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Abstract. In this paper a comparison between the wake velocity, wake deflection and
turbulence intensity predictions of several wake models was carried out against wind tunnel
data obtained with a state-of-the-art scaled wind turbine model. In order to achieve a fair
comparison, the models’ parameters were all tuned with respect to the same experimental data-
set using the Maximum Likelihood Estimation (MLE) method. A quantitative assessment of all
models’ predictions highlighted that the Porté-Agel model seems to provide, for a wide range
of inflow and wind turbine operating conditions, the most accurate estimation of the wake flow
field. Further improvements to the model are also suggested in the conclusions.

1. Introduction
In recent years, many research activities have focused on formulating cooperative control
strategies for wind turbines that aim at maximizing the power produced by a wind farm. Among
the developed strategies, the ones that showed so far the greatest potential are based on de-rating
or misaligning, with respect to the wind, the upstream wind turbines [1]. In this regard, many
research institutes have developed analytical models to predict the effects that these strategies
have on the wake shed by a wind turbine. Many of these models require the calibration of
tuning parameters, an activity that implies the availability of experimental data, often obtained
through wind tunnel tests, or data obtained by means of CFD simulations. However, the data
set used for the calibration of the various models is often heterogeneous: experimental/numerical
data, different inflow conditions, different characteristics and operating conditions of the used
wind turbine models. All this hampers an objective and quantitative comparison of the accuracy
of these models, whose calibration parameters are often optimized for a specific inflow or wind
turbine operating condition. This article therefore aims at comparing the prediction of different
analytical wake models with data obtained by testing a state-of-the-art wind turbine scaled
model in a boundary layer wind tunnel. To this end, and in order to ensure a fair comparison,
the models’ parameters are all re-tuned using the data itself. This paper is therefore organized as
following: at first an overview of the investigated analytical wake models, including the related
equations and tunable parameters, is provided in §2. Next, the experimental setup is presented
in §3, followed by the description of the approach adopted for the tuning of the parameters,
given in §4. Successively, the comparison between the models’ predictions and the experimental
data is discussed in §5, while the conclusions are drawn in §6.
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2. Overview of analytical wake models
2.1. Jensen wake model
The Jensen one-dimensional wake model proposed in [2] is a pioneering work in the field. It
assumes a top hat shape of the velocity U(x) within the wake by means of Eq. 1, where the
tunable parameter α governs the wake recovery, U0 is the inflow speed, D0 is the rotor diameter,
x is the downstream distance to the rotor disk and a the rotor axial induction.

U(x) = U0

{
1− 2a

(
D0

D0 + 2αx

)2
}
. (1)

2.2. Frandsen wake model
The Frandsen [3] wake model also estimates the flow velocity in the wake assuming a top
hat shape distribution. Differently than the Jensen model, the wake diameter D(x) and wake
expansion coefficient α(x) are calculated as

U(x)

U0
=

1

2
+

1

2

√
1− 2

D2
0

D(x)2
CT , with

D(x)

D0
= (βk/2 + αs)1/k, (2a)

α(x) = βk/2[(1 + 2α(noj)s)
k − 1]s−1, with β =

1

2

1 +
√

1− CT√
1− CT

, (2b)

with s = x/D0 and CT the rotor thrust coefficient, while α(noj) and are k are the tunable
parameters that govern the wake recovery.

2.3. FLORIS wake model
The FLOw Redirection and Induction in Steady-state (FLORIS) wake model [4] considers the
flow within the wake as the superimposition of three wake zones, each characterized by an
expansion and decay rates governed by different coefficients, denoted with subscript q in Eqs. 3,
in turn function of tunable parameters me,q, MU,q, aU and bU . The model is also capable of
predicting the wake lateral displacement yw,yaw(x) associated to a rotor that operates misaligned,
of an angle γ, with respect to the wind direction, as shown in Eqs. 3c-3d, where kd is a tunable
parameter. The overall wake lateral displacement from the rotor centerline yw(x) also accounts
for the combined effect of rotor rotation and wind shear, as shown in Eq. 3e, with ad and bd
being tunable parameters.

Dq(x) = max(D0 + 2keme,qx, 0), (3a)

U(x, r) = U0[1− 2ac(x, r)], with c(x, r) function of cq(x) =

[
D0

D0 + 2kemU,q(γ)x

]2

, (3b)

mU,q(γ) =
MU,q

cos(aU + bUγ)
, (3c)

yw,yaw(x) ≈
C̃T (a, γ)

[
15
[

2xkd
D0

+ 1
]4

+ C̃T (a, γ)2

]
30kd
D0

[
2xkd
D0

+ 1
]5 , (3d)

yw(x) = yw,rot(x) + yw,yaw(x), with yw,rot(x) = ad + bdx. (3e)
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2.4. Porté-Agel wake model
The Porté-Agel wake model was firstly proposed in [9], further improved in [10] and presented
in its final form in [11]. The model is capable of computing the relative wake deficit ∆U/U0

in a 3-D domain using Eqs. 4a-4c, where the wake decay rate depends, through the tunable
parameters ka and kb, to the inflow turbulence intensity. The wake deflection δ associated to
misaligned condition is computed with Eq. 4e, which accounts for the the deflection in the near
and far wake. The first one is governed by the wake skew angle at the rotor disk θC0 and by
the length of the wake potential core x0, which is a function of two tunable parameters α∗ and
β∗. The wake turbulence intensity is calculated with the model proposed in [12] (Eq. 4g), where
TIa,b,c,d are tunable parameters.

∆U(x, y, x)

U0
=

(
1−

√
1− CT cos γ

8(σyσz/D0
2)

)
exp

(
−0.5

(
y − δ
σy

)2
)

exp

(
−0.5

(
z − zh
σz

)2
)
,

(4a)

σy(x, γ)

D0
= ky

(x− x0)

D0
+

cos γ√
8

and
σz(x)

D0
= kz

(x− x0)

D0
+

1√
8
, (4b)

ky = kz = kaI0 + kb, (4c)

x0(I0, γ)

D0
=

cos γ(1 +
√

1− CT )√
2(α∗I0 + β∗(1−

√
1− CT ))

, (4d)

δ

D0
= θC0

x0

D0
+
θC0

14.7

√
cos γ

kykzCT
(2.9 + 1.3

√
1− CT − CT ) ln

(1.6 +
√
CT )

(
1.6
√

8σyσz
D0

2 cos γ
−
√
CT

)
(1.6−

√
CT )

(
1.6
√

8σyσz
D0

2 cos γ
+
√
CT

)
 ,

(4e)

θC0(γ) =
0.3γ

cos γ
(1−

√
1− CT cos γ), (4f)

I2
wake =

√
I2

0 + I2
+, with I+(I0, x) = TIaa

TIbITIc
0 (x/D0)TId . (4g)

2.5. 2D k Jensen wake model
The 2D k Jensen wake model, proposed in [5] and improved in [6], provides equations for
modeling the flow velocity and turbulence intensity within the wake. At first the one-dimensional
flow velocity is computed using a wake decay coefficient that is proportional, through the tunable
parameter k0, to both the inflow (I0) and wake turbulence intensity. The turbulence within the
wake is then predicted with the Larsen model [7] (Eq. 5b), where TIa,b are tunable parameters.
The 2-D velocity deficit is then approximated by a cosine function (Eq. 5c).

u∗(x) = U0

1− 1−
√

1− CT(
1 + kx

D0/2

)2

 , with k = k0
Iwake
I0

, (5a)

Iwake =
√
I2

0 + I2
add, with Iadd(x) = TIa(x/D0)TIb

√
1−

√
1− CT , (5b)

U(x, r) = (U0 − u∗(x)) cos

(
π

rx
r + π

)
+ u∗(x), with rx = kx+

D0

2
. (5c)
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2.6. Jensen-Gaussian wake model
The Jensen-Gaussian wake model [8] is similar to the previous 2D k Jensen. The one-dimensional
flow velocity is calculated first through the tunable parameters k0 and Kn, with Kn also affecting
the turbulence intensity in the wake, while the velocity distribution, assumed Gaussian, is
calculated according to Eq. 6b:

u∗(x) = u0

1− 2a(
1 + kx

r1

)2

 , with k = k0
Iwake
I0

, Iwake(x) =

(
Kn

CT
(x/D)0.5

+ I0.5
0

)
, (6a)

U(x, r) = U0 − (u0 − u∗)
5.16√

2π
e

−r2

2(rx/2.58)2 , with rx = kx+ r1 and r1 =
D0

2

√
(1− a)

(1− 2a)
. (6b)

3. Experimental setup
The experimental data were obtained by means of wind tunnel testing. In detail, experiments
were conducted in the boundary-layer test section of the Politecnico di Milano wind tunnel using
a scaled G1 wind turbine [13]. Two different inflows were simulated: one characterized by a
moderate turbulence intensity (mod-TI) equal to 6.1%, and one characterized by high turbulence
intensity (high-TI), equal to 11%. The mean undisturbed wind speed, measured at hub height
with a pitot tube placed 5D upstream of the G1, was 5.60 and 5.46 m/s, respectively for mod-TI
and high-TI inflow.

For both inflows, 11 experimental observations were conducted, each one characterized by a
different wind turbine operating condition. Nine observations were performed with the rotor disk
misaligned of γ = −40◦ : 10◦ : +40◦ with respect to the wind tunnel axis (positive misalignment
corresponds to a counter-clockwise rotation from the wind to the rotor axis looking down onto
the terrain), while two observations where conducted with the the aligned G1 operated under
power de-rating conditions. During each test, a closed-loop wind turbine controller [13] was
used to find the optimal rotational speed Ω and collective blade pitch β. Their average values
are reported in Table 1 together with the rotor thrust coefficient CT . These were computed by
means of a Blade Element Momentum (BEM) model that makes use of tuned airfoil polars [14],
and were extremely close to the thrust coefficients computed using the fore-aft load sensor placed
at tower base.

The speed in the wake was measured, at 5D, 7.5D and 10D downwind of the G1, using a
hot-wire traversing system [15] and along horizontal lines at hub height, thus generating a total
of 66 data sets.

4. Formulation of the tuning method
From the the experimental data-set, average normalized flow velocities and turbulence intensities
were derived at specific locations expressed in Cartesian coordinates (x, y, z). To account for
the inhomogeneity of the flow within the wind tunnel [16], the normalized flow velocities were
obtained by dividing the average speed in the wake by the corresponding velocity previously
measured at the same coordinate (y, z), but three diameters upstream of the model. In this
work, the model outputs ŷi, associated to the ith experimental observation ỹi, are therefore
defined as

ŷi =

[
. . . ,

(
v̂i,d
)T

,
(
t̂i,d
)T

, . . .

]T
, d = 5D, 7.5D, 10D (7)
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Table 1. Wind turbine operating conditions for all performed tests with mod-TI and high-TI
inflow conditions.

mod-TI, U0 = 5.60 m/s high-TI, U0 = 5.46 m/s

Ω[rpm] β[◦] γ[◦] CT [−] ID Ω[rpm] β[◦] γ[◦] CT [−] ID

806.3 1.42 0 0.79 1 770.6 1.45 0 0.79 12
806.0 1.99 0 0.73 2 773.3 2.05 0 0.73 13
796.1 2.50 0 0.68 3 770.0 2.44 0 0.69 14
656.4 1.42 −40 0.51 4 631.2 1.42 −40 0.51 15
729.4 1.42 −30 0.63 5 693.2 1.42 −30 0.62 16
773.2 1.42 −20 0.72 6 734.8 1.42 −20 0.72 17
798.4 1.42 −10 0.77 7 758.5 1.43 −10 0.77 18
797.6 1.42 10 0.77 8 760.9 1.43 10 0.77 19
774.9 1.42 20 0.71 9 737.8 1.42 20 0.72 20
731.9 1.42 30 0.62 10 696.2 1.42 30 0.62 21
659.4 1.42 40 0.51 11 629.6 1.42 40 0.51 22

where v̂i,d and t̂i,d are respectively the normalized velocities and turbulence intensities predicted
by a model at a downwind distance d and at the same points were the flow was measured during
the experimental campaign.

The tuning process was then carried out in two steps, both requiring the minimization of a
cost function, which was performed using MATLAB’s fminsearch. At first, the adopted cost
function (SRE) was defined as

SRE =

M∑
i=1

∑
d

wv N i,d∑
j=1

(
v̂i,dj − ṽ

i,d
j

ṽi,dj

)2

+ wt

N i,d∑
j=1

(
t̂i,dj − t̃

i,d
j

t̃i,dj

)2
 , (8)

where M is the number of used observations, N i,d is the number of data points measured, for
the ith observation, at the downwind distance d, while wv and wt are weighting factors. The
output of the minimization problem was then used as initial guess for a successive minimization
that seeks for a maximum likelihood estimate (MLE) of the models’ tunable parameters, an
approach that can account for the inevitable presence of various sources of errors and noise in
the measurements. To this aim, the adopted cost function was defined, as in [17], equal to

J =
Mn

2
ln(2π) +

M

2
ln det(R) +

1

2

M∑
i=1

rTi R
−1ri, (9)

where R, the error covariance matrix of the residuals computed as

R =
1

M

M∑
i=1

rir
T
i , (10)

is nonsingular if M , the dimension of the residual vector r, is smaller than the number of used
observations M . In this regard, the residual ri associated to the ith observation was defined as

ri =

[
. . . , wv

∥∥∥∥( v̂i,d − ṽi,dṽi,d

)∥∥∥∥+
√
wtf

i,d
(
t̂i,d, t̃i,d

)
, . . .

]T
d = 5D, 7.5D, 10D, (11)

where the function f i,d was defined as f i,d = t̂i,d−t̃i,d

t̃i,d
when tuning the Porté-Agel model’s

parameters, while it was defined as f i,d =
∥∥∥( t̂i,d−t̃i,d

t̃i,d

)∥∥∥ when tuning the 2D k Jensen and

Jensen-Gaussian models, with t̂i,d and t̃i,d respectively the predicted and measured average
turbulence within the wake at a distance d.
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5. Results
In order to account for the different capabilities of the the various investigated models, different
set of observations were used for their parameters’ tuning. Moreover, since it is well-known
that the inflow turbulence strongly affect the wake decay rate [18], two distinguished set
of parameters were tuned using, separately, observations performed with mod-TI and high-
TI inflows. However, only a single set of the Porté-Agel model’s parameters was tuned,
using observations pertaining to both inflows. This model, indeed, already accounts, through
Eq. 4c, for the relationship between the inflow turbulence and the wake recovery. Despite the
2D k Jensen and Jensen-Gaussian models also account for this relationship (Eqs. 5a and 6a),
preliminary verifications showed that a single set of tunable parameters would have provided
poor predictions of the speed in the wake.

Table 2. Models’ tuned parameters.

mod-TI high-TI

Jensen α = 0.033 α = 0.047

Frandsen α(noj) = 0.008 k = 3.023 α(noj) = 0.020 k = 1.740

FLORIS

MU,1 = 0.227 MU,2 = 0.719 MU,3 = 2.341 MU,1 = 0.388 MU,2 = 0.692 MU,3 = 1.809
me,1 = −0.694 me,2 = 0.369 me,3 = 0.876 me,1 = −0.646 me,2 = 0.250 me,3 = 1.097
kd = 0.105 ad = −0.071 bd = 0.014 kd = 0.168 ad = −0.077 bd = 0.011
aU = 13.551 bU = −0.112 aU = 7.666 bU = 0.040

2D k Jensen k0 = 0.0343 TIa = 0.1252 TIb = −0.0287 k0 = 0.0524 TIa = 0.3624 TIb = −0.5998

Jensen-Gaus. k0 = 0.0307 Kn = 0.2628 k0 = 0.0879 Kn = 0.141

Porté-Agel ka = 0.089, kb = 0.027, α = 0.952, β = 0.262, TIa = 0.082, TIb = 0.608, TIc = −0.551, TId = −0.277

The parameters of the Jensen, Frandsen, 2D k Jensen and Jensen-Gaussian models were
calibrated using observations obtained with the aligned wind turbine rotor (ID 1-3 for mod-TI,
ID 12-14 for high-TI, see Table 1). Concerning the FLORIS model, the parameters that govern
the wake deficit were tuned first using the non-yawed cases, while the parameters that govern
the wake deflection were tuned after, using the observations gathered with a misaligned wind
turbine (ID 1/4-11 for mod-TI, ID 12/15-22 for high-TI). Concerning the weighting factors wv
and wt of Eqs. 8 and 11, they were set respectively equal to 1 and 0 when tuning the parameters
of those models that do not provide sub-models for the turbulence intensity prediction, while
they were set respectively equal to 1 and 0.1 when tuning the parameters of the 2D k Jensen and
Jensen-Gaussian models. These two models, indeed, make use of prediction of the turbulence
intensity within the wake to estimate its deficit; an higher value of wv was then used to guide
the optimizer toward the research of a set of parameters that provide a better estimation of the
wake velocity deficit, rather than a proper estimation of its turbulence intensity. Concerning the
tuning of the parameters of the Porté-Agel model, those that govern the wake deficit/deflection
were tuned first, setting wv = 1 and wt = 0, and using all observations except the ones with
γ = ±40◦. Successively, the parameters of the turbulence sub-models were tuned, setting wv = 0
and wt = 1, and using observations obtained with the aligned wind turbine rotor. The resulting
tuned parameters are reported in Table 2.

5.1. Comparison between experiments and models’ predictions
Figures 1 and 2 depict the models’ predicted normalized flow velocity and the corresponding
measurement data for the non-yawed cases, and for moderate and high turbulence intensity
inflow conditions, respectively.
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Figure 1. Flow velocity estimations for the Jensen ( ), Frandsen ( ), FLORIS ( ),
2D k Jensen ( ), Jensen-Gaussian ( ) and Porté-Agel ( ) models compared to wind tunnel
measurements (◦) performed at hub height, with mod-TI inflow, null yaw misalignment and
three CT settings (ID 1-3).
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Figure 2. Flow velocity estimations for the Jensen ( ), Frandsen ( ), FLORIS ( ),
2D k Jensen ( ), Jensen-Gaussian ( ) and Porté-Agel ( ) models compared to wind tunnel
measurements (◦) performed at hub height, with high-TI inflow, null yaw misalignment and
three CT settings (ID 12-14).
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The plots highlight that the Jensen and Frandsen models’ predictions are quite inaccurate,
especially for mod-TI inflow, while the predictions of the other models are quite satisfactory,
particularly for high-TI inflow. Quite outstanding are the wind speed estimations of the Porté-
Agel model, especially for mod-TI inflow conditions, while it seems that the same model is
overestimating the wake deficit at 5D for high-TI inflow and with the wind turbine operating
under de-rated power conditions.
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Figure 3. Flow velocity estimations for the FLORIS ( ) and Porté-Agel ( ) models compared
to wind tunnel measurements (◦) performed at hub height, mod-TI inflow, γ = -40:10:-10 &
10:10:40 (ID 4-11).

Since only the FLORIS and Porté-Agel models are capable of predicting the wake deflection
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due to yaw-misaligned conditions, Figs. 3 and 4 report, respectively for mod-TI and high-TI
inflow conditions, the comparison between the experimental data and the normalized wake
speed estimated by these two models when the G1 was yawed of γ = ±40,±30,±20,±10.
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Figure 4. Flow velocity estimations for the FLORIS ( ) and Porté-Agel ( ) models compared
to wind tunnel measurements (◦) performed at hub height, high-TI inflow, γ = -40:10:-10 &
10:10:40 (ID 15-22).

The plots within the figures allow to appreciate the impact of yaw misaligned operations on
the wake shed by the scaled wind turbine model: as expected, as higher the misalignment is,
as lower is the wake velocity deficit and higher is the wake deflection. Concerning the models’
predictions, both the FLORIS and Porté-Agel are quite accurate, specially for γ between the
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range of ±20◦. The FLORIS model seems however less accurate for γ = ±30◦, and quite
inaccurate for those conditions characterized by very high yaw misalignment, i.e with γ = ±40◦.
The Porté-Agel’s prediction are overall outstanding, despite a moderate mismatch with the
experimental observations can be observed for γ = ±40◦ and mod-TI inflow conditions.
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Figure 5. Turbulence intensity estimations for the 2D k Jensen ( ), Jensen-Gaussian ( ) and
Porté-Agel ( ) models compared to wind tunnel measurements (◦) performed at hub height,
with mod-TI inflow, null yaw misalignment and three CT settings (ID 1-3). The experimental
average turbulence intensity within the wake is reported with a black dashed line.
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Figure 6. Turbulence intensity estimations for the 2D k Jensen ( ), Jensen-Gaussian ( ) and
Porté-Agel ( ) models compared to wind tunnel measurements (◦) performed at hub height,
with high-TI inflow, null yaw misalignment and three CT settings (ID 12-14). The experimental
average turbulence intensity within the wake is reported with a black dashed line.

Three of the investigated models (2D k Jensen, Jensen-Gaussian and Porté-Agel) are also
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capable of estimating the turbulence intensity within the wake. These are compared to the
experimental observations in Figs. 5 and 6. Since all models assume a spatially constant
turbulence, they are not capable of correctly reproducing the distribution of the turbulence
along the horizontal line. In any case, it is possible to evaluate the accuracy of the three models
in predicting the average value of the wake turbulence, whose experimental data is also reported
in the subplots. In this sense, all three models produce satisfactory estimates for low-TI inflow,
with the Porté-Agel model that seems to perform slightly better than the others. However, the
data related to the high-TI inflow show that the 2D k Jensen model is more effective than the
other two in predicting the wake turbulence at 5D, while predictions for greater distances tend
to get closer. It seems, in fact, that the Jensen-Gaussian and Porté-Agel models are not able to
properly estimate the rate of decrease of the turbulence in the wake associated with its speed
recovery.

5.2. Overall assessment of the models’ accuracy
In order to quantitatively assess the average accuracy of the investigated models, in terms of
prediction of the wake speed, deflection and turbulence intensity for all tested conditions, three
average Root Mean Squared Relative Error (RMSRE) were calculated as

RMSREv =
1

M

M∑
i=1

√√√√√1

3

∑
d

1

N i,d

N i,d∑
j=1

(
v̂i,dj − ṽ

i,d
j

ṽi,dj

)2

, (12a)

RMSREt =
1

M

M∑
i=1

√√√√1

3

∑
d

(
t̂i,d − t̃i,d

t̃i,d

)2

. (12b)

In particular, six RMSREv were computed, for all models, using prediction and observations
related to all the non-yawed cases. Similarly, two RMSREv were computed, for the FLORIS
and Porté-Agel models, using prediction and observations related to all the yawed cases. Finally,
three RMSREt were computed using data related to all the non-yawed cases.
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Figure 7. Average RMSRE of model estimations for velocity deficit, wake deflection and
turbulence intensity.

The obtained RMSRE, reported in Fig. 7, confirm the observations discussed in the previous
section. The Porté-Agel model, indeed, provide the best predictions of the velocity deficit and
wake deflection. However, different conclusions can be given by looking at the accuracy of the
turbulence intensity predictions: in this case, indeed, the 2D k Jensen model exhibits the best
performance.
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6. Conclusions and outlook
The comparison between the experimental data and the numerical predictions, as well as the
overall evaluation of the accuracy of the various models, allows to conclude that the Porté-Agel
model seems to be the most accurate in terms of prediction of the wake speed and deflection
related to a wide range of inflow and wind turbine operating conditions (thrust coefficient
and yaw misalignment). Moreover, the model tuning requires the identification of solely four
parameters, i.e. less than all the other models except the Jensen-Gaussian, which, however, do
not provide estimation of the wake deflection.

However, further improvements could still be added to the model. One of this could be
accounting, as suggested by [19], for the dependency of the wake decay rate to the operating
thrust coefficient by modifying Eq. 4c into

ky = kz = kaI0 + kb + kcCT . (13)

By utilizing this approach, a new set of parameters (ka =0.054, kb=0.025, kc=0.003, α=1.642,
β=0.155) can be found, leading to a reduction, from 0.0350 to 0.0281, of the RMSREv related
to all the non-yawed cases. Finally, another minor improvement to the Porté-Agel would be the
implementation of a difference turbulence intensity sub-model, like the one of 2D k Jensen model.
A better prediction of the turbulence in the wake would lead, in fact, to a better prediction of
the recovery associated to a wake shed by a downstream turbine.
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