) gl
on/off on/off on/off on/off
— M e_5t+ @ / —,BUO _a / e_vt—i—soe_'yt—i—&
= y—B gl Y
on/off aon/off — Bu
=5 e_7t+a loe )y 5 PO (gt =5t A.6
: e s ) (A6)

A.4 Solution to the CME for RNA velocity

In Li et al. [278], the authors derive the results we reproduce in Theorem A.2 for both the

on/off on/off

off- and on-stages with « =0 and « = «, respectively.

Theorem A.2 (Solution to the CME of Equation (2.88)). Suppose 8 # ~v. In the off-stage,

with initial data given by P&’;LlMN(O) = OmmOnn, the solution to the CME is given by

P in(8) = Bin (m|M, p1) Co(M = m, ps, N, ps). (A7)

for Bin (k|M — m,p2), the binominal distribution, and for C,, defined by

n
Cn(M —m,pa, N,p3) = Z Bin (k|M — m,ps) Bin(n — k|N, p3) ,
k=0
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where p1,ps and p3 are defined as follows:

() =e P,

§ (et
plt) =3 7( 1—e >
ps(t) =e .

In the on-stage, with initial data given by Pﬁl%mOnO(O) = OmmgOnng, the solution to the
CME is given by

m n

[0}
i fmono (& Z Peiioo( Pm keyn— 1|m0,n0(t)7 (A.8)
k=0 1=0

where P]fl"boo( ) is the distribution in the on-stage for zero initial counts, i.e. P&Zloo(()) =

Om0o0Ono, for which the following expression holds:
_ 2P 25 _aw-b)
Pk”OO( )= minl ’ (A.9)

where x1(t) and xo(t) are the solutions to the first-order moments equations given by Equa-
tions (A.5) and (A.6) for initial condition (ug,so) = (0,0). Thus, for zero initial counts,
u(t) and s(t) are independently Poisson distributed around the mean value given by the

solution to the first order moment equations.

Proof. See the proofs to Theorems 2.1 and 2.2 as well as Corollary 2.2 in Li et al. [278]. O
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Appendix B

Supplementary Figures

B.1 CellRank: pancreas development

o terminal: Alpha
#‘ terminal: Beta
e terminal: Delta
terminal: Epsilon
e initial: Ngn3 low EP 1

Figure B.1: Marker genes confirm CellRanks initial and terminal state annotations
in the pancreas data. a. CellRank-computed initial and terminal states from Figure 3.7d
in Section 3.4. b. We color cells based on the expression level of the indicated gene in each
UMAP. Terminal states express key marker genes; showing for beta: InsI and Ins2 (insulin),
alpha: Gcg (glucagon), epsilon: Ghrl (ghrelin), delta: Sst (somatostatin) [318]. For the initial
state, we show the expression of ductal cell markers Sox9, Anxa2, and Biccl [23, 318]. Figure
reproduced from Lange et al. [14].
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Figure B.2: CellRank is robust to parameter choice and random subsampling a-e.
Pairwise correlations of fate probabilities per lineage when varying (a) the weight given to
the ConnectivityKernel (b) the number of nearest neighbors in KNN graph construction,
(c) the gene filtering parameter min_shared counts which determines the minimum required
number of spliced and unspliced counts, (d) the number of highly variable genes, (e) the
number of principal components NN; used for KNN graph construction. f. Pairwise correlations
of fate probabilities per lineage when randomly subsampling the data to 90% of cells. Figure
reproduced from Lange et al. [14].
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Figure B.3: Propagating uncertainty significantly increases the robustness of fate
probabilities. We show this here for the alpha, beta, and epsilon lineages with respect to the
number of neighbors used for KNN graph construction (one-sided Wilcoxon signed-rank test,
W = 55.0,P = 9.7 x 107%). For the delta lineage, no significant robustness increase was
found. For similar results with respect to other parameters, see the original publication [14].
Figure reproduced from Lange et al. [14].
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B.2 CellRank: lung regeneration
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Figure B.4: Cluster labels and time point annotations for lung data. a. Original cluster
labels for the lung regeneration data [11] in a UMAP projection. The dataset consists of 24,882
murine lung epithelial cells sequenced using Drop-seq [35] at 13 time points spanning days 2-15
past bleomycin injury. The ‘activated’ label refers to cell states that emerge after bleomycin
injury. b. Same as (a) with time points colored in. Time points refer to time passed since
bleomycin injury. c. Expression of goblet cell markers Muc5b, Muc5ac and Bpifbl agrees with
the goblet annotation of (a). Figure reproduced from Lange et al. [14].
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Figure B.5: CellRank predicts a goblet to basal dedifferentiation trajectory. a. Cellrank
identifies 9 macrostates; we highlight airway cells, including club, goblet and basal cells. b.
Fate probabilities of transitioning towards the basal state. A ‘band’ of cells within the goblet
cluster exhibits high basal cell fate probability. c. Fate probabilities of transitioning towards
the goblet state. Basal cells do not show any probability of transitioning towards the goblet
state. d. Quantification of the results from (b) and (c). Goblet cells are likely to transition
towards basal cells, but basal cells are extremely unlikely to transition towards the goblet state,
confirming the direction of the recovered trajectory, from goblet to basal. Figure reproduced
from Lange et al. [14].
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Figure B.6: Basal cell frequency increases over time and gene-wise velocities support
dedifferentiation. a. Diffusion map computed on the subset of basal and goblet cells, showing
scVelo computed velocities as streamlines. b. Proportion of basal cells per sample for each of
the two samples available per time point. The blue line shows a 4t order polynomial regression
fit, shaded regions are 95% confidence intervals computed through bootstrap sampling. c.
Scatter plots of spliced vs. unspliced counts for Scgblal, Retnla, Bpifbl and Abi3bp, all of
which are among the top 30 likelihood genes according to scVelo's dynamical model of splicing
kinetics15, colored by cell type. Purple line shows scVelo's fitted splicing dynamics which
support the goblet to basal direction for all 4 genes. Both Scbglal76 as well as Bpifb177 are
known markers for secretory/goblet cells and are downregulated in the transition. The top 100
likelihood genes further include known goblet cell markers Muc5b and Mucbac78, highlighting
that velocities are driven by biologically meaningful genes (data now shown). Figure reproduced
from Lange et al. [14].
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Figure B.7: Computing a pseudotime for the goblet to basal transitions. a. Diffusion
map of a subset of the cells from the lung data of Figure 3.10d labeled as “Goblet” and “Basal”
in the original publication [11]. b. Coarse-grained transition matrix 7', computed for three
macrostates. The macrostate labeled as ‘Goblet 2" was automatically detected as initial by the
GPCCAEstimator because it had the smallest value in the coarse-grained stationary distribution
7. ¢. Showing the 30 cells most confidently assigned to their macrostate in the diffusion map.
We kept the color for the basal state but created two new colors for the initial and terminal
goblet states because they both overlap with the same transcriptomic goblet cluster and hence
would both get the same color. d. Membership vector corresponding to the initial ‘Goblet 2’
state, here labeled as ‘initial state confidence’. The cell which had the maximum value in
the initial state confidence was used as initial cells to compute Palantir’'s pseudotime [25]. e.
Palantir pseudotime. Figure reproduced from Lange et al. [14].
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Nomenclature

Ber (-) Bernoulli distribution.
NB (-) Negative binomial distribution.
N (-) Normal or multivariate normal distribution.

X Cell-state matrix, usually containing gene expression (X (R)) or chromatin accessi-
bility (X)) of dimensions #cells times #features.

Low-dimensional cell-state matrix.

N, Number of cells.

Ny Number of genes in a scRNA-seq experiment.

N, Number of latent dimensions in a low-dimensional embedding.
N, Number of peaks in a scATAC-seq experiment.

N,,  Number of macrostates in the GPCCA method.

W Graph adjacency matrix.

A Eigenvalues, often of the transition matrix 7.

g Graph with vertices V' and edges E. Typically, V represent cells and E represent

nearest-neighbor relations among them.
T Right-stochastic cell-cell transition matrix.
L") Random-walk graph Laplacian.
L™ Symmetric graph Laplacian.
R4+  Non-negative real numbers.
Ag  Probability simplex in K dimensions.
P Optimal transport coupling matrix.
T Pseudotime.

X GPCCA membership matrix.
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