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Abstract

The fundamental difference between classical and quantum phenomena in many-
body systems arises from the notion of entanglement. This essential property
emerges from microscopic interactions and leads to exotic collective phenomena.
Entanglement plays a particularly significant role in linking both the fields of
quantum information and quantum many-body physics. In quantum information,
entanglement is a key resource in quantum computing [1], while in many-body
physics, patterns of entanglement characterise the exotic quantum systems known
as topological phases. These quantum phases are beyond the conventional Landau
symmetry-breaking description and have gained much interest recently due to
their potential applications in topological quantum computing (TQC) [2] and
measurement-based quantum computing (MBQC) in the case of symmetry pro-
tected topological order (SPTO) [3]. SPTO is the simplest example of how sym-
metry enriches topological phases and enhances the accompanying entanglement
structure.

The symbiotic relationship of quantum information and many-body physics has
led to an expanding zoo of quantum phases at zero temperature. On the one hand,
the classification of topological phases has been understood from the perspective
of quantum information thanks to the toolbox given by tensor networks. On the
other hand, the discovery of new phases with exotic properties has led to new
platforms for quantum computing. Recently, there has been significant progress
in understanding the robustness of quantum phases to noise, and classifying the
phases of mixed states [4], complementing efforts to develop quantum technologies
in the noisy intermediate scale quantum (NISQ) era [5]. In practice, dissipative
processes determine the actual robustness of quantum phases and of their potential
application towards technologies. Moreover, a symmetry protected topological
(SPT) phase is equivalent to quantifiable computational power in MBQC [6], so
describing a framework for noisy SPTO is an important goal.

The aims of this Thesis lie at the intersection of quantum information and
many-body physics. We address how topological phases with symmetries are
affected by the presence of a noisy environment, as witnessed through entanglement
structure and order parameters.

Our first contribution is to introduce a new indicator for SPTO. We define
the inaccessible entanglement of systems with SPTO, which determines how much
entanglement is inextricable under the restrictions of symmetry. A previous work
made the insight that SPTO is equivalent to computational power in MBQC,
where entanglement is consumed in the computation [6]. We address how this
entanglement emerges in SPT phases by considering the entanglement structure in
the presence of symmetries. A common setting in quantum information is when two
spatially-separated parties are able to perform local operations on their systems,
and also communicate classically (i.e. over the telephone), which is called local
operations and classical communication (LOCC). We find that a certain amount
of entanglement is always inaccessible in non-trivial SPT phases. Namely, the
inaccessible entanglement of states under symmetry-restricted LOCC is bounded,
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when the local operations are required to commute with the symmetry. Further,
SPT phases have a nontrivial lower bound.

Our main contribution in this Thesis is to determine how indicators of SPT
phases in one-dimension can change under the effects of dissipation. We observe
that there are two natural ways to enforce symmetry on noise, which we term weakly
symmetric and strongly symmetric. Using these notions, we define a consistent set
of state transformations preserving the manifold of SPT states. Recently, a rigorous
framework for the classification of topological phases of mixed states which extends
gapped phases of pure states has been given by Ref. [4]. However, it was suggested
that SPTO cannot exist, as weak symmetry destroys SPTO instantly. We show
the following: (i) Under evolution by a strongly symmetric channel, the SPTO of a
state is generically preserved. We demonstrate this by studying various indicators
of SPTO: string operators, topologically protected edge modes, twisted sector
charges, and inaccessible entanglement. (ii) If SPTO is preserved by a channel,
it must have been a convex combination of twisted strongly symmetric channels
with appropriate twists. (iii) We determine how these twisted versions of strongly
symmetric channels transform between different SPT phases. These channels may
only preserve or reduce the complexity of the phase. Our analysis of robustness
begins with single-site noise, and we generalize this to causal channels, which are
closely related to local Lindbladians and Lieb-Robinson bounds. We conclude
that strongly symmetric causal (or equivalently short-depth circuits of) channels
are unable to generate sufficiently different patterns of entanglement which would
destroy or change the phase.

Finally, we consider whether the above notion of robustness can be extended to
intrinsic topological order, by applying the same recipe to symmetry enriched topo-
logical order (SETO). These systems are of interest since symmetry can augment
intrinsic quantum error correcting properties [7–9]. We consider a two-dimensional
system which is constructed from a Toric code decorated by cluster states [10],
and analyse the robustness of an order parameter that detects symmetry fraction-
alisation in the anyons which is characteristic of and classifies SETO [11]. We
conjecture that locally strongly symmetric causal channels preserve the symmetry
enriched topological (SET) phase, supported by numerical evidence, and give steps
towards demonstrating this analytically.
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Zusammenfassung

Der grundlegende Unterschied zwischen klassischen und quantenmechanischen
Phänomenen in Vielteilchensystemen ergibt sich aus dem Konzept der Verschränkung.
Diese Eigenschaft entsteht durch mikroskopische Wechselwirkungen und führt zu
exotischen kollektiven Phänomenen. Verschränkung spielt eine besonders wichtige
Rolle bei der Verknüpfung der Bereiche Quanteninformation und Quantenviel-
teilchenphysik. In der Quanteninformation ist Verschränkung eine essentielle
Ressource von Quantencomputern [1], während in der Vielteilchenphysik Ver-
schränkungsmuster die exotischen Quantensysteme charakterisieren, die als topol-
ogische Phasen bekannt sind. Diese Quantenphasen lassen sich nicht durch die
herkömmliche Landau-Symmetriebrechung beschreiben. Sie haben in letzter Zeit
großes Interesse geweckt aufgrund ihrer potenziellen Anwendungen im topologis-
chen Quantencomputing (TQC) [2] und im messungsbasierten Quantencomputing
(MBQC) im Falle der symmetriegeschützten topologischen Ordnung (SPTO) [3].
SPTO ist das einfachste Beispiel dafür, wie Symmetrie topologische Phasen bere-
ichert und die begleitende Verschränkungsstruktur erweitert.

Das symbiotische Verhältnis von Quanteninformation und Vielteilchenphysik hat
zu einem wachsenden Zoo von Quantenphasen am absoluten Temparaturnullpunkt
geführt. Einerseits gab der Werkzeugkastens der Tensornetzwerke Einsicht in
die Klassifikation topologischer Phasen. Andererseits hat die Entdeckung neuer
Phasen mit exotischen Eigenschaften zu neuen Plattformen für Quantencomputing
geführt. Des weiteren wurden kürzlich erhebliche Fortschritte beim Verständnis der
Robustheit von Quantenphasen gegenüber Rauschen und bei der Klassifizierung
von Phasen gemischter Zustände erzielt [4], begleitend zu allgemeinen Bemühun-
gen zur Entwicklung von Quantentechnologien in der NISQ (Noisy Intermediate
Scale Quantum) Ära [5]. In der Praxis bestimmen dissipative Prozesse die tat-
sächliche Robustheit von Quantenphasen und ihre potenziellen technologischen
Anwendungen. Darüber hinaus entspricht eine symmetriegeschützte topologische
Phase (SPT) einer quantifizierbaren Rechenleistung in MBQC [6], weshalb ein
umfassendes Verständnis von SPTO mit Rauschen ein wichtiges Ziel ist.

Die Ziele dieser Arbeit liegen an der Schnittstelle von Quanteninformation und
Vielteilchenphysik. Wir behandeln, wie topologische Phasen mit Symmetrien durch
Kopplung zu einer verrauschten Umgebung beeinflusst werden, wobei wir ein beson-
deres Augenmerk auf die Verschränkungsstruktur und den Ordnungsparameter der
Phase legen.

Unser erster Beitrag ist die Einführung eines neuen Indikators für SPTO. Wir
definieren die unzugängliche Verschränkung von Systemen mit SPTO, die bestimmt,
wie viel Verschränkung unter den Einschränkungen der Symmetrie unentwirrbar
ist. Eine frühere Arbeit machte die Erkenntnis, dass SPTO der Rechenleistung
in MBQC entspricht, wobei die Verschränkung in der Berechnung aufgebraucht
wird [6]. Wir behandeln, wie diese Verschränkung in SPT-Phasen entsteht, indem
wir die Verschränkungsstruktur im Beisein von Symmetrien betrachten. Wir betra-
chten dazu das in der Quanteninformation übliche Szenario lokaler Operationen
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und klassischer Kommunikation (LOCC), in welchem zwei räumlich getrennte
Parteien in der Lage sind, lokale Operationen auf ihren Systemen durchzuführen
und auch klassisch (zum Beispiel telefonisch) zu kommunizieren. Wir stellen
fest, dass ein gewisses Maß an Verschränkung in nicht-trivialen SPT-Phasen mit
symmetriebeschränkter LOCC stets unzugänglich ist.

Der Hauptbeitrag dieser Dissertation besteht darin, die Auswirkungen von
Dissipation auf verschiedene Indikatoren von SPT-Phasen zu bestimmen. Wir
betrachten dazu zwei naheliegende Definitionen für symmetrisches Rauschen, welche
wir als schwach symmetrisch und stark symmetrisch bezeichnen. Unter Verwendung
dieser Begriffe definieren wir eine konsistente Menge von Zustandstransformationen,
die die Mannigfaltigkeit von SPT-Zuständen bewahren. Kürzlich wurde durch
Lit. [4] ein rigoroser Rahmen geschaffen, der die Klassifizierung topologischer Phasen
von reinen auf gemischte Zustände erweitert. Es wurde jedoch vorgeschlagen, dass
SPTO nicht existieren kann, da schwache Symmetrie SPTO sofort zerstört. Wir
zeigen Folgendes: (i) Unter Evolution durch einen stark symmetrischen Kanal
bleibt die SPTO eines Zustands generisch erhalten. Wir demonstrieren dies,
indem wir verschiedene Indikatoren von SPTO untersuchen: String-Operatoren,
topologisch geschützte Randmoden, verdrehte Sektorladungen und unzugängliche
Verschränkung. (ii) Wenn SPTO durch einen Kanal erhalten bleibt, muss es
sich um eine konvexe Kombination von verdrillten, stark symmetrischen Kanälen
mit geeigneten Verdrillungen handeln. (iii) Wir bestimmen, wie diese verdrillten
Versionen von stark symmetrischen Kanälen verschiedenen SPT-Phasen ineinander
verwandeln. Dabei kann sich die Komplexität der Phase nicht vergrößern. Sie
bleibt entweder gleich oder verringert sich. Unsere Analyse der Robustheit beginnt
mit Einzelstellenrauschen und wir verallgemeinern dies auf kausale Kanäle, die eng
mit lokalen Lindbladtermen und Lieb-Robinson-Grenzen zusammenhängen. Wir
schlussfolgern, dass stark symmetrische, kausale Kanäle (oder, gleichwertig, kurze
Schaltkreise von Kanälen) nicht in der Lage sind, ausreichend unterschiedliche
Verschränkungsmuster zu erzeugen, die die Phase zerstören oder verändern würden.

Schließlich untersuchen wir, ob die obige Auffassung von Robustheit auf die in-
trinsische topologische Ordnung erweitert werden kann, indem wir dasselbe Rezept
auf symmetrieangereicherte topologische Ordnung (SETO) anwenden. Diese Sys-
teme sind von Interesse, da intrinsische Quantenfehlerkorrektureigenschaften durch
Symmetrie verstärkt werden kann [7, 8]. Wir betrachten ein System, das aus
einem mit Clusterzuständen dekorierten torischen Code aufgebaut ist [10] und
analysieren die Robustheit eines Ordnungsparameters, der die Symmetriefraktion-
ierung in den Anyonen erkennt, welche für SETO charakteristisch ist und diese
klassifiziert [11]. Unterstützt von numerischen Hinweisen mutmaßen wir, dass lokal
stark symmetrische, kausale Kanäle die symmetrieangereicherte topologische (SET)
Phase erhalten. Wir beschreiben die notwendigen Schritte, um dies analytisch zu
zeigen.
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Chapter 1

Introduction

We have sought for firm ground and found none.
The deeper we penetrate, the more restless becomes
the universe... Not everything is knowable, still less
is predictable.

Max Born
The Restless Universe

1935.

The natural world is made up of astoundingly complex physical phenomena –
from black holes, to superconducting levitation and the spontaneous creation of sub-
atomic particles. What’s even more astounding is that much of this macroscopic
emergent complexity in our universe is successfully described via a theory of
complexity at the microscopic level. Systems are made up of discrete particles
which are described by quantum mechanical laws. Nowadays we know that the
emergent complexity of many-body systems is generated by the interactions between
quantum particles, which is explained by a fantastic notion known as entanglement.

One of the most marvellous facts about quantum systems is that they cannot
be understood by simply observing a single one of their constituents; indeed, the
information in a quantum system is non-local and lies fundamentally in the bonds
between their parts, rather than in the individual parts themselves. The study
of entanglement and its ramifications underlies many of the central questions of
modern quantum science and its applications today. In particular, entanglement is
the essential link between the symbiotic fields of quantum information and many-
body physics and plays a key role in several different ways. The first story in which
entanglement is a main character is in explaining emergent quantum phenomena,
which relates to the study of quantum phases of matter and the zoo of quantum
phases [12]. A second story of entanglement is given by how quantum systems
interact with a noisy environment, and the robustness of quantum coherence,
which relates to the study of open quantum systems [13]. Both of these topics are
becoming increasingly appreciated given the recent upsurge in interest in quantum
technologies [14]. This Thesis combines both stories, living at the intersection
of quantum information and many-body physics, and altogether illustrates the
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Chapter 1. Introduction

intimate relationship these fields enjoy.
In the study of quantum phases of matter, quantum information has provided

a new lens with which to study many-body systems through the realisation that
they are characterised in terms of their entanglement structure [1]. This insight
may seem surprising at first, since entanglement significantly complicates the
description of quantum states, due to the mathematical fact that the number of
possible quantum states grows exponentially in the number of particles. In fact,
simulating some macroscopic, mole-sized system of 1023 two-level particles requires
the storage of 21023 complex numbers. This is because quantum mechanical states,
fundamentally different to classical states, are given by probability distributions
on the possible measurement outcomes of qubits, according to Born’s rule [15].
Further, observations are only explained by a theory which necessitates operators on
a complex-valued Hilbert space [16]. How then can quantum systems be anything
but intractable to study?

Fortunately, a key observation coming from quantum information has been
that most interesting quantum many-body states live in just a small corner of
the Hilbert space [17] which is characterised by a sweet spot in the amount of
entanglement. Namely, ground states of certain quantum many-body Hamiltonians
obey an area-law in entanglement, such that entanglement grows only slowly with
the system size [18, 19], rather than volume-law which would be fast growing. This
observation has led to tools in quantum information, such as tensor networks,
which have allowed to greatly simplify the description of many-body states. Tensor
networks leverage the inherent entanglement structure of interesting quantum
states, providing a way to systematically construct quantum systems by building
up entanglement locally. Further, this merges very naturally with symmetries by
interplaying them with entanglement within this framework. As illustrated in
Fig. 1.1(b), most generic states in the Hilbert space have too much entanglement
(volume-law states) which creates non-universal behaviour through too many
interactions to allow collective quantum coherences [20]. By contrast, a lack of
entanglement (product states) creates classical behaviour since too few interactions
do not allow quantum coherence at all. The quantum phases in the sweet spot of
Hilbert space, which obey the area-law, are described by tensor networks and are
characterised by non-trivial patterns of entanglement, are known as topological
phases [12]. These will be our focus in this Thesis.

Facilitated greatly by the observations and tools from quantum information,
developing a complete understanding of topological phases has become one of the
most significant pursuits of modern day physics. On the one hand, the classification
of quantum phases of matter leads to the discovery of new materials and new
quantum phenomena [21–23]. On the other hand, the discovery of quantum
many-body phases has led to new possibilities in quantum information, in the
form of quantum technologies. Historically, the potential for advantages coming
from quantum information was first perceived in applying simple quantum systems
to study other harder-to-engineer many-body systems, namely in the application
of quantum simulation [24]. It was realised that intrinsic properties of quantum
particles (such as the spin of an electron or the polarisation of a photon) can be
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(a) (b)

Figure 1.1: (a) The central question of this Thesis lies in how entanglement connects
the fields of quantum information and many-body physics, and additionally open
quantum systems. (b.i) Product states have no entanglement. (b.ii) States with
a sweet spot of entanglement, namely those which obey an area-law, make up a
small corner of Hilbert space. (b.iii) Most of the Hilbert space contains highly
entangled states which obey a volume-law in entanglement.

leveraged to describe information, in the same way as classical bits (such as currents
of electrons). Later, novel schemes of quantum computation were developed for
quantum many-body states, harnessing their intrinsically quantum properties as an
advantage over classical counterparts. For example, in Kitaev’s Toric code state [2]
topological quasiparticles can be harnessed for topological quantum computing
(TQC), while in the cluster state [25, 26], emergent quasiparticles living on the
boundary of the state can be used for measurement-based quantum computing
(MBQC).

The cluster state, which will be central throughout the Thesis, is a canonical
example of a symmetry protected topological (SPT) phase. Furthermore, it is
actually a computational phase of matter, since all states in the same phase as the
cluster state can perform universal MBQC [6, 27, 28], meaning that the circuit
model of quantum computing can be simulated efficiently. Notably, MBQC on the
1D cluster state can simulate all single qubit gates [27, 29–31], while MBQC on
a 2D cluster state can simulate all two-qubit gates [32–34]. The computational
power of the cluster phase in MBQC has been understood by its patterns of
entanglement, which can in turn be directly related to its topological order. This
fundamental relationship between SPT order and MBQC highlights once again the
deep connection between quantum phases of matter and quantum information.

Preparing examples of such exotic quantum phases in experiment has been
an impressive challenge in the generation and preservation of quantum coherence.
For small numbers of qubits, the Toric code has been experimentally simulated
in quantum systems based on superconducting qubits [35–38], photons [39, 40] as
well as nuclear spin qubits [41, 42], while the cluster state has been realised in
photons [43–48], in continuous-variable optical systems [49–51] and also in ultracold
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Chapter 1. Introduction

atoms [52, 53]. This brings us to the second story of entanglement, which is of how
quantum many-body systems interact with noise.

Entanglement is unfortunately very fragile under dissipation. The quantum
coherence of many-body systems is easily destroyed under coupling to a dissipative
environment. It is also impossible to completely isolate a quantum system in
practice. Therefore any approach to engineering quantum phases or realising
quantum technologies must grapple with the effects of noise. Since certain quantum
algorithms were first demonstrated to solve some computational problems more
efficiently than the best classical counterpart, such as Shor’s factorising algorithm
just ca. 30 years ago [54], mitigating noise in quantum hardware has become an
important problem at the forefront of current-day physics. Advances in hardware
have been accelerating, driven by partnerships across academia, industry and
government, beyond the limitations of the current available devices, which are
the so-called Noisy Intermediate-Scale Quantum (NISQ) devices [5] due to their
high error rates and low coherence times. This raises questions about the future
of technology, which have not only scientific, but arguably also philosophical and
social importance. However, the potential promise of quantum advantage is largely
unresolved [55]. Fortunately for us, this still poses a fascinating challenge; of
identifying both the strengths and limitations of quantum phases towards their
applications in emerging technologies1. This idea is encompassed by the study
of phase robustness and fault-tolerance [56–59]. Further, understanding noisy
quantum many-body phases is not only desirable for realising applications in
quantum technologies, but is moreover motivated by the pursuit of fully classifying
quantum phases.

Phase classification is important even in our everyday lives. Our brains natu-
rally process information by grouping systems into simple classes which capture
universal properties that are relevant to our context, i.e. the edibility of different
kinds of forest berries. The same intuition applies in classifying quantum phases.
Classes of quantum states can be understood by whether they share the same
patterns of entanglement; this defines topological phases of pure states [60]. The
zoo of topological phases contains useful information in the form of topological
invariants, which form the labels for different topological phases. The classification
of topological phases is well understood by now, where a phase corresponding to a
particular topological invariant is given by families of quantum states connected
by paths of particular unitary evolutions given by gapped, local Hamiltonians [61],
and a change in topological invariant would signify a phase transition.

Since it has become increasingly important to understand the role of noise
in classification of quantum phases, this requires studying quantum phases of
mixed states as the generalisation from pure states, which are necessary to describe
states in open quantum systems and beyond zero-temperature regimes. There have
been significant contributions towards understanding beyond the zero-temperature
regime in theory [61–69], but a fully satisfactory framework for classification of
mixed state topological order has been elusive. Recently, a promising work has

1In the words of Scott Aaronson, “Like Achilles without his heel or Superman without
kryptonite, a computer without any limitations would get boring pretty quickly” [55].
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made significant steps in this direction [4]. It naturally extends gapped phases of
pure states to phases of mixed states connected by short-depth circuits of channels,
which generalise the unitary evolution of pure states to, in particular, an open
system evolution called a Lindbladian. Also recently, SPT phases have been studied
experimentally on noisy digital quantum computers, suggesting that the notion of
SPT mixed states is sensible [70, 71].

The central question in this Thesis is of the robustness of topological phases
to noise, and in particular of the interplay between symmetry and entanglement,
which orchestrate the dance of collective quantum phenomena. We consider
topological phases protected by symmetries, in particular symmetry protected
topological (SPT) order and symmetry-enriched topological (SET) order. We ask
the following, namely, which are the topological phases of mixed states? With
such a notion of mixed state topological order in hand, we then consider which
invariants describe topological phases of mixed states? and analyse the robustness of
certain fingerprints, including a new fingerprint of SPTO which we have developed.
Finally, we ask which are the operations which map between topologically ordered
mixed states? Quantum information and quantum many-body physics continue to
mutually benefit each other through their complementary studies of entanglement.
We hope to convince the reader that the interweaving of these fields has raised and
continues to raise important questions for science and society as a whole.
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Chapter 1. Introduction

1.1 Structure of the Thesis

There are several possible paths a reader may take through this Thesis, which we
visualise below. In each Chapter we have included a Motivation and Summary
section which contain the most necessary take-aways, aimed at the reader with
not a lot of time on their hands. The Motivation section aims to bring across
an introduction to the context and significance of the main findings, while the
Summary section is intended to be a short version of the work, describing the
results and methodology.

We will begin by giving the relevant background in Chapter 2 on quantum
phases of matter, tensor networks and open quantum systems. In Chapter 3, we
will present a new quantity which measures the inaccessible entanglement in SPT
phases, and which acts as a “fingerprint” of the SPT phase. Fingerprints, or order
parameters, of topological phases will play a key role in coming discussions in
the Thesis. In Chapter 4 we will reach the starting point for the main topic of
the Thesis which is that of topological phases subject to noise. We will show
that 1D SPTO is not robust to generic couplings to the environment, or even
under couplings satisfying a weak symmetry condition. However, noise satisfying a
stronger symmetry condition does preserve SPTO at finite times, which gives a
promising starting point for the study of SPTO in open systems and phases of SPT
mixed states. In Chapter 5 we will consider the question of which channels map
between different coherent SPT phases of mixed states. In Chapter 6 we will discuss
how our framework for the robustness of 1D SPTO may be applied to higher-
dimensional topological orders, focusing on 2D symmetry enriched topological
order. Finally, in Chapter 7 we will give conclusions and discuss several promising
open questions.
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1.2. Publications

1.2 Publications

During this PhD a number of manuscripts have been written. The manuscripts
listed below are included in a modified form. Given also is a summary of the role
of each publication in the Thesis and my contribution.

• Inaccessible entanglement in symmetry protected topological phases. Car-
oline de Groot, David T. Stephen, Andras Molnar, and Norbert Schuch.
Journal of Physics A: Mathematical and Theoretical 53, 335302 (2020). [72]
We develop a new operationally-defined fingerprint for symmetry protected
topological order. Contained in Chapter 3 of the Thesis, content revisited
throughout the bulk of the Thesis. I am the main contributor and author.

• Symmetry Protected Topological Order in Open Systems Caroline de
Groot, Alex Turzillo, and Norbert Schuch, arXiv:2112.04483v2 (submitted
to Quantum). [73]
We study the robustness of symmetry protected topological order in open
systems through its fingerprints. Main result of the Thesis, split into two
separate stories, in Chapter 4 and Chapter 5. I share main contributions and
authorship with Alex Turzillo.

• Symmetry Enriched Topological Order in Open Systems Caroline de Groot
Jose Garre Rubio, and Alex Turzillo (in preparation). [74]
We study the robustness of symmetry enriched topological order in open
systems. Contained in Chapter 6 of the Thesis, content draws from Chapter 4.
I am the main contributor and author.
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Chapter 2

Background: Gapped quantum
phases, tensor networks, and open
systems

Now we focus on introducing the background knowledge needed to complete the
journey through this Thesis. We begin by discussing the core concept of gapped
quantum systems and give the definition of a gapped quantum phase of matter in
Section §2.1. We also introduce phases beyond pure states, which are important
to Chapters 4, 5 and 6. We briefly discuss quantum channels, the notion of open
quantum systems, and in particular the Lindblad master equation in Section §2.2.1.
We then introduce some key notation in tensor networks in Section §2.3 which
will be the main tool throughout the Thesis, and in particular is used for key
calculations in Chapters 3 and 4. Section §2.4 introduces the main quantum phase
we are interested in in this Thesis, which is symmetry protected topological phases.
We give some particular examples, such as the cluster state, which have led to the
main insights in this Thesis. Finally we discuss the notion of intrinsic topological
order in Section §2.5, and in Section §2.6 introduce the notion of symmetry enriched
topological order, as well as a model and order parameter which form the backbone
of the results in Chapter 6.

For a more comprehensive review of these topics, the reader is referred to
some personal favourites which include Ref. [75] for a textbook review on gapped
quantum phases, Ref. [76] for an introductory course and Ref. [77] for a review on
tensor networks, and Ref. [13] for a textbook review of open systems.

2.1 Gapped quantum systems

The quantum many-body systems we study in this Thesis are quantum spin lattices,
which are discrete bosonic, rather than fermionic, systems. States live in a Hilbert
space H composed of a tensor product of N d-dimensional Hilbert spaces Cd which
represent (d-dimensional) spin degrees of freedom living on the lattice. From
this we can see how the dimension of H grows exponentially with the number of
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Chapter 2. Background

spins N . Therefore, even a generic state in H with just N = 50 can become very
complicated indeed. Individual spins are called qudits, but we often consider only
qubits, corresponding to d = 2 spins which have basis states |0⟩ and |1⟩. We will
see later that defining a quantum system on a lattice often simplifies its study, for
example through the use of tensor networks.

The first property which allows us to simplify the program is locality. The
quantum spin lattices we consider here will be defined by local Hamiltonians,
which have the form H = ∑N

i=1 hi where each local Hamiltonian hi acts on a finite
region r around a site i, and N is the system size. Local Hamiltonians require far
fewer parameters to describe them, with only Ndr parameters, compared a generic
many-body Hamiltonian which has dN [78].

A further property we will require is that of gappedness. A Hamiltonian
H is called gapped, if, as the system size N grows to infinity, there is a finite
gap ∆ between the ground state manifold and the first excited state for each
value of N [79]. In other words, the gap is bounded from above by a constant
independent of N . Together, the properties of locality and gappedness lead the
way for interesting phases of matter characterised by an area-law and non-trivial
patterns of entanglement. Such quantum systems therefore are said to live in the
small “physical corner” of Hilbert space, as depicted in Fig. 1.1(b).

Finally, the quantum spin lattices we will consider will only be commuting (non-
frustrated) Hamiltonians, which are exactly solvable. Since all local Hamiltonian
terms commute with each other, they share the same eigenstates, such that the
system’s energies can be solved for exactly, without the need for approximation
methods. Such systems are not naturally found in nature, but they capture
universal features of many models relating to their entanglement. In particular,
these systems can be described by a historically significant idea known as the
renormalisation-group (RG) [80], first developed by K.G. Wilson in 1971, marrying
ideas in statistical mechanics and quantum field theory. The RG method showed
that by coarse-graining length scales, states flow towards a fixed point which has lost
all local, microscopic details such as short-range entanglement or correlations and
captures only the essential universal structure [81, 82]. This has been a profound
insight which tells us that universal features of quantum phases of matter are
emergent phenomena that have the same patterns within a phase [83]. This insight
will be particularly useful in the paradigm of tensor networks, where universal
features of gapped many-body phases universal features can be understood through
entanglement. In particular, generic states in a many-body phase are perturbations
around a fixed point with a particular entanglement structure [31].

2.1.1 Defining gapped quantum phases

Classical phases of matter such as solid, liquid and gas experience phase transitions
in terms of macroscopic (extensive) properties such as pressure, temperature and
volume, which rely only on the individual constituents of systems. Additionally,
such systems always have a temperature, which can also describe their phase
transitions. On the other hand, quantum phases of matter can’t be described by
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2.1. Gapped quantum systems

their individual constituents due to entanglement, and can very conveniently be
defined at zero temperature. We save non-zero temperature quantum phases for
Section §2.2. Altogether, this means a new mechanism must be given for quantum
phase transitions.

A very successful theory of quantum phase transitions was given by the idea of
symmetry-breaking through the formalism of group theory by Landau in 1937 [84],
which has led to the complete classification of the 230 kinds of crystals in 3D. Phase
transitions between an ordered (symmetry-broken) and disordered (symmetry-
preserving) phase are given by tuning parameters of the system such as the magnetic
field strength or lattice spacing. However, with the discovery of the Berezinskii-
Kosterlitz-Thouless (BKT) transition [85] in 1973 and the fractional quantum Hall
effect [86] in 1982, it became clear that there was still more physics to be uncovered
beyond the Landau paradigm. In 1989, the missing pieces were provided by a
framework for gapped quantum phases, otherwise known as topological phases,
which includes phases with and without symmetry-breaking [87–89].

The definition for a phase of gapped quantum matter is as follows:

Definition 1: Two local, gapped Hamiltonians H, H̃ are in the
same phase if there exists a continuous path of local, gapped
Hamiltonians Ht with t ∈ [0, 1], and H0 = H and H1 = H̃.

Continuity of the path is meant in the sense that Ht is continuous, and further that
the gap ∆t doesn’t close as a function of t. The path of local, gapped Hamiltonians
is furthermore an adiabatic evolution. The presence of the gap guarantees that,
if this evolution is done sufficiently slowly, the system will not leave the ground
state, and hence observables will also only change continuously. This is described
by the adiabatic theorem [90].

A phase transition occurs when the Hamiltonian path between H, H̃ has a gap
closure, which is physically indicated by the divergence of quantities such as the
correlation length [91]. The study of phase transitions is a field on its own [92–95].

Conversely, we may restate this definition for states. Two states |ψ0⟩ and |ψ1⟩
are in the same phase if they are the ground states of local, gapped Hamiltonians,
|ψt⟩ is also the ground state of Ht, and Definition 1 is satisfied. This defines an
equivalence relation which leads to equivalence classes of states which we call
phases. Note that the phase which contains only product states is called the trivial
phase.

We may alternatively formalise the definition above via the notion of finite-
depth quantum circuits (FDQC) which comes from the perspective of quantum
information. This perspective allows us to directly interpret gapped quantum
phases by their entanglement. Any time evolution of a local, time-dependent
Hamiltonian Ht can be understood as a quantum circuit w.l.o.g. The FDQC is a
unitary operator of the form

U =
d∏

k=1

(
N∏

i=1
uk,i

)
, (2.1.1)

11



Chapter 2. Background

Figure 2.1: An example of a finite-depth quantum circuit with depth d = 3 and
range r = 2.

where d is the circuit depth and where uk,i are local unitary operators acting on a
site i with support on a region r. While r is allowed to be quasi-local, d should be
independent of N [4]. The action of a FDQC is given in Fig. 2.1, where in general,
each gate uk,i in the circuit may be different.

Definition 2: Two states |ψ⟩ and
∣∣∣ψ̃〉 are in the same phase if

there exists a unitary operator U which is a FDQC such that
U |ψ⟩ =

∣∣∣ψ̃〉.
One can imagine separating states into two classes: those which can be connected

to a product state by a FDQC, called short-range entanglement, and those which
cannot be connected to a product by a FDQC, called long-range entanglement [91].
We depict this in Fig. 2.2.

2.1.2 Quasi-adiabatic evolution

How are the FDQC and the adiabatic Hamiltonian path related in the definition
for gapped quantum phases? The notion which gives the connection is that of
quasi-adiabatic evolution [96], which are also related to Lieb-Robinson bounds. We
include the following discussion since it will be useful background in Section §2.2.

Firstly, consider an observation about the adiabatic Hamiltonian path. If we
perform an adiabatic evolution with the original system Hamiltonian, the error
scales as t∆N , for the gap ∆N of the Hamiltonian defined for a system size N .
This implies that it would take an infinitely long time to exactly perform any time
evolution, even between states in the same phase. Of course, this is bad news,
since that seems to give a paradox with the FDQC which should be implementable
in a finite time by definition. Fortunately, this can be resolved by replacing the
adiabatic Hamiltonian evolution Ht by a quasi-adiabatic evolution [96]. At the
price of approximating the actual Hamiltonian up to an exponentially small error
with a particular quasi-adiabatic Hamiltonian H ′

t, the desired evolution can be
implemented in a shorter (and, crucially, finite) time, and still doesn’t close the
gap due to the adiabatic theorem. This means that the quasi-adiabatic evolution
is able to approximately map between two states in the same gapped quantum
phase in a finite time. We outline the procedure below.
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2.1. Gapped quantum systems

Consider evolving a state under
∣∣∣ψ̃〉 = T [e−i

∫
dtH′

t ] |ψ⟩, where T is the time-
ordering operator and where H ′

t is an operator derived from H. The states
∣∣∣ψ̃〉 , |ψ⟩

are said to be quasi-adiabatically connected [91]. Furthermore, it’s been shown that
if Ht is local, then H ′

t has the same locality up to corrections by exponential tails.
Namely, the quasi-adiabatic Hamiltonian is also quasi-local, so that the support of
each individual term in H ′

t on the lattice decays exponentially [97]. This allows H ′
t

to spread correlations that much quicker than Ht, such that the time evolution
can be implemented in a finite time.

Secondly, the quasi-adiabatic evolution can also be related to the FDQC. Take
the quasi-adiabatic evolution operator above and trotterise it to express it as a
sequence of unitary gates [98]. The size of the Trotter time step δt dictates the
accuracy of the decomposition and also the depth of the circuit. The limit δt −→ 0
gives the exact evolution, but requires again an infinite time. Fortunately, it’s been
shown that a FDQC is able to approximate the quasi-adiabatic evolution up to
exponential accuracy in a finite amount of time [91]. This means that the FDQC
corresponding to the adiabatic path of Hamiltonians which preserves a gapped
phase has a circuit depth independent of system size, given that the unitary gates
which make it up should each have finite support which scales as poly log(N) [99].

Lieb-Robinson bounds

Lieb-Robinson bounds give additional intuitions to the discussion above and will
appear later in this Thesis. The Lieb-Robinson bounds are a statement about
how quickly information is allowed to spread in a locally-defined quantum system,
which is bounded by a so-called light cone [100]. The effective light cone has
been observed experimentally, for example in ultracold atoms in an optical lattice
[101]. By a simple calculation, it takes a time of order 1/v for information to
propagate information a distance ℓ under evolution by a local Hamiltonian, where
v is the speed at which information propagates. This information can take the
form of correlations which is very interesting in the context of topological phases.
By allowing H ′

t to be composed of quasi-local terms rather than be local like the
original Hamiltonian, the speed v is increased, since at each time step, H ′

t has a
greater range than Ht.

We can see that this implies that it takes a time t ∼ O(N/v) to produce
topological order on a system of size N [96]. Local, gapped Hamiltonians have
exponentially decaying correlations ⟨OiOj⟩ ∼ O(e−ℓ) where Oi is a local operator
on site i, and the distance between the two sites is ℓ. Concretely, when Oi is time
evolved to some Oi(t), this means that Oi(t) can be written as an operator which
acts only on a region ℓ = vt and implies a bound on the commutator ||[Oi(t), Oj ]||
at each time step t. The bound on the commutator in time provides the light
cone. Now, in topologically ordered systems, the correlation functions of operators
spanning the entire system (Wilson loops) are non-zero, and such correlations can
only be generated in a time that scales with ℓ. Hence, generating topological order
from trivial order requires a time which is at least linear in the system size.
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Chapter 2. Background

Figure 2.2: The phase diagram for gapped quantum phases can be understood by
separating states into long-range entanglement (LRE) and short-range entanglement
(SRE), or equivalently into topologically trivial and intrinsically topological states.
The diagram becomes enriched by symmetries. Adding symmetries to SRE phases
allows for symmetry-breaking phases and symmetry protected phases, and LRE
phases can be further refined into different topological orders as well.

Overall, the notions of quasi-adiabatic evolution and Lieb-Robinson bounds,
demonstrate the importance of maintaining the properties of locality and gapped-
ness of system Hamiltonians in a phase. Together with the FDQC we see that
universal properties should be described by continuity of observables such as corre-
lation lengths [96]. This ensures that correlations, or, in our preferred language,
the entanglement structure, is maintained within a phase.

Finally, let us make a note about the quasi-locality of the Hamiltonian H ′
t

which extends it from the original local Hamiltonian. The support of the individual
terms in H ′

t is not allowed to grow too quickly with the system size. Certainly it is
not allowed to diverge, since this would lead to a gap closure or phase transition.
Further, any two states can be connected by a path which takes an infinite amount
of time, so in the classification of gapped phases we are not allowed either operations
which take an infinite time or are completely non-local. Such operations do not
have a causal light cone and the resulting phase diagram does not capture the
universal features of entanglement. This observation will become particularly
important in the coming Section §2.2.1 where we discuss the gapped phases beyond
pure states, and will form the main motivation for Chapter 4.

2.1.3 Defining gapped quantum phases with symmetries

The classification of gapped phases is refined when symmetry is introduced, as
illustrated in Fig. 2.2. If the phase has a symmetry, then so must the path
which connects states in the same phase, be it a FDQC or an adiabatic path of
Hamiltonians Ht.

Consider states with a global on-site symmetry Ug = u⊗N
g of the group G,

which acts locally on each site for a system of size N . The definition for a gapped
quantum phase of matter with this symmetry is as follows [102]:
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2.2. Beyond gapped phases of pure states

Definition 3: Two states |ψ⟩ and
∣∣∣ψ̃〉 satisfying a symmetry Ug = u⊗N

g

are in the same phase if there exists a unitary operator U which is a
FDQC such that

∣∣∣ψ̃〉 = U |ψ⟩, and each gate u in U satisfies [u, ug] = 0.

Gapped phases without symmetry-breaking exist broadly in three different
classes: symmetry protected topological order, intrinsic topological order, and
symmetry enriched topological order. We will introduce these three different phases
of matter in Section §2.4, Section §2.5 and Section §2.6 respectively.

At low temperatures, quantum phases of gapped systems can usually be very
well described by just their ground states and low-energy excited states. This means
that it suffices to study pure states in the Hilbert space. At high temperatures and
beyond pure quantum states, however, it is necessary to consider other descriptions,
such as (mixed) thermal states, or, more interesting to our context, steady states in
open system dynamics, which we will elaborate on in the next Section. Note also
that gapless systems are not well described in this way and require an altogether
different treatment, for example with the use of order parameters [103–105].

2.2 Beyond gapped phases of pure states

In the following we give an overview of the study of gapped phases beyond pure
states. The gapped phases of pure states were the subject of the previous Section
and have been well studied. Their consistent generalisation to phases of mixed
states has seen significant recent progress in the last decade. We begin with a
short literature review and then give a definition which has been recently proposed
for gapped phases of mixed states in Section §2.2.1.

Studying mixed states is important since these are the most general form of
quantum states. They can describe an open system, while pure states only describe
idealised quantum systems which are perfectly sealed off from the surrounding
environment [13]. Certain mixed states of interest are the steady states of dissipative
evolution and thermal states. Most recently, a formalism for classifying mixed
state topological order was put forward by Coser and Perez-Garcia which will be
the subject of the next Section [4]. It is still open as to how this new formalism
connects with the previous works we will collect below.

In the context of topological phases, which are conventionally defined at zero
temperature, it is interesting to ask whether universal properties, such as anyon
braiding or topologically protected edge modes, survive being subjected to a
temperature or other kinds of noise. The open systems setting is also relevant to
quantum computing where dissipation determines the error rates and robustness
of computational schemes. Experimentally, signatures of noisy SPTO have been
observed to survive on current digital quantum computers by Refs. [71, 106, 107],
so there is good reason to believe that these mixed state phases of matter are
relevant.

When a quantum system is coupled to an environment describing thermal
noise, the relevant class of mixed states are thermal (Gibbs) states, which are
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in equilibrium and are defined by a temperature. The thermal robustness of
the Toric code and other topologically ordered states have been studied in Refs.
[62, 63, 108], and the cluster state in Refs. [109–113] where different properties
have been shown to be robust up to certain temperature thresholds. In particular,
entanglement quantities such as the localizable entanglement of the cluster state
have been explored in Refs. [109–113]. Furthermore, states with symmetry
protected topological order (SPTO), which is a known resource for the quantum
computing scheme known as measurement based quantum computing (MBQC),
have been shown to perform up until some critical temperature in the presence of
dissipation. Meanwhile, in some set-ups this resource power is perhaps surprisingly
shown to be enhanced by temperature [114–116]. it’s also been recently suggested
that only symmetries beyond global on-site can protect SPTO of mixed states [117],
demonstrating that there is not yet a coherent vision of mixed state topological
order.

Not all open quantum systems can be defined by a temperature. A certain class
of these systems are out-of-equilibrium systems, in which drive and dissipation
compete [13]. An example are Floquet phases, for which SPT versions have been
defined [118–120].

A first definition for classification of mixed state topological order was given by
Hastings in 2011 which defines a phase by how close a mixed state is to a thermal
state under FDQC in the trace norm [61]. Under this definition, it is shown that
any 2D local, commuting Hamiltonian is not topologically ordered at T > 0, and
furthermore those thermal states cannot be used to store quantum information.
Another definition was proposed at a similar time by Diehl, Bardyn and others
for fermionic systems with steady states of a gapped Lindbladian in Refs. [66–68].
They focused on mixed state topological order for Gaussian, fermionic systems
with pure steady states of a gapped quantum many-body Lindbladian, by studying
topological phase transitions purely by dissipation. They identify two conditions
necessary for the system to consistently contain topological order: the existence of
a purity gap, and the existence of a dissipative gap. The former corresponds to the
existence of a bulk spectral gap in the fictitious free-fermion Hamiltonian, while
the latter corresponds to fast-enough relaxation to the steady state. This last work
inspired the study of topological invariants for mixed states using the Uhlmann
phase [64, 65]. Other studies have provided a classification for out-of-equilibrium
topological insulators and superconductors [69, 121, 122].

This ends our short review of different works regarding gapped phases beyond
pure states and we now go on to describe the framework for mixed state topological
order given in Ref. [4].

2.2.1 Defining gapped phases in open quantum systems

The most general operation one can perform on a quantum state is a quantum
channel, which is a completely positive and trace preserving (CPTP) map [15, 123].
These channels also include maps generated by an operator called a Lindbladian
[124]. We are interested only in causal channels which have a finite light cone [125],
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2.2. Beyond gapped phases of pure states

Figure 2.3: Framework give in Ref. [4] for the equivalence relations which preserve
gapped phases of mixed states, as extending from gapped phases of pure states.

so the Kraus operators must be local or quasi-local.
There are many different equations describing evolution in an open quantum

system, depending on assumptions about the noise model, and we will only focus
on the Lindblad master equation [13]. This evolution describes semigroups of
channels generated by continuous time evolution by a Lindbladian

L(ρ) = − i

ℏ
[HS, ρ] +

ℓ∑
i=1

(
LiρL

†
i − 1

2L
†
iLiρ− 1

2ρL
†
iLi

)
. (2.2.1)

Here, the Li are jump operators and HS is the Hamiltonian of the system. This
equation generalises the Schrödinger evolution for pure states to evolution of mixed
states. It describes a small quantum system weakly coupled to a large environment.
The derivation of the master equation assumes the Born approximation (that the
system-bath coupling is sufficiently small) and the Markov property (that the bath
has no memory), such that then one can apply the Lindblad master equation to
an initially uncorrelated state of system and bath [13].

In defining phases of mixed states, it is desirable that the equivalence relations
produce sensible equivalence classes on mixed states, and further that they repro-
duce the phases of pure states in a certain limit. As previously, it is therefore
important to encode a balanced trade-off between circuit depth (which determines
time or fastness) and locality of individual gates (which determines light cone or
spread of correlations) such that a single phase contains only smooth observables.

A possible definition from adiabatic paths of local, gapped Hamiltonians and
FDQCs is to fast, local Lindbladians. This definition for a gapped quantum phase
of mixed states has been given in Ref. [4] as follows:

Definition 4: Two states ρ and ρ′ are in the same phase if there
exists fast, local Lindbladians L,L′ which transform between them.

The Lindbladians are defined by a sum of quasi-local terms, which act only on
a subset of the lattice of size ∼ poly log (N), and are fast, meaning that the
evolution takes a time ∼ poly log (N), up to an error ϵ which vanishes in the
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thermodynamic limit1. The Lindbladian paths interpolate smoothly between local
observables. Then we say that two mixed states are in the same phase if they can
be connected in either direction by evolution generated by such Lindbladians, as
visualised in Fig. 2.3.

In order to see how this definition connects to the classification for gapped
phases of pure states, it’s useful to recall Definition 2 on FDQC. As an extra result,
Ref. [4] shows that quasi-local quasi- adiabatic evolution corresponds to a FDQC
whose depth is constant if the quasi-local gates are allowed to have support on a
region of size poly log (N). Now allow these gates to be noisy. Such a circuit has
gates which are not necessarily unitaries, but are rather CPTP maps. Hence, the
new setting is a circuit of channels. Then a Lindbladian that effectively implements
this quantum circuit up to an error ϵ can be constructed with the help of the
ancillas [4]. Finally, all states which are in the same gapped phase for pure states
are shown to be in the same phase for mixed states with the resulting form of
Lindbladians, so the definition consistently extends gapped phases of pure states.
It is still open whether states in the same phase for mixed states may not be in the
same phase for pure states, and whether there are mixed state phases within this
framework for which there is no pure state analogy, as suggested elsewhere [69].

This definition is physically motivated. The conditions of locality and fast
evolution on the Lindbladian ensure that new long range correlations cannot be
created in the initial state, since the evolution is causally bounded by a light
cone, and can’t create correlations outside of it [127]. Hence, by this definition,
equivalence classes contain states with the same kinds of long range correlations,
which is necessary to be in the same phase.

Further, there is a partial order on states, which highlights that, in a hand-wavy
sense, destroying correlations is generally easier than creating them. Imagine that
given two states ρ1 and ρ2, the long range correlations of ρ1 are a subset of those
in ρ2. On the one hand, we would expect that it is not possible by the fast, local
Lindbladian evolution to transform from ρ1 to ρ2 since the evolution would need
to generate new long range correlations. This is not allowed by the light cone
argument given in the paragraph above. On the other hand, we could expect that
we can transform from ρ2 to ρ1 with this evolution, since fast, local Lindbladian
evolution can destroy correlations in a short time.

With this, we end the discussion on gapped phases, or topological phases, and
before discussing particular topological orders, we introduce the tensor network
formalism which will help us along the way.

1Since t −→ ∞ in the thermodynamic limit, non-analyticities may emerge in the path which
may be remedied by requiring the Lindbladians to be additionally fast mixing [126]. Generally,
one expects fastness and locality to be a strong enough assumption compared to requiring
Lindbladians to additionally be fast mixing, since if channel has a finite light cone, it is generated
by a local Lindbladian.
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2.3. Tensor networks

2.3 Tensor networks

We introduce some background on tensor networks (TN), which have provided a
systematic approach to studying quantum many-body states. TN have emerged in
the last the last 30 years as a favourite analytical and numerical tool to systemati-
cally investigate problems in modern condensed matter physics [77]. Importantly
to this Thesis, they have a particularly powerful expressive ability of an interesting
class of states, namely ground states of gapped, local Hamiltonians.

TN are ideal candidates for capturing states with topological order or sym-
metries, as they allow us to understand global properties of a states in terms of
symmetries of the local tensors, which in turn describe the entanglement structure
of the state [102, 128].

Intuitions behind the tensor network paradigm hearken back all the way to 1941
studies in statistical mechanics with transfer matrix methods [129]. Later, this led
to the construction of finitely-correlated states, and the idea that the structure
of entanglement in states can characterise emergent physical phenomena. This
links to the RG flow mentioned at the start of this Chapter [130, 131], through the
description of fixed points of phases that contain all universal features of states in
the phase. TN exploit this universality, which often combats a common problem of
modelling natural systems which is that of overfitting, meaning that models have
exceedingly many parameters in order to approximate the system well.

Further, TN efficiently approximate states obeying an entanglement entropy
area-law, and as such are applicable to ground states of gapped, local Hamiltonians
[132, 133]. Altogether, the expressive power of tensor networks has led to it being
a fundamental keystone in the study of quantum many-body systems.

TN in 1D, which we will discuss in the next Section, were later applied to to
understand important states such as the Affleck-Kennedy-Lieb-Tasaki (AKLT)
state [134] as well as the cluster state [135], while TN in 2D, which we will discuss
in Section §2.3.2 have been useful to understand states such as the Toric code [2].

2.3.1 Matrix Product States

A powerful tool to describe topological phases in 1D are matrix product states
(MPS), in which the wave function is decomposed into a network of local tensors
Ai associated to each site.

An MPS is defined by a single rank-three tensor A as

|Ψ[A]⟩ =
∑

i1,...,iN

Tr
(
Ai1 . . . AiN

)
|i1 . . . iN⟩ , (2.3.1)

where Ai are matrices such that A = ∑
i A

i ⊗ |i⟩. An MPS tensor is said to be
injective if the transfer operator T = ∑

i A
i ⊗ (Ai)† has a unique eigenvalue of

largest magnitude. For a physical dimension d of the MPS, bond dimension D,
the number of parameters a translation-invariant state stores is D2d, which is
exponentially less than a generic state’s dN .
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Injective MPS satisfy a fundamental theorem [77], which implies the following.
If a state is invariant under a global symmetry U⊗N

g |Ψ[A]⟩ = |Ψ[A]⟩, the action of
the onsite symmetry Ug on its local tensor A results in an action on the virtual
level ∑

j

(Ug)ijA
j = eiϕgVgA

iV †
g , (2.3.2)

where Vg is a projective representation of the symmetry [136], satisfying

VgVh = ω(g, h)Vgh , (2.3.3)

for some values ω(g, h) which are called cocycles. The projective representation
clearly generalises the linear representation as ω(g, h) may be non-trivial. The
cocycle will be particularly important in classifying SPT phases, which we describe
in Section §2.4. Physically, the injectivity condition holds when the MPS is the
unique ground state of its parent Hamiltonian, which is indeed the case for states
in SPT phases without symmetry-breaking. As a tensor diagram, Eq. 2.3.2 is
written as

.
(2.3.4)

The fundamental theorem elucidates that the projective symmetry action of Vg

occurs on the virtual level of each site tensor A, such that the entanglement
structure and topological properties of the global state are encoded locally. Finally,
note that we take A to be in canonical form so that Vg is unitary.

For a full refresher on MPS technology, we refer readers to more comprehensive
introductory literature [76, 137, 138].

2.3.2 Projected entangled pair states

To aid our investigation of 2D topological phases, we introduce PEPS which is the
analogue construction of MPS in higher dimensions. PEPS first emerged in the
context of DMRG simulations to efficiently compute correlation functions [139–141].
PEPS do not have a canonical form which makes their use much more difficult,
yet we will see that they still have an demonstrably expressive power.

Analogously to MPS, the PEPS is defined by a five-legged tensor (one physical
and four virtual legs), defined as

, (2.3.5)

which can express any quantum state if D is allowed to grow arbitrarily large.
For a fixed bond dimension, PEPS also fulfill the area-law; the entanglement
entropy of a PEPS with boundary length L is S(L) = O(L logD). This property
is satisfied by quantum states such as ground states and low-energy states of
local Hamiltonians. Furthermore PEPS can also describe polynomially-decaying
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Figure 2.4: a) When a state is defined on an lattice with periodic boundary
conditions, this is depicted as a torus. b) Defined on open boundary conditions,
we can break open the torus which results in a cylinder.

correlations as compared to MPS which can only describe states with exponentially-
decaying correlations [142].

The problem of exactly contracting a PEPS is unfortunately ♯-P hard in terms
of computational complexity [143]. Importantly, this means that for any arbitrary
PEPS the contraction takes a time t ∼ O(eN), even if we try to contract it in a
smarter way. Evidently working with PEPS are hard.

Fortunately for us, it turns out that for interesting states such as the ground
states of gapped, local Hamiltonians, we can approximately contract the PEPS
to a high degree of accuracy, with the help of many different numerical methods.
The numerical methods for contracting PEPS which will be most useful in this
Thesis are the iPEPS algorithm [144, 145] and the corner transfer matrix method
[146]. These all find their basis in the renormalisation group (RG) method [147]
and White’s density matrix renormalisation group (DMRG) algorithm for finding
ground states of 1D gapped Hamiltonians [148], which was realised later is really a
variational algorithm searching over the class of MPS. Many algorithms also exist for
simulating time evolution of TN states, such as the time-evolving block decimation
algorithm (TEBD) [149], but we will be able to manage with Monte Carlo based
simulations of quantum trajectories in 1D and also brute force simulation of channel
evolutions.

We will define PEPS on a torus geometry to describe a 2D lattice on periodic
boundary conditions, while a cylindrical geometry describes open boundaries in
one dimension and periodic boundaries in the other dimension (Fig. 2.4).

G-injective PEPS

G-injective PEPS [150, 151] are remarkable in that they realise a particular family
of states with topological order known as quantum double models [152]. This
gives us a unified understanding of these models within the framework of tensor
networks via the interplay of symmetry, locality and entanglement.

There are two important properties a tensor must possess to satisfy G-injectivity.
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Firstly the tensor must have a local (gauge) symmetry

.
(2.3.6)

This property is believed to be key to describing intrinsically topological models.
Secondly, the tensor must satisfy a variation on the injective property that we

saw for MPS which is that the transfer operator

.

(2.3.7)

A larger class of models which are believed to capture all non-chiral topological
order are string-net models [83]. These can also be understood with tensor networks,
by extending from simpler forms of PEPS G-injectivity and twisted-injectivity to
MPO-injective PEPS [153].

TNs, and in particular PEPS, remain an active research field to this day. For
example, chiral topological phases, such as the historical integer and Fractional
Quantum Hall effects, are not yet fully understood within the TN framework which
have worked so well to describe conventional topological orders (intrinsic and SPT).
A barrier to the construction of a chiral PEPS is that they have algebraic bulk
correlation functions which precludes them being the (efficiently simulable) ground
states of gapped, local Hamiltonians. It is yet unknown whether it is possible to
efficiently encode gapped chiral phases with PEPS.

With a description of tensor networks in hand, we go on to briefly introduce
three different kinds of topological order. We will begin with the simplest one
which is symmetry protected topological order.

2.4 Symmetry protected topological order

SPT order is defined by symmetric phases of short-range entangled (SRE) states,
i.e. families of states which are connected by a FDQC respecting a particular
symmetry, which corresponds to an adiabatic path of gapped, local Hamiltonians
[12, 91, 154, 155]. As such, this order is called “topologically trivial”, but never-
theless intrinsically non-local properties prevail in presence of a symmetry, such as
topologically protected edge mode degeneracy and string order [92, 156, 157]; this
follows from the non-trivial symmetry action of the projective representation V (g)
on the edges [158, 159]. Hence, SPT order is intimately linked to the projective
representation Vg, and remarkably demonstrates that global patterns of entangle-
ment appear via a local mechanism, which emphasises the natural suitability of
local tensor descriptions. Only the presence of appropriately defined symmetry in a
system can allow SPTO to exist, allowing its characteristic topologically protected
edge modes, ground state degeneracy on open boundary conditions, entanglement
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spectrum degeneracy and string order [92, 156, 157]. Hence, G-symmetric FDQCs
preserve SPTO in pure states. Finally, SPT states provide a link to quantum
computation, as they are an ideal resource for measurement based quantum com-
puting (MBQC), coming from the phase-protected entanglement [6, 160]. Other
states without SPTO, such as the GHZ state (symmetry-breaking, SRE) and the
Toric code (topological order, LRE) do not have the right kind of entanglement to
achieve universal computation [112, 161].

SPT phases of local, gapped Hamiltonians in one dimension, for a symmetry
group G, are classified by an invariant [ω], a class in the second group cohomology
group H2(G,U(1)) [102, 128, 162]. A useful method for determining the SPT
invariant of a given Hamiltonian is to represent its ground state as a tensor network
and study the symmetries of its tensor [77]. Let us review this procedure in 1D.

Recall the fundamental theorem we introduced in Eq. 2.3.2 which pulls a global
symmetry to a virtual symmetry which is given by a projective representation
Vg. For a given state, there is always a tensor in a canonical form, where Vg is
unitary and ω(g, h) is a phase [77]. The collection of phases ω(g, h) constitutes a
group cocycle and is defined up to a group coboundary, meaning it determines a
cohomology class [ω] [102, 128]. It turns out that [ω] is invariant along smooth
paths of gapped, local, symmetric Hamiltonians, which is to say it is an SPT phase
invariant; moreover, it is a complete invariant [128]. Physically, the virtual space
of the MPS tensor may be interpreted as the space of edge modes; the fact that
there is a minimal bond dimension on which Vg can realise the invariant [ω] means
that some of the edge modes are protected by the symmetry.

Essential to this definition of the SPT invariant [ω] is that the state is well-
approximated by an MPS of bond dimension constant in the system size, a property
which comes from the state being a ground state of a gapped, local Hamiltonian.
Generic states in one dimension are not well-approximated by MPS, so for them a
projective action Vg – and therefore an invariant [ω] – cannot be defined this way.

Throughout this Thesis, we will restrict to finite Abelian symmetries. This is
not a severe restriction, as many physically relevant SPT phases protected by other
groups remain non-trivial even when a finite Abelian subgroup of the symmetry is
enforced [163]. One example is the Haldane phase, which may be defined as the
non-trivial SPT phase protected by SO(3) symmetry, but is effectively protected
by a Z2 × Z2 subgroup. The non-trivial phase protected by the latter symmetry is
also called the cluster phase, as it contains the 1D cluster state [164]. Being the
simplest non-trivial SPT phase, we will often refer to this example throughout the
Thesis.

SPT phases with on-site symmetries are known as G-SPTO and are the simplest
kind which will be the focus in this Thesis. Generally, d-dimensional SPT phases of
matter are classified by the d+ 1 group cohomology Hd+1(G,U(1)) [154], although
models beyond group cohomology have also been studied in 3D and 4D [12, 165].
Other kinds of SPTO include subsystem-SPTO and most recently this has been
generalised to matrix product operator (MPO) SPTO [166]. 2D G-SPTO is
classified by H3(G,U(1)) (symmetry fractionalisation on edges) while 2D SSPTO
is classified by C[Gs] = H2(G2

s, U(1))/H2(Gs, U(1))3 for "strong" SSPT which is a
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true subsystem SPT phase, or H2(G,U(1))N "weak" SSPT being N stacked 1D
SPTs with global on site symmetries [167].

2.4.1 Example: the cluster state

In this Section we briefly introduce one of the simplest examples of SPT order,
which is the 1D cluster state [135].

This state may be defined by a FDQC acting on a periodic chain of N qubits
in a product state, which demonstrates that it is short-range entangled. This
operational definition is

|CS⟩ =
(

N∏
i=1

CZi,i+1

)
|+⟩⊗N , (2.4.1)

where the state |+⟩ is given by |+⟩ = 1√
2(|0⟩ + |1⟩), and CZ is a 2-site unitary gate

defined by CZij = |0⟩⟨0|i ⊗ 1j + |1⟩⟨1|i ⊗ Zj = diag(1, 1, 1,−1) acting on sites i, j
[15]. We will refer to X, Y, Z as the Pauli X, Y, Z operators.

Since we used a mapping on the level of states to obtain the cluster state, we can
use the same map on the level of Hamiltonians to obtain the cluster Hamiltonian,
for which the cluster state is the unique ground state (on periodic boundaries). The
Hamiltonian which has |+⟩⊗N as its ground state is the paramagnetic Hamiltonian
H = −∑N

i=1 Xi. We can then conjugate this H by the FDQC we implemented
above ∏N

i=1 CZi,i+1 to arrive at the cluster Hamiltonian

HCS = −
N∑

i=1
Zi−1XiZi+1. (2.4.2)

This form of the Hamiltonian is elucidating, as we see that the cluster state
has Zi−1XiZi+1|CS⟩ = |CS⟩∀i, i.e. it is in the simultaneous +1 eigenbasis of all
of the Hamiltonian terms. Such terms Si = Zi−1XiZi+1 are known as stabilisers.
Therefore, the cluster state is also a stabiliser state, which are states defined
uniquely in the +1 eigenstate of a set of Pauli operators which generate a stabiliser
space [168].

This Hamiltonian has symmetries given by the group G = Z2 ×Z2 generated by
the action of Xodd = ∏N/2

i=1 X2i−1 and Xeven = ∏N/2
i=1 X2i on sites i. The reason why

the product state and the cluster state are in different phases is that CZ gates do
not commute with these symmetries, so the circuit is symmetry-breaking, although
globally the FDQC does preserve the symmetry.

The cluster state is robust to weak perturbations. The idea is that the only
operator which mixes the non-symmetry respecting states is a non-local operator
which spans the whole chain of length N . We saw this before with topological
order, and similarly in the cluster state, a local perturbation has an effect which is
exponentially small in N [169].

The cluster state is an example of a maximally-non commutative (MNC) phase,
as we discuss in the next Section. These phases are particularly interesting for
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quantum computation; in this Thesis we will connect the facts that such MNC
phases have maximal inaccessible entanglement, maximal SPT complexity, and
also maximal topological edge mode degeneracy, which turn out to be intimately
related.

2.4.2 Projective irreps of Abelian groups

We now introduce several properties about projective irreducible representations
of finite Abelian groups that will be relevant in later calculations.

Let us introduce the term ω-irrep to refer to an irreducible representation with
cocycle ω. Firstly, a general projective representation V (g) of a finite group G
with cocycle ω can be written as a direct sum over ω-irreps V a

g

Vg =
⊕

a

(
1na ⊗ V a

g

)
, (2.4.3)

where na is the multiplicity for a given ω-irrep a [170]. The second property
we make use of is the fact that any two ω-irreps of a finite Abelian group are
projectively equivalent. Namely, if we fix Ṽ (g) to be an arbitrary reference ω-irrep,
every other ω-irrep Va(g) can be related to it by

Va(g) = µa(g)UaṼ (g)U †
a , (2.4.4)

where µa(g) can be thought of as a phase factor, as it is a linear character, and
Ua is some unitary [171]. This allows us to simplify the general form of V (g) in
Eq. (2.4.3), which is a direct sum over the ω-irreps containing multiple tensor
products, to a single tensor product when G is finite Abelian. Namely,

V (g) =
(⊕

a

µa(g)1na

)
⊗ Ṽ (g), (2.4.5)

where we have removed the unitaries Ua through an appropriate choice of basis.
This illustrates that, for finite Abelian groups, all ω-irreps for a given ω have the
same dimension, which we call Dω.

To calculate Dω, we need to introduce the notion of the projective centre group
kω. Given a cocycle ω under the group G, kω is defined by

kω = {s ∈ G | ω(g, s) = ω(s, g) ∀g ∈ G}. (2.4.6)

Then, Dω is determined by the following equation [172],

Dω =
√

|G|/|kω|. (2.4.7)

For example, the Haldane phase has projective irreps given by the 2-dimensional
Pauli operators. Conversely, for non-Abelian groups the irreps may have different
dimensions, an example of which is S4, the symmetric group on four elements,
which has 2- and 4-dimensional projective irreps.
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Finally, we note that for any ω-irrep Vω(g), the following condition about the
trace holds up to a phase factor [170],

Tr(Vω(g)) =
Dω, if g ∈ kω

0 else.
(2.4.8)

This will be helpful for calculations later on.

Maximal non-commutativity

SPT phases of special interest are the so-called maximally non-commutative (MNC)
phases. These phases act as universal resources for MBQC [163, 164, 173–175]. A
cocycle ω, along with the corresponding SPT phase, is called MNC if kω = {e},
meaning it has a trivial projective centre. For such phases, Dω takes the maximum
value of

√
|G|. Since Dω is equal to the topologically protected edge degeneracy of

SPT phases [158], MNC phases therefore have the maximum edge degeneracy for
a given group G. From now on, we will suppress the index ω in kω for notational
simplicity.

For each MNC cocycle ω there is only one ω-irrep up to unitary equivalence
[172], such that Eq. (2.4.5) becomes

V (g) = 1⊗ Ṽ (g). (2.4.9)

The left part of the tensor product, which transforms trivially under symmetry,
is referred to as the junk subspace. The size of this space determines the bond
dimension and hence bounds the entanglement entropy of the state. We will also
refer to the trivially transforming part of the MPS tensor in non-MNC phases as
the junk subspace, although strictly there are multiple subspaces, corresponding
to the existence of multiple projective irreducible representations.

We note that some symmetry groups host multiple MNC phases; such phases
can’t be distinguished by their edge mode degeneracy as the ω-irreps all have the
same dimension. Order parameters as in Refs. [156, 157, 176, 177], however, can
distinguish between them by microscopically probing the specific non-local action
on the virtual level of the tensor network, which we discuss further in Section 3.4.3.

2.4.3 Fingerprints of symmetry protected topological order

Let us begin by reviewing the invariants of pure SPT states, including their
manifestation in tensor networks and in patterns of zeros of string operators. After
this review, we will discuss how these invariants appear in a special class of mixed
states we dub coherent SPT mixtures.

In Chapter 3 we will introduce a new indicator of SPTO, which is the inaccessible
entanglement.
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String order

String order provides an alternate definition of the SPT invariant that does not
rely on an MPS representation of the state. The string order parameter is a set of
expectation values of string operators that can be defined on any state. On certain
well-behaved states, such as the ground states of gapped Hamiltonians, it yields a
well-defined pattern of zeros that uniquely determines the SPT invariant [ω].

Assume G is a finite abelian group, and let Ug denote the action of G on an
individual site. The string operator is defined as

s(g,Ol
α, O

r
α) = 1 ⊗Ol

α ⊗ U⊗j
g ⊗Or

α ⊗ 1 , (2.4.10)

for some length j, where the end operators Ol,r live in opposite irreps of the adjoint
action

U †
hO

l
αUh = χα(h)Ol

α , U †
hO

r
αUh = χ∗

α(h)Or
α . (2.4.11)

On some states, the string order parameter obeys a selection rule [157]. This rule
says that, for each g ∈ G, there is a unique character αg such that the expectation
value ⟨s(g,Ol

α, O
r
α)⟩ vanishes, for all end operators, except for α = αg. The values

forced to vanish by the selection rule form what is called the pattern of zeros of the
state. An SPT state can be defined as a state for which this selection rule holds;
that is, a state with a well-defined pattern of zeros. The SPT invariant of an SPT
state is extracted by defining the ratios ω/ω in terms of the unique character αg

for each g as follows:
ω(h, g)
ω(g, h) = χαg(h) . (2.4.12)

The invariant [ω] may then be recovered from these ratios, as we argue in §5.4. We
remark that string order is also defined when G is nonabelian; however, it may not
determine [ω] uniquely [157].

Now let us consider a state represented as an MPS and show that the definition
of the SPT invariant [ω] by the projective action on edge modes agrees with its
definition by string order parameters [157]. Injectivity may be achieved by blocking,
which does not change the form of the string operator as long as its length is
assumed to be large compared to the size of the blocks. On such a state, the string
operator evaluates to

⟨s(g,Ol
α, O

r
α)⟩ = El(g,Ol

α)Er(g,Or
α) , (2.4.13)

where
El,r(g,Ol,r

α ) = Tr
[
N g

l,rO
l,r
α

]
(2.4.14)

are defined as

. (2.4.15)
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Here, ρR is the unique (by injectivity) right fixed point of the MPS transfer matrix,
and we have used the canonical form where the left fixed point is the identity. The
evaluation (2.4.13) can be seen with the following diagrammatic argument (due to
Ref. [157]):

. (2.4.16)

Evaluating the above

. (2.4.17)

The operators N g
l,r transform as

U †
hN

g
l Uh = ω(g, h)

ω(h, g)N
g
l , U †

hN
g
rUh =

(
ω(g, h)
ω(h, g)

)∗

N g
r , (2.4.18)

The operators N g†
l,r and Ol,r

α are orthogonal (and so El,r is zero) unless they transform
the same way; that is, unless the selection rule (2.4.12) is satisfied. This completes
the argument.

If the operators N g†
l,r and Ol,r

α transform the same way, then they are not
orthogonal generically (and so El,r is non-zero generically). This is because N g

l,r

picks out a single direction in the multiplicity space for α, so the subspace orthogonal
to this direction is codimension one in the full space of end operators Ol,r

α . In
other words, for a generic choice of end operators, the only expectation values
⟨s(g,Ol

α, O
r
α)⟩ that vanish are those that belong to the pattern of zeros determined

by the SPT invariant. The non-zero values of the string order parameter depend
on the choice of end operators, but the pattern of zeros does not. The string order
will be discussed in Chapter 4.

Swap order

The swap order parameter is an alternative to the string order parameter, and
uniquely detects the SPT invariant ω [176]. Similarly to the string order parameter,
the swap order parameter is a set of expectation values that can be defined on
any state. While the string order parameter has a pattern of zeros, the swap order
parameter has a pattern of signs for gapped phases, where the signs are generally
complex numbers. For the SPT phases of Z2 × Z2, the signs are +1,−1.

The order parameter is attractive as it depends only on the symmetry of
the state and doesn’t require the construction of end-point operators (which are
state-specific). This may make it more experimentally accessible: Refs. [176, 178]
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Figure 2.5: a) TN representation of the swap order parameter for SO(3) symmetry,
e.g. for the AKLT state. b) Applying the fundamental theorem. c) Computing
the gauge-invariant quantity. We use injectivity on all sites and following the
trace gives that the swap order parameter measures the anti-commutation of the
symmetry on the virtual level. d) Depicts the blocked swap order parameter, where
the length L is at least the blocking length to reach injectivity.

suggest methods for implementation aimed at cold atom setups in optical lattices.
Finally, the swap order parameter has a nice interpretation. Just as the end-points
of string operators can be understood as quasiparticles, the swap string operator
can be understood as detecting the braiding class of those quasiparticles.

Assume G is a finite abelian group, and let Ug denote the action of G on an
individual site. The swap operator is defined as

S(g, h) = (U⊗2L
g ⊗ 1L)SWAP(U⊗2L

h ⊗ 1L) , (2.4.19)

for a length L which is greater than the correlation length (the blocking length
required to become injective) and SWAP is a swap operation acting between L
blocked sites of Ug, Uh. The diagrammatic representation for the order parameter
given SO(3) symmetry is provided in Fig. 2.5(b) (see also Ref. [179] for a different
representation). For example, for the AKLT state, which is a renormalisation fixed
point [158], the swap operator is

S(g, h) = (Uz ⊗ Uz ⊗ 1)SWAP1,3(Ux ⊗ Ux ⊗ 1) (2.4.20)

If the site-wise representation of the AKLT is injective, then SWAP swaps the sites
1 and 3. Since actually only a subgroup of SO(3) symmetry actually protects the
Haldane phase, namely the subgroup Z2 ×Z2 which is generated by UX and UZ , the
swap operator can be seen mathematically to extract the projective representations
given by the Pauli operators X and Z, since at the RG fixed point the value of
the quantity is ω(X,Z)

ω(Z,X) .
For MPS, the swap operator converges exponentially fast to this value. It is

useful to remember that the length scale of convergence, or correlation length, is
given by the gap of TL, where T is the transfer matrix. These nice properties of
the fixed point render it relatively simple to calculate the swap order parameter as
well as to prove that for MPS which are RG fixed points (injective), the resulting
quantity is gauge-invariant and hence determines the cocycle exactly.

One can normalise the swap order parameter so that it takes values +1,−1.
This normalisation factor N is computed by setting Ug, Uh = 1 in Fig. 2.5(b)
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so that N = S(1, 1). Then the normalised swap order parameter is the ratio
Ŝ(ψ) = S(ψ)/N (ψ) = ±1.

The order parameter, its pattern of signs, and further details, e.g. pertaining
to blocking, are discussed in Chapter 6.

2.5 Intrinsic topological order

We now introduce intrinsic topological order. Intrinsically topological phases
are those which cannot be mapped to a product state by a FDQC, and are
therefore characterised by patterns of long-range entanglement [60]. Referring to
these phases as having intrinsic topological order separates them from symmetry
protected topological, sometimes called trivial, (SPT) phases, whose topological
order is conditional on the presence of symmetry.

The topological origin of these phases is that their ground state degeneracy
depends on the topology of the manifold on which the system is defined. For
example, the ground state of a topologically ordered Hamiltonian defined on a
spherical lattice is unique; this is a topologically trivial manifold (with zero holes).
However, a doughnut-shaped lattice would lead to an extensive ground state
degeneracy on periodic boundary conditions, which is characteristic of topological
phases on a nontrivial manifold. This also leads to the fact that local operators
can’t distinguish the different ground states, so these phases can’t be detected by
local order parameters; the phase is an emergent phenomena2. They also contain
low-energy excitations above the ground state, which are called anyons, in the
bulk of the state. The topological properties are robust to perturbations which
are smaller than the system size. Another final characteristic of topological phases
is a correction to the entanglement entropy, called the topological entanglement
entropy [180–182].

Topological phases have found application in quantum computing, in e.g.
topological quantum computing and quantum error correction, by harnessing
the braiding properties of anyons [2]. These applications come from several nice
characteristic properties of topological order. If the goal is to encode information
in an environment independent way, then one promising direction towards realising
this is the observation that topological phases are non-local, and hence insensitive to
local perturbations. The non-local patterns of (long-range) entanglement that define
intrinsic topological ordered phases lead to several key characteristic properties.
In particular, these properties make topological phases naturally amenable in
application toward fault-tolerant quantum computation. Let us suggest why this
might be the case.

First, topologically ordered phases possess a topology-dependent ground state
degeneracy, e.g. the Toric Code has d = 4g, where g is the genus. This suggests a
natural possibility for such phases to act as a quantum memory, where the ground

2This is different to e.g. an Ising model in which the local magnetisations of individual spins
are enough to determine the phase being ferro- or anti-ferromagnetic.
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(a) (b) (c)

Figure 2.6: Physical operators on the Toric code making up the logical operators.
Stable phase against weak local perturbations since see here that errors have to be
O(L) to transform between logical operators.

state space acts as the codespace with d logical operators with which quantum
computation is allowed. These phases also host anyons, which are low-energy
excitations above the ground state. Anyons can be moved around each other
in a nontrivial manner which actually is described by the braid group following
the rules of fusion category theory, and which can be leveraged for topological
quantum computation. Furthermore, the topological phase is stable against weak
perturbations, since only noise which acts on a region of size O(L) is able to create
a logical error. Altogether these properties make topological phases promising
candidate platforms for quantum technologies.

Example: the Toric code

The Toric code is a canonical example of a many-body state which has topological
order [183]. It has a topology-dependent ground state degeneracy, is a stable phase
against weak perturbations, contains anyons in the bulk, and is constructed by
G-injective PEPS.

The Toric code lives on a lattice with periodic boundary conditions where
qubits live on the edge of the lattice. It is defined by the Hamiltonian

HT C = −
∑
v∈V

Av −
∑
e∈f

Bf , (2.5.1)

where the edge and vertex terms are

.

(2.5.2)
Av acts on all edges surrounding a vertex v, and Bf acts on all faces of the lattice,
which is given in Fig. 2.6(a). Since each qubit can be in either basis state |0⟩ or
|1⟩, we can depict the ground state pictorially by visualising a qubit in state |1⟩ as
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a line and a qubit in state |0⟩ as the absence of a line. States can be represented
on the lattice as a configuration of lines, which may either be in closed loops or
open strings.

It turns out that the HT C is exactly solvable, and that the ground state can be
written as the equal weight superposition of such closed loops

|TC⟩ = 1
N
∑

C
|C⟩ , (2.5.3)

where each C is a subset of edges that form closed loops, Hence each state |C⟩ has
an even numbers of 1s (or equivalently 0s) written in the computational basis. In
Fig. 2.6(a) we draw an example state configuration with loops of edges in state |1⟩
as red lines. All other edges which have no red line touching them are in state |0⟩.

We can quite easily convince ourselves that |TC⟩ is the ground state of HT C .
Consider how to minimise the two different terms in HT C . Av enforces that the
ground state has an even number of 1s since an odd configuration of 1s would
give a −1 sign as depicted in Fig. 2.6(a). Therefore every configuration of closed
loops is in the +1 eigenspace of Av. Since Bf flips all edges on a face f between 1s
and 0s, its clear that it moves loops around, transforming between states in the
eigenspace. Since we can apply Bf at no energy cost (only +1s from closed loops),
every configuration is equally viable. This tells us that the Toric code must be an
equal weight superposition over all loops.

Note that the Toric code, like the cluster state, is a stabiliser state, so all of the
terms in the Hamiltonian commute which makes it very nice to work with since
most quantities, such as entanglement entropy [184], become easier to compute.

What about excitations? Recall that any state configuration of open strings
is in the −1 eigenspace of Av, so it has an energy above the ground state energy.
These open string configurations are created by string-like operators which violate
Hamiltonian terms Av or Bf and give a −1. There are two types of excitations,
called magnetic (m) or electric (e), which are depicted in Fig. 2.6(c). For some set
of edges in the string Γ the string operator S(m) = Ze∈Γ creates magnetic anyons
on the faces of the lattice by violating the Av term, while S(e) = Xe∈Γ creates
electric anyons by violating the Bf term in the Hamiltonian.

A profound observation is that one thing that we can do some engineering to
the system and move an S(e) string around a S(m) string. If we do this, notice that
at some point an X and Z operator must interweave. At the crossing point, we
have to anti-commute them through each other, gaining a −1 sign. By moving
end-points of strings around each other, the state can be seen to pick up signs, e.g.,
as an m-anyon moves around an e-anyon in Fig. 2.6(c). This is what is now known
as the phenomenon of braiding which allows topological computation.

Notice that if any of the four possible strings S is the length of the system,
then the anyons of the Toric code may annihilate each other, since the loop now
closes. Such states are globally distinguishable, though not locally distinguishable.
We can use these states to form a logical subspace, and the logical operators are
robust against weak, local perturbations up to O(L).
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Figure 2.7: Symmetry fractionalisation of two anyons a and b. The physical
symmetry Ug acting globally on some patch of the state manifests as a local
symmetry V a

g , V
b

g acting locally on the anyons.

The Toric code has the following PEPS

,
(2.5.4)

first derived in [139], which is an example of a G-injective states. Finally, note that
the Toric code can be viewed as a Z2 gauge theory which leads to the conservation
rule of having an even number of anyons in any excited state.

2.6 Symmetry enriched topological order

Symmetry enriched topological order (SETO) comes from the enrichment of intrinsic
topological order with symmetry protection, so the phase hosts topological anyons.
In 2D these excitations are point-like, but can be moved around. What can these
anyons do in the new setting of symmetry? In general, there are two possibilities.
First, the anyons can fractionalise the symmetry, much like the edge modes of
SPTO. Symmetry fractionalisation (SF) occurs in intrinsic topological phases when
anyons carry a non-trivial symmetry charge, meaning that they transform under a
non-trivial projective representation. This is explained diagrammatically in Fig. 2.7.
The second possibility is that anyons can be permuted between each other under
the action of symmetry. Additionally, symmetry fractionalisation and permutation
can be combined.

The requirements that the projective representations V a
g must fulfill are de-

scribed equivalently by braiding properties of the anyons [185]. It has been shown
that for symmetry groups G, their cocycles are classified by the second cohomology
group H2(G,Q), with the gauge group Q [10]. This comes from the fact that the
braiding of anyons has to be labelled by U(1) phase factors [186]. This is a refined
classification as compared to SPT phases, since H2(G,Q) > H2(G,U(1)), meaning
that the set of 2D SET phases is in general larger than the set of 1D SPT phases,
for a given G-symmetric system and non-trivial anyon group Q. For example,
symmetry groups G which have no non-trivial SPT phases can support non-trivial
SET phases such as G = Z2. Another relevant example is G = Z2 × Z2, which
supports only two SPT phases but supports four SET phases. We do not consider
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the case where anyons are non-abelian; then it’s necessary to consider the further
interplay between the set of anyons and the symmetry [187].

The understanding of symmetry enriched topological (SET) phases has reached
insofar as they have been classified both in the language of category theory for
global on-site symmetries [185], as well as in the language of tensor networks
through MPO-injective PEPS [188]. These fully describe the classification of the
SF classes of anyons. An example of a state with SET order is the resonating
valence bond (RVB) state on a kagome lattice [189].

SET phases have been explored in the context of quantum error correction, and
in particular towards self-correcting quantum memories (SCQM) [190]. Unlike in
active error correction, in which systems coupled to a thermal bath are maintained
through an externally applied error-correcting procedure, systems which are SCQM
have an intrinsic (“passive”) error-correcting ability. In other words, in SCQM
all stored information has a lifetime that grows unboundedly in system size3

It’s proven difficult in the community to describe a class of models which are
SCQM. More recently, it’s been suggested that topologically ordered systems
are a promising candidate for SCQM due to their robustness to local noise and
degenerate ground states. Moreover, symmetries may provide further advantages
towards SCQM. Candidates are non-commuting Hamiltonians such as the Bacon-
Shor code or Bombin’s color code [9, 192]. Other candidates are commuting
Hamiltonians which require a high dimension. For example, the 2D Toric code
requires active error correction; however, the 4D Toric Code is a canonical example
of self-correcting quantum memory [61].

2.6.1 A simple model of 2D SETO

An example of SETO in 2D has been constructed in Refs. [193] which can be
understood as a 2D Toric code decorated with cluster states [10]. This model will
be a main character in Chapter 6. It is particularly elegant as the SET order can
be understood very simply as the overlap of properties of two famous examples
of SPT order and intrinisic topological order. In particular, this model has its
intrinsic topological order inherited from the Toric code (giving anyons in the bulk),
and is enriched with extra symmetries from entangling with cluster states. The
description with 2D PEPS allows us to interpret this via projective representations
on the virtual level. This useful recipe leads to non-trivial action of the anyons,
which can be fractionalised under the symmetries of the cluster state. Decorating
by 1D SPTO and gauging the symmetry is by now an established procedure to
study SET orders [189].

We briefly describe the recipe to construct the Hamiltonian HSET from the
Toric code Hamiltonian HT C from Ref. [10]. The recipe starts with the Toric code
Hamiltonian set on a honeycomb lattice with qubits living on the edges [183]. The

3The Caltech rules detail the hypothesized requirements for models of SCQM [191], including
a nontrivial codespace and perturbative stability.
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(a) (b)

Figure 2.8: a) Hilbert space for |SET ⟩ consists of Toric code qubits living in E
and cluster state qubits living in V . b) Terms of the Hamiltonian HSET on a patch
of the lattice. We omit the sites for visual simplicity. The red wavy lines indicate
a CZ operation between the sites (which are either vertex-vertex or edge-vertex
connections).

Hamiltonian has the same form as previously 2.5.1,

HT C = −
∑
v∈V

Av −
∑
f∈F

Bf , (2.6.1)

but now where Av is a 3-body operator acting on all the edges incident on a vertex
v and Bf is a 6-body operator acting on all the edges around a face f . The ground
state is |TC⟩.

We now couple |TC⟩ to an additional Hilbert space by placing qubits on the
vertices of the honeycomb lattice (shown in Fig. 2.8(a)). We initialise each vertex
qubit in the state |+⟩, and couple them to the edge qubits via a circuit U of CCZ
gates acting between all edges e and the vertices on either side which are denoted
v+

e , v
−
e . Applying UCCZ to |TC⟩ on the entire lattice leads to the SET ordered

state
|SET ⟩ = UCCZ(|TC⟩ ⊗ |+⟩|V |). (2.6.2)

The CCZ gate is defined here to act on {e, v+
e , v

−
e } so the edge is a control bit.

It does nothing if it touches an edge in state |0⟩ but acts on the vertices as CZ
if it touches a state |1⟩. This means it acts on the Toric code as CZs between
the vertices in closed loops and acts trivially on qubits which are not in loops.
Recall that CZs on |+⟩⊗|V | between nearest neighbours generates the 1D cluster
state. Finally, we can understand the resulting state is made up of an equal-weight
superposition of closed loops C decorated by cluster states |CS⟩

|SET ⟩ = 1
N
∑

C
|CSC⟩ . (2.6.3)

The circuit which maps between the ground states |SET ⟩ and |TC⟩ similarly
leads to a mapping to HSET . We first add the paramagnetic Hamiltonian term∑

v∈V Xv which has |+⟩⊗|V | as its ground state on all vertices. Then applying the
unitary transform of CCZs to HT C results in the desired Hamiltonian which has
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Figure 2.9: The connection between SF and the braiding of anyons is used detect
SETO in the state |SET ⟩ in 2.6.3. In the ground state, the Toric code loops are
decorated by cluster states, depicted here as wavy rainbow-coloured lines in one
such configuration. We omit the edge qubits. By acting on the state with string
operators we create excitations which are open loops. Here we first create one pair
of anyons a, a and then act with a global symmetry which fractionalises on the
anyons as a projective symmetry. This is equivalent to braiding a with a second
anyon type b. All blank space corresponds to vertex qubits not in loops, which are
in the |+⟩ state.

ground state |SET ⟩

HSET = −
∑
v∈V

Av −
∑
f∈F

Bf −
∑
v∈V

Cv
1 + Av

2 , (2.6.4)

where Av is just the same, Bf is a modified version of 2.6.1 with CZ operators
acting between each pair of vertices surrounding an edge and Cv = UCCZXvUCCZ .
This evaluates to

Bf =
∏
e∈f

Xe CZv+
e ,v−

e
, Cv = Xv

∏
e

CZv+
e ,v−

e
, (2.6.5)

where v+
e , v

−
e are the two vertices attached to an edge e. The action of the projector

1+Av

2 is to project the state onto one with only closed loops. This enforces the
third term to be symmetric, since Cv otherwise doesn’t commute with the endpoint
terms. Hence HSET then has the full Z2 ×Z2 symmetry group generated by XA and
XB (which flip spins on the vertices of the sublattices A and B of the honeycomb
lattice)4. More details can be found in Ref. [10].

How do we characterise the symmetry fractionalisation effect? This is the most
relevant point that we will need to understand for this Thesis, which tells us how
SETO manifests in the model. It turns out that the decoration structure by cluster
states provides a natural way to see this.

We saw that HSET and its ground state |SET ⟩ inherit the symmetries from
the cluster state. In the Toric code, we can create excitations which manifest as
the local end-points of open strings (see Fig 2.6(c)). Any configuration of strings
in this model now corresponds to cluster states, so an open string has the edge
modes of a cluster state on its boundary. The symmetry on the boundary manifests

4The Hamiltonian also has time-reversal and inversion symmetry.
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projectively. Therefore the anyons at the ends of strings inherit the fractionalisation
property from the cluster state.

We can also see this from the explicit construction of the string operator for
this model which creates open strings [10]. We apply a unitary transform CCZ to
Sm for some set of edges Γ which gives

SΓ =
∏
e∈Γ

XeCZv+
e ,v−

e
. (2.6.6)

This string operator doesn’t commute with the term Av so a state by excited
applying the string violates this term in the Hamiltonian. The string’s end-points
(vertex qubits) are in the Av = −1 eigenspace. Then the projector 1+Av

2 = 0 and
all Hamiltonian terms Cv are annihilated. This was the only term acting with
Xs on vertices, so notice that no energies are changed by adding some Zs onto
the string end-points at locations vi and vf (all other terms commute with Z on
vertices). The dressed string operator is

SΓ(a, b) = Za
vi
Zb

vf
SΓ, (2.6.7)

for a, b ∈ {0, 1} indicating 0 or 1 Zs acting on an anyon on site vi or vf . The
degeneracy of the string operators for different values of a, b leads to a four-fold
degenerate subspace of the excited states which can be written

|a, b⟩ = SΓ(a, b) |SET ⟩ . (2.6.8)

The operators which transform between these excited states are XA and XB which
either permute basis states |a, b⟩ or contribute a phase. The action of this symmetry
realised locally on a single anyon generates a projective representation of Z2 × Z2
given by V(α,β) = XαZβ where the labels (α, β) are α, β = {0, 1}. By writing out
the commutation rules

VqVk = ω(q, k)Vqk, (2.6.9)

with {q, k} = (0, 0), (0, 1), (1, 0), (1, 1) we see that the SF pattern on the anyons is
given by

ω(q, k) =


+1 +1 +1 +1
+1 +1 −1 −1
+1 +1 +1 +1
+1 +1 −1 −1

 . (2.6.10)

A trivial SF pattern would have a different pattern of +1,−1. By considering the
elements of the table (q, k), the SF pattern detects the class [ω(q, k)].

2.6.2 An order parameter for SETO

For our investigations we make use of a particular order parameter in 2D which has
been recently developed for SETO in the framework of TN [11]. The goal of the
order parameter is to capture the projective representation characterising the SF
class of the anyons. Similarly to the swap order parameter for SPTO 2.4.19, this
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Figure 2.10: Order parameter detecting SETO via SF in the model of Ref. [10].
Black dots are edge qubits and blue dots are vertex qubits. The orange square
denotes an X operator on an edge qubit. Wavy lines depict CZ gates between
next-neighbour vertices. The SWAP operation is represented pictorially by linking
the physical legs between different sites.

order parameter detects the realisation of the symmetry locally on quasiparticles
which is given by a projective representation. The order parameter is designed for
quantum double models on a 2D lattice enriched with a global on-site symmetry,
and in particular defined for G-injective projected entangled pair states (PEPS)5.
The key ideas and the model of the order parameter for the SETO model are
visualised in Fig. 2.9 and Fig. 2.10.

A nice way to understand the action of the order parameter is via its equivalence
to braiding; by creating two different pairs of anyons, applying the global symmetry,
and braiding one type of anyon around another, the action of the projective
symmetry can be captured. The key insight is that braiding probabilities can be
measured by taking an expectation value of the braiding operation on an anyon.
The braiding operation is achieved by SWAP operators. The anyon pairs are created
by SΓ at both ends of a chain of symmetry operators, and then the symmetry
operators X are applied. By applying the rules of G-injectivity and that the state
is a fixed point, one can derive the gauge-invariant quantity [11].

What advantages of TNs can we leverage to write an order parameter? Consider
a state of size N with a global onsite symmetry U⊗N

g |ψ[A]⟩ = |ψ[A]⟩ ∀g ∈ G where
Ug is a unitary representation of the group G. Another way to view G-injectivity
is that the physical symmetry Ug pulls through to the virtual degrees of freedom

,

(2.6.11)

where vq is invertible [199, 200]. Notice that the virtual operators vq do not
necessarily need to form a linear representation; the phase freedom on a single site

5We note that other existing order parameters can consider different classes of states, in-
cluding the elusive chiral spin liquids, by probing effective 1D systems through dimensional
compactification [194–198].
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means they can form a projective representation as in Eq. 2.6.9. For a system on
periodic boundary conditions, the operators vq cancel each other out on the virtual
level. However, when anyons are introduced into the system, the symmetry on the
virtual level can interact with them and their braiding properties.

Consider how acting with the global symmetry is realised locally on the tensor
network when an anyon is present

.

(2.6.12)
We can see from this that v†

qavq is allowed to be projective as long as vq and v−1
q

have opposite sign, since we assumed that the global symmetry was linear. This
is satisfied easily for abelian anyons a whose anti-particles a transform with the
inverse projective representation (which is just v†

q).
If we apply another symmetry uk then conjugation by vq on the anyon a can

either permute the anyon or add a phase; it turns out that the allowed actions
have to agree with the fusion rules of the system defined by category theory and
the classification of SF [201].

Overall, we can interpret the classifying SF pattern equivalently through braid-
ing, which gives the intuition for how the order parameter of Ref. [11] is constructed.
The order parameter can be expressed (in a simplified form) as

Λ := ⟨O†
a Pπ

sm⊗
si

U si
g O†

a⟩, (2.6.13)

where Pπ is a permutation operator on some finite m sites, Oa creates an anyon
pair a, a† at some location and O†

a creates another pair some place else. The idea
is that the action of Pπ is the same as a braiding operation of the anyon with
the symmetry and so can capture the SF effect. It is possible to normalise this
quantity as follows

Λ̂ := Λ / ⟨O†
a Pπ O†

a⟩, (2.6.14)
which promotes Λ to a gauge-invariant quantity that actually distinguishes between
inequivalent cocycles that label the SF classes.

One might wonder whether order parameters built for SETO which detect
the class H2(G,Q)could detect SPTO as well. This is not the case, as although
SPT systems experience a fractionalisation of the edge modes they cannot resolve
all SPT phases, due to their lack of anyon classes, and hence the 2D SET order
parameter on a 1D SPT phase would set some phases equal. Conversely one could
consider whether SPT order parameters can detect SETO, which this time doesn’t
resolve the SF classes of anyons and sets them equal.

For the case of the SETO model defined in the previous Section, the following
form of the order parameter applies

Λ = S†
Γ=e1,··· ,e6 [Xa

e1X
b
e2X

a
e3X

b
e4 ]× (2.6.15)

[SWAPe1,e3SWAPe3,e4SWAPv1,v3SWAPv2,v4 ] SΓ=e5,e6 , (2.6.16)
(2.6.17)
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where SΓ is the string operator defined in 2.6.6, SWAPi,j denotes contracting
the physical legs on two different sites i, j which can be edges or vertices, and
a, b ∈ {0, 1} are the physical symmetry operators. By decomposing the string
operators the expression simplifies

= (Π4
i=1CZi,i+1Xei

) [Xa
e1X

b
e2X

a
e3X

b
e4 ]× (2.6.18)

[SWAPe1,e3SWAPe3,e4SWAPv1,v3SWAPv2,v4 ], (2.6.19)

so we arrive at the order parameter drawn for the honeycomb lattice in Fig. 2.10.
The normalised order parameter is given by the set

O[a,b] = Λ[a,b]

Λ[0,0] . (2.6.20)

Note that the order parameter is defined with respect to the fixed point represen-
tation of a state with zero correlation length. A generalisation to deal with states
with non-zero correlation lengths has been given where the order parameter acts
not just on lines but on faces has been given in Ref. [10].

We can focus on the case a = 1, b = 1 which gives O[1,1] = −1 in the SET phase
of the decorated Toric code model, and +1 otherwise.
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A new fingerprint for SPTO:
inaccessible entanglement

This Chapter contains the publication

• Inaccessible entanglement in symmetry protected topological phases. Car-
oline de Groot, David T. Stephen, Andras Molnar, and Norbert Schuch.
Journal of Physics A: Mathematical and Theoretical 53, 335302 (2020). [202]

3.1 Motivation

Entanglement is the essential resource which allows for tasks beyond the restrictions
of local operations and classical communication (LOCC). Certain tasks in the
quantum world are impossible to implement classically, such as quantum teleporta-
tion, dense coding and secure cryptography [203–205]. A fascinating realisation in
the quantum information community was that entanglement governs state conver-
sion, through the mathematical structure of majorisation and quantified by the
von Neumann entropy, [15]. More recently, it has been interesting to study how
additional restrictions to LOCC reshape the non-local resources that emerge, as
well as the tasks they allow.

In a seminal work Wiseman and Vaccaro found that entanglement under super-
selection rule (SSR) is reduced, for indistinguishable particles subject to fixing
the total particle number [206]. This observation led to studies of SSR in varying
contexts across the quantum information community [206–213]. SSR occurs in
natural physical phenomena where particular state transitions are forbidden in the
Hilbert space due to some physical rule. It can be described by global symmetry
groups or local gauge symmetry groups but is a broader notion. Examples of SSR
include disallowing a superposition across different electronic charge sectors, which
would violate the inherent parity symmetry of fermions [214], or restrictions due
to particle number conservation [215].

The interplay between entanglement and SSR in physical systems has yet to
be fully explored. Bridging this gap necessitates modifying the rules of LOCC
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to include the SSR. This requires enforcing a further structure (by the SSR) on
the majorisation criterion which defines the partial order of states [215]. SSR
were shown to even produce additional non-local resources, e.g. to permit perfect
quantum data hiding protocols [216]. This motivated exploring the entanglement
under restricted settings in various contexts, such as the symmetry-resolved en-
tanglement [211, 217–220], as well as conservation laws in fermionic systems with
parity symmetry and ultracold atoms with particle number conservation, for both
critical and gapped systems [221–223]. This has also been applied to lattice gauge
theories, in which the additional local symmetry restrictions changes the entangle-
ment distillation rules [224–226]. Here we consider symmetry protected topological
(SPT) phases [12, 91, 102, 128, 154, 158, 159].

The motivation of this Chapter is to apply insights from quantum information
about entanglement under SSR, to SPT phases. Our main question is the following:
what is the connection between SPTO and SSR entanglement? It is natural to
expect a connection between entanglement distillation and topological order, as
topological phases are determined by global patterns of entanglement beyond the
Landau description of symmetry breaking [227–229]. In particular, topological
phases are classified through non-local order, rather than local order parameters.
The many-body entanglement picture of topological order sorts phases into two
classes; topological phases have long range entanglement (i.e. have topological
order), while others have short range entanglement (i.e. have SPT order). We are
concerned with the latter, which only host topological properties in the presence
of symmetry, such as topological insulators and the Haldane chain [12, 154, 227].
The development of quantities which detect SPT order is of particular interest
in improving intuitions about these phases [230, 231], such as the string order
parameter and SPT-entanglement which characterize the phase in terms of the
global entanglement structure [156, 157, 176, 177, 232]. Here we impose a global
symmetry as our SSR and consider the impact on entanglement distillation in SPT
phases.

3.2 Summary

We study the entanglement of SPT ordered systems under local operations com-
muting with a global onsite symmetry G, which we call G-LOCC. This setting
is naturally suggestive of SPT phases which are only defined with respect to the
symmetry group G protecting the order, since the classification breaks down when
considering scenarios with no symmetry. In G-LOCC, the amount of accessible
entanglement is naturally reduced as compared to LOCC. We therefore show that,
in the presence of non-trivial SPT order under G, there is always some entanglement
that is inaccessible under G-LOCC. We give this quantity operational meaning by
showing that it is consistent with entanglement distillation under G-LOCC. In §3.3,
we firstly formalise the definition of inaccessible entanglement via entanglement
distillation with G-LOCC.

In Section 3.4, we present our proofs of the bound on inaccessible entanglement
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for all SPT phases under finite Abelian symmetry groups, and the connection to
string order parameters. This leads to the following bound

log
(
D2

ω

)
≤ Einacc ≤ log(|G|), (3.2.1)

where Dω is the topologically protected part of the edge mode degeneracy and
the dimension of the projective irreducible representation defining the SPT phase
ω. Of particular interest are a class of phases called maximally non-commutative
(MNC) phases (introduced previously in §2.4.2), such as the Haldane or cluster
phase for the symmetry Z2 × Z2, which saturate the upper bound on inaccessible
entanglement. This is connected to the fact that MNC phases maximise the number
of topologically protected degenerate edge modes. Importantly, trivial SPT phases
always have zero as the lower bound, while non-trivial phases have a non-zero
lower bound.

Through a numerical investigation in §3.5 we confirm that the bound is tight,
and examine properties of SPT phases living in particular regions of the bound by
performing interpolations in the MPS tensor. To better understand the inaccessible
entanglement of typical states, we numerically study particular random distributions
of MPS. We demonstrate that the bound is tight by interpolating through a path
of states from the lower bound to the upper bound in Fig. 3.4. Intriguingly, we
find that both trivial and non-trivial SPT systems typically have near maximal
inaccessible entanglement. However, the irrep probabilities, which are the weights
of the state on the individual symmetry sectors, have different structure, and can
thus be used to distinguish these phases. We study the implication of effective
reduced symmetries in a non-trivial SPT system, where we interpolate a state with
a symmetry G to effectively a lower symmetry H ⊂ G. The interpolation causes
the inaccessible entanglement and the irrep probabilities to lose the structure due to
G and the final state displays only structure due to H. On the other hand, we also
study the effect of reduced G-LOCC, so that the local operations commute with
some H ⊂ G where G is still the symmetry protecting the SPT phase, as opposed to
the effective reduced symmetry scheme. We argue that the accessible entanglement
depends on the dimension of the subspace of the MPS which transforms trivially
under the symmetry, previously termed the junk subspace [174]. We can increase
the dimension of the junk subspace for a given bond dimension by giving an uneven
irrep structure to the projective representation, which causes a greater spread in
the distribution of inaccessible entanglement.

In §3.7 we discuss the implications on computational power, 2D subsystem
SPT phases [233, 234], restricting operations to a subgroup of G, and also how
they relate to the characterization of states as resources for measurement-based
quantum computation (MBQC) [164].

3.3 Accessible entanglement distillation

How much entanglement can be extracted from a state obeying a symmetry G under
LOCC respecting the same symmetry? In this Section we define the accessible
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Chapter 3. Inaccessible entanglement in SPT phases

entanglement in the presence of G-symmetric LOCC (G-LOCC) and derive an
expression through multi-shot entanglement distillation which is consistent with
previous works e.g. Refs. [206, 208–211]. We will first define G-LOCC and
motivate why we might expect this to effect the entanglement which is accessible
under these operations.

We define G-LOCC by restricting LOCC protocols to positive-operator valued
measure (POVM) sets {M †

αMα} that commute with the global symmetry U(g) =
u(g)⊗N such that [U(g),Mα] = 0 ∀g ∈ G, where α are the measurement outcomes.
Note that the Mα are not necessarily orthogonal measurements. The accessible
entanglement we will motivate that exists under such POVM sets is given by

Eacc(ρ) =
∑

α

pαE(ρα), (3.3.1)

where pα = Tr
(
MαρM

†
α

)
are measurement probabilities corresponding to the

post-measurement state ρα = MαρM
†
α up to normalisation and the entanglement

entropy E (ρAB) of a bipartite state ρAB is given by the von Neumann entropy
S (ρA), where ρA = TrB (ρAB) is the reduced density operator [15]. We will now
argue that the entanglement entropy overestimates the physical entanglement Eacc

due to the structure imposed by symmetry. This line of thought leads naturally
into the entanglement distillation protocol of the next Section, in which we will
derive Eq. (3.3.1).

A simple argument considers that local operations may not mix symmetry
sectors, and that local operations can only decrease entanglement. As the state
ρ is symmetric under the symmetry G which imposes the G-LOCC, enforcing
[u(g)⊗N , ρ] = 0, the reduced density ρA also has the symmetry [u(g)⊗NA , ρA] = 0.
In the following we will make use of a particular POVM set to directly measure
the symmetry and capture properties of the SPT phase under G-LOCC. We utilise
the projective measurement Πα onto the irrep sectors given by

Πα = 1
|G|

∑
g

χα (g)u(g)⊗NA , (3.3.2)

where χα(g) is the character corresponding to irrep α and NA are the sites in
the A-subsystem (see also [156]). Due to the symmetry, the reduced state can
be written as ρA = ⊕

α pαρ
A
α , where pα are the measurement probabilities defined

above for the POVM operators Mα = Πα, and where ρA
α = Παρ

AΠ†
α/pα.

All allowed operations commute with the symmetry and hence operate only
within single sectors α which can be written as ρα,out = Λα(ρin) with the map
Λα(·) = Mα(·)M †

α, and Mα defining an element of a POVM set obeying the
symmetry and acting on a single sector. These operations are local by definition.
Since operations which mix the symmetry sectors of states are not supported,
any entanglement between different sectors is erased by G-LOCC. Hence, only
the entanglement within individual symmetry sectors contributes. The accessible
entanglement defined in Eq. (3.3.1) is therefore the sum over the entanglement
within each symmetry sector α. Clearly the entanglement in each sector E(ρα) is
less than the total entanglement, but so is the weighted sum of E(ρα) over α. As
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3.3. Accessible entanglement distillation

this defines the accessible entanglement, it is therefore also smaller or equal to the
entanglement,

Eacc ≤ E. (3.3.3)

Hence G-LOCC leads to a reduced accessible entanglement. Note that this expres-
sion ensures that product states have Eacc = 0. The considerations above naturally
lead to an operational definition of the accessible entanglement.

3.3.1 Entanglement distillation under G-LOCC

We now present how entanglement distillation under G-LOCC leads us to the
accessible entanglement in Eq. (3.3.1). Entanglement distillation is the process
of distilling Bell pairs from asymptotically many copies of a state under LOCC,
and is consistent with a partial order on states through the majorisation criterion
[15, 235]. This leads to the equivalence of the conversion ratio M/N , between N
copies of a pure state |Ψ⟩ to M copies of the Bell state in the asymptotic limit
N → ∞, to E the entanglement entropy [236]. We now consider entanglement
distillation under G-LOCC.

We measure the POVM set {Π†
αΠα} with Πα as defined in Eq. (3.3.2) the

projector onto each irrep α of the symmetry G imposing the G-LOCC, such that
on average we get every channel containing the normalised output state ρα with
a probability pα in the asymptotic limit. This action splits the state into the
symmetry sectors which impose the super-selection rule, so that operations are
restricted to within these subspaces. This makes it possible to act with LOCC
within each subspace. Then the entanglement entropy of the output state at each
branch α computes the number of Bell pairs distilled from the α-channel. Clearly,
the total entanglement extracted from this procedure is the weighted sum of the
entanglement from each branch, giving the expression in Eq. (3.3.1).

Furthermore, as the LOCC can be defined free of SSR within each sector,
each branch contains an optimal distillation within each symmetry sector such
that the full distillation is optimal [15], i.e. the maximal possible ratio M/N of
M Bell pairs produced from N copies of |Ψα⟩ is achieved. This concludes the
description of entanglement distillation under G-LOCC, which employs the full
rigour of distillation under LOCC, and as such is of itself complete.

3.3.2 Symmetry measurement

In order to carry out calculations later on, we rewrite the irrep probabilities in
tensor network notation through some simple manipulations which we sketch
here. We consider a system on a ring with N sites in the limit of the number of
sites going to infinity which allows us to use properties of the fixed point, such
that bipartitioning cuts the ring in half and results in two boundaries. Using
pα = Tr (Παρ), and inserting the form of the symmetric projection operator from
Eq. (3.3.2), we should recall that Πα acts only on the A-subsystem, so the rest is
traced over, leaving the fixed point action on the remaining half.
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Chapter 3. Inaccessible entanglement in SPT phases

Figure 3.1: In this figure, u and V have a dependence on g which is omitted. 1a)
Reminder of the fundamental theorem, given in Eq. 2.3.2. 1b) Symmetries of
the transfer operator T . 1c) Definition of the left-fixed point ρL. 1d) Graphical
calculation of the trace part of the irrep probabilities leading to (3.3.5).

By using the fact that the symmetry action in Πα acts locally, we can pull the
sum out and by engaging the fundamental theorem, Eq. (2.3.2), we find an effective
action of the symmetry group on the virtual system. Due to the cross-cancellation
of all V (g), V (g)† except for the action at the edges, the rest of the expression
becomes

pα = 1
|G|

∑
g

χα(g)⟨L|(1⊗ V (g))TNA(1⊗ V (g)†)|R⟩. (3.3.4)

Now recall the transfer operator T introduced in Section §2.3, which inherits
the symmetries of A as shown in Fig. 3.1 b). The transfer operator is an important
object in coming calculations, so we give some further notation. Let |R⟩ and ⟨L|
denote the right and left eigenvectors of T corresponding to the largest eigenvalue,
which we can set to be equal to 1 with normalisation, such that T |R⟩ = |R⟩ and
⟨L|T = ⟨L|. It can be convenient to express T as a quantum channel T defined as
T(ρ) = ∑

i A
iρAi†. This allows us to easily define |R⟩ and ⟨L| as the fixed-points

ρR and ρL of T and T
†(ρ) = ∑

i A
i†ρAi, respectively, see Fig 3.1 c).

We now use that TNA → |R⟩ ⟨L| as NA → ∞, and for simplicity we switch
from the language of vectors {|L⟩ , |R⟩} to matrices {ρL, ρR} which are the same
object, the fixed point of the MPS, considered either as vectors or as matrices.
Then the remaining expression is

pα = 1
|G|

∑
g

χα(g) Tr(ρL V (g)) Tr
(
ρLV (g)†

)
, (3.3.5)

using right-canonical form such that ρR is the identity [237]. The part of the
summand involving the trace in the calculations leading to Eq. (3.3.5) is shown
pictorially in Fig. 3.1.

3.3.3 Inaccessible entanglement

Having defined the accessible entanglement by distillation under G-LOCC ear-
lier, we now conversely define the inaccessible entanglement as the amount of
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entanglement that the G-LOCC prevents access to:

Einacc = E − Eacc. (3.3.6)

While the accessible entanglement captures the physical entanglement of a system
with SPT order, inaccessible entanglement measures the entanglement protected
by the presence of symmetry and stored in the state. We show below that the
inaccessible entanglement can be written as

Einacc (ρ) = −
∑

α

pα log (pα) , (3.3.7)

where pα are the irrep probabilities defined above. In the following we will use
log to signify log base-2. Note that Eq. (5.6.8) is the entropy of the probability
distribution corresponding to the irrep weights of the symmetry group G on the
state, Einacc = S({pα}).

Recall that the reduced density ρA has the symmetry [u(g)⊗NA , ρA] = 0, and
therefore can be written as ρA = ⊕

α pαρ
A
α where ρα = Παρ

A/pα. Therefore the
entanglement entropy of the state is

E(ρ) = −
∑

α

pαρ
A
α log

(
pαρ

A
α

)
=
∑

α

pαE(ρα) − pα log pα. (3.3.8)

Then Eq. (5.6.8) follows since the first term in the second equality is the accessible
entanglement, and subtracting this gives the relation for inaccessible entanglement.
Notice that since E ≥ Einacc, the presence of entanglement is a necessary condition
for inaccessible entanglement.

Given the irrep probabilities in Eq. 3.3.5, we now have a tensor network
formulation of Einacc. In the following, we explore how different classes of SPT
phases behave with regards to inaccessible entanglement.

3.4 Bounds for the inaccessible entanglement

In this Section we derive bounds on the entanglement that is inaccessible due to
SPT order. It is trivial to deduce that Einacc = 0 for a product state (which has
no entanglement) or a state with no symmetry (which has no SSR). We show,
however, a non-zero lower bound in the presence of symmetries for states with
non-trivial SPT order. This bound, together with the upper bound, reads as

log
(

|G|
|k|

)
≤ Einacc ≤ log(|G|), (3.4.1)

where G is the symmetry group protecting the topological order and k is the
projective centre of G associated to the cocycle characterizing the SPT phase
(defined in Eq. (2.4.6)). We thereby develop a prescription for all SPT phases
under finite Abelian groups by showing that non-trivial SPT phases remarkably
incur a non-zero lower bound on the inaccessible entanglement.
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Chapter 3. Inaccessible entanglement in SPT phases

3.4.1 Maximal inaccessible entanglement in the MNC phase

We first consider the simpler case of MNC phases, which obey a strong condition
on inaccessible entanglement where the lower bound meets the upper bound

Einacc = log(|G|), (3.4.2)

given the symmetry G. MNC phases therefore maximise the inaccessible entangle-
ment. The irrep probabilities are pα = 1

|G| ∀α, which produces maximal entropy
S({pα}), and hence Eq. (3.4.2). We first give an example to illustrate this result.

The Haldane or cluster phase is a canonical example of the MNC phase, which
is protected by the symmetry G = Z2 × Z2 for which the cohomology group is
known to be H2(G,U(1)) = Z2, indicating one trivial and one SPT phase [174, 228].
One valid symmetry representation is given by u(g) = ⊕

α χα(g), where χα is the
character of the irrep α, and the projective representation in the MNC phase is given
by the Pauli operators including the identity, V (g) = σ(g). States satisfying this
symmetry have an MNC cocycle as all the Pauli operators mutually anti-commute,
so the projective centre k contains only the identity. Since the Pauli matrices are
traceless, Tr(σ(g)) = 0 ∀g ∈ G, the only contribution to pα in Eq. (3.3.5) is from
the identity element and hence pα = 1

4∀α. Therefore in the Haldane phase the
inaccessible entanglement is 2.

To derive a similar result for all states in an MNC phase, we start from
Eq. (3.3.5). We first use symmetries of the left fixed point. The main step will be
to use the simplified form of the projective representation in Eq. (2.4.9). We begin
by fixing the form of the left fixed point according to the symmetry imposed by
Eq. (2.4.3). Inherited from the symmetries of the transfer matrix T, the left fixed
point is also symmetric under V (g) = 1⊗ Ṽ (g), i.e. ρL = (1⊗ Ṽ (g))ρL(1⊗ Ṽ (g)†).
By Schur’s Lemma, ρL can therefore be written as ρL = ρ̃L ⊗ 1, for some matrix
ρ̃L carrying correlations and corresponding to the junk subspace. We choose
normalisation Tr(ρL) = 1 which implies that Tr(ρ̃L) = 1/Dω.

Inserting back the above form of the fixed point ρL into Eq. (3.3.5), the irrep
probabilities can be expressed as

pα = 1
|G|

∑
g

χα(g) Tr
(
(ρ̃L ⊗ 1)(1⊗ Ṽ (g))

)
Tr
(
(ρ̃L ⊗ 1)(1⊗ Ṽ †(g))

)
.

(3.4.3)

Now multiplying out the corresponding parts of the tensor product, and reducing
the trace over it,

pα = 1
|G|

∑
g

χα(g) Tr(ρ̃L)2 Tr
(
Ṽ (g)

)
Tr
(
Ṽ †(g)

)
. (3.4.4)

Using now Eq. (2.4.8) and that Tr(ρ̃L) = 1/Dω, the above equation becomes

pα = 1
|G|

1
D2

ω

∑
g

χα(g)D2
ωδg,e. (3.4.5)
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3.4. Bounds for the inaccessible entanglement

Using χα(e) = 1, pα finally takes the same value for all irreps α,

pα = 1
|G|

. (3.4.6)

The irrep probabilities are degenerate, meaning that the weight of each sector
contributes equally to Einacc, and the entropy is maximised which confirms Einacc =
log(|G|). This demonstrates that MNC phases have the maximal set of topologically
protected degenerate edge modes Dω = |G| from Eq. (2.4.7), which is reflected in
the inaccessible entanglement.

*

3.4.2 Generalisation of bounds to non-MNC phases

We generalise the inaccessible entanglement to describe all SPT phases, and
crucially show that for non-MNC phases there exists a non-zero lower bound,

log
(

|G|
|k|

)
≤ Einacc ≤ log(|G|), (3.4.7)

for the group G and projective centre group k defined in Eq. (2.4.6). We will first
outline the steps taken to prove this. We use the general form of V (g) in Eq. (2.4.5),
and thus are prevented from easily evaluating the trace over ρL. However, much
of the following proof remains in the same vein as in the previous Section, by
simplifying the expression for pα as much as possible by symmetry under V (g).
Finally we make an argument with entropy configurations from which we deduce
the lower bound.

First we use the symmetry of ρL under V (g) to deduce the fixed point. By
Schur’s Lemma, the fixed point is again ρL = ρ̃L ⊗ 1, where now ρ̃L = ⊕

a ρ̃L,a, and
each ρ̃L,a has dimension na ×na. Again we choose the normalisation Tr(ρ̃L) = 1/Dω

for convenience. Recalling the form of V (g) from Eq. (2.4.5), the measurement
probability then is written

pα = 1
|G|

∑
g

χα(g) Tr
(
ρ̃L

⊕
a

µa(g)1na ⊗ Ṽ (g)
)

Tr
(
ρ̃L

⊕
a

µa(g)1na ⊗ Ṽ †(g)
)
.

(3.4.8)

Separating the trace over the tensor product,

pα = 1
|G|

∑
g

χα(g) Tr
(
ρ̃L

⊕
a

µa(g)
)

Tr
(
ρ̃L

⊕
a′
µa′(g)

)
Tr
(
Ṽ (g)

)
Tr
(
Ṽ †(g)

)
.

(3.4.9)

Using Eq. (2.4.8), we can evaluate the traces over the projective representation,
such that pα further simplifies to

pα = D2
ω

|G|
∑
s∈k

χα(s) Tr
(
ρ̃L

⊕
a

µa(s)
)

Tr
(
ρ̃L

⊕
a′
µa′(s)

)
. (3.4.10)
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Crucially, at this point, pα depends only on the value that χα takes in k ⊂ G. This
will lead to degeneracy in the different pα, giving our lower bound of Einacc. To
derive a simplified expression for pα, we insert ρ̃L

⊕
a µa(g) = ⊕

a µa(g)ρ̃L,a, and
Dω =

√
|G|/|k| to arrive at

pα = 1
|k|

∑
s∈k

χα(s)
∑

a

µa(s) Tr(ρ̃L,a)
∑
a′
µa′(s) Tr(ρ̃L,a′). (3.4.11)

We now use that the µa(g) are linear characters of G, i.e. there is a function
u(a) such that µa(g) = χu(a)(g) ∀ g ∈ G. Then, we can write χα(s)µa(s)µa′(s) =
χα(s)χu(a)(s)χu(a′)(s). Combining the first two characters as χα(g)χu(a)(g) =
χα·u(a)(g), we can now use the row character orthogonality relation∑g∈G χα(g)χβ(g) =
|G|δαβ to simplify the sum ∑

s∈k χα·u(a)(g)µa′(s) = |k|δα·u(a),u(a′)[170]. This leaves
us with the final expression:

pα =
∑

a

Tr(ρ̃L,a) Tr
(
ρ̃L,u−1(α·u(a))

)
. (3.4.12)

We hereby arrive at the final expression above in Eq. (3.4.12). To calculate the
lower bound on inaccessible entanglement we use the fact that the probabilities
pα depend only on the values that χα takes in k, which means that each value
of pα occurs |G|

|k| times. When pα have such a degeneracy, the configuration with
lowest possible entropy is that for which |G|

|k| of the pα are equal to |k|
|G| , and the rest

are 0. This leads to the lower bound on Einacc = log
(

|G|
|k|

)
for non-MNC phases.

Combining this with the upper bound given by the size of the symmetry group,
leads to the main result presented in Eq. (3.4.7).

3.4.3 Comparison with string order parameter

We show here that the string order parameter for 1D SPT phases [157] can be
related to the inaccessible entanglement Einacc. The probabilities pα for each
symmetry sector α are the Fourier transform of the string order parameter with
identities as the end operators,

pα = 1
|G|

∑
g

χα(g)s(g, 1, 1), (3.4.13)

where the string order is defined

s
(
g,OA, OB

)
= Tr

(
ρLO

AV (g)
)

Tr
(
ρLO

BV (g)†
)
, (3.4.14)

and OA, OB are Fin a set of carefully chosen operators specific to the symmetry
and projective representation which allow a particular selection rule to be detected.
The rule changes at the phase transition point and allows unique determination of
the phase, even distinguishing different MNC phases [92, 157].

This has allowed us to give an operational interpretation to string order as well
as more concretely linking Einacc to phase detection. The expression in Eq. (3.4.13)
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clarifies why inaccessible entanglement is not directly an order parameter; the
missing end operators in inaccessible entanglement mean that the full information
of the phase cannot be captured due to the lack of additional structure afforded,
which the string order still possesses.

3.5 Investigation of the bounds

In this Section we explore the bounds on the inaccessible entanglement in SPT
states, and present numerical results to consolidate our findings. We consider the
following main questions. Firstly, can states be constructed to explore the whole
bound? Secondly, where do states typically live in the bound? We consider how to
explicitly construct states both on the lower and upper bound, and probe the SPT
phase and entanglement properties of the state. Lastly, we examine the effect of
varying bond and physical dimension on the inaccessible entanglement.

We first introduce some conventions we will use in this Section. When perform-
ing interpolations between states of interest, we will filter certain components of
the state |Ψ[A(λ)]⟩, i.e. we choose A(λ) in the form

A(λ) =
∑
j∈I

Aj |j⟩ + λ ·
∑
j /∈I

Aj |j⟩ , (3.5.1)

for some set of indices I. Here and in the rest of this Section, the basis set {|j⟩}
is that which diagonalises u(g), such that u(g) |j⟩ = χj(g) |j⟩. The path defined
by tuning parameter λ ∈ [0, 1] for the state |Ψ[A(λ)]⟩ is a particular adiabatic
evolution where each MPS is the ground state of some Hamiltonian H(λ). By
interpolating λ acting on a particular symmetry sector we can filter out the state’s
support on that sector, and effectively eliminate that symmetry action, which
enables us to manipulate the symmetry of the state in a smooth, controlled manner.

Throughout this numerical investigation we mainly employ an MPS construction
which generates random states in a particular SPT phase by inputting u(g) and
V (g) and symmetrising a random MPS tensor. This allows us to construct generic
families of states in a chosen SPT phase and to study their properties. We first
generate the random, injective tensor M sampled from a Gaussian distribution of
mean 0 and variance 1 over the complex numbers. We then sum over M i with
elements of the symmetry as follows,

Ai =
∑

g

∑
j

u(g)ij

(
V (g)M jV (g)†

)
. (3.5.2)

The MPS tensor defined above naturally satisfies the symmetries in Eq. (2.3.2)
imposed by the fundamental theorem. The two crucial ingredients of the construc-
tion are the physical representation of the symmetry u(g), written as a direct sum
over its linear irreps χα(g) with multiplicity mα, and the projective representation
V (g), built from projective irreps Va(g) with multiplicity na. The dimension of
V (g) is the bond dimension D = ∑

a na dim(Va(g)) while the dimension of u(g) is
the physical dimension d = ∑

α mα. Note that all figures presented will display a
sample of 106 states.
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3.5.1 Tight bound for the inaccessible entanglement

We demonstrate that there exists no tighter bound for Einacc in the trivial phase by
interpolating from an example in an SPT-trivial phase to a product state, which
adiabatically connects the upper and lower bound, as shown in Fig. 3.2. We will
use a toy MPS construction as our example for an SPT-trivial maximally entangled
state with zero accessible entanglement. With this construction, we can interpolate
to a product state and hence demonstrate the tightness of the bound. The MPS
tensor is given by

A
(ij)
ij = |i⟩ ⟨j| , (3.5.3)

where the indices i and j run from 1 to D, and the physical index (ij) runs
from 1 to d = D2. This state is a product of maximally entangled pairs. The
MPS generated by this tensor satisfies the symmetry condition of Eq. (2.3.2) with
u(g) = V (g)⊗V (g) and therefore V (g) can be any invertible matrix satisfying the
group relations of G. For convenience we will use V (g) = ⊕D

a=0 χa(g) to study the
trivial SPT phase. Then, by the Clebsch-Gordan series the linear representation is
written u(g) = ⊕D

α=0 (1D ⊗ χα(g)).
We consider Z2×Z2 symmetry by using the MPS tensor introduced in Eq. (3.5.3)

with bond dimension D = 4 and physical dimension d = 16. The path we choose
is the interpolation |Ψ[A(λ)]⟩ as defined in Eq. (3.5.1) with I = {0} to filter all
but the trivial irrep which connects the highly entangled state |Ψ[A(λ = 1)]⟩ to
the product state |Ψ[A(λ = 0)]⟩ in the trivial irrep, while respecting the symmetry.
This interpolation smoothly connects Einacc = 2 to Einacc = 0 tuning through an
irrep probability distribution pα = {1

4 ,
1
4 ,

1
4 ,

1
4} to pα = {1, 0, 0, 0}. The example

state we give is but one of many possible examples which could have produced
this. As we will later show, indeed states typically saturate the upper bound, while
having (close to) zero inaccessible entanglement or residing in the middle region is
rare.

3.5.2 Typical behaviour in the MNC and trivial phase

In this Section we discuss the inaccessible entanglement of states in the trivial
and non-trivial (MNC) SPT phase of Z2 × Z2. We begin by discussing the cluster
state as a canonical example of a state in an MNC phase (the cluster phase). We
comment on the allowed irrep probabilities in trivial and non-trivial SPT phases in
this simple case; trivial order has no restrictions, whereas the MNC phase is fixed.

We first more exhaustively discuss the inaccessible entanglement of the cluster
state, which we have calculated in §3.4.1. The cluster state has pα = 1/4 ∀α,
so Einacc = 2 which is the upper bound on inaccessible entanglement for this
symmetry group. The cluster state is the unique ground state of the stabiliser
Hamiltonian HC = −∑

n σ
z
nσ

x
n+1σ

z
n+2 for sites n, and it can be prepared by a finite

depth circuit of CZ = diag(1, 1, 1,−1) gates between neighbouring pairs of sites
each initialised in the state |+⟩⊗N ; hence it is short-range entangled [164, 238, 239].
An MPS description of the cluster state can be given by the Pauli matrices σi,
i = 1, x, y, z which has bond dimension D = 2 and physical dimension d = 4,
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Figure 3.2: Inaccessible entanglement of states |Ψ[A(λ)]⟩ for a filter λ. This
is implemented in two ways: firstly, for families of random states and a certain
λ (scattered dots) defined by the MPS tensor in Eq. (3.5.2), and secondly an
interpolation in λ on a particular trivial MPS construction defined in Eq. (3.5.3)
(solid magenta line). The tensors are constructed with Z2 × Z2 symmetry and the
interpolation on any MPS tensor A(λ) as defined in Eq. (3.5.1), where I = {0} is
the trivial irrep. For reference, the cluster state is also displayed (red dot).

so the linear representation has multiplicity mα = 1 for each irrep such that
u(g) = ⊕

α χα(g). Note that we use the notation σi for MPS constructions and σ(g)
for representations, where both refer to the set of Pauli matrices. The Schmidt
values of the state are (1

2 ,
1
2), so E(ρ) = 2S(ρA) = 2. Therefore the accessible

entanglement is zero; all the entanglement is inaccessible. Note that the factor
of two comes from periodic boundary conditions; partitioning the system cuts
through two bonds.

Let us now consider the rest of the cluster phase. The inaccessible entanglement
persists throughout the cluster phase, as demonstrated in Fig. 3.2 by studying
random states with a non-trivial multiplicity in the physical representation. In
this figure we use the MPS tensor A from Eq. (3.5.2), where SPT-trivial states
are constructed with na = 4, mα = 2 ∀ a, α (bond dimension D = 8 and physical
dimension d = 16), while the MNC phase is constructed with na = 4, mα =
2 ∀ a, α (D = 4 and d = 16). We can view Einacc as an invariant in a particular
sense since it takes the same value throughout this phase, being independent of
the correlations within the junk subspace and only dependent on the part of the
state in which symmetries act non-trivially. States in the cluster phase with larger
bond dimension can allow more entanglement due to a non-trivial junk subspace,
which allows non-zero accessible entanglement. These results provide a new angle
on the cluster phase.

Let us compare the trivial phase to the MNC phase. Fig. 3.2 demonstrates
that trivial SPT order displays less restricted combinations of (Einacc, E) compared
to the MNC phase; this originates from a lack of enforced structure in irrep
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Figure 3.3: Irrep measurement probability distributions for a selection of four
random states from the families displayed in Fig. 3.2, three with trivial SPT
order with a filtering λ, where λ → 0 denotes tuning the state towards a product
state, and one with MNC order. The MNC phase strictly contains states with a
degenerate irrep distribution, whereas trivial states can have entirely different irrep
probabilities. The interpolation is from an almost degenerate irrep distribution,
which mimics the MNC phase, to an irrep distribution weighted only on the trivial
irrep, corresponding to zero inaccessible entanglement; notice that between the
λ = 1 state and the MNC phase the probabilities are not quite equal due to the
different SPT order.

probabilities, while the MNC phase has a fixed, degenerate probability distribution.
Despite this key difference, a random state in the SPT trivial phase typically has
similar (Einacc, E)-values compared to the MNC phase value, as they are generally
close to the upper bound. The closer we tune random states in either phase towards
the product state, the lower the entanglement gets on average, but while for the
trivial phase the inaccessible entanglement also decreases on average, the MNC
phase has a fixed inaccessible entanglement. Since the entanglement entropy can’t
decrease below the fixed Einacc in the MNC phase, the path tuning an MNC phase
to a product state would see a phase transition.

We now explore the irrep probability distributions, which can reveal crucial
information about the composition of the inaccessible entanglement, as displayed
in Fig. 3.3. While the MNC phase can only be realised by a degenerate probability
distribution, the trivial phase is unconstrained. Although typically random trivial
states have near maximal inaccessible entanglement, one can distinguish it from an
MNC ordered state given enough precision on the irrep probabilities. Additionally,
we emphasise that while the MNC phases of a system with a symmetry G have a
fixed value for the inaccessible entanglement, this is not enough to distinguish two
MNC phases from the same group G. While two such phases are mathematically
inequivalent, some of their physical properties, such as the topologically protected
edge mode degeneracy and entanglement spectrum, are unchanged.
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Figure 3.4: Histogram of the inaccessible entanglement for the non-MNC phase of
Z4 ×Z2 in families of the random MPS tensor A with a filter λ which drives states
towards an effective Z2 × Z2 symmetry as λ → 0. Moving through each λ value
illustrates how states are gradually forced from the upper bound onto the lower
bound, which corresponds to the upper bound of the trivial phase with Z2 × Z2
symmetry.

3.5.3 Exploring a non-MNC phase

How does the inaccessible entanglement behave for non-MNC phases? In this
part of our Investigation, we explore the properties of non-MNC phases, which
have interesting characteristics compared to MNC or trivial phases, since states
with this SPT order live in a finite region of the bound which is fully restricted,
having a non-zero, symmetry dependent lower and upper bound, which are not
equal to each other. We study the simplest symmetry hosting a non-MNC phase
G = Z4 × Z2, which has H2(G,U(1)) = Z2.

The first point of interest is the possibility to drive states towards the lower
bound by reducing the symmetry of the state to effective sub-symmetries. Secondly,
we observe very little difference in the inaccessible entanglement between the trivial
and non-trivial phase for random states; they both reside near the upper bound.
As before, the trivial and non-trivial phases are still discriminated by the structure
of irrep measurement probabilities. Finally, we make an analysis on the effect of
bond dimension on the patterns of inaccessible entanglement in random states,
and show that increasing D increases the variance and mean of the inaccessible
entanglement. We will clarify that this is due to a significant dependence on the
structure of the junk subspace.
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Reduced effective symmetries

While in §3.5.2 we showed that states in the trivial phase can be driven to the lower
bound (Einacc = 0 for trivial states) simply by interpolating towards a product
state, we now show that considering a larger sub-symmetry allows additional
interesting behaviour. Indeed, both the trivial and the non-MNC phase can be
driven towards Einacc = 2 by effectively enforcing a Z2 × Z2 symmetry through
suppression of particular Ai in the MPS tensor A as introduced in Eq. (3.5.3), with
u(g) = ⊕

α χα(g) where mα = 1 ∀α, and with V (g) constructed with na = 2 for
a ∈ {0, 1} since there are two projective irreps. We refer to Einacc = 2 as the lower
bound, although it is only the lower bound for the non-trivial phase.

The non-MNC phase is depicted in Fig. 3.4. As λ → 1, random states typically
live near the upper bound Einacc = 3 in either phase, while as λ → 0 states
get trapped nearer the lower bound. The latter happens at comparatively low
values of λ, illustrating further that typical states tend to have high inaccessible
entanglement. As an aside, we do not include the value λ = 0 for which the
symmetry is actually enforced, in order to be consistent with assumptions made in
the derivation of the bounds, since these states will not be injective.

Let us describe how we determine which irreps are filtered. We denote elements
g of Z4 × Z2 by g = (x, y) where x = 0, 1, 2, 3 and y = 0, 1. Then, the irreps can
be labelled by a pair α = 0, 1, 2, 3 and β = 0, 1 such that

χα,β(x, y) = (i)αx(−1)βy. (3.5.4)

The irreps we filter are those for which α = 1 or 3, such that the unfiltered
irreps are only faithful to a Z2 ×Z2 subgroup generated by (x, y) = (2, 0) and (0, 1).
Therefore in the limit λ → 0 the MPS effectively only has a Z2 × Z2 symmetry.

Comparing trivial to non-trivial phase

We discuss how the inaccessible entanglement is characterised in the non-MNC and
trivial phase of Z4 × Z2, as illustrated by the following numerical results. We show
that SPT trivial states generally have high inaccessible entanglement, which makes
them hard to distinguish from the non-trivial states, but the lack of degeneracy in
the irrep probabilities (present in the non-trivial phase) reveals their triviality. The
SPT-trivial states are constructed with na = 1, mα = 2 ∀ a, α (bond dimension
D = 8 and physical dimension d = 16), while the non-MNC phase is constructed
with na = 2, mα = 1 ∀ a, α (D = 8 and d = 8).

Studying Fig. 3.5, there are some main remarks. From Eq. (3.4.7), the non-
trivial SPT phase is bounded by 2 ≤ Einacc ≤ 3 whereas the trivial SPT can get
arbitrarily close to zero inaccessible entanglement. Since states in the trivial phase
can reach values below Einacc = 2, decreasing λ drives states towards approaching
this value from below, rather than from above. States with non-MNC order
meanwhile become increasingly clustered above the bound, as they can’t pass
below it, as we saw earlier displayed in Fig. 3.4.
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Figure 3.5: Inaccessible entanglement versus entanglement of states in the SPT
phases of G = Z4 × Z2. We study random states |Ψ[A(λ)]⟩ generated with the
construction in Eq. (3.5.2) with a particular filtering λ effecting the sub-symmetry
Z2 × Z2 as in Fig. 3.4, acting on three trivial and two non-MNC families of states.
The non-MNC phase is restricted to within the bound 2 ≤ Einacc ≤ 3 whereas the
trivial phase is lower bounded by zero.

We demonstrate that one can actually infer SPT triviality or non-triviality from
the irrep probability distributions, displayed in Fig. 3.6. Notice that non-MNC
phase irrep probabilities are four-fold degenerate; this is due to only two inequivalent
irreps which contribute to the calculation for the measurement probabilities pα.
By contrast each irrep probability can be different in the trivial phase.

Let us consider the physical insights offered by three example parameters. In
each, the difference between trivial and non-trivial phase is apparent. Firstly,
recall from §3.5.3 that all states with λ = 1 have a near maximal inaccessible
entanglement. The closer to saturating this value a state is, the closer to degenerate
the irrep probabilities become. Therefore in the non-MNC phase, the probabilities
are approximately pα = 1

8∀α. Notably, this still differs from the behaviour in
an MNC phase, as the irrep probabilities are still not completely flat, having
instead a four-fold degeneracy. The degeneracy in the non-MNC phase becomes
more apparent for λ = 0.3, and even more prominently with λ = 0.01 which
generates the effective sub-symmetry, and echoes the irrep probabilities of the
cluster phase, where pα = 1

4 for half the irreps α, with the other half being zero.
For all three examples, the trivial phase may have eight different irrep probabilities,
which are quite similar to the non-trivial probabilities but are very unlikely to be
exactly degenerate; although such states may have indistinguishable inaccessible
entanglement on average compared to the non-trivial phase, it is remarkable that
due to a trivial projective representation characterising the state, they lose crucial
symmetry structure in the irrep probabilities.
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Figure 3.6: Irrep measurement probabilities of a selection of random states picked
from distributions as in Fig. 3.5 with filtering λ where λ → 0 drives states towards
an effective Z2 ×Z2 symmetry, comparing the trivial phase to the non-MNC phase
of Z4 × Z2. The non-MNC phase irrep probabilities are four-fold degenerate for
any filtering, whereas the trivial phase gives different probabilities to each irrep in
general. However, for both phases, as λ → 0 the irrep probabilities increasingly
resemble the degeneracy of the MNC phase of Z2 × Z2.

Accessible entanglement in the junk subspace

We examine how inaccessible entanglement depends on the bond dimension. Clearly
increasing bond dimension shifts states to a larger entanglement entropy by virtue
of the tensor network construction, but it also leads to a higher average inaccessible
entanglement. We consider the non-trivial SPT phase of Z4 × Z2, which has two
projective irreps. We argue that an imbalance in the multiplicities of the two
irreps leads to larger proportions of states near the upper bound of inaccessible
entanglement compared to equal multiplicities. The numerics for this study are
displayed in Fig. 3.7, where we construct states as in Eq. (3.5.2) with a constant
u(g) = ⊕

α χα(g) where mα = 1 ∀α but where we vary the multiplicities of V (g)
and hence the junk subspace.

Let us first explain the significance of the junk subspace, introduced in Eq. (2.4.9),
by considering the simple case of the MNC phase. The cluster state is represented
by the MPS tensor Ai = σi which has a trivial junk subspace. In the MNC phase,
the accessible entanglement is determined only by the junk subspace of the MPS
tensors; a trivial junk subspace has Eacc = 0, and non-trivial subspace allows
non-zero accessible entanglement. A large junk subspace, effected by higher bond
dimension, has the potential to host more entanglement since the upper bound
on entanglement entropy is given by the Schmidt rank which is log(D); in other
words, there are more free parameters and hence more correlations are possible.
By increasing the junk subspace and exploring the cluster phase Ai = Bi ⊗ σi
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Figure 3.7: Effects of different irrep distributions of V (g) for random states
constructed as in Eq. (3.5.2) in the non-MNC phase of Z4 × Z2, with a constant
u(g) = ⊕

α χα(g) where mα = 1 ∀α. The labels [n0, n1] are the multiplicities of the
two irreducible projective representations in V (g). The first example (blue dots)
has a trivial junk subspace and is therefore limited to a line. States with uneven
multiplicities on the irreps have less possible inaccessible entanglement compared
to the same bond dimension which has equal multiplicities. Larger bond dimension
allows more entanglement but the inaccessible entanglement remains capped at
Einacc = 3, as this upper bound depends only on G.

for some non-trivial Bi, the inaccessible entanglement remains the same, since it
depends only on the part of the state which transforms non-trivially under the
symmetry, yet the entanglement and accessible entanglement can grow. We now
extend this argument to a more general case.

In non-MNC phases, as opposed to MNC phases, the inaccessible entanglement
is not fixed, so there is greater freedom in how the total entanglement is divided into
accessible and inaccessible parts. However, the importance of the junk subspace for
the accessible entanglement is still clear. As the total size of the junk subspaces in
each block increases, so does the the possible values of the inaccessible entanglement
for a given total entanglement. Indeed, the family n = [1, 1] has no junk subspace,
and we see that the inaccessible entanglement is uniquely determined by the total
entanglement. Comparing the two families n = [1, 5] and n = [3, 3] reveals the same
effect. Even though total bond dimension is the same, the structure of the junk
subspaces is different, with the number of free parameters in the junk subspace
being 1+5×5 = 26 compared to 2×3×3 = 18 respectively. In the former case, the
larger number of parameters means more possible values of accessible entanglement,
leading to the more spread-out distribution in Fig. 3.7. This highlights the power of
the inaccessible entanglement to also capture properties due to symmetry structure
on the virtual level.
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3.6 Outlook

3.6.1 Restricting symmetry to a subgroup

Up until this point, we have fixed a symmetry group G and considered the
inaccessible entanglement under G-LOCC for different G-symmetric states. Now,
we consider the inverted scenario, in which we fix a particular state and consider
G-LOCC for different symmetries G. Intuitively, reducing the number of enforced
symmetries should reduce Einacc. To see this explicitly, let us take a state in an
MNC phase of G and determine Einacc under H-LOCC where H is a subgroup of
G. Following the calculation in §3.4.1, we find that pα = 1

|H| for all α, where α now
runs over the |H| irreps of H. Therefore, Eq. (5.6.8) gives Einacc = log(|H|). As
expected, we find that Einacc decreases as smaller symmetry groups are enforced,
corresponding to more of the entanglement in our fixed state becoming accessible
as our LOCC becomes less restricted.

Restricting symmetries to a subgroup also effects the SPT order of a state; a
state with SPT order under G symmetry may be trivial under H symmetry for
H ⊂ G. Yet, as demonstrated above, if we begin with a state in an MNC phase,
the inaccessible entanglement under H-LOCC will always take the maximum value.
For example, consider a state in an MNC phase of G = Z4 × Z4. If we restrict to
the subgroup H = Z2 × Z2, the SPT order becomes trivial, but we nonetheless
have Einacc = log(|H|) = 2. This provides an example of a state in a trivial SPT
phase which, due to the “hidden” presence of SPT order under a larger symmetry
group, maximises Einacc in the way that would normally be expected from a state
in the MNC phase. The maximal inaccessible entanglement therefore captures the
underlying MNC behaviour, even though the actual SPT order is destroyed by
operations which do not protect the symmetry.

3.6.2 Subsystem SPT order

Our results immediately apply to certain 2D subsystem SPT (SSPT) phases
[233, 234]. SSPT order generalises the concept of SPT order to include subsystem
symmetries, which act on rigid subsystems such as lines or fractals. As an example,
the 2D cluster state [164] has subsystem symmetries corresponding to flipping
every spin along a line [26, 233, 240]. These systems can often be analysed with
dimensional reduction which translates the subsystem symmetry group in 2D to an
extensive global on-site symmetry group of an effective 1D system [26, 234, 241, 242].
Because of this, we can immediately apply our results to these phases as well.

For example, if we place the 2D cluster state on a cylinder of circumference
N such that the line symmetries wrap diagonally along the cylinder periodically,
we can consider each block of N × N spins as a single site, such that we get an
effective 1D chain with symmetry group G = (Z2 × Z2)N [26]. For each N , this
1D system is in an MNC phase with respect to G, so our general results can be
applied to show that the inaccessible entanglement will be equal to N . For the 2D
cluster state, this is all of the entanglement, which shows that there is no accessible
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entanglement in the state if the subsystem symmetries are enforced. The above
analysis, which extends to the general family of fractal subsystem SPT phases
defined in Refs. [234, 242], shows that Einacc for these subsystem SPT phases
satisfies an area law in 2D.

3.6.3 Relation to computational power

The study of SPT order shares a remarkably symbiotic relationship with quan-
tum computation via the paradigm of measurement-based quantum computation
(MBQC) [164]. In MBQC, quantum computation is performed using single-site
projective measurements on an entangled many-body state. A state is called a
universal resource for MBQC if these measurements allow the circuit model of
quantum computation to be efficiently simulated, with the cluster state being a
canonical example. Characterizing universal resource states is a fundamental open
problem in MBQC. Remarkably, there is a deep connection between the MBQC
universality of a state and its SPT order: Many SPT phases in 1D and 2D are
computational phases of matter, meaning that every state within the phase is
a universal resource [26, 163, 173–175, 234, 241, 242]. A question which arises
naturally due to their separate connections to SPT order is the following: can
inaccessible entanglement predict whether a state is computationally universal for
MBQC?

One intriguing connection comes from the importance of MNC phases in each
setting: these are the phases which are universal for MBQC in 1D [163, 173, 174],
and they are also the phases in which Einacc is maximised in the entire phase.
This connection extends to the 2D SSPT phases discussed in the previous Section
[26, 234, 241, 242]. This suggests that a maximised value of Einacc may imply that
a state is universal. However if we more closely analyze the MBQC scheme in
Ref. [163], which utilises 1D MNC SPT phases, we see that the connection might
not always be certain. In each phase, there are certain measure-zero subsets of
states which are not universal, even though Einacc remains maximised within these
subsets. Of course, this does not preclude the existence of a different MBQC scheme
for which these subsets are universal. Indeed, a similar scheme from Ref. [175]
comes with a different set of non-universal states which covers some of the holes
left by the scheme of Ref. [163].

When we consider non-MNC phases, the connection becomes less clear still.
In Ref. [243], a scheme of MBQC is introduced which utilises non-MNC phases.
Crucially, unlike the MNC case, universality is not guaranteed in non-MNC phases,
and is determined principally by the on-site symmetry representation u(g). To
check whether the universal states within a phase can be distinguished from the
non-universal ones, we took random states from each case and computed their
Einacc. However, we found that there was no clear differentiating behaviour of
Einacc between the two cases. This suggests that Einacc does not relate strongly to
computational power beyond the MNC case.
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3.7 Discussion & Conclusions

We demonstrated that investigating the properties of G-LOCC is deeply connected
to questions about phases of matter. We defined the accessible entanglement Eacc =∑

α pαEα in this setting operationally, and thereby showed that the inaccessible
entanglement corresponds to the number of Bell pairs inextricable under symmetry-
restricted local operations. The main result of this work is that, given a 1D
system with a global onsite (finite Abelian) symmetry, there is a tight bound on
the inaccessible entanglement log

(
|G|
|k|

)
≤ Einacc ≤ log(|G|), which depends on the

symmetry group and SPT phase (via k) in question. This shows that there is always
some entanglement present in non-trivial SPT phases which cannot be extracted
via symmetry-respecting operations. In the maximally non-commutative SPT
phases, which play an important role in measurement-based quantum computation
[163, 174], we have |k| = 1, such that every state in these phases has Einacc =
log(|G|). In particular, the 1D and 2D cluster states, which are highly entangled
by certain measures [238, 244], have zero accessible entanglement under G-LOCC
for suitable G.

We studied these bounds numerically by constructing random states in different
SPT phases and calculating Einacc. We find that the whole bound can be explored,
although typical states tend to have near maximal Einacc, even in the trivial
phase. We characterised those states near the lower bound as those which have
low weight in certain symmetry sectors, and therefore have an effective subgroup
symmetry. Although it is difficult to distinguish trivial from non-trivial SPT phases
by Einacc alone, we show that they can be distinguished by their irrep probabilities,
which exhibit an exact degeneracy in non-trivial phases. We demonstrate that
the inaccessible entanglement is the entropy of the irrep probability distribution
corresponding to the Fourier transform of the string order parameter, which allows
Einacc to harness some of the properties of the order parameter, and the irrep
probabilities themselves are a good contender to access this information. Recent
studies have accessed the entanglement spectrum of the cluster state on a noisy,
intermediate-scale quantum (NISQ) computer [217, 245], and we believe a similar
study could be done with our method which might prove more able to identify
topological phases beyond the cluster state and illuminate their computational
power.

We also affirmed the question: can “latent” inaccessible entanglement appear
due to the presence of a larger symmetry, which the description misses out on? We
show that an MNC phase protected by some symmetry G can become SPT-trivial
by partially violating the symmetry through restricting operations to a symmetry
H ⊂ G. This “hidden” order is detected by the inaccessible entanglement, since
Einacc still contains the information of the SPT phase under the original symmetry
that is not detected by the entanglement alone.

Throughout this work, we have focused on 1D SPT phases, as well as 2D
subsystem SPT phases via dimensional reduction. For 2D SPT phases with global
symmetries, the classification is given by the third cohomology group H3(G,U(1)),
and it is not clear what bounds may exist for the inaccessible entanglement.
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Therefore a natural future direction for investigation is to extend Einacc to PEPS.
In the outlook we also discussed how our work immediately applies to subsystem-
symmetry protected SPTO, and the relation to MBQC.

An intriguing question is whether the inaccessible entanglement acts as a
resource for a task in quantum information processing, in analogy to the super-
selection induced variance (SIV) which can be viewed as a resource for quantum
data hiding, introduced in Ref. [215]. It was found that states obeying particle
number conservation can be distilled into a part containing pure SIV and a disjoint
part containing pure entanglement, which we can now confirm is the accessible
entanglement. The presence of SIV is a necessary condition for perfect data hiding,
a protocol where classical data is hidden in such a way that it cannot be recovered
by LOCC without quantum communication [216, 246]. One can ask whether these
non-local quantities can be formalised into the framework of a resource theory. It
is also natural to ask about the connection between the inaccessible entanglement
and SIV, by extending the definition of SIV to arbitrary symmetries.
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Chapter 4

Symmetry protected topological
phases in open systems

This Chapter contains the first part of the publication

• Symmetry Protected Topological Order in Open Systems Caroline de
Groot, Alex Turzillo, and Norbert Schuch. arXiv:2112.04483v2 [73]

4.1 Motivation

The realization that the interplay of symmetries and entanglement can give rise
to novel physics beyond the Landau paradigm has led to an expanding zoo of
topologically-ordered phases of matter. A particularly prominent role among those
phases, in particular in one dimension (1D), is played by symmetry protected
topological (SPT) phases, which have their root in Haldane’s original work eluci-
dating the gapped nature of the spin-1 Heisenberg chain and its topological origin,
nowadays known as the Haldane phase [247–249].

SPT phases consist of systems with a unique ground state and a gap, yet which
are distinct from the trivial (mean-field) gapped phase, as witnessed by a number of
characteristic fingerprints: most prominently, string order [157, 177, 250], specific
degeneracies in the entanglement spectrum [157], and fractionalized edge excitations
[249]. A key step toward the comprehensive understanding of SPT phases was
made by using Matrix Product State (MPS) representations [77, 237] of their
ground states. This step was based on the fact that MPS faithfully approximate
ground states of gapped systems [132, 251, 252] and that they allow one to realize
global symmetries locally on tensors that carry physical and entanglement degrees
of freedom [77, 150]. Namely, it was understood that in non-trivial SPT phases, the
physical symmetry that protects the phase acts on entanglement as a projective,
rather than linear, representation. This insight was key in several ways. First, it
provided a unified explanation for the aforementioned fingerprints of SPT phases
in terms of this projective action. Second, it allowed one to obtain a comprehensive
classification of SPT phases, based on the classification of projective representations
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Figure 4.1: Equivalence relations which preserve gapped phases of coherent SPT
mixtures, as extending from gapped phases with pure state SPTO, based on the
formalism in Ref. [4], given in Definition 4.

by group cohomology. And finally, it connected the characterization of SPT phases
based on fingerprints like string order and edge modes to the characterization based
on the equivalence relation by which two systems are in the same phase if they
can be connected by a path of gapped, symmetric Hamiltonians [102, 128, 162].
Altogether, the representation of SPT states by MPS clarified and unified the various
definitions for SPT order (SPTO) for the ground states of gapped Hamiltonian
systems and allowed for their complete classification [77, 253].

The situation becomes much less clear when moving from pure ground states to
mixed states, which are the states we expect to appear in realistic physical systems.
Several questions arise. First, which states should we consider? Depending on the
scenario, relevant states might be thermal states of Hamiltonians [61, 109, 117],
equilibrium states of dissipative evolutions (steady states of Lindbladians) [66, 68,
254–256], or states – for instance, originally pure states with SPT order – which
have been subjected to noise, which could be either Markovian or discrete-time
non-Markovian noise. Second, what is the correct generalization of the symmetry
condition? For Lindbladian noise, at least two different symmetry conditions
have been considered [8, 257–259]; they differ in how the symmetry is imposed on
the joint system-bath interaction, and for discrete noise, even further symmetry
conditions are conceivable. Third, which notion should one use for SPTO? The
various fingerprints of SPTO could give divergent results, or might even be ill-
defined, on mixed states. String order parameters can be defined for any state, but
it is a priori not clear whether the patterns they exhibit are meaningful. For other
fingerprints, such as entanglement spectra or edge modes, it is even unclear how
to define them for mixed states. Fourth, are any of these fingerprints, which are
defined on individual systems, compatible with the notion of SPT phase based on
equivalence relations, analogous to paths of symmetric gapped Hamiltonians? All
in all, in the quest to understand SPTO in the presence of noise, any approach
must address these questions.
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4.2 Summary

In this Chapter, we systematically investigate the robustness of SPTO under various
types of symmetric noise. To this end, we characterize SPTO through string order
parameters. These are constructed by placing local order parameters (labeled
by irreducible representations) at the endpoints of strings of symmetry operators
(labeled by group elements). In gapped phases, any string order parameter either
decays exponentially to zero as the separation of the endpoints is increased, or
converges to a constant whose value depends on the specific order parameter chosen,
and which is generically non-zero. For ground states, the resulting pattern of zeros
and non-zeros, as a function of the irrep and group element labels of the string,
is a fingerprint of the SPT phase. In many cases, including all abelian symmetry
groups, the pattern is in one-to-one correspondence with the SPT phases protected
by the symmetry [157]. We say that a mixed state has some SPT order if it exhibits
the same pattern of zeros and non-zeros as pure states with the same SPTO; if a
symmetric mixed state (such as a mixture of different pure SPT phases) exhibits a
pattern which cannot appear in pure symmetric states, it is said to have no SPTO
at all (not even trivial SPTO). This definition has several advantages: it coincides
with the pure state definition in the limit of pure states, and, being an expectation
value of an operator with tensor product structure, it is both simple to compute
and to measure.

We study the robustness of SPTO, as witnessed by the string order parame-
ter (2.4.10), for systems subject to evolution by general symmetric and locality-
preserving noise. We consider discrete-time evolutions described by quantum
channels, as well as continuous noise described by Lindbladians. The Lindbladian
evolution forms a special case of quantum channels, where the semigroup structure
constrains the possibilities for the action of the symmetry on the channels at
finite times. Locality-preservation encompasses both noise obtained from local
Lindbladians and locality-preserving evolutions which are not locally generated
but which appear, for example, at the boundaries of two-dimensional systems,
in driven systems, and via coupling to non-Markovian baths. We introduce two
different notions of symmetry of quantum channels – strong symmetry (4.4.8) and
weak symmetry (4.4.2). We study several SPT order parameters – string operators,
twisted sector charges, edge modes, and irrep probabilities – analytically and nu-
merically. With the use of these unique “fingerprints” which detect the SPT phase,
we prove that strong symmetry is necessary and sufficient for a noisy evolution to
preserve SPTO, which builds on the formalism for mixed state topological order
given in Ref. [4]. The notion of phases extends from SPT phases in closed systems,
as depicted in Fig. 4.1.

In particular, we define a class of states called coherent SPT mixtures in
Section §4.3, for which a relevant fingerprint of SPTO, namely the string order
parameter, is well-defined. This is a relevant class of mixed states with SPTO
which extend naturally from pure states since SPTO is uniquely characterized
through the string order parameter’s pattern of zeros. This encodes the cocycle
which classifies all 1D SPT phases of finite abelian groups. Moreover, coherent
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SPT mixtures are the ground states of gapped, local Hamiltonians, and therefore
have an MPS description. These states are particularly nice to study thanks to
the ease of TN methods.

In Section §4.4 we introduce the symmetry conditions. We discuss their in-
terpretations in terms of conservation laws, purifications, and couplings between
the system and the environment, and finally investigate the form of the symmetry
conditions when applied to Lindbladians. Weakly symmetric channels are invariant
under the symmetry action, which seems the natural definition of a symmetric chan-
nel, and corresponds to symmetric system-bath interactions where the symmetry
acts simultaneously on the system and the bath. Strongly symmetric channels, on
the other hand, have the property that each Kraus operator individually commutes
with the symmetry up to a constant phase factor, and correspond to symmetric
system-bath interactions where the symmetry only acts on the system. Specializing
these concepts to Lindbladian channels, where the semigroup structure imposes
additional restrictions, we recover the notions of strong and weak symmetry studied
by Albert and others [8, 257–259].

In Section §4.5 we give the main result that SPTO is robust to channels
which are strongly symmetric, focused on uncorrelated noise for which there
is a decomposition of the channel as a tensor product over sites of the lattice.
To be precise, we prove that the (local) strong symmetry condition on locality-
preserving noise is sufficient to preserve SPTO (Lemma 2) and, conversely, that
strong symmetry is necessary for channels generated in finite time by strictly
local Lindbladian evolution (Theorem 1), which we conjecture to hold for all local
Lindbladian evolutions (4.6.4). This result might appear surprising in light of
the work of Coser and Pérez-García, who show that symmetric local Lindbladian
noise, applied for a short amount of time, destroys SPTO [4]. As we demonstrate,
this is due to the fact that their noise is only weakly symmetric, and not strongly
symmetric. We thus find that SPTO is robust to noise that satisfies a sufficiently
strong yet natural symmetry condition; namely that the system-bath coupling is
invariant under the symmetries acting on the system alone, as opposed to jointly
on the system and bath.

We study the string order numerically under channels in Section §4.5.2. We
consider two examples of strong symmetry (given by the dephasing channel) and
weak symmetry (given by the depolarising channel). We observe a numerical
agreement with the main Theorem. Evolutions with strong symmetry preserve
string order, while weakly symmetric channels do not. Through the example of
an infinite time evolution, given by the fully dephasing channel, which destroys
SPTO despite being strongly symmetric, we demonstrate the importance of the
finite time assumption in Theorem 1. We also demonstrate that fingerprints of
SPTO such as twisted sector charges, topologically protected edge modes, irrep
probabilities and SPT complexity also agree with the analytical results.

Finally, in Section §4.6, we discuss the extension of this result from uncorrelated
noise to causal (that is, locality-preserving) noise, which includes the case of fast,
local Lindbladians. We give a generalisation of the preservation of string operators
by locally-SS channels in Lemma 2 and an analogue to Theorem 1 which is left
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open as a conjecture (Conjecture 3). A nice intuition behind the Conjecture comes
from analysing edge modes; these survive only under a fastness assumption which
means that the range r of the MPO is small compared to the system size.

4.3 Coherent SPT mixtures

Now we turn to SPT invariants of open systems. In the formalism of Lindbladian
evolution [4], phases of open systems are defined in terms of states, as opposed
to with some open systems analogue of gapped paths of Hamiltonians. We do
not attempt to answer the questions of which mixed states generalize the ground
states of gapped, local Hamiltonians and what is their phase classification under an
appropriate equivalence relation. Instead we seek to motivate the strong symmetry
condition on Lindbladian evolution by focusing on a special class of mixed states
for which we can define an invariant:

Definition: A coherent SPT mixture is a
mixed state with a well-defined pattern of

zeros.
(4.3.1)

Such states have a well-defined SPT invariant [ω] that can be extracted from the
pattern of zeros, as discussed above. Mixed states that are ensembles

ρ =
∑

i

pi|ψω
i ⟩⟨ψω

i | (4.3.2)

of SPT pure states |ψω
i ⟩ all in the same SPT phase [ω] are examples of coherent

SPT mixtures. We leave open the possibility that there exist exotic coherent SPT
mixtures that are not covered by this example.1

The main claim of the paper is that translation-invariant pure SPT states
(and more generally, states of the form (4.3.2) where each component |ψω

i ⟩ is
translation-invariant) are transformed into coherent SPT mixtures (4.3.1) with
the same SPT invariant by a Lindbladian evolution if and only if the evolution
is strongly symmetric. We prove this claim for uncorrelated noise in Section §4.5
and show its ‘if’ direction (while conjecturing its ‘only if’ direction) for fast, local
Lindbladians in Section §4.6. In particular, this result means that SPTO of pure
states is robust in open systems described by strongly symmetric Lindbladians.

4.4 A strong symmetry condition on channels

We begin by introducing the weak (4.4.2) and strong (4.4.8) symmetry conditions
and discussing their various formulations. The latter is motivated by showing
that weak symmetry is insufficient to preserve SPTO. The argument that strong

1Components of the ensemble that have a different SPTO or no SPTO at all could cancel
exactly the expectation values of the string operators, yielding a well-defined pattern of zeros.
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symmetry is necessary and sufficient to preserve SPTO is reserved for Section §4.5
(uncorrelated noise) and Section §4.6 (causal channels).

The symmetry conditions are first formulated and studied for arbitrary quan-
tum channels. Then in 4.4.4, for the particularly important case of Lindbladian
evolution Et = etL, the conditions are reformulated in terms of L; the Lindbladian
formulations have been discussed previously [8, 257–259]. The definitions and
results in this section apply to general systems on finite-dimensional Hilbert spaces,
not just spin chains; Ug denotes the action of the symmetry on the full system, not
on a single site of a spin chain.

4.4.1 Weak and strong symmetry conditions

A channel E is said to satisfy the weak symmetry (WS) condition if it commutes,
as a superoperator, with the symmetry-implementing channels

Ug(ρ) = UgρU
†
g ; (4.4.1)

that is, if

Ug ◦ E ◦ U †
g = E , ∀ g . (weak symmetry condition) (4.4.2)

The channel E can be expressed in terms of a Kraus representation, E(ρ) =∑
KiρK

†
i , where we can interpret the Ki as representing different trajectories. In

terms of a Kraus representation of E , the weak symmetry condition reads∑
i

(UgKiU
†
g ) ρ (UgKiU

†
g )† =

∑
i

KiρK
†
i , ∀ g . (4.4.3)

Since Ki and UgKiU
†
g define Kraus representations of the same channel, they are

related by a unitary xg [15]:

UgKiU
†
g =

∑
j

xg
jiKj , ∀ i, g . (4.4.4)

Since Ug forms a representation of G, so does xg:∑
k

xgh
kiKk = UghKiU

†
gh = UgUhKiU

†
hU

†
g =

∑
jk

xh
jix

g
kjKk = , ∀ i, g . (4.4.5)

In a basis of Kraus operators Kg
i that diagonalizes xg as a collection of phases

θi(g), (4.4.4) amounts to

UgK
g
i U

†
g = eiθi(g)Kg

i , ∀ i, g . (4.4.6)

The existence of a basis Kg
i , for each g, such that this relation holds is equivalent

to the WS condition.
Observe that the phases θi in the WS condition (4.4.6) may differ across the

trajectories (labeled by i). It will be demonstrated in Section §4.5 that this
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4.4. A strong symmetry condition on channels

interference between the trajectories is the source of the destruction of SPTO, as
eliminating it by setting the phases equal is sufficient to ensure that a channel
preserves SPTO. Let us now take the phases to be equal: θi(g) = θ(g) for all i, g.
Under this restriction, the condition (4.4.6) is independent of the basis of Kraus
operators because Kg

i
′ = ∑

j vijK
g
j (for any unitary vij) satisfies

UgK
g
i

′U †
g =

∑
j

vijUgK
g
jU

†
g = eiθ(g)∑

j

vijK
g
j = eiθ(g)Kg

i
′ . (4.4.7)

Basis-independence means we can also drop the group label on the Kraus operators:
Kg

i = Ki for all i, g. We arrive at what we call the strong symmetry (SS) condition:

UgKiU
†
g = eiθ(g)Ki , ∀ i, g . (strong symmetry condition) (4.4.8)

Note that there is no distinction between the WS and SS conditions for a reversible
(unitary) channel, as such a channel is realized by a single Kraus operator, and so
it has only a single phase θ(g).

By Schur’s lemma, the SS condition (4.4.8) may be restated as the condition
that each Ki is block-diagonal in the irrep basis: Ki = ⊕αK

α
i , where Kα

i acts on
the multiplicity space of the (isomorphism class of the) irrep α. The completeness
relation ∑i K

†
iKi = 1 is equivalent to a completeness relation on each block, so the

channel decomposes as E = ⊕αEα, where Eα is the channel with Kraus operators
Kα

i . This decomposition is a stronger constraint than the decomposition of WS
channels, which, when viewed as matrices on the space of operators, have a block-
diagonal form E = ∑

α Φα in the irrep basis of the action Ug ⊗ U †
g ; note that the

operators Φα are different from Eα and are not themselves channels.

4.4.2 Charge conservation

The strong symmetry condition may be alternatively characterized as

E†(Ug) = eiθ(g)Ug , ∀ g . (strong symmetry condition) (4.4.9)

where the dual channel E† is the channel with Kraus operators K†
i , E†(X) =∑

K†
iXKi. This alternative statement may be interpreted as conservation of

symmetry charge. The charge of a state under a symmetry g is the expectation
value ⟨Ug⟩ρ = Tr[ρUg] of the operator Ug on the state, and the strong symmetry
condition means this expectation value is the same (up to a phase) for ρ and E(ρ):

⟨Ug⟩E(ρ) = ⟨E†(Ug)⟩ρ
SS= eiθ(g)⟨Ug⟩ρ . (4.4.10)

The connection between strong symmetry and conservation laws has been noted
previously [257].

The equivalence of the two statements may be seen as follows. If a channel
satisfies Eq. (4.4.8), then

E†(Ug) =
∑

i

K†
iUgKi = eiθ(g)∑

i

K†
iKiUg = eiθ(g)Ug , (4.4.11)
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which is Eq. (4.4.9). For the converse, we need a lemma: if E†(X) = Y and
E†(X†X) = Y †Y , then XKi = KiY . If this is true, the statement that Eq. (4.4.9)
implies Eq. (4.4.8) follows from taking X = Ug and Y = eiθ(g)Ug. The lemma is
proved by borrowing the argument for Theorem 6.13 of Ref. [260]:∑

i

(XKi−KiY )†(XKi−KiY ) = E†(X†X)−E†(X†)Y −Y †E†(X)+Y †E†(1)Y = 0 .

(4.4.12)
Then, since the left hand side is a sum of positive terms, each of them must
individually vanish: XKi = KiY .

4.4.3 Symmetric purifications

The symmetry conditions can be restated in terms of purifications:

Claim: A channel is weakly symmetric if it has a
purification to a unitary that commutes, up to a

phase, with some diagonal symmetry Ug ⊗ UA
g , for

which the action UA
g on the ancillary space leaves the

ancilla state invariant.

(4.4.13)

Claim: A channel is strongly symmetric if and only
if it has a purification to a unitary that commutes, up

to the phase eiθ(g), with the symmetry Ug ⊗ 1A.
(4.4.14)

We do not prove a converse to the first claim, though we expect it or a similar
statement to hold. The second claim means that one may take UA

g = 1A precisely
when the channel is strongly symmetric. These statements will come in handy in
Section §4.6, when we discuss causal channels in terms of their purifications to
matrix product unitaries. The statements also have interpretations in terms of
couplings between the system and environment, which we discuss here. First let
us review the basics of purifications and justify the claims.

Let E be a channel on a system with Hilbert space H. A purification of E is
a unitary W on a space H ⊗ A – the original space appended with an ancillary
space – such that, for some ancilla state |a⟩ ∈ A,

TrA(W (ρ⊗ |a⟩⟨a|)W †) = E(ρ) . (4.4.15)

A purification W always exists. Given a set of Kraus operators Ki, indexed in a
set I, form the ancillary space A spanned by an orthonormal basis |ei⟩, i ∈ I and
the operator V : H → H ⊗ A that acts as

V : |ψ⟩ 7→
∑

i

Ki|ψ⟩ ⊗ |ei⟩ . (4.4.16)

The operator V is called a Stinespring dilation of E and is an isometry since

⟨ϕ|V †V |ψ⟩ =
∑
ij

⟨ei|⟨ϕ|K†
jKi|ψ⟩|ej⟩ =

∑
i

⟨ϕ|K†
iKi|ψ⟩ = ⟨ϕ|ψ⟩ . (4.4.17)
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Then use the fact that any isometry V on H ∼= H ⊗ |a⟩, |a⟩ ∈ A, can always
be extended to a unitary W on H ⊗ A. Conversely, if we expand the expression
(4.4.15) in an orthonormal basis |ei⟩ of A to obtain∑

i

⟨ei|W |a⟩ρ⟨a|W †|ei⟩ = E(ρ) , (4.4.18)

we see that Ki := ⟨ei|W |a⟩ are candidates for a set of Kraus operators for E . To
see that they are actually Kraus operators, check completeness:∑

i

K†
iKi =

∑
i

⟨a|W †|ei⟩⟨ei|W |a⟩ = ⟨a|(1 ⊗ 1A)|a⟩ = 1 . (4.4.19)

The purification can be expressed diagrammatically as a tensor

. (4.4.20)

The claim (4.4.13) about weak symmetry (4.4.2) may be expressed as

, (4.4.21)

while the claim (4.4.14) about strong symmetry (4.4.8) may be expressed as

. (4.4.22)

Let us now prove the claim (4.4.13). Suppose W is symmetric with the symmetry
Ug ⊗ UA

g and the state |a⟩ is invariant: UA
g |a⟩ = |a⟩. Then the Ki = ⟨ei|W |a⟩

satisfy weak symmetry (4.4.4):

,

(4.4.23)

where xg
ji are the matrix elements xg

ji = eiθ(g)⟨ei|(UA
g )†|ej⟩ = eiθ(g)(UA

g )∗
ji.
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One direction of the claim (4.4.14) follows from a similar argument. Suppose W
is symmetric with Ug ⊗ 1A. Then the Ki = ⟨ei|W |a⟩ satisfy the strong symmetry
condition (4.4.8):

. (4.4.24)

Conversely, suppose the Kraus operators satisfy the SS condition and construct
a symmetric W as follows. Without loss of generality, take |a⟩ to be |e1⟩. A unitary
extension of the Stinespring dilation V is a square matrix W consisting of blocks
Kj

i , where the blocks of the first column are the Kraus operators K1
i := Ki, and

we choose the remaining blocks so that W is unitary:∑
i

Kj†
i K

k
i = δjk1H . (4.4.25)

The remaining blocks may be chosen to be symmetric (so that W is symmetric) as
follows. Build linear independent columns by adding signs like Kj

i := (−1)δ(i<j)Ki,
then make them orthogonal by applying the Gram-Schimdt process, and finally
normalize. The result is manifestly symmetric.

The claims (4.4.13) and (4.4.14) may be interpreted in terms of the coupling
between the system and the environment (the ancillary space). Suppose W
represents unitary evolution by a Hamiltonian:

W = e−itH/ℏ , H =
∑

i

HS
i ⊗HE

i , (4.4.26)

where the HS
i and HE

i are each assumed to be linearly independent. If the unitary
evolution W satisfies the formulation of the weak symmetry condition in the claim
(4.4.13) at all times t, then Ug ⊗ UA

g is a symmetry of H. If the unitary evolution
W satisfies the strong symmetry condition (4.4.14) at all times t, then

0 = (Ug ⊗1A)H−eiθ(g)H(Ug ⊗1A) =
∑

i

(UgH
S
i −eiθ(g)HS

i Ug)⊗HE
i , ∀ g , (4.4.27)

which, since the HE
i are linearly independent, implies UgH

S
i = eiθ(g)HS

i Ug , ∀ i, g.
By conjugating both sides of the equation, we find that eiθ(g) = e−iθ(g), so θ(g) = 0, π.
Since W is a continuous function of t, the phase θ(g) must vary continuously from
zero at t = 0 to its values at nonzero times (this can be formalized by including the
constant order in the expansion of (4.4.26) in the symmetry condition (4.4.27));
this means it must be zero at all times. Therefore, for channels arising from a
continuous coupling of system to environment,

UgH
S
i = HS

i Ug , ∀ i, g , (4.4.28)

which is to say that the system alone, rather than merely its composite with the
environment, is symmetric.
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4.4.4 Symmetry conditions on Lindbladians

Let us now discuss semigroups of channels generated by continuous time evolution
by a Lindbladian (2.2.1), which we introduced in Section §2.2.1.

If a semigroup consists of channels satisfying the weak or strong symmetry
condition, the Lindbladian generating it satisfies, respectively,

Ug ◦ L ◦ U †
g = L , ∀ g . (WS condition on L) (4.4.29)

UgLi = LiUg , UgH
S = HSUg , ∀ i, g , (SS condition on L)

(4.4.30)
where the Li are jump operators and HS is the Hamiltonian of the system (2.2.1).
In particular, this implies that semigroups of strongly symmetric channels generated
by Lindbladian evolution necessarily have θ(g) = 0, ∀ g at all times.

To see the weak symmetry condition (4.4.29), observe that the channels Et = etL

commute with Ug at all times t if and only if L commutes with Ug. To see the
strong symmetry condition (4.4.30), observe that

Eδt(ρ) = ρ+ δtL(ρ)

= ρ+ δt

[(
− i

ℏ
HS − 1

2

ℓ∑
i=1

L†
iLi

)
ρ+ ρ

(
i

ℏ
HS − 1

2

ℓ∑
i=1

L†
iLi

)]
+

ℓ∑
i=1

δt LiρL
†
i ,

(4.4.31)

at small times δt, and thus

Eδt(ρ) =
ℓ∑

i=0
Ki(δt) ρKi(δt)† (4.4.32)

with Kraus operators

K0(δt) = 1 + δt

(
− i

ℏ
HS − 1

2

ℓ∑
i=1

L†
iLi

)
, Ki>0(δt) =

√
δt Li . (4.4.33)

This relationship between Kraus operators and jump operators lets us translate our
strong symmetry condition (4.4.8) on channels into the strong symmetry condition
(4.4.30) on the Lindbladians that generate them: First, from the commutation
relation UgKi>0 = eiθ(g)Ki>0Ug, we infer that UgLi = eiθ(g)LiUg. It follows that
X := 1 − δt 1

2
∑
L†

iLi commutes with Ug. Second, from the commutation relation
UgK0 = eiθ(g)K0Ug, we get Ug(−(i/ℏ)HSδt + X)U †

g = eiθ(g)(−(i/ℏ)HSδt + X).
Taking the Hermitian part and using that X commutes with Ug, we obtain X =
UgXU

†
g = cos θ(g)X + sin θ(g) (δt/ℏ)HS, or

(1 − cos θ(g))X = sin θ(g) (δt/ℏ)HS . (4.4.34)

As this must hold for all g ∈ G simultaneously, the proportionality factor (1 −
cos θ(g))/ sin θ(g) must not depend on g, which is only possible if θ(g) is constant.
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As θ(g) is a representation, this implies θ(g) ≡ 0 for all g ∈ G (and in particular,
the above equation then imposes no constraints on X and HS).2 It thus follows
that both Li and HS must commute with Ug. We conclude that a Lindbladian
generates a family of SS channels if and only if it satisfies the condition (4.4.30).

We also obtain a characterization of strong symmetry for Lindbladians by
applying the charge conservation condition (4.4.9) to Eδt = eδtL (using that we now
know that θ(g) ≡ 0 for Lindbladian channels):

Ug = E†
δt(Ug) = Ug + δtL†(Ug) , (4.4.35)

and thus
L†(Ug) = 0 . (SS condition on L) (4.4.36)

The Lindblad master equation (2.2.1) can also be recovered from the Hamilto-
nian that couples the system to the environment, under the Born (weak coupling,
large environment) and Markov (memoryless environment) approximations. We
refer readers to Chapter 6.2.1 of Ref. [261] for a detailed analysis of this procedure.
The jump operators appear in the coupling Hamiltonian as

H = HS ⊗ 1E + 1S ⊗HE +
∑
i>0

Li ⊗Bi . (4.4.37)

In this picture, the strong symmetry condition (4.4.30) on Lindbladians is equivalent
to our previous result about the strong symmetry condition on purifications (4.4.28).

Destruction of SPTO by weakly symmetric coupling

Let us now demonstrate that having merely weakly symmetric noise is insufficient to
preserve SPTO. Specifically, the fast, local Lindbladian evolution defined by Coser
and Pérez-García [4], which they showed to destroy SPTO, is weakly symmetric.
However, as we will also see, it lacks the strong symmetry condition, leaving open
the possibility that the latter preserves SPTO.

The local Lindbladian of Ref. [4] is given as a sum over sites on a spin chain

L =
∑

s

Ls , (4.4.38)

where
Ls = Ts − 1s , Ts(ρ) = Trs[ρ]|ϕ⟩s⟨ϕ| (4.4.39)

for some single-site state |ϕ⟩. It is shown to drive any one-dimensional SPT state
toward the product state |ϕ⟩⊗L, approximating it well in short time. This result
suggests that no SPTO is robust in open systems.

2There is an alternative topological argument for θ(g) = 0. Since the Ki(t) are continuous
functions in t, the phase θ(g) in their commutation relations must also be continuous in t. But
eiθ is a one-dimensional representation of G, and there are only discretely many of these (even if
G is continuous), so θ(g) must be a constant function in t. Then, since θ(g) = 0 for all g at t = 0
(because W (t = 0) = 1), the condition θ(g) = 0 must also be true at all times t.
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Any time L is given as a sum of single site terms (4.4.38), the SS condition
(4.4.36) reads

0 = L†(U⊗L
g ) =

∑
s

L†
s(U⊗L

g ) =
∑

s

L†
s(U (s)

g ⊗ 1(L\s)) ⊗ U (L\s)
g , (4.4.40)

where Ug now denotes the action of the symmetry on a single site. This condition
is equivalent to each of the single site terms satisfying the local condition L†

s(U (s)
g ⊗

1(L\s)) = 0. The channel (4.4.39) has L†
s(X) = ⟨ϕ|X|ϕ⟩s ⊗1(L\s) −X, so it fails this

condition for any g ̸= 1 and therefore is not SS. On the other hand, L commutes
with Ug and so is WS, as long as |ϕ⟩ is taken to be symmetric.

4.5 Strongly symmetric uncorrelated noise

We begin by considering uncorrelated noise – channels that decompose into onsite
operations as E = ⊗sEs. If {Ks

is
} is a Kraus representation of Es, a Kraus

representation of E is by operators

Ki = ⊗sK
s
is
. (4.5.1)

The full channel satisfies the WS or SS condition if and only if all of the single site
channels do. Uncorrelated noise is the simplest class of channels, and include the
example of 4.4.4, so they are a natural place to start.

The following subsections consider several typical probes of SPTO, in particular,
string order, twisted sector charges, edge modes, and irrep probabilities. We
demonstrate that these probes are preserved by strongly symmetric uncorrelated
noise, indicating that SPTO is preserved. We show in Theorem 1 that, for
semigroups of noise generated by Lindbladians, the strong symmetry condition on
the Lindbladians is both necessary and sufficient for string order to be preserved at
all finite times. We present analytical arguments as well as numerical investigations
of example states and channels.

4.5.1 Preservation of string order by strongly symmetric chan-
nels

The first indicator of SPTO we consider is the string order parameter, which was
introduced in 2.4.3. A channel E preserves string order if the evolved state E(ρ)
has the same pattern of zeros as the initial state ρ. In the Heisenberg picture,
this means that the collection of values ⟨E†(s(g,Ol

α, O
r
α))⟩ has the same pattern

of zeros as ⟨s(g,Ol
α, O

r
α)⟩, where E† is the dual channel to E . We save for 5.6 the

question of precisely which channels preserve the string order of a state in a given
SPT phase. For now, we show

Lemma 1: A channel of uncorrelated noise
maps string operators to other string

operators of the same type (g, α) if and only
if the channel is strongly symmetric.
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Note that the evolved string operators are not guaranteed to be nonvanishing.3

To see the lemma, consider evolving the string operator (2.4.10) by the uncor-
related noise. It becomes

E†(s(g,Ol
α, O

r
α)) = 1 ⊗ E†

l (Ol
α) ⊗

(⊗
E†

s (Ug)
)

⊗ E†
r (Or

α) ⊗ 1 . (4.5.2)

If Es is SS, each of the terms in the bulk of the string becomes E†
s (Ug) = eiθs(g)Ug.

Since an SS channel is in particular WS (4.4.2), it maps the end operators to other
end operators with the same charge: Õl,r

α := E†
s (Ol,r

α ) has U †
g Õ

l
αUg = χα(g)Õl

α and
similarly for Õr

α. Then in total, we have

E†(s(g,Ol
α, O

r
α)) = ei

∑
s

θs(g)s(g, Õl
α, Õ

r
α) . (4.5.3)

Conversely, asking that E†(s(g,Ol
α, O

r
α)) is a string operator of type (g, α) for all

(g, α) requires,4 in particular, that E†
s (Ug) is proportional to Ug, which is the strong

symmetry condition.

A necessary and sufficient condition on Lindbladians

Our discussion has so far focused on the string operators. We now turn toward
analyzing their expectation values, which encode the invariant of SPT states. In
the following, a coherent SPT mixture is a mixed state with a well-defined pattern
of zeros (and thus a well-defined invariant [ω]), in the sense of Definition (4.3.1). A
“coherent SPT phase” is a class consisting of all coherent SPT mixtures with a given
invariant. Preserving a phase means that every mixture of translation-invariant
pure SPT states in the phase (states of the form Eq. (4.3.2)) is mapped to a
coherent SPT mixture in the same phase.5

Our main result is stated as a theorem:

Theorem 1: Fix any coherent SPT phase.
A semigroup of channels of uncorrelated

noise generically preserves the phase at all
finite times if and only if the semigroup is

generated by a strongly symmetric
Lindbladian.

In other words, the notion of coherent SPT phase defined by patterns of zeros
coincides with the notion of phase defined by strongly symmetric Lindbladian
evolution.

3It is possible that a strongly symmetric channel annihilates some string operators by mapping
their end operators to zero. This phenomenon is unrelated to the symmetry selection rules for
string order, discussed in 2.4.3, which happens on the level of expectation values. For channels
that are generic in the sense of Eq. (5.6.1), it does not occur for generic end operators.

4The choice Ol,r
α = 1 always results in nonvanishing Õl,r

α , so the bulk E†
s (Ug) can be compared

to Ug.
5We expect that strongly symmetric Lindbladian evolution takes every coherent SPT mixture

to a coherent SPT mixture in the same phase; however, we restrict ourselves to initial states that
are mixtures of translation-invariant pure SPT states in order to make use of tensor network
methods in the proof of the theorem.
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4.5. Strongly symmetric uncorrelated noise

To make a claim as strong as Theorem 1, it is necessary to work on the level
of phases rather than the states (equivalently, systems) that compose them. A
phase protected by a symmetry G consists of systems together with the data of
embeddings of G into the systems’ full groups of symmetries. For example, the
AKLT system may be regarded as lying in a G = Z2 ×Z2 SPT phase if one specifies
this group’s embedding into the system’s larger SO(3) intrinsic symmetry group.
Also, there is no restriction on the physical degrees of freedom, or the symmetry
action on these degrees of freedom, that a system in a phase may have. For
example, the Z2 × Z2 SPT phase to which the AKLT system belongs also contains
systems that are not built of spin-1 degrees of freedom. Whether two systems lie
in the same phase has not to do with their intrinsic symmetry groups or degrees of
freedom but on the values taken by their order parameters. This means that MPS
representations of states within the phase will have tensors of various physical
dimensions and symmetries. The theorem concerns which symmetry condition
channels must satisfy so that they preserve the string order of every system in the
SPT phase. To do this, we consider generic states, whose MPS tensors have exactly
the symmetry G, are injective, and have physical Hilbert space no larger than the
tensor’s image. We emphasize that this result does not preclude the possibility
of nongeneric systems within the phase for which a condition weaker than strong
symmetry is sufficient.

With these remarks behind us, we are ready to prove the theorem, starting
with the ‘if’ direction. If the semigroup is generated by a strongly symmetric
Lindbladian, each channel Et is itself strongly symmetric. Then by Lemma 1, Et

preserves the type of string operators. Moreover, finite time Lindbladian evolution
defines channels that are invertible as linear maps6 since det

(
etL
)

= eTr(tL) ≠ 0 for
finite t, so these channels do not annihilate any string operators. Thus the pattern
of zeros of the expectation values of string operators is preserved, as long as one
uses end operators that are generic in the sense of 2.4.3 – namely, that Ol,r

α is
orthogonal neither to N g†

l,r nor to E(N g†
l,r). The assumption that the end operators

are generic can be dropped if one is interested in generic evolution times. This
is because the expectation value of a string operator is analytic as a function of
time, and so it either vanishes at all times – as occurs where the initial pattern of
zeros has a zero – or is zero only at isolated points in time. The assumption of
finite time cannot be dropped, as an infinite time evolution may annihilate some
string operators and therefore alter the pattern of zeros. An evolution for which
this phenomenon occurs is the fully dephasing channel introduced below.

Next we turn to the ‘only if’ direction. We show it for initial states that are
translation-invariant pure SPT states. Then it also holds for their mixtures. If a
channel E preserves the string order of an SPT state, there is, for every symmetry g,
a string operator with g in the bulk whose expectation value is nonvanishing. This
expectation value may be written as ⟨L|T j

E†
s (Ug)

|R⟩, where TE†
s (Ug) is the transfer

6Note that invertibility of the channel as a linear map is a weaker condition than reversibility
of the channel, as the inverse linear map is not required to be a channel.
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matrix

. (4.5.4)

This operator must have λ = 1 as its maximum eigenvalue in order for the
expectation value to be nonvanishing in the thermodynamic limit.7 By Lemma 2 of
Ref. [76], for injective MPS, in order for TX to have λ = 1, X must be a symmetry
of the MPS, which by assumption is some element hg ∈ G. Thus E†

s (Ug) = eiθ(g)Uhg .
Taking X = Ug and Y = eiθ(g)Uhg in the argument at the end of 4.4.2, we see that
UgKi = eiθ(g)KiUhg for all i. The map σ : g 7→ hg is an endomorphism8 of G since
U is faithful and, up to phases θ,

Uσ(g)Uσ(h) =
∑

i

K†
iKiUσ(g)Uσ(h) ∼

∑
i

K†
iUgUhKi

=
∑

i

K†
iUghKi ∼

∑
i

K†
iKiUσ(gh) = Uσ(gh) .

(4.5.5)

If E is connected to the trivial channel by a semigroup of channels Et satisfying
the above at all times, the endomorphism σ must be connected to the identity
endomorphism σ = 1 by a continuous path σt. Since we have assumed G is
abelian, the only identity-connected endormophism is σ = 1 itself. Thus, we have
E†

s (Ug) = Ug, which is the strong symmetry condition (4.4.9) on the site s. This
holds for all s, so the full channel E is strongly symmetric. It holds at all finite
times, so by the discussion in 4.4.4, the Lindbladian that generates it is strongly
symmetric. This completes the proof of Theorem 1.

It is interesting to note that, by Theorem 1 and Lemma 1, any semigroup that
preserves an SPT phase, even the trivial SPT phase, also preserves the type of all
string operators. This reflects how special SPT states, even trivial SPT states, are
among mixed states, most of which lack valid patterns of zeros.

The proof of Theorem 1 involved only the identity-connected endomorphisms of
the symmetry group. In Chapter 5 we lift the restriction that the channel belongs
to a semigroup of SPT-preserving channels; in this broader setting, more general
group endomorphisms play an important role.

Let us comment on the generalization to a nonabelian symmetry group G.
Recall that in this case, string order is not guaranteed to capture the full SPT
invariant ω; nevertheless, we can ask about which channels preserve string order. If
G is a finite group, the only identity-connected endomorphism is again σ = 1 itself.

7At finite string lengths, the difference between strongly symmetric and non-strongly symmetric
Lindbladians is reflected in the length-dependence of the order parameters: only for the latter is
there decay as a function of length.

8An endomorphism is a map from the group to itself that is compatible with the group
structure.

80



4.5. Strongly symmetric uncorrelated noise

On the other hand, if G is a semisimple Lie group, the only identity-connected
endomorphisms are inner automorphisms [262]. An automorphism σ is said to be
inner if there exists an element h ∈ G such that

σ(g) = conjh(g) := h−1gh , ∀g ∈ G . (4.5.6)

The element h is defined up to elements of the center. An example of a channel
with automorphism σ = conjh is the symmetry-implementing channel Uh (4.4.1),
which has a single Kraus operator K = Uh satisfying

Uσ(g) := K†UgK = U−1
h UgUh = Uh−1gh . (4.5.7)

Any channel E with inner automorphism σ = conjh may be expressed as the
composition of the symmetry-implementing channel Uh and a strongly symmetric
channel ESS:

E = ESS ◦ Uh . (4.5.8)

To see this, let Ki denote the Kraus operators for E and define Kraus operators
for ESS as

K ′
i = U−1

h Ki . (4.5.9)

One can easily verify that the latter define a strongly symmetric channel ESS.
The semigroup of channels of the form (4.5.8) is generated by the sum of of a
strongly symmetric Lindbladian LSS and a generator Q of the continuous symmetry
Uh = eQ. We obtained this condition by asking that a string operator expectation
value not vanish, which is weaker than asking that string order is preserved; in
fact, string order may be modified by such channels. The Uh factor changes the
bulks of string operators from Ug to U †

h(Ug) = Uh−1gh and the ends from Oα to
U †

h(Oα), which transform as (σ−1)∗α. It may happen, however, that string order is
preserved despite the permutation of string operators; this phenomenon is discussed
in Chapter 5.

4.5.2 Numerical study of string order under channels

In this subsection, we simulate the behavior of string order under the action of two
example channels – the depolarizing channel and the dephasing channel. We find,
in agreement with the analytical results, that evolutions with strong symmetry
preserve string order, while weakly symmetric channels do not. We also use the
example of the fully dephasing channel, which destroys SPTO despite being strongly
symmetric, to demonstrate the importance of the finite time assumption in the
theorem. All end operators are annihilated BY this channel and string order is
destroyed (in particular, the channel is not invertible).

The depolarising channel is a severely noisy channel, as it contracts the Bloch
sphere to the origin, driving states towards the maximally mixed state. This
channel is written as

E(ρ) = (1 − λ) ρ+ λ (Tr ρ) 1
d
1 , (4.5.10)
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with the decay rate parametrized by λ ∈ [0, 1] [13]. The value λ = 1 gives the fully
depolarising channel. The channel satisfies the weak symmetry condition (4.4.2)
for any symmetry.

The Kraus decomposition for this channel can be written as a twirling operation
since the normalised d-identity can be decomposed as an average over the generators
of the Lie algebra of SO(d) [15]. In d = 2, these operators are Paulis, while in
higher d they are the Heisenberg-Weyl matrices: the shift operator X |j⟩ =
|j + 1 mod d⟩ and the phase operator Z |j⟩ = ei2πj/d |j⟩, which have commutation
relation ZmXn = ei2πnm/dXnZm. The Kraus decomposition for spin-1 (d = 3)
systems such as the AKLT state is given by

E(ρ) = (1−λ) ρ+λ9
∑

i

NiρN
†
i , Ni = {1, Z, Z2, X, ZX,Z2X,X2, ZX2, Z2X2} .

(4.5.11)
A G = Z2 × Z2 symmetry acts on the spin-1 system as Ug = eiπSj , where Sj are
the spin-1 operators. Since the Kraus operators Ki ∼ Ni only commute with the
symmetry action up to different phases, the channel does not satisfy the strong
symmetry condition (4.4.8); it is only weakly symmetric.

The second channel we discuss is given by

E(ρ) = (1 − λ)ρ+ λ

4
∑

j

NjρN
†
j , Nj = {1, eiπSx , eiπSy , eiπSz} , (4.5.12)

where Sj are the spin-1 operators. Since the Kraus operators Kj ∼ Nj commute
with the symmetry action, the channel is strongly symmetric (4.4.8). The channel
is the fully dephasing channel when λ = 1.

String order after a single time-step

Let us consider the AKLT state, which belongs to the Haldane SPT phase. This
state has nontrivial SO(3) SPT order, but can be protected by just the subgroup
Z2 × Z2 [157, 176]. The AKLT state has an exact tensor network representation
given by the Pauli operators in the basis {|+⟩ , |0⟩ , |−⟩}.

The |G|2 = 16 string operators sij for the symmetry G = Z2 × Z2 are built out
of end operators Ol,r

α = Si and bulk operators Ug = eiπSj , where Si are the spin-1
matrices with j = {e, x, y, z}. On the AKLT state, the diagonal string operators
take nonzero values szz, sxx, syy = −4/9 and s1,1 = 1 independent of string length
in the limit of infinite system size, while the off-diagonal string operators elements
sij, i ̸= j have vanishing expectation values in the limit of long string length.

Recall that the string order parameter may be manipulated into the form
(2.4.17)

⟨s(g,Ol,r
α )⟩ = Tr

(
ρlTOl

α
(TUg)N−2TOr

α
ρr

)
, (4.5.13)

where T is the transfer matrix T = ∑
i A

i⊗A
i for the MPS tensor A, and ρl,r are

its fixed points. Now consider evolving the string operator under a channel. The
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operator becomes

⟨E†(s(g,Ol
α, O

r
α))⟩ = Tr

(
ρlTE†(Ol

α)T
N−2
E†(Ug)TE†(Or

α)ρr

)
. (4.5.14)

For the SS channel (4.5.12), the evolved string order pattern for the AKLT
state as a function of the decay rate λ is

⟨E†(s(eiπSj , Si))⟩ =


1 −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2(−1
3)N

(−1
3)N −4

9(1 − λ)2 −4
9(1 − λ)2(−1

3)N −4
9(1 − λ)2(−1

3)N

(−1
3)N −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2 −4
9(1 − λ)2(−1

3)N

(−1
3)N −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2

 .
(4.5.15)

In the limit of large string length N → ∞, the diagonal entries are nonzero while
the off-diagonal entries are zero, which indicates that the string order of the ALKT
state was preserved, as is expected for SS channels. Note that if we were to
repeatedly evolve the state by E a large number of times, the entire string order
set would be sent to zero, so the preservation of the pattern is only visible at finite
times. The finite-time decay is minimal (outside of the nongeneric cases discussed
in the next section) since it occurs locally at the ends of the string and receives no
contribution from the bulk.

In contrast, consider the WS depolarising channel (4.5.11). The string order
for the evolved state is

⟨E†(s(eiπSj , Si))⟩ =


1 −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2(−1
3)N −4

9(1 − λ)2(−1
3)N

(−1
3)N −4(1−λ)2

9 (1 − 8λ
9 )N −4(1−λ)

9 (−1
3 + 4λ

9 )N −4(1−λ)
9 (−1

3 + 4λ
9 )N

(−1
3)N −4(1−λ)

9 (−1
3 + 4λ

9 )N −4(1−λ)2

9 (1 − 8λ
9 )N −4(1−λ)

9 (−1
3 + 4λ

9 )N

(−1
3)N −4(1−λ)

9 (−1
3 + 4λ

9 )N −4(1−λ)
9 (−1

3 + 4λ
9 )N −4(1−λ)2

9 (1 − 8λ
9 )N

 .
(4.5.16)

For any λ > 0, the string order goes to zero instantaneously (with a single time-step,
application of E) in the limit N → ∞. This is because, in contrast to the SS
channel, this WS channel receives an exponential contribution to its decay from
the bulk of the string.

Master equation simulation of string order

We simulate the time-evolved master equation on pure SPT states by acting with
the channel at each time-step

Et = ET ◦ · · · ◦ Et1 ◦ Et0 . (4.5.17)

Figure 4.2 depicts the results of simulating the evolution of the szz component of
the string order parameter under the following channels: the dephasing channel
(4.5.12) with λ = 0.5, the dephasing channel with λ = 1 (fully dephasing), and the
depolarising channel (4.5.11). The first two of these channels are SS, while the third
is only WS. The first exhibits slow decay, while the others exhibit instantaneous
decay.

The reason that the fully dephasing channel fails to preserve SPT order despite
being SS can be traced to how it annihilates the end operators Si with nontrivial
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Figure 4.2: Evolution of the szz component of the Z2 × Z2 string order parameter
for the AKLT state.

labels and thus sets the corresponding rows of the pattern of zeros to zero. This
phenomenon cannot occur for finite time evolutions, as these channels are invertible
as linear maps, so Theorem 1 is safe. The fully dephasing channel, however, is only
realized as an infinite time evolution, so SS is insufficient to protect SPTO.

Let’s show that the fully dephasing channel really corresponds to an infinite
time evolution. First, notice that all end operators corresponding to a non-trivial
α are annihilated by the channel, as the only operators it preserves are diagonal.
Hence, the fully dephasing channel is not invertible since its Kernel is nonempty.
Now we want to show that it is the fixed point of the dephasing channel describing
infinite time evolution. First derive the Lindbladian L that generates the channel
Et(ρ) = etL(ρ), with λ = 1 − e−t. Since

L(ρ) = ∂ρ

∂t
|t=0 = lim

δt−→0

Eδt(ρ) − ρ

δt
,

and performing an expansion of the fully dephasing channel Eδt(ρ) in δt up to O(δt2),
we can show that L(ρ) = 1

4
∑

j NjρN
†
j . Hence L(ρ) is given by the fully dephasing

channel which is defined by λ = 1 corresponding to t = ∞ so L(ρ) = Et=∞(ρ).
This highlights that at infinite times, SS channels may destroy the SPT phase.

In 5.6, we discuss a genericness condition on SS channels, failed by the fully
dephasing channel, that says whether or not they preserve SPTO.

4.5.3 Twisted sector charges

The SPTO of a state may alternatively be detected in the charges of its twisted
sector states [263, 264]. Consider a state on a closed chain, represented as an MPS

⟨i1 · · · iL|ψ⟩ = Tr
[
Ai1 · · ·AiL

]
, (4.5.18)

with the symmetry represented projectively on the virtual space by operators Vg.
The states

⟨i1 · · · iL|ψh⟩ = Tr
[
Vh A

i1 · · ·AiL

]
(4.5.19)
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are the twisted sector states. In closed systems, they appear as ground states of
the Hamiltonians obtained by twisting the original Hamiltonian by the insertion of
a symmetry flux through the closed chain.

The charge of a twisted sector state is obtained by acting on the state with the
charge operator U⊗L

g :

.
(4.5.20)

For simplicity, assume G is abelian. The charges of the twisted sector states are
given by

⟨i1 · · · iL|U⊗L
g |ψh⟩ = Tr

[
V −1

g VhVg A
i1 · · ·AiL

]
= ω(h, g)
ω(g, h) Tr

[
Vh A

i1 · · ·AiL

]
.

(4.5.21)
As we saw in the previous subsection, this ratio ω/ω determines the cohomology
class [ω]. This means that the collection of twisted sector charges completely
characterizes the SPTO.

The twisted sector charges of an initial state and the state reached by evolving
by a channel are the expectation values of U⊗L

g and E†(U⊗L
g ), respectively, on the

initial twisted sector states |ϕh⟩. Since for a strongly symmetry channel (4.4.9)
these are equal, such a channel preserves the SPTO.

4.5.4 Protected edge modes

SPT phases are also characterized by their topologically protected edge modes.
Consider a pure state |ψω⟩ in an SPT phase characterized by a cocycle ω. The
SPT invariant is encoded in the projective action of the symmetry on the edge
introduced by cutting the system:

(1l⊗U r
g )|ψω⟩ =

∑
a

|ψω
l,a⟩⊗U r

g |ψω
r,a⟩ =

∑
a,b

(Vg)ab|ψω
l,a⟩⊗|ψω

r,b⟩ , VgVh = ω(g, h)Vgh .

(4.5.22)
After evolving through a channel, |ψω⟩ becomes a mixture of the (unnormalized)
states Ki|ψω⟩. We claim that, if the channel is strongly symmetric and onsite,
each of these states has SPT invariant ω. To see this, write the Kraus operators
as K l

i ⊗Kr
i , so that Ki|ψω

i ⟩ = ∑
a K

l
i |ψω

l,a⟩ ⊗Kr
i |ψω

r,a⟩. Then, since Kr
i commutes

with U r
g , the projective representation Vg on this cut is the same as for |ψω⟩; in

particular, ω is the same.

4.5.5 Irrep probabilities and SPT complexity

In this section, we investigate the behavior of another probe of SPTO – the irrep
probabilities that compose the inaccessible entanglement which we introduced
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in Chapter 3 – under channels, strongly symmetric and not. Irrep probabilities
measure the weight of the state in each symmetry sector. They are given by Fourier
transforms of the string operators with identity end operators

pα = 1
|G|

∑
g

χα(g)⟨s(Ug,1,1)⟩ , (4.5.23)

Using orthogonality of characters, one can confirm that the irrep probabilities sum
to 1:∑

α

pα = 1
|G|

∑
g

⟨s(Ug,1,1)⟩
∑

α

χα(g) = 1
|G|

∑
g

⟨s(Ug,1,1)⟩ |G| δg,1 = ⟨s(1,1,1)⟩ = 1 ,

(4.5.24)
We are now ready to formally introduce the SPT complexity. Irrep probabilities

partially distinguish SPT phases by capturing their complexities

Dω =
√

|G|/|Kω| , (4.5.25)

where
Kω = { g : ω(g, h) = ω(h, g) ∀h } (4.5.26)

is subgroup of G called the projective center. Recall that a phase with Kω = {1}
has maximum complexity and is said to be maximally noncommutative (MNC)
[240], which we introduced previously in Section §2.4.2. On the other end of the
spectrum is the trivial phase ω = 1, with complexity D1 = 1. The complexity
of a generic MPS was shown numerically to appear in the degeneracy D2

ω of the
irrep probabilities [72]. In an MNC phase, the probabilities are all pα = 1/|G| with
degeneracy |G|; in the trivial phase, they are generically distinct. The value Dω

also appears as the degree of the projective representation Vg (c.f. [172], theorem
VI.6.39), which means D2

ω is the number of topologically protected edge modes.
For a given symmetry G, there may be multiple phases with the same complexity
and these cannot be distinguished from each other by their irrep probabilities;
nevertheless, because they can distinguish phases with different complexities, irrep
probabilities are a useful tool.

The values of the irrep probabilities are preserved by strongly symmetric
channels. To see this, observe that such channels preserve that the string operators
s(Ug,1,1), and therefore their Fourier transforms, exactly. The exact preservation
of irrep probabilities stands in contrast with general string order parameters, whose
end operators Oα ̸= 1 may cause decay toward zero in infinite time.

In contrast with strongly symmetric channels, non-SS Lindbladian channels
map all irrep probabilities to the maximally degenerate values pα = 1/|G|, for any
phase. This is because, as was established in 4.5.1, such channels annihilate all of
the string order parameters accept for those with g = 1. The result is

pα = 1
|G|

∑
g

χα(g) δg,1 = 1
|G|

. (4.5.27)

This means that, outside of states which already have maximally degenerate irrep
probabilities (for example, states in MNC phases), the effect of a Lindbladian
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channel on irrep probabilities is a diagnostic for whether or not a channel is strongly
symmetric. In 5.6.2, we discuss non-Lindbladian channels, some of which preserve
irrep probabilities and complexity despite not being SS.

4.6 Causal channels

Let us extend our analysis from uncorrelated noise to causal channels. A channel
is said to be causal if there is a range r such that it maps operators supported on
a compact region A to operators supported on the region of sites within distance r
of A [125].9 Channels that are not causal can create long-range correlations, and
so are expected to destroy topological order and SPTO, no matter the symmetry
condition imposed on them. For this reason, we will not consider non-causal
channels here.

A subset of causal channels, labeled “dQC” in Ref. [125], have purifications that
are causal. In addition, one can consider their convex combinations, which are also
causal. It has been suggested that these convex combinations might constitute all
causal channels, but this remains an open question [125]. Another open question
is whether every channel in dQC that has a symmetric purification (and so by
Claim (4.4.13) is weakly symmetric) has a purification that is both causal and
symmetric with respect to an on-site symmetry. Rather than attempting to answer
this question, we let “sdQC” denote the channels with such a purification. We
restrict our focus to channels in dQC (in 4.6.1) and sdQC (in Section §4.6.2 and
4.6.3) and leave open the possibility that channels outside of these classes exhibit
different behaviors. As we remark in 4.6.4, our expectation is that only channels
in these classes are relevant to local Lindbladian evolution.

Low depth circuits of local unitary gates are a special class of unitary causal
channels. Causal unitaries have a topological index10 that takes values log(p/q)
for natural numbers p, q, capturing the flow of information to the left and to the
right [267], and low depth circuits of local unitary gates are precisely the causal
unitaries for which this topological index vanishes. From the perspective of phase
classification, circuits are the only causal unitaries one should care about, as they
approximate fast local unitary evolution. Nevertheless, it is most convenient for
us to work with causal unitaries in general – forgetting whether or not they are
circuits – because causal unitaries have convenient tensor network representations
(which we will describe shortly). Similarly, a special class of causal channels is given
by low depth circuits of local channels.11 It may be the case that these are the
causal channels which approximate fast local Lindbladian evolution, just as unitary
circuits do for unitary evolution, and that they are in dQC and are characterized
by a vanishing topological index of their purification. We do not attempt to prove

9The terms “causal” and “locality-preserving” have different meanings in Ref. [125], and we
are interested in the former.

10This index may be computed locally from the tensor of the MPU discussed below [265, 266].
11By this, we mean that the channel consists of a small number of layers of disjoint channels

supported on small intervals.
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this conjecture. Regardless, our analysis considers causal channels in general, even
if most of them are unrelated to Lindbladian evolution.

4.6.1 Tensor network representations of causal channels

Causal unitary operators, which in this context are the purifications of channels
in dQC, have finite bond dimension tensor network representations called matrix
product unitaries (MPUs) [265, 266]:

. (4.6.1)

Here, unlike in the previous section, we simplify the analysis by restricting to
channels that are translation invariant, which means that the tensor network
representations of their purifications consist of the same tensor at every site. We
expect, however, that our results hold without this assumption.

The theory of MPUs says that there exists a length r ≤ δ4 (where δ is the bond
dimension of W ) such that on blocks of r sites, the tensor satisfies the following
“simpleness relations” [265]:

,
(4.6.2)

where Λ denotes the right fixed point of the MPU transfer matrix.
The fact that the causal unitaries have tensor network representations means

that channels in dQC do as well. The Kraus operator Ki is realized as the matrix
product operator obtained by plugging in the ancilla state |a⟩ = ⊗s|as⟩ (take all
as to be the same) and the ancillary space basis vector |ei⟩ = ⊗s|eis⟩:

. (4.6.3)

Then, in terms of the tensors for the Kraus operators, the simpleness relations
become

.

(4.6.4)

The uncorrelated noise considered in Section §4.5 appears here as the channels
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whose MPUs have δ = 1:

. (4.6.5)

4.6.2 Local realization of the symmetry conditions

It will be demonstrated in the following subsections that a causal channel preserves
SPTO if it satisfies not just the strong symmetry condition, but the strong symmetry
condition realized locally (4.6.9). The present subsection is dedicated to describing
what is meant by local realization of the symmetry conditions and to motivating it.
We consider channels in the class sdQC we defined earlier, meaning that the causal
purification is symmetric under acting with the symmetry operator Ug ⊗ UA

g on
every site.

As always, the symmetry conditions refer to how the Kraus operators transform
under conjugation by a symmetry. If the Kraus operators do not decompose as
products of uncorrelated terms, we must work out what these global conditions
mean locally, in terms of their tensor network representation. Local properties of
a symmetry action may be studied by cutting the spin chain into two halves, so
that the purified channel decomposes as W = ∑

µ W
µ
l ⊗W µ

r , and acting with the
symmetry on the right half:

(1l ⊗ (Ug ⊗ UA
g )r)W (1l ⊗ (Ug ⊗ UA

g )r)† =
∑
µ,ν

(Qg)µνW
µ
l ⊗W ν

r . (4.6.6)

The operators Qg are defined up to redefinition by phases and form a projective
representation: QgQh = ν(g, h)Qgh. By folding the MPU representing the purifica-
tion W into a normal MPS [265] and applying the usual arguments [76, 77], it can
be shown that the Qg satisfy12

. (4.6.7)

In particular, when the channel is SS, we have UA
g = 1, so the Kraus operators

satisfy

. (4.6.8)

12The version of the Fundamental Theorem of MPS in Theorem IV.4 of Ref. [77] can be used
to show that this condition holds not just on blocks of size r but on individual sites; however, we
will not require this stronger condition in our arguments.
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We note that symmetric MPUs have been studied previously [268].
Now we can state the condition of local realization of the symmetry:

QgQh = Qgh , ∀ g, h , up to redefinition by phases. (4.6.9)

Under redefinition of Q by phases, the cocycle ν that captures the projectivity of
Q shifts by a coboundary, so local realization is the condition that [ν] is trivial
in cohomology. In the case of uncorrelated noise, the symmetry conditions are
automatically realized locally because Q acts on a one-dimensional space. When a
channel is WS or SS and its symmetry is realized locally, we say it is “locally-WS”
or “locally-SS”.

To build intuition for local realization, let us see that it is satisfied by the circuits
of symmetric gates that define phase equivalence for states of closed systems. For
a circuit, symmetry of the gates means that Q can be extracted from a single gate
by acting on half of its legs with the symmetry g:

.

(4.6.10)

Since the adjoint action of Ug on half of the gate is a linear (non-projective)
representation, Q is linear as well. More generally, consider the circuits of local
channels that were mentioned briefly above. In analogy to the condition that
the unitary gates are symmetric, these local channels can be made to satisfy the
weak or strong symmetry condition. If they satisfy the WS or SS condition, the
argument we just used for unitary circuits demonstrates that the causal channel as
a whole is locally-WS or locally-SS, respectively.

4.6.3 String operators

Let us generalize Lemma 1 of 4.5.1 to causal channels by showing the following
lemma.

Lemma 2: A channel in sdQC maps string
operators to sums of string operators of the
same type (g, α) if and only if the channel

satisfies the local strong symmetry condition.

Doing so requires working with a slight generalization of string operators where
the end operators are supported intervals, rather than sites. It is assumed that the
system size and the length of the string are large compared to the length of these
intervals and the range r of the channel.
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After evolution by the channel, the string operator (2.4.10) becomes

.
(4.6.11)

If the SS condition is satisfied, the symmetry pulls through at the cost of operators
Qg:

, (4.6.12)

which cancel except near the ends of the string. Then the simpleness relations
(4.6.4) can be applied to obtain

.

(4.6.13)

This is a string operator with the symmetry g in the bulk. The new end operators
are the result of acting on the original end operators by the superoperators
(generalizing the E†

l,r of uncorrelated noise)

.

(4.6.14)

and are supported on 2r more sites than the original end operators. The super-
operators Sg

l and Sg
r transform in the representations h 7→ ν(g, h)/ν(h, g) and
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h 7→ (ν(g, h)/ν(h, g))∗, respectively:

.

(4.6.15)

This means that, if and only if ν is trivial, as is the case when the symmetry
condition is locally realized, the new end operators Sg

l,r(Ol,r
α ) transform in the same

representations as the original ones Ol,r
α . We conclude that the evolved string

operator is of type (g, α) if the channel satisfies the locally realized SS condition.
Note that, in contrast with the case of uncorrelated noise, WS is not enough to
ensure the correct transformation of the end operators. This is because the WS
condition states only that the charge of operators is conserved globally. When
correlations between sites are present, charge can flow between regions of the
system, such as between the two end operators, changing their individual charges.

It remains to show the converse: that, assuming the evolved string operator
(4.6.11) is a string operator of type (g, α), the channel must have been locally SS.
The string operator with bulk U⊗j′

g evolves into

. (4.6.16)

Compose it with (U †
g )⊗j′ on the string bulk and take the trace to obtain

,
(4.6.17)
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neglecting the part of the tensor network outside the support of the evolved string.
Meanwhile, doing the same to some string operator results in

,

(4.6.18)

where j = j′ − 2r′ for r′ the spread of the end operators under the channel (which
turns out to be r′ = r due to SS). Setting (4.6.17) and (4.6.18) equal (by our
assumption), and defining

. (4.6.19)

we find that ⟨ρℓ|Ej|ρr⟩ = vdj for some relative normalization v ≠ 0, where ⟨ρℓ| and
|ρr⟩ are the boundary conditions imposed by the end operators in Eq. (4.6.17).
Expressing E in terms of its distinct nonzero eigenvalues λk, this amounts to
the condition ∑

wkλ
j
k = vdj for all j ≥ 1, which implies that there must be an

eigenvalue λ1 = d.13 On the other hand, considering the MPU W on a periodic
ring of length N , we have – using Cauchy-Schwarz – that

∣∣∣∑
k

λN
k

∣∣∣ =
∣∣∣trEN

∣∣∣ =
∣∣∣Tr

[
U⊗N

g W (U⊗N
g )†W

]∣∣∣
≤
√∣∣∣Tr

[
(U⊗N

g W (U⊗N
g )†)(· · · )†

]∣∣∣ ∣∣∣tr[WW †]
∣∣∣ = dN .

(4.6.20)

Thus,
∣∣∣m1d

N +∑
k>1 λ

N
k

∣∣∣ ≤ dN for all N , where m1 ≥ 1 is the multiplicity of λ1 = d
and the λk>1 ≠ d are the other eigenvalues. This implies that E has one nondegener-

13First, note that by moving the vdj to the other side of the equation, one obtains
∑

wkλj
k −

vdj = 0 for all j ≥ 1, and thus, one is left with showing the following
Lemma. Given K distinct µk ̸= 0, then

K∑
k=1

ckµj
k = 0 ∀ j = J0, . . . , K + J0 − 1 ⇒ ck = 0 ∀ k = 1, . . . , K . (⋆)

Proof. The matrix with entries Mjk ≡
(
µj

k

)
jk

is the product of the diagonal matrix
diag(µJ0

1 , . . . , µJ0
K ) with the Vandermonde matrix

(
µj−J0

k

)
jk

, both of which are invertible. Thus,
the linear system (⋆), Mc⃗ = 0⃗, has the unique solution ck ≡ 0. □
Note that this also provides a concise proof of the often-used Lemma in the MPS literature that∑

aj
k =

∑
bj

k implies that the ak and bk must be pairwise equal.
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ate eigenvalue λ1 = d, and all other eigenvalues are 0.14 Thus, the Cauchy-Schwarz
inequality (4.6.20) is saturated, which implies that U⊗N

g W (U⊗N
g )† = eiϕW , which

is to say that the channel with purification W is strongly symmetric. To see that
the SS condition is realized locally, apply the ‘if’ direction to obtain the evolved
end operators. By assumption, they transform in the same irrep α as the inital
end operators; therefore, the local-SS condition [ν] = 0 must hold.

4.6.4 Preservation of string order by strongly symmetric Lind-
bladians

The preservation of string operators by locally-SS channels in sdQC (Lemma 2)
means that we can state the following analogue to Theorem 1, where short times
are times that are small compared to the system size.

Conjecture: Evolution generated by a local Lindbladian
preserves SPTO at short times if and only if the Lindbladian

is strongly symmetric.

The conjecture is inspired by a plausible connection between local Lindbladians
and causal channels. Just as local unitary evolution is approximated by locally-
symmetric causal unitaries (in particular, circuits of symmetric local unitary gates)
precisely when the generating Hamiltonian is symmetric, we expect that

Evolution by a local Lindbladian is approximated by
locally-WS/SS channels in sdQC precisely when the

Lindbladian is WS/SS.
(4.6.21)

Let us motivate this statement nonrigorously. Local Lindbladian evolution is
subject to Lieb-Robinson bounds [4], so we expect it to be described by causal
channels (with range r linear in time), up to exponentially small errors outside
of the lightcone. Moreover, we expect such causal channels to live in dQC since
nontrivial convex combinations of channels in dQC (which plausibly are arbitrary
causal channels [125]) seem to introduce unphysically long-range correlations. We
established in 4.4.4 that WS/SS of a Lindbladian implies WS/SS of the channels it
generates, but the question remains whether locality of the symmetric Lindbladian
implies that the channel is in sdQC and that the symmetry of the channel is
locally realized. As mentioned previously, it may be the case that causal channels
approximating local Lindbladian evolution are circuits of local channels, just as
causal unitaries approximating local unitary evolution are circuits of local unitaries,
and that these local ‘gates’ are WS/SS precisely when the generating Lindbladian
is WS/SS. Then an argument like Eq. (4.6.10) would translate the symmetry of
the gates into locally realized symmetry of the channel.

14To see this, write λk = e2πiξk |λk|, and fix M = 8K . Dirichlet’s approximation theorem
states that there are integers pk and 1 ≤ q ≤ M such that |ξk − pk/q| ≤ 1/(qM1/K). Then,
|2π(qξk − pk)| ≤ π/4, and thus Re

[
(e2πiξk )q

]
> 0. It follows that Re

[∑
k>1 λq

k

]
> 0 and thus∣∣m1dq +

∑
k>1 λq

k

∣∣ > dq, unless m1 = 1 and there are no other nonzero eigenvalues λk ̸= 0.
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Taking the statement (4.6.21) for granted and neglecting the issue of approxi-
mation, the ‘if’ direction of the conjecture follows from Lemma 2. The strongly
symmetric local Lindbladian generates locally-SS channels in sdQC, which by
Lemma 2 preserve the types of string operators and therefore their patterns of
zeros with generic end operators. The short time of the evolution is a crucial
assumption, as it was necessary in Lemma 2 that the ranges of the causal channels
were small compared to the string length; otherwise, the bulks of the strings were
swallowed up by the end operators. The ‘only if’ direction of the conjecture might
require analyzing the transfer matrix of the expectation value of the evolved string
operator, as in 4.5.1.

4.6.5 Protected edge modes

As in 4.5.4, consider a pure state |ψω⟩ in an SPT phase characterized by the
invariant ω. Under the channel, it evolves into a mixture of states Ki|ψω⟩. The
SPT invariant will be obtained by cutting the system into left and right halves
and acting on the right half by the symmetry. Across the cut, the state and Kraus
operators decompose as |ψω⟩ = ∑

a |ψω
l,a⟩ ⊗ |ψω

r,a⟩ and Ki = ∑
µ K

µ
i,l ⊗ Kµ

i,r. The
SS condition means that Eq. (4.6.6) holds. Therefore, the states in the mixture
transform as

(1l ⊗ U r
g )Ki|ψω⟩ =

∑
a,b,µ,ν

(Vg)ab(Qg)µνK
µ
i,l|ψω

l,a⟩ ⊗Kν
i,r|ψω

l,b⟩ , (4.6.22)

so their SPT invariants are captured by the projectivity class [ων] of V ⊗ Q. If
the SS condition is realized locally, [ν] is trivial, so the SPT invariant [ων] = [ω] is
unchanged.

This argument has a simple diagrammatic representation when the state |ψω⟩
is an MPS. In this case, the MPO tensor for Ki is contracted with the MPS tensor
for |ψω⟩ to obtain an MPS tensor for Ki|ψω⟩. The virtual space of the new MPS
tensor has symmetry action V ⊗Q on blocks of size r.

. (4.6.23)

Crucial to the preservation of protected edge modes is the fastness assumption,
which means that the range r of the MPO is small compared to the system size;
without it, there is no invariant to be extracted locally.

4.7 Discussion & Conclusions

Our main result is to show that SPTO is preserved by fast evolution of a local
Lindbladian precisely if the Lindbladian satisfies a strong symmetry condition;
in other words, SPTO is robust to coupling to an environment if and only if
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the coupling is strongly symmetric. There are at least two ways to interpret
this finding. First, it may be taken simply as a rule for determining how order
parameters such as string order will transform under a coupling of interest: rather
than calculate the full dynamics of a system, one need only look at the symmetry of
its generator. Second, the result may be taken as motivation for strong symmetry
as the appropriate symmetry condition for classifying symmetry protected phases
of open systems. Just as the Lindbladian phase equivalence of Ref. [4] was designed
so that local observables are analytic within phases, the strong symmetry condition
is chosen so that SPT order parameters are constant within phases.

We have focused on a special class of mixed states: coherent SPT mixtures.
These are mixed states that, according to the phase diagram defined by strongly
symmetric evolution, lie in the same phase as some pure SPT state and share its
SPT invariant [ω] ∈ H2(G,U(1)). A question left for the future is what the rest
of the phase diagram looks like in one dimension. It would also be interesting to
study strong symmetry of SPT phases in higher dimensions, for example with the
use of membrane string order in 2D [269]. Another relevant question is whether
Theorem 1 (for SPTO) can be extended to phases protected by general symmetries.
A classification of the 1D phases protected by matrix product operator symmetries
has recently been given in Ref. [166].

As a separate result, we determined how causal channels, including those not
generated by Lindbladians, interact with SPTO. We found that those satisfying
twisted symmetry conditions map between coherent SPT phases, sometimes de-
creasing but never increasing their complexity. Since the complexity of an SPT
phase determines its computational power in measurement-based quantum com-
puting [243], it would be interesting to study twisted strongly symmetric channels
as equivalence relations for a resource theory.

This research raises several other questions for future investigation. Firstly,
since string orders are experimentally tractable [71, 107], one can ask how to detect
mixed state SPTO in experiment. Secondly, our work considers SPTO at finite
time, as at infinite times fingerprints of SPTO such as string order get washed out.
This raises the question of whether coherent SPT mixtures arise as steady states
of Lindbladians. Also, what are the implications of our findings for SPTO at finite
temperature? This would clarify further the nature of SPT mixed states. And
finally, it would be interesting to explore further how our findings relate to other
properties of SPT phases, their boundaries and transitions, as studied in previous
work [4, 68, 256].
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Chapter 5

Transmuting symmetry protected
topological phases under quantum
channels

This Chapter contains the second part of the publication

• Symmetry Protected Topological Order in Open Systems Caroline de
Groot, Alex Turzillo, and Norbert Schuch. arXiv:2112.04483v2 [73]

5.1 Motivation

Order parameters are key to our understanding of phases of matter. Not only do
they enable the classification of phases by labeling them with invariants [84, 120, 176,
270], but they also allow the study of phase transitions [92–95]. The classification
of phases and phase transitions are topics which are two sides of the same coin;
the former tells us about properties within the boundary of an equivalence class,
while the latter provides information about the nature of the boundary itself. In
phase transitions of gapped quantum phases, demarcating critical points has long
been a core goal in condensed matter physics. Importantly, order parameters, and
in particular their correlations, play a major role. Correlations give a complete
characterisation of the phase transition, since at the critical point all typical
correlation lengths of the system diverge exponentially with some particular critical
exponent [271]. In Landau-type order, phase transitions are enacted through
spontaneous symmetry breaking by tuning parameters in the system Hamiltonian.

However in gapped phases without symmetry-breaking, different mechanisms for
phase transitions are possible. To be precise, we introduce the more general term of
“phase transmutation”, which is a mapping between two phases but does not imply
anything about closure of the gap. This differs from “phase transition” which is
conventionally meant to be synonymous with gap closure. This phenomenon occurs
in symmetry protected topological (SPT) phases, where one may transform from
one phase to another either by operations which preserve the symmetry protecting
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the SPT phase and cause a gap closure (a phase transition)1 or by operations
which break that symmetry but do not cause gap closure (a phase transmutation).
SPT phase transmutations (with or without gap closure) m ay be characterised by
certain invariants of the phase, such as string order parameters and inaccessible
entanglement [272–274].

By contrast, the SPT phase transmutations of mixed states have been relatively
unexplored (in part because a more thorough understanding of open systems
topological order has been lacking until recently [4, 73]). Dissipation has long been
considered the enemy of quantum phases since it causes decoherence; coherence
being taken to mean the nontrivial entanglement patterns which are necessary
to have in a nontrivial phase. It is therefore perhaps surprising that dissipation
can actually be harnessed as a resource, countering previous intuitions. Namely,
dissipative processes can be used to prepare relevant classes of states which are
ground states of frustration-free Hamiltonians, such as matrix product states [254,
255] and PEPS [275], which describe graph states, and certain topological codes
such as the Levin-Wen string-net models or Kitaev quantum double models. This
has even led to a new form of quantum computation called dissipative quantum
computation [275], which can be considered robust since the evolution can be
chosen such that the steady state is the desired outcome of the computation,
which is a stable point of the evolution. Given that dissipation has been found to
engineer interesting quantum phases, creating coherence, we might expect that
such dissipation can be described systematically.

The main question we address here is: is there a framework to describe the SPT
phase transmutations of mixed states? This would give an outline of the phase
boundaries of SPT mixed states, as well as shed light on their physical properties.
We consider which operations transform between different SPT phases in the open
system setting, as witnessed by order parameters. In Chapter 4 we previously
we asked which equivalence relations map between states in the same phase by
preserving the same invariants (order parameters). The answer is that strongly
symmetric channels preserve SPTO. We now consider building from the framework
of Chapter 4 to describe SPT phase transmutations in open systems. In particular,
we address which channels map between states in different SPT phases.

We confirm that dissipation can be structurally interesting in the open system
setting by giving a systematic description of operations which transform between
particular SPT phases by breaking symmetries. The prescription for transmuting2

between SPT phases follows the rules of group theory which determine precise
patterns of entanglement. As suggested in [4], we show that the entanglement
pattern may only be changed according to particular rules. We visualise how a
pattern of entanglement may be broken down in Fig. 5.1 by an interplay between
symmetry and entanglement. This finding is the open systems equivalent of
symmetry-breaking unitary circuits which can transform between pure state SPT

1Further, SPT phase transitions exist in three different kinds, either continuous quantum
critical points, first order phase transitions, or spontaneous symmetry breaking [95].

2We do not consider whether transmutation can be considered on the same footing as SPT
phase transition, and leave this problem open.
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Figure 5.1: a) Visualising a “pattern of entanglement” encoded in the virtual
degrees of freedom of TN states. The rainbow wavy lines depict entangled bonds
between two sites. b) Colours encode the symmetry group G = Z4 × Z4 in a bond.
All of its subgroups H ⊂ G are also valid patterns. Twisted strongly symmetric
channels may map to simpler patterns which are already encoded in the state,
which is visualised by mapping certain colours to other colours. They may not
generate new colours, nor can they increase the complexity of patterns.

orders [276].

5.2 Summary

We extend our analysis of SPTO in open systems to the scenario where the noise
does not commute with the symmetry but rather acts by exchanging symmetries,
either permuting them or identifying their group actions. We term channels with
this property twisted strongly symmetric. We introduce versions of the symmetry
conditions introduced in the previous Chapter that are twisted by an endomorphism
σ : G → G of the symmetry group. The twisted conditions are stated in Eqs.
(5.5.1), (5.5.2), and (5.5.3).

In the case of permutation of symmetries, we demonstrate that the noise acts by
permuting SPT phases with the same complexity, and otherwise the noise reduces
complexity (Theorem 2). Symmetric channels with a nontrivial twist cannot be
generated by continuous evolution by a symmetric Lindbladian in finite time; in
other words, for σ that are not identity-connected (every nontrivial σ when G is
finite and all but those of the form (4.5.6) otherwise [262]), channels twisted by σ
are not generated by continuous symmetric Lindbladian evolution in finite time.
These channels therefore describe infinite time evolution (for example in §5.6.3)
and discrete noise.

First we discuss an action of group endomorphisms σ on the SPT invariant
[ω] in Section §5.3. Then we argue in Theorem 2 that σ-twisted SS channels have
the effect of changing the SPTO according to this action. In particular, when
an endomorphism σ does not change [ω], channels satisfying the σ-twisted SS
condition preserve the phase with invariant [ω]. This allows us to answer a question
we had previously deferred – of the necessary condition for a channel to preserve a
given SPTO. The answer is that the channel must be a mixture of σ-twisted SS
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channels for σ that fix the SPTO. We also discuss the general situation where a
channel does not preserve the phase but rather transmutes it into one of equal or
lesser complexity. We illustrate several examples for allowed different SPT phase
transformations, and illustrate the general case in Fig. 5.2.

We investigate this in terms of the inaccessible entanglement which was intro-
duced in Chapter 3, and find that the degeneracy of the inaccessible entanglement
depends on both the initial phase and the endomorphism σ. In other words, order
parameters reflect the changed SPT order that is brought about by the channel
which is twisted strongly symmetric by the twist σ.

5.3 The action of endomorphisms on SPT phases

Here we collect necessary facts about endomorphisms as they relate to SPT phases.
An endomorphism σ : G → G acts on the cocycle ω as a pullback. Concretely this
means

σ : ω 7→ σ∗ω , (σ∗ω)(g, h) = ω(σ(g), σ(h)) . (5.3.1)

The action of endomorphisms has the following property:

An automorphism preserves the complexity of
phases. (5.3.2)

This is because, if σ is an automorphism, the transformed projective center

Kσ∗ω = { g : ω(σ(g), σ(h)) = ω(σ(h), σ(g)) ∀h } . (5.3.3)

equals σ∗Kω, since σ(h) runs over the whole G, and this in turn is isomorphic to Kω

by σ∗. The converse to Claim (5.3.2) is false because noninvertible endomorphisms
may also preserve complexity. As a counterexample, take any G, σ with ω = 1.
Less trivially, take G = H1 ×H2 and ω = P ∗ω1, where P projects onto H1 and ω1
is any cocycle on H1. The endomorphism σ = P is not an automorphism, yet it
fixes ω and its complexity. Despite the lack of a full converse, one can make the
following weaker claim:

An endomorphism maps MNC phases, and only
MNC phases, to MNC phases if and only if it is

an automorphism.
(5.3.4)

In other words, an endomorphism preserves the distinction between MNC and
non-MNC phases precisely when it is an automorphism. The ‘if’ direction follows
from Claim (5.3.2). To see the ‘only if’ direction, note that the kernel of σ is
contained in Kσ∗ω, so the MNC condition Kσ∗ω = {1} implies that kerσ = {1}.
The properties (5.3.2) and (5.3.4) appear in Figure 5.5 as constraints on the arrows
between nodes. The special case of G = Z12 ×Z12 is explored in complete detail in
Figure 5.6.
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Figure 5.2: Five kinds of channels acting on the spaces of SPT phases. The four
coloured lines map between SPT phases as they are twisted-SS, while the dotted
line maps out of the manifold of coherent SPT states. These maps change patterns
of entanglement.

Changing SPT phase by σ-SS

Which SPT phases get mapped between by σ-SS given a group G = Zn × Zn? We
will go through how to construct all allowed endomorphisms of SPT phases given a
G of this kind. There are four classes of maps: SS, automorphism-twisted SS (which
is not also SS), endomorphism-twisted (which is not also automorphism-twisted
SS) and e-SS. The SS channels map an SPT phase to itself, which is given by
multiplication by 1 mod n, and e-SS maps all SPT phases to the trivial phase,
which is given by multiplication by 0 mod n. The depolarising channel (4.5.10)
introduced in §4.5.2 is only WS, while the dephasing example (4.5.12) is e-SS.
Automorphism-twisted SS maps SPT phases to different SPT phases with the
same notion of complexity (same size of projective centre subgroup Kω) which
are generated by multiplication by m mod n for gcd (m,n) = 1, m coprime to n,
and finally endomorphism-twisted SS maps SPT phases to phases with less com-
plexity, which is generated by multiplication by m mod n where m | n, m divides n.

To examine this more closely, we depict the possible maps given a group G by
a directed graph. Each phase is represented by a vertex, and the possible maps are
directed edges between vertices. The complexity of the phase will be given by the
position in a tiered structure calculated by the projective centre Kω, with lowest
complexity at the bottom, which is always the trivial phase, and with highest
complexity at the top.
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Figure 5.3: The allowed σ-SS maps with G = Z4 ×Z4 are endomorphisms between
the four SPT phases ωn, with n in Z4, labelling the elements of the cohomology
group. We indicate which tiers of SPT phases the four main classes of SS map
between. SS is generated by multiplication ×1, automorphism is generated by ×3,
endomorphism is generated by ×2, and e-SS is generated by ×0. The third tier
are MNC phases, the second tier are non-MNC phases, and the first tier is the
trivial phase, with the order of complexity dictated by the projective centre |k|.

Consider a first example, the maps between different phases of G = Z4 × Z4
which are allowed under σ-SS channels, illustrated in Figure 5.3. There are
four possible SPT phases: two MNC phase (|K1,3| = 1), one non-MNC phase
(|K2| = 4), one trivial phase (|K0| = |G|). We can immediately deduce that all
σ-SS channels map between SPTOs given G, but while exact SPTO-preserving
maps are SS, all other σs map to different, but still valid SPTOs which are hosted
by G. Automorphisms map between MNC phases, while endomorphisms always
reduce the complexity of the SPT phase and e-SS takes all phases to trivial. For
a physical example, consider a spin-1 system (d = 3), with representation of the
symmetry which acts with a Kraus operator K1 which takes the trivial irrep to
itself, but K2 permutes between the two elements.

In Figure 5.4 we consider a richer example, namely the endomorphisms of
SPT phases given G = Z8 × Z8. Then there are eight SPT phases: four MNC
(|k1,3,5,7| = 1), two non-MNC (|k2,6| = 16), one non-MNC (|k4| = 32), and one
trivial phase (|k0| = |G|). The allowed endomorphisms here are interesting as,
since G is relatively large, this class can be subdivided into two by quantifying the
reduction in complexity. The first type of endomorphism, given by ×2,×6 maps
down by maximally one tier such that only two of the seven non-trivial SPT phases
can survive, whereas the second type, given by ×4, maps down by maximally two
tiers, which destroys all the non-trivial SPT order but one.

Let us examine in detail one of the most studied settings for investigations of
one-dimensional SPT phases – that of symmetry group G = Zn ×Zn, where phases
are classified by H2(G;U(1)) = Zn.

Elements of Zn × Zn are “vectors” (w, x) with w, x ∈ Zn. Endomorphisms
of Zn × Zn are matrices with entries in Zn that act on these vectors by matrix
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Figure 5.4: Similarly to Fig. 5.4, we calculate an example with G = Z8 × Z8 for
allowed σ-SS maps between SPT phases, which are labelled by ωn with n in Z8.
Now two types of endomorphisms exist, one which maps down in complexity of SPT
phase by one tier, and another that can map down by two tiers. Automorphisms
preserve the complexity of the phase, while endomorphisms can have varying
strengths to map to phases of lower complexity, either down one or two tiers. We
omit the e-SS maps which are again generated by ×0.

multiplication:

End(Zn × Zn) = M2(Zn) =
{(

a b
c d

)
: a, b, c, d ∈ Zn

}
,

g =
(
w
x

)
, σ(g) =

(
a b
c d

)(
w
x

)
=
(
aw + bx
cw + dx

)
.

(5.3.5)

Automorphisms are those with invertible matrix, i.e. where the determinant ad−bc
is relatively prime to n.

Now let’s discuss cocycles. The n classes of H2(Zn × Zn;U(1)) = Zn are
represented by cocycles

ωk[(w, x), (y, z)] = exp
(

2πi
n
k xy

)
. (5.3.6)

Note that exp
(

2πi
n

(−k)wz
)

is cohomologous to ωk by the coboundary of ϕ[w, x] =
exp

(
2πi
n
wx
)

and that exp
(

2πi
n
wy
)

and exp
(

2πi
n
xz
)

are trivialized by ϕ[w, x] =
exp

(
2πi
n
w
)

and ϕ[w, x] = exp
(

2πi
n
x
)
, respectively.

An endomorphism σ on Zn × Zn induces an endomorphism σ∗ on H2 = Zn as
follows:

(σ∗ωk)[(w, x), (y, z)] = ωk[σ(w, x), σ(y, z)]
= ωk[(aw + bx, cw + dx), (ay + bz, cy + dz)]
= exp

(
2πi
n
k (cw + dx)(ay + bz)

)
= exp

(
2πi
n
k (acwy + bcwz + ad xy + bd xz)

)
∼ exp

(
2πi
n
k (ad− bc)xy

)
= ωk(ad−bc)[(w, x), (y, z)] .

(5.3.7)
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Figure 5.5: Phases ω appear as nodes and the action of endomorphisms σ as arrows
between nodes. From left to right, the columns depict the identity endormorphism,
automorphisms, noninvertible endomorphisms, and the constant endomorphism. In
anticipation of the implementation of these endomorphism actions by twisted symmetric
channels (c.f. §5.6), the columns are labeled by the corresponding symmetry conditions.

The penultimate line holds up to coboundaries. We conclude that the action of σ∗

on the group of SPT phases is multiplication of the SPT index k by the determinant
(ad− bc) of σ.

Endomorphisms of Zn are given by multiplication by an element of Zn, while
automorphisms are those where the multiplication is by a generator of Zn, i.e. by
a number relatively prime to n. This means that σ∗ is an automorphism of the
group of SPT phases precisely when σ is an automorphism of G.

For example, the automorphism σ(w, x) = (x,w) that exchanges the two factors
has the effect of inverting SPT phases since it has determinant −1. (For n = 2,
inversion is the identity, so the two phases – trivial and Haldane – are fixed by the
exchange automorphism.) On the other hand, the endomorphism σ(w, x) = (w, e)
that collapses the second factor to the identity has determinant 0, so it destroys
all SPT phases.

Let us compute the projective center Kωk
, the set of elements (w, x) such that

exp
(

2πi
n
k xy

)
= ωk[(w, x), (y, z)] = ωk[(y, z), (w, x)] = exp

(
2πi
n
k wz

)
, ∀ (y, z) ,

(5.3.8)
i.e. such that k xy ≡ k wz mod n , ∀ y, z. Taking z = 0 while varying y and vice
versa, we find

Kωk
= { (w, x) ∈ Zn × Zn : k · (w, x) ≡ 0} . (5.3.9)

In particular, when k is coprime to n, the projective center is trivial, so the cocycle
ωk is MNC. The invariant (detσ) k of the transformed phase is coprime to n
precisely when k and (detσ) and both coprime to n; that is, when the original
phase is MNC and σ is an automorphism, in agreement with Claim 5.3.4.
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Figure 5.6: The 12 phases of the group G = Z12 × Z12 are depicted as nodes. Arrows
represent the actions of two endomorphisms: on the left, an automorphism with det σ =
5; on the right, a noninvertible endomorphism with det σ = 3. Observe that the
automorphism preserves complexity, as required by Claim (5.3.2), by preserving phases
3, 6, 9, 0 and exchanging the remaining phases with others of equal complexity. On the
other hand, the noninvertible endomorphism reduces the complexity of all MNC phases
(1, 5, 7, 11), as required by Claim (5.3.4) but nevertheless preserves the complexity of
phases 3, 6, 9, even fixing phase 6.

5.4 Patterns of zeros under endomorphisms

Let G be abelian. The cocycle ω defines a “pattern of zeros” ζω : G → G∗ given by

ζω : g 7→ χω
g (·) = ω(·, g)

ω(g, ·) . (5.4.1)

The image is indeed linear characters (one-dimensional representations) since

χω
g (h)χω

g (k) = ω(h, g)
ω(g, h)

ω(k, g)
ω(g, k) = ω(k, g)ω(h, gk)

ω(g, h)ω(hg, k)
abelian= ω(k, g)ω(h, kg)

ω(g, h)ω(gh, k) = ω(hk, g)
ω(g, hk) = χω

g (hk) .

(5.4.2)
The kernel of ζω is the projective center Kω (4.5.26).

The pattern of zeros ζω determines the cohomology class [ω] of the cocycle ω.
To see this, note that the map ω 7→ ζω is a group homomorphism: ζω1ζω2 = ζω1ω2 ;
therefore, is suffices to check that its kernel consists of coboundaries. Suppose
ω 7→ 1, i.e. ω(g, h) = ω(h, g) for all g, h. Then any projective representation with
class ω satisfies VgVh = VhVg. By Schur’s lemma, Vg must be proportional to the
identity by a scalar λ(g). Then ω is the coboundary of λ since

λ(g)λ(h)1 = VgVh = ω(g, h)Vgh = λ(gh)ω(g, h)1 . (5.4.3)

It is convenient to represent a pattern of zeros ζω as a two-dimensional array
with columns indexed by group elements g and rows indexed by linear characters
α. The entry (g, α) in this array is ⋆ if ζω(g) = χα and zero otherwise. Since
ζω(g) is a particular linear character, there is exactly one ⋆ per column. The row
indexed by α has either |Kω| or zero ⋆’s depending on whether χα is in the image
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of ζω. The rank of the array is |G|/|Kω|. For example, the two phases of symmetry
G = Z2 × Z2 have patterns of zeros

ζtrivial =


⋆ ⋆ ⋆ ⋆
0 0 0 0
0 0 0 0
0 0 0 0

 , ζHaldane =


⋆ 0 0 0
0 ⋆ 0 0
0 0 ⋆ 0
0 0 0 ⋆

 , (5.4.4)

with columns indexed by g = (0, 0), (0, 1), (1, 0), (1, 1) and rows by α with 1
πi

logχα(w, x) =
0, w, x, w + x. Now consider the action of an endomorphism σ. It acts on ω as
Eq. (5.3.1) and on ζω as

σ · ζω = ζσ∗ω : g 7→ χσ∗ω
g = σ∗χω

σ(g) . (5.4.5)

This rule tells us how the array for ω transforms into the array for σ∗ω:

For each group element g, look up the unique row β of the
old pattern ζω such that the entry (σ(g), β) is ⋆. Then

compose β with σ to obtain the row α of the new pattern
σ · ζω such that the entry (g, α) is ⋆.

(5.4.6)

Using this rule for transforming patterns of zeros, one can check the examples of
endomorphisms introduced above. The exchange automorphism swaps the middle
two rows and swaps the middle two columns, fixing both the trivial and Haldane
patterns. On the other hand, the endomorphism that collapses the second factor
copies the first the third columns, which have g in the image of σ, and moves their
⋆ entries up according to σ; the result is that both patterns are mapped to the
trivial one.

The MNC property has a meaning in terms of patterns of zeros: the only
column with a ⋆ in the α = 1 row is the g = 1 column. Claim 5.3.4 can be shown
in this language. Consider the ‘if’ direction. We wish to find the entries (g, 1) of
the new pattern that are ⋆. If σ is an automorphism, these entries are the entries
(σ(g), (σ−1)∗1) = (σ(g), 1) of the old pattern. Precisely when the old pattern is
MNC, the only of these entries with ⋆ is the one with σ(g) = 1 and so, since
σ is an automorphism, g = 1 is the only solution and the new pattern is MNC.
Consider the ‘only if’ direction. The entry (σ(g), 1) of the old pattern is the entry
(g, σ∗1) = (g, 1) of the new pattern. When the new pattern is MNC, it has a ⋆ in
this row only for h = 1. Precisely when the old pattern is MNC, it does only for
σ(g) = 1, which means the new pattern does for all h ∈ kerσ; therefore, precisely
in this case do we have kerσ = {1}, which is to say that σ is an automorphism.

5.5 Twisted symmetric channels

Having understood the action of group endomorphsisms on phases, we turn to
studying the channels that implement it. Here, we introduce twisted symmetry
conditions and discuss the structure of Kraus operators of twisted symmetric
channels. Later we will argue that the σ-SS condition implements the action of σ.
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The σ-twisted weak symmetry (σ-WS) condition is

Ug ◦ E ◦ U †
σ(g) = E , ∀ g . (σ-twisted weak symmetry condition)

(5.5.1)
By setting the phases θi equal as before, we obtain the σ-twisted strong symmetry
(σ-SS) condition:

UgKiU
†
σ(g) = eiθ(g)Ki , ∀ i, g . (σ-twisted strong symmetry condition)

(5.5.2)
Using the argument from before but with X = Ug, Y = eiθ(g)Uσ(g), we obtain the
alternative statement

E†(Ug) = eiθ(g)Uσ(g) , ∀ g . (σ-twisted strong symmetry condition)
(5.5.3)

The untwisted SS condition means that the channel decomposes as a sum
of channels on irrep blocks, acting only within multiplicity spaces. A similar
statement holds for σ-SS channels: each Kraus operator has a block decomposition
Ki = ⊕αβK

αβ
i such that the component Kαβ

i , which is a map from the multiplicity
space of β to that of α, vanishes unless α = σ∗β. This is because the σ-SS condition
says that Ki maps to a space where g acts as σ(g) did before mapping. This means
the completeness condition on E implies∑

i

(Kσ∗α,α
i )†Kσ∗α,β

i =
∑

i

(K†
iKi)αβ = 1δαβ , (5.5.4)

which in particular enforces a completeness condition on the channels

Eα(ρ) =
∑

i

(Kσ∗α,α
i )†ρKσ∗α,α

i . (5.5.5)

When σ is not an automorphism, each term K†
iKi may have off-diagonal compo-

nents: Ki maps α to σ∗α, which K†
i maps back to any β in the preimage. Eq.

(5.5.4) implies these must cancel in the sum.
Extending the untwisted class sdQC of causal channels, one can define σ-

sdQC as the set of channels with a purification that is both causal and σ-twisted
symmetric under an on-site symmetry. The folded MPS of the MPU representing
the purification has a symmetry Ug ⊗U †

σ(g)⊗UA
g ⊗(UA

σ(g))†, which defines a projective
representation Q. Local realization of the symmetry is again the condition that Q
is linear.

While strong symmetry twisted by an automorphism is possible in reversible
channels, strong symmetry twisted by a noninvertible endomorphism is not.3 To
see this, suppose g belongs to the kernel of σ. Then the single Kraus operator K
of the reversible channel satisfies K†UgK = 1, but this implies Ug = 1, so g = 1 by

3A stronger statement also holds: noninvertible twists are impossible not just in reversible
channels but in all channels that are invertible as linear maps. To see this, note that E† annihilates
Ug − 1 for g ∈ ker σ and that E is invertible iff E† is.
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faithfulness. In light of Theorem 2 (below), this means that reduction of complexity
– as opposed to change of phase at a fixed complexity level – is a phenomenon
unique to irreversible channels. On the other hand, any automorphism can be
realized by a reversible channel: let Ug contain one copy of each irrep and let K
be the permutation matrix that implements the induced action σ∗ on irreps.

The impossibility of noninvertible twists for reversible channels is reflected in
purifications. If σ is an automorphism, the construction in §4.4.3 yields purifications
W of σ-SS channels that satisfy

(Ug ⊗ 1A)W = W (Uσ(g) ⊗ 1A) . (5.5.6)

However, if σ is not invertible, the irrep block structure of the Kraus operators
means that some rows of W constructed this way must be zero, meaning it is not
unitary and so not a valid purification.

Endomorphisms compose contravariantly under the composition of channels.
If E is a σ-WS channel and E ′ a σ′-WS channel, their composition E ◦ E ′ has WS
twisted by σ′ ◦ σ, as can be seen by

Ug ◦ E ◦ E ′ ◦ U †
(σ′◦σ)(g) = Ug ◦ E ◦ U †

σ(g) ◦ E ′ = E ◦ E ′ . (5.5.7)

If both E and E ′ have σ- and σ′- twisted-SS, respectively, the composition E ◦ E ′

has (σ′ ◦ σ)-SS since

(E ◦ E ′)†(Ug) = (E ′† ◦ E†)(Ug) = E ′†(Uσ(g)) = U(σ′◦σ)(g) . (5.5.8)

We also note that convex combinations and tensor products of σ-WS/SS channels
are σ-WS/SS.

5.6 Transmutation of SPT phases

This section is dedicated to showing that certain σ-twisted strongly symmetric
channels have the effect of transmuting one coherent SPT phase into another,
according to the action of σ on the SPT invariants.

It is not the case that all σ-SS channels perform transmutation of SPT phases,
but most of them do. We state our result for σ-SS channels satisfying a genericness
condition

Φα ̸= 0 , ∀α ∈ im σ , (5.6.1)
where Φα is the α-labeled component of E in the irrep block decomposition of
E discussed in §4.4.1. This condition excludes, for example, the fully dephasing
channel of ??, which destroys SPT order despite having strong symmetry. It
includes all channels generated by Lindbladians in finite time. In the following
theorem, “coherent SPT phase” means a class of coherent SPT states with a given
pattern of zeros (which, by Theorem 1 and the conjecture of §4.6.4, is a phase
defined by strongly symmetric Lindbladians). Mapping an SPT phase to another
refers to mapping every state in one phase to a state in the other.
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Theorem 2: Generic locally σ-twisted
strongly symmetric channels map the

coherent SPT phase with invariant ω to the
phase with invariant ω′ = σ∗ω.

For uncorrelated noise, the converse holds:
if a channel maps the coherent SPT phase

with invariant ω to the phase with invariant
ω′, it is σ-twisted strongly symmetric for

some σ with σ∗ω = ω′.

As we will discuss later, the converse statement is false for causal channels.4

A consequence of Theorem 2 is that, among channels of uncorrelated noise,
twisted strongly symmetric channels are precisely those that map within the
space of SPT states. Focusing on the MNC phases discussed in §5.4, we can
also conclude that, among channels of uncorrelated noise, automorphism-twisted
strongly symmetric channels are precisely those that map within the space of MNC
SPT states.

Theorem 2 tells us when a channel preserves a given SPTO:

Corollary: The SPTO with invariant ω is
preserved by generic locally σ-twisted strongly
symmetric channels with σ that fix ω. Among

channels of uncorrelated noise, σ-twisted
strongly symmetric channels with such σ are
the only channels that preserve this SPTO.

To prove the theorem, we need the following lemma, which generalizes Lemma
1 (for uncorrelated noise, not necessarily symmetric) and Lemma 2 (for channels in
σ-sdQC, which in particular are σ-WS) by adding a twist σ. Let s(g, αl, αr) denote
a string operator with end operators transforming in αl and α∗

r , respectively.5

Lemma 3: Consider either a channel of
uncorrelated noise or a causal channel in

σ-sdQC.

The channel satisfies the σ-twisted (local)
strong symmetry condition if and only if it

maps each string operator s(g, α, α) to a sum
of string operators s(σ(g), βl, βr), where
σ∗βl,r = α (if no βl,r exists, the sum is

empty).

4We also remark about the converse statement that the genericness condition (5.6.1) is
sufficient but not necessary: a weaker ω′-dependent genericness condition on only the subset of
the α that appear in the pattern of ω′ is enough.

5We previously considered only string operators with αl = αr since these are the ones with
nonvanishing patterns of zeros.
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Let us now prove the lemma. The label on the string bulk is changed from g to
σ(g) if and only if E is σ-SS. In the case of uncorrelated noise, this is because each
Es is σ-SS and so E†

s (Ug) = eiθ(g)Uσ(g). For a channel in σ-sdQC, the argument is
essentially that of §4.6.3. The label on the ends of the string are changed from α
to a sum of irreps βl,r satisfying σ∗βl,r = α. This is because the superoperators Sg

l,r

(4.6.14) (which are simply E†
l,r for uncorrelated noise) are invariant under acting on

the inner legs with Uh and on the outer legs with Uk for σ(k) = h, as can be seen by
an argument like Eq. (4.6.15). This means that they map the representation space
α on the inner legs to its preimage under σ∗ on the outer legs. We have shown
that the string operator evolves into an operator s(σ(g),Sg

l (Ol
α),Sg

r (Or
α)) and that

Sg
l,r(Ol,r

α ) is a sum of end operators that transform with βl,r such that σ∗βl,r = α,
proving the lemma. For uncorrelated noise, an alternative way of understanding the
change in representation labeling the end operators is with the block decomposition
of the Kraus operators. Since El,r are σ-SS, their Kraus operators vanish outside of
the irrep blocks Kλτ

i with τ in the preimage of λ under σ∗. Meanwhile Ol,r
α have

nonvanishing blocks for irreps λ′, λ such that λ′ ⊗ λ∗ = α. Putting these together,
the nonvanishing blocks of each term K†

i Ol,r
α Ki in the evolved end operator occur

at irreps τ ′, τ in the preimage of λ′, λ with λ′ ⊗ λ∗ = α. Each of these blocks has
τ ′ ⊗ τ ∗ in the preimage of α, so we conclude that E†

l,r(Ol,r
α ) lives in the sum of irreps

β with σ∗β = α.
With Lemma 3 in hand, let us turn toward proving Theorem 2 by first refor-

mulating it in terms of patterns of zeros. The pattern ζω of a state is understood
as the collection of pairs (g, α) such that ⟨s(g, α, α)⟩ is generically nonvanishing
on the state. By the rule (5.4.6), the pattern of zeros σ · ζω consists of pairs (g, α)
such that α = σ∗β for the (unique) β for which (σ(g), β) appears in the pattern ζω.
The theorem demonstrates how this new pattern can be understood as expectation
values of evolved operators E†(s(g, α, α)) evaluated on the original state. To be
precise, the first half of the theorem states that, on an SPT state,

If E is a generic locally σ-SS channel, then generically
⟨E†(s(g, α, α))⟩ ≠ 0 precisely for the pairs (g, α) such that

α = σ∗β for the (unique) β with ⟨s(σ(g), β, β)⟩ ≠ 0.
(5.6.2)

To see why this is true, apply Lemma 3 to write E†(s(g, α, α)) as a sum of terms
s(σ(g), βl, βr) with σ∗βl,r = α. Due to the condition (5.6.1), these terms do not
vanish (though the sum may be empty if no βl,r exist). A pattern of zeros of an
SPT state has a unique entry β per column, so the expectation values of the terms
in the sum vanish unless βl = βr = β; either zero or one terms do not vanish.
We have ⟨E†(s(g, α, α))⟩ ≠ 0 when the nonvanishing term ⟨s(σ(g), β, β)⟩ appears
in the sum. This can only happen when α = σ∗β, and in this case it generically
happens, since generically the β-components of the end operators are nonzero.

It remains to prove the second half of Theorem 2. The argument follows that
of §4.5.1, except that σ is no longer constrained to be connected to the identity
endomorphism. Now the condition that the transfer matrix (4.5.4) has λmax = 1
implies that E†

s (Ug) = Uh, which is to say that Es is σ-SS for some σ with σ(g) = h.
Then apply the first half of Theorem 2 to see that the channel maps the phase ω
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to the phase σ∗ω, which by assumption is ω′; therefore, σ satisfies σ∗ω = ω′, as
claimed.

As we mentioned earlier, the second half of Theorem 2 does not generalize from
uncorrelated noise to all causal channels. This is because there are causal channels
that are not locally σ-SS yet nevertheless transmute SPT phases. For example,
the phase ω is mapped to ω′ by convex combinations of locally σi-SS channels
where each σ∗

i ω equals ω′. Additionally, one can add to the convex combination a
channel that is not σ-SS for any σ. This extra factor annihilates string operator
expectation values and so does not alter the effect of the channel on string order.
Finally, there are channels that are σ-SS but not locally σ-SS. These change the
bulk labels of strings from g to σ(g) and the end labels from χα to χν

gχα, where ν
is the projectivity cocycle of Q. In doing so, they transform the pattern of zeros in
a way that endomorphism actions cannot; for example, if σ = 1, the cohomology
invariant of the channel is simply added to that of the state: ω 7→ ω + ν [268].6

5.6.1 Edge modes perspective

The transformation of the SPT invariant ω under a σ-SS channel can also be seen
in terms of edge modes:

(5.6.3)

The σ-SS condition means that Ug is hit by σ upon pulling through Ki, and local
realization means that Q is linear. Then the edge modes of the evolved MPS state
transforms like σ∗V ⊗Q, which has cocycle σ∗ω.

5.6.2 Irrep probabilities perspective

Irrep probabilities were introduced in §4.5.5, where it was shown that SS Lindbla-
dian evolution preserves them while non-SS Lindbladian evolution maps them to
the fully degenerate value 1/|G|. In this section, we consider the effects of (not
necessarily Lindbladian) causal channels on irrep probabilities.

We find that strongly symmetric channels twisted by automorphisms preserve
the degeneracies of irrep probabilities (though permute the irrep probabilities
themselves) for all SPT phases, while those twisted by noninvertible endomorphisms
reduce the degeneracy if the initial state is in an MNC phase and either reduce or
preserve it (depending on the phase) for non-MNC phases. In light of the claim
of Ref. [72] that the degeneracy of irrep probabilities measures SPT complexity,
this result reflects the behaviour of complexity we observed in §5.3; in particular,
in Figure 5.5. Meanwhile, channels that are not σ-SS for any endormorphism σ

6This is not surprising. In closed systems, 1D SPT phases can be prepared by symmetric
causal unitaries with index ν = ω.
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Figure 5.7: A random state in trivial
phase of Z4 × Z4. Under non-σ-SS chan-
nels the irrep probabilities become ex-
actly fully degenerate. For σ-SS channels,
the nondegeneracy of the trivial phase is
preserved.

Figure 5.8: A close-up of the irrep prob-
abilities of a random state in the trivial
phase evolved by a σ-SS channel shows
that they have no enforced degeneracy.

send the degeneracy to to the maximal value |G|, regardless of the initial state.
This result means that irrep probabilities and their degeneracy detect whether a
channel is twisted strongly symmetric.

To see that automorphism-twisted SS channels permute irrep probabilities,
use what we learned in §5.6 about the transformation of the string operators
⟨s(Ug,1,1)⟩ to compute

pα 7−→ 1
|G|

∑
g

χα(g)⟨s(Uσ(g),1,1)⟩ = 1
|G|

∑
g

χα(σ−1(g))⟨s(Ug,1,1)⟩ = p(σ−1)∗α .

(5.6.4)
A similar computation can be performed for endomorphisms. Fix a set of elements
h ∈ G that represent the cosets of the quotient G/ kerσ. Then

pα 7−→ 1
|G|

∑
g

χα(g)⟨s(Uσ(g),1,1)⟩

=
(

| kerσ|
|G|

∑
h

χα(h)⟨s(Uσ(h),1,1)⟩
) 1

| kerσ|
∑

k∈ker σ

χα(k)
 .

(5.6.5)

Orthogonality of characters means that the sum over k ∈ kerσ enforces the
constraint that α restricted to kerσ is trivial. For the characters α without this
property (of which there is at least one if σ is noninvertible), the corresponding
irrep probability pα must vanish. When at least one of the pα’s vanishes, they
cannot be fully degenerate, so there is less degeneracy than for a MNC state. We
conclude that SS channels twisted by noninvertible endomorphisms reduce the
degeneracy of MNC phases. Finally, channels that are not σ-SS for any σ annihilate
the string order parameters without g = 1, so we get again the result (4.5.27) that
the irrep probabilities become maximally degenerate, regardless of the initial state.
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5.6. Transmutation of SPT phases

Figure 5.9: Irrep probabilities for a ran-
dom state in a Z4 ×Z4 MNC SPT phase
after evolution by channels satisfying var-
ious symmetry conditions.

Figure 5.10: Irrep probabilities for a ran-
dom state in a Z4 × Z4 non-MNC SPT
phase after evolution by channels satis-
fying various symmetry conditions.

To illustrate these results, we perform numerical checks on example SPT states
with symmetry G = Z4 × Z4. We generate random, injective, symmetric MPS
of bond dimension D = 16 in a particular SPT phase, with support in all irrep
sectors. Then we act on them with channels satisfying various symmetry conditions.
The resulting irrep probabilities are depicted in Figures 5.7, 5.8 (trivial phase)
and Figures 5.9, 5.10 (nontrivial phases). For Z4 × Z4, the automorphisms are
those σ with detσ = 1, 3, while the noninvertible endomorphisms are those with
detσ = 0, 2. Each Kraus operator of our example channels is a 16 × 16 matrix.
The WS but non-SS channel we consider is the depolarizing channel (4.5.11), and
the SS channel we consider is the dephasing channel (4.5.12). The SS channel
twisted by the constant endormorphism (in particular, detσ = 0) is given by Kraus
operators (Ki)ab = δaiδb1. The channel with SS twisted by an automorphism with
detσ = 3 is given by two Kraus operators, each expressed in terms of 4 × 4 blocks
as Ki = (K̃i)⊕4, where

K̃0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , K̃1 =


0 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0

 , (5.6.6)

The channel that enacts a det(σ) = 2 endomorphism twist is given by four Kraus
operators with blocks

K̃i =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


.

(5.6.7)
Irrep probabilities let one compute the entanglement of a state that is not

accessible to local operations and classical communication (LOCC) that respect
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the symmetry G [72]. The inaccessible entanglement is given by the entropy of the
irrep probabilities

Einacc = −
∑

α

pα log2 pα. (5.6.8)

The lower bound on this quantity over pure states in an SPT phase is determined
by the complexity of the phase and is log2(D2

ω) = log2(|G|/|Kω|), while the upper
bound is given by log2(|G|).

While the upper bound on Einacc is unchanged by evolution under any (weakly
symmetric) channel, the lower bound may decrease or remain the same according to
the symmetry condition satisfied by the channel. If the channel is σ-SS, it changes
the SPTO from [ω] to [σ∗ω] and the lower bound to log2(D2

σ∗ω). Then, since the
lower bound decreases as complexity decreases, SS and automorphism-twisted SS
channels leave the lower bound unchanged, while the lower bound is decreased
under SS channels twisted by noninvertible endomorphisms. In particular, channels
twisted by the constant endomorphism σ : g 7→ e send the lower bound to zero
(since Dσ∗ω = 1). In fact, by Eq. (5.6.5), states evolved by e-SS channels saturate
the lower bound by concentrating their support in the trivial irrep.

5.6.3 Revisiting the example of the SPTO-destroying Lindbla-
dian

Our investigation into the strong symmetry condition was motivated in §4.4.4 by
Coser and Pérez-García’s example [4] of a weakly symmetric Lindbladian that
destroys SPTO. Let us now revisit this example and discuss how it fits into the
theory of twisted symmetric channels that we have developed in this section.

Recall that this Lindbladian (4.4.39) is not strongly symmetric, which means
by Theorem 1 that it does not preserve SPTO. Moreover, by Theorem 2, the only
channels that map within the space of SPT states are σ-SS channels, so the channels
this Lindbladian generates at finite times must destroy SPTO altogether. To see
how this assertion is consistent with the claim of Ref. [4] that their Lindbladian
maps one SPT phase to another in finite time, notice that they are interested in
matching states only approximately (albeit exponentially well), whereas we require
exact matching in order to preserve string order.

At infinite time, however, the channel generated by this Lindbladian maps
arbitrary states exactly to a product state, which has a well-defined SPTO – the
trivial order. This means that the infinite time evolution satisfies the strong
symmetry condition twisted by the constant endomorphism σ : g 7→ e. This can
be seen explicitly by writing out the channel on each site s:

Es,t = etLs = et(Ts−1) = Ts − e−tLs
t→∞−−−→ Ts , for Ts(ρ) = Tr[ρ]|ϕ⟩⟨ϕ| , (5.6.9)

where we used T 2
s = Ts. This channel has dual T †

s (X) = ⟨ϕ|X|ϕ⟩1, which, since
the state |ϕ⟩ is chosen to be symmetric, satisfies T †

s (Ug) = 1, the twisted strong
symmetry condition for σ : g 7→ e. We remark that the channel Ts is generic, in
the sense of Eq. (5.6.1), despite arising as an infinite time evolution.
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The transformation of one SPT phase into another by this Lindbladian is
considered in Ref. [4]. Let |ω⟩ denote a state in the phase labeled by ω. Any state
|ω1⟩ may be transformed into any |ω2⟩ by appending a |ω−1

2 ⟩ ⊗ |ω2⟩, then acting
with E∞ ⊗ 1, and finally discarding the product state that is reached after infinite
time:

|ω1⟩ ∼ |ω1⟩ ⊗ |ω−1
2 ⟩ ⊗ |ω2⟩

E∞7−→ |ϕ⟩⊗L ⊗ |ω2⟩ ∼ |ω2⟩ . (5.6.10)

At first glance, this procedure may seem to suggest that the channel is capable of
transforming between arbitrary G-SPTOs ω1 and ω2, in violation of Theorem 2
and the rule that SPT complexity cannot be increased. This apparent paradox is
dissolved by realizing that the full symmetry group of these states is G×G×G,
rather than just the diagonal subgroup G. The fact that E∞ ⊗ 1 changes the
G×G×G-SPTO according to the action of the endomorphism σ : (g1, g2, g3) 7→
(e, e, g3) is consistent with it being strongly symmetric with this twist. It is not
possible to reduce the symmetry group to the diagonal factor: either |ϕ⟩ is taken
to be symmetric (resulting in a copy of G on each factor) or it is taken to be
nonsymmetric, in which case the full symmetry group is a copy of G on the third
factor. If the states are chosen so that only the third factor of G remains a
symmetry, the channel (which acts trivially on the third factor) may be regarded
as having untwisted strong symmetry; indeed, the G3-SPTO is ω2 on either side of
the transformation.

5.7 Discussion & Conclusions

This Chapter answers a general question interesting to the condensed matter
community regarding topological phase transmutation. We consider the question
of the mechanism for SPT phase transmutation in a non-unitary setting. We
provide a concrete framework to answer this question, with twisted-SS channels.
By restricting channels to not only be weakly but strongly symmetric, the SPT
phase remained well-defined under finite amounts of noise. By evolving with
twisted-SS channels, this suggested defining the SPT complexity which may either
stay the same or be reduced; when the twist is non-trivial, the SPT phase changes.
This is detected by hallmarks of the SPTO such as the string order parameter,
edge modes and inaccessible entanglement. In the following we will discuss some
implications of the work, as well as some more nebulous connections as food for
thought.

While in closed system settings, several procedures are known which engineer
topological phase transmutation, this work gives a first attempt at developing
a framework to describe SPT phase transmutation in open systems. In closed
systems, it’s known that applying symmetric filters on a pure state may reduce
the complexity of the entanglement pattern and lead the state to have a different
pattern, e.g. by the condensing or confinement of anyons [94, 277, 278]. This
induces a topological phase transition, due to the remarkable fact that topological
phases are defined by the pattern of entanglement. Intuitively, reducing the
symmetry in a meaningful way, by restricting to a subgroup, gives non-trivial
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entanglement patterns, where the symmetries refer to the SF class of the topological
quasi-particles. That only certain topological orders can be transformed between
is intuitive, since entanglement cannot be created without a cost (even with
dissipation) [127].

The twisted-SS framework allows us to easily interpret how changing patterns of
entanglement changes the topological phase. In the setting of G-LOCC, when one
restricts the problem by reducing the symmetry of the operations to a subgroup,
inaccessible entanglement can detect a hidden SPT phase by its latent entanglement
pattern as we saw in Chapter 3. In the setting of open systems, restricting channels
to those with twisted-SS may cause an SPT phase transmutation by physically
changing the system’s pattern of entanglement. The different possible phase
transmutations may be derived mathematically, since they are simply the different
permitted endomorphisms of G acting on the SPT phase, and are these are nicely
detectable through the various hallmarks of SPTO. This emphasizes the role that
patterns of entanglement occupy, by the interplay of symmetry and locality.

An interesting connection is the link to thermodynamics. Open system dynamics
can describe the coupling of a system to a thermal environment. Classically, the
second law of thermodynamics tells us there is an arrow of time in the operations
that classical systems experience naturally which increases the sum total entropy
in the universe, while a quantum second law of thermodynamics is not fully agreed-
upon, in part due to the difficulty of defining a consistent notion of work and entropy
[279–282]. We also see a unidirectionality and ‘arrow of time” under twisted-SS
channels since SPT complexity can only be reduced. Does SPT complexity relate
to a quantum notion of entropy, in that twisted-SS increases entropy? One may ask
whether channels which are not twisted-SS can decrease entropy. Most channels
in the natural world can be expected to destroy SPT complexity, such as weakly
symmetric channels. However, channels can be engineered that create SPTO from
the trivial phase [254, 255]; such channels increase the SPT complexity and would
be thought of as decreasing entropy.

Perhaps more natural for the quantum information scientist to consider is the
connection to resource theory. Consider the resource of the SPT phase, which
provides the computational power in MBQC [26, 115, 135, 243, 283–286]. Resource
theories describe how a partial order is induced on states by defining allowed
operations. Certain states have no resource, and are useless under the allowed
operations, while other states are resourceful, and allow to overcome the limited
operations. Entanglement theory is a canonical example of a resource theory, in
which entanglement is the resource we are interested in and the allowed operations
are LOCC. Consider bipartite entanglement. The possible state transformations
are given a partial order which is determined by majorization [15]. While product
states have no entanglement and so cannot transform to any entangled state under
LOCC, the Bell states are the most entangled (most resourceful) states, and from
these states we can transform to any other bipartite state. If twisted-SS are the
allowed operations, what is a resulting resource theory? Since MBQC is a useful
task, an interesting and potentially useful question to answer is which states are
resourceful and how one may do state transformations between them.
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Chapter 6

Symmetry enriched topological order
in open systems

This Chapter contains the publication in preparation:

• Symmetry Enriched Topological Order in Open Systems Caroline de Groot
Jose Garre Rubio, Alex Turzillo (in preparation) [74].

6.1 Motivation

The zoo of quantum phases expands with growing dimension. Higher-dimensional
systems can host intrinsic topological order as well as SPTO in dimensions greater
than one. By adding symmetries to intrinsic topological phases, the phase diagram
becomes further refined, and families of states which could previously be classified
in the same phase can now be in distinct phases. Such topological phases are called
symmetry enriched topological (SET) phases. These phases are classified by the
symmetry fractionalisation (SF) properties of its anyons, which also describes their
braiding. Then the anyons in the bulk of the system are allowed to fractionalise or
be permuted under the action of the symmetry.

The realisation that anyon braiding can be harnessed as a tool for quantum
computing has led to applications such as topological quantum computing and
quantum error correction [152, 183]. A further widespread subject of interest is
whether topological phases can act as a self-correcting quantum memory (SCQM)
in which a system is able to passively perform error correction [7, 8]. SCQM store
information with a memory time τmem that grows in the system size. However,
for commuting Hamiltonians, this almost certainly requires an unattractively high
dimension. For example, the 4D Toric code is a canonical example of a SCQM,
while the 2D Toric code requires active error correction. Enrichment by symmetries
has provided another way to circumvent the issue of high-dimensionality [61]. SET
phases have been particularly interesting in this direction, as adding symmetries
to topological phases may strengthen the inherent perturbative stability [287, 288].
It’s been suggested that phases enriched by symmetry can support fault-tolerant
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quantum computing even under coupling to a thermal environment, in particular
through higher-form symmetries [190]. In general, the mixing time τmix, the time
for the state to transform to a thermal Gibbs state, is longer than the memory time
τmem, the time in which the logical subspace is protected; τmem is upper-bounded by
τmix. To study systems which admit SCQM, it is arguably important to understand
the robustness of relevant quantum phases to noise, in which there is a growing
interest for fundamental reasons as well.

While SET phases are fully classified for phases of pure states, an understanding
of SET phases of mixed states is lacking. A significant and relatively unexplored
question is that of the robustness of SET phases on coupling to an open system.
The subject of the previous two Chapters has been to systematically investigate the
open system paradigm in which a notion of 1D SPTO is robust to noise, given by
locally strongly symmetric Lindbladian channels [73]. It is natural to ask whether
the same reasoning can be applied to other phases which rely on symmetry, such
as SETO, namely by asking the following: what is the robustness of fingerprints
of SETO to noise? For 1D SPTO the string order parameter acts as a unique
fingerprint by detecting the symmetry fractionalisation classifying the edge modes,
for finite groups. This is conveniently studied within the framework of MPS. In the
case of 2D SETO, the simplest case of topological enrichment, it is already quite
difficult to compute quantities, so a reasonable restriction is to focus on G-injective
PEPS which describe quantum double models of finite abelian groups. Then an
order parameter has been developed which measures the symmetry fractionalisation
(SF) pattern of anyons [10] which can reasonably act as a fingerprint. 2D SETO
and 1D SPTO are both classified by a second cohomology group, which can be
traced back to both being determined by symmetry fractionalisation (SF), either
on the boundary, in the case of SPTO, or on the anyons, in the case of SETO.
Therefore, their order parameters reflect some similiarities. With this connection
in mind, exploit the methods developed in Chapter 4 and Chapter 5 to study our
fingerprint of SETO and consider the question of the robustness of SETO to noise.

6.2 Summary

In this Chapter, we study the robustness of symmetry enriched topological order
(SETO) in open systems, as witnessed by a particular order parameter, under
general symmetric, single-site noise. We consider the two different notions of
symmetry of quantum channels which have been introduced previously in this Thesis
– strong symmetry (4.4.8) and weak symmetry (4.4.2). We show numerically that
2D SETO is robust only to strongly symmetric noise which fits with our previous
results for 1D SPTO. This motivates us to demonstrate this claim analytically and
we give a discussion in this direction.

In Section §6.3 we begin by investigating the swap order parameter S, which
was defined previously in (2.4.19) for 1D SPT phases, which captures the SF of edge
modes in spin chains [176]. The order parameter is equivalent to the SPT phase
since it uniquely encodes the cocycle ω(g, h) via a pattern of signs. Intuitively,
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S makes use of a swap gate to capture the anti-commutation properties of the
projective representation at the virtual level which classifies the SPTO. Advantages
of S are that it does not suffer from a pattern of zeros as the string order parameter
does; in the latter, certain evolutions, such as infinite time evolutions or those
which destroy the end operators, often send the whole pattern to zero which means
no order can be detected. In Section §6.3.1 we demonstrate the equivalence of the
swap order pattern of signs and the SPT phase.

We then provide a numerical study in Section §6.3.2 of the time evolution of the
swap order parameter under channels representing uncorrelated noise, calculated for
the AKLT state. In particular, we investigate its dependence on strong symmetry
and weak symmetry, which is depicted in Fig. 6.2. The numerical evidence motivates
us to suggest that the swap order parameter is robust under strongly symmetric
channels at finite times. We observe that S decays sub-exponentially in time under
strongly symmetric channels. Moreover, S decays exponentially fast in time under
weakly symmetric channels. The unnormalised version of S is simulated in Fig. 6.3.

In Section §6.3.3 we present work in progress towards proving the above claim,
which is formalised in Conjecture 2. We discuss a reformulation of Theorem 1 in
terms of the swap order parameter S. The idea is to replace Lemma 1, which
says that string order parameters characterises open system SPTO, with a similar
statement leveraging the swap order parameter given in Conjecture 2. We can
divide the swap order parameter into two separate operators: one of which is a
string of symmetry operators and the other of which is a swap operator. This is
described in Eq. 6.3.4. The symmetry string is preserved if and only if the channel
is strongly symmetric, but the swap part requires further work. The Conjecture is
unproven at this stage.

In Section §6.4 we turn to the robustness of SETO. We study a simple model of
2D SETO HSET (2.6.4) with |SET ⟩ as its ground state (2.6.2), which is constructed
by decorating a 2D Toric code with cluster state loops [10]. We explore it through
the order parameter Λ (2.6.15), similarly based on a swap gate, which was developed
for quantum double models of finite groups in Ref. [11]. It was shown that Λ
detects the SF pattern of anyons uniquely, which gives it a unique correspondence
to the SET phase ω(q, k).

We present a numerical study in Section §6.4.1 of the SET order parameter Λ
under general symmetric, single-site channels. We find strong numerical evidence
that SETO is robust only to strongly symmetric noise. Fig. 6.5 suggests that SETO
is preserved by a family of strongly symmetric channels representing dephasing
noise, as witnessed by Λ not changing sign for finite times. For a family of weakly
symmetric channels representing depolarising noise Λ changes sign which indicates a
phase change. In the steady state sgn[Λ] = +, which is expected in the trivial phase.
Conversely, for strongly symmetric channels sgn[Λ] = − at all times including at
infinite time, which is indicative of the non-trivial SET phase.

Finally in Section §6.4.2 we discuss how to formalise the claim that SETO is
robust under coupling to strongly symmetric noise in ongoing work. We give a
reasonable statement of this in Conjecture 3, and a possible description of a proof
in order to promote the Conjecture to a Theorem. We can analogously split Λ
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Figure 6.1: Tensor network diagram of the swap order parameter ( defined in
Eq. 2.4.19) for 1D SPTO evolved under channels. The evolution by the noisy
channel ε(·) = ∑

i Ki(·)K†
i is depicted as a doubled red line going from a physical

leg for a site on the bra to a physical leg for the same site on the ket, where we
omit the tensor corresponding to the Kraus operators Ki, K

†
i .

into two parts made up of a string of symmetry operators and a swap operator
(6.4.5). A key piece of analysis to facillitate the proof would come from successfully
showing Conjecture 2 for the 1D swap order parameter S.

6.3 Swap order parameter with dissipation

While the string order parameter had a pattern of zeros, the swap order parameter
has a pattern of signs for gapped phases, where by signs we mean complex phases.
In the simple case of Z2 × Z2, the pattern of signs only contains +,−.

Here we consider the ground states of gapped Hamiltonians, namely MPS, such
that states yield a well-defined pattern of signs that uniquely determine the SPT
invariant [ω]. We can follow a very similar reasoning as what was done previously
in [73], which we consider in the next Section. The graphical representation of the
string order acted on by a channel is given in Fig 6.1.

6.3.1 Equivalence of pattern of signs and SPT phase

How does the swap order parameter distinguish the inequivalent projective represen-
tations, and in so doing detect the SPT phase? It captures their anti-commutation
properties through the SWAP operator, which leads to a gauge-invariant quantity.
In Fig. 2.5(b) we demonstrated that the order parameter computes the cocycle
for the special case of the AKLT state. By replacing UZ and UX (which together
form the generators for Z2 × Z2 = ⟨X,Z⟩) with Ug and Uh, this becomes a general
order parameter for finite abelian symmetries G and g, h ∈ G [176].

The swap order parameter encodes the SPT invariant directly, and computing
its value gives exactly the quotient ω(g, h)/ω(h, g). Unlike string order, the order
parameter pattern is hence not given by selection rules of zeros and non-zeros, but
rather of complex numbers. We can define an SPT state to be a state which has a
well-defined swap order pattern of signs, equally as well a string order parameter
pattern of zeros. Since the states we consider are MPS, they obey the fundamental
theorem, and the physical symmetry Ug acts on the virtual level as Ug = Vg ⊗ Vg.
We remind the reader that the invariant [ω] is recoverable from these ratios, as we
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argued in §5.4.
The cocycle ω defines a “pattern of signs” ξω : G −→ G∗ given by

ξω : g 7→ χω
h(g) = ω(h, g)

ω(g, h) . (6.3.1)

This definition is similar to that of the string order pattern of zeros ζω in Sec. §5.4,
which leads ξω to share some of the same properties. First, the image of ξω is
linear characters (one-dimensional representations) and the kernel of ξω is the
projective center Kω (4.5.26). Further, the map ω 7→ ξω is a group homomorphism
ξω1ξω2 = ξω1ω2 , and the kernel consists of coboundaries. Therefore the pattern of
signs ξω determines the cohomology class [ω] of the cocycle ω.

Here it will be convenient to represent a pattern of signs ξω as a two-dimensional
array with columns and rows indexed by group elements g and h, rather than
with irreps as in the pattern of zeros. Then the entry (g, h) in this array is “+” if
ξω(g) = 1, i.e. g, h ∈ Kω, and is a complex phase ⋆ otherwise. For abelian groups,
the pattern of signs is a symmetric matrix, Then it is sufficient to consider any
single column (row) of the pattern of signs which does not begin with the identity
element. The number of complex phases in those columns (rows) is

√
|G|/|Kω|,

which is the SPT complexity. For example, the two phases of symmetry G = Z2×Z2
have patterns of signs

ξtrivial =


+ + + +
+ + + +
+ + + +
+ + + +

 , ξHaldane =


+ + + +
+ + ⋆ ⋆
+ ⋆ + ⋆
+ ⋆ ⋆ +

 , (6.3.2)

with columns and rows indexed by {g, h} = (0, 0), (0, 1), (1, 0), (1, 1). Here
√

|G|/|Kω| =
2, so there are two ⋆ in every column (row). In this simple case of the Haldane
phase ⋆ = −1. Note that for non-abelian groups, the pattern of signs is not
symmetric. The pattern of signs is an observable, and like any observable it can
be sent to zero (by a non-invertible superoperator). We consider a valid pattern of
signs to be one that does not have any zeros.

An example of states which do not satisfy this are gapless phases which may
exhibit zero swap order parameter1. An example more relevant to our context
of gapped quantum phases of mixed states are the steady states of channels
corresponding to a Lindbladian evolution at infinite time.

6.3.2 Numerical study

The numerical experiments of channel evolutions on the AKLT state are depicted
in Fig. 6.2 and in Fig. 6.4(b), for the normalised and unnormalised versions of

1Ref. [176] studies the phase diagram of the bilinear-biquadratic Hamiltonian. The order
parameter returns a distinct zero signature for the two gapless regimes, converging exponentially
in L for the ferromagnetic phase, and converging algebraically with L in the other phase.
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(a) (b)

Figure 6.2: Time evolution of the swap order parameter under two different
channels for different decay rates p, with respect to the AKLT state. a) the
strongly symmetric channel given by the dephasing channel 4.5.12) has very
different behaviour compared to b) the weakly symmetric channel (given by the
depolarising channel 4.5.10), for which the order parameter decays instantly to
the steady state value, while strong symmetry allows the swap order parameter to
persist at finite times, and only disappears as time gets long. The order parameter
is normalised to ±1 at t = 0 by the normalisation factor N .

the swap order parameter S, which we introduced thoroughly in Section §2.4.3
respectively. These indicate that SPTO coupled to a noisy environment may be
described in a similar manner to the way we did in Chapter 4. This suggests that
we may reformulate Theorem 1 from Chapter 4 for the swap order parameter and
its pattern of signs. Different from the string order parameter, the steady state
values for S are not zero but rather finite positive reals close to zero (see Table 6.1)
which indicates a trivial pattern of signs.

We investigated the swap order parameter with respect to two different noise
models, with our focus on the AKLT state and order parameter depicted as in
Fig. 2.5(b). We consider the depolarising channel and the dephasing channel, as
in Section §4.5.2. We find numerically that weakly symmetric channels cause
exponential decay of the pattern of signs with the decay rate p, while strongly
symmetric channels cause slower decay at finite times.

We observe a difference between the weakly symmetric and strongly symmetric
channels in the convergence to the steady state value with the decay rate p. While
for evolutions under the depolarising channel the convergence of S is exponential
in time for all p, for the dephasing channel the convergence of S is sub-exponential
in time (when S is appropriately normalised).

We may understand the origin of the distinction in their behaviour from how
the strong symmetry condition manifests in the constituents of the order parameter,
as we investigate more explicitly in Fig. 6.4. Consider that we can split up the
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6.3. Swap order parameter with dissipation

(a) (b)

Figure 6.3: Unnormalised time evolution of the swap order parameter with evolution
given by a) weakly symmetric depolarising channel and b) strongly symmetric
dephasing channel.

swap order parameter into the following constituent pieces

, (6.3.3)

where (a) contains the swapped sites which play the role of braiding the quasi-
particles created at the ends of the symmetry string and (b) is the middle part
which contains the symmetry. In fact, we’ve seen (b) before in the string order
parameter where it is also the middle part. By seeing these operators as matrices,
we can study their spectrum or take their trace. Although it may seem an artificial
exercise, this division will allow us to make useful insights as the two operators
take different roles. We observe that decay from strongly symmetric channels only
occurs due to the swap part of the order parameter, while the middle part remains
constant for all time. Under weakly symmetric channels, both constituent parts
decay with time.

The SWAP operation allows the order parameter to detect the anti-commutation
of the projective representation corresponding to the SPT phase, and in this sense
acts in the same way as the end operators Oα in string order parameters. This
observation suggests that channels which preserve the middle operator of the swap
order parameter preserve the SPT phase, as long as the SWAP (which plays a
similar role to that of end operators) doesn’t vanish too quickly. Then we might
expect that a version of Theorem 1 in Chapter 4 holds, with patterns of zeros
replaced by patterns of signs.

Notice that under coupling to the noisy environment, the swap order parameter
decays and saturates at a finite, positive value in the infinite time limit, since it
has a pattern of signs. On the other hand, the string order parameter decays to
zero at infinite time, with any finite amount of dissipation, since it has a pattern of
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(a) (b)

Figure 6.4: Time evolution of the swap order parameter (unnormalised) broken into
two constituents, under the dephasing (strongly symmetric) channel with decay
rates p for the AKLT state. We plot the evolution of the part of the order parameter
which contains the swap operator (a) separately from the middle part of the order
parameter (b). We demonstrate numerically what we expected analytically which
is that all decay of the swap order parameter must come from thev swap action.

zeros. This difference in steady state values corresponds to the difference between
pattern of signs vs. the pattern of zeros. We believe this is explained by the fact
that even with the channel acting on a SWAP, the resulting operator nevertheless
has a well-defined norm, unlike the string order parameter which may be sent to
zero as we discussed extensively in Chapter 4.

What happens at infinite time? The steady state values for the depolarising
and dephasing channels are the same since both channels drive towards the trivial
maximally mixed (diagonal) state as the steady state. The fully depolarising and
fully dephasing channel destroy Sss instantly, at the same (positive) steady state
value Sss = 1.6935 × 10−5 and N = 0.0041. Since S becomes positive, this reflects
a phase transition from the non-trivial SPT phase to the trivial phase, as it changes
the pattern of signs.

Finally, towards completing our analysis of the swap order parameter we remark
on some unanswered points. Interestingly, the blocking length L does not affect S
after L has exceeded the correlation length. We have found no length dependence
in either the normalisation or the swap order parameter beyond blocking L > LI

sites to injectivity, as recorded in Table 6.1. This implies that the swap order
parameter contains an interaction between the middle part, which should decay to
zero when L −→ ∞, and the swap part which counteracts the middle party decay.
This then would explain the lack of dependence on L and only on t. This also
suggests that the decay rate of S is the correct quantity2 to consider towards a
statement about SPTO robustness with respect to the swap order parameter.

Last, surprisingly, while one might have expected that the depolarising channel

2The decay rate of S under action of a channel depends on whether the channel is strongly or
weakly symmetric, and on the decay rate p which defines a one-parameter family of channels.
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t N depolarising N dephasing S depolarising S dephasing
0 0.25 0.25 -0.25 -0.25
1 0.209 0.101 −0.249 -0.101
2 0.176 0.025 −0.186 -0.045
3 0.14 0.023 −0.139 -0.022
4 0.125 0.013 −0.103 -0.012
5 0.105 0.009 −0.077 -0.007

Table 6.1: Values for the normalisation N and the unnormalised swap order
parameter S when evolving them with time steps t for the depolarising and
dephasing channel (p = 1 and L = 5). Notice that the normalisation N changes
with the decay rate p.

destroys non-trivial S instantaneously as it does with the string order parameter,
this is not the case. When one does not carefully normalise S it might even
appear that the decay is not all too different. After normalising, the exponential
vs. sub-exponential decay behaviour which characterises the weakly symmetric vs.
strongly symmetric channels is obvious.

6.3.3 Robustness under strongly symmetric uncorrelated chan-
nels

The aim of this section has been to motivate that the swap order parameter is
a good invariant to consider in the study of noisy SPT phases. Crucially, order
parameters are invariants of phases and so intuitively we might expect that we
can switch between different order parameters and still extract the information
about the phase that we want. In practice, there are subtleties that we encounter,
so some order parameters will be unsuitable. For example, we saw that with the
string order analysis of Chapter 4 we must be mindful of end operators, since
certain choices may happen to send the pattern to zero by accident. Since swap
order does not get sent to zero accidentally, this may make it a more convenient
quantity to study in the open systems setting.

Can we reformulate a statement about robustness of SPTO in terms of the
swap order parameter? We have seen that strongly symmetric channels cause a
sub-exponential decay in the swap order while weakly symmetric channels cause
an exponential decay of the swap order in time. This suggests that we may make
our numerical evidence with swap order rigorous by formulating a version of the
previous Chapters’ Theorem 1.

Now we hope to replace Lemma 1 in the proof of Theorem 1 by the following
Conjecture:
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Conjecture 2: A channel of uncorrelated noise maps the
swap order parameter to other swap order parameters with the
same pattern of signs if and only if the channel is strongly

symmetric.

Conjecture 2 is plausible as at least one direction of the statement can be
shown to be true. At the time of writing, the “if” direction is missing, but we
expect some version of it to hold. The other direction (the “only if” ) is that if a
swap order parameter is preserved, then the channel which preserved it must have
been strongly symmetric, is straightforward as it partially follows from Chapter 4.
Consider writing the swap order compactly as

S := S(TE†(Ug), SWAP(g)), (6.3.4)

with a dependence on the two parts corresponding to the middle part and the swap
operator. We know how the middle part behaves. Namely, symmetries are sent to
other symmetries by strongly symmetric channels, so that then the transfer matrix
TE†(Ug) has its maximum eigenvalue preserved. This implies that any expectation
value of this operator can be nonvanishing in the thermodynamic limit. Otherwise,
such as for weakly symmetric channels, they are sent to zero in the thermodynamic
limit.

Then, it remains to show that the evolution of the SWAP(g) operator is not
zero generically. However, proving the other direction, that if a channel is strongly
symmetric, then the swap order parameter is preserved, is tricky since we work
on the level of observables rather than operators, and we must consider the SWAP
action explicitly. The SWAP operator is not preserved under channels in general,
as only unitary channels are reversible. We have not yet answered the question of
how weakly and strongly symmetric compare3.

Note that Conjecture 2 involves an observable (the swap order parameter)
explicitly, rather than just the swap operator itself, so Conjecture 2 can’t simply
be exchanged with Lemma 1 in proving Theorem 1.

For the string order parameter as an invariant of SPTO, we were able to prove
that strongly symmetric channels send end operators to different end operators
of the same type (representing the same group element and irrep) and vice versa
in Lemma 1. Since strongly symmetric channels do not necessarily transform a
swap operator into another swap operator, we must take a different path to prove
Conjecture 2.

Another way of formulating the statement which we aim to show is that the
sign of the swap order parameter is the same before and after it is acted upon by
a strongly symmetric channel. Namely, notice that we can define a new operator

3A simple example of a strongly symmetric channel which doesn’t preserve SWAP is the
following. Consider the channel composed of diagonal, orthogonal Kraus operators K1 = diag(1, 0)
and K2 = diag(0, 1) have E†(SWAP) = K1 ⊗ K1 + K2 ⊗ K2.
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Wg,h and its conjugate Wg,h as follows

.

(6.3.5)

The swap order parameter in terms of these operators is S = Tr
(
E†(Wg,h)E†(Wg,h)

)
.

The action of a channel on Wg,h and Wg,h is simply

.

(6.3.6)

For the statement of the Conjecture to be true, we require the condition

sgn[Tr
(
Wg,hWg,h

)
] = sgn[Tr

(
E†(Wg,h)E†(Wg,h)

)
] (6.3.7)

to be satisfied if and only if E is strongly symmetric.

6.4 SET order parameter under dissipation

We now turn to the main point of this Chapter which is to study the robustness
of SETO to noise. In the previous section we motivated that we can investigate
symmetry fractionalisation (SF) for SPT phases in open systems via an order
parameter different than the one considered in Chapter 4. This order parameter is
called the swap order parameter Λ. It is nice to use for many reasons, including
its numerical ease, since it is based on a local swap operator (which has finite
support) rather than on some arbitrarily long string as the string operator does.
We went through the trouble of understanding the 1D swap order parameter since
an order parameter with an analogous form was developed recently for SET phases
in Ref. [11]. The order parameter Λ (2.6.15) detects the SF classes of anyons in the
bulk of the state through a SWAP operator, symmetry operator and anyon creation
operators which we introduced in Chapter 2.

We have motivated that swap order parameters are a good fingerprint for 1D
SPTO in open systems, via their ability to detect the SF effects in the pattern of
signs, so it is natural to expect that the analogous order parameter for 2D SETO
will act similarly. We saw that the swap order parameter S displays pronounced
differences under channels with a weak symmetry compared to a strong symmetry.
We now develop a similar intuition for SET phases with the order parameter Λ
defined in 2.6.15 as our fingerprint of SETO to discuss the robustness of SETO in
open systems.

We study the model introduced in Chapter 2 corresponding to a Toric code
decorated by cluster state loops which is called |SET ⟩ 2.6.15). At this time,
our findings are mainly numerical due to the difficulty of proofs with the PEPS
construction. We present the numerical study first, and give an outline of how we
expect an analytic part to follow.
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6.4.1 Numerical study

We now consider the action of noise on the model introduced in Ref. §2.6.1 which
can be understood as decorating a 2D Toric code with cluster state loops. We
leverage the methods and numerical tools developed in Ref. [10], and modify them
to explore the order parameter Λ under evolution by a channel of uncorrelated
noise. We observe that depolarising noise, which is weakly symmetric, sends the
order parameter to a positive value indicating the trivial phase. Dephasing noise,
which is strongly symmetric, preserves the sign of the order parameter for finite
times, which suggests the phase is preserved. This is shown in Fig. 6.6.

The steady state value in the weakly symmetric case is Λss = 5.623 × 10−8

and in the strongly symmetric case is Λss = −0.0311. The fully depolarising and
fully dephasing channels reach the respective steady state values instantaneously
(after just one time step), and notably have opposite sign. Recall that the fully
dephasing (depolarising) channel represents the infinite time limit of the dephasing
(depolarising) channel; this indicates that the sign of Λ, which is equivalent to the
SET phase, characterises the SETO robustness. This is suggestive that a similar
Conjecture §6.3.3 as for the 1D swap order parameter S holds for the 2D SETO
order parameter Λ.

We summarise the details of the methods in Ref. [10]. The ground state of
HSET can be found using the iPEPS variational algorithm, where bond dimension
D = 3 is sufficient to characterise the entire phase diagram with a very high
accuracy. There would generally be 34 × 25 variational parameters for this PEPS
which makes this a hard numerical problem. We fortunately don’t need to solve this
because we are primarily interested in the ground state of HSET which admits a TN
representation with just D = 3. Numerics done here makes use of this exact PEPS,
given in Appendix A of Ref. [10], as well as the PEPS for the Toric code to study
the trivial SET phase. Notably, the PEPS generating |SET ⟩ resembles that of the
cluster state, since it is a tensor product of Paulis and a junk subspace (as discussed
in Chapter 3) which nods to the inherited fractionalisation properties [289]. The
tensor networks are contracted by placing them on a cylinder which is infinite
in one direction. The order parameter is then computed using boundary MPS
methods for the fixed points [290]. Finally, for simplicity the PEPS representation
is redefined to give a translation-invariant input, which the pure representation on
the honeycomb lattice (with sub-lattices A and B) does not provide. This is done
by redefining the PEPS into the translation-invariant tensor T which is defined

.

(6.4.1)

This tensor blocks together three edges and the two vertices they are incident on
of the hexagonal lattice which generates the translation-invariant tensor.

The tensor network diagram for the order parameter under the general action
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(a) (b)

Figure 6.5: The SET order parameter (unnormalised) evolved under two channels
of uncorrelated noise: (a) weakly symmetric depolarising noise and (b) strongly
symmetric dephasing noise. For the SET phase, depolarising noise (weakly sym-
metric) causes the order parameter to decay to a finite positive value close to zero.
The dephasing channel (strongly symmetric) causes the order parameter to decay
slowly to a finite negative value.

of a channel is pictured in Fig. 6.6. For a more detailed reminder see Fig. 2.10 and
Section §2.6. We may act with the channel on both vertex and edge qubits, as
depicted, but it will be most interesting to focus on evolution which only affects the
vertices and not the edges. This isolates the effect of the symmetry of the channel
evolution to where the symmetry-enrichment is stored. Considering vertices and
edges together takes into account the interplay with intrinsic topological order,
i.e. the robustness of anyons of the Toric code, which are known to be unstable to
sufficiently large amounts of thermal noise [61, 291]. This is a relevant question
to the robustness of SETO, but in this part we choose to focus on the role of
symmetries and here we share simulations of vertex-only evolution.

6.4.2 SETO robustness under strongly symmetric uncorrelated
channels

The following Section describes a possible Conjecture about the robustness of
SETO in open systems.

To understand the robustness of 2D SET phases, we have to ask two questions.
We consider which are the conditions on open system evolution which preserve
invariants of the phase, and vice versa, when the phase invariant is preserved by
an evolution, which kinds of open system evolution are allowed? Based on the
numerical evidence that preceded this, as well as the analytical proof for 1D SPTO,
we are motivated that a similar Theorem may hold for SETO. We take the setting
of G-injective PEPS for a “coherent SET phase”, meaning a class of coherent SET
states with a given pattern of signs.
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Figure 6.6: Evolving the order parameter for SETO (2.6.15) under channels. The
evolution is depicted as a doubled red line going from a physical leg for a site on
the bra to a physical leg for the same site on the ket.

Conjecture 3: Fix any coherent SET phase. A semigroup of
channels of uncorrelated noise generically preserves the phase
at short times if and only if the semigroup is generated by a

strongly symmetric Lindbladian.

We outline how we might be able to show that SETO invariants are preserved
by a channel iff that channel is strongly symmetric. Notably, this is only possible
if the underlying topological anyons are still present, which may only occur for
short times.

It was shown that for SET phases of quantum double models the order parameter
Λ uniquely characterises the SET invariant ω(q, k) [11]. It does so with a pattern
of signs. For example, in the state |SET ⟩ which has a global symmetry Z2 × Z2,
the SF class which classifies it corresponds to a D8 gauge theory, and predicts
Λ = −1 (normalised) for the order parameter of Eq. 2.6.15. On the other hand,
for the Toric code Λ = +1. Conjecture 3 tells us that when the pattern of signs
ω(q, k) is preserved, the SET phase is preserved also.

We investigate the quantity E†(Λ), in the case of uncorrelated noise where
E is a tensor product of single site channels. We study how E†(Λ) behaves
under Heisenberg evolution by a channel E with different degrees of symmetry, as
previously.

It may be helpful to modify the original SET order parameter (2.6.15) shown
in Fig. 6.6 to include a string of symmetries in between the swapped sites which
makes it more similar to the 1D swap order parameter S. Such a modification
doesn’t change anything about the order parameter until a channel is applied; for a
strongly symmetric channel, the modification again does nothing but add a phase,
while for a weakly symmetric channel, the order parameter instantly vanishes, due
to Chapter 4.

The modified version of Λ takes the form

Λ̃ = ⟨SET |OSWAP(g)
l∏
TUg OSWAP(g)† |SET ⟩ , (6.4.2)

where TUg is the transfer operator on a symmetry element g ∈ G, and OSWAP(g)
is the swap on a local patch which acts on some symmetry g, and X acts on all
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sites of the bra and CZ operators are between all sites. In diagrammatic form the
modified version Λ̃ reads

,

(6.4.3)

where TUg is

,

(6.4.4)
for an example length l = 5 sites, while OSWAP(g) is the SWAP from bra to ket,
while its dagger goes from ket to bra.

This allows us to write Λ̃ simply, as we did previously for the 1D SPTO swap
order parameter S (6.3.4), as a dependence on the transfer operator and a SWAP

Λ̃ := Λ̃(TUg , OSWAP(g)), (6.4.5)

Note that when l = 0, Λ̃ = Λ. We know that in 1D TE†(Ug) is preserved iff the
channel is strongly symmetric.

Step 1 of proving the desired claim is to prove for G-injective PEPS that
λmax(TE†(Ug)) = 1 iff E is strongly symmetric. This follows from G-injectivity
immediately due to the Cauchy-Schwarz proof of Theorem 1. If a channel has
λmax = 1 for a G-injective PEPS, then the channel must have been strongly
symmetric and vice versa.

Step 2 of proving the desired claim is to consider the channel action on the
swap operator in Λ which is written as E†(OSWAP(g)). If Conjecture 2 is true,
then it is reasonable that Step 2 towards would follow, such that the claim can be
proven. This could be possible through a generalisation of Eq. 6.3.5.

6.5 Discussion & Conclusions

We have made progress towards showing that certain 2D SET phases are robust
to strongly symmetric noise. This work was motivated by the intuition that SET
phases are protected by symmetry and so the allowed operations, even in open
systems, should preserve that symmetry. We expect moreover that even channels
with weak symmetry will illicit a profoundly different response from channels with
strong symmetry, and will not preserve the phase. Our analysis for SETO has
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been facillitated by the analogy with the 1D swap order parameter for SPTO in
the framework of G-symmetric MPS. We investigate a similar order parameter for
2D SETO in the framework of G-injective PEPS. We present Conjecture 3 which
formalises this. We give numerical evidence to support the Conjecture, and outline
how we hope to show this analytically.

Several points are still in development. The state |SET ⟩ has been a key
character in our analysis of robustness of SETO. This state is a fixed point with
zero correlation length. It would be prudent to consider the whole phase diagram of
HSET in order to understand the dependence of the phase robustness on correlation-
length. It is likely, as hinted by the results of Ref. [10], that the order parameter
will demonstrate a dependence on the blocking length L.

The missing link towards Step 2 in the proof of Conjecture 3 for the SETO
order parameter lies in developing an expression to describe the action of a channel
on swap operations, which in brute force methods means computing the cross-terms
of Kraus operators. This has not been completed in the 1D case, which would
naturally lead to an extension to 2D. Furthermore this would more fully explain
why the swap order parameter saturates at a finite value rather than zero at infinite
time.

As an outlook to this work, it would be interesting to link the theoretical
possibility for phase robustness to actual error correcting ability, and in particular
also to SCQM. Does robustness of an SET phase at finite time translate to long
coherence times in experiment? A particular point of interest is exploring models
which theoretically host SCQM, especially of how the SCQM property survives
noise which respects strong symmetry.
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Conclusions

We began this Thesis driven by a motivation to understand the entanglement
structure which gives rise to emergent phenomena such as topological phases of
matter, and moreover the robustness of these structures to noise. We have seen
how symmetry and entanglement interplay in symmetry protected topological
(SPT) phases and are characterised by certain fingerprints. The bulk of this Thesis
was attacking the problem of how fingerprints of topological phases behave when
coupled to an open system. We considered how to integrate symmetries with this
setting, in which several notions of symmetry may be defined and which lead to
fundamentally different phenomena. Crucially, we have leveraged the tool of tensor
networks (TN), which has enabled us to systematically study phases by expressing
global properties in a local manner.

There are many other approaches which one must tackle in order to formulate
a complete picture of topological phases with symmetries in open systems, and
hence several open questions left at the end of this Thesis. We will give some
remarks on these questions, in addition to the open problems and outlook we have
given at the end of every Chapter.

In Chapter 3 we studied the entanglement structure of SPT phases which led
us to discover a new fingerprint for 1D SPTO, the inaccessible entanglement. This
latent entanglement highlighted the intimate relationship between SPT phases
and quantum computation. Namely, we determined a relation for a bound on the
inaccessible entanglement, which directly includes the degeneracy of the topologi-
cally protected edge modes. Furthermore, all non-trivial SPT phases host some
non-trivial amount of inaccessible entanglement, which may be connected to their
computational power in measurement-based quantum computing (MBQC). This
later led us to define the notion of SPT complexity which uniquely defines the
computational power of the SPT phase.

In Chapter 4 we attacked the problem of the robustness of SPT phases of
matter. We considered how SPTO states evolve under quantum channels with
different notions of symmetry. We showed that weak symmetry instantly destroys
the SPT phase ω. However, a strong symmetry condition on channels allows
the SPT phase to persist at finite times. This highlights the importance of the
interplay of entanglement and symmetry on the local level in SPT phases, since
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weak symmetry does not satisfy all local symmetries.
A most important question in the classification of mixed state SPTO is to

determine which is the class of mixed states with SPTO. We introduced coherent
SPT mixed states, generalising certain symmetric matrix product states (MPS)
which have a well-defined SPT phase |Ψω⟩. It is open whether the class of coherent
SPT states is complete, and whether it also includes thermal states or steady states.
These would be useful questions to answer, as such states are the realisations
of many physical processes, such as coupling to a thermal environment. This
question has also recently been addressed for RG fixed points in Refs. [292, 293].
We comment that since since thermal states of local, gapped Hamiltonians obey
an entanglement area-law and as such are well-represented by TN [294–296], we
expect that SPTO thermal states could be represented by matrix product density
operators (MPDO), consistently extending from pure state SPT phases.

We have considered several indicators of SPTO including string order, edge
modes and inaccessible entanglement. We gave numerical evidence on top of the
analytic proof in the form of theorems. The fingerprints of SPTO which our
approach has relied on were originally constructed for phases of pure states and
detect entanglement structure, but in mixed states non-classicality can appear in
more general ways than entanglement. This leaves the question: are there natural
indicators for mixed state SPTO beyond entanglement-based fingerprints, and
further, does SPTO manifest in mixed states beyond the cocycle classification ω?

In Chapter 5 we considered which operations transmute between different SPT
phases of mixed states, which is given by twisted versions of the strongly symmetric
(SS) channels. We defined the SPT complexity, which is given by the degeneracy of
topologically protected edge modes. This may either stay the same or be reduced
by twisted-SS noise. Notably the SPT complexity determines the computational
power in MBQC, which highlights the relationship between SPTO and quantum
computation. We have left open several speculative questions, including how
dissipation in the form of twisted-SS channels may contribute to a resource theory
of MBQC. An additional question is what physical processes twisted-SS channels
correspond to. It would be interesting to be able to distinguish these from channels
which implement phase transitions through developing a structured framework,
and to study invariants of mixed state under those phase transitions. Finally, how
does this relate to a recent work which suggested that there are no dissipative
phase transitions in local, commuting Hamiltonians under a particular Lindbladian
evolution, by showing their rapid thermalisation [297].

Finally, in Chapter 6 we discussed how our findings for 1D SPTO could be
applied to symmetry enriched topological (SET) phases. We numerically studied a
particular model of 2D SETO [10]. The numerical evidence leads us to conjecture
that SETO is protected by channels satisfying strong symmetry, and showing this
analytically is ongoing work. This demonstrated that our work in Chapter 4 can
be applied to higher-dimensional topological phases with symmetries, which is a
promising future direction. A final question particularly relevant to the NISQ era
is how the methods and results of Chapters 4 and 6 can be used to assess the
fault-tolerance of phases of matter in practice: in particular, the robustness of
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SPTO towards the MBQC protocol and of SETO towards topological quantum
computing or self-correcting quantum memories.
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