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Motivation
• Final Goal:
Doing UQ and SA of complex dynamical models
(e.g., HBV-SASK Hydrological model1)

• Impediments:
– High-dimensionality
– Model as a black box
– Possible discontinuities in the parameter space;

anisotropic or decoupled parameters
– Output of the model - time signal

• Scientific Approach:
Use (Adaptive) SG to investigate the stochastic
parameter space efficiently

Non-intrusive UQ
General Polynomial Chaos Expansion (gPCE)2

f (x,θ) ≈ PN
p = fN (x,θ) =

N−1∑
p=0

cp(x)Φp(θ) =
N−1∑
p=0

< f (x,θ),Φp(θ) >ρ Φp(θ)

Where θ = (θ1, θ2, . . . , θd)
T ; θ : Ω → Γ and ρ(θ) :=

∏d
i=1 ρi(θi)

And Φpi(θ) are orthonormal multivariate polynomials constructed via a tensor
product basis of the univariate polynomials Φp(θ) := Φp1(θ1) · . . . · Φpd(θd)
Coefficients:

cp(x) = E[f (x,θ)Φp(θ)] =

∫
Γ
f (x,θ)Φp(θ)ρ(θ)dθ

(Isotropic Full Tensor) Pseudo-spectral projection (PSP)

SN
p =

N−1∑
q=0

Q(fΦp)Φp(θ) =
N−1∑
q=0

ĉp(x)Φp(θ)

Post-processing
Quantify uncertainty of Output of Interest (OoI)

E[O] =

∫
Γ
O(f (x,θ))ρ(θ)dθ; V ar[O] = E[O2]− (E[O])2

Variance based sensitivity analysis

ST
i =

V ar(f )− V ar(E(f |θ−i))

V ar(f )
=

E(V ar(f |θ−i))

V ar(f )

Use gPCE coeff. to compute expectation and variance:

E[fN (x,θ)] = c0(x) V ar[fN (x,θ)] =
N−1∑
p=1

c2p(x)

Use gPCE coeff. to compute Sobol’ indices:3

ST
i =

∑
p∈Ai

c2p(x)

V ar[fN (x,θ)]
, i = 1, . . . , d

Sparse Grid (SG) and
Combination Technique (CT)
• Main problem: Curse of dimension with full grids
• Idea: Reduce point numbers by removing point sets that con-
tribute least

⇒ Reduction of point numbers from O(Nd) to O(Nlog(N)d−1)

Sparse Grids can be constructed in various ways:

• different basis functions (e.g., linear hat, Lagrange poly, etc.)
• or the point positions (e.g., Clenshaw-Curtis, Leja)

• Combination Technique: Efficient SG computation by linearly
combining computations on cheap anisotropic full grids (e.g.,
component grids)

ucl =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
l∈Il,q

ul, Il,q={l∈Nd
0∥l∥1=l+d−1−q}

Dimension-Wise Spatially
Adaptive SG CT4

Drawback: Standard CT offers no spatial adaptivity

CT with Spatial Adaptivity - use rectilinear grids constructed
via a tensor product of refined 1-D grids4

Key components:

• 1D refinements define the adaptive process
• Creating a global scheme from these 1D point sets
• Special error estimators guide the refinement

UQ with Sparse Grids
Multiple ways how to combine the gPCE and SG!

Var 1: Sparse PSP5,6

• Approximate all the weighted integrals of f via some sparse inter-
polatory quadrature scheme (i.e., sparse quadrature scheme gener-
ated with CT)
ĉp(x) =

∑
m . . .

∑
m f (x,Θ1

m, . . . ,Θd
m)Φp(Θ

1
m, . . . ,Θd

m)ω1m . . . ωdm

Var2: SG Interpolation Surrogate + gPCE
• SG Interpolation of f (x,θ)

f (x,θ) ≈ USGI = fSGI(x,θ) =
∑

l∈ȷ,i∈I

αl,i(x)φl,i(θ)

Where αl,i(x, t) are hierarchical surpluses, and φlj,ij(θ) =

φl,i(θ) =
∏d

j φlj,ij(θj) are d-variate hierarchical basis functions

• Use SG model surrogate to compute gPCE coefficients7

ĉp(x) =

∫
Γ
fSGI(x,θ)Φp(θ)ρ(θ)dθ

=
∑
l,i

αl,i(x)

d∏
j=1

∫
Γj

Φj(θj)φlj,ij(θj)dθj

• Variants:
– Use some quadrature rule to approximate inner integrals
– Analytical computation of 1D integrals where the integrand is a

product of polynomials

Var 3: Spatially Adaptive Sparse Interpolatory
Quadrature

• Approximate all weighted integrals of f ,
e.g., cp(x) (Spatially Adaptive PSP), E[O(f )], V ar[O(f )]
with spatially adaptive SG quadrature scheme

UQ Designed Strategies

Variant Method Interpolation method (SGI) quadrature method gPCE

Var 1
m1 no Full Gauss-Legendre yes

m2 no (Sparse) Clenshaw-Curtis yes

m3 no (Sparse) delayed Kronrod-Patterson8 yes

Var 2

m4 piecewise linear, standard CT Gauss-Legendre (high order) yes

m5 piecewise linear, spatially adaptive CT Gauss-Legendre (high order) yes

m6 piecewise linear, standard CT analytical computation yes

m7 piecewise linear, spatially adaptive CT analytical computation yes

Var 3
m8 spatially adaptive sparse interpolatory quad. for cp(x) yes

m9 spatially adaptive sparse interpolatory quad. for E[O(f )], V ar[O(f )] no

Some implementation aspects:

• Libraries used - SparseSpACE & ChaosPy
• Parallel aspect - parallel model runs inside one component grid
• Avoiding aliasing errors in PSP
(i.e., taking care of polynomial exactness of quad. rules)6

• Linear and non-linear transformations of nodes

Open question -
Building Adaptive SG Surrogate

• of the model itself?
• some likelihood function
(suitable for inversion)?

First Results
Benchmark Convergence of different methods

• (gPCE or SG) Surrogate construction of Genz function set, including discontinuous fun. (5D)
• SA of Ishigami Function (3D)
• Convergence results as expected - adaptive approaches comparable to or better than non-adaptive
• For simple cases, 2 stages approach (Var2) is not much beneficial

Time-wise UQ SA of Hydrological Model with Var 2 m5

• Single Adaptive SG Surrogate for all the time-steps
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