Efficient UQ and Global Time-Varying SA Using the Spatially Adaptive Combination Technique

Ivana Jovanovic Buha[§], Michael Obersteiner[§], Tobias Neckel[§], Hans-Joachim Bungartz[§] Technical University of Munich, ivana.jovanovic@tum.de, oberstei@in.tum.de,

Motivation

• Final Goal:

Doing UQ and SA of complex dynamical models (e.g., HBV-SASK Hydrological model¹)

- Impediments:
- High-dimensionality
- Model as a black box
- Possible discontinuities in the parameter space; anisotropic or decoupled parameters
- Output of the model time signal

Scientific Approach:

Use (Adaptive) SG to investigate the stochastic parameter space efficiently

Non-intrusive UQ

General Polynomial Chaos Expansion (gPCE)²

$$f(x, \boldsymbol{\theta}) \approx \boldsymbol{\mathcal{P}_p^N} = f_N(x, \boldsymbol{\theta}) = \sum_{\boldsymbol{p}=0}^{N-1} c_p(x) \boldsymbol{\Phi_p}(\boldsymbol{\theta}) = \sum_{p=0}^{N-1} < f(x, \boldsymbol{\theta}), \boldsymbol{\Phi_p}(\boldsymbol{\theta}) >_{\boldsymbol{\rho}} \boldsymbol{\Phi_p}(\boldsymbol{\theta})$$

Where
$$\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d)^T$$
; $\boldsymbol{\theta} : \Omega \to \Gamma$ and $\boldsymbol{\rho}(\boldsymbol{\theta}) := \prod_{i=1}^d \rho_i(\theta_i)$

And $\Phi_{p_i}(\theta)$ are orthonormal multivariate polynomials constructed via a tensor product basis of the univariate polynomials $\Phi_{p}(\theta) := \Phi_{p_1}(\theta_1) \cdot \ldots \cdot \Phi_{p_d}(\theta_d)$ **Coefficients:**

$$c_{\mathbf{p}}(x) = \mathbb{E}[f(x, \boldsymbol{\theta})\mathbf{\Phi}_p(\boldsymbol{\theta})] = \int_{\mathbf{\Gamma}} f(x, \boldsymbol{\theta})\mathbf{\Phi}_p(\boldsymbol{\theta})\rho(\boldsymbol{\theta})d\boldsymbol{\theta}$$

(Isotropic Full Tensor) Pseudo-spectral projection (PSP)

$$\boldsymbol{\mathcal{S}_{\boldsymbol{p}}^{\boldsymbol{N}}} = \sum_{q=0}^{N-1} \mathcal{Q}(f\boldsymbol{\Phi}_{\boldsymbol{p}})\boldsymbol{\Phi}_{\boldsymbol{p}}(\boldsymbol{\theta}) = \sum_{q=0}^{N-1} \hat{c}_{\boldsymbol{p}}(x)\boldsymbol{\Phi}_{\boldsymbol{p}}(\boldsymbol{\theta})$$

Post-processing

Quantify uncertainty of Output of Interest (Ool)

$$E[\mathcal{O}] = \int_{\Gamma} \mathcal{O}(f(x, \boldsymbol{\theta})) \boldsymbol{\rho}(\boldsymbol{\theta}) d\boldsymbol{\theta}; \quad Var[\mathcal{O}] = E[\mathcal{O}^2] - (E[\mathcal{O}])^2$$

Variance based sensitivity analysis

$$S_i^T = \frac{Var(f) - Var(E(f|\boldsymbol{\theta}_{-i}))}{Var(f)} = \frac{E(Var(f|\boldsymbol{\theta}_{-i}))}{Var(f)}$$

Use gPCE coeff. to compute expectation and variance:

$$\mathbb{E}[f_N(x, \boldsymbol{\theta})] = c_0(x) \qquad Var[f_N(x, \boldsymbol{\theta})] = \sum_{p=1}^{N-1} c_p^2(x)$$

Use gPCE coeff. to compute Sobol' indices:³

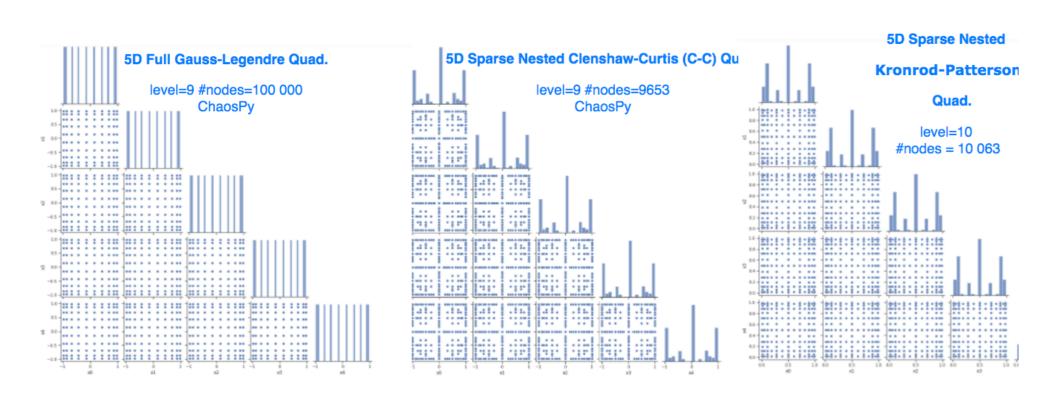
$$S_i^T = \frac{\sum_{p \in A_i} c_p^2(x)}{Var[f_N(x, \boldsymbol{\theta})]}, \qquad i = 1, \dots, d$$

Sparse Grid (SG) and Combination Technique (CT)

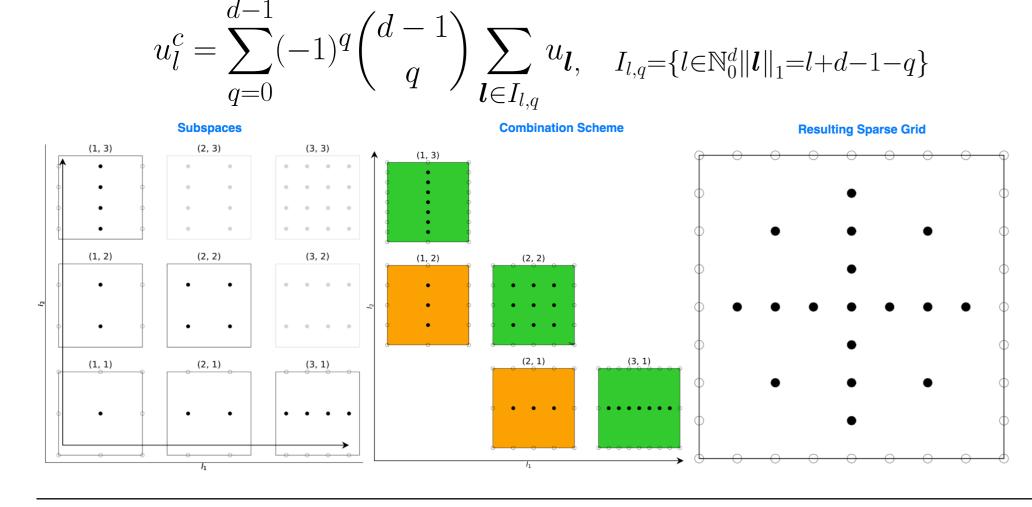
- Main problem: Curse of dimension with full grids
- Idea: Reduce point numbers by removing point sets that contribute least
- \Rightarrow Reduction of point numbers from $\mathcal{O}(N^d)$ to $\mathcal{O}(Nlog(N)^{d-1})$

Sparse Grids can be constructed in various ways:

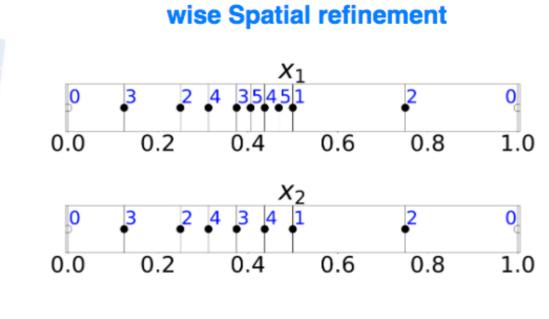
- different basis functions (e.g., linear hat, Lagrange poly, etc.)
- or the point positions (e.g., Clenshaw-Curtis, Leja)



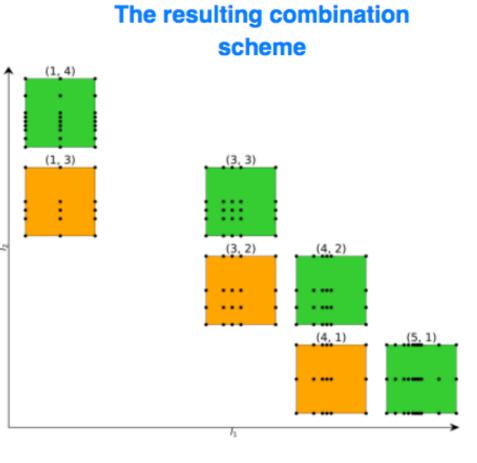
• Combination Technique: Efficient SG computation by linearly combining computations on cheap anisotropic full grids (e.g., component grids)

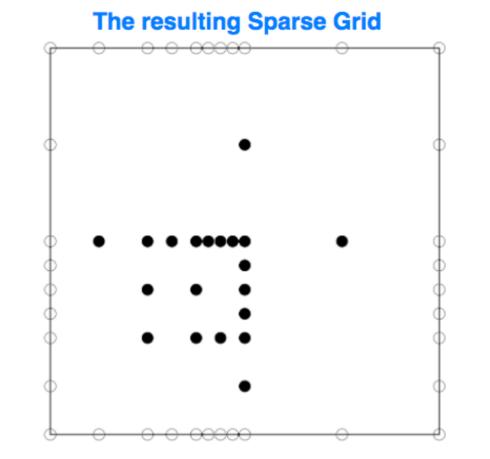


Dimension-Wise Spatially Adaptive SG CT⁴



The output of Dimension-





Drawback: Standard CT offers no spatial adaptivity

CT with Spatial Adaptivity - use rectilinear grids constructed via a tensor product of refined 1-D grids⁴

Key components:

- 1D refinements define the adaptive process
- Creating a global scheme from these 1D point sets
- Special error estimators guide the refinement

UQ with Sparse Grids

Multiple ways how to combine the gPCE and SG! Var 1: Sparse PSP^{5,6}

• Approximate all the weighted integrals of f via some sparse interpolatory quadrature scheme (i.e., sparse quadrature scheme generated with CT) $\hat{c}_{\boldsymbol{p}}(x) = \sum_{m} \dots \sum_{m} f(x, \Theta_{m}^{1}, \dots, \Theta_{m}^{d}) \boldsymbol{\Phi}_{\boldsymbol{p}}(\Theta_{m}^{1}, \dots, \Theta_{m}^{d}) \omega_{m}^{1} \dots \omega_{m}^{d}$

Var2: SG Interpolation Surrogate + gPCE

• SG Interpolation of $f(x, \theta)$

$$f(x, \boldsymbol{\theta}) \approx \boldsymbol{\mathcal{U}_{SGI}} = f_{SGI}(x, \boldsymbol{\theta}) = \sum_{\boldsymbol{l} \in \jmath, \boldsymbol{i} \in \boldsymbol{I}} \alpha_{\boldsymbol{l}, \boldsymbol{i}}(x) \boldsymbol{\varphi}_{l, i}(\boldsymbol{\theta})$$

Where $\alpha_{\boldsymbol{l},\boldsymbol{i}}(x,t)$ are hierarchical surpluses, and $\varphi_{l_i,l_i}(\boldsymbol{\theta})$ = $\varphi_{l,i}(\theta) = \prod_j^d \varphi_{l_i,i_j}(\theta_j)$ are d-variate hierarchical basis functions

Use SG model surrogate to compute gPCE coefficients⁷

$$\hat{c}_{\boldsymbol{p}}(x) = \int_{\boldsymbol{\Gamma}} f_{\mathcal{SGI}}(x, \boldsymbol{\theta}) \boldsymbol{\Phi}_{\boldsymbol{p}}(\boldsymbol{\theta}) \boldsymbol{\rho}(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \sum_{\boldsymbol{l}, \boldsymbol{i}} \alpha_{\boldsymbol{l}, \boldsymbol{i}}(x) \prod_{j=1}^{d} \int_{\Gamma_{j}} \boldsymbol{\Phi}_{j}(\theta_{j}) \varphi_{l_{j}, i_{j}}(\theta_{j}) d\theta_{j}$$

- Variants:
- Use some quadrature rule to approximate inner integrals
- Analytical computation of 1D integrals where the integrand is a product of polynomials

Var 3: Spatially Adaptive Sparse Interpolatory Quadrature

• Approximate all weighted integrals of f, e.g., $c_{\mathbf{p}}(x)$ (Spatially Adaptive PSP), $E[\mathcal{O}(f)], Var[\mathcal{O}(f)]$ with spatially adaptive SG quadrature scheme

UQ Designed Strategies

Variant	Method	Interpolation method (SGI)	quadrature method	gPCE
Var 1	m1	no	Full Gauss-Legendre	yes
	m2	no	(Sparse) Clenshaw-Curtis	yes
	m3	no	(Sparse) delayed Kronrod-Patterson ⁸	yes
Var 2	m4	piecewise linear, standard CT	Gauss-Legendre (high order)	yes
	m5	piecewise linear, spatially adaptive CT	Gauss-Legendre (high order)	yes
	m6	piecewise linear, standard CT	analytical computation	yes
	m7	piecewise linear, spatially adaptive CT	analytical computation	yes
Var 3	m8	spatially adaptive sparse interpolatory quad. for $c_{m p}(x)$		yes
	m9	spatially adaptive sparse interpolatory quad. for $E[\mathcal{O}(f)], Var[\mathcal{O}(f)]$		no

Some implementation aspects:

- Libraries used SparseSpACE & ChaosPy
- Parallel aspect parallel model runs inside one component grid
- Avoiding aliasing errors in PSP (i.e., taking care of polynomial exactness of quad. rules)⁶
- Linear and non-linear transformations of nodes

Open question -Building Adaptive SG Surrogate

- of the model itself?
- some likelihood function (suitable for inversion)?

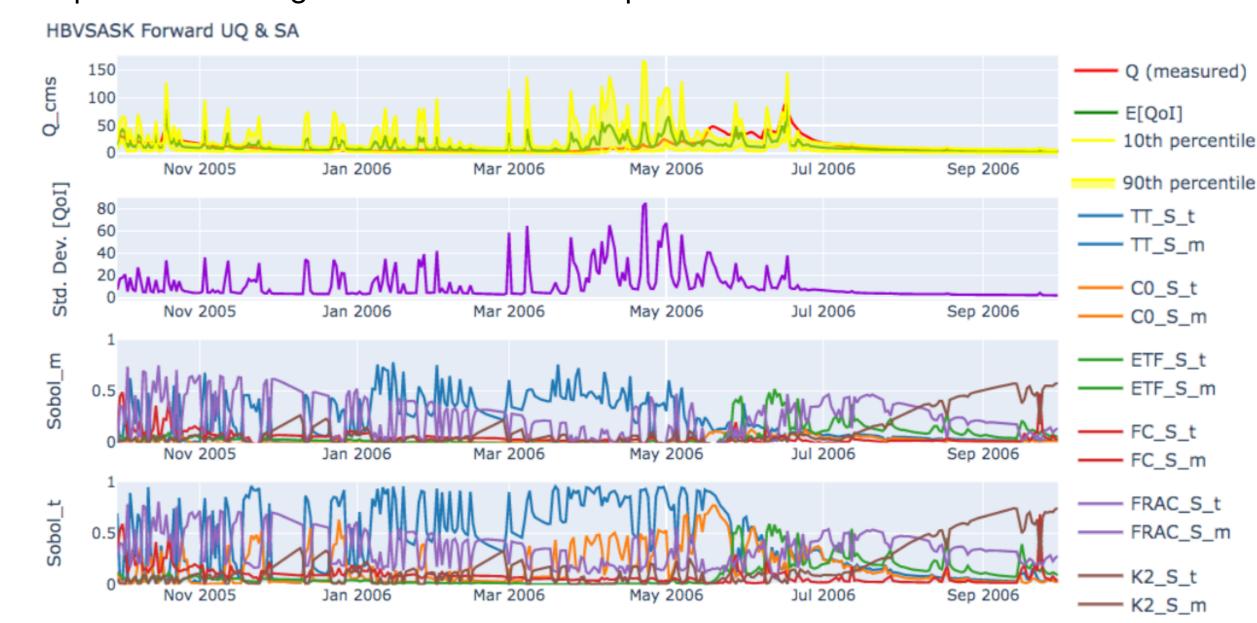
First Results

Benchmark Convergence of different methods

- (gPCE or SG) Surrogate construction of Genz function set, including discontinuous fun. (5D)
- SA of Ishigami Function (3D)
- Convergence results as expected adaptive approaches comparable to or better than non-adaptive
- For simple cases, 2 stages approach (Var2) is not much beneficial

Time-wise UQ SA of Hydrological Model with Var 2 m5

Single Adaptive SG Surrogate for all the time-steps



References

- [1] H. V. Gupta and S. Razavi, "Revisiting the Basis of Sensitivity Analysis for Dynamical Earth System Models," Water Resources Research, vol. 54, no. 11, [6] P. R. Conrad and Y. M. Marzouk, "ADAPTIVE SMOLYAK PSEUDOSPECTRAL APPROXIMATIONS," tech. rep.
- pp. 8692-8717, 2018. [2] D. Xiu and G. E. Karniadakis, "The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations," SIAM Journal of Scientific Computing, vol. 24,
- pp. 619-644, 2002.
- [3] B. Sudret, "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, vol. 93, pp. 964–979, 2008. [4] M. Obersteiner and H. J. Bungartz, "A generalized spatially adaptive sparse grid combination technique with dimension-wise refinement," SIAM Journal on Scientific Computing, vol. 43, no. 4, pp. A2381-A2403, 2021.
- [5] P. G. Constantine, M. S. Eldred, and E. T. Phipps, "Sparse pseudospectral approximation method," Computer Methods in Applied Mechanics and Engineering, vol. 229, pp. 1-12, 2012.
- [7] I.-G. Farcas, B. Uekermann, T. Neckel, and H.-J. Bungartz, "Nonintrusive uncertainty analysis of fluid-structure interaction with spatially adaptive sparse grids and polynomial chaos expansion," SIAM Journal on Scientific Computing, vol. 40, no. 2, pp. B457-B482, 2018.
- [8] K. Petras, "Smolyak cubature of given polynomial degree with few nodes for increasing dimension," Numerische Mathematik, vol. 93, pp. 729–753, 02
- [9] M. Obersteiner, "Sparsespace the sparse grid spatially adaptive combination environment." https://github.com/obersteiner/sparseSpACE, 2020.