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Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München
zur Erlangung der akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitz: Prof. Dr. Katharina Krischer
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung und der Anwendung des neuen Simu-
lationscodes STRUPHY (Structure-Preserving Hybrid Code) für die rechnerische Beschreibung
der Wechselwirkung hochenergetischer geladener Teilchen mit niederfrequenten magnetohydro-
dynamischen Wellen in magnetisierten Hochtemperaturplasmen. Solche Szenarien treten übli-
cherweise in Kernfusionsexperimenten auf, wo es neben einem thermischen keV Hintergrund-
plasma aus ionisierten Wasserstoffisotopen eine Reihe hochenergetischer MeV Teilchenspezies
gibt, die wegen ihrer geringen Kollisionalität über relativ lange Zeiträume fernab vom thermi-
schen Gleichgewicht existieren können. Typische Beispiele sind eingeschossene Neutralteilchen
zur externen Heizung des Hauptplasmas oder α-Teilchen, welche in einem gezündeten Plasma
durch Fusionsprozesse entstehen und so zu einer selbsterhaltenden Heizung beitragen. Aufgrund
thermischer Geschwindigkeiten von energetischen Teilchen in der Größenordnung der Phasenge-
schwindigkeiten von globalen magnetohydrodynamischen Eigenmoden im Hauptplasma, können
energetische Teilchen und Plasmawellen resonant miteinander interagieren, was einen Energie-
austausch zwischen Teilchen und Wellen ermöglicht. Durch nichtlineare Rückkopplungseffekte
kann es dabei zu einem verstärkten Teilchen- und Energietransport kommen, was sich negativ
auf die Fusionsleistung und die Belastung der Reaktorwände auswirken kann.

Aufgrund der komplexen Geometrie von modernen Fusionsexperimenten und der Tatsache
dass die zugrunde liegenden partiellen Differentialgleichungen im Allgemeinen stark nichtlinear
sind, ist in den meisten Fällen eine numerische Behandlung der oben beschriebenen physikali-
schen Phänomene nötig. Um den Ergebnissen einer numerischen Computersimulation vertrauen
zu können, insbesondere im Fall von zeitlich langen Simulationen bis tief in die nichtlineare
Phase, ist es dabei oft von Vorteil, bestimmte mathematische Eigenschaften des verwendeten
Modells in der diskreten, d. h. numerischen Variante zu erhalten. Klassische Verfahren gehen
hierbei von einem bestimmten Anfangszustand aus und berechnen den Zustand des Plasmas zu
einem späteren Zeitpunkt unter Einhaltung numerischer Konsistenz und numerischer Stabilität.
Dies trifft jedoch im Allgemeinen keinerlei Aussagen bezüglich der Einhaltung fundamentaler
physikalischer Gesetze wie der Ladungserhaltung, der Energieerhaltung oder der Divergenzfrei-
heit des selbstkonsistenten Magnetfeldes. Dies kann die korrekte Interpretation von Simulati-
onsergebnissen stark erschweren. Dagegen ermöglichen moderne numerische Verfahren, welche
auf der Diskretisierung von Objekten aus der Differentialgeometrie basieren, die Erhaltung der
dem Modell zugrunde liegenden geometrischen Struktur und damit die Erhaltung bestimmter
Eigenschaften des kontinuierlichen Modells.

Diese Arbeit beschäftigt sich u. a. mit der Anwendung dieser Ideen auf ein Modell, wel-
ches ein Dreikomponentenplasma (thermische Ionen, thermische Elektronen und energetische
Ionen) mittels gekoppelter magnetohydrodynamischer und kinetischer Gleichungen beschreibt
(Hybridmodell). Das Resultat ist der neue Simulationscode STRUPHY, der im Vergleich zu
bereits existierenden Hybridcodes Verbesserungen in zweierlei Hinsicht aufweist. Zum einen
führt die erstmals auf ein magnetohydrodynamisch-kinetisches Hybridmodell angewandte Kom-
bination aus konformen Finite-Elemente-Räumen für diskrete Differentialformen und einer Par-
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tikeldiskretisierung der vollen Phasenraumverteilungsfunktion der energetischen Ionen zu einer
diskreten Modellvariante mit exakter Energieerhaltung und divergenzfreiem Magnetfeld. Diese
Eigenschaft ist dabei unabhängig von den verwendeten numerischen Parametern sowie der Geo-
metrie (bzw. Krümmung) des Berechnungsgebietes. Zum anderen enthält STRUPHY ein in
dieser Arbeit weiterentwickeltes Verfahren zur Behandlung der Singularität an der magneti-
schen Achse, welche bei der Verwendung von magnetischen Flusskoordinaten auftritt und bei
bereits existierenden Codes häufig zu numerischen Problemen führt. Dies wird im Wesentlichen
mit der Konstruktion neuer sog.

”
polarer“ Freiheitsgrade basierend auf an der magnetischen

Achse kontinuierlich differenzierbaren Finite-Elemente Basisfunktionen erreicht.
STRUPHY wird in dieser Arbeit anhand mehrerer physikalischer Problemstellungen erfolg-

reich verifiziert. Dies geschieht zunächst durch den Vergleich numerischer Resultate mit einer
eigens entwickelten linearen analytische Theorie für den Spezialfall eines unendlich ausgedehn-
ten, im Gleichgewicht homogenen, magnetisierten Hintergrundplasmas, welches mit einer ener-
getischen Teilchensorte mit verschobener, isotroper Maxwell-Boltzmannverteilung interagiert.
Durch eine genaue Analyse der resonanten energetischen Teilchen wird auch der auf die lineare
Anwachsphase folgende nichtlineare Sättigungsmechanismus näher untersucht. Dabei werden
wiederum numerische Ergebnisse mit analytischen Erwartungen verglichen. Verbesserungen
bzgl. der Singularität an der magnetischen Achse werden anhand von Berechnungen von globalen
idealen MHD Eigenmoden in zylindrischer und toroidaler Geometrie demonstriert. Abschließend
wird STRUPHY noch auf die Berechnung einer toroidalen Alfvén Eigenmode angewandt, wel-
che durch energetische Teilchen mit einem radialen Druckgradienten destabilisiert wird. Dieser
Fall stellt dahingehend eine Herausforderung dar, als dass STRUPHY in der hier verwendeten
Version die volle sechsdimensionale Verteilungsfunktion der energetischen Ionen auflöst und da-
mit die vollständigen Bahnen, inklusive der schnellen Gyrobewegung um die Magnetfeldlinien,
darstellt.



Summary

This thesis is concerned with the development and application of the new simulation code STRU-
PHY (Structure-Preserving Hybrid Code) for the computational description of the interaction
of highly energetic charged particles with low-frequency magnetohydrodynamic waves in mag-
netized high temperature plasmas. Such scenarios are typically found in nuclear fusion experi-
ments, where highly energetic MeV particles exist alongside a thermal keV background plasma
composed of ionized hydrogen isotopes. Due to their low collisionality, such particles can exist
far away from thermal equilibrium for relative long times. Typical examples are injected neutral
particles for external heating of the main plasma or fusion born α-particles in a burning plasma
leading to plasma self-heating. Due to thermal velocities of energetic particles of the order
of phase velocities of global magnetohydrodynamic eigenmodes, energetic particles and plasma
waves can resonantly interact, which can ultimately lead to an energy transfer from particles
to waves or vice versa. In this regard, subsequent non-linear feedback phenomena can result
in enhanced particle and energy transport, which can have negative impacts on the reachable
fusion power as well as on the load on the reactor walls.

Due to the complex geometry of modern fusion experiments and the fact that the underlying
partial differential equations are in general strongly non-linear, a numerical treatment of the
above described physical phenomena is in most cases necessary. To be able to trust the results
of a numerical computer simulation, in particular in case of long-term simulations deep into
the non-linear phase, it is often advantageous to preserve certain mathematical properties of
the simulated model in the discrete, i.e. numerical version. In this context, classical methods
advance the plasma state from some given initial state by adhering to numerical consistency
and stability. However, this does not guarantee the preservation of fundamental physics laws
like charge conservation, conservation of energy or the divergence-free constraint of the self-
consistent magnetic field. This can make the correct interpretation of simulation results quite
difficult. On the other hand, modern numerical methods that are based on the discretization
of objects coming from differential geometry, enable the preservation of the model’s underlying
geometric structure and therefore the preservation of certain properties of the continuous model.

The present work is concerned, among others, with the application of these ideas to a model
which describes a three-component plasma (thermal ions, thermal electrons and energetic ions)
by means of coupled magnetohydrodynamic and kinetic equations (hybrid model). The result
is the new simulation code STRUPHY, which exhibits significant improvements compared to
already existing hybrid codes in two respects. On the one hand, the first-time application of
a combination of conforming finite element spaces for discrete differential forms and a particle
based discretization of the full energetic ion distribution function on a magnetohydrodynamic-
kinetic hybrid model leads to a discrete model version with exact conservation of energy and a
divergence-free magnetic field. Moreover, these properties are independent of the used numerical
parameters as well as the geometry (resp. curvature) of the computational domain. On the
other hand, STRUPHY contains a newly developed treatment of the singularity at the magnetic
axis which usually arises when magnetic flux coordinates are in play and which often leads
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to numerical problems in existing codes. This is achieved by the construction of new so-called
”polar” degrees of freedom based on modified finite element basis functions that are continuously
differentiable across the polar singularity.

In this thesis, STRUPHY is successfully verified by applying it to several physics problems.
First, numerical results are compared to a linear analytical theory for the special case of an
infinitely extended, homogeneously magnetized plasma that interacts with a single energetic ion
species with a shifted, isotropic Maxwell-Boltzmann distribution function in velocity space. For
this case, the non-linear saturation phase that follows the linear growth phase is additionally
investigated in more detail by analyzing the motion of resonant particles. In this regard, nu-
merical results are once more compared to analytical expectations. Improvements regarding the
polar singularity at the magnetic axis are demonstrated by means of global ideal MHD eigen-
mode calculations in cylindrical and toroidal geometry. Finally, STRUPHY is applied to the
computation of a toroidal Alfvén eigenmode that is destabilized by energetic particles with a
radial pressure gradient. This case poses a major computational challenge which is due to the
fact that in the version presented in this thesis, STRUPHY resolves the full six-dimensional en-
ergetic ion distribution function and therefore calculates the complete particle orbits, including
the fast gyro-motion around the magnetic field lines.
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Chapter 1

Introduction

1.1 Fusion research

Since the 1960s, the World has seen an unprecedented growth in terms of population size,
economic performance and energy consumption per person. This has led to a revival of mankind’s
old dream of an abundant, safe and emission-free source of energy because of the severe problems
that come along with this enormous thirst for energy. To these belong a still rapidly growing
global population, the finite amount of fossil fuels like coal, oil and gas on Earth, the unsolved
problem of storing the large amounts of long-living nuclear waste produced by conventional
nuclear power plants and the advancing human made climate change caused by greenhouse gas
emissions. Nuclear fusion, the process with which stars like the Sun gain their energy, has
become a promising candidate for a future source of energy for mankind since it combines the
advantages of having an almost infinite amount of the fuel on Earth and not producing harmful
exhaust fumes and long-living nuclear waste. For a future fusion reactor, the above-mentioned
fuel is intended to be a 50:50 mixture of the hydrogen isotopes deuterium (D) and tritium (T)
[1], which are supposed to fuse according to the reaction

2
1D + 3

1T→ 4
2He + 1

0n + 17.6 MeV . (1.1)

Deuterium can easily be extracted from seawater [2] whereas tritium, which is unstable and
does therefore not exist in vast amounts in nature, can be generated by a reaction involving the
neutrons in the reaction (1.1) and externally added lithium (also called tritium breeding) [3].

However, bringing two positively charged ions close enough together in order to overcome
the repulsive Coulomb barrier by quantum tunneling requires much thermal energy of T &
10 keV1. At such a high temperature, a gas can be considered to be completely ionized and
shows a distinctly different behavior compared to a neutral gas due to the long-range nature
of electromagnetic forces. Hence, such a gas, which gets the new name plasma, is a collection
of freely movable ions and electrons showing collective behavior in contrast to a neutral gas
[1, 4, 5]. Sometimes this state is called the fourth state of matter which is strictly speaking not
true because there is no sharp phase transition at a certain temperature as it is the case for the
phase transitions solid-liquid and liquid-gas.

The reason for the choice of the reaction (1.1) for controlled nuclear fusion on Earth is its
relatively high probability to occur at fairly low temperatures compared to other reactions [6].
A measure for this is given by the so-called reaction parameter 〈σfusu〉 which is the reaction
cross-section σfus multiplied by the relative velocity u of the two reaction partners followed by

1The Boltzmann constant kB is suppressed. The temperature T therefore actually denotes the energy kBT .
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Figure 1.1: Left: temperature dependence of the reaction parameter 〈σfusu〉 of some common
fusion reactions. At T ≈ 10 keV one observes a two orders of magnitude larger reactivity
of the D-T reaction compared to the other reactions. Right: fusion triple product and peak
temperature of present and past fusion experiments. Both figures extracted from [4].

averaging over the Maxwell-Boltzmann distribution in velocity space if one assumes a plasma in
thermal equilibrium. The number of reactions per volume and time unit for a 50:50 D-T mixture
is then given by n2

DT〈σfusu〉/4, where nDT = nD + nT is the D-T number density (number of
particles per unit volume). The reaction parameter’s temperature dependence for some common
fusion reactions is shown in Figure 1.1 on the left. It is evident that in the range T & 10 keV
the D-T reaction is the most dominant one by approximately two orders of magnitude.

Since neutrons are electrically neutral, they do not interact with the ambient plasma and
therefore cannot contribute to a desired self-heating of the plasma caused by occurring fusion
reactions. In order to achieve a self-sustained fusion plasma (ignition), the self-heating power due
to Coulomb collisions must therefore be provided entirely by the formed α-particles which get
one fifth of the released energy according to the mass ratio 1:4 (= 3.52 MeV). To reach ignition,
this self-hating power Pfus,α must be larger than all the losses Ploss during a characteristic
confinement time τ . For a homogeneous plasma in a volume V this condition reads

n2
DT 〈σfusu〉QDT V

20
= Pfus,α ≥ Ploss =

3

2

T (ne + nDT)V

τ
, (1.2)

where QDT = 17.6 MeV is the released energy per fusion reaction and ne = nDT is the electron
number density. Expression (1.2) is most easily satisfied for T ≈ 26 keV which leads to the
famous Lawson criterion [7]

nDT τ ≥ 1.5× 1020 s

m3
, (1.3)

for the case of the D-T reaction. This criterion means that one can in principle vary the fuel
density nDT and the confinement time τ over very wide ranges as long as the product nDT τ is
large enough to overcome the lower limit. Two main concepts have been pursued in the past to
reach this goal:

• The concept of inertial confinement is the approach of a large nDT ≈ 1× 1031 m−3 and
a low τ ≈ 1× 10−10 s. The idea of this method is to heat a frozen D-T pellet on a time
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scale where it is confined by its own inertia [8]. This can for instance be achieved with
very strong and temporally short laser pulses [9].

• In contrast to that, the concept of magnetic confinement aims for a low nDT ≈ 1× 1020 m−3

and a large τ ≈ 5 s. This method uses a strong helically shaped magnetic field (B ≈ 5 T)
that forces the charged particles of the fusion plasma on gyro-orbits around its field lines.
The most advanced realizations of this concept are nowadays considered to be the tokamak
and stellarator, both being toroidal devices characterized by a major radius R0 and a minor
radius a. While the helical magnetic field of the former is generated with a combination of
external coils with a planar shape and a current flowing in the plasma, the magnetic field of
the latter is generated completely by external coils with a complicated three-dimensional
shape. An example for a tokamak is ITER [10] (R0 ≈ 6 m, a ≈ 2 m), which is currently built
in southern France, and an example for a stellarator is Wendelstein 7-X [11] (R0 ≈ 5.5 m,
a ≈ 0.5 m) in Greifswald, Germany.

It should of course be noted that the Lawson criterion in the form (1.3) is only valid for a best case
scenario. In practice, the ignition criterion is more restrictive, e.g. due to energy losses caused
by Bremsstrahlung at impurities coming from the wall surrounding the plasma or a dilution of
the fusion plasma by helium ash. Reaching the ignition state is therefore a challenging task and
has not been achieved until now. However, as shown in Figure 1.1 on the right, present and past
fusion experiments have more and more approached this state. In this figure, the so-called triple
product consisting of density, confinement time and temperature is used rather than just the
product of density and confinement time. This is an alternative figure of merit used in fusion
research. Compared to (1.3), it is more flexible in a sense that the temperature is not fixed.

1.2 The role of energetic particles in fusion plasmas

The more fusion experiments approach the desired ignition state, the more interest is attracted by
the effects of highly energetic particles in the MeV range on the stability of the keV bulk plasma.
Examples for such particles are the fusion-born 3.52 MeV α-particles in the reaction (1.1) or
externally generated energetic ions which are used to heat the plasma beyond Ohmic heating. A
prominent example for the latter is neutral beam injection (NBI), where ions are first accelerated
externally, then neutralized in order to penetrate the magnetic field, and finally ionized via
collisions with the bulk plasma particles. It is well-known that under certain conditions, low-
frequency, large-scale (comparable to the system size) magnetohydrodynamic (MHD) waves
propagating in the bulk plasma can resonantly interact with such particles. This can lead to
a net energy transfer from the particles to the waves (destabilization) which can in turn lead
to increased particle and energy transport followed by a degradation of the confinement time
[12, 13, 14]. This effect has been observed especially for one type of MHD waves, namely the
shear Alfvén wave (SAW) which shall be explained in more detail in the following.

1.2.1 Shear Alfvén waves

Shear Alfvén waves (named after Hannes Alfvén, † 1995) are low-frequency, transverse, electro-
magnetic plasma waves which propagate parallel to the magnetic field B [4]. Here, low-frequency
means smaller than the ion cyclotron frequency Ωci = qiB/mi, where qi is the ion charge, mi its
mass and B = |B| the absolute value of the magnetic field. Moreover, SAWs have the important
property that they are incompressible, i.e. no plasma compression is involved in the propagation
of the waves. This is why SAWs are generally considered to be more easily destabilizable than
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Figure 1.2: Basic shear Alfvén physics. Left: shear Alfvén waves in an homogeneous, infinitely
extended magnetized plasma. Shown is the perturbed magnetic field in blue, the plasma dis-
placement in red and the total magnetic field in orange. Middle: toroidal plasma confined by
an helically shaped magnetic field. Right: continuous Alfvén spectra for fixed toroidal mode
number n in the cylindrical limit (black lines) and the formation of a frequency gap if toroidal
curvature is present (blue dashed lines).

compressible MHD waves. Their dispersion relation is given by the simple relation ω2 = v2
Ak

2
‖,

where ω is the wave frequency, k‖ = (k·B)/B the wave number parallel to the magnetic field and
vA = B/

√
µ0mini the Alfvén velocity (µ0 denotes the vacuum permeability and ni the number

density of the plasma ions). For typical fusion plasma parameters vA ≈ 6× 106 m/s, i.e well
below the speed of light. The physical mechanism behind SAWs is an interplay between the
restoring force of bent magnetic field lines on the one hand and the inertia of the plasma ions
on the other hand. This is shown in Figure 1.2 on the left for the simplest case of an homo-
geneously magnetized plasma. A remarkable, as well as non-trivial property of the dispersion
relation ω2 = v2

Ak
2
‖ is that it is also valid for a cylindrical plasma with radial variations of the

magnetic field and the plasma density. For a helical magnetic field B = Bθ(r) eθ +Bz(r) ez and
a cylindrical plasma of length 2πR0 it is easily verified that

ω2 = v2
A k

2
‖ =

B2
z (r)

µ0mini(r)

1

R2
0

(
n+

m

q(r)

)2

, q(r) =
rBz(r)

R0Bθ(r)
, (1.4)

such that the wave frequency becomes a function of radius r. In (1.4), m and n are two integer
mode numbers introduced by periodicity constraints in the azimuthal (m) and axial (n) direction.
Moreover, q is the so-called safety factor commonly used in fusion research giving the number of
axial turns of a magnetic field line per azimuthal turn. SAWs satisfying the dispersion relation
(1.4) are part of the Alfvén continuum and are subjected to a phenomenon called continuum
damping [15]. Qualitatively, this can be explained by imagining a radially extended wave packet
which is rapidly dispersed due to different phase velocities at different radial positions. Hence,
exciting waves which are part of the Alfvén continuum is generally difficult.

However, under certain conditions, additional discrete Alfvén eigenmodes (AEs) can exist
outside of the continuous spectrum, and which are therefore not subjected to continuum damp-
ing. This is the case if, as shown in the middle of Figure 1.2, the cylinder is bent to a torus
(tokamak geometry). Because the field is now stronger on the inside of the torus than on the
outside, the toroidal (axial) magnetic field experiences a periodic modulation in the poloidal
(azimuthal) direction. This can lead to a coupling of Alfvén waves with different poloidal mode
numbers m which in turn can induce a frequency gap in the Alfvén continuum [16]. This is
shown in Figure 1.2 on the right for a fixed toroidal mode number n. In the cylindrical limit
(black lines), continuum branches ω = ω(r) with different poloidal mode numbers may intersect.
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Figure 1.3: Particle orbits in a tokamak-like fusion plasma. Left: passing particle with v‖ that
is high enough to exceed the top of the magnetic hill on the inside of the torus (high-field
side). Middle: trapped particle which is reflected at the high field side because of a too low
v‖. Right: poloidal projections give rise to a circular drift-orbit for the passing particle and a
banana drift-orbit for the trapped particle.

If toroidal curvature and the associated symmetry breaking of the toroidal magnetic field is
present, counter-propagating waves with the same frequency can couple together which results
in the formation of a frequency gap (similar to the formation of band gaps in conductors). Inside
gaps between m and m + 1 branches, a discrete AE known as the toroidal Alfvén eigenmode
(TAE) exists [16]. TAEs are just one example. In more realistic scenarios many other AEs
exist. For instance, a non-monotonic safety factor q with a minimum at some radial location can
give rise to reversed shear Alfvén eigenmodes (RSAEs) [17, 18] while geometries with elliptical
instead of circular poloidal cross-sections can lead to coupling of m and m+ 2 modes resulting
in ellipticity induced Alfvén eigenmodes (EAEs) [19, 20]. A list can be found for instance in
Table 1 in [12].

1.2.2 Particle orbits and mode drive

In the pure MHD picture, the above explained AEs are stable and therefore in principle not
problematic or dangerous. However, since these modes are not subjected to continuum damping,
they can be driven unstable by e.g. an external antenna or by energetic particles via resonant
wave-particle interaction processes [12, 14]. The reason why the latter is possible in a toroidal
configuration is that this geometry gives rise to special ion orbits with new intrinsic frequencies
apart from the cyclotron frequency which is always present in a magnetized plasma.

If the magnetic field variation scale B/|∇B| is large compared to the gyro-radius |v⊥|/Ωci

(which is usually the case in a tokamak), a particle’s magnetic moment µ = miv
2
⊥/2B is an

adiabatic invariant and it can therefore be assumed that it is a constant of motion. Since the
particle’s kinetic energy is also a conserved quantity, the following relation between the parallel
velocity and the magnetic field strength holds:

1

2
miv

2
‖ + µB = const. . (1.5)

Hence, if a particle in a tokamak-like magnetic field moves along a field line towards the inner
side of the torus, the magnetic field gets stronger and the parallel velocity will therefore decrease.
This gives rise to two main classes of orbits: First, if the parallel velocity is high enough to travel
over the top of the magnetic hill on the inside of the torus, a particle is called a passing particle.
Second, if the parallel velocity is too low, the particle gets reflected by a change of the sign in
the parallel velocity (magnetic mirror). Such a particle is called a trapped particle.
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In addition to the fast gyro-motion around the magnetic field lines and the free motion
along the field lines, particles in an inhomogeneous magnetic field experience a slow drift motion
perpendicular to field lines caused by gradient and curvature drifts (for details on single-particle
motion see [1, 4, 5] for instance). This leads to orbits like the ones shown in Figure 1.3 for a
passing (left) and trapped particle (middle). Moreover, a projection on a poloidal plane leads
to the orbits shown on the right, where it is evident that the passing particle has an almost
circular drift orbit while the trapped one has a banana orbit. The time to complete such orbits
in the poloidal plane as well in the toroidal direction gives rise to the previously mentioned new
frequencies besides the cyclotron frequency, namely the poloidal precision frequency ωθ and the
toroidal precision frequency ωφ. Usually ωθ, ωφ � Ωci. In order to make energy transfer between
a drifting particle and an Alfvén eigenmode possible, the following resonance condition must be
satisfied [12]

ω + (m+ l )ωθ − nωφ ' 0 , (1.6)

where l = ±1 in the simplest case of a tokamak with circular cross-section. It can be shown that
keV particles of the thermal bulk plasma are usually too slow to meet condition (1.6). However,
the opposite is true for MeV energetic particles. For a passing particle and a TAE introduced in
the previous section, analytical approximations for all three frequencies in (1.6) can be derived.
This leads to resonances for particles with v‖ ≈ vA and v‖ ≈ vA/3.

Meeting a resonance condition of the form (1.6) does, however, not give any information
whether a mode is damped (energy transfer wave→ particles) or driven (energy transfer particles
→ wave). This depends on the specific distribution of the energetic particles both in velocity
and real space. For instance, a radial gradient in the energetic particle pressure caused by e.g.
fusion reactions in the hotter core of a fusion plasma is a driving mechanism while a negative
gradient in velocity space around the resonant velocity is a damping mechanism [12].

1.2.3 Modeling approaches

A quantitative description of the linear and especially the non-linear dynamics of the above
described phenomena in realistic geometries usually requires computer simulations of suitable
model equations. The latter can be separated into two main classes: First, the more complete
and accurate kinetic models which resolve the plasma behavior in a statistical sense in the
six-dimensional phase space and second, fluid models which rely on averages in velocity space
such that the problem dimensionality is reduced to the three-dimensional real space. Due to
the fact that six-dimensional kinetic simulations are computationally expensive even on current
supercomputers, one usually make use of reduced models which are easier to solve while still being
able to describe the physical phenomena of interest. For instance, collision-less wave-particle
interactions require a kinetic description because it is based on resonances in velocity space which
cannot be captured if averages are taken beforehand. However, in strongly magnetized plasmas,
the fast gyro-motion around the field lines is often not of interest and can be averaged out,
thus eliminating one velocity degree of freedom. Examples for implementations of such so-called
gyro-kinetic models [21, 22, 23, 24] of all involved plasma species (bulk and energetic particles)
are the eigenvalue code LIGKA [25] and the initial-value codes ORB5 [26] and EUTERPE [27].
However, as explained in the previous section, electrons and ions of the bulk plasma are far away
from resonating with Alfvén eigenmodes. Hence, if kinetic effects within the bulk plasma can be
neglected or are not of interest, a fluid model for the bulk plasma can be used while retaining a
kinetic description for the energetic particles. Such models are called hybrid models since they
combine a fluid model for the bulk plasma and a kinetic model for the energetic particles (see [28]
for an early work that suggests such a strategy). Current-coupling (CC) and pressure-coupling
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(PC) schemes can be used in this regard, depending on how the coupling between the two models
is achieved. Generally speaking, the notion of a hybrid code implies the following two crucial
features:

1. Use of reduced model equations for the bulk plasma (for instance fluid equations instead
of kinetic equations).

2. Fully self-consistent description of the non-linear dynamics (beyond the linear phase).

Examples of successful implementations of hybrid codes in fusion research are MEGA [29], M3D-
K [30, 31], HMGC [32, 33] and the non-linear MHD code JOREK [34, 35, 36] which has recently
been extended to be able to deal with hybrid fluid-kinetic models [37]. The appeal of hybrid
codes can be summarized as follows:

1. Reduced numerical costs compared to fully kinetic simulations.

2. Inclusion of non-equilibrium dynamics (wave-particle resonances) compared to pure fluid
simulations.

3. Possibility of direct comparison with analytical computations (for linear dynamics).

The drawback is the increased complexity of model equations compared to pure fluid models. For
instance, while the mathematical geometric structure (Poisson bracket and/or Hamilton’s vari-
ational principle) of MHD equations has been known for decades [38], the underlying structure
of MHD-kinetic hybrid models has been discovered only very recently [39, 40]. This shows that
the proper derivation of MHD-kinetic hybrid models that respect fundamental physics principles
such as energy conservation is a non-trivial task. As a consequence, little attention had been
paid to these issues during the design of the first generation of hybrid codes mentioned above.
An example that the use of an energetically consistent model can be important in some situa-
tions is demonstrated in [41], where a comparison between a Hamiltonian and non-Hamiltonian
hybrid MHD-kinetic model (pressure-coupling) has been performed. A linear stability analysis
revealed a spurious, i.e. non-physical instability in the non-Hamiltonian model, which could be
removed in the corresponding Hamiltonian, energy-preserving model.

1.3 Structure-preserving geometric numerical integration

In parallel to the theoretical discoveries regarding hybrid models came the advent of geometric
(or structure-preserving) numerical methods for plasma equations, see [42] for a review. These
methods obey many conservation properties implied by the geometric structure, such as conser-
vation of energy, charge or momentum on the discrete level [43, 44]. This can be very helpful
especially when it comes to long-term and strongly non-linear simulations because preserving
such quantities improves long-term numerical stability and physical reliability. The main idea is
to discretize directly the underlying Poisson structure or variational principle, thus transferring
geometric properties to a finite-dimensional setting. For the discretization of kinetic equations,
the most popular method is still the particle-in-cell (PIC) method because it is fairly simple to
implement and it is inherently parallel [45]. That is why a lot of attention has been paid to
the design of structure-preserving geometric PIC algorithms. The first one was designed and
implemented by Squire et al. in 2012 [46]. Similar methods have later been successfully applied
to Vlasov-Maxwell [47, 48, 49, 50], Vlasov-Darwin [51], Vlasov-Poisson [52, 53] and also to pure
fluid models like ideal MHD [54] and Navier-Stokes equations [55]. The first structure-preserving



8 CHAPTER 1. INTRODUCTION

0 50 100 150
# of eigenfrequency

0

20

40

60

80

ei
ge

n
fr

eq
u

en
cy
ω

2

geometric FEM

numerical

exact

0 50 100 150
# of eigenfrequency

non-geometric FEM

Figure 1.4: Numerical eigenspectrum of a geometric (left) and a non-geometric (right) finite
element discretization of the Maxwell-type eigenvalue problem (1.8). While the geometric one
reproduces the analytical spectrum very well, the non-geometric one produces a spectrum pol-
luted with many spurious eigenfrequencies. Based on [63].

geometric PIC algorithm using the framework of finite element exterior calculus (FEEC) for solv-
ing field equations was designed by He et al. in 2016 [56]. The same approach has later been
taken by Kraus et al. [57] who used FEEC based on tensor product B-spline basis functions
constructed in [58, 59].

FEEC is a framework for the geometric discretization of partial differential equations which
allows, among others, to encode the properties curl grad = 0 and div curl = 0 (de Rham cochain
complex ) into conforming finite element (FE) spaces. The theoretical foundation of FEEC has
been laid by Arnold et al. [60, 61, 62]. From a physicist’s or applied mathematician’s point of
view, FEEC is based on the notion of discrete differential forms leading to an exact (i.e. up to
machine precision) preservation of the generalized Stokes theorem

∫

C
∇φ · dL = φ(P1)− φ(P2) ,

∫

S
(∇×E) · dS =

∮

∂S
E · dL ,

∫

V
(∇ ·B) dV =

∮

∂V
B · dS ,

(1.7a)

(1.7b)

(1.7c)

on all parts of the discretized computational domain, independently of space curvature intro-
duced by some coordinate transformation in the context of differential geometry (hence the name
geometric methods). Consequently, if physical quantities such as the electric or magnetic field
are not discretized as classical vector fields (usually contra-variant) but as differential forms (ei-
ther 1-form or 2-form), this property can be extremely beneficial to preserve certain invariants
like the divergence-free constraint ∇ ·B = 0 of the magnetic field.

As simple example that demonstrates the power of using a geometric discretization for
solving a PDE is the numerical solution of the vacuum, time-harmonic Maxwell’s equations on
the unit square Ω = [0, 1]× [0, 1] which is surrounded by a perfectly conducting wall (vanishing
tangential components of the electric field on the domain boundary). The problem can be
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formulated as an eigenvalue problem and reads as follows: find ω2 ∈ R and non-vanishing
functions E such that 




∇×∇×E = ω2 E in Ω ,

∇ ·E = 0 in Ω ,

E× n = 0 on ∂Ω ,

(1.8a)

(1.8b)

(1.8c)

where E is the electric field and n an outward-pointing unit vector normal to the surface of the
computational domain. The homogeneous Dirichlet boundary condition (1.8c) for the tangen-
tial components leads to a quantized spectrum of eigenfrequencies ω2 > 0 with corresponding
eigenfunctions. In this simple geometry, the eigenfrequencies are analytical and readily given by
ω2 = (`π)2 + (mπ)2 with ` and m being integer mode numbers. This makes a direct comparison
to the numerically calculated eigenfrequencies possible.

In Figure 1.4, the resulting numerical eigenfrequencies of a geometric (left) and non-geometric
(right) discretization are compared against the exact ones. On the one hand, the geometric dis-
cretization is clearly able to distinguish between zero and non-zero eigenfrequencies and, on the
other hand, shows an excellent agreement with the analytical spectrum of non-zero eigenfre-
quencies (see Chapter 11 in [63] for more details on the meaning of zero eigenfrequencies). In
contrast to that, the non-geometric discretization leads to a spectrum which is polluted with
many spurious eigenfrequencies. This makes it almost impossible to judge whether an eigenfre-
quency is a true, physical one or a spurious one if the analytical spectrum is not known a priori
(which is usually the case in realistic geometries).

1.4 Dissertation overview and outline

This thesis is concerned with a) the application of ideas of structure-preserving integration to
a MHD-kinetic hybrid model (see [52, 64] for other conservative schemes for hybrid models),
namely the Hamiltonian current-coupling (CC) scheme [39] and b) the verification and physical
analysis of simulations performed with the resulting algorithms. The model equations consist
of the three-dimensional, ideal MHD equations coupled to the collision-less, full-orbit Vlasov
equation with three velocity degrees of freedom. The MHD part thus covers the entire set of MHD
waves, namely shear Alfvén, slow- and fast magnetosonic waves. The kinetic equation contains
the gyro-motion of the energetic species, enabling the description of wave-particle resonances
in this regime. The overall motivation for this work stems from the need of stable and reliable
long-time simulations of energetic particle physics in complex geometries such as tokamaks and
stellarators. Since the model’s field equations are strongly based on objects and operators coming
from differential geometry (both vector- and scalar-valued functions, grad, curl and div operators
etc.), the FEEC framework seems to be a natural candidate for a numerical treatment in order
to avoid spurious modes that may pollute long-time simulations.

A result of this thesis is the new numerical code STRUPHY (Structure-Preserving Hybrid
Code). In the version presented in this thesis, the MHD part is linearized and the focus is
laid on the non-linear coupling to the kinetic species, which acts back on the bulk plasma via
charge and current densities according to the used current-coupling scheme. FEEC is used for
the discretization of the MHD part and PIC for the kinetic part. The concept is similar to the
GEMPIC approach in [57, 65, 66], only that the role of Maxwell’s equations is taken by the
linear MHD equations. Another difference with respect to GEMPIC is that the discretization
is performed directly on the equations rather than to the variational principle or the Poisson
bracket. There are three reasons for this:
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1. Linearized MHD equations lose their Hamiltonian structure if the magnetic background
field is not chosen properly. In this case there is no such thing as a Poisson bracket or
variational formulation, but the method presented in this thesis still applies.

2. Poisson structures of extended hybrid models with two-fluid MHD, drift-kinetic or gyro-
kinetic models are either not known or very cumbersome.

3. A high level of abstraction is avoided in the presentation of the scheme. In fact, the mere
existence of a Poisson structure on the continuous level is sufficient to translate several
important conservation properties to the discrete level by applying FEEC to the equations
directly.

The resulting discretization of the CC hybrid model provably conserves the total energy, mass
and the divergence-free constraint of the magnetic field, irrespective of metric (= space cur-
vature), mesh parameters and chosen order of the scheme. This is, on the one hand, thanks
to the separation between topological and metric properties in the theory of differential forms
upon which FEEC is built and, on the other hand, due to the coupling with a particle-based
kinetic solver. In the version presented in this thesis, the finite element spaces are constructed
from two-dimensional tensor product B-splines in the poloidal plane and a single Fourier mode
in the toroidal direction in order to reduce the computational costs. Consequently, the cur-
rent version is only applicable to tokamak-like axisymmetric equilibria but an extension to fully
three-dimensional equilibria is possible but needs further parallelization. During an entire simu-
lation, position space is expressed in logical (curvilinear) coordinates, also for the kinetic species.
Results in physical (Cartesian) space are obtained via post-processing using push-forward op-
erations. Time stepping is implicit and based on the splitting of a skew-symmetric matrix into
skew-symmetric sub-matrices. Most of the resulting substeps are solved with the semi-implicit
Crank-Nicolson method [67]. The resulting time integrators are combined via splitting methods
according to Lie-Trotter [68] and Strang [69]. However, higher-order splitting schemes would in
principle be available, too [70].

If the coupling between the MHD bulk and the energetic ions is switched off (or if no
energetic particles are present), the spatially discretized linear MHD equations can be directly
used to run STRUPHY not only as an initial-value solver but also as an eigenvalue solver (similar
to problem (1.8)). In this case, STRUPHY solves the following ideal MHD eigenvalue problem:
find ω2 ∈ R and non-vanishing U (in some suitable space to be defined) in a domain Ω ⊂ R3

such that





F(U) = −ω2ρeq U in Ω ,

F(U) = − 1

µ0

{
∇×

[
∇× (Beq ×U )

]}
×Beq − Jeq × [∇× (Beq ×U) ]

+∇
[
∇ · ( peq U) + (γ − 1) peq∇ ·U

]
,

U · n = 0 on ∂Ω ,

(1.9a)

(1.9b)

(1.9c)

where ω2 denotes the eigenfrequency, ρeq = ρeq(x) the equilibrium mass density, Beq = Beq(x)
the equilibrium magnetic field, peq = peq(x) the equilibrium pressure and γ = 5/3 the heat
capacity ratio of an ideal gas. Moreover, U = U(x) is the unknown perturbed velocity field
and (1.9b) is the MHD force operator which is a self-adjoint differential operator such that the
eigenvalues ω2 are purely real [71]. The equilibrium about which the non-linear ideal MHD
equations are linearized is characterized by zero flow Ueq = 0 and the well-known MHD force
balance Jeq × Beq = ∇peq, where Jeq = (∇ × Beq)/µ0 is the equilibrium current. Finally, in
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this thesis, a plasma surrounded by a perfectly conducting wall is considered (fixed boundary
modes). This means that U must have vanishing normal components on the boundary according
to (1.9c). A more realistic, yet mathematically more involved scenario would be to consider a
vacuum region between the plasma and the wall [72].

There exist many sophisticated solvers for the solution of (1.9) in axisymmetric equilibria
(where Fourier modes in the toroidal direction decouple), among the best-known being PEST
[73], ERATO [74], GATO [75], as well as KINX [76] to include divertor configurations, the code
in [77] and MARS [78] which include resistive effects, CASTOR [79] which can also handle
3d stellarator configurations. The conventional approach is to expand the eigen-solution U
in a suitable, finite set of basis functions, usually Fourier basis in the poloidal direction and
spline or polynomial basis in the radial direction of the poloidal plane, and to solve the ensuing
discrete eigenvalue problem. If solved in magnetic flux coordinates a complication arises from
the geometry of the problem, which has a polar point at the magnetic axis, where the Jacobian
determinant of the mapping between logical and physical coordinates vanishes (see Section 5.1).
This usually requires some kind of work-around when computing the push-forward of the solution
to Cartesian coordinates. Regarding this problem, this thesis proposes a new framework based
on an extension of FEEC and smooth polar splines that produces physical (i.e. pushed-forward)
solutions which are continuous across the magnetic axis, the continuity being enforced directly
through the basis functions in which U is represented. These polar splines were first introduced
in [80] and are constructed as linear combinations of tensor product B-splines supported in the
vicinity of the polar point (magnetic axis). Moreover, these splines must be used in the context
of isogeometric-analysis (IGA) [81] being an approach in which the mapping (= coordinate
transformation) describing the geometry of the problem is represented in the same set of basis
functions as the solution fields. If the problem is solved in magnetic flux coordinates, these must
first be constructed from a given numerical or experimental MHD equilibrium which usually
results in a numerical description of the geometry. Hence, imposing the IGA constraint does not
introduce additional difficulties.

Later, the polar spline framework (originally for scalar fields only) was used to construct
the discrete de Rham complex (curl grad = 0 and div curl = 0) which is one of the two main
ingredients of FEEC [82] from a practitioner’s point of view. A contribution of this thesis is
the second main ingredient, namely the formulation of a commuting diagram in case when the
discrete complex is spanned by differential forms based on smooth polar splines. For this, new
polar projection operators are defined that project from the continuous de Rham complex into
the polar spline sub-complex in a way that the commuting property holds. This is achieved by
the formulation of ”polar degrees of freedom” (polar DOFs), i.e. linear functionals on functions
from the de Rham complex that define the conforming polar sub-complex. Just as the polar
basis functions are linear combinations of tensor product basis functions, the polar DOFs can
be constructed as linear combinations of tensor product DOFs. Explicit expressions for all
reduction matrices needed in the process are presented.

This thesis is organized as follows: Chapter 2 is concerned with the detailed derivation
of the hybrid MHD-kinetic model considered in this thesis starting from a kinetic description
of all involved plasma species (bulk electrons and ions and energetic ions). Once the model is
obtained, some of its conservation properties are discussed. This is followed by the derivation
of an analytical dispersion relation for a homogeneously magnetized, infinitely extended bulk
plasma. Chapter 3 deals with first formulating the model equations in terms of differential
forms, followed by the derivation of a weak formulation suitable for a spatial discretization with
FEEC. The resulting semi-discrete system (discrete in space and continuous in time) will then
be discretized in time. Finally, Chapter 3 also gives information on the implementation and
code development and describes the main structure of STRUPHY. Next, Chapter 4 presents
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simulations results in a simplified geometry without a polar point and toroidal curvature. The
focus here lies on the one hand on the investigation of basic properties of the algorithm and
on the other hand on physical effects like continuum damping and wave-particle interactions
which do not require a cylindrical or toroidal geometry. Chapter 5 then extends the algorithm
to such domains with a polar singularity at the magnetic axis. Finally, Chapter 6 presents
numerical results in cylindrical and toroidal geometry with investigations on the behavior of
MHD eigenmodes at the magnetic axis and benchmark studies with other codes.



Chapter 2

Hybrid MHD-kinetic current-coupling
model

2.1 Model derivation and properties

The starting point of the derivation of the MHD-kinetic hybrid model used in this thesis is the
kinetic equation

∂fs
∂t

+ v · ∇fs +
qs
ms

( E + v ×B ) · ∇vfs =
∑

s′

Css′(fs) , (2.1)

describing the temporal evolution of the distribution function fs = fs(x,v, t) of a charged
particle species s in the six-dimensional phase space. The distribution function is a measure for
the number of particles located in an infinitesimal phase space volume element d3x d3v around
the point (x,v) ∈ R6 at time t ≥ 0. This description should be regarded as a mesoscopic one
because it is obtained from the more general single particle Klimontovich distribution function
by using a procedure called ensemble averaging which make use of the fact that one deals with
indistinguishable particles from a statistical point of view [83]. As a result of this procedure,
interactions on a microscopic scale are taken into account in the collision operator Css′ appearing
on the right-hand side of (2.1). If, for some reason, collisions can be neglected, equation (2.1)
is called the Vlasov equation. In what follows, we consider a plasma consisting of three species:
thermal electrons (s = e), thermal ions (s = i) and energetic ions (s = h for ”hot”). For the
latter, we neglect collisions between themselves as well as between them and the other two
species because, as explained in the introduction, energetic particles are weakly collisional on
typical MHD time scales due to their low Rutherford cross-section. Hence, Chs = Csh = 0.

Again due to the averaging process, the electromagnetic fields E and B can be regarded
as mesoscopic ones not containing fluctuations on a microscopic scale. They satisfy Maxwell’s
equations

∇×B =
1

c2

∂E

∂t
+ µ0 J , (Ampére)

∇×E = −∂B

∂t
, (Faraday)

∇ ·E =
ρ

ε0
, (Gauß 1)

∇ ·B = 0 , (Gauß 2)

(2.2a)

(2.2b)

(2.2c)

(2.2d)

where ε0 and µ0 stand for the vacuum permittivity and vacuum permeability, respectively, and
ε0µ0 = 1/c2 with c being the speed of light in vacuum. The sources in (2.2a) and (2.2c) are the

13
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charge density ρ and the current density J which are obtained from the particles’ distribution
functions by taking the first two moments in velocity space and summing over all species:

ρ :=
∑

s

qs

∫

R3

fs d3v , J :=
∑

s

qs

∫

R3

vfs d3v . (2.3)

Equations (2.1)-(2.3) form a closed system of partial differential equations in seven dimensions
(the six-dimensional phase space + time) and is usually considered to be the most complete
description of a plasma because it includes various spatial and temporal scales. It is strongly
non-linear and numerically very expensive to solve. As already explained in the introduction,
however, a hybrid model aims for a model simplification for the parts of the plasma for which
a kinetic description is actually not needed. To obtain a simpler set of equations one therefore
builds moments of (2.1) in velocity space for thermal electrons and ions (s = e, i) but not for
energetic ions (s = h). For this, we introduce the fluid quantities

ns :=

∫

R3

fs d3v , nsus :=

∫

R3

vfs d3v , ns Es :=

∫

R3

msv
2

2
fs d3v , (2.4)

that are, the particle number density, the particle flux density, and the energy density, re-
spectively. The latter contains a contribution from the mean flow kinetic energy and the kinetic
energy related to the stochastic velocity v′ = v−us relative to the mean flow us. The stochastic
part can be related to the temperature by

3

2
Ts = Es −

ms

2
u2
s . (2.5)

By taking the first three moments of (2.1) in velocity space and using the fact that fh → 0 for
|v| → ∞, one obtains three equations representing transport equations for mass, momentum
and energy, respectively,

∂

∂t
(msns) +∇ · (msnsus) = 0 ,

∂

∂t
(msnsus) +∇ · (msnsu

>
s us) +∇ · Ps − qsns ( E + us ×B ) = Rs ,

∂

∂t

(
ns
ms

2
u2
s +

3

2
nsTs

)
+∇ ·

(
ns
ms

2
u2
s us +

5

2
nsTsus + us · �s + qs

)
− qsns E · us

= Qs + Rs · us ,

(2.6)

(2.7)

(2.8)

where Ps and �s denote the pressure and viscosity tensor, respectively, which are related to the
scalar pressure ps via

Ps := ms

∫

R3

v′ (v′)>fs d3v = ps1 + �s , (2.9)

and the third order moment

qs :=

∫

R3

ms (v′)2

2
v′fs d3v , (2.10)

is the heat flux density. Note that bold symbols normally represent column vectors which
means that in (2.7) the operation usu

>
s results in a 3 × 3 matrix. In (2.6), the right-hand

side (contribution from collision operator) is zero if we deal with collisions that do not change
the number of particles, e.g. by ionization or recombination processes. In (2.7) and (2.8),
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only collisions between different particle species play a role because elastic collisions between
indistinguishable particles of the same species do not change momentum and energy. Hence, in
the expressions for the collisional friction force and heat exchange

Rs :=

∫

R3

msv
′Css′ d

3v , Qs :=

∫

R3

ms(v
′)2

2
Css′ d

3v , (2.11)

respectively, only collision between unlike particles play a role (s′ 6= s).

It is immediately clear that equations (2.6)-(2.8) do not form a closed system of equations
consisting of as many unknowns as equations because the p-th moment equation depends ex-
plicitly on the (p+ 1)-th moment of the distribution function. Finding an appropriate closure is
therefore needed if a macroscopic fluid description is desired. This fluid closure essentially con-
sists of finding adequate relations for the pressure tensor (2.9) and the heat flux density (2.10)
in terms of the lower order moments ns, us and Ts. The way this is done essentially defines the
accuracy of the used fluid model compared to the full kinetic description. In principle, there are
two classes of closure schemes. The more systematic and rigorous one is the class of asymptotic
schemes in which the existence of some small parameter ε� 1 is exploited and the distribution

function is written as fs =Ms + εf
(1)
s +O(ε2). The Maxwellian Ms is given by

Ms(x,v, t) := ns(x, t)

(
ms

2πTs(x, t)

)3/2

exp

[
−ms(v − us(x, t))

2

2Ts(x, t)

]
, (2.12)

and satisfies the moment equations (2.4). The expansion around a Maxwellian is based upon
the fact that any non-Maxwellian distribution function will relax to (2.12) for sufficiently long
times due to thermalizing collisions. The next step is then to formulate a hierarchy of linearized
kinetic equations with the aim to obtain approximate solutions for the higher-order corrections
in the power series in terms of the lower-order ones [84]. A prominent example for this procedure
is the one by Braginskii [85] who used an asymptotic scheme to systematically derive transport
coefficients from a microscopic collisional theory.

The other class of closure schemes, which shall be used in the following, is the one of so-called
truncation schemes, where higher-order moments of the distribution function are simply assumed
to be small and therefore negligible. In fact, the assumption of local thermal equilibrium,
meaning that the distribution function is essentially given by (2.12), greatly simplifies (2.6)-
(2.8) because the viscosity tensor �s = 0 such that the pressure tensor Ps = ps1 is diagonal
with the scalar pressure ps = nsTs being the well-known expression for the pressure of an
ideal gas. Moreover, there is no heat flux density related to a Maxwellian. The concept of
local thermal equilibrium is based on the assumption of high collisionality which is usually
not justified in fusion plasmas. This is, however, in contradiction with the good agreement
of fluid approximations with experimental results related to the macroscopic plasma behavior.
Freidberg [71, 86] argues that at least perpendicular to the magnetic field, the high collisionality
assumption is justified because charged particles are attached to the field lines according to their
gyro-motion and therefore have a strongly reduced mobility in this direction. This is a similar
effect as for collisions. Hence, high collisionality can be assumed in perpendicular direction but
certainly not in parallel direction where particles can move freely and usually have much larger
mean free paths than the system size. After some straightforward manipulations, while using
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the just stated simplifications, (2.6)-(2.8) reduce to

∂ns
∂t

+∇ · (nsus) = 0 ,

msns

[
∂us
∂t

+ (us · ∇) us

]
+∇ps = ρs (E + us ×B) + Rs ,

∂ps
∂t

+∇ · (psus) + (γ − 1) ps∇ · us = Qs ,

(2.13)

(2.14)

(2.15)

which has the form of Euler equations in hydrodynamics for neutral fluids supplemented with
the Lorentz force due to the existence of electromagnetic fields. In (2.15), γ = 5/3 is the heat
capacity ratio of an ideal gas with three spatial degrees of freedom.

As a next step, the two-fluid description for thermal electrons and ions is transformed to
a one-fluid description combined with contributions from the energetic ion species. The first
important assumption in this regard is the one of quasineutrality, meaning that the total charge
density ρ = ρe + ρi + ρh = 0. This assumption is satisfied if the wave frequencies of interest are
much smaller than the electron plasma frequency (ω � Ωpe) such that the electrons have enough
time to respond to any charge separation leading to a formation of an electric field which tries
to cancel the formed charged separation. The second assumption is that the phase velocities
of the considered waves are much smaller than the speed of light (ω/k � c). This results in
a simplification of Ampère’s law (2.2a) by neglecting the displacement current. To obtain a
one-fluid description, we define the bulk mass density and the bulk velocity

ρb :=
∑

s=e,i

msns ≈ mini , ρbU :=
∑

s=e,i

msnsus ≈ miniui , (2.16)

respectively, where the approximations are due to the smallness of the electron mass compared
to the ion mass (me � mi). Taking now the sum of each equation for s = e, i and neglecting the
electron inertia (me → 0) in the momentum equation (2.14) yields

∂ρb

∂t
+∇ · (ρbU) = 0 ,

ρb

[
∂U

∂t
+ (U · ∇) U

]
+∇p = −ρhE + (J− Jh)×B ,

∂p

∂t
+∇ · (pU) + (γ − 1) p∇ ·U = 0 ,

(2.17)

(2.18)

(2.19)

where p = pe + pi is the bulk pressure, J = ρeue + ρiui + ρhuh the total current and Re = −Ri

and Qe = −Qi has been used; a consequence of momentum and energy conservation in elastic
collisions. To close the system of equations, a defining equation for the electric field is needed.
This is obtained from the momentum balance equation for electrons upon neglecting once more
the electron inertia. This leads to a generalized Ohm’s law of the form

E = −ue ×B +
1

ρe
∇pe −

1

ρe
Re

= −
(
ρiui + ρhuh

qini + qhnh

)
×B− 1

ρe
(J×B) +

1

ρe
∇pe −

1

ρe
Re .

(2.20)

The assumption made in ideal MHD is that the last three terms (Hall term, electron pressure
gradient and resistive term) are small compared to the first one. Regarding the first term, we
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have an additional contribution from the energetic ions compared to classical ideal MHD. This
means that the magnetic field is not frozen into the bulk mean velocity but actually into the
center-of mass mean velocity of bulk plasma and energetic ions. However, if one assumes that the
energetic ion mean velocity uh is smaller or at most comparable to the bulk ion mean velocity ui

and that energetic ions are a minority species such that ρh � ρi, these two velocities are almost
the same. This leads to the simplified form

E = −U×B , (2.21)

which is the well-known Ohm’s law used in ideal MHD. Together with the Vlasov equation for
the energetic ions and Maxwell’s equations (2.2) without the displacement current, we finally
end up with the hybrid MHD-Vlasov model

Ideal MHD





∂ρb

∂t
+∇ · (ρbU) = 0 ,

ρb

[
∂U

∂t
+ (U · ∇) U

]
+∇p = ρh (U×B) +

[
1

µ0
(∇×B)− Jh

]
×B ,

∂p

∂t
+∇ · (pU) + (γ − 1) p∇ ·U = 0 ,

∂B

∂t
= ∇× (U×B) , ∇ ·B = 0 ,

(2.22a)

(2.22b)

(2.22c)

(2.22d)

EPs





∂fh

∂t
+ v · ∇fh +

qh

mh
( B×U + v ×B ) · ∇vfh = 0 ,

ρh = qh

∫

R3

fh d3v , Jh = qh

∫

R3

vfh d3v ,

(2.22e)

(2.22f)

composed of ideal MHD for the bulk plasma and Vlasov equations for the energetic ions (EPs).
This model belongs to the class of current-coupling hybrid models which is evident from the fact
that the hot current density Jh appears explicitly in the momentum balance equation (2.22b).
Moreover, it was shown that this model possesses a non-canonical Hamiltonian structure meaning
that it can be derived from a Poisson bracket together with a suitable Hamiltonian [39]. As
already mentioned in the introduction, an alternative modeling approach is formed by the class
of pressure-coupling hybrid models, where a three-species plasma is modeled as a single charged
fluid such that the sums in (2.16) would include the energetic species s = h. This has the
consequence that in the momentum balance equation (2.22b) one would find the gradient of the
EP pressure tensor ∇ · Ph instead of ρh and Jh.

As a next step, let us note some important properties of the model (2.22):

• Conservation of divergence-free constraint for the magnetic field:

∂

∂t
(∇ ·B) = 0 . (2.23)

• Conservation of the total mass:

d

dt
M(t) =

d

dt

(∫

Ω
ρb d3x+mh

∫

Ω

∫

R3

fh d3v d3x

)
= 0 . (2.24)

• Conservation of the total momentum:

d

dt
P(t) =

d

dt

(∫

Ω
ρb U d3x+mh

∫

Ω

∫

R3

vfh d3v d3x

)
= 0 . (2.25)
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• Conservation of the total energy:

d

dt
H(t) =

d

dt

(
1

2

∫

Ω
ρb U

2 d3x+
1

γ − 1

∫

Ω
pd3x

+
1

2µ0

∫

Ω
B2 d3x+

1

2
mh

∫

Ω

∫

R3

v2fh d3v d3x

)
= 0 .

(2.26)

The integrations are performed over some domain Ω ⊂ R3. The first conservation property is
straightforwardly given by Faraday’s law (2.22d) because

∂

∂t
(∇ ·B) = 0 = ∇ · ∂B

∂t
= ∇ · [∇× (U×B) ] = 0 , (2.27)

which is due to the well-known vector calculus identity div curl = 0. Hence, if the magnetic field
is divergence-free at time t = 0 it will remain divergence-free for all times. In order to proof
the energy theorem (2.26), we write the total energy H as the sum of the bulk kinetic energy
HU , the bulk internal energy Hp, the magnetic field energy HB and the energetic ion energy Hh

and calculate the respective time evolutions separately. Terms of the form
∫

Ω∇ · (· · · ) d3x will
vanish because such integrals can be transformed to surface integrals via the divergence theorem
which then vanish if we assume that either nothing flows in or out at the boundary ∂Ω or if
we let the surface go to infinity where all fields must converge to zero. Let us start with the
energies Hp and HB for which we employ integration by parts (IP):

d

dt
Hp =

1

γ − 1

∫

Ω

∂p

∂t
d3x = −

∫

Ω
p∇ ·U d3x

IP
=

∫

Ω
U · ∇p d3x ,

d

dt
HB =

1

µ0

∫

Ω
B · ∂B

∂t
d3x =

1

µ0

∫

Ω
B · [∇× (U×B) ] d3x

IP
= − 1

µ0

∫

Ω
[ (∇×B)×B ] ·U d3x .

(2.28)

(2.29)

In the last step we used the fact that the triple product (U×B)·(∇×B) is invariant under cyclic
permutations. For the bulk kinetic energy we use the identity (U ·∇) U = ∇U2/2−U×(∇×U)
and the fact that terms of the form [ U× (· · · ) ] ·U are equal to zero:

d

dt
HU =

1

2

∫

Ω

∂ρb

dt
U2 d3x+

∫

Ω

(
ρb
∂U

∂t

)
·U d3x

= −1

2

∫

Ω
U2∇ · (ρbU) d3x− 1

2

∫

Ω
ρb∇U2 d3x−

∫

Ω
U · ∇p d3x

+
1

µ0

∫

Ω
[ (∇×B)×B ] ·U d3x−

∫

Ω
(Jh ×B) ·U d3x .

(2.30)

The first two terms cancel each other if integration by part is performed on the first term. The
third and fourth term cancel with (2.28) and (2.29), respectively, which means that we obtain
the intermediate result

d

dt
(HU +Hp +HB) = −

∫

Ω
(Jh ×B) ·U d3x , (2.31)
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which represents the energy exchange between the bulk plasma and the energetic ions. Lastly,
the time evolution of the energetic ion energy is given by the Vlasov equation and reads

d

dt
Hh =

1

2
mh

∫

Ω

∫

R3

v2∂fh

∂t
d3v d3x

= −1

2
mh

∫

Ω

∫

R3

v2

[
v · ∇fh +

qh

mh
( B×U + v ×B) · ∇vfh

]
d3v d3x .

(2.32)

The first term v2 v · ∇fh can be written as ∇ · (v2 vfh) (x and v are independent variables) and
therefore vanishes after integrating over x. The third terms vanishes after integration by parts
in v because ∇v · (v×B) = 0. Performing integration by parts in v as well on the second term
and noting that ∇v · [ v2 (B×U) ] = 2 v (B×U) leads to

d

dt
Hh = qh

∫

Ω

∫

R3

(B×U) · vfh d3v d3x =

∫

Ω
(Jh ×B) ·U d3x , (2.33)

where the definition of the current density (2.22f) and once more the invariance of the vector
triple product under cyclic permutation has been used in the last step. Hence, (2.33) cancels
(2.31) and in summary we showed that

d

dt
H =

d

dt
(HU +Hp +HB +Hh) = 0 . (2.34)

The proofs for the conservation of the total mass (2.24) and the total momentum (2.25) work
in a similar fashion which is why they are not presented explicitly.

2.2 Normalization

In order to ”eliminate”physical constants like the vacuum permeability µ0 and because in numer-
ical simulations that are based on floating point operations it is beneficial to work with quantities
that are of order one, we normalize all unknowns in (2.22) to some characteristic value which
we denote by bars. In particular, length scales are normalized to some characteristic length L̄
and time scales to the Alfvén time τ̄A = L̄/v̄A:

x = x′ L̄ ⇒ ∇ =
1

L̄
∇′ ,

t = t′ τ̄A ⇒ ∂

∂t
=

1

τ̄A

∂

∂t′
, v̄A =

B̄√
µ0Abmpn̄b

,

B = B′B̄ , ρb = n′bAbmpn̄b , p = p′
B̄2

µ0
, U = U′v̄A ,

fh = f ′h
n̄h

v̄3
A

, ρh = Zhe n
′
hn̄h =: Zhe ρ

′
hn̄h , Jh = Zhe n

′
hU

′
h n̄hv̄A =: ZheJ′h n̄hv̄A .

More specifically, we choose L̄ = 1 m and B̄ = 1 T which are typical orders of magnitude of
present fusion devices. Other works often use L̄ = R0 and B̄ = BT0 instead, where R0 is the
major radius of the considered toroidal device and BT0 the magnetic field at the magnetic axis.
However, in this work, we do not want to restrict ourselves to toroidal geometries and hence keep
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the former choice. Plugging the given normalizations in (2.22) yields the normalized version

Ideal MHD





∂n′b
∂t′

+∇′ · (n′bU′ ) = 0 ,

n′b

[
∂U′

∂t′
+ (U′ · ∇′ ) U′

]
+∇′p′ = νh

Zh

Ab
κ ρ′h (U′ ×B′ )

+

[
(∇′ ×B′ )− νh

Zh

Ab
κJ′h

]
×B′ ,

∂p′

∂t′
+∇′ · (p′U′ ) + (γ − 1) p′∇′ ·U′ = 0 ,

∂B′

∂t′
= ∇′ × (U′ ×B′) , ∇′ ·B′ = 0 ,

(2.35a)

(2.35b)

(2.35c)

(2.35d)

EPs





∂f ′h
∂t′

+ v′ · ∇′f ′h +
Zh

Ah
κ ( B′ ×U′ + v′ ×B′) · ∇v′f

′
h = 0 ,

ρ′h =

∫

R3

f ′h d3v′ , J′h =

∫

R3

f ′hv′ d3v′ ,

(2.35e)

(2.35f)

i.e. the mass continuity, pressure and induction equation in the MHD system remain ”un-
changed”. In the momentum balance equation (2.35b) and the Vlasov equation (2.35e), the two
new important dimensionless parameters νh := n̄h/n̄b and κ := Ω̄cp τ̄A (κ ∼ √Ab n̄b) are the
ratio of characteristic hot/bulk number densities and the product of proton cyclotron frequency
Ω̄cp = eB̄/mp with the Alfvén time, respectively. For fusion plasmas one typically has νh � 1
(low-density energetic particles) and κ� 1 (Alfvén frequencies much smaller than ion cyclotron
frequency). Moreover, if the conserved Hamiltonian H = H′H̄ in (2.26) is normalized to the
characteristic energy H̄ = Abmp n̄b L̄

3 v̄2
A, we find the normalized Hamiltonian

H′(t) =
1

2

∫

Ω′
n′b (U ′)2 d3x′ +

1

γ − 1

∫

Ω′
p′ d3x′ +

1

2

∫

Ω′
(B′)2 d3x′

+
1

2
νh
Ah

Ab

∫

Ω′

∫

R3

f ′h(v′)2 d3v′ d3x′ .

(2.36)

In what follows, we shall work with the dimension-less equations (2.35)-(2.36). We therefore
drop all primes in order to improve readability (e.g. U′ → U or f ′h → fh). As a consequence of
the chosen normalization, if ones wants to convert back to physical (SI) units, one just has to
specify values for the bulk mass number Ab (e.g. Ab = 1 for a hydrogen bulk plasma or Ab = 2
for a deuterium bulk plasma) and the characteristic bulk number density n̄b since this sets the
value for the characteristic Alfvén velocity v̄A.

2.3 Linearization of the MHD part

As mentioned in the introduction, we shall neglect MHD non-linearities in this thesis and focus
on the coupling to the kinetic ions since this is enough to describe Alfvén eigenmodes and their
linear and non-linear interactions with EPs. Therefore, the MHD equations are linearized about
a zero-flow equilibrium characterized by the ansatzes nb = nb,eq + ñb, U = Ũ, p = peq + p̃ and
B = Beq + B̃, where the quantities with tildes are small perturbations of the equilibrium state
denoted by the subscript (·)eq. Plugging these ansatzes into the normalized model equations
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and neglecting MHD non-linearities yields

Ideal MHD





nb,eq
∂Ũ

∂t
+∇p̃ = (∇× B̃)×Beq + Jeq × B̃

+ νh
Zh

Ab
κ (ρhŨ− Jh)× (Beq + B̃) ,

∂p̃

∂t
+ (γ − 1)∇ · (peq Ũ) + peq∇ · Ũ = 0 ,

∂B̃

∂t
= ∇× ( Ũ×Beq ) , ∇ · B̃ = 0 ,

(2.37a)

(2.37b)

(2.37c)

EPs





∂fh

∂t
+ v · ∇fh +

Zh

Ah
κ
[

(Beq + B̃)× Ũ

+v × (Beq + B̃)
]
· ∇vfh = 0 ,

ρh =

∫

R3

fh d3v , Jh =

∫

R3

fhv d3v ,

(2.37d)

(2.37e)

where Jeq = ∇ × Beq is the equilibrium current. The mass continuity equation (2.35a) is
removed from the system because in the linearized momentum balance equation (2.37a) only
the equilibrium number density nb,eq appears. A consequence of the linarization is, however,
that the Hamiltonian H given in (2.36) is no longer a conserved quantity. Instead, the new
quantity

H̃(t) :=
1

2

∫

Ω
nb,eq Ũ

2 d3x+
1

γ − 1

∫

Ω
p̃ d3x+

1

2

∫

Ω
B̃2 d3x

+
1

2
νh
Ah

Ab

∫

Ω

∫

R3

fhv
2 d3v d3x ,

(2.38)

evolves in time as

dH̃
dt

=

∫

Ω
(Jeq ×B) ·U d3x−

∫

Ω
(peq − p̃)∇ ·U d3x . (2.39)

Consequently, H̃ is only conserved for incompressible waves (∇·U = 0) and if additionally, there
is no equilibrium current (Jeq = 0) or the perturbed velocity field is directed perpendicular to
the Hall term Jeq×B. The former is particularly true for shear Alfvén waves. It should be noted,
however, that the energy balance of the energy exchange between the bulk and the energetic
ions is still intact. Finally, as in Section 2.2, the tildes shall be dropped in what follows in order
to improve readability (Ũ → U, p̃ → p and B̃ → B). Model (2.37) is the final model which is
considered in this thesis.

2.4 Linear dispersion relation for a uniform plasma

To better understand the basics physics contained in the hybrid model (2.37), we derive in the
following a linear dispersion relation for the case of an infinitely extended, uniform, homoge-
neously magnetized bulk plasma and a spatially uniform energetic ion distribution function. The
result will also serve for code verification by comparing simulations results with the analytical
expectations obtained from the dispersion relation.
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For this purpose, all remaining non-linear terms in (2.37) are linearized in the same manner
as in Section 2.3, i.e. we set fh = fh,eq + f̃h and neglect non-linear terms in (2.37a) and
(2.37d). Moreover, because we consider a spatially uniform energetic ion distribution function,
fh,eq = fh,eq(v) is a function of velocity coordinates only. Finally, since all the information
regarding the bulk and energetic number densities is encoded in the νh parameter in case of
spatially homogeneous densities, we can set without loss of generality nb,eq = 1 and ρh,eq =∫

R3 fh,eq d3v = 1. The fully normalized momentum balance equation (2.37a) and Vlasov equation
(2.37d) then read

∂U

∂t
+∇p = (∇×B)×Beq + νh

Zh

Ab
κ (U×Beq)− νh

Zh

Ab
κ (Jh,eq ×B + Jh ×Beq) ,

∂fh

∂t
+ v · ∇fh +

Zh

Ah
κ (v ×Beq ) · ∇vfh = −Zh

Ah
κ ( Beq ×U + v ×B ) · ∇vfh,eq ,

Jh =

∫

R3

vfh d3v ,

(2.40)

(2.41)

(2.42)

where the tilde for the perturbed distribution function has been dropped (f̃h → fh). Regarding
the equilibrium EP current, the assumptions made up to this point imply Jh,eq = const. ≡ v0.
However, if we align the coordinate system in a way that the magnetic field points in the z-
direction (Beq = B0 ez), the equilibrium EP current must also point in z-direction (Jh,eq = v0 ez)
in order to satisfy the equilibrium condition Jh,eq × Beq = 0. Lastly, we only consider wave
propagation parallel to the magnetic field. Hence, the ansatz for all perturbed quantities is
Â ei(kz−ωt) for A = U, p, B and fh such that derivatives can be replaced according to ∂/∂t →
−iω and ∇ → ik ez.

The first step in the derivation of the dispersion relation is to note that the equilibrium
distribution function fh,eq must be rotationally symmetric around the magnetic field in velocity
space, i.e. fh,eq = fh,eq(v⊥, v‖) if cylindrical coordinates v = (v⊥ cos vθ, v⊥ sin vθ, v‖) are used.
This is a direct consequence of the equilibrium Vlasov equation (v ×Beq) · ∇vfh,eq = 0 which
can only be satisfied for ∂fh,eq/∂vθ = 0. Then the solution of the linearized Vlasov equation
(2.41) is given by

f̂h =− Zh

Ah
κ
Ĝfh,eq

Ω+Ω−

[
i(ω − kv‖) cos vθ +

B0Zh

Ah
κ sin vθ

]
Êx

− Zh

Ah
κ
Ĝfh,eq

Ω+Ω−

[
i(ω − kv‖) sin vθ −

B0Zh

Ah
κ cos vθ

]
Êy

− Zh

Ah
κi

1

ω − kv‖
∂fh,eq

∂v‖
Êz ,

(2.43)

where Ω± = ω − kv‖ ±B0Zhκ/Ah and Ê = Beq × Û. For a detailed derivation of this result see
[83] for instance. The differential operator

Ĝ :=
∂

∂v⊥
+
k

ω

(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)
, (2.44)

can be seen as a measure for the anisotropy of the distribution function in velocity space with
respect to the direction of the magnetic field Beq.

Our aim is to express the linearized momentum balance equation (2.40) solely in terms
of the perturbed velocity Û. Therefore, we have to calculate the current Ĵh induced by the
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perturbed distribution function (2.43) which can then again be used to calculate the interaction
with the magnetic field (both background and perturbed) in the momentum balance equation.
Using d3v = v⊥dv⊥dvθ dv‖ in cylindrical coordinates, we obtain from (2.42) and (2.43) the three
EP current components

Ĵh,x = −Zh

Ah
κπi

∫
v⊥Ĝfh,eq(ω − kv‖)

Ω+Ω−
d2v Êx +

Z2
h

A2
h

κ2πB0

∫
v⊥Ĝfh,eq

Ω+Ω−
d2v Êy ,

Ĵh,y = −Zh

Ah
κπi

∫
v⊥Ĝfh,eq(ω − kv‖)

Ω+Ω−
d2v Êy −

Z2
h

A2
h

κ2πB0

∫
v⊥Ĝfh,eq

Ω+Ω−
d2v Êx ,

Ĵh,z = −Zh

Ah
κ2πi

∫
1

ω − kv‖
∂fh,eq

∂v‖
d2v Êz ,

(2.45)

(2.46)

(2.47)

where the integration over vθ has been carried out such that d2v = v⊥dv⊥dv‖ in (2.45)-(2.47).
By introducing the anti-symmetric conductivity tensor σh this can be written in a compact way
similar to classical Ohm’s law:



Ĵh,x

Ĵh,y

Ĵh,z


 =



σh,xx σh,xy 0

−σh,xy σh,xx 0

0 0 σh,zz






Êx

Êy

Êz


 = B0



σh,xy −σh,xx 0

σh,xx σh,xy 0

0 0 0






Ûx

Ûy

Ûz


 . (2.48)

Consequently, there is no parallel current which is due to the fact that there is no parallel electric
field in ideal MHD (Êz = 0).

Besides the induced current density Ĵh, we also need the responses of the bulk pressure and
the magnetic field on the velocity field perturbation. These are given by the pressure equation
(2.37b) and Faraday’s law (2.37c), respectively, and read

p̂ =
γp0k

ω
Ûz ≡

γp0k

ω
Û‖ , B̂ = −B0k

ω



Ûx

Ûy

0


 ≡ −B0k

ω
Û⊥ , (2.49)

where peq = p0 = const.. Plugging (2.48) and (2.49) in the linearized momentum balance
equation (2.40) finally leads to

ω2 Û− γp0 k
2 Û‖ −B2

0 k
2 Û⊥ = i νh ω

ZhB0

Ab
κ (Û× ez)

− i νh ω
ZhB0

Ab
κ ez ×

(
v0

B0
B̂− Ĵh

)
.

(2.50)

Here, the contributions from the energetic ions are written on the right-hand side in order to
highlight the differences compared to the ”standard” MHD terms on the left hand side that
represent sound and shear Alfvén waves. In (2.50) B̂ and Ĵh can be eliminated with relations
(2.49) and (2.45)-(2.47), respectively, which yields the linear system




A iC 0

−i C A 0

0 0 S






Ûx

Ûy

Ûz


 = 0 ,

A = ω2 −B2
0 k

2 + iνh ω
ZhB

2
0

Ab
κσh,xx ,

C = −νh ω
ZhB0

Ab
κ

+ νh
ZhB0

Ab
κ v0 k + νh ω

ZhB
2
0

Ab
κσh,xy ,

S = ω2 − γp0 k
2 .

(2.51)
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The structure of this linear system reveals three types of waves: First, longitudinal sound waves
with the same dispersion relation ω2 = γp0 k

2 as for the case without energetic ions. Second,
right-handed circularly polarized waves characterized by i Ûx/Ûy = +1 and third, left-handed
circularly polarized waves characterized by i Ûx/Ûy = −1. The latter two constitute a modifi-
cation of the ”standard” shear Alfvén waves whose dispersion relation ω2 = B2

0k
2 is recovered

for νh = 0. In this case, C = 0 in (2.51) such that there is no coupling between different
velocity components. However, the presence of energetic ions leads to the dispersion relation
D±(k, ω) = 0, where

D±(k, ω) = ω2 −B2
0k

2 ± νh ω
ZhB0

Ab
κ∓ νh

ZhB0

Ab
κ v0 k + νh ω

ZhB
2
0

Ab
κ (iσh,xx ∓ σh,xy)

= ω2 −B2
0k

2 ± νh ω
ZhB0

Ab
κ∓ νh

ZhB0

Ab
κ v0 k + νh

ωZ2
hB

2
0

AhAb
κ2π

∫
v⊥Ĝfh,eq

Ω±
d2v .

(2.52)

This results is still fairly general because we have not further specified the distribution function
yet. In order to make predictions about stability we proceed the calculation for the case of an
isotropic Maxwellian distribution function with a shift along the magnetic field:

fh,eq =
1

π3/2v3
th

exp

[
−

(v‖ − v0)2 + v2
⊥

v2
th

]
⇒ Ĝfh,eq =

2v⊥
v2

th

(
kv0

ω
− 1

)
fh,eq . (2.53)

This distribution function could for instance model a beam of energetic ions that is injected
externally into the bulk plasma. Plugging (2.53) in the last term in (2.52) and carrying out the
integral over the perpendicular velocity components results in

π

∫ ∞

−∞

∫ ∞

0

v2
⊥Ĝfh,eq

Ω±
dv⊥dv‖ =

2

v2
th

(
kv0

ω
− 1

)
π

∫ ∞

−∞

∫ ∞

0

v3
⊥

Ω±
fh,eq dv⊥dv‖

=
1

vth

(
kv0

ω
− 1

)
1√
π

∫ ∞

−∞

1

Ω±
exp

[
−

(v‖ − v0)2

v2
th

]
dv‖ .

(2.54)

For the remaining integral over the parallel velocity we make the substitution u = (v‖ − v0)/vth

such that (2.54) becomes

1

ω

ω − kv0

kvth

1√
π

∫ ∞

−∞
e−u

2 1

u− (ω − kv0 ±B0Zhκ/Ah)/kvth︸ ︷︷ ︸
=:ξ±

du ≡ 1

ω

ω − kv0

kvth
Z(ξ±) , (2.55)

where Z is the plasma dispersion function [87] defined by

Z(ξ) =
√
πe−ξ

2
(i− erfi(ξ)) , (2.56)

and erfi denotes the complex error function. This finally leads to the dispersion relation

D±(k, ω) = ω2 −B2
0k

2 ± νh ω
ZhB0

Ab
κ∓ νh

ZhB0

Ab
κ v0 k + νh

Z2
hB

2
0

AhAb
κ2ω − kv0

kvth
Z(ξ±) = 0 . (2.57)

For fixed k, this equation must be solved for the complex frequency ω = ωr + iγ, where ωr =
Re(ω) ∈ R is the real oscillation frequency and γ = Im(ω) ∈ R is the corresponding growth rate
(γ > 0), respectively damping rate (γ < 0).
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Beq v‖

v⊥

B

U

E = Beq ×Uv‖ ×B

energy gain (v · E > 0)

Beq v‖

v⊥

B

U

E = Beq ×Uv‖ ×B

energy loss (v · E < 0)

Figure 2.1: Wave-particle interaction between a circularly polarized wave and an ion that moves
at the resonance velocity v‖ = vR along the background magnetic field Beq. Due to a Doppler-
shift, there is a constant phase between the particle and the wave fields. On the left, the phase
is such that a particle gains energy (v · E > 0) while on the right, the particle losses energy
(v ·E < 0).

One approach is to solve (2.57) numerically. In this work, this is achieved with the classical
Newton method for root finding because calculating the analytical derivative of (2.57) is unprob-
lematic. This is due to the fact that the analytical derivative of the plasma dispersion function
Z is available [83]. However, in actual applications of the Newton method, it was observed that
reaching convergence and finding a solution is quite sensitive to the chosen initial guess. The
following algorithm is proposed to deal with this issue: one starts with a rather large value for
the wave number k in a region where it is assumed that the additional terms in (2.57) due to
the energetic ions are small (far away from resonance) and thus takes as an initial guess the
solution of the ”standard” shear Alfvén wave which is simply given by ω = B0 k. If a solution is
found (which is usually the case), k is reduced by a small step and the solution of (2.57) from
the previous k is taken as an initial guess. This procedure is then repeated for arbitrary small
wave numbers k → 0.

An alternative approach is to solve (2.57) analytically in an approximate way under the
assumption of weak growth or damping (| γ | � ωr). This is expected to be the case for low EP
densities (νh � 1). Performing a Taylor expansion of the dispersion function D±(k, ωr + iγ)
around ωr then yields the explicit solution for the growth/damping rate

γ(k) ≈ − D±i (k, ωr)

∂D±r (k, ωr)/∂ωr
= − 1

2B0k
νh
Z2

hB
2
0

AhAb
κ2B0 − v0

vth

√
π exp

(
−(vR(k)− v0)2

v2
th

)
, (2.58)

where D±r and D±i are the real and imaginary part of (2.57), respectively. Moreover, ωr ≈ B0 k
has been used. It was observed in practice that this analytical result agrees well with numerical
solutions of (2.57) for νh . 1%.

Looking at (2.58), it is immediately evident that there is a stability transition at v0 = B0,
i.e. waves are damped (γ < 0) for v0 < B0 and growing (γ > 0) for v0 > B0. Moreover, in above
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Figure 2.2: Solution of the dispersion relation (2.57) for right-handed circularly polarized waves
(+) and four different thermal velocities. Fixed parameters are Ab = 2 (deuterium bulk plasma),
n̄b = 1× 1019 m−3, B0 = 1.5, Ah = 4, Zh = 2 (α-particles) and νh = 1 %.

expression the velocity

vR(k) = B0

(
1± Zhκ

Ahk

)
, (2.59)

is the velocity of resonant particles which is essentially states that the Doppler-shifted wave
frequency ωr−kvR matches the EP cyclotron frequency Ωch = ZhB0κ/Ah. Qualitatively, this can
be understood as follows: in order for a particle to efficiently resonate with a circularly polarized
wave, there must be a constant phase between the wave magnetic field and the perpendicular
velocity of the particle. Since a positively charged ion gyrates in a left-handed sense around
a magnetic field line, this is only possible if the ion ”sees” a left-handed circularly polarized
wave. This in turn is the case if either the ion is slower than a left-handed circularly polarized
wave (vR < vph ≈ B0) or faster than a right-handed circularly polarized wave (vR > vph ≈ B0)
because an ion that is faster than the wave ”sees” the wave field circulating in an opposite sense
compared to an observer in the laboratory frame. The latter is also called anomalous cyclotron
interaction because a left-handed ion interacts with a right-handed circularly polarized wave
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[88]. If the resonance condition is satisfied, the principle wave-particle interaction mechanisms
are shown in Figure 2.1. Depending on the phase shift between the wave’s electric field and and
the particle’s perpendicular velocity, there is either a gain in energy (left-hand side) or a loss in
energy (right-hand side). Depending on the gradients of the EP distribution function in velocity
space, this then either leads to a net energy transfer from the wave to the particles or vice versa.
By plugging (2.59) in (2.58), it is also easily verified that in case of instability (v0 > B0), the
growth rate of the R-wave (+) is always larger than the one of the L-wave (-).

Finally, Figure 2.2 shows the growth/damping rate of numerical solutions of (2.57) in the
k-v0-plane for the case of a deuterium bulk plasma (Ab = 2, n̄b = 1× 1019 m−3), α-particles
(Ah = 4 and Zh = 2) as the energetic component and right-handed circulary polarized waves
(+). Moreover, B0 = 1.5 and the thermal velocity of the α-particles is taken to be vth =
{0.5, 1.0, 1.5, 2.0}. One can show that it is quite difficult to satisfy (2.59) for typical fusion
parameters (Ab = 2, n̄b = 1× 1020 m−3 ⇒ v̄A ≈ 1.5× 106 m/s) because in this case, the
coupling parameter κ ≈ 62, which shows the strong separation of Alfvénic time scales and gyro-
motion times scales (recall that κ = Ω̄cp τ̄A, see Section 2.2). Hence, for a typical magnetic field
strength B0 = 3.0 and for reasonable k-values for which the corresponding wavelength 2π/k is
well above the α-particles gyro-radius (k < 10), the resonance velocity v‖ ≈ 12 is very large
and almost in the relativistic regime. Hence, satisfying (2.59) requires a reduction of the bulk
number density n̄b down to a point where reasonable values for k lead to reasonable values for
the resonance velocity v‖ well within the Maxwellian. Reducing n̄b by one order of magnitude to
n̄b = 1× 1019 m−3, as in Figure 2.2, leads to κ ≈ 20 such that the resonance velocity v‖ ≈ 2B0

for k = 10.





Chapter 3

Model discretization and implementation

3.1 Basic concepts of differential geometry in 3d

Since the framework of finite element exterior calculus is highly based on concepts form differ-
ential geometry, we shall first give an overview about the needed notions and terminologies. We
choose a physicist’s point of view rather than the rigorous one of a mathematician because in
this thesis we are mainly interested in the applications of these concepts. However, we refer the
interested reader to e.g. [89] for a thorough introduction to differential geometry.

In principle, we are concerned with an initial-boundary-value problem on a subset of the
three-dimensional space which we call the physical domain Ω ⊂ R3. Standard Cartesian coor-
dinates on this domain are denoted by x := (x, y, z) ∈ Ω. However, especially when it comes
to complicated geometries, it is much more convenient to work with more general curvilinear
coordinates η := (s, χ, ϕ) ∈ Ω̂. The domain Ω̂ on which these coordinates live we call the logical
domain and the associated coordinates η the logical coordinates. We choose the logical domain
to be the unit cube Ω̂ = [0, 1]3. The physical domain is the image of the logical domain under
the mapping

F : Ω̂→ Ω, (s, χ, ϕ) 7→ (x, y, z) = F (s, χ, ϕ) , (3.1)

which we assume for the moment to be smooth and invertible everywhere. The latter is not
strictly true for polar-like coordinates. However, this difficulty and a proposed solution will be
the topic of Chapter 5. Examples for (3.1) are classical cylindrical or spherical coordinates but
much more general (even not analytical) mappings are possible. An example which is of special
interest in fusion research in depicted in Figure 3.1, where the the logical domain is shown on the
left and the physical domain on the right. In this example, the coordinates (s, χ) parameterize
the poloidal cross-section of a toroidal domain such that s can be identified with a radial-like
coordinate, χ with an angle-like coordinate in the poloidal plane and ϕ with the (normalized)
toroidal angle. In fact, for the remainder of this thesis, we assume the χ and ϕ coordinate to be
angle-like, i.e. periodic.

The most basic objects related to the mapping (3.1) are the Jacobian matrix DF , the metric
tensor G and its determinant g defined as

DF :=




∂x

∂s

∂x

∂χ

∂x

∂ϕ
∂y

∂s

∂y

∂χ

∂y

∂ϕ
∂z

∂s

∂z

∂χ

∂z

∂ϕ



, G := DF>DF , g := detG , (3.2)

29
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Figure 3.1: Illustration of the mapping F : Ω̂ → Ω (3.1) form the logical unit cube to the
computational domain of interest (physical domain). For better visibility only half of the torus
is shown.

respectively. It is easily verified that
√
g = |detDF | and the assumption on the mapping being

invertible everywhere implies
√
g > 0 everywhere. The columns of DF can be used to define

local basis vectors which are tangent to the mapping’s coordinate lines. A vector field expressed
in this basis is called a contra-variant representation. Hence, the three components

V = V(x) = [Vx(x), Vy(x), Vz(x) ]> , (3.3)

of a vector field written in the standard Cartesian basis {ex, ey, ez} can be represented as well

as V(F (η)) = DF V̂(η), where V̂ are contra-variant components which are functions of the
logical coordinates η rather than the Cartesian coordinates x. In what follows, whenever we
talk about vector fields, we shall use the hat notation in combination with upper-case bold roman
characters to denote contra-variant components which are functions of the logical coordinates. In
contrast to that, from now on, upper-case bold roman characters without a hat denote Cartesian
components which are functions of the Cartesian coordinates as in (3.3) (the only exception
is the lower-case bold roman character n = n(x) for a surface normal vector. The contra-
variant representation if of course not the only possible one. Another option is to represent a
vector field in the dual basis composed of the rows of the inverse Jacobian matrix DF−1. This
representation is called co-variant and we have V(F (η)) = DF−>V1(η), where DF−> denotes
the inverse transposed Jacobian matrix and V1 are co-variant components or components of
a differential 1-form. A third representation is given by V(F (η)) = DF V2(η)/

√
g, where

V2 are the components of a pseudo-vector or components of a differential 2-form. We shall
use the superscripts ()1 and ()2 in combination with capital bold roman symbols to denote
components of differential 1-forms and 2-forms, respectively, which are always functions of the
logical coordinates. Scalar fields f = f(x) in turn can be represented in two ways: First, a
scalar field can be transformed via f(F (η)) = f̂(η) = f0(η) yielding a differential 0-form f0.
Second, a scalar field can be transformed via f(F (η)) = f3(η)/

√
g yielding the component

of a differential 3-form f3. Hence, scalar fields without a hat are functions of the Cartesian
coordinates whereas scalar field with a hat are functions of the logical coordinates. Moreover,
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Table 3.1: Summary of pull-back and push-forward transformations between generic scalar-
and vector-valued functions f = f(x) and V = V(x), respectively, and differential k-forms
(0 ≤ k ≤ 3) under the map F : Ω̂→ Ω, η 7→ x = F (η).

pull-back push-forward

0-form f0(η) = f(F (η)) f(F (η)) = f0(η)

1-form
(co-variant)

V1 =



V 1

1 (η)

V 1
2 (η)

V 1
3 (η)


 = DF>



Vx(F (η))

Vy(F (η))

Vz(F (η))






Vx(F (η))

Vy(F (η))

Vz(F (η))


 = DF−>



V 1

1 (η)

V 1
2 (η)

V 1
3 (η)




2-form
(pseudo-
vector)

V2 =



V 2

1 (η)

V 2
2 (η)

V 2
3 (η)


 =
√
g DF−1



Vx(F (η))

Vy(F (η))

Vz(F (η))






Vx(F (η))

Vy(F (η))

Vz(F (η))


 =

1√
g
DF



V 2

1 (η)

V 2
2 (η)

V 2
3 (η)




3-form f3(η) =
√
g f(F (η)) f(F (η)) =

1√
g
f3(η)

vector field
(contra-
variant)

V̂ =



V̂1(η)

V̂2(η)

V̂3(η)


 = DF−1



Vx(F (η))

Vy(F (η))

Vz(F (η))






Vx(F (η))

Vy(F (η))

Vz(F (η))


 = DF



V̂1(η)

V̂2(η)

V̂3(η)




we use the superscripts ()0 and ()3 to denote a differential 0-form and the component of a
differential 3-forms, respectively, which are always functions of the logical coordinates. Table
3.1 summarizes the most important transformation formulae between components of differential
k-forms. We refer to them as pull-back (Ω→ Ω̂) and push-forward (Ω̂→ Ω) operations.

We remark that although the distinction between the components of differential k-forms on
the one hand and their basis on the other hand is an important concept in differential geometry,
we shall sometimes use the term ”differential k-form” for quantities which are strictly speaking
just the components and not the entire form consisting of the components and the basis. This
is because the relevant information needed to perform actual calculations is encoded entirely in
the components.

The introduced transformation formulae of differential k-forms are of course not random
but follow from the fact that k-forms can be integrated over a k-dimensional manifold, i.e.
components of differential k-forms can be used to conveniently calculate line integrals (1-forms),
surface integrals (2-forms) and volume integrals (3-forms) because

∫

Cµ

V · dL =





∫ s2

s1

V 1
1 (s, χ0, ϕ0) ds ,

∫ χ2

χ1

V 1
2 (s0, χ, ϕ0) dχ ,

∫ ϕ2

ϕ1

V 1
3 (s0, χ0, ϕ) dϕ ,

∫

Sµ

V · dS =





∫ χ2

χ1

∫ ϕ2

ϕ1

V 2
1 (s0, χ, ϕ) dχdϕ ,

∫ s2

s1

∫ ϕ2

ϕ1

V 2
2 (s, χ0, ϕ) dsdϕ ,

∫ s2

s1

∫ χ2

χ1

V 2
3 (s, χ, ϕ0) ds dχ .

(3.4)
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In (3.4), Cµ (µ = 1, 2, 3) are curves along the coordinate lines which result if the µ-th logical
coordinate is varied while the other two are fixed, Sµ (µ = 1, 2, 3) are surfaces which result if the
µ-th logical coordinate is fixed while the other two are varied. For volume integrals over scalar
fields we similarly have

∫

V
f dV =

∫ s2

s1

∫ χ2

χ1

∫ ϕ2

ϕ1

f3(s, χ, ϕ) ds dχdϕ , (3.5)

where V is a finite volume which results if all three logical coordinates are varied in some finite
interval. Consequently, differential forms ”swallow” the geometric information introduced by the
coordinate transformation (3.1) in its components in a way that integrals can be calculated in
the same way as in Cartesian space.

The differential operators grad, curl and div transform as

∇f = DF−> ∇̂f0 ,

∇×V =
1√
g
DF ∇̂ × (G V̂) =

1√
g
DF ∇̂ ×V1 ,

∇ ·V =
1√
g
∇̂ · (√g V̂) =

1√
g
∇̂ ·V2 ,

(3.6a)

(3.6b)

(3.6c)

where the operators

∇ :=

[
∂

∂x

∂

∂y

∂

∂z

]>
, ∇̂ :=

[
∂

∂s

∂

∂χ

∂

∂ϕ

]>
, (3.7)

act on Cartesian and logical coordinates, respectively. From (3.6) it is immediately evident
that the gradient acts on 0-forms and transforms as a 1-form, the curl acts on 1-forms and
transforms as a 2-form, and the divergence acts on 2-forms and transforms as a 3-form (compare
the right-hand sides of (3.6) with the push-forward operations in Table 3.1).

Finally, we define the L2-scalar products

( f0, h0 ) 0 :=

∫

Ω̂
f0 h0√g dsdχdϕ ,

(V1,W1) 1 :=

∫

Ω̂
(V1)>G−1 W1√g ds dχdϕ ,

(V2,W2) 2 :=

∫

Ω̂
(V2)>GW2 1√

g
dsdχdϕ ,

( f3, h3 ) 3 :=

∫

Ω̂
f3 h3 1√

g
dsdχdϕ ,

(3.8a)

(3.8b)

(3.8c)

(3.8d)

which take the components of two k-forms as an input and produce a real number. The met-
ric coefficients in (3.8) result from pulling back the two input functions to logical space and
transforming the volume element dV = dx dy dz according to dV =

√
g ds dχdϕ. The scalar
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products (3.8) allow for the definition of Sobolev spaces of differential forms:

V 0 :=

{
f0 =

1∑

k=0

f0
k (s, χ)Fnk (ϕ) , ( f0, f0 ) 0 <∞ , ( ∇̂f0, ∇̂f0 ) 1 <∞

}
,

V 1 :=

{
V1 =

1∑

k=0

V1
k(s, χ)Fnk (ϕ) , ( V1,V1 ) 1 <∞ , ( ∇̂ ×V1, ∇̂ ×V1 ) 2 <∞

}
,

V 2 :=

{
V2 =

1∑

k=0

V2
k(s, χ)Fnk (ϕ) , ( V2,V2 ) 2 <∞ , ( ∇̂ ·V2, ∇̂ ·V2 ) 3 <∞

}
,

V 3 :=

{
f3 =

1∑

k=0

f3
k (s, χ)Fnk (ϕ) , ( f3, f3 ) 3 <∞

}
,

(3.9a)

(3.9b)

(3.9c)

(3.9d)

where we already restricted ourselves to a single Fourier mode in toroidal (ϕ) direction. This is
the case treated throughout this thesis. Functions with more general dependencies in toroidal
direction are in principle possible in the definition of the spaces (3.9), but here we only allow
for functions which are a linear combination of the real Fouier basis functions Fn0 = cos(2πnϕ)
and Fn1 = sin(2πnϕ) with n ∈ Z being the toroidal mode number.

In the literature, these spaces are often referred to as H1(Ω̂), H(curl, Ω̂), H(div, Ω̂) and
L2(Ω̂), respectively and have the meaning of minimal regularity constraints in different direc-
tions. For instance, a function to be an element of V 1 must not have tangential discontinuities
while a function to be an element of V 2 must not have normal discontinuities (relative to the
coordinate lines). In contrast to that, an element in V 3 can in principle have discontinuities in
all directions. Finally, the spaces (3.9) form a so-called differential cochain complex (de Rham
complex):

V 0 grad−−−→ V 1 curl−−→ V 2 div−−→ V 3 . (3.10)

This means that the previous operator maps into the kernel of the next operator which is due
to the well-known vector calculus identities curl grad = 0 and div curl = 0, where grad = ∇̂,
curl = ∇̂× and div = ∇̂·.

3.2 Model weak formulation with differential forms

The first step to obtain a weak formulation which is suitable for a discretization within the FEEC
framework is to write the model equations in terms of components of differential forms. This is
obtained by using the push-forward transformation formulae in Table 3.1 and the transformation
formulae for differential operators (3.6). An important question is, however, which form to choose
for which physical quantity. Here, we choose to express nb,eq, peq and p as 3-forms and Jeq, Beq,
B and U as a 2-forms. The choices for the 3-forms, the current density and the magnetic fields
are motivated by the fact that these quantities are (flux) densities which are naturally integrated
over some volume (surface) to get the total mass, internal energy, current and magnetic flux,
respectively, inside this volume (surface). In contrast to that, the choice of U being a 2-form is
somewhat more questionable. A more natural choice would be to express it as a vector field since
all operations in the MHD equations involving the velocity field can be written independently
of the metric if U is chosen to be a vector field. This is due to the fact that all other quantities
are transported along U. However, all finite element spaces in FEEC are subspaces of Sobolev
spaces of differential forms (3.9) and an additional space for vector fields is not existing in the
current framework. The reason for then choosing U to be a 2-form rather than a 1-form is the
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fixed wall boundary condition U · n = 0. It is easily understood that the second and the third
basis vector of 2-forms (columns of DF/

√
g) are always tangential to the boundary surfaces at

s = 0 and s = 1. Therefore, forcing the first component of a 2-form to zero at the boundary
directly leads to the desired boundary condition. To properly account this fact as well as for
natural boundary for other forms, we define the following subspaces of (3.9):

V 0
0 :=

{
f0 ∈ V 0, f0

k (0, χ) = f0
k (1, χ) = 0 ∀χ, k

}
,

V 1
0 :=

{
V1 ∈ V 1, V 2

2,k(0, χ) = V 2
2,k(1, χ) = V 2

3,k(0, χ) = V 2
3,k(1, χ) = 0 ∀χ, k

}
,

V 2
0 :=

{
V2 ∈ V 2, V 2

1,k(0, χ) = V 2
1,k(1, χ) = 0 ∀χ, k

}
,

V 3
0 := V 3 .

(3.11a)

(3.11b)

(3.11c)

(3.11d)

These spaces are constructed in a way that elements in V 1
0 that are pushed-forward according

to Table 3.1 have vanishing tangential components on ∂Ω and elements in V 2
0 that are pushed-

forward have vanishing normal components on ∂Ω. These spaces once more form a de Rham
complex:

V 0
0

grad−−−→ V 1
0

curl−−→ V 2
0

div−−→ V 3
0 . (3.12)

We choose to write the MHD momentum conservation law in weak form and the pressure
and induction equation in strong from. This leads to strong conservation of ∇ ·B = 0 and the
preservation of the symmetry between the Alfvénic force term in the momentum conservation
law and the induction equation which is important for energy conservation. Moreover, since
both coupling terms to the Vlasov equation appear in the momentum conservation law, this
facilitates the evaluation of these coupling terms via Monte-Carlo integration. To finally obtain
the weak formulation, we take the L2 scalar product (3.8c) of (2.37a) with the test function
K2 ∈ V 2

0 and perform integration by parts in the first and second term on the right-hand side
of the MHD momentum balance equation. This is followed by transformation to differential
forms (with the help of Table 3.1 and (3.6)). This leads to the following weak formulation: find
(U2, p3, B2) ∈ V 2

0 × V 3
0 × V 2

0 such that

(
1√
g
n3

b,eq

∂U2

∂t
, K2

)

2

=
(
p3, ∇̂ ·K2

)
3
−
(

B2, ∇̂ ×
(

1√
g

K2 ×B2
eq

))

2

+
(
G−1

(
J2

eq ×B2
)
,K2

)
2

+ CC(ρ3
h) + CC(J2

h) ∀ K2 ∈ V 2
0 ,

∂p3

∂t
= −∇̂ ·

(
1√
g
p3

eq U2

)
− (γ − 1)

1√
g
p3

eq ∇̂ ·U2 in V 3
0 ,

∂B2

∂t
= ∇̂ ×

(
1√
g

U2 ×B2
eq

)
in V 2

0 ,

(3.13a)

(3.13b)

(3.13c)

where we used the formula MV ×MW = (detM)M−>(V ×W) for some invertible matrix
M ∈ R3×3 to transform cross products of 2-forms components according to

V ×W =
1√
g
DF−>

(
V2 ×W2

)
, (3.14)

and we introduced the abbreviations CC(ρ3
h) and CC(J2

h) for the two coupling terms for which
explicit expression will be given in a moment. Moreover, the two boundary terms appearing on
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the right-hand side of (3.13a) when integrating by parts vanish due to the choice K2 ∈ V 2
0 and

the assumption that the equilibrium magnetic field has vanishing normal components on the
boundary, i.e. Beq · n = 0 (perfectly conduction wall).

The two coupling terms in (3.13) read

CC(ρ3
h) = νh

Zh

Ab
κ

(
1√
g
ρ3

hG
−1
(
U2 ×B2

tot

)
,K2

)

2

,

CC(J2
h) = −νh

Zh

Ab
κ
(
G−1

(
J2

h ×B2
tot

)
,K2

)
2
,

(3.15)

(3.16)

where B2
tot = B2

eq + B2 is the total magnetic field (equilibrium + perturbed). Finally, the
transformed Vlasov equation is given by

∂f0
h

∂t
+ (DF−1v) · ∇̂f0

h +
Zh

Ah
κ

[
1√
g
DF−>(B2

tot ×U2 )

+DF−>
(
DF−1v ×B2

tot

)
· ∇vf

0
h

]
= 0 ,

(3.17)

if velocity space is expressed with Cartesian coordinates v = (vx, vy, vz), i.e. the distribution
function f0

h = f0
h(η,v, t).

3.3 Discrete differential forms based on B-splines

The goal of this section is to construct finite-dimensional subspaces of (3.9) resp. (3.11) based
on 2d tensor product B-splines in the poloidal (s, χ)-plane [58]. Furthermore, the spaces shall
be constructed in a way to preserve the de Rham complex property (3.10).

B-splines (from basis spline) are piecewise polynomials with a compact support (see Fig-
ure 3.2) and are commonly used in computer-aided design. Compared to classical Lagrange
polynomial basis functions, B-splines are characterized by higher smoothness which makes them
particularly popular in PIC codes. For details on B-splines, see [90, 91].

To construct uni-variant B-splines in s- and χ-direction, let Ω̂s = Ω̂χ = [0, 1] be two unit
intervals partitioned by cell interfaces 0 = cs0 < cs1 . . . < csns−ps = 1 and 0 = cχ0 < cχ1 . . . < cχnχ = 1
such that the number of cells (or elements) is N s

el = ns − ps and Nχ
el = nχ, respectively. The

k-th element in s-direction is denoted by Ω̂s
k = [ csk, c

s
k+1 ] and accordingly Ω̂χ

k = [ cχk , c
χ
k+1 ] in χ-

direction. B-splines of degree ps ≥ 1 denoted by Nps
i (s) and B-splines of degree pχ ≥ 1 denoted

by N
pχ
i (χ) are then defined via the knot sequences

Ts := ( 0, . . . , 0︸ ︷︷ ︸
ps times

, cs0, c
s
1, . . . , c

s
ns−ps−1, c

s
ns−ps , 1, . . . , 1︸ ︷︷ ︸

ps times

) ,

Tχ := ( cχ−pχ , . . . , c
χ
−1︸ ︷︷ ︸

pχ points

, cχ0 , c
χ
1 , . . . , c

χ
nχ−1, c

χ
nχ , c

χ
nχ+1, . . . , c

χ
nχ+pχ︸ ︷︷ ︸

pχ points

) ,

(3.18)

(3.19)

together with the recursion formula

Nps
i (s) := wpsi (s)Nps−1

i (s) + (1− wpsi+1(s))Nps−1
i+1 (s) , wpsi (s) :=

s− T si
T si+ps − T si

,

N0
i (s) :=

{
1 for s ∈ [T si , T

s
i+1 ) ,

0 else .

(3.20)

(3.21)
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and accordingly for N
pχ
i (χ). The knot sequence (3.18) results in a family clamped B-splines in

Ω̂s and the knot sequence (3.19) results in a family of periodic B-splines in Ω̂χ. In the periodic
case, we have cχ−i = cχnχ−i − 1 and cχnχ+i = cχi + 1 for 0 < i ≤ pχ and the multiplicity of each
knot is 1. The knot sequence Tχ containing nχ + 2pχ + 1 distinct points results in nχ + pχ
shifted B-splines of identical shape that are Cpχ−1 everywhere. To ensure periodicity, the last pχ
B-splines are identified with the first pχ B-splines which yields the final number of nχ linearly
independent periodic B-spline basis functions in Ω̂χ. In the clamped case, the knot sequence Ts

containing ns+ps+1 points yields ns B-splines, where all B-splines are Cps−1 everywhere. Hence,
we obtain ns linearly independent clamped B-spline basis functions in Ω̂s. The consequence of
the first and the last knot having multiplicity ps + 1 is that the first and the last B-spline are
interpolatory at s = 0 and s = 1, respectively:

Nps
0 (0) = Nps

ns−1(1) = 1 , Nps
i>0(0) = Nps

i<ns−1(1) = 0 . (3.22)

This allows for an efficient construction of spaces of the form (3.11) by simply removing contri-
butions from the first and the last spline. The derivatives of B-splines Nps

i (s) and N
pχ
i (χ) can

be expressed as

d

ds
Nps
i (s) = ps

(
Nps−1
i (s)

T si+ps − T si
− Nps−1

i+1 (s)

T si+ps+1 − T si+1

)
, Nps−1

0 (s) = Nps−1
ns (s) = 0 ,

d

dχ
N
pχ
i (χ) = pχ

(
N
pχ−1
i (χ)

Tχi+pχ − T
χ
i

− N
pχ−1
i+1 (χ)

Tχi+pχ+1 − T
χ
i+1

)
, N

pχ−1
0 (χ) = N

pχ−1
nχ (χ) ,

(3.23)

(3.24)

where Nps−1
i (s) and N

pχ−1
i (χ) are lower degree B-splines created from the same knot sequences

(3.18) and (3.19), respectively. It is convenient to define the lower degree, re-scaled B-splines
(also called M-splines)

Dps
i (s) := ps

Nps−1
i+1 (s)

T si+ps+1 − T si+1

, D
pχ
i (χ) := pχ

N
pχ−1
i+1 (χ)

Tχi+pχ+1 − T
χ
i+1

, (3.25)

where 0 ≤ i < ds with ds = ns − 1 for Dps
i (s). In the periodic case, the last pχ − 1 M-splines

that have a non-vanishing support in Ωχ are once more identified with the first pχ−1 M-splines.
This yields the total number of dχ = nχ linearly independent periodic M-splines. Using (3.25)
the recursion formulae for the derivatives (3.23) and (3.24) become

d

ds
Nps
i (s) = Dps

i−1(s)−Dps
i (s) , Dps

−1(s) = Dps
ns−1(s) = 0 ,

d

dχ
N
pχ
i (χ) = D

pχ
i−1(χ)−Dpχ

i (χ) , D
pχ
−1(χ) = D

pχ
nχ−1(χ) .

(3.26)

(3.27)

Finally, we define the so-called Greville points [92], denoted by (si)
ns−1
i=0 and (ti)

nχ−1
i=0 :

si :=
1

ps

i+ps∑

j=i+1

T sj , ti :=
1

pχ

i+pχ∑

j=i+1

Tχj . (3.28)

These points will serve as interpolation points in Section 5.3 when projection operators on B-
spline bases are introduced. A Greville point is generally located close the maximum of the
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Figure 3.2: B-spline basis functions of degree ps = pχ = 2 on a uniform grid with ns−ps = nχ = 6
cells defined by equally spaced break points (black crosses). Shown are clamped (top left) and
periodic (bottom left) B-splines. The corresponding lower degree (ps − 1 = pχ − 1 = 1), re-
scaled B-splines (here called M-splines) are plotted for the clamped (top right) and the periodic
(bottom right) case. The corresponding Greville points (3.28) are shown as well (red dots).

B-spline with the same index. Typical examples of uni-variate B-spline bases are plotted in
Figure 3.2 for the clamped (top left) and the periodic (bottom left) case. The corresponding
lower degree, re-scaled B-splines (here called M-splines) are plotted in the right column. The
splines are created from equally spaced cell interfaces (here called break points) and the Greville
points (3.28) are shown as well (red dots).

An arbitrary B-spline function is now given as a linear combination of B-spline basis func-
tions with real coefficients. Hence, we define the following function spaces:

V s,0
h := span

(
Nps

0 , . . . , Nps
ns−1

)
, dimV s,0

h = ns ,

V s,1
h := span

(
Dps

0 , . . . , D
ps
ds−1

)
, dimV s,1

h = ds = ns − 1 ,

V χ,0
h := span

(
N
pχ
0 , . . . , N

pχ
nχ−1

)
, dimV χ,0

h = nχ ,

V χ,1
h := span

(
D
pχ
0 , . . . , D

pχ
dχ−1

)
, dimV χ,1

h = dχ = nχ .

(3.29a)

(3.29b)

(3.29c)

(3.29d)

The subscript ”h” is used to denote spline spaces and spline functions and should not be confused
with the non-italic subscript ”h”, which is used to label quantities related to the energetic particle
species. With regards to derivatives, we have for fh ∈ V s,0

h and gh ∈ V χ,0
h , thanks to (3.26) and
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(3.27),

fh =

ns−1∑

i=0

fiN
ps
i ⇒ f ′h =

ns−1∑

i=0

fi(D
ps
i−1 −D

ps
i ) =

ds−1∑

i=0

(fi+1 − fi)Dps
i ∈ V s,1

h ,

gh =

nχ−1∑

i=0

giN
pχ
i ⇒ g′h =

nχ−1∑

i=0

gi(D
pχ
i−1 −D

pχ
i ) =

dχ−1∑

i=0

(gi+1 − gi)Dpχ
i ∈ V χ,1

h .

(3.30)

(3.31)

Hence, we can define the derivative matrices Gs ∈ Rds×ns and Gχ ∈ Rdχ×nχ with entries

Gsij :=





−1 for j = i ,

1 for j = i+ 1 ,

0 else ,

Gχij :=





−1 for j = i ,

1 for j = mod(i+ 1, nχ) ,

0 else ,

(3.32)

respectively. By additionally stacking FE coefficients and basis functions on top of each other
(bold symbols),

f := (fi)
ns−1
i=0 , Ns := (Nps

i )ns−1
i=0 , Ds := (Dps

i )ds−1
i=0 ,

g := (gi)
nχ−1
i=0 , Nχ := (N

pχ
i )

nχ−1
i=0 , Dχ := (D

pχ
i )

dχ−1
i=0 ,

(3.33)

(3.34)

functions fh ∈ V s,0
h and gh ∈ V χ,0

h and their derivatives f ′h ∈ V
s,1
h and g′h ∈ V

χ,1
h can compactly

be written as

fh = f>Ns , f ′h = (Gs f)>Ds ,

gh = g>Nχ , g′h = (Gχ g)>Dχ ,

(3.35)

(3.36)

respectively. We remark that here and in the following, when we deal with sets of FE coefficients,
basis functions etc. (bold symbols), we always assume them to be column vectors when actual
calculations are performed. Row vectors therefore always appear with the transposed sign (·)>.

To represent three-dimensional functions, we use a 2d tensor product representation of the
introduced clamped B-splines in s-direction and periodic B-splines in χ-direction, supplemented
with a Fourier harmonic in toroidal (ϕ-) direction. A discrete 0-form is therefore written as

f0
h(s, χ, ϕ) =

1∑

k=0

f0
h,k(s, χ)Fnk (ϕ) =

ns−1∑

i=0

nχ−1∑

j=0

1∑

k=0

f(ijk)N
ps
i (s)N

pχ
j (χ)Fnk (ϕ) . (3.37)

Multi-indices ijk are ”flattened” in row-major ordering (last index runs first). In (3.37), we
therefore introduced the flattened-index notation (ijk) := 2 (jmax + 1) i+ 2j+ k which allows us
to stack tensor product basis functions (and FE coefficients) as

Λ0 :=
(

Λ0
(ijk)

)
∈ R2nsnχ , Λ0

(ijk) := Nps
i N

pχ
j Fnk . (3.38)

A few words regarding the notation: and indexed object inside a parenthesis, e.g. (Λ0
(ijk)) ,

denotes the ordered set of all objects resulting from all possible indices. In the 1d case, we have
always explicitly given the range for the indices (e.g. in (3.33)) but in higher dimensions we
simply assume the ranges to be known in order to improve readability. If a range is not clear, we
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shall still give it explicitly. To represent discrete 1-forms and 2-forms we introduce the following
sets of vector-valued basis functions:

~Λ1 :=
(
~Λ1

1,
~Λ1

2,
~Λ1

3

)





~Λ1
1 :=

(
~Λ1

1,(ijk)

)
∈ R2dsnχ , ~Λ1

1,(ijk) :=



Dps
i N

pχ
j Fnk

0

0


 ,

~Λ1
2 :=

(
~Λ1

2,(ijk)

)
∈ R2nsdχ , ~Λ1

2,(ijk) :=




0

Nps
i D

pχ
j Fnk

0


 ,

~Λ1
3 :=

(
~Λ1

3,(ijk)

)
∈ R2nsnχ , ~Λ1

3,(ijk) :=




0

0

Nps
i N

pχ
j Fnk


 ,

(3.39)

~Λ2 :=
(
~Λ2

1,
~Λ2

2,
~Λ2

3

)





~Λ2
1 :=

(
~Λ2

1,(ijk)

)
∈ R2nsdχ , ~Λ2

1,(ijk) :=



Nps
i D

pχ
j Fnk

0

0


 ,

~Λ2
2 :=

(
~Λ2

2,(ijk)

)
∈ R2dsnχ , ~Λ2

2,(ijk) :=




0

Dps
i N

pχ
j Fnk

0


 ,

~Λ2
3 :=

(
~Λ2

3,(ijk)

)
∈ R2dsdχ , ~Λ2

3,(ijk) :=




0

0

Dps
i D

pχ
j Fnk


 ,

(3.40)

where the arrow notation is used to highlight the fact that ~Λ1 and ~Λ2 contain vector-valued
basis functions. Finally, a basis for discrete 3-forms is given by

Λ3 :=
(

Λ3
(ijk)

)
∈ R2dsdχ , Λ3

(ijk) := Dps
i D

pχ
j Fnk . (3.41)

The bases (3.38)-(3.41) allow for a straightforward definition of finite-dimensional subspaces of
(3.9):

V 0
h := span

(
Λ0
)
, V 1

h := span
(
~Λ1
)
, V 2

h := span
(
~Λ2
)
, V 3

h := span
(
Λ3
)
, (3.42)

with dimensions nk := dimV k
h . Similar to (3.35) and (3.36), elements of these spaces can be

written compactly as

V 0
h 3 f0

h = S0[ f ] = f>Λ0 , f :=
(
f(ijk)

)
,

V 1
h 3 E1

h = S1[~e ] = ~e>~Λ1 , ~e :=
(
e1 := (e1,(ijk)), e2 := (e2,(ijk)), e3 := (e3,(ijk))

)
,

V 2
h 3 B2

h = S2[ ~b ] = ~b>~Λ2 , ~b :=
(
b1 := (b1,(ijk)), b2 := (b2,(ijk)), b3 := (b3,(ijk))

)
,

V 3
h 3 p3

h = S3[ p ] = p>Λ3 , p :=
(
p(ijk)

)
,

(3.43)

(3.44)

(3.45)

(3.46)

where the operators Sk : Rnk → V k
h (0 ≤ k ≤ 3) map FE coefficients to the corresponding spline

space V k
h . With regards to derivatives (grad, curl and div), let us introduce the tensor product
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matrices

Ds := Gs ⊗ 1χ ⊗ 12 , Dχ := 1s ⊗ Gχ ⊗ 12 , Dϕ := 1s ⊗ 1χ ⊗ Gϕ , (3.47)

where ⊗ denotes the Kronecker product of two matrices. The size of the identity matrices 1s

and 1χ will be adapted to the corresponding space it acts on; hence 1s = 1ns or 1s = 1ds and
accordingly for 1χ. The derivative matrices Gs and Gχ are given in (3.32). The derivative matrix
Gϕ ∈ R2×2 is obtained by noting that

∂

∂ϕ

1∑

k=0

f0
h,kFnk (ϕ) = −2πn

1∑

k=0

sgn

(
k − 1

2

)
f0
h,k+1Fnk (ϕ) ⇒ Gϕ :=

[
0 2πn

−2πn 0

]
, (3.48)

where sgn(·) is the sign function such that sgn(k − 1/2) = −1 for k = 0 and sgn(k − 1/2) = +1
for k = 1. Thus, the following derivatives are easily computed in view of (3.30) and (3.31),

∇̂f0
h = (G f)>~Λ1 ∈ V 1

h , G :=



Ds

Dχ

Dϕ


 ,

∇̂ ×E1
h = (C~e)>~Λ2 ∈ V 2

h , C :=




0 −Dϕ Dχ

Dϕ 0 −Ds
−Dχ Ds 0


 ,

∇̂ ·B2
h = (D ~b)>Λ3 ∈ V 3

h , D :=
[
Ds Dχ Dϕ

]
,

(3.49)

(3.50)

(3.51)

By construction, it is immediately evident that CG = 0 and DC = 0 which allows the construc-
tion of the discrete de Rham complex

V 0
h

grad /G−−−−−→ V 1
h

curl /C−−−−→ V 2
h

div /D−−−−→ V 3
h , (3.52)

in the same way as in the continuous case (3.10). Finally, we define mass matrices Mk related to
each space V k

h . They are obtained by replacing the continuous fields in the L2-scalar products
(3.8) with their discrete counterparts:

M0
(ijk)(mno) :=

∫

Ω̂
Λ0

(ijk) Λ0
(mno)

√
g ds dχdϕ ,

M1 := [M1
µν ] ,

(
M1
µν

)
(ijk)(mno)

:=

∫

Ω̂
(~Λ1

µ,(ijk) · ~eµ)G−1
µν (~Λ1

ν,(mno) · ~eν)
√
g ds dχdϕ ,

M2 := [M2
µν ] ,

(
M2
µν

)
(ijk)(mno)

:=

∫

Ω̂
(~Λ2

µ,(ijk) · ~eµ)Gµν (~Λ2
ν,(mno) · ~eν)

1√
g

dsdχdϕ ,

M3
(ijk)(mno) :=

∫

Ω̂
Λ3

(ijk) Λ3
(mno)

1√
g

ds dχdϕ .

(3.53a)

(3.53b)

(3.53c)

(3.53d)

Here, e1 := [ 1, 0, 0 ], e2 := [ 0, 1, 0 ] and e3 := [ 0, 0, 1 ]. Moreover, M1 and M2 are 3 × 3 block
matrices (µ, ν = 1, 2, 3 in (3.53b) and (3.53c)). In what follows, we shall use the square bracket
notation [Aµν ] to denote 3× 3 block matrices.

To incorporate the boundary conditions in the same way as in (3.11), we finally introduce
boundary operators Bk (0 ≤ k ≤ 3) whose application on the complete set of basis functions
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V 0
h V 1

h V 2
h V 3

h

V 0
0,h V 1

0,h V 2
0,h V 3

0,h

grad /G curl /C div /D

grad /G0

(B0)>

curl /C0

(B1)>

div /D0

(B2)> (B3)>

Figure 3.3: Commuting diagram for full spline spaces (3.42) (upper line) and reduced boundary
spaces (3.54) (lower line). Both sequences form discrete de Rham complexes and are connected
via the transposed boundary operators (3.56) and (3.57).

spanning the spaces V k
h (3.42) form reduced bases spanning subspaces V k

0,h satisfying the same
boundary conditions as in (3.11):

V k
0,h := span

(
Λk

0 := BkΛk
)

k = 0, 3 , V k
0,h := span

(
~Λk

0 := Bk~Λk
)

k = 1, 2 . (3.54)

Thanks to the property of clamped B-splines being interpolatory at the boundaries (3.22), the
operators Bk have a simple form and just have to make sure that basis functions of V k

h having
contributions from Nps

0 and Nps
ns−1 are eliminated. This can be achieved with the help of the

matrix

Bs :=




0 1 0 · · · 0 0
0 0 1 0 0
...

...
. . .

...
...

0 0 0 · · · 1 0


 ∈ R(ns−2)×ns , (3.55)

which is the identity matrix of size (ns − 2) × (ns − 2) supplemented with two columns of
zeros at the beginning and the end. The dimensions nk0 := dim V k

0,h are thus n0
0 := n0 − 4nχ,

n1
0 := n1 − 4nχ − 4dχ, n2

0 := n2 − 4dχ and n3
0 := n3 and the boundary operators read

B0 := Bs ⊗ 1nχ ⊗ 12 , B1 :=



B1

1 := 1ds ⊗ 1nχ ⊗ 12 0 0

0 B1
2 := Bs ⊗ 1dχ ⊗ 12 0

0 0 B1
3 := B0


 ,

B3 := 1n3 , B2 :=



B2

1 := Bs ⊗ 1dχ ⊗ 12 0 0

0 B2
1 := 1ds ⊗ 1nχ ⊗ 12 0

0 0 B2
3 := B3


 .

(3.56)

(3.57)

Since the boundary spaces V k
0,h are subspaces of V k

h , it is always possible to express an element

in V k
0,h in the basis of V k

h because

V k
0,h 3 f0

h = f>Λ0
0 = f>B0Λ0 =

[
(B0)>f

]>
Λ0 , (3.58)

and similarly for k > 0. Consequently, for given FE coefficient f of an element in V k
0,h, the

corresponding FE coefficients in the full space V k
h are obtained via (Bk)>f . This allows for a

straightforward incorporation of boundary conditions into the mass matrices (3.53):

M0
0 := B0 M0(B0)> , M1

0 := B1 M1(B1)> , M2
0 := B2 M2(B2)> , M3

0 := B3 M3(B3)> . (3.59)
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V s,0 V s,1

Rns Rds

Rns Rds

V s,0
h V s,1

h

∂
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σs,0

Πs,0

σs,1

Πs,1(Is)−1

Gs
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Gs

Ss,0

Is Hs

Ss,1
∂
∂s

Figure 3.4: Commuting diagram in 1d using the notions of degrees of freedom (DOFs) σs,0 and
σs,1 and finite element (FE) coefficients.

Moreover, we aim for new discrete derivatives G0, C0 and D0 acting on FE coefficients in the
reduced spaces V k

0,h in a way that we obtain the commuting diagram shown in Figure 3.3. This is
because one should obtain the same result no matter if e.g. one first prolongs the FE coefficients
to the full space V 0

h and then takes the discrete gradient G or if one first takes a (yet to define)
discrete gradient G0 and then prolongs to the full space V 1

h . Hence, the defining relations for
the new discrete derivatives are the commutativity relations

G (B0)> = (B1)> G0 , C (B1)> = (B2)> C0 , D (B2)> = (B3)> D0 , (3.60)

which lead to the simple definitions

G0 := B1 G (B0)> , C0 := B2 C (B1)> , D0 := B3 D (B2)> . (3.61)

for the new discrete derivatives. Going from (3.60) to (3.61) is due to the fact that Bk(Bk)> =
1nk0 . Finally, a direct consequence of the commutativity relations (3.60) is that the reduced

spaces V k
0,h once more form a discrete de Rham complex as shown in the lower line of the

diagram in Figure 3.3.

3.4 Degrees of freedom and commuting diagram

Now that we have infinite-dimensional function spaces and finite-dimensional subspaces which
both form de Rham complexes, the next question is how to connect these two complexes, i.e.
for given functions in V k, what are good approximations that live in V k

0 ? In the framework of
FEEC, this connection is obtained via so-called commuting projectors. We shall first introduce
the basic notions and notations in 1d and subsequently extend to 3d. These constructions are
based on [59].

A good understanding of the commuting projectors can be obtained in terms of the 1d
diagram in Figure 3.4. We choose the s-space in this example, the χ-direction is treated in full
analogy (even though the spaces are slightly different because of the boundaries). The upper
row of the diagram contains the continuous function spaces V s,0 = H1(Ω̂s) and V s,1 = L2(Ω̂s)
with Ω̂s = [0, 1]. The degrees of freedom (DOFs) σs,0 : V s,0 → Rns and σs,1 : V s,1 → Rds are
linear functionals on the continuous spaces, with their image in the second row. The third row
contains the finite element (FE) coefficients (in the spline bases) and the fourth row the FE
spaces V s,0

h ⊂ V s,0 and V s,1
h ⊂ V s,1 spanned by the 1d spline bases and introduced in (3.29).
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When dealing with inter-/histopolation, the DOFs can be defined as

f ∈ V s,0 : σs,0 := (σs,0i )ns−1
i=0 , σs,0i (f) := f(si) ,

g ∈ V s,1 : σs,1 := (σs,1i )ds−1
i=0 , σs,1i (g) :=

∫ si+1

si

g(s) ds .

(3.62a)

(3.62b)

Here, s = (si)
ns−1
i=0 are the interpolation points in Ω̂s, for example the Greville points of a spline

basis (3.28), and ds = ns − 1 is the number of histopolation intervals. The bases of the FE
spaces V s,0

h and V s,1
h appear in the inter-/histopolation matrices

Isij := Nps
j (si) , Hsij :=

∫ si+1

si

Dps
j (s) ds , (3.63)

respectively. The interpolation points s have to be chosen such that Is andHs are invertible (that
is the reason for Greville points with splines, usually). When using, for instance, a quadrature
rule of sufficient order for computing integrals, the matrix Hs is exact since M-splines are piece-
wise polynomials.

The operators Ss,0 : Rns → V s,0
h and Ss,1 : Rds → V s,1

h map FE coefficients to the corre-
sponding spline function:

V s,0
h 3 fh = Ss,0[ f ](s) =

ns−1∑

j=0

fj N
ps
j (s) , f = (fj)

ns−1
j=0 ,

V s,1
h 3 gh = Ss,1[ g ](s) =

ds−1∑

j=0

gj D
ps
j (s) , g = (gj)

ds−1
j=0 .

(3.64a)

(3.64b)

For the DOFs (3.62) this means

σs,0i (fh) =

ns−1∑

j=0

fj N
ps
j (si) =

∑

j

Isij fj ⇒ σs,0(fh) = Is f ,

σs,1i (gh) =

ds−1∑

j=0

gj

∫ si+1

si

Dps
j (s) ds =

∑

j

Hsij gj ⇒ σs,1(gh) = Hs g ,

(3.65a)

(3.65b)

such that it is evident that the DOFs (3.62) uniquely define an element in V s,0
h and V s,1

h provided
that Is and Hs are invertible.

Definition 1. The projectors Πs,0 : V s,0 → V s,0
h and Πs,1 : V s,1 → V s,1

h are defined via the DOFs:

σs,0(Πs,0(f)) = σs,0(f) , σs,1(Πs,1(g)) = σs,1(g) . (3.66)

Proposition 1. Provided that the histopolation matrix Hs is exact, the projectors (3.66) satisfy

Πs,1

(
∂f

∂s

)
=

∂

∂s
Πs,0(f). (3.67)
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V 0 V 1 V 2 V 3

V 0
0,h V 1

0,h V 2
0,h V 3

0,h

grad

Π0

curl

Π1

div

Π2 Π3

grad /G curl /C div /D

Figure 3.5: Commuting diagram for infinite-dimensional Sobolev spaces of differential forms
(upper line) and finite-dimensional subspaces (lower line). Both sequences form discrete de
Rham complexes and are connected via commuting projectors.

Proof. By definition both sides of the equality are in V s,1
h . Since an element in V s,1

h is uniquely

defined by its DOFs, we can apply σs,1i on both sides and show the results to be equal:

σs,1i

(
Πs,1

(
∂f

∂s

))
(3.66)

= σs,1i

(
∂f

∂s

)
= f(si+1)− f(si) = σs,0i+1(f)− σs,0i (f) ,

σs,1i

(
∂

∂s
Πs,0(f)

)
= Πs,0(f)(si+1)−Πs,0(f)(si) = σs,0i+1(Πs,0(f))− σs,0i (Πs,0(f))

(3.66)
= σs,0i+1(f)− σs,0i (f) .

We note that this proof did not rely on the choice of basis functions. The DOFs defined
by (3.62) and projectors defined in Definition 1 are sufficient conditions for the commuting
property.

Let us now shift to the spaces V k (0 ≤ k ≤ 3) defined in (3.9). The corresponding commut-
ing diagram is depicted in Figure 3.5. To define the DOFs, we consider the tensor product grid
(si, tj) built from the additional 1d set of Greville points t = (tj)

nχ−1
j=0 in χ-direction. The DOFs

can then be defined as

f0 ∈ V 0 : σ0
(ijk)(f

0) := f0
k (si, tj) ,

E1 ∈ V 1 :





σ1
1,(ijk)(E

1) :=

∫ si+1

si

E1
1,k(s, tj) ds ,

σ1
2,(ijk)(E

1) :=

∫ tj+1

tj

E1
2,k(si, χ) dχ ,

σ1
3,(ijk)(E

1) := E1
3,k(si, tj) ,

B2 ∈ V 2 :





σ2
1,(ijk)(B

2) :=

∫ tj+1

tj

B2
1,k(si, χ) dχ ,

σ2
2,(ijk)(B

2) :=

∫ si+1

si

B2
2,k(s, tj) ds ,

σ2
3,(ijk)(B

2) :=

∫ si+1

si

∫ tj+1

tj

B2
3,k(s, χ) ds dχ ,

(3.68a)

(3.68b)

(3.68c)
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p3 ∈ V 3 : σ3
(ijk)(p

3) :=

∫ si+1

si

∫ tj+1

tj

p3
k(s, χ) ds dχ . (3.68d)

Similar to (3.65) we have for discrete functions

f0
h = S0[ f ] ∈ V 0

h : σ0(f0
h) = I0 f , E1

h = S1[~e ] ∈ V 1
h : σ1(E1

h) = I1~e ,

p3
h = S3[ p ] ∈ V 3

h : σ3(p3
h) = I3 p , B2

h = S2[ ~b ] ∈ V 2
h : σ2(B2

h) = I2 ~b ,

(3.69a)

(3.69b)

where the mixed inter-/histopolation matrices Ik are given by

I0 := Is ⊗ Iχ ⊗ 12 , I1 :=



Hs ⊗ Iχ ⊗ 12 0 0

0 Is ⊗Hχ ⊗ 12 0

0 0 Is ⊗ Iχ ⊗ 12


 , (3.70a)

I3 := Hs ⊗Hχ ⊗ 12 , I2 :=



Is ⊗Hχ ⊗ 12 0 0

0 Hs ⊗ Iχ ⊗ 12 0

0 0 Hs ⊗Hχ ⊗ 12


 . (3.70b)

Definition 2. The projectors Πk : V k → V k
h (0 ≤ k ≤ 3) are defined via the DOFs (3.68):

σ0(Π0(f0)) = σ0(f0) , σ1(Π1(E1)) = σ1(E1) ,

σ3(Π3(p3)) = σ3(p3) , σ2(Π2(B2)) = σ2(B2) .

(3.71a)

(3.71b)

Proposition 2. Provided that the integrals in (3.68) are exact, the projectors (3.71) satisfy the
commutation relations

Π1 grad = grad Π0 , Π2 curl = curl Π1 , Π3 div = div Π2 . (3.72)

Proof. We only prove the first relation Π1 grad = grad Π0 explicitly, the other two relations can
be proven accordingly. By definition both sides are in V 1

h . Since an element in V 1
h is uniquely

defined by its DOFs, we can apply σ1 on both sides:

σ1
1,(ijk)

(
Π1(∇̂f0)

)
(3.71)

= σ1
1,(ijk)

(
∇̂f0

)
= f0

k (si+1, tj)− f0
k (si, tj) = σ0

(i+1jk)

(
f0
)
− σ0

(ijk)

(
f0
)
,

σ1
2,(ijk)

(
Π1(∇̂f0)

)
(3.71)

= σ1
2,(ijk)

(
∇̂f0

)
= f0

k (si, tj+1)− f0
k (si, tj) = σ0

(ij+1k)

(
f0
)
− σ0

(ijk)

(
f0
)
,

σ1
3,(ijk)

(
Π1(∇̂f0)

)
(3.71)

= σ1
3,(ijk)

(
∇̂f0

)
= −2πn sgn

(
k − 1

2

)
f0
k+1(si, tj)

= −2πn sgn

(
k − 1

2

)
σ0

(ijk+1)(f
0) .
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On the other hand

σ1
1,(ijk)

(
∇̂Π0(f0)

)
= [Π0(f0)]k(si+1, tj)− [Π0(f0)]k(si, tj)

= σ0
(i+1jk)(Π0(f0))− σ0

(ijk)(Π0(f0))
(3.71)

= σ0
(i+1jk)(f

0)− σ0
(ijk)(f

0) ,

σ1
2,(ijk)

(
∇̂Π0(f0)

)
= [Π0(f0)]k(si, tj+1)− [Π0(f0)]k(si, tj)

= σ0
(ij+1k)(Π0(f0))− σ0

(ijk)(Π0(f0))
(3.71)

= σ0
(ij+1k)(f

0)− σ0
(ijk)(f

0) ,

σ1
3,(ijk)

(
∇̂Π0(f0)

)
= −2πn sgn

(
k − 1

2

)
[Π0(f0)]k+1(si, tj)

= −2πn sgn

(
k − 1

2

)
σ0
ijk+1(Π0(f0))

(3.71)
= −2πn sgn

(
k − 1

2

)
σ0

(ijk+1)(f
0) .

Because this holds for any (ijk) the first relation in (3.72) is proven. The proofs for the second
and third relation work in full analogy.

By identifying the projected functions with their spline coefficients as in (3.69),

Π0(f0) = S0[ f ] , Π1(E1) = S1[~e ] , Π2(B2) = S2[ ~b ] , Π3(p3) = S3[ p ] , (3.73)

the projection problems (3.71) can be written as linear systems

I0 f = σ0(f0) , I1~e = σ1(E1) , I2 ~b = σ2(B2) , I3 p = σ3(p3) . (3.74)

The solution of these linear systems can be done very efficiently because of the tensor product
structure of the matrices Ik, e.g. (I0)−1 = (Is ⊗ Iχ ⊗ 12)−1 = (Is)−1 ⊗ (Iχ)−1 ⊗ 12, and the
costs for inverting the matrices Is and Iχ corresponding to 1d spline bases are negligible.

3.5 Spatial discretization

In this section, we perform the spatial discretization of the weak formulation (3.13) in order to
arrive at a semi-discrete system with continuous time variable. We shall first focus on the MHD
part followed by kinetic coupling terms and the Vlasov equation.

3.5.1 MHD equations

The spatial discretization of (3.13) is achieved by projecting the strong equations (3.13b) and
(3.13c) onto the finite-dimensional subspaces V 3

0,h and V 2
0,h using the projectors Π3 and Π2,

respectively, and replacing the trail and test functions in the weak momentum balance equation
(3.13a) by their discrete counterparts. The time dependence is put into the FE coefficients such
that

U2 ≈ U2
h = S2,0[ ~u(t) ] , K2 ≈ K2

h = S2,0[~k(t) ] ,

B2 ≈ B2
h = S2,0[ ~b(t) ] , p3 ≈ p3

h = S3,0[ p(t) ] ,

(3.75)

(3.76)

where the operators Sk,0 : Rn
k
0 → V k

0,h map FE coefficients of size nk0 to the corresponding

boundary spline space V k
0,h. Performing the above described discretization yields the semi-
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discrete system

Mnb
0

d~u

dt
= D>0 M3

0 p + T >0 (I1
0 )−> C>0 M2

0
~b + MJ0 ~b ,

dp

dt
= −D0 (I2

0 )−1F0 ~u− (γ − 1) (I3
0 )−1K0 D0 ~u ,

d~b

dt
= −C0 (I1

0 )−1 T0 ~u .

(3.77a)

(3.77b)

(3.77c)

As stated before, the last two equations are obtained by applying the projectors Π2 and Π3

on the continuous equations (3.13b) and (3.13c), respectively. Where possible, the commuting
diagram property (3.72) has been used to exchange projectors and differential operators. In
particular, in (3.13b), we used Π3 div = div Π2 and in (3.13b) we used Π2 curl = curl Π1. In the
first equation it is important to note that we applied the projector Π2 to the second argument
of the term (

B2, ∇̂ ×
(

1√
g

K2 ×B2
eq

))

2

, (3.78)

in the weak momentum balance equation (3.13a). This is necessary to keep the symmetry with
the induction equation which is important for energy conservation. Among the new matrices in
(3.77) are the two weighted mass matrices

Mnb
0 := B2 Mnb (B2)> ,

(
Mnb
µν

)
(ijk)(mno)

:=

∫

Ω̂
Λ2
µ,(ijk)Gµν Λ2

ν,(mno) n
3
b,eq

1

g
ds dχdϕ ,

MJ0 := B2 MJ (B2)> ,
(
MJµν

)
(ijk)(mno)

:=

∫

Ω̂
Λ2
µ,(ijk) εµαν Λ2

ν,(mno) J
2
eq,α

1√
g

dsdχdϕ ,

(3.79a)

(3.79b)

where Mnb = [Mnb
µν ] and MJ = [MJµν ] are 3×3 block matrices (µ, ν = 1, 2, 3 in (3.79)). Moreover,

εµαν are the components of the Levi-Civita tensor and Λ2
µ,(ijk) = ~Λ2

µ,(ijk) · ~eµ. Furthermore, we
introduced the matrices

T0 := B1 T (B2)> , Tµν,(ijk)(mno) := σ1
µ,(ijk)

[
1√
g

(
B2

eq × ~Λ2
ν,(mno)

)]
,

F0 := B2F (B2)> , Fµν,(ijk)(mno) := σ2
µ,(ijk)

[
p3

eq√
g
~Λ2
ν,(mno)

]
,

K0 := B3K (B2)> , K(ijk)(mno) := σ3
(ijk)

[
p3

eq√
g

Λ3
(mno)

]
,

(3.80a)

(3.80b)

(3.80c)

which appear in (3.77) at places where a projector Πk is applied. Finally, the modified inter-
/histopolation matrices Ik0 := Bk Ik (Bk)> in (3.77). They account for the boundary conditions
and result from removing DOFs which are related to interpolation points on the domain bound-
aries at s = 0 and s = 1.

The initial-value problem (3.77) can be directly transferred to an eigenvalue problem by
assuming a time variation ∼ e−iωt for all unknowns such that time derivatives can be replaced
by −iω. Using an eigenvalue formulation instead of an initial-value one is simpler in a way
that a) no initial conditions need to be prescribed and b) one obtains frequencies/growth rates
ω ∈ C for each eigenfunction (normal mode) which usually allows for a quicker insight into
the underlying physics of the considered system. Performing the substitution d/dt → −iω in
(3.77) followed by eliminating p and ~b in (3.77a) with the help of (3.77b) and (3.77c) yields the
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following eigenvalue problem which can be thought of as a discrete version of (1.9): find ω ∈ C
and ~u ∈ Rn

2
0 such that





F ~u = −ω2 Mnb ~u ,

F := −D>0 M3 [D0 (I2
0 )−1F0 + (γ − 1) (I3

0 )−1K0 D0 ]− A− MJ0 C0 (I1
0 )−1 T0 ,

A := T >0 (I1
0 )−> C>0 M2

0 C0 (I1
0 )−1 T0 ,

(3.81a)

(3.81b)

(3.81c)

where F is the discretized MHD force operator (1.9b) and A = A> is a symmetric operator
representing shear Alfvén physics. Consequently, the eigenvalues ω2 and eigenfunctions u of the
matrix −(Mnb

0 )−1 F constitute the complete ideal MHD spectrum corresponding to some given
equilibrium. ω2 > 0 correspond to stability and ω2 < 0 to instability.

3.5.2 Kinetic equations

We solve the Vlasov equation (3.17) with classical particle-in-cell techniques [45]. We therefore
assume a particle-like distribution function which, for the moment in physical space Ω, takes
the form

f0
h = f0

h(η,v, t) ≈
Np∑

i=1

wi√
g(ηi(t))

δ(η − ηi(t)) δ(v − vi(t)) , (3.82)

where Np is the total number of simulation markers (to which we simply refer to as particles),
wi is the weight of the i-th particle and (ηi = ηi(t),vi = vk(t)) ∈ R6 its position in phase
space at time t ≥ 0. The Jacobian determinant

√
g in the denominator of (3.82) is due to the

transformation of the Dirac-delta from physical space Ω to logical space Ω̂. The particles satisfy
the equations of motion

dηi
dt

= DF−1vi, ηi(t = 0) =: η0
i ,

dvk
dt

=
Zh

Ah
κ

[
1√
g
DF−>(B2

tot ×U2) +DF−>
(
DF−1vi × B2

tot

)]
, vi(t = 0) =: v0

i ,

(3.83a)

(3.83b)

which can be identified from the Vlasov equation (3.17) by noting that a particle must ”see” a
constant distribution function during its motion:

d

dt
f0

h(η(t),v(t), t) =
∂f0

h

∂t
+

dη

dt
· ∇̂f0

h +
dv

dt
· ∇vf

0
h = 0 . (3.84)

Hence, a simulation particle satisfies the same equations of motion as a real (or physical) particle.

We now turn our attention to the two coupling terms CC(ρ3
h) (3.15) and CC(J2

h) (3.16)
involving the energetic ion charge and current density, respectively. Following classical PIC
techniques, the resulting integrals (both in logical position space and velocity space) are evalu-
ated by Monte-Carlo estimates using the particle positions in phase space (see [93] for a thorough
overview about this topic). The field are replaced by their finite element approximations. This
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leads to

CC(ρ3
h) ≈ −νh

Zh

Abn
κ

∫

Ω
(K2)>

1√
g
ρ3

h ( B2
tot ×U2 )

1√
g

d3η

= −νh
Zh

Ab
κ

∫

Ω

∫

R3

[
(K2)>

1

g

f0
h

ζ0
h

( B2
tot ×U2 )

] √
g ζ0

h d3η d3v

≈ −νh
Zh

Ab
κ

Np∑

i=0

1

Np

f0
h(η0

i ,v
0
i , t = 0)

ζ0
h(η0

i ,v
0
i , t = 0)︸ ︷︷ ︸

=:wi

K2(ηi)
> 1

g(ηi)
( B2

tot(ηi)×U2(ηi) ) ,

(3.85)

where we introduced the probability density function (PDF) ζ0
h = ζ0

h(η,v, t) = ζh(F (η),v, t)
from which we demand to satisfy the Vlasov equation. In order for ζh to be a PDF, it must be
normalized in a way that

1 =

∫

Ω

∫

R3

ζh(x,v, t) d3v d3x =

∫

Ω̂

∫

R3

ζ0
h(η,v, t)

√
g(η) d3v d3η ∀ t ≥ 0 , (3.86)

such that the PDF on the logical domain is given by the 3-form ζ3
h =

√
g ζ0

h. The second line
of (3.85) can then be interpreted as the expectation value of the random variable inside the
square brackets distributed under the PDF ζ3

h with the third line being its estimator using
the particle positions in phase space. Finally, we made use of the fact that the distribution
function f0

h and the PDF ζ0
h are constant along a particle trajectory according to the Vlasov

equation: df0
h/dt = 0 in a Lagrangian frame. Therefore, f0

h(ηi(t),vi(t), t) = f0
h(η0

i ,v
0
i , t = 0),

where (η0
i ,v

0
i ) is the initial phase space position of the i-th particle drawn from the initial PDF

ζ0
h(η,v, t = 0). It is important to keep in mind that if one defines a PDF which is normalized to

one on the logical domain (which is usually the case), one essentially samples from the 3-form
ζ3

h. Hence, one must not forget the Jacobian determinant in the definition of the weights because
there the 0-form ζ0

h = ζ3
h/
√
g is needed. A simple example for this is shown in Figure 3.7 for

the case of the standard square-to-disc mapping for which the Jacobian determinant
√
g ∼ s. If

one samples uniformly on the logical domain (upper left), there will be a larger particle density
around the center of the disc (upper right). Therefore, if one wants to have a uniform density
of particles on the disc (lower right), particles must be sampled according to the (normalized)
Jacobian determinant on the logical domain (lower left).

In order to write (3.85) as well as the equations of motion (3.83) in a compact matrix-vector
form, we stack the particles’ logical coordinates and velocities according to

Υ := (s1, · · · , sNp , χ1, · · · , χNp , ϕ1, · · · , ϕNp) ∈ R3Np ,

V := (v1,x, · · · , vNp,x, v1,y, · · · , vNp,y, v1,z, · · · , vNp,z) ∈ R3Np ,

(3.87)

(3.88)

and define the matrices

Rn
2×3Np 3 �2(Υ) :=



�2

1(Υ) 0 0
0 �2

2(Υ) 0
0 0 �2

3(Υ)


 ,

(
�2
µ

)
(ijk)m

:= Λ2
µ,(ijk)(ηm) ,

R3Np×3Np 3 W := 13 ⊗ diag (w1, · · · , wNp) ,

R3Np×3Np 3 NDF (Υ) := [NDF,µν(Υ) ] ,

RNp×Np 3 NDF,µν(Υ) := diag
(
DFµν(η1), · · · , DFµν(ηNp)

)
,

(3.89a)

(3.89b)

(3.89c)

(3.89d)
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R3Np×3Np 3 NDF−1(Υ) := [NDF−1,µν(Υ) ] ,

RNp×Np 3 NDF−1,µν(Υ) := diag
(
(DF−1)µν(η1), · · · , (DF−1)µν(ηNp)

)
,

R3Np×3Np 3 Ng−1(Υ) := 13 ⊗ diag

(
1

g(η1)
, · · · , 1

g(ηNp)

)
,

R3Np×3Np 3 N√g−1(Υ) := 13 ⊗ diag

(
1√
g(η1)

, · · · , 1√
g(ηNp)

)
,

R3Np×3Np 3 B×0 ( ~b,Υ ) := [B×0,µν( ~b,Υ ) ] ,

RNp×Np 3 B×0,µν( ~b,Υ ) := εµαν diag
(

(bα + beq,α)>B2
α �

2
α(Υ)

)
,

(3.89e)

(3.89f)

(3.89g)

(3.89h)

(3.89i)

(3.89j)

where µ, ν = 1, 2, 3 as usual and ~beq = ( beq,1,beq,2,beq,3 ) are the FE coefficient of the projected
equilibrium magnetic field. One could in principle also use the exact equilibrium field in (3.89j)
but for efficiency reasons we use the FE coefficients. The anti-symmetric matrix B×0 = −(B×0 )>

essentially performs for each particle the cross product of the discrete magnetic field evaluated at
the particle position with some other vector it is applied to. With this (3.85) can be compactly
written as

CC(ρ3
h) ≈ −νh

Zh

Ab
κ~k> �2

0 WNg−1 B×0 (�2
0)> ~u , (3.90)

where �2
0 := B2�2 ∈ Rn

2
0×3Np to take into account boundary conditions. It should be noted,

however, that in actual simulations, matrices of size Np ×Np or 3Np × 3Np are never explicitly
assembled. Instead, only the non-zero contributions to the final matrix �2

0 WNg−1 B× (�2
0)>,

which has the size of the mass matrix M2
0, are calculated separately for each particle and then

added to the final matrix. However, for the further analysis of the semi-discrete system of
equations and for the sake of compact notations we shall still use the matrices (3.87)-(3.89j) in
the following. Performing the exact same steps as in (3.85), the second coupling terms involving
the energetic ion current density amounts to

CC(J2
h) ≈ νh

Zh

Ab
κ~k> �2

0 WN√g−1 B×0 NDF−1 V . (3.91)

Writing also the particles’ equations of motion (3.83) in a compact matrix-vector form finally
yields the semi-discrete system of equations




Mnb
0

d~u

dt
= D>0 M3

0 p + T >0 (I1
0 )−> C>0 M2

0
~b + MJ0 ~b

− νh
Zh

Ab
κ�2

0 WNg−1 B×0 (�2
0)> ~u + νh

Zh

Ab
κ�2

0 WN√g−1 B×0 NDF−1 V ,

dp

dt
= −D0 (I2

0 )−1F0 ~u− (γ − 1) (I3
0 )−1K0 D0 ~u ,

d~b

dt
= −C0 (I1

0 )−1 T0 ~u ,

dΥ

dt
= NDF−1 V ,

dV

dt
=
Zh

Ah
κ
[
N√g−1 N>DF−1 B×0 (�2

0)>~u− N>DF−1 B×0 NDF−1V
]
,

(3.92a)

(3.92b)

(3.92c)

(3.92d)

(3.92e)
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where, once more, the matrices in (3.92d) and (3.92e) are just used for a compact notation. In
an actual simulation, the equations of motion are solved separately for each particle.

3.6 Temporal discretization

Before discussing the actual temporal discretization of the semi-discrete system (3.92), let us
first define the discrete version of the energy-like quantity H̃ introduced in (2.38):

H̃h :=
1

2

∫

Ω̂

1√
g
n3

b,eq (U2
h)>GU2

h

1√
g

d3η +
1

2

∫

Ω̂
(B2

h)>GB2
h

1√
g

d3η

+
1

γ − 1

∫

Ω̂
p3
h d3η +

1

2
νh
Ah

Ab

∫

Ω̂

∫

R3

v2fh d3v d3η

=
1

2
~u>Mnb

0 ~u +
1

2
~b>M2

0
~b +

1

γ − 1
p>13 +

1

2
νh
Ah

Ab
V>WV

=: H̃U + H̃B + H̃p + H̃h .

(3.93)

It is obtained from (2.38) by first performing pull-backs from the physical to the logical domain
followed by replacing the continuous fields by their discrete counterparts. The distribution
function is replaced by its particle approximation (3.82). Moreover, 13 := (1 , · · · , 1) ∈ Rn

3
0 is

a vector filled with ones. If we collect as a next step all FE coefficients and particle positions
in phase space in a single vector R := (~u, p, ~b, Υ, V), we can write the semi-discrete system
(3.92) in the following compact form:

dR

dt
= J∇RH̃1 + KR ,

⇔ dR

dt
=

=: J

︷ ︸︸ ︷


J11( ~b,Υ ) 0 J13 0 J15( ~b,Υ )

0 0 0 0 0

−J>13 0 0 0 0

0 0 0 0 J45(Υ)

−J>15( ~b,Υ ) 0 0 −J>45(Υ) J55( ~b,Υ )




=∇RH̃h

︷ ︸︸ ︷


Mnb
0 ~u

13/(γ − 1)

M2
0
~b

0

vhAhWV/Ab




+




0 D>0 M3
0 MJ0 0 0

−D0 (I2
0 )−1F0 − (γ − 1) (I3

0 )−1K0 D0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




︸ ︷︷ ︸
=: K




~u

p

~b

Υ

V




︸ ︷︷ ︸
=R

.

(3.94)

(3.95)

We find that the spatial discretizations performed in the previous sections results in a system
of ordinary differential equations in time that can be written as the sum of a part with an anti-
symmetric matrix J and an additional part with a matrix K. It is intuitive to call the former
the “Hamiltonian part” and the latter the “non-Hamiltonian part”, although we do not prove
the Jacobi identity of the matrix J. Nevertheless, we stick to this notation in the following to
make a clear distinction between the energy conserving and non-conserving part. The latter
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only plays a role for compressible waves and if there is an equilibrium current Jeq 6= 0 (then
MJ0 = 0). In particular, we remark that obtaining the Hamiltonian part relies on the symmetry
of all mass matrices and the weight matrix W. In this case ∇RH̃h takes the simple form given
in the first line of (3.95) and only then the semi-discrete system of equations can be written in
the form (3.95). The anti-symmetry J> = −J immediately implies conservation of H̃h for the
Hamiltonian part of (3.95) because

d

dt
H̃h(R(t)) = (∇RH̃h)>J

dR

dt
= (∇RH̃h)>J∇RH̃h = −(∇RH̃h)>J∇RH̃h = 0. (3.96)

The single blocks of J are given by

J11( ~b,Υ ) := −νh
Zh

Ab
κ (Mnb

0 )−1 �2
0 (Υ)WNg−1(Υ)B×0 ( ~b,Υ )�2

0(Υ)> (Mnb
0 )−1 ,

J13 := (Mnb
0 )−1 T >0 (I1

0 )−> C>0 ,

J15( ~b,Υ ) :=
Zh

Ah
κ (Mnb

0 )−1 �2
0 (Υ)N√g−1(Υ)B×0 ( ~b,Υ )NDF−1(Υ) ,

J45(Υ) :=
Ab

νhAh
NDF−1(Υ)W−1 ,

J55( ~b,Υ ) := −AbZh

νhA
2
h

κNDF−1(Υ)> B×0 ( ~b,Υ )NDF−1(Υ)W−1 .

(3.97a)

(3.97b)

(3.97c)

(3.97d)

(3.97e)

In order to keep the energy conservation property of the Hamiltonian part, we propose two
splitting steps: First, to take advantage of (3.96), we split apart the non-Hamiltonian part and
solve successively the Hamiltonian part dR/dt = J∇RH̃h and non-Hamiltonian part dR/dt =
KR, and second, we apply a skew-symmetric splitting to the Hamiltonian part and solve each
(still skew-symmetric) substep in an energy conserving way. We recall the Hamiltonian part:

d

dt




~u

~b

Υ

V


 =




J11( ~b,Υ ) J13 0 J15( ~b,Υ )

−J>13 0 0 0

0 0 0 J45(Υ)

−J>15( ~b,Υ ) 0 −J>45(Υ) J55( ~b,Υ )







Mnb
0 ~u

M2
0
~b

0

vhAhWV/Ab


 . (3.98)

Splitting the matrix J into five separate matrices containing only equally colored blocks and
introducing a temporal grid tn = n∆t with n ∈ N0 leads to the following substeps:

Substep 1 The first subsystem reads

d~u

dt
= J11( ~b,Υ )Mnb

0 ~u,
d~b

dt
= 0,

dΥ

dt
= 0,

dV

dt
= 0. (3.99)

We solve the only non-trivial equation for ~u with the energy-preserving, implicit Crank-Nicolson
method [67]. Note that the matrix J11 does not change in this step since ~b and Υ do not change
in this step:

~un+1 = ~un +
∆t

2
J11( ~bn,Υn )Mnb

0 (~un + ~un+1) ,

⇔
(
Mnb

0 −
∆t

2
Mnb

0 J11( ~bn,Υn )Mnb
0

)
~un+1

=

(
Mnb

0 +
∆t

2
Mnb

0 J11( ~bn,Υn )Mnb
0

)
~un.

(3.100)

(3.101)
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Hence, in every time step, one first needs to assemble the matrix Mnb
0 J11( ~bn,Υn )Mnb

0 followed
by solving the linear system (3.101) for the new FE coefficients ~un+1. We dote the corresponding
time integrator that performs these steps by Φ1

∆t : Rn
2
0 → Rn

2
0 , ~un 7→ ~un+1.

Substep 2 The second subsystem reads

d~u

dt
= J13 M

2
0
~b,

d~b

dt
= −J>13 M

nb
0 ~u,

dΥ

dt
= 0,

dV

dt
= 0. (3.102)

As before, this system is solved with the Crank-Nicolson method:

Mnb
0 ~un+1 = Mnb

0 ~un +
∆t

2
T >0 (I1

0 )−> C>0 M2
0 (~bn + ~bn+1) ,

~bn+1 = ~bn − ∆t

2
C0 (I1

0 )−1 T0 (~un + ~un+1) .

(3.103)

(3.104)

These equations can be decoupled by plugging the second equation in the first equation and
solving for ~un+1:

S2 ~u
n+1 =

[
Mnb

0 −
∆t2

4
T >0 (I1

0 )−> C>0 M2
0 C0 (I1

0 )−1 T0

]
~un + ∆t T >0 (I1

0 )−> C>0 M2
0
~bn . (3.105)

The matrix S2 := Mnb
0 + ∆t2 T >0 (I1

0 )−> C>0 M2
0 C0 (I1

0 )−1 T0/4 on the left-hand side is symmetric
and does not change in time. Moreover, we note that the explicit update rule (3.104) preserves
the divergence of the magnetic field, i.e. D0

~bn+1 = D0
~bn due to the discrete de Rham complex

property D0 C0 = 0. Hence, if the initial magnetic field is divergence-free (which can exactly be
translated to the discrete level via the commuting diagram property Π2 (∇̂ ·B2) = ∇̂ · (Π2B

2),
it will remain divergence-free for all times. We denote the second time integrator by Φ2

∆t :

Rn
2
0 × Rn

2
0 → Rn

2
0 × Rn

2
0 , ~un, ~bn 7→ ~un+1, ~bn+1.

Substep 3 The third subsystem reads

d~u

dt
= νh

Ah

Ab
J15( ~b,Υ )WV,

d~b

dt
= 0,

dΥ

dt
= 0,

dV

dt
= −J>15( ~b,Υ )Mnb

0 ~u. (3.106)

We solve this system in the same way as in the previous step by noting that ~b and Υ do not
change in this step such that the same is true for the matrix J15 = J15( ~bn,Υn ). Applying the
Crank-Nicolson scheme yields

~un+1 = ~un + νh
Ah

Ab

∆t

2
J15 W (Vn + Vn+1) ,

Vn+1 = Vn − ∆t

2
J>15 M

nb
0 (~un + ~un+1) ,

(3.107)

(3.108)

which can once more by be decoupled by plugging the second equation in the first equation and
solving for ~un+1:

S3 ~u
n+1 =

(
Mnb

0 − νh
Ah

Ab

∆t2

4
Mnb

0 J15 WJ>15 M
nb
0

)
~un + ∆t νh

Ah

Ab
J15 WVn . (3.109)

The matrix S3 := Mnb
0 + νh

Ah
Ab

∆t2 Mnb
0 J15 WJ>15 M

nb
0 /4 on the left-hand side is symmetric and

needs to be assembled in every time step. The update (3.108) for the particle velocities can be
done for a single particle independently from all the other particles. We denote the third time
integrator by Φ3

∆t : Rn
2
0 × R3Np → Rn

2
0 × R3Np , ~un,Vn 7→ ~un+1,Vn+1.
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Substep 4 The fourth subsystem reads

d~u

dt
= 0,

d~b

dt
= 0,

dΥ

dt
= NDF−1(Υ) V,

dV

dt
= 0. (3.110)

This step does not play a role for conservation of energy because the Hamiltonian (3.93) does
not depend on the particles’ spatial positions. Due to the fact that the Crank-Nicolson method
from the previous steps is of second order, we use a method of equal or higher order for the
solution of this step. To additionally avoid another implicit method, we choose the classical
fourth order Runge-Kutta method which reads

k1 = NDF−1(Υn) Vn ,

k2 = NDF−1(Υn +
∆t

2
k1) Vn ,

k3 = NDF−1(Υn +
∆t

2
k2) Vn ,

k4 = NDF−1(Υn + ∆tk3) Vn ,

Υn+1 = Υn +
∆t

6
(k1 + 2k2 + 2k3 + k4) .

(3.111a)

(3.111b)

(3.111c)

(3.111d)

(3.111e)

As in (3.108), this update rule applies to every particle independently from all the other particles.
We denote the fourth time integrator by Φ4

∆t : R3Np → R3Np , Υn 7→ Υn+1.

Substep 5 The fifth subsystem reads

d~u

dt
= 0,

d~b

dt
= 0,

dΥ

dt
= 0,

dV

dt
= νh

Ah

Ab
J55( ~b,Υ ) V. (3.112)

Since the magnetic field FE coefficients ~b and the particle positions Υ due not change in this
step, the matrix J55) = J55( ~bn,Υn ) does not change as well. It is then possible to solve system
(3.112) in an exact analytical way because the ODE for the velocity effectively constitutes a
rotation around the direction of the constant magnetic field vector. Moreover, since this system
can be solved again for each particle separately, we just consider a single particle with index i
in the following. The exact solution is then given by

vn+1
i = vni,‖

Bh

|Bh|
+ cos

(
Zh|Bh|
Ah

κ∆t

)
vni,⊥ + sin

(
Zh|Bh|
Ah

κ∆t

)(
vni,⊥ ×

Bh

|Bh|

)
,

vni,‖ := (vni ·Bh/|Bh|) ,

vni,⊥ := Bh × (vni ×Bh)/|Bh|2 ,

(3.113)

(3.114)

(3.115)

where Bh = Bh(ηni ) = DF (ηni ) B2
h(ηni )/

√
g(ηni ) are the Cartesian components of the magnetic

field at the particle position ηni , vni,‖ := is the parallel velocity with respect to the magnetic

field and vni,⊥ the perpendicular one. We denote the fifth time integrator by Φ5
∆t : R3Np →

R3Np , Vn 7→ Vn+1.

Substep 6 The sixth subsystem (non-Hamiltonian part) reads

Mnb
0

d~u

dt
= D>0 M3

0 p + MJ0 ~b ,
dp

dt
=
[
−D0 (I2

0 )−1F0 − (γ − 1) (I3
0 )−1K0 D0

]
~u , (3.116)



3.7. IMPLEMENTATION AND CODE DESCRIPTION 55

for constant ~b = ~bn. Although this step does not conserve the total energy, we still solve
it implicitly to circumvent possible Courant-Friedrichs-Lewy (CFL) constraints on the time
step because this step contains pressure perturbations which can excite fast magnetosonic
waves. We once more choose the Crank-Nicolson method. Defining L := −D0 (I2

0 )−1F0 −
(γ − 1) (I3

0 )−1K0 D0 for a shorter notation leads to

Mnb
0 ~un+1 = Mnb

0 ~un +
∆t

2
D>0 M3

0 (pn + pn+1) + ∆tMJ0 ~b
n ,

pn+1 = pn +
∆t

2
L (~un + ~un+1) .

(3.117)

(3.118)

As in substeps 1-3, these equations can be decoupled by plugging the second equation in the
first one followed by solving for un+1:

S6 ~u
n+1 =

(
Mnb

0 +
∆t2

4
D>0 M3

0 L

)
~un + ∆tD>0 M3

0 pn + ∆tMJ0 ~b
n . (3.119)

The matrix S6 := Mnb
0 −∆t2 D>0 M3

0 L/4 is constant in time. We denote the sixth time integrator

by Φ6
∆t : Rn

2
0 × Rn

3
0 → Rn

2
0 × Rn

3
0 , ~un,pn 7→ ~un+1,pn+1.

In summary, in order to go from time tn to time tn+1, we successively apply the six inte-
grators, where it is important to note that the input of the next integrator must be the output
of the previous integrator:

ΦL
∆t := Φ6

∆t ◦ Φ5
∆t ◦ Φ4

∆t ◦ Φ3
∆t ◦ Φ2

∆t ◦ Φ1
∆t ,

ΦS
∆t := ΦL

∆t/2 ◦ (ΦL
∆t/2)−1 .

(3.120)

(3.121)

This first-order composition (3.120) is known as the Lie-Trotter splitting [68] and consists of
applying each integrator one after the other. In contrast to that, the second-order decomposition
(3.121) known as the Strang splitting consists of first applying the Lie-Trotter decomposition
with a half time step and in reverse order followed by applying the Lie-Trotter decomposition
with a half time step in ”normal” order. Higher-order compositions are in principle available
[70] but become computationally more expensive which is why only these two compositions have
been implemented so far. In all simulation results presented in this thesis, the second-order
Strang splitting (3.121) was used.

3.7 Implementation and code description

The implementation of the methodologies introduced in the previous sections was realized with
the help of the programming language Python in combination with automatically generated For-
tran kernels for acceleration. The latter is achieved with the tool Pyccel which can be regarded
as a Python-to-Fortran converter from a user point of view and which is currently being devel-
oped at the Max Planck Institute for Plasma Physics in Garching, Germany. The result of these
implementations is the newly developed code STRUPHY which stands for Structure-Preserving
Hybrid Code to highlight both the numerical methods being used (structure-preserving meth-
ods) as well as the physics models in play (hybrid MHD-kinetic models). The overall structure
of STRUPHY is depicted in Figure 3.6, where each node represents a class and the arrows be-
tween the nodes indicate dependencies among different classes. In the following, we shall give
a description of the most important low-level classes where the focus shall be laid on its basic
contents and functionalities instead of a detailed and complete code description. For instance,
when listing input parameters or methods of classes, we will use pseudo-code and not define
data types of input and output variables etc..
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Domain

Particle pusher

MHD equilibrium
(physical domain)

MHD equilibrium
(logical domain)

Tensor spline space

STRUPHY

MHD initialization
(physical domain)

MHD initialization
(logical domain)Eigenspectrum

Linear MHD 
operators

Particle accumulation

Particle loading

Kinetic initialization
(logical domain)

Eps/PIC 
(MPI/OpenMP parallel)

MHDGeometry/FEEC

Projectors

Figure 3.6: Schematic structure of the new hybrid MHD-kinetic code STRUPHY. Each nodes
represents a Python class and arrows indicate dependencies among them. The classes can be
grouped into 1) classes related to energetic particles (EPs) and particle-in-cell (PIC) routines
(left column), 2) classes related to differential geometry and finite element exterior calculus
(FEEC) and 3) classes related to magnetohydrodynamics (MHD).

3.7.1 Domain class

At the heart of STRUPHY lies the class Domain which is independent of the model being solved
and does not require input data from any of the other classes. Therefore, when STRUPHY is
executed, among the first things being performed is to create an object from this class. Domain
handles all differential geometry related operations, in particular evaluation of metric coefficients
and pull-back and push-forward operations according to Table 3.1. As shown in the beginning of
this chapter, all these operations are based on the mapping F : Ω̂→ Ω from the logical domain
Ω̂ = [0, 1]3 to the physical domain Ω ⊂ R3. Among others, the following analytical mappings
are available in the class Domain:

Cuboid : F (s, χ, ϕ) =




as

2πaχ

2πR0 ϕ


 ,

Cylinder : F (s, χ, ϕ) =



R(s, χ)

Y (s, χ)

2πR0 ϕ


 ,

R(s, χ) = as cos(2πχ) +R0

Y (s, χ) = as sin(2πχ)
,

(3.122)

(3.123)
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Circular torus
(with straight
field line angle)

:





F (s, χ, ϕ) =



R(s, χ) cos(2πϕ)

Y (s, χ)

R(s, χ) sin(2πϕ)


 ,

R(s, χ) = as cos(θ(s, χ)) +R0 ,

Y (s, χ) = as sin(θ(s, χ)) ,

θ(s, χ) = 2 arctan

(√
1 + as/R0

1− as/R0
tan(πχ)

)
.

(3.124)

The first mapping (3.122) results in a cuboid with side lengths a, 2πa and 2πR0 and is supposed
to mimic a torus with minor radius a and major radius R0 in slab geometry. The second
mapping (3.123) results in a cylinder where r = as is the geometric distance from the pole at
(R0, Y0) and θ = 2πχ is the geometric polar angle. Finally, the mapping (3.123) describes a
torus with circular concentric s-isolines and curved χ-isolines (both for fixed toroidal angle ϕ).
Hence, 2πχ is not equal to the geometric poloidal angle θ as opposed to (3.123) but is rather
chosen in a way that magnetic field lines corresponding to an ad hoc tokamak-like magnetic field
are straight when plotted in the (χ, ϕ)-plane for a fixed s. This means that the safety factor
q = (Beq · ∇ϕ)/(Beq · ∇χ) is a function of s only [94]. More details, in particular the explicit
form of the ad hoc magnetic field Beq, shall be given in Section 3.7.3 when talking about MHD
equilibria.

Besides the analytical mappings (3.122)-(3.124), the class Domain also supports isogeometric
(IGA) mappings in the poloidal plane, i.e. the ”poloidal mapping”Fpol : (s, χ) 7→ (R, Y ) is more
generally given by B-spline representations of the form

Rh(s, χ) = R0 +

ns−1∑

i=1

nχ−1∑

j=0

cR(ij)N
ps
i (s)N

pχ
j (χ) ,

Yh(s, χ) = Y0 +

ns−1∑

i=1

nχ−1∑

j=0

cY(ij)N
ps
i (s)N

pχ
j (χ) ,

(3.125a)

(3.125b)

where (ij) := i (jmax + 1) + j. The FE coefficients cR := (cR(ij)) and cY := (cY(ij)) are called
the control points of the poloidal mapping Fpol; they can be obtained either by interpolation of
given analytical expressions for R = R(s, χ) and Y = Y (s, χ) like in (3.124) or by interpolation
of a given poloidal magnetic flux function ψ = ψ(R, Y ), e.g. obtained from an MHD equilibrium
code, in a way that (s, χ) become magnetic flux coordinates. This means that for fixed s = s0,
the curve L(χ) = (R(s0, χ), Y (s0, χ)) defines a closed magnetic flux surface of arbitrary shape
corresponding to some given MHD equilibrium. As in (3.124), a common choice for the angle-
like coordinate χ is then to define it in a way that magnetic field lines become straight when
plotted in the (χ, ϕ)-plane. Other choices for χ, however, can be made as well.

Table 3.2 summarizes the most important contents of the class Domain_3d. The input pa-
rameters essentially specify the desired mapping together with its parameters in case of the
analytical mappings (3.122)-(3.124) (minor radius a and major radius R0) or together with the
required B-spline parameters (spline degrees etc.) in case of the IGA mappings (3.125). Once an
instance of Domain is created, it allows the evaluation of all metric coefficients via the method
evaluation(s, chi, phi, what), where the parameter what selects the metric coefficient. For
instance, what=’x’ evaluates the x-component of the chosen mapping and what=’g_23’ evalu-
ates the 23-component of the metric tensor G. Finally, the two methods pull(fun, s, chi,
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Table 3.2: Main contents and functionalities of the class Domain for handling 3d mapped domains.
For analytical mappings, only the input parameters kind_map and params_map must be passed
while for IGA mappings in the poloidal plane also the number of elements Nel, spline degrees p,
kind of splines spl (clamped or periodic) and control points cR and cY must be passed. In case
of IGA mappings, the attributes contain the number of B-splines n in s- and χ-direction and the
respective spline knot vectors T needed for B-spline evaluations. The abbreviation ”opt.” stands
for ”optional”.

Class: Domain

Input parameters Attributes Methods

kind_map kind_map evaluate(s, chi, phi, what)

params_map=(a, R0) params_map pull(fun, s, chi, phi, to_what)

Nel=(Nel_s, Nel_chi) (opt.) n=(n_s, n_chi) push(fun, s, chi, phi, to_what)

p=(p_s, p_chi) (opt.) p=(p_s, p_chi)

spl=(spl_s, spl_chi) (opt.) T=(T_s, T_chi)

cR, cY (opt.) cR, cY

phi, to_what) and push(fun, s, chi, phi, to_what) implement the pull-back and push-
forward operations listed in Table 3.1, where fun is the input function and to_what specifies the
destination function. For example a scalar function on the physical domain can be pulled-back
either to a 0-form (to_what=’0_form’) or to a 3-form (to_what=’3_form’).

3.7.2 FEM and projectors class

Everything related to FEEC is handled within the class TensorSplineSpace. It implements
the commuting diagram both with and without boundary conditions in s-direction and contains
routines for evaluating elements of the spaces V k

h and V k
0,h for given FE coefficients. Therefore,

input parameters are the number of elements, spline degrees and kind of splines (clamped or
periodic) in each direction as well as the toroidal mode number and boundary conditions in
s-direction. The latter is done via the parameter bc=(bc_0, bc_1), where bc_0 is the bound-
ary condition at s = 0 and bc_1 the boundary condition at s = 1. An object created from
TensorSplineSpace then contains as attributes the four boundary operators Bk (3.56)-(3.57),
the discrete derivatives G, C and D for the de Rham complex of the full spaces V k

h as well as
the discrete derivatives G0, C0 and D0 for the de Rham complex of the reduced spaces V k

0,h that
take into account boundary conditions. In order to calculate the integrals needed in the mass
matrices, we employ a Gauss-Legendre quadrature in each element of the discretized poloidal
plane. Contributions in toroidal direction are analytical and decoupled from the poloidal ones
because in axisymmetric configurations equilibrium quantities, the Jacobian determinant

√
g

and metric tensor G are independent of the toroidal angle. Therefore, a generic entry of the
mass matrix M0 (3.53a) is calculated as

∫

Ω̂
Λ0

(ijk) Λ0
(mno)

√
g ds dχdϕ =

(∫ 1

0

∫ 1

0
Nps
i N

pχ
j Nps

mN
pχ
n
√
g f ds dχ

)∫ 1

0
FnkFno dϕ

=

(∫ 1

0

∫ 1

0
Nps
i N

pχ
j Nps

mN
pχ
n
√
g ds dχ

)
1

2
δko .

(3.126)
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Table 3.3: Main contents and functionalities of the class TensorSplineSpace for handling FEEC
related operations. Input parameters are the number of elements Nel, spline degrees p and kind
of splines spl (clamped or periodic) in s- and χ-direction as well as the toroidal mode number
n_tor and boundary conditions bc in s-direction. The parameter nq is the number of Gauss-
Legendre quadrature points per element for calculating integrals over the entire logical domain
Ω̂.

Class: TensorSplineSpace

Input parameters Attributes Methods

Nel=(Nel_s, Nel_chi) n=(n_s, n_chi) eval_NN(s, chi, phi, coeff, space)

p=(p_s, p_chi) d=(d_s, d_chi) eval_DN(s, chi, phi, coeff, space)

spl=(spl_s, spl_chi) T=(T_s, T_chi) eval_ND(s, chi, phi, coeff, space)

n_tor G, C, D eval_DD(s, chi, phi, coeff, space)

bc=(bc_0, bc_1) M0, M1, M2, M3 assemble_Mk(domain, space)

nq=(nq_s, nq_chi) B0, B1, B2, B3 set_projectors(nq)

G0, C0, D0

M0_0, M1_0,

M2_0, M3_0

projectors

Splitting the remaining two integrals into contributions from integrals over elements and subse-
quently applying the Gauss-Legendre quadrature yields

∫

Ω̂
Λ0

(ijk) Λ0
(mno)

√
g ds dχdϕ =

1

2
δok

(∑

e1,e2

∫

Ω̂se1

∫

Ω̂χe2

Nps
i N

pχ
j Nps

mN
pχ
n
√
g ds dχ

)

≈ 1

2
δko
∑

e1,e2

∑

q1,q2

wse1q1w
χ
e2q2N

ps
i (se1q1)N

pχ
j (χe2q2)Nps

m (se1q1)N
pχ
n (χe2q2)

√
g(se1q1 , χe2q2) ,

(3.127)

where wse1q1 is the q1-th Gauss-Legendre quadrature weight and se1q1 the corresponding quadra-
ture point; both mapped from the interval [−1, 1] (where quadrature rules are usually defined)
to the element Ω̂s

e1 = [cse1 , c
s
e1+1] (accordingly for the χ-direction). The number of quadrature

points per element in each of the two directions is set with the input parameter nq=(nq_s,

nq_chi) which is set to the default value (6, 6) in the following if not specified differently. The
computations (3.126)-(3.127) for the mass matrices (3.53) are then performed upon calling the
method assemble_mk(domain, space), where domain is an object crated from the class Do-

main and space specifies which mass matrix one wants to assemble (e.g. space=’V0’ for the
mass matrix M0). A summary of the most important contents and functionalities of the class
TensorSplineSpace is given in Table 3.3.

The commuting projectors Πk are set with the method set_projectors(nq), where nq

are the number of quadrature points per integration interval in the computation of the degrees
of freedom (3.68). The projectors are implemented in a separate class ProjectorsGlobal3D.
Hence, after calling set_projectors(nq), a projectors object becomes an attribute of the tensor
spline space object on which the method is called. The class ProjectorsGlobal3D implements
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Table 3.4: Main contents and functionalities of the class ProjectorsGlobal3D for handling
commuting projections. Input parameters are an object tensorspace created from the Tensor-

SplineSpace class and the number of Gauss-Legendre quadrature points per integration interval
nq for computing the geometric degrees of freedom.

Class: ProjectorsGlobal3D

Input parameters Attributes Methods

tensorspace I0, I1, I2, I3 dofs_0(fun, bc)

nq=(nq_s,nq_chi) I0_0, I1_0, I2_0, I3_0 dofs_1(fun, bc)

I0_lu, I1_lu, I2_lu, I3_lu dofs_2(fun, bc)

I0_0_lu, I1_0_lu, I2_0_lu, I3_0_lu dofs_3(fun, bc)

I0_0_t_lu, I1_0_t_lu, I2_0_t_lu, I3_0_t_lu

the evaluation of the degrees of freedom (3.68) via Gauss-Legendre quadrature in each histopo-
lation interval [sk, sk+1] between two successive Greville points (accordingly for the χ-direction)
as well as the final projections using the interpolation matrices Ik (3.70) resp. Ik0 = Bk Ik (Bk)>.
Since the inverse interpolation matrices are needed for this, LU decompositions are computed
when a projectors object is created. With that, the application of an inverse interpolation ma-
trix to some vector becomes very efficient. As before, if not stated differently, the number of
quadrature points is set to (6, 6). A summary of the most important contents and functional-
ities of the class ProjectorsGlobal3D is given in Table 3.4. Attributes are the interpolation
matrices Ik and Ik0 as well as their LU decompositions. Besides this, LU decompositions of the
transposed interpolation matrices (Ik0 )> are calculated because for instance (I2

0 )−> is needed in
the MHD momentum balance equation (3.77a). The most important methods of the Projec-

torsGlobal3D class are the ones for computing the geometric degrees of freedom needed for the
commuting projectors. They take as an input the components of some analytical differential
form and return the function evaluated at the interpolation point resp. the integrals between
the interpolation points. The latter is once more performed with Gauss-Legendre quadrature.
The parameter bc states whether to include (bc=True) or not include (bc=False) the degrees of
freedom corresponding to interpolation points on the domain boundaries at s = 0 and s = 1.

3.7.3 MHD equilibrium classes

Three analytical MHD equilibria corresponding to slab, cylindrical and toroidal geometry were
implemented in the class EquilibriumMhdPhysical. It enables the evaluation of the magnetic
field Beq, the pressure peq, the number density nb,eq and the current density Jeq = ∇ × Beq;
all on the physical domain Ω. It is important to note that this is a priori independent of the
mapping F being used in the class Domain because different coordinates can be used to represent
the same geometry.

The first equilibrium corresponds to a so-called ”sheared slab” and is supposed to mimic the
sheared magnetic field property of a tokamak in a simplified slab geometry. Hence, similar to a
tokamak, there is a safety factor q = q(x) which defines the magnetic shear along a radial-like
coordinate (x in this case). The role of the radial, ”poloidal” and ”toroidal” coordinates are taken



3.7. IMPLEMENTATION AND CODE DESCRIPTION 61

Table 3.5: Main contents and functionalities of the class EquilibriumMhdPhysical for loading
analytical MHD equilibria. Input parameters are the kind of MHD equilibrium one wants to
load (e.g. kind=’torus’ for (3.130)) and the corresponding parameters params_mhd needed to
define the profiles.

Class: EquilibriumMhdPhysical

Input parameters Attributes Methods

kind kind B_eq_x(x, y, z), B_eq_y(x, y, z), B_eq_z(x, y, z)

params_mhd=(a, params_mhd J_eq_x(x, y, z), J_eq_y(x, y, z), J_eq_z(x, y, z)

R0, B0, q0, q1, p_eq(x, y, z)

beta, p1, p2, n_eq(x, y, z)

na, n1, n2)

by x, y and z, respectively, such that the equilibrium fields depend on x only:

Sheared slab :





Beq = B0

(
ez +

a

q(x)R0
ey

)
, q(x) = q0 + (q1 − q0)

x2

a2
,

peq =
βB2

0

2

(
1 +

a2

q2R2
0

)
+
B2

0a
2

R2
0

(
1

q2
0

− 1

q2

)
,

nb,eq = 1 .

(3.128)

It is easily verified that (3.128) constitutes a MHD equilibrium according to ∇peq = (∇ ×
Beq) × Beq. The integration constant for the pressure is set in a way that β = 2peq(x =
0)/(B2

0 + Bey,y(x = 0)2), i.e. the parameter β is the plasma beta (ratio kinetic and magnetic
pressure) at x = 0.

The second equilibrium corresponds to a straight tokamak configurations with circular flux
surfaces (screw pinch). In the same way as for the sheared slab, a strictly monotonically increas-
ing safety factor q = q(r) in radial direction together with a constant toroidal (axial) magnetic
field Beq · ez = B0 is prescribed which results in the following profiles:

Straight tokamak

x = r cos θ +R0

y = r sin θ

:





Beq = B0

(
ez +

r

q(r)R0
eθ

)
, q(r) = q0 + (q1 − q0)

r2

a2
,

peq =



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B2
0a

2q0

2R2
0(q1 − q0)

(
1

q2
− 1

q2
1

)
if q1 6= q0 ,

βB2
0

2
else ,

nb,eq = (1− na)
(

1−
(r
a

)n1
)n2

+ na .

(3.129)

For non-constant q-profiles (q0 6= q1), the integration constant for the pressure is set in a way
that the pressure drops to zero at the boundary, i.e. peq(r = a) = 0. For a constant q-profile
(q0 = q1), the resulting constant pressure is defined by the plasma beta. Moreover, a strictly
monotonically decreasing number density with a maximum at r = 0 and some non-zero value
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na at r = a is prescribed. As before, it is easily verified that (3.129) constitutes an exact MHD
equilibrium.

The third equilibrium represents a tokamak with circular concentric flux surfaces. The
profiles are given by

Tokamak (ad hoc)

x = R cos θ cosφ
y = r sin θ
z = R cos θ sinφ

R = R0 + r cos θ

:





Beq =
B0R0

R

(
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r

q̄(r)R0
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)
, q̄(r) = q(r)

√
1− r2

R2
0

,

q(r) = q0 + (q1 − q0)
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,

peq =
βB2

0

2
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1− p1
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r4
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,

nb,eq = (1− na)
(
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(r
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)n1
)n2

+ na ,

(3.130)

where the ad hoc pressure profile is such that β = 2peq(r = 0)/B2
0 , which means that the

parameter β is the on-axis plasma beta. The relation between the ”true” safety factor q and the
modified one q̄ used in the definition of the poloidal magnetic field component can be seen as a
toroidal correction and results from averaging along a flux surface:

q :=
Beq · ∇φ
Beq · ∇θ

=
R0

R
q̄ ⇒ q(r) = R0 q̄(r)

1

2π

∫ 2π

0

1

R(r, θ)
dθ =

q̄(r)√
1− r2/R2

0

. (3.131)

It should be noted that (3.130) is not an exact MHD equilibrium and should rather be seen as
an approximation of a cylindrical equilibrium in toroidal geometry.

The profiles (3.128)-(3.130) are accessible via an object created from the class Equilib-

riumMhdPhysical whose contents are summarized in Table 3.5. Once an object is crated, it
enables the evaluation of the magnetic field, current density, pressure and number density
on the physical domain, i.e. with respect to Cartesian coordinates. The corresponding dif-
ferential forms obtained by pull-back operations according to Table 3.1 are then accessible
via an object created from the class EquilibriumMhdLogical whose contents and function-
alities are summarized in Table 3.6. It enables the evaluation of components of differential
forms according to expressions like domain.pull([eq_mhd_phy.B_eq_x, eq_mhd_phy.B_eq_y,

eq_mhd_phy.B_eq_z], s, chi, phi, ’2_form_1’) for e.g. the evaluation of the first compo-
nent of the 2-form equilibrium magnetic field.

3.7.4 Linear MHD operators class

Once the computational domain and an MHD equilibrium is created, the class MhdOperators

handles all operations related to the linear MHD part of STRUPHY and thus brings together the
chosen MHD equilibrium on the logical domain created from EquilibriumMhdLogical and the
FEM spaces created from TensorSplineSpace. In particular, it implements the weighted mass
matrices Mnb

0 and MJ0 (3.87) and the matrices T0, F0 and K0 (3.80) resulting from applications
of one of the commuting projectors. As in the case of the mass matrices Mk (0 ≤ k ≤ 3), this
is done in an efficient way by taking into account the compact support of the basis functions,
i.e. only matrix entries which are known to be non-zero are computed. The two weighted mass
matrices are assembled by calling the methods assemble_Mn() and assemble_MJ(), respectively,
while the degrees of freedom matrices are assembled by calling assemble_dofs(which), where
which=’T’,’F’,’K’ specifies the matrix to be assembled. Moreover, MhdOperators implements
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Table 3.6: Main contents and functionalities of the class EquilibriumMhdLogical for pull-backs
of MHD equilibrium profiles on the physical domain Ω to the logical domain Ω̂. Input parameters
are an object domain created from the class Domain and an object eq_mhd_phy created from the
class EquilibriumMhdPhysical.

Class: EquilibriumMhdLogical

Input parameters Attributes Methods

domain domain B2_eq_1(s, chi, phi), B2_eq_2(s, chi, phi),

eq_mhd_phy eq_mhs_phy B2_eq_3(s, chi, phi)

J2_eq_1(s, chi, phi), J2_eq_2(s, chi, phi),

J2_eq_3(s, chi, phi)

p3_eq(s, chi, phi)

n3_eq(s, chi, phi)

preconditioners for the linear systems in (3.105) and (3.119) defined by the matrices S2 and
S6, respectively. In STRUPHY, all linear systems are solved iteratively with a Krylov subspace
method for solving large linear systems. The default solver for systems defined by a positive-
definite matrix (substeps 2 and 3) is the conjugate gradient method (CG) [95] while the default
solver for the other systems (substeps 1 and 6) is the generalized minimal residual method
(GMRES) [96]. The usage of iterative methods has the advantage that inverse matrices do not
have to be computed explicitly but only the results of matrix-vector products such as S2u

n+1

need to be available. This is useful because the matrices S2 and S6 are not sparse because they
involve inverse interpolation matrices with are dense. Saving these matrices explicitly would
require about (3×100×100×2)2×8 B = 28.8 GB of memory on a 100×100 grid in case of double
precision. Therefore, in order to save memory (especially when going to fully three-dimensional
stellarator-like problems in the future), the matrices S2 and S6 are never assembled explicitly.
However, it was observed that effective preconditioning is needed to reach convergence after a
reasonable amount of iteration steps such that the overall simulation time does not become too
large. Different preconditioning strategies were investigated for this purpose.

A first simple way is to approximate the system matrices in the substeps 1, 2, 3 and 6 by Mnb
0

because all matrices are of the form Mnb
0 ±∆t . . . (substep 1) or Mnb

0 ±∆t2 . . . (substeps 2, 3 and
6). Hence, if ∆t is small (∆t < 1), Mnb

0 seems to be a reasonable approximation and inverting
the sparse matrix Mnb

0 is easy (e.g. via sparse LU decomposition). Indeed, it was found that
this method works well for the two kinetic coupling substeps 1 and 3. In all simulation results
presented in this thesis, convergence was reached after a maximum of ∼ 10 iteration steps even
for larger times steps ∆t . 0.32. In contrast to that, in the pure MHD systems in substeps 2
and 6 (especially substep 2) this method only worked reasonably well for very small time steps.
For larger times steps a good preconditioning was obtained by computing approximations of S2

and S6 by approximating the inverse interpolation matrices. The latter is achieved by noting
that many entries of the inverse interpolation matrices are close to zero. Hence, values smaller
than some tolerance can be set to zero. The resulting sparse approximations are then used to
compute approximations for S2 and S6 which are again sparse. For these matrices, sparse LU
decompositions can be used as preconditioners. Since in linear MHD, S2 and S6 do not change
in time, this needs to be done only once in the beginning of a simulation.
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Table 3.7: Main contents and functionalities of the class MhdOperators for assembling MHD
related weighted mass matrices, degree of freedom matrices and preconditioners for linear sys-
tems in substep 2 (3.105) and substep 6 (3.119). Input parameters are an object tensorspace

created with the class TensorSplineSpace and an object eq_mhd_log created with the class
EquilibriumMhdLogical.

Class: MhdOperators

Input parameters Attributes Methods

tensorspace Mn_0, MJ_0 assemble_Mn(), assemble_MJ()

eq_mhd_log T_0, F_0, K_0 assemble_dofs(which)

S2_PRE set_preconditioner_S2(which, tol_inv)

S6_PRE set_preconditioner_S6(which, tol_inv)

3.7.5 Particle loading class

Currently, STRUPHY loads particles on the logical domain according to the general probability
density function (PDF)

ζ3
h = ζs(s)

1

π3/2v3
th(s)

exp

[
(vx − v0x)2 + (vy − v0y)

2 + (vz − v0z)
2

vth(s)2

]
,

∫ 1

0
ζs(s) ds = 1 ,

(3.132)

which means that particles are loaded uniformly in the two periodic spatial directions χ and ϕ.
In radial (s) direction particles are loaded according to some arbitrary function ζs(s) (the only
restriction is that it must be normalized to one). The reason for this choice is that we want to
have the possibility to obtain, for instance, a uniform distribution of particles on the physical
domain or to have more particle in regions where a a higher numerical resolution is desired.
The former is due to the fact that a uniform distribution of particles on the logical domain does
in general not result in a uniform distribution of particles on the physical domain. A simple
example for this is shown in Figure 3.7 for the case of the standard two-dimensional square-to-
disc mapping x = as cos(2πχ) and y = as sin(2πχ) for which the Jacobian determinant is readily
given by

√
g = 2a2πs ∼ s. If one loads particle uniformly on the logical domain according to

ζ3
h = 1 (upper left), this will result in a larger particle density around the center of the disc

(upper right picture). Consequently, if one wants to end up with a uniform density of particles
on the mapped domain (lower right), particles must be sampled according to the (normalized)
Jacobian determinant ζ3

h = 2s on the logical domain (lower left).
In order to sample from the general PDF (3.132), it is first written conditionally in the form

ζ3
h =

∫∫∫
ζ3

h dvx dvy dvz

∫∫
ζ3

h dvy dvz
∫∫∫

ζ3
h dvx dvy dvz

∫
ζ3

hdvz
∫∫

ζ3
h dvy dvz

ζ3
h∫
ζ3

hdvz

=: ζs(s) ζsx(s, vx) ζsy(s, vy) ζsz(s, vz) ,

(3.133)

which allows to successively sample from ζs(s) (which yields some value s0), from ζsx(s0, vx)
(which yields some value v0

x), from ζsy(s0, vy) (which yields some value v0
y) and finally from
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s

χ
F
−→

Ω̂

ζ3
h = 1

x

y

Ω

ζh = (2a2π
√
x2 + y2 )−1
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χ

F
−→

ζ3
h = 2s
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y
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Figure 3.7: Different particle samplings on the logical domain Ω̂ (left column) for the standard
square-to-disc mapping x = as cos(2πχ) and y = as sin(2πχ) and the resulting particle distri-
bution on the physical domain Ω (right column). If the particles are sampled uniformly on Ω̂
(ζ3

h = 1), there will be more particles close to the center of Ω, while if the they are sampled
according to the normalized Jacobian determinant (ζ3

h =
√
g/
∫

Ω̂

√
g dsdχ = 2s), there will be a

uniform distribution on Ω.

ζsz(s0, vz) (which yields some value v0
z). Since the PDF in s-direction is a priori not known and

to therefore ensure maximum flexibility, STRUPHY uses the acceptance-rejection algorithm [97]
in this direction. This method allows for sampling from arbitrary functions ζs(s) provided that
uniform sampling in the unit interval (0, 1) is possible (e.g. with Python’s numpy.random.rand).
In velocity space, inverse transform sampling [97] is used because it is more efficient than the
acceptance-rejection method from a computational point of view. For this, the cumulative
distribution function

∫ vµ

−∞
ζsµ(s, v′µ) dv′µ =

1

2

[
1 + erf

(
vµ − v0µ

vth(s)

)]
, (3.134)

is needed (µ = x, y, z), where erf denotes the error function. Setting this equal to a random
number u ∈ U(0, 1) obtained from a uniform distribution in the unit interval and solving for vµ
yields

vµ = erfinv(2u− 1) vth(s) + v0µ , (3.135)

where erfinv is the inverse error function. The PDF (3.132) as well as the particle loading with
the combined acceptance-rejection and inverse transform sampling method is implemented in
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Table 3.8: Main contents and functionalities of the class ParticleLoader. The only input
parameter is a list of parameters params which specifies the probability density function (3.132).

Class: ParticleLoader

Input parameters Attributes Methods

params params zeta_h(s, chi, phi, vx, vy, vz)

load_particles(mpi_comm, seed)

the class ParticleLoader (see Table 3.8). The particle loading is implemented in a way that
MPI parallelization results in the same particles compared to the case without parallelization if
the total number of particles is unchanged. This is in particular important to check if a parallel
code gives the same results as the serial version.



Chapter 4

Simulation results in slab geometry

As a first verification and application of STRUPHY, this chapter is concerned with numerical
results obtained in slab geometry given by the mapping (3.122), i.e. a cuboid with side lengths
Lx = a (a ”minor radius”), Ly = 2πa and Lz = 2πR0 (R0 ”major radius”) such that the
x-direction can be identified with the ”radial” direction, the y-direction with the ”poloidal”
direction and the z-direction with the ”toroidal” direction of a torus. In the following, we set
a = 1 and R0 = 3. Moreover, we consider the sheared slab equilibrium (3.128) given by

Sheared slab :





Beq = B0

(
ez +

a

q(x)R0
ey

)
, q(x) = q0 + (q1 − q0)

x2

a2
,

peq =
βB2

0

2

(
1 +

a2

q2R2
0

)
+
B2

0a
2

R2
0

(
1

q2
0

− 1

q2

)
,

nb,eq = 1 .

(4.1)

In all simulations shown, the constant toroidal magnetic field B0 = 1 and the on-axis (x = 0)
plasma beta β = 0. Two classes of numerical tests are performed: The first section is concerned
with pure MHD, i.e. the contribution from the kinetic ions is set to zero for all times (fh = 0).
The second section deals with non-linear simulations of the interaction of a small population of
kinetic ions with shear Alfvén waves. This is the case for which the linear dispersion relation
(2.57) was derived and which is expected to be valid as long as the field amplitudes of the
perturbations are much smaller than the corresponding equilibrium quantities.

4.1 Continuous spectra and phase mixing

As already mentioned in the introduction, a typical ideal MHD spectrum consists of discrete
eigenmodes with corresponding eigenfrequencies on the one hand and singular solutions with
eigenfrequencies corresponding to a continuous spectrum on the other hand (ω2 = ω2(x) in the
present case). The latter can be further divided into the shear Alfvén continuum and the slow
sound continuum. For the sheared slab equilibrium (4.1), the following analytical expressions
for the two continuous spectra can be derived [72]:

Alfvén continuum : ω2(x) =
B2

0

nb,eq(x)

1

R2
0

(
n+

m

q(x)

)2

,

Sound continuum : ω2(x) =
γpeq(x)

nb,eq(x)(γpeq(x) +B2
eq,y(x) +B2

0)

1

R2
0

(
n+

m

q(x)

)2

.

(4.2)

(4.3)
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Figure 4.1: Numerical eigenfrequencies ω2/ω2
A (ωA = B0/R0) corresponding to the shear Alfvén

continuum (upper row) and slow sound continuum (lower row) for different spline degrees p =
(ps, pχ). The toroidal mode number n = −1 and the black dashed lines are the analytical
expectations according to (4.2) and (4.3). The different frequency ranges indicate that slow
sound continuum modes have much smaller frequencies than Alfvénic modes.

In (4.2) and (4.3), m = aky is the poloidal mode number in y-direction and n = R0 kz the toroidal
mode number in z-direction. For a safety factor profile with parameters q0 = 1.05 and q1 = 1.85
and a numerical resolution of Nel = (16, 12), the resulting continuous spectra calculated with
the eigenvalue version of STRUPHY are shown in Figure 4.1 for four different splines degrees
p = (ps, pχ). Since the eigenvalue solver currently computes the complete MHD spectrum
including compressible modes, the divergence of an eigenfunction U2

h is taken as a measure to
distinguish between incompressible Alfvénic modes (∇·Uh ≈ 0) and compressible magnetosonic
modes (∇·U 6= 0). Moreover, the radial location of a continuum mode is identified by searching
for the singularity (or discontinuity) in the corresponding eigenfunction. Once this location is
found, the poloidal mode number m is finally identified by analyzing the Fourier spectrum along
the poloidal direction at the previously found singular point in radial direction. From Figure 4.1
it is evident that the used spline degree has a strong impact on the correct representation of the
continuous spectra. While p = (2, 2) is not able to resolve modes with m > 1 properly (upper
left plot), p = (5, 5) results in an excellent agreement with the analytical expectation. This is
because higher spline degrees are able to better approximate Fourier modes due to their larger
support compared to smaller degrees (the support of B-splines is p+ 1 elements).

Based on the result that STRUPHY calculates continuous spectra in a very satisfactory way,
as a next step, continuum damping is investigated. As already mentioned in the introduction,
continuum damping can be understood by imagining a radially extended wave packet which
is dispersed due to different local Alfvén velocities at different radial positions. Hence, after
some time, adjacent fluid elements loose their phase coherence which will lead to an effective
damping. To model this feature with the initial-value run mode of STRUPHY, it is initialized
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Figure 4.2: Phase mixing in sheared slab geometry with initial condition (4.4) and mode numbers
(m,n) = (1,−1): a) Radial velocity component Uh,x at different times. b) Time traces of the
radial (Uh,x) and poloidal (Uh,y) velocity components, respectively, at two radial positions x = 0.4
and x = 0.7 and comparison to the case without magnetic shear (dashed line). c) Spatially
resolved Fourier spectrum of the undamped poloidal velocity component Uh,y and comparison
to the analytical expectation (dashed line). d) Zoom into time traces of Uh,x reveals fast, small
amplitude oscillations caused by fast magnetosonic modes.

with a radially extended (m,n) = (1,−1) mode of the form

U(t = 0,x) :





Ux(t = 0,x) = sin
(πx
a

)
sin
(my
a

+
nz

a

)
,

Uy(t = 0,x) = cos
(πx
a

)
cos
(my
a

+
nz

a

) π
m
,

Uz(t = 0,x) = 0 ,

(4.4)

where the poloidal component is chosen in a way that ∇ ·U(t = 0) = 0 in order to suppress
compressible modes. For the same safety factor profile that was used in Figure 4.1 (q0 = 1.05
and q1 = 1.85) and numerical parameters Nel = (64, 12), p = (2, 2) and ∆t = 0.1, Figure 4.2 a)
shows the radial component Uh,x at different times. It can be seen that the initially extended
radial mode structure decays towards smaller and smaller scales (kx →∞) leading to an eventual
break down of the ideal MHD model. The effective damping is visible in Figure 4.2 b) where
time traces of Uh,x (bottom) and Uh,y (top) at two different radial locations x = 0.4 and x = 0.7
are shown. While the radial component goes roughly like ∼ 1/t and is therefore damped, the
poloidal component remains undamped. Moreover, both components oscillate with their local
Alfvén velocity which is better visible in Figure 4.2 c), where the spatially resolved Fourier
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Figure 4.3: Cyclotron interaction of a shear Alfvén wave with full-orbit energetic ions: a)
Time evolution of the wave magnetic field energy H̃B (see (3.93) for its definition) for different
toroidal mode numbers n and comparisons to the analytical growth rates obtained from the
dispersion relation (2.57) (dashed lines). b), c) Corresponding evolution of the wave magnetic
field components Bh,x(t, z) and Bh,y(t, z) for the toroidal mode number n = 10.

spectrum of the undamped component is shown and compared to the analytical expectation
according to (4.2). To check that magnetic shear is indeed responsible for the damping, an
additional run with a flat safety factor profile (q0 = q1 = 1.85) was performed. The resulting
time traces of the radial and toroidal component are once more plotted in Figure 4.2 b) (grey
dashed lines). Compared to the case with magnetic shear, both components now oscillate with
the radially constant Alfvén frequency and are undamped. Finally, in Figure 4.2 d) a zoom
into the time traces of the radial component reveals fast, small amplitude oscillations which is
probably caused by fast magnetosonic modes which are excited. This means that although the
initial condition was chosen in a way that ∇ · Uh = 0, the numerical scheme in STRUPHY
leads to a finite velocity divergence as time evolves. However, since all substeps in the time
integration scheme are solved implicitly, there is no Courant-Friedrichs-Lewy (CFL) constraint
in STRUPHY. If this were the case, one would always have to choose a time step which properly
resolves the fast magnetosonic waves.

4.2 Cyclotron wave-particle interaction

In this section, a beam of energetic deuterons (Ah = 2 and Zh = 1) with an initially Maxwellian
distribution function of the form

fh(x,v, t = 0) =
1

π3/2v3
th

exp

[
−
v2
x + v2

y + (vz − v0)2

v2
th

]
, (4.5)

with parameters vth = 1 and v0 = 2 is injected into a bulk plasma composed of hydrogen ions
(Ab = 1). Moreover, magnetic field inhomogeneities are switched off (q0 = q1 → ∞), i.e. the
magnetic field Beq = B0 ez, and periodic boundary conditions in s-direction are used. For this
physical setup, the linear dispersion relation (2.57) was derived. Other physical parameters
are the characteristic bulk number density n̄b = 8× 1018 m−3 and the EP number density
n̄h = 1.6× 1017 m−3 resulting in the ratio νh = n̄h/n̄b = 2 %. Numerical mesh parameters are
Nel = (2, 2) and p = (1, 1) and for the time being a rather small time step ∆t = 0.02 and a very
large number of particles Np = 8× 106 is used in order to make sure that numerical convergence
is reached (convergence tests will be presented at the end of the section). Moreover, no field
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Figure 4.4: Cyclotron interaction of a shear Alfvén wave with full-orbit energetic ions: EP
distribution function in parallel velocity space (4.6) at different times (first column), the corre-
sponding differences to the initial distribution function (second column) and the wave-particle
power exchange (4.7) resolved in v‖-v⊥-space (third column). All for the two mode numbers
n = 10 (upper row) and n = 15 (lower row). For the present setup, the parallel velocity v‖ = vz
and the perpendicular velocity v2

⊥ = v2
x + v2

y .

perturbations are initialized. This means that the only deviation from the equilibrium state
is the small amplitude noise induced by energetic particles which are loaded uniformly in real
space and according to (4.5) in velocity space (parameters ζs(s) = 1, vth(s) = vth, v0x = v0y = 0
and v0z = v0 in the probability density function (3.132)).

Figure 4.3 a) shows the simulated evolution of the wave magnetic field energy H̃B for
four different toroidal mode numbers and the corresponding analytical growth rates from the
dispersion relation (2.57) (dashed lines). It is evident that the instability develops out of a
short and noisy initial phase and that the numerical growth rates agree well with the analytical
ones. Only the case of the smallest mode number n = 8 (blue curve) slightly underestimates
the growth rate. This might be due to the fact that the resonant velocity vR ≈ 3.3 is located
quite at the tail of the Maxwellian, which means that there are very few particles resulting in a
poor numerical resolution. Figure 4.3 b) and c) show the evolution of the wave magnetic field
components Bh,x and Bh,y in the t-z-plane for the generic mode number n = 10. Since there
is clearly a phase shift of 90◦ between the two components, a circularly polarized wave with
frequency ω = B0n/R0 ≈ 1.88 is forming out of the noisy initial phase. Moreover, one can easily
check that the direction of rotation is such that it is a right-handed circularly wave (R-wave).
This is in agreement with the analytical theory developed in Section 2.4 because it predicts
higher growth rates for R-waves than for L-waves.

To get further insights in the wave-particle interaction mechanism, snapshots of the parallel
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resulting from magnetic trapping is depicted.

EP distribution function

fh,‖(vz) :=

∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
fh dvx dvy ds dχdϕ , (4.6)

are depicted in Figure 4.4 for mode numbers n = 10 (upper row) and n = 15 (lower row) at two
different times in the linear phase. One observes a strong distortion of the distribution functions
at the vicinity of the respective resonant velocities vR = B0 (1 + κZh/Ahk) ≈ 2.86 (n = 10) and
vR ≈ 2.24 (n = 15) (see expression (2.59) for the resonant velocity). More resonant particles are
decelerated than accelerated in parallel direction, which is clearly visible in the middle column
of Figure 4.4. To check that this leads to a net energy transfer from EPs to the wave, the right
column shows the measured wave-particle power exchange1

Ph(v‖, v⊥) := νh
Zh

Ab
κ

∫ 1

0

∫ 1

0

∫ 1

0
(v ·E) fh 2π v⊥ ds dχdϕ , (4.7)

in v‖-v⊥-space. The additional resolution in the perpendicular velocity reveals that the net
loss in energy in parallel direction is larger than possible net gains in perpendicular direction.
Therefore, the overall energy exchange is such that energy is transferred from resonant particles
to the wave.

Finally, the subsequent non-linear saturation phase is investigated. Previous works on
electron Whistler instabilities [98, 99, 100] suggest that resonant particles in cyclotron interaction
processes get trapped in the wave magnetic field for sufficiently large amplitudes and that this
is the responsible mechanism for the saturation of instabilities. This magnetic trapping caused
by v×B forces leads to a bouncing of resonant particles within the wave fields with the bounce
frequency

ωb =

√
kv⊥

Zh κ|B|sat

Ah
, (4.8)

1This expression follows from the change of the EP energy (2.33) after appropriate normalization.
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Figure 4.6: Cyclotron interaction of a shear Alfvén wave with full-orbit energetic ions: a)
Time evolution of the wave magnetic field energy H̃B for different numerical time steps ∆t. b)
Corresponding evolution of the relative error in the conservation of the total energy H̃h (3.93).
The black dashed line is the case ∆t = 0.04 and a stop tolerance of 1× 10−14 in the iterative
linear solvers. In all other runs, the stop tolerance is 1× 10−12. c) Corresponding evolution of
the divergence of the magnetic field.

where |B|sat is the saturated wave magnetic field amplitude and k = n/R0 the wave number.
Moreover, it is expected that the bounce frequency is proportional to the linear growth rate γ
such that a relation between the saturation level of the wave magnetic field energy and the linear
growth rate can be derived:

ωb =

√
kv⊥

Zhκ|B|sat

Ah
∼ γ ⇒ |B|2sat ∼ γ4/n2 . (4.9)

Figure 4.5 a) shows the measured saturation levels of STRUPHY runs for a wide range of mode
numbers n = 8 − 23 and the comparison to the analytical expectation (4.9). It is evident
that there is an excellent agreement for all mode numbers. To further verify that magnetic
trapping is the responsible saturation mechanism, Figure 4.5 b) and c) show time traces of
the perpendicular and parallel velocity, respectively, of a particle whose initial parallel velocity
is close to the resonance velocity. One can see that the parallel velocity decreases and the
perpendicular one increases in the linear phase up to t ≈ 25. This is followed by oscillations
in the non-linear phase where the two velocities are phase shifted by 180◦. Plugging in the
values k = n/R0 = 10/3, κ ≈ 12.42 (recall that κ = Ω̄cpτA, see Section 2.2), Zh = 1, Ah = 2,
|B|sat ≈ 0.02 (see Figure 4.3) and the perpendicular velocity v⊥ ≈ 1.3 at the beginning of the
non-linear phase yields ωb ≈ 0.73 with results in a bounce period of Tb ≈ 8.56. This is in perfect
agreement with the measured bounce period in the simulations depicted in Figure 4.5 c).

Finally, numerical properties of STRUPHY runs with a focus on conservation properties are
investigated. In all simulations shown so far, a very small time step of ∆t = 0.02 has been used.
For the chosen set of physical parameters, the EP cyclotron frequency is Ωch = ZhκB0/Ah ≈ 6.21
resulting in a cyclotron period of about 2π/Ωch ≈ 1.01. Hence, the time step ∆t = 0.02 results
in about 50 steps per cyclotron period which is a very high temporal resolution. Figure 4.6
a) shows the evolution of the wave magnetic field energy for the case n = 10, four different
time steps up to ∆t = 0.32 (3 steps per cyclotron period) and mesh parameters Nel = (16, 2)
and p = (3, 1). The increased spatial resolution is used to demonstrate that STRUPHY’s good
conservation properties are independent of numerical parameters. Regarding the evolution of
the wave magnetic field energy, it can be seen that there is almost no difference for the time
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Figure 4.7: Cyclotron interaction of a shear Alfvén wave with full-orbit energetic ions with finite
plasma pressure: a) Time evolution of the wave magnetic field energy H̃B for different numbers
of particles per cell (ppc). b) Corresponding evolution of the relative error in the conservation of
the total energy H̃h (3.93). c) Corresponding evolution of the divergence of the magnetic field.

steps ∆t = 0.04 and ∆t = 0.08 compared to the high resolution case ∆t = 0.02. The time step
∆t = 0.16 still gives a reasonable result but a slight reduction of the growth rate is already
visible and lastly, ∆t = 0.32 clearly underestimates the growth rate although the qualitative
trend (growth phase in linear phase and non-linear saturation phase) is still captured correctly.
However, the small frequency oscillations in the saturation phase caused by trapped particles are
completely gone. The right column in Figure 4.6 shows the measured evolution of the relative
errors in the conservation of the total energy H̃h = H̃U + H̃B + H̃p + H̃h (see (3.93) for its
definition) and the divergence of the numerical magnetic field. The errors of the latter are close
to machine precision (≈ 1× 10−16 in case of double precision) throughout the entire simulation
which is a direct consequence of the conforming finite element spaces used in STRUPHY (discrete
de Rham complex with CD = 0). Regarding the energy error, there is a very small (maximum
1× 10−11) but finite error which is due to the fact that iterative solvers are used in the solution
of all linear systems in the implicit time integration scheme. This means that the linear systems
are not solved exactly but up to some given stop tolerance. For all runs in Figure 4.6, this
relative stop tolerance is 1× 10−12. To show that the finite error is caused by the iterative
solvers, an additional run with a smaller stop tolerance 1× 10−14 is shown in Figure 4.6 b) for
the ∆t = 0.04 case (dashed line). Indeed, this results in an error that is reduced by about two
orders of magnitude (blue curve vs. black dashed curve).

In all runs presented so far, the bulk plasma had zero pressure because of the absence
of magnetic shear (q0 = q1) and since we set the parameter β = 0 (plasma beta at x = 0).
Therefore, as last runs, a finite plasma pressure is included by setting β = 10 % in the pressure
profile in (4.1) and additionally a scan with respect to the number of particles is performed. The
latter has been Np = 8× 106 until now. Other numerical parameters are Nel = (16, 2), p = (3, 1)
and ∆t = 0.04. With this particular choice of number of elements, the number of particles per
element (or cell) ppc ≈ 256000. The results for decreasing number of particles are shown in
Figure 4.7. It can be seen that the instability can in principle be simulated with much less
particles but the initial noise levels becomes larger as the number of particles is decreased. This
reduces the time period of the exponential growth phase but the saturation dynamics remains
unchanged. In the right column of Figure 4.7 one observes that the total energy H̃h is not
conserved as well as for the case without pressure, but the error is still bounded below 1× 10−5.
The breakdown of the energy conservation property can be understood as follows: Although
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we are simulating a shear Alfvén instability which is non-perturbative in pressure, the particle
noise induces small amplitude pressure perturbations such that dH̃/dt 6= 0 in the continuous,
undiscretized model (see (2.39)). This is a consequence of the linearized MHD model currently
used in STRUPHY.





Chapter 5

Treatment of the magnetic axis

5.1 Mappings with polar singularity

Up to this point we have assumed the mapping F : (s, χ, ϕ) 7→ (x, y, z) = F (s, χ, ϕ) introduced
in Section 3.1 to be such that a) the corresponding metric tensor is independent of ϕ (axial sym-
metry) and b) it is invertible eyerywhere. In what follows, we shall relax the second assumption
by allowing for a polar singularity at s = 0, i.e. for fixed ϕ = ϕ0 the function F (0, χ, ϕ0) is inde-
pendent of χ such that the Jacobian determinant

√
g (s = 0, χ) = 0 but

√
g (s > 0, χ) > 0. This

is in particular the case for the cylindrical and toroidal mapping (3.123) and (3.124), respectively.
In both cases the ”poloidal” mapping Fpol is such that

Fpol : (s, χ) 7→ (R, Y ) , DFpol|s=0 =




∂R

∂s

∂R

∂χ

∂Y

∂s

∂Y

∂χ




∣∣∣∣∣∣∣∣
s=0

=




∂R

∂s

∣∣∣∣
s=0

0

∂Y

∂s

∣∣∣∣
s=0

0


 , (5.1)

i.e. the second column of the Jacobian matrix is equal to zero at the pole s = 0. Of course, this
property not only holds for the two generic mappings (3.123) and (3.124), but for every mapping
with polar-like flux aligned coordinates. With regards to differential forms that are obtained by
the pull-back operations in Table 3.1 under polar mappings with this property, one can easily
deduce the following properties for differential forms at the pole:

polar 0-forms : f0
k (s = 0, χ) = const. ,

polar 1-forms : E1
2,k(s = 0, χ) = 0 ∀χ , E1

3,k(s = 0, χ) = const. ,

polar 2-forms : B2
1,k(s = 0, χ) = 0 ∀χ , B2

3,k(s = 0, χ) = 0 ∀χ ,

polar 3-forms : p3
k(s = 0, χ) = 0 ∀χ .

(5.2a)

(5.2b)

(5.2c)

(5.2d)

Elements of the standard tensor product B-spline spaces (3.42) resp. (3.54) do not make sure
that these constraints are satisfied. The polar spline framework for discrete differential forms
laid out in [82], however, is designed in way that the constraints (5.2) are satisfied on the discrete
level while keeping at the same time the discrete cochain complex property (3.52). Moreover,
the push-forward of a polar spline is then sufficiently regular across the pole (C1 for 0-forms in
this work for instance but arbitrary Ck-regularity for k > 1 would in principle be possible, too).

77
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curl /C
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div /D
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Figure 5.1: Commuting diagram for Sobolev spaces of discrete differential forms on polar do-
mains. Upper row: standard tensor product spaces, bottom row: polar subspaces with built-in
constraints (5.2). Both rows form discrete de Rham complexes and are connected via the trans-
posed polar extraction operators (Ek)> (0 ≤ k ≤ 3).

5.2 Discrete differential forms on polar domains

The basic structure of the polar spline framework for discrete differential forms is shown in
Figure 5.1. The upper row is the de Rham complex consisting of the standard tensor product
spaces V k

h while the bottom row is a complex consisting of new polar subspaces V k
h . The appeal

of the polar spline framework is the fact that the bases of these polar spaces are given by
linear combinations of the tensor product bases making the polar spaces subspaces of the tensor
product spaces. The linear combination is done via so-called polar extraction operators Ek such
that the polar spaces

V k
h := span

(
Λk := EkΛk

)
k = 0, 3 , V k

h := span
(
~Λk := Ek~Λk

)
k = 1, 2 , (5.3)

have smaller dimensions nk := dimV k
h than the tensor product spaces nk = dimV k

h . However,
since the polar spaces are subspaces of the tensor product spaces, it is always possible to express
a polar spline function in the tensor product basis because

V 0
h 3 f0

h = f
>

Λ0 = f
>
E0Λ0 =

[
(E0)>f

]>
Λ0 = f>Λ0 . (5.4)

Consequently, for given polar FE coefficients f , the corresponding tensor product FE coefficients
are obtained via f = (E0)> f . It should be noted that the inverse operation, i.e. going from f to
f , is not unique and can be achieved through any kind of projection V 0

h → V 0
h; such a projection

has for instance been identified in [101]. The polar space V 0
h is a subspace of V 0

h comprised

of those elements with FE coefficients of the form f = (E0)>f for any f ∈ Rn
0
. Finally, the

framework results in modified polar derivative matrices G, C and D satisfying

G (E0)> = (E1)> G , C (E1)> = (E2)> C , D (E2)> = (E3)> D , (5.5)

which means that the diagram in Figure 5.1 is once more a commuting diagram [102].
Moreover, the polar spline framework is based on the usage of an IGA mapping of the form

(3.125) meaning that the mapping Fpol (5.1) must be represented in the same B-spline basis
that is used to construct the elements in the finite element space V 0

h .

5.2.1 Discrete polar 0-forms

The details of constructing the C1-continuous polar basis for the V 0
h -space from spline mappings

such as (3.125) are given in [80] and will not be repeated here. We start directly from the
result and review the derivation of basis functions for the other spaces in the discrete de Rham
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sequence. These spaces will be C0 at the pole s = 0 because a) first derivatives are, and b)
mixed first derivatives will turn out to be zero. According to [80], the Fourier component f0

h,k

of a C1-continuous polar differential 0-form is given by

f0
h,k(s, χ) =

2∑

`=0

f(`k)

1∑

i=0

nχ−1∑

j=0

ξ`ij N
ps
i (s)N

pχ
j (χ)

︸ ︷︷ ︸
=: Λ0

` (s,χ)

+
∑

i>1,j

f(ijk)N
ps
i (s)N

pχ
j (χ) , (5.6)

where the meaning of the polar flattened-index notation (ijk) is given in (5.11). The three new
polar basis functions ( Λ0

0 ,Λ
0
1 ,Λ

0
2 ) with indices ` = 0, 1, 2 are obtained by linear combination of

i = 0 and i = 1 tensor product basis functions. The dimension of the first polar subspace is thus
n0 = 2 [ (ns − 2)nχ + 3 ] (the first 2 accounts for the two toroidal Fourier components k = 0 and
k = 1). Using the abbreviations ∆R1j := cR(1j)−R0 and ∆Y1j := cY(1j)− Y0, the polar extraction
coefficients are given by

` = 0 : ξ0
0j :=

1

3
, ξ0

1j :=
1

3
+

2

3τ
∆R1j ,

` = 1 : ξ1
0j :=

1

3
, ξ1

1j :=
1

3
− 1

3τ
∆R1j +

√
3

3τ
∆Y1j ,

` = 2 : ξ2
0j :=

1

3
, ξ2

1j :=
1

3
− 1

3τ
∆R1j −

√
3

3τ
∆Y1j .

(5.7a)

(5.7b)

(5.7c)

They are the barycentric coordinates of the control points cR(ij)) and cY(ij) with indices i = 0 and
i = 1 with respect to an equilateral triangle with vertices

v1 := (τ +R0, 0), v2 :=

(
R0 −

τ

2
, Y0 +

√
3

2
τ

)
, v3 :=

(
R0 −

τ

2
, Y0 −

√
3

2
τ

)
. (5.8)

The parameter τ is chosen such that the triangle encloses the pole (R0, Z0) and the first ring of
control points (cR(1j), c

Y
(1j)). This leads to the definition

τ := max

[
max
j

(−2∆R1j) ,max
j

(
∆R1j −

√
3 ∆Y1j

)
,max

j

(
∆R1j +

√
3 ∆Y1j

)]
. (5.9)

The three new basis functions are plotted in Figure 5.2 for cubic B-splines both on the logical
(upper row) and physical (lower row) domain using the mapping (3.123) (cylinder). Unlike pure
tensor product basis functions, each of the new polar basis functions has a support that overlaps
the pole. Moreover, using the property (3.22) of clamped B-splines, it is easily verified that (5.6)
satisfies

f0
h,k(s = 0, χ) =

1

3
(f(0k) + f(1k) + f(2k)). (5.10)

Discrete polar 0-forms are therefore by construction single-valued at the pole such that the first
requirement (5.2a) is met. Similar to the tensor product basis functions (3.38) we introduce the
stacking notation

Λ0 :=
(

Λ0
(`k), Λ0

(ijk)

)
∈ Rn

0
, Λ0

(`k) := Λ0
` Fnk ,

with (ijk) = 2 [nχ (i− 2) + j + 3 ] + k , 1 < i < ns .
(5.11)
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Figure 5.2: The three new basis functions Λ0
0 , Λ0

1 and Λ0
2 for the example ps = pχ = 3, ns = 4

and nχ = 12 on the logical domain (upper row) and physical domain (lower row) using the
mapping (3.123) with parameters a = 1 and R0 = 3. Any linear combination of these three
basis functions is single-valued at the pole and continuously differentiable across the pole. The
pole (R0, 0) is marked with a cross.

Hence, the new set of basis functions Λ0 contains as its first six entries the new polar basis
functions (Λ0

(`k)) followed by standard tensor product basis functions ( Λ0
(ijk)

= Nps
i N

pχ
j Fnk )

with index i > 1. Based on this new set of basis functions, similar to (3.43), a discrete polar
0-form fh ∈ V 0

h can compactly be written as

f0
h = S0[ f ] = f

>
Λ0 , f :=

(
f(`k), f(ijk)

)
∈ Rn

0
. (5.12)

Finally, the first polar extraction operator E0 ∈ Rn
0×n0

is given by

E0 :=

[
X0 0

0 1(ns−2)nχ

]
⊗ 12 , X0 ∈ R3×2nχ , X0

`j :=




ξ`0j 0 ≤ j < nχ ,

ξ`1(j−nχ) nχ ≤ j < 2nχ ,
(5.13)

where the matrix X0 performs the linear combination of the first 2nχ tensor product basis
functions in Λ0 corresponding to one of the two toroidal Fourier components to yield the three
new polar splines ( Λ0

0 , Λ0
1 , Λ0

2 ).

5.2.2 Discrete polar gradient operator and 1-forms

When applying the gradient to a polar 0-form, the result must be a polar 1-form whose coeffi-
cients are obtained via the application of the polar gradient matrix G, formally

∇̂f0
h = (G f )> ~Λ1 . (5.14)

The goal of this section is to identify on the one hand the suitable basis ~Λ1 and on the other
hand the form of the polar gradient matrix G.
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Let us start by computing the partial derivatives of (5.6). Using the recursion formulae
(3.23) and (3.24) in both directions s and χ we obtain

∂f0
h,k

∂s
=

2∑

`=0

f(`k)

1∑

i=0

nχ−1∑

j=0

ξ`ij(D
ps
i−1 −D

ps
i )N

pχ
j +

∑

i>1,j

f(ijk)(D
ps
i−1 −D

ps
i )N

pχ
j ,

∂f0
h,k

∂χ
=

2∑

`=0

f(`k)

1∑

i=0

nχ−1∑

j=0

ξ`ijN
ps
i (D

pχ
j−1 −D

pχ
j ) +

∑

i>1,j

f(ijk)N
ps
i (D

pχ
j−1 −D

pχ
j ) .

(5.15)

(5.16)

We can sort this in terms of tensor product basis functions that span the space V 1
h :

∂f0
h,k

∂s
=

2∑

`=0

f(`k)

nχ−1∑

j=0

(ξ`1j − ξ`0j)Dps
0 N

pχ
j +

nχ−1∑

j=0

(
f(2jk) −

2∑

`=0

f(`k)ξ
`
1j

)
Dps

1 N
pχ
j

+
∑

i>1,j

(f(i+1jk) − f(ijk))D
ps
i N

pχ
j ,

∂f0
h,k

∂χ
=

2∑

`=0

f(`k)

1∑

i=0

dχ−1∑

j=0

(ξ`ij+1 − ξ`ij)Nps
i D

pχ
j +

∑

i>1,j

(f(ij+1k) − f(ijk))N
ps
i D

pχ
j .

(5.17)

(5.18)

Before further simplifying these expressions, we note some important properties of the extraction
coefficients (5.7):

1. ξ`0j+1 − ξ`0j = 0 ∀ j, ` ,

2.
2∑

`=0

f(`k) (ξ`1j − ξ`0j) =
2∑

`=1

(f(`k) − f(0k)) (ξ`1j − ξ`0j) ∀ j, k ,

3.
2∑

`=0

f(`k) (ξ`1j+1 − ξ`1j) =
2∑

`=1

(f(`k) − f(0k)) (ξ`1j+1 − ξ`1j) ∀ j, k ,

4.
2∑

`=0

ξ`1j = 1 ∀ j .

(5.19)

(5.20)

(5.21)

(5.22)

By substituting the first three relations (5.19)-(5.21) into the derivatives (5.17) and (5.18), the
first two components of the gradient of fh can be written as

[
∂sf

0
h,k

∂χf
0
h,k

]
=

2∑

`=1

(f(`k) − f(0k))

nχ−1∑

j=0

[
(ξ`1j − ξ`0j)Dps

0 N
pχ
j

(ξ`1j+1 − ξ`1j)Nps
1 D

pχ
j

]

+

nχ−1∑

j=0

(
f(2jk) −

2∑

`=0

f(`k)ξ
`
1j

)[
Dps

1 N
pχ
j

0

]
+
∑

i>1,j

(f(i+1jk) − f(ijk))

[
Dps
i N

pχ
j

0

]

+
∑

i>1,j

(f(ij+1k) − f(ijk))

[
0

Nps
i D

pχ
j

]
.

(5.23)

Here, one should keep in mind that dχ = nχ. This representation of the gradient is intuitive
because each term is multiplied by a difference of FE coefficients f . Due to the property (5.22)
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Figure 5.3: The two new vector-valued basis functions ~Λ1
2,0 (left column) and ~Λ1

2,1 (right column)
(5.24) on the logical domain (uppper row) and physical domain (lower row) for the example
ps = pχ = 3, ns = 4 and nχ = 12 using the mapping (3.123) with parameters a = 1 and R0 = 3.
The arrows’ absolute values are color-coded. Arrows on the physical domain are normalized to
the same value for better visibility and arrows at s = 0 pointing in the negative direction are
not visible on the logical domain.

this means that the gradient is evidently zero if all entries of f are identical. From the partition
of unity property of B-splines it then follows that constant functions are in the kernel of the
polar gradient operator. The first term on the right-hand side of (5.23) leads to the definition
of two new basis functions:

~Λ1
2,0 :=

nχ−1∑

j=0




(ξ1
1j − ξ1

0j)D
ps
0 N

pχ
j

(ξ1
1j+1 − ξ1

1j)N
ps
1 D

pχ
j

0


 , ~Λ1

2,1 :=

nχ−1∑

j=0




(ξ2
1j − ξ2

0j)D
ps
0 N

pχ
j

(ξ2
1j+1 − ξ2

1j)N
ps
1 D

pχ
j

0


 . (5.24)

Note that these basis functions are vector-valued and that we will attribute them to the second
component of polar 1-forms, which will become clear when discussing projection operators in
Section 5.3. The other basis functions are standard tensor product basis functions. The dimen-
sions are thus n1

1 := 2 (ds − 1)nχ for the first component and n1
2 := 2 [ (ns − 2) dχ + 2 ] for the

second component. The two new basis functions are plotted in Figure 5.3 both on the logical
(upper row) and physical (lower row) domain (push-forward with DF−>, see Table 3.1) using
the mapping (3.123) (cylinder). It is evident that both basis functions have no χ-dependence
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on the physical domain. Moreover, we note that

(
~Λ1

2,0 · ~e2

)
(s = 0, χ) =

(
~Λ1

2,1 · ~e2

)
(s = 0, χ) = 0 ∀χ , (5.25)

where ~e2 = [ 0, 1, 0 ]. Hence, when using these two basis functions for discrete polar 1-forms, they
correctly mimic the requirement (5.2b) for the second component of continuous polar 1-forms.
The basis for the third component is the same as for 0-forms and similar to the tensor product
basis functions (3.39) we introduce the notation

~Λ1 :=
(
~Λ1

1 ,
~Λ1

2 ,
~Λ1

3

)





~Λ1
1 :=

(
~Λ1

1,(ijk)

)
∈ Rn

1
1 ,

with (ijk) = 2 [nχ (i− 1) + j ] + k , 0 < i < ds ,

~Λ1
2 :=

(
~Λ1

2,(`k),
~Λ1

2,(ijk)

)
∈ Rn

1
2 , ~Λ1

2,(`k) := ~Λ1
2,`Fnk ,

with (ijk) = 2 [ dχ (i− 2) + j + 2 ] + k , 1 < i < ns ,

~Λ1
3 :=

(
~Λ1

3,(`k),
~Λ1

3,(ijk)

)
∈ Rn

0
, ~Λ1

3,(`k) := Λ0
(`k)~e3 ,

with (ijk) = 2 [nχ (i− 2) + j + 3 ] + k , 1 < i < ns ,

(5.26)

where ~e3 = [ 0, 0, 1 ] and basis functions with index (ijk) are once more standard tensor product
basis functions. Based on this new set of basis functions, similar to (3.44), a discrete polar
1-form E1

h ∈ V 1
h can compactly be written as

E1
h = S1[~e ] = ~e

>~Λ1 ,

~e :=
(
e1 :=

(
e1,(ijk)

)
, e2 :=

(
e2,(`k), e2,(ijk)

)
, e3 :=

(
e3,(`k), e3,(ijk)

))
∈ Rn

1
.

(5.27)

With regards to (5.13), we define in a block-wise fashion the second polar extraction operator
E1 ∈ Rn

1×n1
, where

E1 :=

[
E1,pol 0

0 E0

]
, E1,pol :=




0 1(ds−1)nχ 0 0

X1
1 0 X1

2 0

0 0 0 1(ns−2) dχ


⊗ 12 . (5.28)

The matrix X1
1 ∈ R2×nχ acts on the first nχ tensor product basis functions in ~Λ1

1 corresponding
to one of the two toroidal Fourier components and X1

2 ∈ R2×2dχ acts on the first 2dχ tensor

product basis functions in ~Λ1
2 to yield (5.24). The entries can be deduced from (5.24) and read

X1
1,`j := ξ`+1

1j − ξ`+1
0j , X1

2,`j :=





0 0 ≤ j < dχ ,

ξ`+1
1(j−dχ+1) − ξ

`+1
1(j−dχ) dχ ≤ j < 2dχ .

(5.29)

Finally, in view of (5.23), we shall write the gradient of f0
h ∈ V 0

h compactly as

∇̂f0
h = (G f )> ~Λ1 , G :=



Ds

Dχ

Dϕ


 , (5.30)
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with the derivative matrices

Ds :=
[
Ds,pol Gs−2 ⊗ 1χ ⊗ 12

]
∈ Rn

1
1×n0

, Dχ :=

[
Dχ,pol 0

0 Dχ

]
∈ Rn

1
2×n0

,

Dϕ := 1pol ⊗ Gϕ ∈ Rn
0×n0

,

(5.31)

with blocks

Ds,pol ∈ Rn
1
1×6 , Ds,pol

(ijk)(`k)
:=

{
−ξ`1j for i = 1 ,

0 else ,

Gs−2 := (Gsij)i>0,j>1 ∈ R(ds−1)×(ns−2) ,

Dχ,pol ∈ R4×6 , Dχ,pol :=

[
−1 1 0

−1 0 1

]
⊗ 12 .

(5.32)

(5.33)

(5.34)

The matrix Dχ has been defined in (3.47) and is used here with 1s = 1ns−2. The matrix Gϕ has
been defined in (3.48) and the size of the matrix 1pol in the definition of Dϕ is adapted to the
size of the space it acts on in the following. Here, 1pol = 1n0/2.

5.2.3 Discrete polar curl operator and 2-forms

When applying the curl to a polar 1-form (5.27), the result must be a polar 2-form whose
coefficients are obtained via the application of the polar curl matrix C, formally

∇̂ ×E1
h = (C~e )> ~Λ2 . (5.35)

The goal of this section is to identify on the one hand the suitable basis ~Λ2 and on the other
hand the form of the polar curl matrix C.

Since E1
h,3 = e>3 Λ0, we already computed ∂sE

1
h,3 and ∂χE

1
h,3 in (5.23) of the previous

section. Therefore,

~Λ2
1,0 := ~Λ1

2,0 × ~e3 ,
~Λ2

1,1 := ~Λ1
2,1 × ~e3 . (5.36)

Note that unlike polar 1-forms, we attribute these basis functions to the first component of polar
2-forms. The dimensions are thus n2

1 := n1
2 for the first component and n2

2 := n1
1 for the second

component. The two new basis functions are plotted in Figure 5.4 both on the logical (upper
row) and physical (lower row) domain (push-forward with DF/

√
g, see Table 3.1) using the

mapping (3.123) (cylinder). It is evident that both basis functions have no χ-dependence on the
physical domain. Moreover, we note that

(
~Λ2

1,0 · ~e1

)
(s = 0, χ) =

(
~Λ2

1,1 · ~e1

)
(s = 0, χ) = 0 ∀χ , (5.37)

where ~e1 = [ 1, 0, 0 ]. Hence, when using these two basis functions for discrete polar 2-forms,
they correctly mimic the requirement (5.2c) for the first component of continuous polar 2-forms.
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Figure 5.4: The two new vector-valued basis functions ~Λ2
1,0 (left column) and ~Λ2

1,1 (right column)
(5.36) on the logical domain (uppper row) and physical domain (lower row) for the example
ps = pθ = 3, ns = 4 and nθ = 12 using the mapping (3.123) with parameters a = 1 and R0 = 3.
The arrows’ absolute values are color-coded. Arrows on the physical domain are normalized to
the same value for better visibility and arrows tangential to the surface s = 0 are not visible on
the logical domain.

Similar to the tensor product basis (3.40) we introduce the notation

~Λ2 :=
(
~Λ2

1 ,
~Λ2

2 ,
~Λ2

3

)





~Λ2
1 :=

(
~Λ2

1,(`k),
~Λ2

1,(ijk)

)
∈ Rn

2
1 , ~Λ2

1,(`k) := ~Λ2
1,`Fnk ,

with (ijk) = 2 [ dχ (i− 2) + j + 2 ] + k , 1 < i < ns ,

~Λ2
2 :=

(
~Λ2

2,(ijk)

)
∈ Rn

2
2 ,

with (ijk) = 2 [nχ (i− 1) + j ] + k , 0 < i < ds ,

~Λ2
3 :=

(
~Λ2

3,(ijk)

)
∈ Rn

3
,

with (ijk) = 2 [ dχ (i− 1) + j ] + k , 0 < i < ds .

(5.38)

The third component ~Λ2
3 has been determined from the third component of the curl of a polar
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2-form. The relevant partial derivatives of E1
h read

∂E1
h,2,k

∂s
=

1∑

`=0

e2,(`k)

dχ−1∑

j=0

(ξ`+1
1j+1 − ξ`+1

1j )(Dps
0 −Dps

1 )D
pχ
j +

∑

i>1,j

e2,(ijk)(D
ps
i−1 −D

ps
i )D

pχ
j

=

1∑

`=0

e2,(`k)

dχ−1∑

j=0

(ξ`+1
1j+1 − ξ`+1

1j )Dps
0 D

pχ
j

+

dχ−1∑

j=0

[
e2,(2jk) −

1∑

`=0

e2,(`k)(ξ
`+1
1j+1 − ξ`+1

1j )

]
Dps

1 D
pχ
j +

∑

i>1,j

(e2,(i+1jk) − e2,(ijk))D
ps
i D

pχ
j ,

∂E1
h,1,k

∂χ
=

1∑

`=0

e2,(`k)

nχ−1∑

j=0

(ξ`+1
1j − ξ`+1

0j )Dps
0 (D

pχ
j−1 −D

pχ
j ) +

∑

i>0,j

e1,(ijk)D
ps
i (D

pχ
j−1 −D

pχ
j )

=
1∑

`=0

e2,(`k)

dχ−1∑

j=0

(ξ`+1
1j+1 − ξ`+1

0j+1 − ξ`+1
1j + ξ`+1

0j )Dps
0 D

pχ
j

+
∑

i>0,j

(e1,(ij+1k) − e1,(ijk))D
ps
i D

pχ
j

=
1∑

`=0

e2,(`k)

dχ−1∑

j=0

(ξ`+1
1j+1 − ξ`+1

1j )Dps
0 D

pχ
j +

∑

i>0,j

(e1,(ij+1k) − e1,(ijk))D
ps
i D

pχ
j ,

(5.39)

(5.40)

respectively, where we used (5.19) to obtain the last line. Taking the difference yields

∂E1
h,2,k

∂s
−
∂E1

h,1,k

∂χ

=

dχ−1∑

j=0

[
e2,(2jk) −

1∑

`=0

e2,(`k)(ξ
`+1
1j+1 − ξ`+1

1j )− e1,(1j+1k) + e1,(1jk)

]
Dps

1 D
pχ
j

+
∑

i>1,j

(
e2,(i+1jk) − e2,(ijk) − e1,(ij+1k) + e1,(ijk)

)
Dps
i D

pχ
j ,

(5.41)

which reveals the basis of the third component of 2-forms, namely being standard tensor product

basis functions ( ~Λ2
3,(ijk)

= Dps
i D

pχ
j Fnk ~e3 ) with index i > 0 such that the second requirement in

(5.2c) is satisfied and n3 := 2 (ds − 1) dχ. Based on this new set of basis functions, similar to
(3.45), a discrete polar 2-form B2

h ∈ V 2
h can compactly be written as

B2
h = S2[ ~b ] := ~b

>~Λ2 ,

~b :=
(

b1 :=
(
b1,(`k), b1,(ijk)

)
, b2 :=

(
b2,(ijk)

)
, b3 :=

(
b3,(ijk)

))
∈ Rn

2
.

(5.42)

With regards to (5.28), we define in a block-wise fashion the third polar extraction operator
E2 ∈ Rn

2×n2
, where

E2 :=

[
E2,pol 0

0 E3

]
, E2,pol :=



X1

2 0 −X1
1 0

0 1(ns−2) dχ 0 0

0 0 0 1(ds−1)nχ


⊗ 12 . (5.43)
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The matrices X1
1 and X1

2 were defined in (5.29) and the extraction operator E3 ∈ Rn
3×n3

for the
third component reads

E3 :=
[
0 1(ds−1) dχ

]
⊗ 12 . (5.44)

Finally, in view of (5.35) and (5.41), we shall write the curl of E1
h ∈ V 1

h compactly as

∇̂ ×E1
h = (C~e )> ~Λ2 , C :=




0 −Dϕ Dχ

Dϕ 0 −Ds

−Dχ S 0


 , (5.45)

where Dχ has been defined in (3.47) and is used here with 1s = 1ds−1 and the derivative matrices
Ds, Dχ and Dϕ have been defined in (5.31), where an appropriate sizes for the identity matrix
1pol must be used for the latter. Moreover,

S :=
[
Ss,pol Gs−2 ⊗ 1χ ⊗ 12

]
∈ Rn

3×n1
2 , (5.46)

where

Ss,pol ∈ Rn
3×4 , Ss,pol

(ijk)(`k)
:=

{
−(ξ`+1

1j+1 − ξ`+1
1j ) i = 1 ,

0 else ,
(5.47)

and Gs−2 has been defined in (5.33).

Proposition 3. We have CG = 0.

Proof. The matrix product of interest reads

CG =




0 −Dϕ Dχ

Dϕ 0 −Ds

−Dχ S 0






Ds

Dχ

Dϕ


 .

The first two rows yield zero immediately. In the last row we must show that −Dχ Ds+SDχ = 0
where

Dχ = 1ds−1 ⊗ Gχ ⊗ 12 ∈ Rn
3×n1

1 , Ds =
[
Ds,pol Gs−2 ⊗ 1χ ⊗ 12

]
∈ Rn

2
2×n0

,

S =
[
Ss,pol Gs−2 ⊗ 1χ ⊗ 12

]
∈ Rn

3×n1
2 , Dχ =

[
Dχ,pol 0

0 Dχ

]
∈ Rn

2
1×n0

,

and the single blocks

Gχ ∈ Rdχ×nχ , Gs−2 ∈ R(ds−1)×(ns−2) , Ds,pol ∈ Rn
2
2×6 , Ss,pol ∈ Rn

3×4 , Dχ,pol ∈ R4×6 .

Therefore,

−Dχ Ds + SDχ = −
[
Dχ Ds,pol Gs−2 ⊗ Gχ ⊗ 12

]
+
[
Ss,pol Dχ,pol Gs−2 ⊗ Gχ ⊗ 12

]
.

It remains to show the equality of the first block:

Dχ Ds,pol

(ijk)(`k)
= Ds,pol

(ij+1k)(`k)
− Ds,pol

(ijk)(`k)
=

{
−ξ`1j+1 + ξ`ij i = 1 , ` = 0, 1, 2 ,

0 else ,

Ss,pol Dχ,pol =





ξ1
1j+1 − ξ1

ij + ξ2
1j+1 − ξ2

ij i = 1 , ` = 0 ,

−ξ`1j+1 + ξ`ij i = 1 , ` = 1, 2 ,

0 else .
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From the polar extraction coefficients (5.7) follows

ξ1
1j+1 − ξ1

ij + ξ2
1j+1 − ξ2

ij = −ξ0
1j+1 + ξ0

ij ,

which completes the proof.

5.2.4 Discrete polar divergence operator and 3-forms

When applying the divergence to a polar 2-form (5.42), the result must be a polar 3-form whose
coefficients are obtained via the application of the polar divergence matrix D, formally

∇̂ ·B2
h = (D ~b )>Λ3 . (5.48)

The goal of this section is to identify on the one hand the suitable basis Λ3 and on the other
hand the form of the polar divergence matrix D.

The basis is evidently given by the basis of the third component in (5.38). Thus,

Λ3 :=
(

Λ3
(ijk)

)
∈ Rn

3
, Λ3

(ijk)
:= ~Λ2

3,(ijk)
· ~e3 ,

with (ijk) = 2 [ dχ (i− 1) + j ] + k , 0 < i < ds .
(5.49)

Based on this new set of basis functions, similar to (3.46), a discrete polar 3-form p3
h ∈ V 3

h can
compactly be written as

p3
h = S3[ p ] = p>Λ3 , p :=

(
p(ijk)

)
∈ Rn

3
. (5.50)

The corresponding third polar extraction operator E3 has already been defined in (5.44). In
order to compute the polar divergence matrix we note that the sum of the derivatives with
respect to s and χ can be easily deduced from (5.41), where we take note of the minus sign in
the definition of the polar 2-form basis functions (5.36):

∂B2
h,1,k

∂s
+
∂B2

h,2,k

∂χ

=

dχ−1∑

j=0

[
b1,(2jk) −

1∑

`=0

b1,(`k)(ξ
`+1
1j+1 − ξ`+1

1j ) + b2,(1j+1k) − b2,(1jk)

]
Dps

1 D
pχ
j

+
∑

i>1,j

(
b1,(i+1jk) − b1,(ijk) + b2,(ij+1k) − b2,(ijk)

)
Dps
i D

pχ
j .

(5.51)

The divergence of B2
h ∈ V 2

h can then be written compactly as

∇̂ ·B2
h = (D ~b )>Λ3 , D :=

[
S Dχ Dϕ

]
, (5.52)

where Dχ has been defined in (5.31) and is used here with 1s = 1ds−1 and S has been defined in
(5.46).

Proposition 4. We have DC = 0.
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V 0 V 1 V 2 V 3

V 0
h V 1

h V 2
h V 3

h

V 0
h V 1

h V 2
h V 3

h

grad

Π0Π0

curl

Π1Π1

div

Π2 Π2 Π3 Π3

grad /G curl /C div /D

grad /G

(E0)>

curl /C

(E1)>

div /D

(E2)> (E3)>

Figure 5.5: Commuting diagrams in three dimensions. Top row: continuous function spaces,
middle row: pure tensor product subspaces, bottom row: polar subspaces.

Proof. The matrix product of interest reads

DC =
[
S Dχ Dϕ

]



0 −Dϕ Dχ

Dϕ 0 −Ds

−Dχ S 0


 .

The first two rows yield zero immediately and the relation SDχ − Dχ Ds = 0 has been proven
in Proposition 3.

Consequently, due to the fact that CG = 0 and DC = 0 (see Propositions 3 and 4), we can
construct the discrete de Rham complex

V 0
h

grad /G−−−−−→ V 1
h

curl /C−−−−→ V 2
h

div /D−−−−→ V 3
h , (5.53)

in the same way as in the pure tensor product case (3.52).

5.3 Polar commuting projectors

In this section we derive polar DOFs that guarantee the commuting property shown in Figure
5.5. Figure 5.6 shows the grey tensor product grid with nsnχ interpolation points (si, tj) on the
vertices for the DOFs σ0 defined in (3.68a). In the polar case, only the blue points/grid are
used for interpolation. The number of blue points is (ns − 2)nχ + 3 which corresponds to the
dimension of one Fourier component in V 0

h. The first two ”rings” around the pole (s0, tj) and
(s1, tj) are removed and three new points (s1, t0), (s1, t1) and (s1, t2) on the i = 1 ring are added
for interpolation. The three angles (t0, t1, t2) ⊂ t must be distinct and are here chosen to be
part of the tensor product grid for implementation reasons. They account for the three DOFs
necessary for the three new polar spline basis functions ( Λ0

0 ,Λ
0
1 ,Λ

0
2 ) around the pole. In the

polar setting, we define the DOFs σ0 as

f0 ∈ V 0 :





σ0
(`k)(f

0) := f0
k (s1, t`) , ` = 0, 1, 2 ,

σ0
(ijk)

(f0) := f0
k (si, tj) , 1 < i < ns .

(5.54)

We now aim to construct the DOFs for the space V 1
h in a way that the commutation relations

(3.72) hold. The proof of Proposition 2 serves as the blue print of how to achieve this. From
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Figure 5.6 we see that for i > 1 histopolation can be carried out as usual on the blue grid.
However, we also need to carry out histopolation between i = 1 and i = 2 in order to get as
many DOFs as basis functions in the space V 1

h. In order to get the commuting property, we
employ a convex combination of the DOFs for i = 1 and demand

σ1
1,(1jk)

(
∂f0

∂s
~e1

)
= f0

k (s2, tj)−
2∑

`=0

w`jf
0
k (s1, t`) , w`j ∈ R ,

2∑

`=0

w`j = 1 ∀ j , (5.55)

for f0 ∈ V 0. In the χ-direction we demand

σ1
2,(`k)

(
∂f

∂χ
~e2

)
= f0

k (s1, t`+1)− f0
k (s1, t0) , ` = 0, 1 . (5.56)

The conditions (5.55) and (5.56) can be satisfied with the following polar DOFs for the space
V 1
h:

E1 ∈ V 1 :





σ1
1,(1jk)

(E1) :=

∫ s2

s0

E1
1,k(s, tj) ds−

2∑

`=0

w`j

∫ s1

s0

E1
1,k(s, t`) ds ,

σ1
1,(ijk)

(E1) :=

∫ si+1

si

E1
1,k(s, tj) ds , 1 < i < ds ,

σ1
2,(`k)(E

1) :=

∫ t`+1

t0

E1
2,k(s1, χ) dχ , ` = 0, 1 ,

σ1
2,(ijk)

(E1) :=

∫ tj+1

tj

E1
2,k(si, χ) dχ 1 < i < ns ,

σ1
3 (E1) := σ0(E1

3) .

(5.57)

Let us verify that (5.55) is indeed fulfilled: from the first line in (5.57) we obtain

σ1
1,(1jk)

(
∂f0

∂s
~e1

)
= f0

k (s2, tj)− f0
k (s0, tj)−

2∑

`=0

w`j
[
f0
k (s1, t`)− f0

k (s0, t`)
]
. (5.58)

Taking into account that f0
k (s0 = 0, χ) (s0 = 0 for clamped B-splines) is independent of χ because

polar 0-forms are single-valued at the pole and, moreover, that we demanded
∑

`w`j = 1, we
obtain relation (5.55). The relation (5.56) follows directly from the third line in (5.57). The
polar DOFs for B ∈ V 2 follow by exchanging the components in (5.57):

B2 ∈ V 2 :





σ2
1 (B2) := σ1

2 (B2) ,

σ2
2 (B2) := σ1

1 (B2) ,

σ2
3 (B2) := σ3(B2

3) .

(5.59)

Here, σ3 is identified by looking at DOFs for p3 ∈ V 3 which we define to be

p3 ∈ V 3 :





σ3
(1jk)

(p3) :=

∫ s2

s0

∫ tj+1

tj

p3
k(s, χ) ds dχ−

1∑

`=0

a`j

∫ s1

s0

∫ t`+1

t0

p3
k(s, χ) dsdχ ,

σ3
(ijk)

(p3) :=

∫ si+1

si

∫ tj+1

tj

p3
k(s, χ) ds dχ , 1 < i < ds .

(5.60)
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s0

s1

s2

t0 t1 t0 t1 t2

s

χ

Fpol
t0

t1

t0

t1

t2
Y

R

Figure 5.6: Only the three blue points and the vertices of the blue grid are used for interpolation
in the polar setting in contrast to the vertices of the grey grid in the tensor product setting.
Note that all points on the line at s0 = 0 are mapped to the pole (R0, Y0) under the mapping
Fpol. However, no interpolation points are located on this line for the new blue grid.

Here, we introduced the coefficients a0j , a1j ∈ R which have to be chosen such that the commuting
property holds (see below). Note that the above DOFs are linearly independent and that the
number of DOFs matches the dimension of each respective space.

Definition 3. The projectors Πk : V k → V k
h are defined via the DOFs (5.54), (5.57), (5.59) and

(5.60):

σ0( Π0(f0) ) = σ0(f0) , σ1( Π1(E1) ) = σ1(E1) ,

σ3( Π3(p3) ) = σ3(p3) , σ2( Π2(B2) ) = σ2(B2) .

(5.61a)

(5.61b)

Proposition 5. Provided that the integrals in (5.57), (5.59) and (5.60) are exact and that for any
(f(0k), f(1k), f(2k)) ∈ R3,

1∑

`=0

a`j(f(`+1k) − f(0k)) =

2∑

`=0

(w`j+1 − w`j)f(`k) , a`j 6= 0 ,

2∑

`=0

w`j = 1 , (5.62)

the projectors (5.61) satisfy the commutation relations

Π1 grad = grad Π0 , Π2 curl = curl Π1 , Π3 div = div Π2 .

Proof. Let us start with Π1 grad = grad Π0. By definition both sides of the equality are in V 1
h.

Since an element in V 1
h is uniquely defined by its DOFs, we can apply σ1 on both sides. The
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tensor product part is as usual; the new parts read

σ1
1,(1jk)

(
Π1(∇̂f0)

)
(5.61)

= σ1
1,(1jk)

(
∇̂f0

)
= f0

k (s2, tj)− f0
k (s0, tj)

−
2∑

`=0

w`j [ f
0
k (s1, t`)− f0

k (s0, t`) ] = σ0
(2jk)

(
f0
)
−

2∑

`=0

w`j σ
0
(`k)

(
f0
)
,

σ1
2,(`k)

(
Π1(∇̂f0)

)
(5.61)

= σ1
2,(`k)

(
∇̂f0

)
= f0

k (s1, t`+1)− f0
k (s1, t0) = σ0

(`+1k)

(
f0
)
− σ0

(0k)

(
f0
)
,

σ1
3,(`k)

(
Π1(∇̂f0)

)
(5.61)

= σ1
3,(`k)

(
∇̂f0

)
= −2πn sgn

(
k − 1

2

)
f0
k+1(s1, t`)

= −2πn sgn

(
k − 1

2

)
σ0

(`k+1) ,

and

σ1
1,(1jk)

(
∇̂Π0(f0)

)
=
[

Π0(f0)
]
k

(s2, tj)−
[

Π0(f0)
]
k

(s0, tj)

−
2∑

`=0

w`j
{ [

Π0(f0)
]
k

(s1, t`)−
[

Π0(f0)
]
k

(s0, t`)
}

= σ0
(2jk)

( Π0(f0) )−
2∑

`=0

w`j σ
0
(`k)( Π0(f0) )

(5.61)
= σ0

(2jk)
(f0)−

2∑

`=0

w`jσ
0
(`k)(f

0) ,

σ1
2,(`k)

(
∇̂Π0(f0)

)
=
[

Π0(f0)
]
k

(s1, t`+1)−
[

Π0(f0)
]
k

(s1, t0)

= σ0
(`+1k)( Π0(f0) )− σ0

(0k)( Π0(f0) )
(5.61)

= σ0
(`+1k)(f

0)− σ0
(0k)(f

0) ,

σ1
3,(`k)

(
∇̂Π0(f0)

)
= −2πn sgn

(
k − 1

2

)[
Π0(f0)

]
k+1

(s1, t`)

= −2πn sgn

(
k − 1

2

)
σ0

(`k+1)( Π0(f0) )
(5.61)

= −2πn sgn

(
k − 1

2

)
σ0

(`k+1)(f
0) .

In order to prove the second and the third commutation relation, we just need to prove the
commutation for the third component of the second relation (which corresponds to the divergence
of the vector curl in 2d); everything else then follows in a straightforward manner. Hence, let us
look at the third component of Π2(curl E1) = curl Π1(E1). As usual, we can apply σ2

3 on both
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sides. The tensor product part is as usual; the new parts read

σ2
3,(1jk)

(
Π2( ∇̂ ×E1 )

)
(5.61)

= σ2
3,(1jk)

(
∇̂ ×E1

)
= σ3

(1jk)

(
∂E1

2,k

∂s
−
∂E1

1,k

∂χ

)

=

∫ tj+1

tj

[
E1

2,k(s2, χ)− E1
2,k(s0, χ)

]
dχ−

1∑

`=0

a`j

∫ t`+1

t0

[
E1

2,k(s1, χ)− E1
2,k(s0, χ)

]
dχ

−
∫ s2

s0

[E1
1,k(s, tj+1)− E1

1,k(s, tj)] ds+

1∑

`=0

a`j

∫ s1

s0

[E1
1,k(s, t`+1)− E1

1,k(s, t0)] ds

=

∫ tj+1

tj

E1
2,k(s2, χ) dχ−

1∑

`=0

a`j

∫ t`+1

t0

E1
2,k(s1, χ) dχ

−
∫ s2

s0

[E1
1,k(s, tj+1)− E1

1,k(s, tj)] ds+
2∑

`=0

(w`j+1 − w`j)
∫ s1

s0

E1
1,k(s, t`) ds

= σ1
2,(2jk)

(
E1
)
−

1∑

`=0

a`j σ
1
2,(`k)

(
E1
)
− σ1

1,(1j+1k)

(
E1
)

+ σ1
1,(1jk)

(
E1
)
,

where we used that E1
2,k(s0 = 0, χ) = 0 ∀χ. Moreover, when going from the second to the third

equality sign we inserted the condition (5.62). By replacing E1 → Π1(E1) in the last line, we
obtain

σ2
3,(ijk)

(
∇̂ ×Π1(E1)

)
= σ3

(1jk)

(
(∇̂ ×Π1(E1)) · ~e3

)

= σ1
2,(2jk)

(
Π1(E1)

)
−

1∑

`=0

a`j σ
1
2,(`k)

(
Π1(E1)

)
− σ1

1,(1j+1k)

(
Π1(E1)

)
+ σ1

1,(1jk)

(
Π1(E1)

)

(5.61)
= σ1

2,(2jk)

(
E1
)
−

1∑

`=0

a`j σ
1
2,(`k)

(
E1
)
− σ1

1,(1j+1k)

(
E1
)

+ σ1
1,(1jk)

(
E1
)
.

By comparing coefficients of f(`k) it is easy to see that the equations (5.62) are satisfied if

a`j = w`+1j+1 − w`+1j , ` = 0, 1 . (5.63)

This leads to the relation (5.21) if we set w`j = ξ`1j .

In the tensor product setting, projection onto the spaces V k
h (0 ≤ k ≤ 3) means inverting

the respective inter-/histopolation matrices Ik, as written in (3.74). We will now identify the
corresponding linear systems for the previously introduced polar projectors Πk. The starting
point is the Definition 3 of the polar projectors via the DOFs. By expressing the projected
function in the respective basis that spans V k

h , the left-hand side can be expressed in terms of
new polar inter-/histopolation matrices I k,

I 0 f = σ0(f0) , I 1~e = σ1(E1) , I 2 ~b = σ2(B2) , I 3 p = σ3(p3) . (5.64)

In order to determine the matrices I k, we note that the polar DOFs are linear combinations of
the tensor product DOFs. Therefore, let us write the projection problems in the tensor product
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bases, restrict the solution to the polar subspaces via the transpose extraction operators (Ek)>,
and project the DOFs to get square matrices:

P0 I0 (E0)> f = P0 σ0(f0) , P1 I1 (E1)>~e = P1 σ1(E1) ,

P3 I3 (E3)> p = P3 σ3(p3) , P2 I2 (E2)> ~b = P2 σ2(B2) .

(5.65)

(5.66)

Here, we introduced the matrices Pk ∈ Rn
k×nk that map tensor product DOFs to polar DOFs,

σk(·) = Pkσk(·). These matrices perform linear combinations of tensor product DOFs and thus
play a similar role as the extraction matrices for basis functions Ek. However, while Ek always
act on tensor product basis functions, Pk always act on tensor product DOFs. Their explicit
form follow directly from the definitions of the polar DOFs from the previous section. From
(5.54) we obtain

P0 :=

[
Y0 0

0 1(ns−2)nχ

]
⊗ 12 , Y0 ∈ R3×2nχ , Y0

`j :=

{
1 j = nχ + j` ,

0 else ,
(5.67)

where j` is the local index of the interpolation point t` on the i = 1 ring such that Y0 selects the
three interpolation points ( t0, t1, t2 ) from the complete set of interpolation points. From (5.57)
we obtain

P1 :=



P1

1 0 0

0 P1
2 0

0 0 P0


 , P1

1 ∈ Rn
1
1×2dsnχ , P1

2 ∈ Rn
1
2×2nsdχ , (5.68)

with blocks

P1
1 :=

[
Y1

1 0

0 1(ds−2)nχ

]
⊗ 12 , P1

2 :=

[
Y1

2 0

0 1(ns−2)nχ

]
⊗ 12 , (5.69)

where Y1
1 ∈ Rnχ×2nχ acts on the first 2nχ tensor product DOFs (σ1

1,(ijk)) corresponding to one

of the two toroidal Fourier components and Y1
2 ∈ R2×2dχ acts on the first 2dχ tensor product

DOFs (σ1
2,(ijk)):

Y1
1,ij :=





δij −
∑2

`=0 δjj`w`i 0 ≤ j < nχ ,

δi(j−nχ) nχ ≤ j < 2nχ ,

0 else ,

Y1
2,`j :=

{
1 dχ + j0 ≤ j < dχ + j`+1 ,

0 else .
(5.70)

From (5.59) and (5.60) we obtain

P2 :=



P1

2 0 0

0 P1
1 0

0 0 P3


 , P3 :=

[
Y3 0

0 1(ds−2) dχ

]
∈ Rn

3×n3
, (5.71)

where Y3 ∈ Rdχ×2dχ acts on the first 2dχ tensor product DOFs (σ2,3
(ijk)) = (σ3

(ijk)),

Y3
ij :=





δij 0 ≤ j < j0 and j2 ≤ j < dχ ,

δij − (a0i + a1i) j0 < j ≤ j1 ,

δij − a1i j1 < j ≤ j2 ,

δi(j−dχ) dχ ≤ j < 2dχ ,

0 else .

(5.72)
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Figure 5.7: L2-errors of projected polar differential k-forms (0 ≤ k ≤ 3) corresponding to the
fields (5.73) for different spline degrees p = (ps, pχ) and different number of elementsN s

el = ns−ps
and Nχ

el = nχ (solid lines). Dashed lines are expected convergence rates hps+1 for Π0 and hps

for Πk (0 < k ≤ 3).

Finally, we investigate the performance of the introduced polar projection operators Πk

(0 ≤ k ≤ 3). For this, we conduct an L2-convergence test by increasing the number of splines
both in s- and χ- direction on the one hand and increasing the spline degrees on the other hand.
This is done for the (exact) scalar- and vector-valued functions

fex(x, y) = (1− x2 − y2) cos(2πx) cos(2πy) ,

Vex(x, y) = fex(x, y) ex + fex(x, y) ez ,

(5.73a)

(5.73b)

respectively. First, these fields are transformed to differential k-forms via the pull-back opera-
tions listed in Table 3.1 under the mapping (3.123) (cylinder) such that the resulting differential
forms are functions of s and χ only with means that the toroidal mode number n = 0. This
is followed by projections on the spaces V k

h (0 ≤ k ≤ 3) using the polar projection opera-
tors introduced in the previous section. The errors compared to the exact forms corresponding
to the fields (5.73) are then measured in the L2-norm based on the L2-scalar products (3.8).
The resulting errors are shown in Figure 5.7 for each of the four projectors using spline de-
grees ps = pχ = 2, 3, 4, 5 (solid lines). The same convergence behavior as for the pure tensor
product case is observed: hps+1-convergence for the Π0 projector which is based on pure inter-
polation and hps-convergence for the other three projectors which are based on either mixed
inter- and histopolation in case of Π1 and Π2 or pure histopolation in case of Π3. The parameter
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h = 1/
√
N s

elN
χ
el is the geometric mean of the 1d element lengths hs = 1/N s

el and hχ = 1/Nχ
el on

the logical domain, where N s
el = ns − ps and Nχ

el = nχ are the number of elements in the s- and
χ-direction, respectively.

5.4 Modified discrete MHD eigenvalue problem

A difference of polar domains with the pole at s = 0 compared to non-polar domains is that
the domain boundary of the latter is located at s = 1 while the ”surface” at s = 0 collapses to
the pole and is therefore part of the domain and not a boundary. To account for this, we must
modify the continuous spaces (3.11) and exclude the conditions at s = 0 which are then imposed
on the discrete level by the polar splines. We denote these continuous spaces by V k

0 (0 ≤ k ≤ 3):

V 0
0 :=

{
f0 ∈ V 0, f0

k (s = 1, χ) = 0 ∀χ, k
}
,

V 1
0 :=

{
V1 ∈ V 1, V 2

2,k(s = 1, χ) = V 2
3 (s = 1, χ) = 0 ∀χ, k

}
,

V 2
0 :=

{
V2 ∈ V 2, V 2

1,k(s = 1, χ) = 0 ∀χ, k
}
,

V 3
0 := V 3 .

(5.74a)

(5.74b)

(5.74c)

(5.74d)

With regards to the pure tensor product boundary operators (3.56) and (3.57), we introduce
modified boundary operators Bk to incorporate the boundary conditions at s = 1 on the discrete
level. As in the pure tensor product case (3.54) we therefore define

V k
0,h := span

(
BkΛk

)
k = 0, 3 , V k

0,h := span
(
Bk ~Λk

)
k = 1, 2 . (5.75)

The boundary operators once more have a simple form and just have to make sure that basis
functions of the spaces V k

h having contributions from Nps
ns−1 are eliminated. Since these basis

function are standard tensor product basis functions even in the polar spline setting, there
are nχ = dχ functions to be removed (for one toroidal Fourier component). The dimensions
nk0 := dim V k

0,h are thus n0
0 := n0 − 2nχ, n1

0 := n1 − 2dχ − 2nχ, n2
0 := n2 − 2dχ and n3

0 := n3

and the boundary operators read

B0 :=
[
1n0−2nχ 0

]
, B1 :=



1n1

1
0 0 0

0 1n1
2−2dχ 0 0

0 0 0 B0


 ,

B3 := 1n3 , B2 :=



1n2

1−2dχ 0 0 0

0 0 1n2
2

0

0 0 0 B3


 ,

(5.76)

(5.77)

and the sizes of the zero blocks can be deduced from the sizes of the identity matrices and the
boundary operators Bk ∈ Rn

k
0×nk themselves. As in the pure tensor product case (3.61), the

discrete derivatives linking the spaces V k
0,h via a discrete de Rham complex are given by

G0 := B1 G (B0)> , C0 := B2 C (B1)> , D0 := B3 D (B2)> . (5.78)

The modified discrete MHD eigenvalue problem for polar domains is then obtained by first
replacing the spaces V k

0 in (3.13) with the spaces V k
0 (5.74) followed by performing the same
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spatial discretization as in the tensor product case with the discrete spaces V k
0,h (5.75). This

leads to the following formulation: find non-trivial ω ∈ C and ( ~u, p, ~b ) ∈ Rn
2
0 ×Rn

3 ×Rn
2
0 such

that

−iωMnb
0
~u = D

>
0 M3

0 p + T >0 (I 1
0 )−> C

>
0 M2

0
~b + MJ

0
~b ,

−iω p = −D0 (I 2
0 )−1F0 ~u− (γ − 1) (I 3

0 )−1K0 D0 ~u ,

−iω ~b = −C0 (I 1
0 )−1 T 0 ~u .

(5.79a)

(5.79b)

(5.79c)

The mass matrices, interpolation matrices and DOF matrices are obtained from the pure tensor
product ones by

Mk
0 := Bk Ek Mk (Ek)>(B

k
)> , I k0 := Bk Pk Ik (Ek)>(Bk)> ,

T 0 := Bk Pk T (Ek)>(Bk)> ,
(5.80)

and accordingly for the weighted mass matrices Mnb
0 and MJ

0 and the other DOF matrices F0

and K0. The final form of the discrete MHD eigenvalue problem for polar domains is once more
obtained by inserting (5.79b) and (5.79c) in (5.79a) which leads to the compact form





F ~u = −ω2 Mnb
0
~u

F := −D>0 M3
0

[
D0 (I 2

0 )−1F0 + (γ − 1) (I 3
0 )−1K0 D0

]
− A− MJ

0 C0 (I 1
0 )−1 T 0 ,

A := T >0 (I 1
0 )−> C

>
0 M2

0 C0 (I 1
0 )−1 T 0 ,

(5.81a)

(5.81b)

(5.81c)

which has the same structure as (3.81).
Lastly, it is worth mentioning that all new operators related to the polar spline framework

were implemented in the class TensorSplineSpace given in Table 3.3. This means that there are
additional (optional) input parameters ck, cR and cY, where ck is the smoothness at the pole,
i.e. the default value for the standard tensor product case is ck=-1, while the C1-continuous
framework can be obtained by setting ck=1. In this case, the control points cR and cY of the
poloidal mapping must be additionally passed in order to assemble the spline extraction operators
Ek, which are then attributes of an object created from the class TensorSplineSpace. Moreover,
the extraction operators Pk for the degrees of freedom are part of the class ProjectorsGlobal3D.
In fact, if the standard tensor product case if chosen (ck=-1), these two types of operators are
simply identity matrices which leads to a compact implementation with easy switching between
the standard tensor product framework and the new polar framework.





Chapter 6

Simulation results in tokamak-like
geometries

This chapter is concerned with results obtained with the extended polar spline framework in-
troduced on the previous chapter. First, results in a straight tokamak configuration will be
presented followed by results in a tokamak configuration with finite toroidal curvature. In both
cases, comparison studies between the standard tensor product framework and the polar spline
framework will be discussed along with physics results.

6.1 Straight tokamak geometry

Due to the fact that a straight tokamak can be considered as a tokamak with an infinitely large
aspect ratio, it is actually a cylindrical configuration which means that the mapping (3.123) is
used in the following. However, as explained in the previous section, the polar spline framework
relies on the usage of an isogeometric analysis (IGA) type of mapping. To obtain such, the
functions R = R(s, χ) and Y = Y (s, χ) are simply interpolated on the V 0

h FEM B-spline space
in order to obtain the needed control points cR and cY in (3.125). Moreover, the general MHD
equilibrium

Straight tokamak

x = r cos θ +R0

y = r sin θ

:





Beq = B0

(
ez +

r

q(r)R0
eθ

)
, q(r) = q0 + (q1 − q0)

r2

a2
,

peq =





B2
0a

2q0

2R2
0(q1 − q0)

(
1

q2
− 1

q2
1

)
if q1 6= q0 ,

βB2
0

2
else ,

nb,eq = (1− na)
(

1−
(r
a

)n1
)n2

+ na ,

(6.1)

with fixed on-axis magnetic field B0 = 1 is used.

6.1.1 Magnetosonic eigenmodes

For parameters q0 = q1 →∞, n1 = n2 = 0 and na = 1, i.e. a homogeneous plasma that is placed
in a constant axial magnetic field, analytical solutions to the ideal MHD eigenvalue problem can

99
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Figure 6.1: Slow magnetosonic eigenmode with mode numbers l = 2 and |m| = 3 in straight
tokamak geometry with a pure axial magnetic field Beq = B0ez using pure tensor product
splines (upper row) and polar splines (lower row). Numerical parameters are Nel = (4, 12) and
p = (3, 3). The axial component Uh,z is normalized to its respective maximum absolute value.
The right most column shows radial cuts through Uh,z for a fixed angle χ.

be derived [72]. This yields two types of solutions which eigenfrequencies

ω2 =





v2
Ak

2 ,

1

2

(
k2 +

α2
ml

a2

)(
(v2

A + v2
S)±

√
(v2

A + v2
S)2 − 4v2

Av
2
Sk

2/

(
k2 +

α2
ml

a2

))
,

(6.2)

where k = n/R0 is once more the toroidal (axial) wave number and αml is the l-th zero of
the first derivative of the m-th Bessel function Jm. The characteristic velocities are the Alfvén
velocity v2

A = B2
0 and the speed of sound v2

S = γp0, where p0 = βB2
0/2. Hence, shear Alfvén

waves are not affected by the presence of a cylindrical wall and therefore exhibit a spectrum
with infinitely degenerate eigenfrequencies ω2 = v2

Ak
2. In contrast to that, fast (+) and slow

(−) magnetosonic waves exhibit a discrete spectrum of eigenfrequencies characterized by two
integer mode numbers l > 0 and |m| ≥ 0, where m is once more the poloidal (azimuthal) mode
number. It is straightforward to show that in the limit a → ∞ the second expression in (6.2)
collapses to the standard dispersion relation for magnetosonic waves propagating parallel to the
magnetic field in an infinitely extended plasma. In this case, the fast waves (+) propagate with
the Alfvén velocity and the slow waves (−) (which are then ordinary sound waves) with the
speed of sound.

For parameters a = 1, R0 = 3, n = 1, and β = 10 %, we compute numerical solutions
to the MHD eigenvalue problem according to (5.81) and compare it to the numerical spectrum
obtained when using pure tensor product splines. For the latter, boundary conditions at the
pole (s = 0) must be supplemented. In the pure tensor product spline de Rham complex (3.52)
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Table 6.1: Comparison of analytical (see (6.2)) and numerical eigenfrequencies for the l = 2,
|m| = 3 slow magnetosonic eigenmode obtained with pure tensor product splines and polar
splines (ωA = B0/R0).

(ω2 − ω2
∞)/ω2

A relative error

analytical 9.432 61× 10−6 -

pure tensor product splines 9.408 55× 10−6 2.550 57× 10−3

polar splines 9.407 21× 10−6 2.692 79× 10−3

it is possible to impose the boundary conditions (5.2a), (5.2b) and the first condition in (5.2c) at
s = 0 but not the second condition in (5.2c) and the condition (5.2d) for 3-forms. For C1-smooth
polar splines, by contrast, the latter two are satisfied as well. To highlight the consequence of
this, we investigate the l = 2, |m| = 3 slow magnetosonic eigenmode which is found in both
numerical spectra. Numerical parameters are Nel = (4, 12) and p = (3, 3). It can be shown that
the eigenfrequencies (6.2) corresponding to the slow magnetosonic eigenmodes converge towards
the accumulation point ω2

∞ = v2
A v

2
S k

2/(v2
A + v2

S) for l → ∞. Hence, rather than the absolute
values, differences to this point are taken as a measure of accuracy.

The resulting numerical eigenfrequencies listed in Table 6.1 agree well with the analytical
one (relative error < 3× 10−3) and the difference between the pure tensor product result and
the polar spline result is small. The slightly larger error for the polar splines might be due to
the reduced solution space. However, if the resulting eigenfunctions are plotted on the physical
domain using the push-forward operation for 2-forms shown in Table 3.1, a very different behavior
is found close to the magnetic axis for the axial component Uh,z. This is shown in Figure
6.1 where the resulting Uh,xex + Uh,yey vector field (left column) and Uh,z-component (middle
column) are plotted using pure tensor product splines (upper row) and polar splines (lower row).
While for the former the axial component diverges close to the pole due to the 1/

√
g factor in

the push-forward operation for 2-forms (
√
g → 0 for s → 0), this is not the case for the polar

splines where regularity in the push-forward is guaranteed. The point where the tensor product
solution explodes can be pushed towards the pole s = 0 by increasing the resolution of the spline
basis; however, this is not a viable solution when eigenfunctions need to be evaluated arbitrarily
close to the pole, as for instance in particle-in-cell codes such as STRUPHY [103].

6.1.2 Global Alfvén eigenmode and internal kink mode

In Section 4, we discussed continuous Alfvén spectra whose eigenfunctions are singular, i.e.
infinitely narrow at a certain radial location. However, even in the simplified straight tokamak
geometry, where poloidal harmonics are decoupled, global Alfvén eigenmodes (GAEs) [104, 105]
with a non-singular, radially extended mode structure can exist below or above extremum points
in the continuous Alfvén spectrum [15]

ω2(r) =
B2

0

nb,eq(r)

1

R2
0

(
n+

m

q(r)

)2

. (6.3)

Besides stable eigenmodes characterized by eigenfrequencies ω2 > 0, unstable m = 1 internal
kink modes with ω2 < 0 exist if the resulting on-axis safety factor q0 < 1/|n| [106].

These two features are obtained with STRUPHY simultaneously for parameters n = −1,
q0 = 0.8, q1 = 1.85, a = 1 and R0 = 5. Moreover, the number density profile in (6.1) is endowed
with parameters n1 = 4, n2 = 3 and na = 0, such that the number density drops to zero at the
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Figure 6.2: Global Alfvén eigenmode (middle column) and internal kink mode (right column) in
straight tokamak geometry with toroidal mode number n = −1 and equilibrium profiles shown
in a). The numerical eigenfrequencies corresponding to m = 1 and m = 2 Alfvén continuua are
shown in b) together with the location of the global Alfvén eingenmode (GAE) below the m = 2
branch. Numerical parameters are Nel = (32, 24) and p = (2, 3).

boundary. The safety factor, equilibrium number density profile and pressure profile are shown in
Figure 6.2 a), where the pressure is multiplied by a scaling factor in order to make it visible. The
number density profile is not chosen randomly but in a way that the continuous Alfvén spectrum
(6.3) for the poloidal mode number m = 2 possesses a minimum at r ≈ 0.8. Calculating the
complete ideal MHD spectrum with parameters Nel = (32, 24) and p = (2, 3) indeed results in a
m = 2 branch with a minimum as shown in Figure 6.2 b). Below that minimum, a GAE with
ω2/ω2

A ≈ 0.52523 is found whose mode structure (first component of the 2-form eigen-velocity
Uh) is shown in the middle column of Figure 6.2. It is clearly evident that the mode structure
is global which means that it would not be subjected to continuum damping if it was excited.
Finally, since the on-axis safety factor q0 < 1, an m = 1 internal kink mode with eigenfrequency
ω2/ω2

A ≈ −2.05× 10−3 is found in the same numerical spectrum. Its mode structure is shown
in Figure 6.2 in the right column and shows the characteristic drop to zero at the location where
q = 1. Since the first component of a 2-form contains the Jacobian determinant

√
g ∼ r in

contrast to the first component of a contravariant vector, we have U2
h,1 ∼ r Ûh,1. Therefore, Ûh,1

is nearly a step function. Lastly, in order to benchmark STRUPHY against literature values,
an additional internal kink mode computation with parameters given on page 53 f. in Gruber’s
book [72] is performed (”Test case F”). The parameters are n = −1, q0 = 0.7, q1 = 2.1286,
a = 1, R0 = 5, n1 = 0, n2 = 0 and na = 1. The resulting eigenfrequency ω2/ω2

A ≈ −1.48× 10−3

calculated with STRUPHY with a rather high resolution, Nel = (48, 24) and p = (3, 3) to ensure
convergence, is in excellent agreement with Gruber’s result ω2/ω2

A ≈ −1.47× 10−3 although
very different numerical schemes are used.
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6.2 Toroidal geometry

6.2.1 Toroidal Alfvén eigenmodes

As a next step, we include effects caused by toroidal curvature. The main difference compared
to the straight case is the symmetry breaking in the poloidal plane due to the characteristic
1/R behavior of the toroidal magnetic field resulting in a high-field side on the inner side of the
torus and a low-field side on the outer side. This symmetry breaking can lead to coupling of
different poloidal harmonics which in turn can result in frequency gaps, i.e. ”forbidden” zones
for continuum modes, with possible global modes within these gaps (toroidal Alfvén eigenmodes
- TAEs) [16]. To model this feature, we take as the geometry a simplified tokamak with circular
concentric flux surfaces with minor radius a and major radius R0 described by the straight field
line mapping (3.124). The corresponding ad hoc equilibrium fields are given by

Tokamak (ad hoc)

x = R cos θ cosφ
y = r sin θ
z = R cos θ sinφ

R = R0 + r cos θ

:





Beq =
B0R0

R

(
eφ +

r

q̄(r)R0
eθ

)
, q̄(r) = q(r)

√
1− r2

R2
0

,

q(r) = q0 + (q1 − q0)
r2

a2
,

peq =
βB2

0

2

(
1− p1

r2

a2
− p2

r4

a4

)
,

nb,eq = (1− na)
(

1−
(r
a

)n1
)n2

+ na .

(6.4)

These fields are implemented in STRUPHY (see Section 3.7.3). In the following, however, only
results for a flat pressure and density profile are presented and discussed. Hence, p1 = p2 = 0,
n1 = n2 = 0 and na = 1 in (6.4).

With regards to (6.3), it is easily verified that continuum branches for poloidal mode num-
bers m and m + 1 may intersect (see Figure 6.2 b) for instance). This degeneracy is lifted if
poloidal mode coupling is present, such that the location of the frequency gap and a possible
TAE within the gap is readily obtained by

km = −km+1 ⇒ qTAE =
m+ 1/2

n
, (6.5)

i.e. the TAE is located at r = r0 for which q(r0) = qTAE. Moreover, it can be shown that the
width of the frequency gap is approximately given by [107]

∆ ≈ 4n2r0/R0

(r2
0/R

2
0 − 1)(2m+ 1)2

. (6.6)

All this features are obtained with STRUPHY for the toroidal mode number n = −2 and
parameters B0 = 5, q0 = 1.15, q1 = 1.60, a = 1, R0 = 5 and β = 0.2 % in (6.4). The results
for numerical parameters Nel = (32, 48) and p = (3, 3) are shown in the upper two rows of
Figure 6.3 both for standard tensor product splines and polar splines. Shown are from left
to right the Alfvén continuum branches for poloidal mode numbers m = 2 and m = 3 in the
range 0.1 < ω2/ω2

A < 0.25, the full TAE mode structure in the poloidal plane (first component
of Uh) and the poloidally averaged absolute values of the dominant TAE Fourier components
(m = 1− 4). Firstly, from a numerical point of view, it should be noted that there is no visible
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Figure 6.3: Comparison study between standard tensor product splines and polar splines for
TAEs which are located very close to the magnetic axis. The toroidal mode number n = −2
and qTAE = 1.25 in all cases. Numerical parameters are Nel = (32, 48) and p = (3, 3).

difference between the tensor product and polar spline framework. This is not very surprising
since the polar spline framework only change the admissible solution space at the very vicinity of
the magnetic axis at which, for this example, there are neither continuum modes nor the TAE.
Secondly, from a physical point of view, the frequency gap is forming at the correct location,
namely at the intersection point of the m = 2 and m = 3 continuum branches. This means
that qTAE = 1.25 and therefore r0 ≈ 0.47 according to (6.5). Moreover, the measured width of
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the gap ∆ ≈ 0.056 (see dashed lines in Figure 6.3) agrees well with the analytical prediction
∆ ≈ 0.061 according to (6.6). Due to coupling of m = 2 and m = 3 poloidal harmonics, the TAE
mode structure in the middle column of Figure 6.3 exhibits a ballooning-like mode structure,
i.e. there is an asymmetry between the high-field side and low-field side. Finally, the separated
Fourier components in the right column reveal that the TAE indeed consists most dominantly
of m = 2 and m = 3 harmonics.

To investigate differences in the tensor product and polar spline frameworks, qTAE is now
moved closer and closer to the magnetic axis by moving the on-axis safety factor q0 → qTAE =
1.250. The results for this are shown in the third and fourth row of Figure 6.3 for q0 = 1.247
and in the fifth and sixth row for q0 = 1.248. In both cases it is evident that the standard
tensor product framework has problems with properly resolving the continuous spectrum close
to the magnetic axis. First, the formation of a frequency gap is not clearly visible anymore
(especially for q0 = 1.248) and second, there are spurious eigenmodes which pollute the spectrum.
Additionally, the TAE Fourier harmonics show spurious oscillations close to the axis. In contrast
to that, all these problems are gone if the polar spline modifications are used. The frequency gaps
can still be identified in a satisfactory way and also the TAE Fourier components are smooth
and exhibit no spurious oscillations.

6.2.2 Energetic particle drive

The next test case is taken from [108], where a benchmark study between different codes was
performed for the case of a TAE which is destabilized by resonant energetic ions with a radial
pressure gradient. It is once more characterized by a tokamak with circular concentric flux
surfaces. The simulation parameters are n = −6, B0 = 3, q0 = 1.71, q1 = 1.87, a = 1, R0 = 10
and β = 0.179 %, such that qTAE = 1.75 and r0 = 0.5. First, the MHD part of STRUPHY is
tested for the bulk plasma without EPs. The results for numerical parameters Nel = (48, 96)
and p = (3, 3) are shown in Figure 6.4, where in the upper row the Alfvén continuous spectra
for poloidal mode numbers m = 9 − 12 are shown in the range 0 < ω/ωA ≤ 1. The gap at
the intersection point of the m = 10 and m = 11 branches is clearly visible and also a TAE
is found within the gap. The lower row of Figure 6.4 shows the TAE mode structure of the
three components of the 2-form eigen-velocity U2

h. As in the previous case, an asymmetric mode
structure with respect to the high-field side and low-field side is observed and additionally, it can
be seen that the third component is very small compared to the first and second component; a fact
that is used in reduced MHD models. In order to convert the calculated TAE eigenfrequency to
physical units, we additionally specify the bulk plasma to be composed of hydrogen ions (Ab = 1)
with number density n̄b = 2× 1019 m−3. This results in the TAE frequency ω = 4.14× 105 rad/s
which is in good agreement with other codes that calculate TAE frequencies in the range ω ≈
4.10× 105 rad/s− 4.16× 105 rad/s (see graphs corresponding to MHD: no background pressure
gradient in plot (a) of Figure 2 in [108]).

Based on the result that the m = 10, 11 TAE is contained in the numerical eigenspectrum
and that it is well resolved with the chosen numerical parameters, an EP distribution with a
negative pressure gradient in radial direction is now added to the system. This setup should
drive the TAE unstable. The EPs are chosen to be deuterons, i.e. Zh = 1 and Ah = 2. From
a computational point of view, it is important to note that compared to previous simulations
(see [108]), this test case is very challenging with the current version of STRUPHY. This is
for two reasons: first, the full cyclotron motion of the EPs is resolved which means that a
rather small time step compared to the Alfvén time is needed and second, a full-f description
requires far more particles compared to a delta-f description. In fact, for all time-dependent
runs in the following, the time step is set to ∆t = 0.025 which corresponds to about 1/12 of
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Figure 6.4: MHD results for the ITPA TAE case (n = −6): m = 9−12 Alfvén continuous spectra
(upper row) and mode structure of the m = 10, 11 TAE (lower row). Numerical parameters are
Nel = (48, 96) and p = (3, 3).

the on-axis gyro-period but about 1/740 of a single TAE period. This choice of time step is
based on the result in Chapter 4 that it still resolves the cyclotron motion in a satisfactory
way. Moreover, Np = 5× 106 uniformly loaded particles (in real space) are used which turned
out to be a satisfactory compromise between numerical noise on the one hand and computing
time on the other hand. However, there is still quite some noise left which may be reduced by
using more particles. The initial EP distribution function is taken to be an isotropic Maxwellian
in velocity space supplemented with a monotonically decreasing number density distribution in
radial direction in real space. On the logical domain it is given by

f0
h(s,v, t = 0) = c3 exp

(
−c2

c1
tanh

s− c0

c2

)
1

π3/2v3
th

exp

(
v2
x + v2

y + v2
z

v2
th

)
, (6.7)

where the thermal velocity is set to be constant such that there is no radial EP temperature
gradient. In the following, vth = 1.27 which translates to a temperature of 400 keV in physical
units. As in chapter 4, the particles are loaded uniformly in logical space and according to the
isotropic Maxwellian in (6.7) in velocity space. The EP number density

nh(s) =

∫ 1

0

∫ 1

0

∫
f0

h d3v dχdϕ , (6.8)

for the parameters given in [108] (c0 = 0.49123, c1 = 0.298228, c2 = 0.198739, c3 = 0.521298)
is plotted in Figure 6.5 a) (back dashed line). Recall that s ' r with the present choice of
coordinates.
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Figure 6.5: Relaxation of the full-f EP distribution function in the ITPA TAE case and particle
orbit analysis for a co-passing particle close to TAE resonance: a) Evolution of the EP density
with respect to time and comparison to the distribution used in [108] (black dashed line). b)
Poloidally projected full orbit (cyclotron + drift orbit) of an EP with v‖ ≈ vA/3 together with
the TAE mode structure from Figure 6.4. c) Particle’s poloidal (θ) and toroidal (φ) angle with
respect to time and respective precision periods Tθ = 2π/ωθ and Tφ = 2π/ωφ. d) Evolution of
the relative errors of the particle’s kinetic energy E , magnetic moment µ and canonical toroidal
angular momentum pφ.

When performing the first simulations with these parameters, it was observed that the full-f
EP distribution shows a relaxation to some steady-state distribution in a way that the density
gradient at r ≈ 0.5 is reduced. This observed relaxation states that

v · ∇fh(t = 0) + (v ×Beq) · ∇vfh(t = 0) 6= 0 , (6.9)

which means that (6.7) does not constitute an equilibrium distribution function satisfying
∂fh/∂t = 0. To remove the ”damping” caused by the relaxation during the expected TAE
mode drive, an EP distribution with a steeper initial gradient was chosen in a way that the
relaxed distribution is as close as possible to the default one. Moreover, during the relaxation,
the coupling terms between the bulk plasma and EPs were switched off. The relaxation of the
distribution function (6.7) supplemented with new parameters c0 = 0.515792, c1 = 0.238582,
c2 = 0.188802 and c3 = 0.547363 is shown in Figure 6.5 a) in the time range t = 0 − 250. It is
evident that the initial density distribution (blue curve) approximately relaxes at t = 200 (green
line) to the distribution in [108] (black dashed line). The drop of the density close to the bound-
ary is due to particles that hit the wall at r = 1 and which are removed from the simulation
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Figure 6.6: ITPA TAE case: a) Evolution of the EP density with respect to time and comparison
to the distribution used in [108] (black dashed line). b) Evolution of the magnetic field energy
H̃B after switching on the coupling terms between MHD and EP Vlasov equations at t = 250.
c) Final mode structure that developed out of particle induced noise.

domain. Due to the finite EP Lamor radii in the current version of STRUPHY, generally more
particles hit the wall than in a drift-kinetic code, because there narrower guiding-center orbits
are of interest. However, since the mode drive is expected to happen at r ' 0.5, this density
drop is expected not to have a significant impact on the mode drive.

The relaxation phase in the time range t = 0 − 250 is also used to investigate whether
particle orbits are calculated correctly. Numerical orbit calculations are principle a non-trivial
task and it is known that standard ODE solver like the fourth order Runge-Kutta method fail
to correctly compute orbits in long-tern simulations due to artificial energy accumulation or
dissipation; see [109] for illustrative examples. Figure 6.5 b) shows the poloidally projected
orbit of a co-passing particle in the relaxation phase which is close to TAE resonance v‖ = vA/3,
where vA = B0 = 3. In the range t = 0 − 250, the particle moves about three times around
the torus in poloidal direction and four times in toroidal direction. This can be seen in Figure
6.5 c), where the temporal evolution of the particle’s poloidal angle (θ) and toroidal angle (φ) is
plotted. The measured periods Tθ = 2π/ωθ ≈ 117.25 and Tφ = 2π/ωφ ≈ 65.75 agree very well
with the analytical approximations [12]

ωθ ≈
v‖

qR0
, ωφ ≈

v‖

R0
, (6.10)

which result in Tθ = 2π/ωθ ≈ 117.96 and Tφ = 2π/ωφ ≈ 67.70 for the initial parallel velocity
v‖ ≈ 0.93 and safety factor at the particle position q ≈ 1.74. Finally, the relative errors of the
(normalized) kinetic energy, magnetic moment and canonical toroidal angular momentum

E =
1

2
Ah (v2

x + v2
y + v2

z) , µ =
Ahv

2
⊥

2B
, pφ = AhRvφ + ZhΨ , (6.11)

with respect to time are measured in Figure 6.5 d). In (6.11), vφ = −vx sinφ + vz cosφ is the
particle’s velocity in toroidal direction and Ψ is the poloidal magnetic flux. While the energy
of a particle in a magnetic field is always a conserved quantity, the canonical toroidal angular
momentum pφ is a conserved quantity specific for tokamak-like configurations with toroidal
symmetry. The magnetic moment is not an exact conserved quantity but an adiabatic invariant.
It is approximately conserved if the magnetic field variation B/|∇B| is small compared to the
particle’s gyro-radius which is the case in the present setup. In Figure 6.5 d), it can be seen that
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the energy is conserved almost to machine precision (green line); a direct consequence of the
exact analytical solution (3.113) of the v ×B force term in the particles’ equations of motion.
In contrast to that, µ and pφ also depend on the particle’s spatial position and therefore have
finite, but bounded errors of about 1.79 % and 0.14 %.

After having let the EP distribution function relax to a steady-state distribution until
t = 250, Figure 6.6 b) shows the evolution of the magnetic energy from the point where all
coupling terms between the MHD bulk and EPs are switched on. In this regard, it should be
noted that no other initial perturbations apart from particle noise is imposed. One can see that
once the coupling is switched on, there is a sudden increase in the energy to a first plateau. This
can be identified with the noise introduced by numerical particles. At t ≈ 550, an instability
starts to build up and the final mode structure in Figure 6.6 c) reveals that the m = 10, 11
TAE at r0 ≈ 0.5 is excited. However, the result is still quite noisy which is probably due to
the rather low number of particle used in the present case. Moreover, a quantitative analysis
and benchmark of the growth rate is at this stage quite difficult because of the relaxation of
EP distribution function which changes the density and its gradient at the TAE location. A
quantitative analysis, a better understanding of the relaxation phenomenon and finally, a higher
numerical resolution runs after further code performance optimization is therefore left for future
work.





Chapter 7

Conclusions and Outlook

This thesis presented the newly developed hybrid MHD-kinetic code STRUPHY for investigat-
ing interactions between MHD waves and energetic particles in fusion plasmas. In the version
presented in this thesis, the code solves 3d linearized, ideal MHD equations, coupled non-linearly
to fully kinetic 6d Vlasov equations via a current-coupling scheme. It was verified that STRU-
PHY is able to reproduce various ideal MHD results in slab, cylindrical and toroidal geometry
and that coupling effects to a kinetic minority species are captured correctly both in the ion
cyclotron frequency regime as well as in the low-frequency regime of large scale MHD modes.
With the significant numerical improvements listed below, it is believed that STRUPHY brings
several new qualities to the already existing arsenal of hybrid codes. This is mainly because of
the following features:

• The newly developed algorithm in Chapter 3 provably conserves energy and ∇ · B = 0
irrespective of metric, grid spacing, chosen spline degree and degree of time splitting.
This is a consequence of the finite element exterior calculus framework and the resulting
skew-symmetry of the matrix in (3.98) which is subjected to a skew-symmetric, energy-
preserving splitting. It is believed that these built-in conservation properties improve
long-time stability, especially in strongly non-linear simulations.

• The use of B-spline basis function of arbitrary degree results in a high-order method which
guarantees accuracy, the implicit nature of the time integration enables large time steps
in the MHD part and the use of full MHD provides the possibility of exploring the whole
range of MHD waves in contrast to reduced MHD.

• The novel numerical strategy for treating computational domains with a unique singular
pole (edge that is mapped onto a single point) suppresses spurious oscillations at the pole
that may propagate to other regions in the domain and pollute the simulation.

In more detail, the new approach for handling polar singularities combines discrete differential
forms with the IGA-based polar spline framework introduced by Toshniwal et al. [80, 82].
The former provides a natural discretization of grad-, curl- and div-operators in curvilinear
coordinates that preserves the de Rham cochain complex on the discrete level. The latter leads to
continuous eigenfunctions on the mapped domain, including the pole. Based on this framework,
new commuting projectors were constructed in Chapter 5 for the extended de Rham diagram
5.5 (blue arrows therein). These projectors were defined via so-called polar degrees of freedom
(DOFs), obtained as linear combinations of existing tensor product DOFs. Several sufficient
conditions on these linear combinations were stated in order to achieve commutativity and,
moreover, explicit, block-wise representations of all needed extraction/reduction matrices were
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given. In Chapter 6, the new framework was tested by means of a magnetosonic eigenmode in
cylindrical geometry for analytical comparison and toroidal Alfvén eigenmode (TAE) calculations
in toroidal geometry; the correct behavior of the eigenfunctions near the pole was demonstrated,
in contrast to the standard tensor product solver usually used in other codes.

Finally, on the physics side, STRUPHY was verified in slab geometry by calculating shear
Alfvén and slow sound continuous spectra and conducting phase mixing test cases with resulting
continuum damping. Additionally, an instability in the ion cyclotron frequency regime was
successfully compared to a linear, analytical theory developed in Chapter 2 and the non-linear
saturation mechanism was identified by analyzing the motion of resonant particles. Additionally,
the good conservation properties of STRUPHY were demonstrated and it was shown that these
particularly hold in the non-linear phase. Besides this, global Alfvén eigenmode and internal kink
mode calculations were conducted in cylindrical geometry and all features of continuous shear
Alfvén spectra in toroidal geometry, in particular gap formation and gap size, were demonstrated.
Moreover, a particular n = −6 TAE case was benchmarked with other codes and it was shown
that the full-f , full-orbit (6d) treatment of EPs in STRUPHY is able to simulate TAE mode
drive leading to instability.

Outlook

In the version presented in this thesis, STRUPHY features a hybrid MPI/OpenMP paralleliza-
tion of the kinetic PIC part, which allows the distribution of particles on up to several hundreds
of CPUs on the available computing cluster. However, no considerable effort has been put into
performance of assembling and solving the large linear systems yet. They appear because of the
implicit nature of the used time integration scheme. As a consequence of that, STRUPHY is
currently limited to a single toroidal mode number and therefore to axisymmetric systems in
order to keep the linear systems relatively small. Nevertheless, having proved in this work the
feasibility of the novel algorithm, further development steps include:

1. Implementation of a drift-kinetic particle pusher for more efficiently simulating low-frequency
phenomena. The suitable Hamiltonian model has been developed in [40].

2. Creation of an interface to MHD equilibrium codes such as VMEC [110] for the purpose
of loading realistic tokamak and stellarator equilibria.

3. Implementation of Hamiltonian pressure-coupling schemes [39] and comparison of simula-
tion results to the currently implemented current-coupling scheme.

4. Extension to fully non-linear MHD.

Some of these efforts (especially points 2 and 3) are already on the way. Once the full OpenM-
P/MPI hybrid parallelization (including the MHD part) is in place, detailed benchmark studies
with other hybrid codes such as MEGA [29], HMGC [32, 33] and the hybrid MHD-kinetic ex-
tension of JOREK [37] are planned. Moreover, the capability of solving larger linear systems
will then allow for the usage of another B-spline basis in toroidal direction (instead of a Fourier
basis) which will ultimately lead to a full three-dimensional version of STRUPHY.

Finally, due to STRUPHY’s major improvements regarding the treatment of polar singular-
ities, it can serve as a novel numerical tool that is able to accurately simulate so-called ”fishbone”
instabilities and sawtooth cycles in fusion devices. This is due to the fact that both phenomena
occur in the core region of fusion plasmas at the very vicinity of the magnetic axis. Fishbones
are (1, 1)-kink-like modes that resonantly interact with trapped energetic particles coming from
e.g. neutral beam injection [111]. In this regard, the instability can lead to a degradation of
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energetic particle confinement and consequently to a reduced heating power [112]. Sawtooth
cycles are periodic reconnection events inside the q = 1 surface that lead to sudden drops of the
core temperature and prevent the current profile from strong central peaking [113]. Due to the
involved magnetic reconnection, a shift of the magnetic axis away from its original position can
happen.
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[77] B Van der Holst, A. J. C. Beliën, J. P. Goedbloed, M. Nool, and A. Van der Ploeg.
Calculation of resistive magnetohydrodynamic spectra in tokamaks. Physics of Plasmas,
6(5):1554–1561, 1999.

[78] A. Bondeson, G. Vlad, and H. Lütjens. Resistive toroidal stability of internal kink modes
in circular and shaped tokamaks. Physics of Fluids B: Plasma Physics, 4(7):1889–1900,
1992.

[79] W. Kerner, J. P. Goedbloed, G. T. A Huysmans, S. Poedts, and E. Schwarz. CASTOR:
Normal-Mode Analysis of Resistive MHD Plasmas. Journal of Computational Physics,
142(2):271–303, 1998.

[80] D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. R. Hughes. Multi-degree smooth
polar splines: A framework for geometric modeling and isogeometric analysis. Computer
Methods in Applied Mechanics and Engineering, 316:1005–1061, 2017. Special Issue on
Isogeometric Analysis: Progress and Challenges.

[81] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration
of CAD and FEA. John Wiley & Sons, 2009.

[82] D. Toshniwal and T. J. R. Hughes. Isogeometric discrete differential forms: Non-uniform
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Dr. Yaman Güçlü, Dr. Martin Campos-Pinto, Dr. Florian Hindenlang, Mario Räth, Tobias
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