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Abstract

This thesis investigates turbulence-driven secondary flow in a partially filled pipe. The aim
of this thesis was to provide a detailed description of the flow and to analyse the secondary
flow mechanism with a special focus on the role of the so-called mixed-corner (the corner
between the pipe wall and the free surface) by means of a highly resolved data set. Therefore,
direct numerical simulations were performed for the pipe flow with filling ratios (FR) of 25%,
50% and 75% and Reynolds numbers between Reτ = 115 and 460; the observed flow regimes
cover marginally turbulent to moderately turbulent flow.

Over the considered parameter range, the friction coefficient was found to agree well with
Prandtl’s relation for smooth full pipe flow. The well-known velocity-dip phenomenon could
be observed forReτ ≥ 140. In combination with all data available in literature on the position
of the maximum streamwise velocity ∆z, the present results indicate a linear relation between
∆z and the FR. The secondary flow pattern is organised in four vortices which are arranged
symmetrically to the centre plane in two counter-rotating pairs. In semifilled pipe flow the
position and size of the inner secondary cell, which occurs in the mixed-corner, scale with
wall units. A larger inner secondary cell could be detected for 25% FR, whereas it almost
vanishes for 75% FR. Correspondingly, the outer secondary vortex, scaling in outer units, gets
more dominant with increasing FR. The wall shear stress distribution is strongly influenced
by the comparably weak secondary flow. In the mixed-corner a global wall shear stress
maximum occurs, because the inner vortex transports high-momentum fluid from the free
surface towards the wall. In the centre of the perimeter the wall shear stress is constant and
similar to full pipe flow. The Reynolds stresses also behave similarly to full pipe flow, apart
from near the free surface. In the mixed-corner a Reynolds stress anisotropy can be observed,
which is linked to the generation of mean streamwise vorticity.

For the first time, the complete path of kinetic energy from its input until dissipation is
quantified, focusing on how the secondary flow obtains its energy. The key term is the sec-
ondary production P2,3, which generates mean secondary kinetic energy at the free surface
around the stagnation point between the inner and outer vortices. In addition, three different
techniques were employed to analyse the connection between instantaneous coherent struc-
tures and the mean secondary flow: proper orthogonal decomposition, Gaussian filtering and
conditional averaging. It can be concluded that the generation of secondary flow via P2,3

is a multi-scale and multi-mode process. Moreover, it is indicated that the mean secondary
flow is not formed by a stable, instantaneous vortex pattern which only deviates from its
mean. Instead, it is formed by averaging over a large number of individual large and small
scale structures. Finally, conditional averaging of extreme P2,3-events revealed an interaction
between two counter-rotating vortices that generates mean secondary kinetic energy at the
free surface. One vortex seems to be stable over a longer distance and resembles the inner
secondary cell, whereas the other vortex occurs locally, reaches from the side wall towards
the free surface and resembles the mean vorticity distribution.
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Kurzfassung

Das Thema der vorliegenden Arbeit sind turbulenz-induzierte Sekundärströmungen in teil-
gefüllten Rohrströmungen. Das Ziel der Arbeit ist zum einen, die hochaufgelöste Strömung
detailliert zu beschreiben, und zum anderen, den Mechanismus der Sekundärströmung unter
besonderer Beachtung der gemischten Ecke (der Ecke zwischen Rohrwand und freier Ober-
fläche) zu untersuchen. Dazu wurden direkte numerische Simulationen einer Rohrströmung
mit den Füllgraden 25%, 50% und 75% und Reynoldszahlen zwischen Reτ = 115 und 460
durchgeführt; die beobachteten Strömungsregime umfassen marginal turbulente bis moderat
turbulente Strömungen.

Für den gesamten betrachteten Parameterbereich liegt der Reibungskoeffizient sehr nah
an der Prandtlschen Beziehung für glatte voll-gefüllte Rohre. Das bekannte velocity-dip
Phänomen konnte für Strömungen mit Reτ ≥ 140 beobachtet werden. In Kombination
mit allen in der Literatur verfügbaren Daten zur Position der maximalen Hauptströmungs-
geschwindigkeit ∆z legen die vorliegenden Ergebnisse eine lineare Beziehung zwischen ∆z
und dem Füllgrad nahe. Die Sekundärströmung besteht aus vier Wirbeln, die sich in zwei
gegenläufig drehende Wirbelpaare gliedern, die symmetrisch zur zentralen Ebene angeordnet
sind. In der halb-gefüllten Rohrströmung skalieren die Position und die Größe des inneren
Sekundärströmungswirbel, der sich in der gemischten Ecke befindet, mit Wandeinheiten.
Ein größerer innerer Sekundärströmungswirbel konnte für den Füllgrad 25% beobachtet
werden, wohingegen der Wirbel für den Füllgrad 75% fast verschwindet. Ent-sprechend
wird der äußere Sekundärströmungswirbel, der in äußeren Einheiten skaliert, mit steigen-
dem Füllgrad dominanter. Die Wandschubspannungsverteilung ist stark von der relativ
schwachen Sekundärströmung beeinflußt. Ein globales Wandschubspannungsmaximum tritt
in der gemischten Ecke auf, wo der innere Wirbel Fluid mit starkem Impuls von der freien
Oberfläche Richtung Wand transportiert. In der Mitte des Umfangs ist die Wandschubspan-
nung konstant und ähnlich zur vollen Rohrströmung. Abgesehen von einem Bereich nahe der
freien Oberfläche verhalten sich auch die Reynoldsspannungen ähnlich zur vollen Rohrströ-
mung. In der gemischten Ecke kann eine Anisotropie der Reynoldsspannungen beobachtet
werden, die mit der Erzeugung von gemittelter Wirbelsträrke in Hauptströmungsrichtung
zusammenhängt.

In dieser Arbeit wurde zum ersten Mal der komplette Weg der kinetischen Energie von
der Zufuhr bis zur Dissipation quantifiziert, und dargelegt, wie die Sekundärströmung ihre
Energie erhält. Der wichtigste Term ist die Sekundärproduktion P2,3, der an der freien
Oberfläche zwischen dem inneren und äußeren Wirbel sekundäre kinetische Energie erzeugt.
Darüber hinaus wurden drei verschiedene Methoden angewendet, um die Verbindung zwis-
chen instantanen kohärenten Strukturen und der gemittelten Sekundärströmung zu unter-
suchen: die Hauptkomponentenanalyse, die Gaußfilterung und die Ereignisbedingte Mit-
telung. Diese Analysen deuten darauf hin, dass die mittlere Sekundärströmung nicht aus
instantanen, annähernd konstanten Wirbeln besteht, die nur wenig vom mittleren Wirbel
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abweichen, sondern durch die Mittelung vieler einzelner groß- und kleinskaliger Wirbel
entsteht. Zudem kann der Schluss gezogen werden, dass für die Beschreibung der Erzeu-
gung von Sekundärströmung durch P2,3 viele unterschiedliche Skalen bzw. Moden nötig
sind. Die bedingte Mittelung der extremen P2,3-Ereignisse zeigte auf, dass das Zusam-
menspiel zwischen zwei gegenläufig drehenden Wirbeln gemittelte sekundäre kinetische En-
ergie an der freien Oberfläche erzeugt. Ein Wirbel scheint über eine längere Strecke stabil
zu sein und ähnelt dem inneren Sekundärströmungswirbel, wohingegen der andere Wirbel
nur lokal auftritt. Dieser erstreckt sich von der Seitenwand bis an die Mitte der freien
Oberfläche und ähnelt der Verteilung der mittleren Wirbelstärke in Hauptströmungsrich-
tung.
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1. Introduction

In this first chapter I would like to introduce the phenomenon of my study, a topic of fun-
damental research: Secondary currents in straight, turbulent, partially filled pipe flow. In
contrast to the primary flow, which describes the flow in the main direction, secondary cur-
rents deal with the flow perpendicular to the main flow. In the investigated flow case, the
secondary flow is turbulence-induced and rather weak, nevertheless, it strongly influences the
primary flow and, therefore, the flow’s impact on the surrounding structures and on the pro-
cesses of sedimentation and resuspension of sedimented material. Secondary flows appear in
almost every practical flow application, but how they are generated and their effects are hard
to grasp in a complex surrounding. Hence, the flow setup has to be abstracted in order to
limit the overwhelming complexity and limit other influences.

Fundamental research is often not directly linked to practical applications and its importance
and purpose are not always obvious. Therefore, this first chapter explains the background
and the motivation of the study. Next, the basic knowledge and concepts of turbulent flows,
which are important for the present study, are introduced. Subsequently, an overview of
the field of research and how the present study fits into it is given, followed by the current
state of the art. The chapter finishes with the main objectives and the structure of this
thesis.

1.1. Motivation

Turbulent flow in partially filled pipes are ubiquitous in the sewage system. All authorities
that deal with waste water have to face the challenge of accurately measuring the discharge
in partially filled pipe flow (DWA, 2011). So far a number of measurement techniques using
different principles have been developed to determine the discharge, some of them relying on
relations between flow velocities at some points and flow rate at various filling grades (DWA,
2011). However, an uncertainty of 5−10% remains, hence, detailed knowledge of the flow and
its velocity distributions might help to reduce this uncertainty.

Another important challenge in waste water channels is sedimentation and resuspension of
sedimented material. Resuspension of toxic substances or heavy metals can lead to sub-
stantial pollution in rivers when waste water treatment plants are bypassed in stormwater
conditions (Passerat et al., 2011; Weyrauch et al., 2010). Modeling sediment dynamics in
waste water channels intrinsically suffers from an incomplete knowledge of the detailed tur-
bulence structure and the distribution of wall shear stress and its fluctuations. Thus, so far
integral estimations of the so-called sediment transport capacity (Macke, 1982; DWA, 2012)
are used in the design process of waste water channels.

Partially filled pipe flow does not only represent a waste water channel, but can also be
considered as a model flow for rivers and as a fundamental flow phenomenon that received
little attention so far. Hence, it can be regarded as a model flow with special properties. One

1



2 1.1. Motivation

of the properties is the generation of secondary flows in the intersections between the free
surface and the pipe’s wall, a so-called mixed-corner, that leads to a non-circular distribution
of flow variables in the partially filled pipe, see figure 1.1. While, for example, in rectangular
open-duct flow the secondary flow is generated by the mixed- and solid-corners (solid means
with no-slip walls on both sides), in partially filled pipe flow secondary flow is generated by
the mixed-corner only. Therefore, in partially filled pipes the generation of secondary flow
at a mixed-corner can be studied without the influence of other inhomogeneities. Moreover,
the corner can be acute or obtuse angled, thus having a variable effect on the flow dependent
on filling grade.

mixed-corner

Figure 1.1: Sketch of secondary flow pattern in a semi filled pipe flow. The sense of rotation of the
vortical structures is indicated by small arrows.

The first investigations of partially filled pipe flows at this institute, the Professorship of
Hydromechanics, were conducted by Strauß (1978), who took measurements of the velocity
distribution in the vertical symmetry line using a hydraulic impeller. Later on, Kölling (1994)
validated his finite element simulation against the measurements of Strauß. Interestingly,
his simulations were able to generate secondary flows by applying an anisotropic turbulence
model based on algebraic stress equations. This thesis now adds the next element using the
means of high performance computing.

The simulations performed for this thesis generated the first numerical, highly-resolved and
three-dimensional data set for partially filled pipe flow. The close connection to full pipe
flow might imply that the mean flow is homogeneously distributed in azimuthal direction,
and the maximum mean velocity is, because of the wall friction, located furthest away from
the wall: either at the centre of the free surface or in the pipe centre. But by looking at
the flow in detail, it reveals that the dominant primary flow is influenced by a subtle sec-
ondary flow, which does not average over time to zero, because the free surface breaks the
azimuthal symmetry. Hence, the primary flow shows various differences compared to full
pipe flow and also generates an inhomogeneous wall shear stress distribution. In figure 1.1
the secondary flow that occurs in semi filled pipe flow is presented schematically, consist-
ing of small vortices in each mixed-corner and two larger, counter-rotating vortices in the
centre.

Hence, there are many open tasks and questions to be answered. First of all, a detailed
description of the mean and turbulent flow is necessary in order to compare and validate
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the few existing publications and to create a solid data basis for partially filled pipe flow.
In a next step, the mean secondary flow, whose presence seems to be a key feature for the
occurring flow pattern, needs to be further investigated. By understanding how secondary
flow is generated, and how strong and weak flow components interact with and influence each
other, one might be able to further understand what kind of flow is created by the mixed-
corner and how the wall shear stress distribution is generated.

To address the tasks and answer the questions, the following sections introduce the necessary
basic and more specific concepts for the present flow case before presenting the state of the
art of turbulent partially filled pipe flow itself.

1.2. Turbulent Flows

Turbulent flows are considered to be chaotic, three-dimensional, unsteady, non-linear and
consist of a wide range of different vortical motions. In many cases the variables of a tur-
bulent flow are characterised as random (Pope, 2000), however, this does not mean that
turbulent flows are generally random. Additionally, Jiménez (2018) states, that imagin-
ing turbulent flows generally as random, can hinder the viewer from seeing local connections
and linking causal relationships that enables us to create a differentiated picture of turbulent
flows. As turbulent flows are solutions of the Navier-Stokes equations they are mathemati-
cally determined. However, looking at the same flow case but introducing small changes to
the initial conditions can lead to large instantaneous deviations between the two solutions,
because of the non-linear character of the Navier-Stokes equations. Nevertheless, turbulent
flows are statistically determined, thus, the flow statistics of the two solutions should hardly
differ.

Within the approximately 150 years of scientific research in the field of turbulence, many
achievements were made to unveil some of the secrets of turbulent flows. In the last decades,
new developments of measurement techniques and increasing computational power made it
possible to investigate turbulent flows by the most accurate model, the so-called Navier-
Stokes equations. As the Navier-Stokes equations contain such a large number of degrees
of freedom, only relatively simple flow cases became accessible at the end of the last cen-
tury. Nowadays, more and more complicated flows can be investigated in detail by means
of experimental measurements and numerical simulations. In this thesis, turbulent flows
are numerically simulated on the basis of the Navier-Stokes equations and the results are
studied via statistical methods and investigations of temporal and spatial developments of
the flow.

In the following, the governing equations that are used to investigate the present turbulent
flow case are introduced. Moreover, main achievements in the research of turbulent flows
related to the present study are briefly introduced to set a common base for the following
discussions. In order to study the particular flow phenomenon of this thesis, one needs
to understand how turbulent flows interact with no-slip walls and free surfaces and what
kind of structures evolve in such situations. This is addressed in the latter part of this
section.



4 1.2. Turbulent Flows

Conservation Laws

Most of the flows in our environment can be assumed to be incompressible. In order to
describe the fluid motion in an incompressible flow, the two fundamental principles, the
conservation of mass and the conservation of momentum, have to be considered. On the
continuum scale, a flow of a Newtonian fluid that follows the above mentioned principles, can
be mathematically described by the incompressible Navier-Stokes equations. The continuity
equation expresses the conservation of mass by

∂ui
∂xi

=
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

= 0. (1.1a)

It describes the change of volume for a fluid element, which has to be zero for incom-
pressible flows. The conservation of momentum is formulated by the momentum equations

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ gi + ν

∂2ui
∂x2

j

, with i, j = 1, 2, 3. (1.1b)

The conservation of momentum relates the acceleration of a fluid element with surface (fric-
tion) and body forces (pressure p and gravity gi) acting on the fluid. The velocity is denoted
as ui with i = 1, 2, 3 or as vector with synonymous components u = (u1, u2, u3)T in Carte-
sian coordinates x1, x2, x3 = x, y, z. The streamwise direction is conventionally defined in x1

or x direction, x2 or y is the spanwise component and normal to the free surface is the x3-
or z-component. Note that applying the index notation incorporates the use of Einstein’s
sum convention. Furthermore, the density ρ and the kinematic viscosity ν appear in the
momentum equations (1.1b). Other influences on the flow, e.g. temperature gradients, are
neglected in the present thesis.

Please note that the Navier-Stokes equations can describe both laminar and turbulent flows,
which will be introduced in the next subsection.

Fundamentals of Turbulent Flows

Flows can be distinguished into laminar and turbulent. If a flow is laminar, the fluid flows
in layers and no mixture between theses layers takes place. This behaviour occurs, because
the friction forces are more dominant compared to the inertial forces and damp any per-
turbations. In contrast, in turbulent flows, small disturbances are amplified by nonlinear,
inertial effects. Thus, vortical structures are created, which generate a mixing of the fluid,
and, in contrast to laminar flow, turbulent flow is dominated by inertial forces. A distinction
between the two flow states can be expressed by the dimensionless Reynolds number Re,
which formulates a ratio between inertial and friction forces:

Re =
inertial forces

friction forces
=
U`

ν
(1.2)

with U being a characteristic velocity, ` being a characteristic length scale and ν the kine-
matic viscosity (Schlichting & Gersten, 2017). Re is named after Osborne Reynolds, who
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published the results of an outstanding pipe flow experiment in 1883. He was able to change
the flow state from laminar to turbulent and vice versa by adapting the flow velocity, hence,
adapting Re. The transition between laminar and turbulent full pipe flow occurs at approx-
imately Re = 2300. Please note that in a full pipe flow, which will be used as example in
the following subsection, the bulk velocity and diameter are used to describe the flow, hence,
are the characteristic velocity and length scale, respectively. The parameters of Re can be
used to characterise the size, and therefore a length scale, of vortical structures that occur
in a flow. This length scale of the occurring vortical structures is commonly called scale.
The large scales in a flow obtain the kinetic energy from the force that drives the flow, e.g.
gravity. For a fully developed pipe flow, a global balance between the incoming energy and
the friction is established. The steady energy supply is balanced by the dissipation of energy
to heat. Responsible for the dissipation are viscous processes, which are dominated by the
small scales. Therefore, the energy needs to be transferred from the large to the small scales,
which is commonly known as Richardson cascade (Pope, 2000). With increasing Reynolds
number the range of scales increases, hence, the vortical structures are split up into smaller
and smaller scales. For sufficiently high Reynolds numbers, the smallest scales in a flow are
only governed by the energy they receive from the larger scales and the viscous effects, which
makes them independent of the geometry and the largest scales. Hence, the smallest scales
behave universally similar in any flow, which is known as Kolmogorov’s first similarity hy-
pothesis (Kolmogorov et al., 1991; Pope, 2000). The smallest scales of turbulent motions are
characterized by the so-called Kolmogorov scales which are defined by the rate of dissipation
ε and the viscosity ν as:

η = (ν3/ε)1/4 (1.3)

uη = (εν)1/4 (1.4)

For motions of the Kolmogorov scale the Reynolds number is defined as Re = ηuη/ν = 1,
pointing out the dominant role of viscosity at the dissipative Kolmogorov’s scale. Further-
more, the dissipation can be expressed as ε = ν(uη/η)2, i.e. the dissipation is equal to
viscosity-affected velocity gradients (Pope, 2000).

Because of the zero velocity condition at the wall, the strongest viscosity-affected velocity gra-
dients occur at the wall, and they can also be interpreted as wall shear stress. As the viscous
forces are strongly dominating the near-wall flow, convection and turbulent shear stresses can
be neglected. Hence, the wall shear stress τw can be defined as

τw = µ
∂u1

∂xn
|xn=0, (1.5)

with µ the dynamic viscosity, which is defined as µ = ρν and xn as wall normal component.
The wall shear stress is a very important parameter in engineering, because it has a major in-
fluence on sedimentation and resuspension, as mentioned in section 1.1.

As last point in this subsection, another basic concept, the so-called Reynolds decomposition,
is introduced. In contrast to laminar flow, turbulent flows have a significant and irregular
fluctuating motion in space and time, which can be described as deviation from a base flow.
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Thus, the variables velocity and pressure of a turbulent flow can be temporally decomposed
into a mean ϕ and a fluctuating part ϕ′

ϕ(x, t) = ϕ(x) + ϕ′(x, t), (1.6)

the so-called Reynolds decomposition (Pope, 2000). For flows that are statistically stationary,
like the one considered in this thesis, ensemble averaging and time averaging give identical
results. Hence, the mean flow can be gathered by time averaging of the quantities (eq. (1.7)):

ϕ(x) =
1

T

T∑
t=1

ϕ(x, t). (1.7)

Because of the turbulent character of the flow, many samples are needed until the mean value
converges. The fluctuations from the mean velocity can be interpreted as turbulent part of
the flow. Moreover, if a flow case has a homogeneous direction, like the pipe axis in a partially
filled pipe flow, a quantity can be further averaged in this homogeneous direction. Hence,
the mean of a quantity ϕ(x2, x3) becomes a function of the non-homogeneous directions
only.

Budget of Mean and Turbulent Kinetic Energy

The kinetic energy of the flow E(x, t) = 1
2
ρ(u(x, t) ·u(x, t)) per volume can be ensemble-

averaged E(x) over time. Applying Reynolds decomposition to E(x), splits it into the sum of
mean kinetic energy (MKE)K and turbulent kinetic energy (TKE) k:

E(x) = ρ(K(x) + k(x)) (1.8a)

K =
1

2
(u ·u) =

1

2
(ui ui) =

1

2
(u2

1 + u2
2 + u2

3) (1.8b)

k =
1

2
(u′ ·u′) =

1

2
(u′iu

′
i) =

1

2
(u′1u

′
1 + u′2u

′
2 + u′3u

′
3) (1.8c)

Multiplied by the density, the single terms within the turbulent kinetic energy ρ u′iu
′
i denote

the so-called Reynolds normal stresses, which are basically the same as the variance of a
random variable. In order to obtain the budget equation of the mean kinetic energy K(x),
the Reynolds decomposition is applied on the momentum transport equation (eq. (1.1b)).
Then the equation of the mean momentum transport is multiplied by the mean velocity u.
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Symbolically it can be written as

∂K(x)

∂t︸ ︷︷ ︸
local derivative

= − C︸︷︷︸
convection

+ ∇T︸︷︷︸
transport/diffusion

+ Ein︸︷︷︸
energy income

+ P︸︷︷︸
productionMKE/TKE

+ ε.︸︷︷︸
dissipation

(1.9)

and in index-notation it reads (Kundu & Cohen, 2008):

∂

∂t

(
u2
i

2

)
︸ ︷︷ ︸

local derivative

=− uj
∂

∂xj

(
u2
i

2

)
︸ ︷︷ ︸

convection

− ∂

∂xj

[
1

%
ujp︸ ︷︷ ︸

pressure transport

+ uiu′iu
′
j︸ ︷︷ ︸

turbulent transport

− ν
∂

∂xj

(
u2
i

2

)
︸ ︷︷ ︸
viscous transport

]

+ giui︸︷︷︸
energy income

+ u′iu
′
j

∂ui
∂xj︸ ︷︷ ︸

MKE−production

− ν
(
∂ui
∂xj

)2

︸ ︷︷ ︸
dissipation

, with i, j = 1, 2, 3,

(1.10)

The mean equation, obtained from the Reynolds decomposition, can be subtracted from
the original momentum equation in order to get the fluctuating momentum equation. By
multiplying u′ the turbulent kinetic energy budget can be obtained as follows (Kundu &
Cohen, 2008):

∂

∂t

u′iu
′
i

2︸ ︷︷ ︸
local derivative

=− uj
∂

∂xj

u′iu
′
i

2︸ ︷︷ ︸
convection

− ∂

∂xj

[
1

ρ
p′u′j︸ ︷︷ ︸

pressure transport

+
u′iu
′
iu
′
j

2︸ ︷︷ ︸
turbulent transport

− νu′i
(
∂u′i
∂xj

+
∂u′j
∂xi

)
︸ ︷︷ ︸

viscous transport

]

− u′iu
′
j

∂ui
∂xj︸ ︷︷ ︸

TKE−production

− ν
2

∑
i,j

(
∂u′i
∂xj

+
∂u′j
∂xi

)2

︸ ︷︷ ︸
dissipation

, with i, j = 1, 2, 3.

(1.11)

The evaluation of both equations are powerful tools in order to understand the physical
processes of the mean flow and its fluctuations. Please note that the external energy income
giui is only present in the budget equation of MKE (eq. (1.10)). The energy income is due to
gravity, which is consistent for the present study as it focuses on open-duct flow. However,
in general other volume forces like a pressure gradient can also be assumed to drive the
flow.

The flow cases of the present study are statistically steady, i.e. the local derivative ∂/∂t
is zero, hence, all other terms have to balance themselves. Furthermore all derivatives in
streamwise direction are zero, because of the homogeneous direction in the flow problem
of straight, partially filled pipe flow. In these equations not only Reynolds normal stresses
u′iu
′
i, but also Reynolds shear stresses u′iu

′
j with i 6= j appear, which can be, in a statistical

sense, considered as covariance of two random variables. The production term P , linking the
Reynolds stresses and the gradient of the mean velocity, is present in both budget equations.
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Thus, P links both budget equations in terms of energy and denotes the transfer of kinetic
energy from MKE, which obtains the energy from the driving force, to TKE. In a pipe flow
the TKE-production term is generally positive, hence, energy is transferred from MKE to
TKE, however, energy can be transferred in both directions, from MKE to TKE and from
TKE to MKE.

The dissipation ε is the energy sink in both equations. By definition it is always negative
and it converts the energy irreversibly to heat via the mean and fluctuating rates of strain.
C represents the spatial rate of change of kinetic energy by convection. The spatial diffusion
of kinetic energy T occurs via turbulent transport and pressure transport, as well as via
viscous diffusion. Ein stands for the energy income (Nikora & Roy, 2012) or energy input
and represents the driving force of the flow.

Transport Equation of Vortical Motion

For the introduction of the last basic equations, let us recall one of the characteristics of
turbulent flow mentioned in the beginning of this section. Turbulent flows consist of vortical
motions making the flow rotational. The rate of rotation ω, also called vorticity, is the curl of
the velocity and is non-zero in turbulent flows (Pope, 2000).

ω = ∇× u (1.12)

By taking the curl of equation (1.1b) the vorticity equation can be derived to

Dω

Dt
= ν∇2ω + ω ·∇u, (1.13)

which also describes the flow as exact as the original Navier-Stokes equations, but from the
perspective of vortical motion (Pope, 2000). Einstein & Li (1958) further transformed this
equation by taking the mean and focusing on the streamwise component of the vorticity ω1

only, to:

∂ω̄1

∂t︸︷︷︸
rate of change

+ ūj
∂ω̄1

∂xj︸ ︷︷ ︸
convection by the mean flow

= ω̄j
∂ū1

∂xj︸ ︷︷ ︸
vortex stretching and tilting

+
∂2

∂x2∂x3

(
u′23 − u′22

)
︸ ︷︷ ︸

vorticity generation
by Reynolds normal stresses

+

(
∂2

∂x2
3

− ∂2

∂x2
2

)(
−u′3u′2

)
︸ ︷︷ ︸

vorticity generation
by Reynolds shear stresses

+
∂

∂xj

(
ν
∂ω̄1

∂xj

)
︸ ︷︷ ︸

viscous ”dissipation” of mean vorticity

, with j = 2, 3.

(1.14)

The streamwise component of the vorticity equation is a widely used tool to analyse the
mean secondary flow (e.g. Einstein & Li (1958); Nezu & Nakagawa (1993)). Let us
consider the temporally averaged flow in a straight, partially filled pipe or in an open-
duct. First of all, the temporal derivative is zero, ∂/∂t = 0. Moreover, the derivatives
in streamwise direction are zero, hence, ∂ui/∂x1 = 0. It follows that the term ωj

∂u1
∂xj

is
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zero, because ω2
∂u1
∂x2

= −ω3
∂u1
∂x3

. Hence, secondary flow can only be generated by the terms

∂2

∂x2∂x3

(
u′23 − u′22

)
and

(
∂2

∂x23
− ∂2

∂x22

) (
−u′3u′2

)
, as the second term on the left hand side of equa-

tion (1.14) only convects vorticity and the last term on the right hand side is responsible for
the dissipation of vorticity. This means streamwise vorticity and therefore secondary flow
is generated only by turbulence inhomogeneities and turbulence anisotropy, which is also
referred to as turbulence-induced secondary flow. Secondary flow that is only turbulence-
induced is classified as secondary flow of Prandtl’s second kind, whereas flows for which
ωj

∂u1
∂xj
6= 0 secondary flow of Prandtl’s first kind are generated. Secondary flow of the first

kind also include turbulence-induced secondary flow, however, it is dominated by the sec-
ondary flow generated by the centrifugal forces, which is equivalent to the first term on the
right hand side.

Turbulent Boundary Layers

Let us assume a viscous flow parallel over a non-moving solid wall. The wall is impermeable
and has a no-slip condition, hence, the velocity at the wall is u = 0. Due to the viscosity
of the fluid a layer establishes from zero velocity at the wall to the free-stream velocity
far off the wall. This layer is called boundary layer, first introduced by Ludwig Prandtl
(Schlichting & Gersten, 2017). The theory of turbulent boundary layers was found to be
universally applicable for flows over a flat plate and its characteristics will be introduced in
the following.

Directly at the wall the flow generates a shear stress, the so-called wall shear stress τw, which
is defined in equation (1.5). In the near-wall region, the flow can be described by the friction
velocity

uτ =

√
τw
ρ

(1.15)

and the viscous length scale

δν =
ν

uτ
. (1.16)

The wall distance and velocity can be normalised by the viscous length scale and the friction
velocity, respectively, leading to the so-called wall or inner units denoted with a ϕ+, e.g.
u+ = u/uτ . Moreover, the friction velocity is used to define the friction Reynolds num-
ber :

Reτ =
uτδ

ν
(1.17)

with δ being the boundary layer thickness.

A fully developed boundary layer can be described by three different wall-parallel layers.
Directly at the wall the viscous sublayer evolves, where viscosity is highly dominating. From
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zero velocity at the wall, the inner streamwise velocity u+
1 = u1/uτ increases linearly with

wall distance, representing a manifestation of the so-called Law of the Wall (Pope, 2000).
The linear relation only is a good approximation as long as the pressure gradient term, which
enters the near-wall velocity distribution multiplied with the squared wall distance, can be
neglected. This is the case for x+

3 = x3/δν < 5, which is the wall-normal extent of the viscous
sublayer.

Coming from the free-stream flow towards the wall, a region establishes where the inner
velocity u+

1 follows a logarithmic scaling

u+
1 =

1

κ
ln(x+

3 ) +B. (1.18)

κ is the von Kármán constant being approximately 0.41 and B is a second constant approx-
imately 5.2 in channel flow Pope (2000). This scaling is valid from x+

3 > 30 to x3/δ < 0.3
and gives the layer its name - the so-called log-law region. In between the viscous sublayer
and the log-law region there is a transition from the linear to the logarithmic regime called
buffer layer.

Another description of the turbulent boundary layer divides it into an inner and an outer
layer (Pope, 2000). In the inner layer, which spans from the wall up to 0.1x3/δ, the flow and
its structures scale with wall units. Overlapping the inner layer, the outer layer begins at
approximately x+

3 ≈ 50− 80, where viscous effects are negligible. Moreover, the flow in the
inner layer is exposed to strong shear forces. In the outer layer the flow is rather independent
of the near-wall turbulence, however, this is not a strict interface and interaction between
both regions takes place (Jiménez, 2018).

Coherent Structures in a Wall-Bounded Flow

The field of coherent structures in turbulent flows is a vast research field, which is still
evolving dynamically. This brief summary on coherent structures in wall-bounded flows is
mainly based on the reviews of Robinson (1991) and Jiménez (2018). Coherent structures
can be defined as structures showing significant correlation of a flow parameter with itself or
with another parameter over a certain flow area and keeping its correlation pattern over a
dynamically significant time interval. One of the main coherent structures are vortices. They
have an approximately circular or spiral pattern of streamlines around a pressure minimum.
Another approach to describe coherent structures was introduced by Lumley (1967) and is
based on the proper orthogonal decomposition (POD). It defines coherent structures with
an objective, but rather abstract outcome, which is difficult to interpret. The POD will
be introduced in more detail in chapter 4.2.1. In contrast to coherent structures in the
instantaneous velocity field, there are rotational patterns in time averaged velocity field
known as helical secondary currents.

Looking in more detail at the flow very close to the wall, a typical flow pattern with regions of
fast and slow velocity fluctuations, the so-called high and low velocity streaks, respectively,
appear in turn. The low and high velocity streaks can have a length up to 1000 wall units.
The width of velocity streaks is approximately 50 wall units, which leads to approximately
100 wall units as distance between two high or low velocity streaks (Robinson, 1991). In
connection to the velocity streaks quasi-streamwise vortices appear either as single vortex or
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as a counter-rotating pair next to each other. They usually are slightly tilted by 3-7 degrees
from streamwise direction and reach a length of up to 200δν with a diameter of 15 − 50δν
and a core wall distance of 20−70δν (Robinson, 1990). Hence, quasi-streamwise vortices are
generated and occur in the buffer layer.

If there is a low velocity streak, with faster fluid further away from the wall, the faster
flow starts to roll up above the slow velocity and creates a vortex. This vortex usually
builds up and creates either one or more vortical legs, so-called arches or horseshoes, which
keep contact with the wall in the initial phase. If two vortical legs are created, the two
legs are counter-rotating and they transport fluid from the wall in between the two vortices
towards the bulk-flow region. This generates again slow velocity in between the two legs, as
a possible new low velocity streak. Due to the mutual induction of the two vortex legs they
create an upward movement. This is the so-called hairpin vortex system (Robinson, 1991).
These vortex systems grow, interact with smaller ones and often appear in groups. At some
point the vortex system ejects from the wall into the bulk-flow region and gets detached
from the wall. Such an ejection from the wall is also called burst and is often connected
to an event of negative streamwise fluctuation and positive wall-normal fluctuation, also
called Q4 -event. Moreover, an event of ejection produces turbulence in the buffer layer.
In contrast, another event that is observed in near-wall turbulence is the so-called sweep
event. High velocity streaks with a high kinetic energy move towards the wall and if a
high velocity streak flows over a low velocity streak, the present near-wall structure gets
pushed away. This can be related to a positive u′1 and a negative u′3 occurrence, a Q2 -
event. The sweep- and ejection-events get their energy from areas where both u′1 and u′3 are
positive or both are negative. Ejections are detected more often with wall distances x+

3 ≥ 12,
whereas sweeps are predominantly found closer to the wall (Robinson, 1991). In streamwise
direction often the same event, either sweep or ejection, can be observed behind each other,
but in spanwise direction sweeps and ejections rather occur next to each other and form
pairs.

As mentioned above, structures can be either wall-attached or detached from the wall. If
the structure’s lowest parts are over 20 wall units away from the wall they are classified as
detached from the wall (Jiménez, 2018). Structures can evolve from being attached and then
detach like ejections, whereas sweeps behave the other way around. Sorting the structures
shows that attached structures are responsible for approximately 60% of the total Reynolds
shear stress u′1u

′
3 and account for approximately 70% of the volume of high kinetic energy

structures (Jiménez, 2018). They are spatially and temporally self-similar as they grow and
eventually detach from the wall. Streamwise vortices in the buffer layer often appear as
counter-rotating pairs and move farther away from the wall into the log-layer. However,
they also appear as single vortices with smaller, not dominating secondary vortices around
them. The lifetime of these structures can be estimated by their wall-distance (Lozano-
Durán & Jiménez, 2014), thus, the lifetime of vortices in the outer region compared to the
quasi-streamwise near-wall vortices is relatively long.

The outer flow is directly influenced by the inner flow through near-wall ejections, which
reach to the outer flow and transfer mass, and indirectly by growth of vortical structures.
The outer flow interacts with the inner flow by entrainment of large structures and creates
a foot-print of themselves in the inner flow. However, it is still debated how the near-wall
region is exactly influenced by the outer flow structures (Jiménez, 2018). Lastly, the funda-
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mental question of how structures of different scales interact with each other arises and is
part of ongoing research, e.g. Motoori & Goto (2019).

From the description of the different structures in the different layers it can be concluded, that
turbulence is produced at the wall and in the buffer layer, and from there it is transported
to other places. Hence, the wall is a necessary part to generate structures close to the wall
and these are responsible for the structures in the buffer layer. However, there have been
simulations, e.g. Lozano-Durán & Jiménez (2014) and Mizuno & Jiménez (2011), indicating
that the structures in the viscous sublayer are not really needed to generate the turbulence
in the buffer layer. More important seems to be the presence of a strong shear layer that
is generated by the wall in wall-bounded flows. This perspective is further supported by
the observation that there are more structures moving towards the wall than away from it
(Jiménez, 2018).

Another interesting perspective on turbulence was introduced by Waleffe (1997). He pre-
sented a self-sustaining process (SSP) of turbulence: an instability of high and low velocity
streaks generates streamwise vortices, which feed back energy to the streaks again. With
the knowledge of the above mentioned simulations one can argue, that for the SSP to work
the flow might only need to have a strong shear flow, which was generated in this study by a
wall. Jiménez (2018) argues that it is also possible, that it is not the streaks initializing new
instabilities, but they enhance and give direction to the new vortices and instead the shear
itself creates the instability. However, simulations of Jiménez & Pinelli (1999) showed that
removing any component of the SSP changes the created turbulence strongly, underlining
the importance of all components of the SSP interacting with each other.

Full pipe flows are described in literature as wall-bounded flows and they are characterised
by the influence of the wall. Hence, partially filled pipe flows also can be regarded as
wall-bounded flows, will show similar features, and generate a boundary layer. Moreover,
an interaction with a free surface takes place, which will be introduced in the next sec-
tion.

Free Surface Flows

Free surface flow means, that there are two continua flowing next to each other separated
by an interface. In principle, an interaction between the two fluids is possible. However, in
the context of the present study only free surface flows are considered in which the primary
fluid, usually a liquid, is not or hardly influenced by the secondary fluid, e.g. a gas. I.e. the
primary fluid is not influenced by shear stresses and also no inertial forces are induced by
the secondary fluid (Sarpkaya, 1996). Close to the free surface, there is a layer with a free
surface normal distance of about 50 wall units, where Reynolds stress and vorticity distri-
butions start deviating from the channel flow distributions (Nagaosa, 1999). In this layer
the kinematic boundary of the free surface, u3 = 0, becomes noticeable, vertical velocity
fluctuations decrease and get redistributed to horizontal velocity components. Shen et al.
(1999) called this layer blockage layer and inside the blockage layer they further specified a
thin surface layer close to the free surface, reflecting the zero shear stress condition. In a first
approximation, vortical structures can be distinguished into free surface parallel structures
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and structures being normal and/or attached to the free surface. A more detailed catego-
rization was introduced by Sarpkaya (1996), who classified five types of free surface normal
vortices. i) a structure connected with both ends to the free surface, ii) whirls, detaching
from streamwise/free surface parallel vortices by a centrifugal instability, iii) vortices from
below the blockage layer moving towards the free surface, iv) whirls, being attached to the
wall, that recirculate around themselves and v) vortices being attached to the free surface
and a solid wall.

Some of the above mentioned structures might only be created, if the free surface can be de-
formed and surface tensions can appear, which is, of course, possible in real flows and physical
experiments. However, in numerical simulations assumptions have to be made for the treat-
ment of the free surface, which can suppress the occurrence of some structures. Often the free
surface is modeled by a rigid non-deformable wall with a slip condition, which approximates
a low Froude number flow. This boundary condition is also applied in the present study,
hence, the following literature review focuses mainly on low Froude number flows. Please
note that the validity of this approximation is investigated in section 2.1. Further note that
the Froude number is defined as the ratio between inertia and gravity forces: Fr = ub/

√
gH,

with ub as bulk velocity and H being the flow depth.

In a wall-bounded flow with a free surface, turbulent activity is generally not generated in the
vicinity of the free surface. Instead, Komori et al. (1993), Pan & Banerjee (1995), Grega et al.
(1995) and Nagaosa (1999) show that turbulent structures that reach the free surface often
stem from bursts ejecting from the buffer layer and move towards the free surface. The bursts
include low velocity streaks with quasi-streamwise vortices, producing upwellings or so-called
splats at the free surface. Splats are events of negative vertical pressure strain fluctuations,
redistributing vertical velocity mostly to spanwise velocities. Because of continuity also
the counterpart exists - anti-splats or downwellings, with positive vertical pressure strain
fluctuations. Interestingly, streamwise pressure strain fluctuations play only a minor role
in this redistribution (Nagaosa, 1999; Komori et al., 1993; Shen et al., 1999). Please note
that Perot & Moin (1995) found only very small pressure strain values and explained the
redistribution of the splat and anti-splat events via viscosity. Shen et al. (1999) discussed the
individual terms of the enstrophy budget and found that locally the enstrophy dissipation is
increasing for splats and anti-splats in the horizontal components, but free surface-attached
structures show little dissipation of enstrophy. Thus, overall the dissipation of enstrophy is
an important process at the free surface.

At the boundaries of splats and as transformation from quasi-streamwise vortices free surface-
normal vortices being attached to the free surface are generated. As long as they are not
disturbed by other structures they decay only very slowly, because of low dissipation (Pan
& Banerjee, 1995; Kumar et al., 1998). However, these attached structures have only minor
contribution to the inter-component transfer of turbulent kinetic energy (Nagaosa, 1999).
Nezu & Nakagawa (1993), Pan & Banerjee (1995) and Kumar et al. (1998) state, that a
layer of two-dimensional structures is generated at the free surface, however, adjacent to
the surface layer the flow structures become three-dimensional and can not be regarded
as two-dimensional anymore (Nagaosa, 1999). Another process taking place at the free
surface is that vortical structures with the same direction of rotation connect and form
larger structures, establishing an inverse energy cascade and vortices with an opposite sign
dissolve (Sarpkaya, 1996).
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In recent physical experiments by Tamburrino & Gulliver (2007) and Zhong et al. (2016) it
was found that in addition to splats, anti-splats, and attached vortices some long velocity
streaks form streets with a sinusoidal/wavy pattern. This is in agreement with an analysis
of numerical simulations by Kevin et al. (2019), showing an intermittent pattern, generated
by growing vortex systems in a turbulent boundary layer, which get more distinct in the
outer flow. Zhong et al. (2016) showed via velocity correlations, that there are alternating
high and low velocity streaks in streamwise direction that have a width of approximately
one flow depth. This was in agreement with the results of a POD of the velocities at
the free surface, with the most energetic modes representing the alternating streak pattern.
Please note that both experiments (Tamburrino & Gulliver, 2007; Zhong et al., 2016) showed
mean secondary cells in the middle of the wide channel, which was not reported for the
numerical simulations of Kevin et al. (2019). In contrast to numerical simulations with
periodic boundary conditions in spanwise direction, they must have had sidewalls introducing
new features to the flow, which might explain the difference. Such a geometry with no-slip
walls at the bottom and as side walls and a free surface at the top are called open-channel or
open-duct flows and will be investigated in the next section.

1.3. Secondary Flow Phenomenon - Literature
Review

Secondary flow describes the motion of the fluid perpendicular to the main flow direction.
Intuitively it becomes clear, that secondary flow occurs in curved pipes, rivers and ducts,
because of fluid’s inertia pushing the water to the outside bend of the cross-section. In
1926 Ludwig Prandtl first mentioned on a conference that secondary flow also occurs in
straight, non-circular closed ducts (Meier, 2000). Based on this insight, two main categories
of secondary flow can be distinguished according to their generation mechanism. In curved
channels the centrifugal force serves as source of skewing-induced vorticity which generates
the so-called secondary flow of Prandtl’s first kind (Blanckaert & De Vriend, 2004). This can
appear in laminar and turbulent flows. Secondary flow of Prandtl’s second kind is the result
of turbulence inhomogeneities (Prandtl et al., 1990). They also appear in curved channels,
but are rather weak. But in contrast to the secondary flow of the first kind, they also ap-
pear in turbulent flows in straight channels. Such secondary flows are typically generated
at corners or edges of the geometry. Although mean secondary flows have a magnitude
of only 2-3% of the mean streamwise velocity, they still have a quite huge impact on the
general velocity distribution (Nezu & Nakagawa, 1993). In this thesis, turbulent flows in
straight, partially filled pipes are considered containing secondary flow of Prandtl’s second
kind. However, most of the available studies on secondary flow of the second kind investigate
straight open-channel flows with a rectangular cross-section. Hence, these publications are
the main references for the following review on the secondary flow phenomenon. The case
of partially filled pipe flows will be discussed separately in the next section.

Natural rivers and also technical open-channel flows can be defined by their aspect ratio
W/H, with W being the width and H the flow depth. Open-channel flows can be classified
as narrow if the aspect ratio of the cross-section is W/H ≤ 5 (Nezu & Nakagawa, 1993). In
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this case, the complete flow is directly influenced by the secondary currents attached to the
side walls, which can reach a spanwise size of approximately 2H. Open-channels with a larger
aspect ratio are considered to be wide and in the centre of the channel symmetric circulation
cells are established (Nezu & Nakagawa, 1993; Chauvet et al., 2014), which appear to be sim-
ilar to the experiments of Tamburrino & Gulliver (2007) and Zhong et al. (2016) mentioned
in subsection 1.2 (Free Surface Flows). As secondary flow is predominantly generated at the
side wall the intensity of secondary currents in the centre of the cross-section decreases with
increasing aspect ratio (Vinuesa et al., 2015; Sakai, 2016).

Within this thesis only flows classified as narrow are investigated, hence, the following review
focuses on the flow phenomenon in narrow open-channel flows.

Secondary Currents in Open-Channel Flow

In literature, a common pattern of secondary currents can be detected for rectangular open-
channel flow (Nezu, 2005; Tominaga et al., 1989; Joung & Choi, 2009; Blanckaert et al.,
2010; Nawroth et al., 2015; Sakai, 2016), as shown in figure 1.2. There is one large surface
vortex directed towards the channel centre at the free surface and a less dominant bottom
vortex, counter-rotating to the surface vortex. Additionally, another vortex seems to occur
in the mixed-corner, again counter-rotating to the free surface vortex, which will be fur-
ther discussed below. In connection to the wall shear stress distribution, it was observed,
that local wall shear stress maxima occur if secondary flow directs high momentum fluid
towards the wall. Conversely, local wall shear stress minima occur if the local secondary
flow points away from the wall. Thus, the rapid increase of the wall shear stress near the
free surface indicates an inner secondary vortex at the mixed-corner as pointed out by Sakai
(2016).

mixed-corner

solid-corner

inner secondary vortex

outer
secondary vortex

Figure 1.2: Sketch of secondary flow pattern in a rectangular open-channel flow. The sense of
rotation of the vortical structures is indicated by small arrows.

Secondary flows are generated at inhomogeneities of the wall, like corners. So far a crucial
difference between published experimental and numerical results for open-channel flows can
be observed. In direct numerical simulations (DNS) (Joung & Choi, 2009; Lee et al., 2012;
Grega et al., 1995; Sakai, 2016), and large eddy simulations (LES) (Broglia et al., 2003),
with a rigid slip-condition as free surface, a vortex has been observed, which is directly
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in the mixed-corner and in contact with the wall and the free surface. This mixed-corner
vortex has been denoted as the inner secondary vortex (Grega et al., 1995) in contrast to
the outer secondary vortex, which is strongly dependent on the aspect ratio (cf. Figure 1.2).
The inner secondary vortex has a circular shape and its extension has been reported to vary
from 40 to 100 wall units (Joung & Choi, 2009; Broglia et al., 2003; Grega et al., 1995; Lee
et al., 2012; Sakai, 2016). While the inner secondary vortex points towards the wall at the
free surface, the outer secondary vortex points away from the wall and a stagnation point
is formed at the free surface between the inner and outer secondary cell. Thus, the corner
vortex is counter-rotating to the outer secondary current and transports high-momentum
fluid from the free surface towards the side-wall. The outer secondary current is usually
reported to be larger in size and depends more on the entire geometry of the channel than
on the inner secondary current. Except for very low Reynolds number flows which just
maintain a turbulent flow, the inner and outer secondary cell are equal in size and velocity
magnitude. For higher Reynolds numbers, the velocity magnitude of the inner secondary
flow has been reported to be smaller than that of the outer secondary flow. In addition,
Lee et al. (2012) also observed the inner secondary vortex in a DNS with non-zero Froude
number using a combined level-set/volume of fluid method for the free surface deformations.
The inner secondary vortices observed in Froude numbers of Fr = 0.2 and Fr = 0.8 are
consistent with ones observed in other simulations using a rigid slip condition. They are
quite similar in shape, position and strength and do not seem to dependent strongly on the
Froude number.

In contrast to the simulations, most experiments did not observe the inner secondary vortex.
According to Nezu & Nakagawa (1993) and Tominaga et al. (1989) there is no inner secondary
flow. Grega et al. (2002) measured the flow in a mixed-corner with particle image velocimetry
(PIV) with a high resolution and a focus on the mixed-corner. Unfortunately, some details
of the setup of the experiment do not become fully clear. For measuring the flow, Grega
et al. (2002) placed a mirror in the channel, which dimensions are not given and might have
influenced the flow. The length of the channel is about six flow depths, which is less than
a tenth of the channel length a secondary flow usually needs to establish a fully-developed
state (Demuren & Rodi, 1984). Nevertheless, Grega et al. (2002) claimed to have detected
an inner secondary vortex (cf. Figure 1.2). However, in contrast to what has been observed
in numerical simulations, no stagnation point can be observed at the free surface. Hence,
the measured vortex neither does fully agree with the postulated inner vortex (Grega et al.,
1995, 2002) nor with the corresponding simulations mentioned above. Nawroth et al. (2015)
measured secondary flows in a rectangular channel by stereoscopic (PIV). Unfortunately,
their field of view did not provide a near-wall resolution that allowed to render the inner
vortex. The same can be concluded for the PIV measurements in partially filled pipes by
Ng et al. (2018). Thus, clear evidence from experiments for an inner vortex as observed by
numerical simulations is still missing to date.

In rectangular cross-sections it has been observed that the secondary flow always points
towards the solid corner along the corner bisector and moves away from the solid cor-
ner along the walls towards the centers of the side wall (Nezu, 2005; Pinelli et al., 2010;
Sakai, 2016). Moreover, Pinelli et al. (2010) and Sakai (2016) reported that the vortic-
ity structures in the solid corner scales with wall units for different Reynolds numbers,
whereas the secondary flow cells itself scale with bulk units, generating a slightly different
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pattern. Moreover, in a squared closed-duct the solid corner vortices generate in total an
eight vortex pattern on average. But looking at the instantaneous flow, Uhlmann et al.
(2007) showed that in marginal Reynolds number flows two four-vortex patterns, shifted by
90◦, alternate. Whether such an instantaneous alternating pattern is present in rectangu-
lar open-channel flow was investigated by Sakai (2016), who could not find any systematic
pattern.

In trapezoidal cross-sections, mixed-corner vortices have been observed in both, simulations
and experiments. A three-vortex system has been observed, e.g. by Tominaga et al. (1989)
and Brosda (2015). The inclination of the side-wall strongly affects the pattern of the sec-
ondary currents, which might explain the large extension of the mixed-corner vortex in the
trapezoidal configuration (Tominaga et al., 1989; Blanckaert et al., 2010).

Moreover, in wide open-channel experiment Blanckaert et al. (2010) observed alternating
secondary cells all over the cross-section. They reported a correlation between the TKE and
the pattern of the secondary currents. In general, the TKE is larger at the bottom of the
channel. In particular, the magnitude of the TKE has peaks where the secondary flow is
directed from the wall towards the free surface and lower values where secondary flow points
towards the wall. Additionally, also the lateral Reynolds shear stress distribution u′1u

′
2 is

correlated to the pattern of the secondary currents, because of the corresponding variations
of the streamwise velocity. Positive u′1u

′
2 matches counter clockwise turning secondary cells

and negative u′1u
′
2 indicates clockwise rotation. This correlation was not only found in wide

channels, but also in narrow experiments and simulations (Nezu & Nakagawa, 1993; Joung
& Choi, 2009).

Primary Flow in Open-Channel Flow

Secondary currents considerably influence the distribution of the primary velocity compo-
nent over the cross section. Like the secondary currents, the primary flow depends on the
angle and shape of the side walls and the aspect ratio (Tominaga et al., 1989; Nezu & Naka-
gawa, 1993; Blanckaert et al., 2010). In wide channels and channels with acute side wall/free
surface angles, the location of the maximum mean streamwise velocity occurs at the free sur-
face. However, in rectangular channels with aspect ratios below W/H ≈ 5 the maximum
appears underneath the free surface at about 60− 80% of the flow depth (Tominaga et al.,
1989; Joung & Choi, 2009; Nawroth et al., 2015; Sakai, 2016; Ng et al., 2018). The distance
of the maximum streamwise velocity to the free surface scales with outer units (Sakai, 2016).
This effect, denoted as velocity-dip phenomenon, can be explained by the transport of low-
momentum fluid from the side walls towards the center by the secondary surface velocity
(Nezu & Nakagawa, 1993; Yang, 2005). Sakai (2016) supports Nezu’s conclusion by report-
ing that the velocity-dip phenomenon only occurs, when large-scale low-velocity streaks are
ejected from the side walls towards the free surface centre, contributing to lower velocities
at the free surface in the channel centre. Moreover, it has been observed that regions exist
in which the velocity profiles follow a logarithmic relation (Nezu & Rodi, 1986; Gavrilakis,
1992). In the outer range the log-law has to be adjusted, because of the velocity-dip phe-
nomenon. This has been taken into account by a log-wake law (Chiu, 1989; Yang et al.,
2004) and further by Guo (2014) in a modified log-wake law.

Another effect of the secondary flow is an inhomogeneously distributed mean wall shear stress
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along the circumference (Nezu & Nakagawa, 1993). In the rectangular and narrow open-
channel flow experiments of Tominaga et al. (1989) a plateau-like maximum of the wall shear
stress has been observed at the center of the bottom as global maximum. At the side walls,
another local maximum was discovered at approximately 60% of the flow depth. Moreover,
they report that the wall shear stress is continuously decreasing from both maxima towards
the bottom corner and the free surface (Tominaga et al., 1989). In numerical simulations,
the distribution of the bottom shear stress is in agreement with the measurements, but
the shear stress distribution at the side walls can differ considerably. In direct numerical
simulations, Joung & Choi (2009); Sakai (2016) observed that the wall shear stress sharply
increased and reached a global maximum at the mixed-corner. A local minimum was seen
at 50 wall units underneath the free surface, scaling with inner units for moderate Reynolds
numbers (Sakai, 2016). This is explained by a high velocity streak located directly at the
free surface and a subsequent low velocity streak, with a streak diameter of 50 wall units,
which is in agreement with the velocity streaks reported in section 1.2 (Coherent Structures
in a Wall-Bounded Flow). In the solid bottom corner, a high velocity streak is located with
subsequent streaks next to it, producing a local wall shear stress maximum at a distance
of 50 wall units from the corner (Sakai, 2016). For low Reynolds numbers, only one low
velocity streak with a spanwise length of 50 wall units fits in between the corner streaks.
This velocity streak pattern corresponds to a minimum Reynolds number just maintaining
turbulence. If less velocity streaks fit along the wall, turbulence collapses and laminar flow
develops. For a rectangular cross-section with aspect ratio W/H = 2, Sakai (2016) reported
a minimum Reynolds number of Reτ = 102. With increasing, still small Reynolds number,
the velocity streaks grow in size and at the same time the viscous length scale decreases
until a new pair of streaks of regular size (100 wall units) fits in again such that five streaks
(300 wall units) are next to each other. With further increasing Reynolds number the size of
the velocity streaks in the corner remains approximately constant and further new velocity
streak pairs are integrated creating an alternating pattern of velocity streaks (Pinelli et al.,
2010; Sakai, 2016).

Generation Mechanism of Mean Secondary Flow

There are still ongoing debates about details of the generation mechanism of secondary
flow, especially on the interaction between secondary flow and turbulence (Nikora & Roy,
2012). In 1993 Nezu & Nakagawa (1993) gave a comprehensive review of turbulence in
open-channel flows, explaining the mechanism via a simplified mean vorticity equation and
the anisotropic turbulence structure. Anisotropy is induced by the geometry and leads
to gradients in the Reynolds normal stresses, which are supposed to generate secondary
flows. This review was extended and updated by Nezu (2005). Beforehand and in the
meanwhile, others have tried to describe the interaction between turbulence and secondary
flow from different perspectives, as highlighted by Nikora & Roy (2012). In particular via
the (i) mean vorticity equation (Einstein & Li, 1958; Nezu & Nakagawa, 1993; Nezu, 2005;
Gessner, 1973), (ii) Reynolds-Averaged Navier-Stokes (RANS)-equations (Yang et al., 2012),
(iii) energy balance of the mean flow (Gessner, 1973; Yang & Lim, 1997; Nikora & Roy,
2012), (iv) mean and turbulent enstrophy (Nikora & Roy, 2012) and (v) coherent structures
(Uhlmann et al., 2007; Pinelli et al., 2010; Sakai, 2016). Nikora & Roy (2012) emphasize that
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it could be worthwhile to interconnect the different approaches and compare the results, in
order to gain new insights into the generation mechanism of secondary currents. Wherever
appropriate, more detailed aspects of the various approaches will be discussed within this
thesis.

The focus on the processes in the mixed-corner was first put by the experiments of Grega
et al. (1995), Hsu et al. (2000) and Grega et al. (2002). Although their results should be
treated with caution, see section 1.3 (Secondary Currents in Open-Channel Flow), some
aspects for the generation mechanism of secondary flow are summarised in the following.
Based on the mean vorticity equation, Grega et al. (1995) conclude that at the free surface
the free surface normal fluctuations are damped and mainly the free surface parallel fluctu-
ations occur which leads to an anisotropy of the turbulent fluctuations in the mixed-corner.
Moreover, they reported bursting events generated at the side wall that spread along the
free surface that might create the outer secondary cell. Hsu et al. (2000) made further
experimental measurements with detailed investigations of the Reynolds stresses and the
single terms of the energy balance of the TKE in the mixed-corner. They reported that the
turbulent production and the dissipation decrease towards the free surface. Please note that
their velocity measurements were restricted to several free-surface parallel planes. Grega
et al. (2002) extended the analysis by investigating the distribution of convection of the
streamwise vorticity.

Sakai (2016) applied a vortex eduction technique, using the criteria of Kida & Miura (1998)
to define vortex centres and counting the location and sense of rotation of these vortices.
The most probable location of streamwise vortices agrees with the mean streamwise vor-
ticity field. The highest probability of vortices rotating in one particular direction is in
the mixed-corner, in contrast to the solid corner, which do not have any distinct peak of
vortex probability. Sakai (2016) concludes, that the inner secondary cell is generated by
quasi-streamwise vortices from the inner layer. Moreover he states, that the outer secondary
cell is not present instantaneously as one big structure, but is rather an accumulation of
smaller structures evolving mostly from the side wall, which is in agreement with litera-
ture reported in section 1.2 (Free Surface Flows). For a small free surface layer of about
15δν , Sakai (2016) proposed a sorting mechanism based on the 2D vortex interactions with
different boundary conditions by Orlandi (1990). According to this mechanism, streamwise
vortices moving towards the free surface move either towards the centre or the mixed-corners
depending on their sense of rotation, see figure 1.3. According to the sketch, a vortex ro-
tating counter-clockwise moves towards the mixed-corner giving rise to an accumulation of
counter-clockwise rotating vortices in the mixed-corner. Clockwise rotating vortices move
towards the pipe’s centre, thus, contributing to the outer secondary vortices. The same sort-
ing mechanism occurs for vortices with an opposite sense of rotation for the mixed-corner
at the opposite side.

From subsequent instantaneous snapshots of the flow Sakai (2016) statistically analysed the
temporal development of coherent structures. This analysis was performed for a flow in a
rectangular cross-section with aspect ratio W/H = 2 at Reτ = 150. He reports that the
inner secondary flow consists of rather long structures. The flow structures with the largest
volume occur in the centre of the cross-section at a height of approximately one third of
the flow depth above the bed. However, the longest-living structures are relatively small
and dissolve in the centre of the free surface. Sakai (2016) found that a significant part
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Figure 1.3: Concept of vortex sorting mechanism at the free surface proposed by and from Sakai
(2016)

of the structures that grow older move from the side wall to the free surface along the
path of the outer secondary cell. In addition, the advection of vortices and its advection-
angles were investigated. They resemble the mean secondary flow and slightly support the
aforementioned sorting algorithm at the free surface.

1.4. Partially Filled Pipe Flow - Literature
Review

The following review is divided into a first part that shows the historical development and
background of partially filled pipe flows. The second part gives a brief overview about the
state of the art in the field of partially filled pipe flows.

Historical Review of Partially Filled Pipe Flow

As mentioned above, partially filled pipe flows are categorised as open-channel flows, which
were subject of investigations from early ages on. The history of technical open-channel
flows is strongly connected to the necessity of transporting water over longer distances.
This development began around 5,000 B.C. when humans started to settle down and irriga-
tion of agricultural fields became important (Garbrecht, 1987). From that time on, human
kind built up engineering knowledge about hydraulics in open-channel flow and more and
more sophisticated systems for water supply systems were established, e.g. in the ancient
Nineveh (around 700 B.C.) in Mesopotamia (Garbrecht, 1995) or in the ancient Jericho
(around 100 B.C.) (Garbrecht & Netzer, 1991). Equally impressive are the buildings that
were constructed for transporting water, for example the aqueducts in Roman times (Gar-
brecht, 1995). It would have been very interesting to understand, which hydraulic con-
siderations were made to realize such projects, but unfortunately, there are no surviving
documents from this early period, that describe the knowledge of flows in open-channels at
that time.

One of the first known mathematical descriptions for the calculation of the flow velocity in
open-channels goes back to 1775, when Chézy came up with an empirical formula for the
mean velocity ub and discharge in open-channel flows ub = CC

√
RHIS (Naudascher, 1992),
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with CC being an empirical friction coefficient, the hydraulic radius RH = A/Uw, A the area
of the flow cross-section, Uw the wetted perimeter and IS the bed slope. Further, similar
approximations, which relate the flow velocity with the cross-section, the bed slope and
the wall roughness, were established in the middle of the nineteenth century by Darcy and
Weißbach for pipe flows and the Manning-Strickler equation for rivers with rather rough
walls (Hager, 1994). In addition, the Prandtl-Colebrook equation was established in the
beginning of the twentieth century. This equation is valid for hydraulically smooth and
rough, fully filled pipe flow:

1√
λ

= −2 · log10(
2.51√
λReb

+
ks

3.71D
) (1.19)

with ks being the relative wall roughness. An equally universal equation lacks for open-
channel flow, but the Prandtl-Colebrook equation can also be applied for partially filled
pipe flow, by taking the difference of the cross-section into account (Melhem, 1990; DWA,
2012). However, since there are only a few studies on partially filled pipe flow, see next
subsection, the suitability of the Prandtl-Colebrook equation for partially filled pipe flow is
not documented in detail.

Review of recent developments in Partially Filled Pipe
Flow

As mentioned in section 1.1 and the subsection above, partially filled pipe flows are present
in various applications, but detailed investigations of this flow case are rare. In contrast to
an open-channel flow in a rectangular cross-section, partially filled pipe flow lacks the solid
corner inhomogeneity. Therefore, the generation of secondary flow at a mixed-corner can be
studied without the influence of other inhomogeneities in partially filled pipes. Moreover,
for flow depths lower than the pipe’s radius an acute angle between the pipe’s wall and the
free surface occurs. Flow depths larger than the radius generate obtuse angles in the mixed-
corner. In contrast, for full pipe flow, no mixed-corner occurs and azimuthal symmetry is
established, hence, no mean secondary flow is generated. However, for partially filled pipe
flow, the free surface breaks the azimuthal symmetry and mean secondary flow is generated.
In the following section, various studies on partially filled pipe flow are introduced, which
are mostly based on experimentally generated data.

To the author’s knowledge, the first more detailed experimental studies of partially filled pipe
flows were carried out by Replogle & Chow (1966); Melhem (1990) using Pitot tubes and by
Strauß (1978); Sander & Koch (1990) using hydraulic impellers. They reported the velocity
distribution in the vertical symmetry line and tried to deduce the bulk velocity and the
discharge from it. Kölling (1994) did first numerical simulations of partially filled pipe flows,
validating his results on the published measurements. He was able to reproduce the main
aspects of the mean streamwise velocity distribution. More recently, velocity distributions
were measured by Knight & Sterling (2000) using Pitot and Preston tube, Clark & Kehler
(2011) using Acoustic Doppler Velocimetry in partially filled corrugated pipes and Yoon
et al. (2012) and Ng et al. (2018) performing Stereo-PIV measurements. In addition, a
LES representing the free surface by a level set method was recently published by Liu et al.
(2022) for partially filled pipe flow. The main parameters of the more recent experiments are
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summarized in table 1.1. Clark & Kehler (2011) and Yoon et al. (2012) have an inflow length
of ≈ 25DH hydraulic diameters, with DH = 4RH , which is the same for Tominaga et al.
(1989), but according to Gessner (1973) ≈ 70DH are needed to establish a fully developed
flow, including secondary flow. Knight & Sterling (2000) and Ng et al. (2018) have at least
70DH as inflow length.

Author H/(2R) Reb Fr
Knight & Sterling (2000) 0.33 64900 0.52

0.51 110000 0.50
0.67 135000 0.44
0.82 150000 0.37

Clark & Kehler (2011) 0.34 339000 0.40
0.44 295000 0.25
0.50 557000 0.39
0.61 238000 0.15
0.65 468000 0.28

Yoon et al. (2012) 0.3 5693 0.47
0.40 9766 0.54
0.50 13541 0.56
0.60 16088 0.53
0.70 18326 0.50
0.80 18974 0.44

Ng et al. (2018) 0.44 29300 0.52
0.52 30100 0.43
0.62 31000 0.36
0.70 30300 0.30
0.80 28500 0.25

Ng et al. (2018) 0.25 17020 0.15
0.52 30100 0.10
0.75 35020 0.08
1.00 29020 -

Table 1.1: Parameters for turbulent partially filled pipe flow from recent experiments. H/(2R) filling
ratio, Reb = ub ·DH/ν bulk Reynolds number and Froude number Fr = ub/

√
gDm with

Dm = A/W and A being the area and W the free surface width of the cross-section.

In the following paragraph the main results for partially filled pipe flow from the experi-
ments listed in table 1.1 are summarised. In the case of semi filled pipe flow and similar
filling heights, the location of the maximum streamwise velocity has been reported by Knight
& Sterling (2000),Yoon et al. (2012) and Ng et al. (2018) to be in the pipe centre at about
60 − 70% of the flow depth. Hence, the velocity-dip phenomenon known from rectangu-
lar cross-sections also occurs for semi filled pipe flow. The maximum streamwise velocity
umax/ub ranges from approximately 1.35 (Knight & Sterling, 2000) to 1.41 (Yoon et al., 2012;
Ng et al., 2018). On the one hand, there have been attempts to model the streamwise ve-
locity distribution over the cross-section. Clark & Kehler (2011) and Guo et al. (2015) each



1. Introduction 23

established a set of equations based on the log-law, which show a fairly good agreement with
their own measurements (high Reynolds number and rough walls). On the other hand, Yoon
et al. (2012) used their data to generate fitted velocity distributions based on the velocity
distribution functions of Chiu & Said (1995). From the fitted velocity distributions Yoon
et al. (2012) approximated the wall shear stress. The maximum wall shear stress has been
found in the centerline of the partially filled pipe, while the minimum wall shear stress has
been reported to occur in the mixed-corner. Maxima have been reported to reach about 1.9τ0

(Yoon et al., 2012), with τ0 being the globally averaged wall shear stress, or 1.1τ0 (Knight &
Sterling, 2000), who measured the wall shear stress directly with a Preston tube. Unfortu-
nately, the most recently published results by Ng et al. (2018) did not provide any near-wall
measurements due to a too coarse spatial resolution of their PIV. Instead Ng et al. (2018)
extended the former publications with an extensive investigation of different filling heights
for Reb ≈ 30000. Ng et al. (2018) and Clark & Kehler (2011) reported that the secondary
flow consist of two big counter-rotating vortices that cover the whole cross-section and are
symmetric to the channel mid plane. They did not report any inner secondary cell, which is
also reflected in the wall shear stress distributions mentioned above. Ng et al. (2018) further-
more investigated flow structures in instantaneous velocity fields and patterns of streamwise
velocity correlations in comparison to full pipe flow. Recently, they published further anal-
yses of their data focusing on high energy modes of the flow appearing in the mixed-corner
and on pseudo-instantaneous very large scale motions (VLSM) (Ng et al., 2021). In 2022,
not only the results of this thesis on semi filled pipe flow were published (Brosda & Manhart,
2022), but also the results of Liu et al. (2022) performing a LES for various filling ratios.
Besides an investigation of the TKE-budget, Liu et al. (2022) compare the VLSMs of the
flow with those of a full pipe flow. They report the absence of VLSMs for partially filled pipe
flow, which is attributed to the presence of secondary flow. Moreover, they state that the
missing VLSMs lead to a less developed near-wall turbulence.

1.5. Objectives and Structure

This study provides the first spatially and temporally highly resolved data set for partially
filled pipe flow generated by direct numerical simulations. The range of Reynolds numbers
covers marginal turbulent to moderate turbulent flows. The aim is to use the data set to
validate and complement the existing data on basic flow features by answering the following
questions:

• How does the friction factor change with Reynolds number and filling ratio?

• What is the distribution and statistics of the wall shear stress?

• What is the detailed mean secondary flow structure?

• Is there a corner vortex at the mixed-corner? Under which conditions will this vortex
be present and how do its extensions scale?

• How do Reynolds stresses interfere with the mean secondary flow?

• How does the primary and secondary flow and other flow quantities change with
Reynolds number?

• How does the filling ratio with its acute and obtuse mixed-corner affect the primary
and secondary flow and other flow quantities?
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With the knowledge of the basic flow quantities and a clear picture of the mean sec-
ondary flow different perspectives on the mechanism that generates and maintains sec-
ondary flow in partially filled pipe flow are investigated in order to answer the questions
below:

• How and where is the streamwise vorticity generated?

• How does the mean secondary flow obtain its kinetic energy?

• What is the size and structure of coherent structures and how do they correlate to the
mean secondary currents?

• Which structures are involved in the generation mechanism of mean secondary flow
and how do they interact?

The structure of the thesis is the following: in chapter 2, the numerical methods are presented
and validated for the present setup. The results of the thesis are separated, similarly to the
distinction of the questions above – first the basic flow quantities are described in chapter
3. Their dependencies on Reynolds number for semi filled pipe flow and different filling
ratios with a constant Reynolds number are investigated in chapter 3.2 and 3.3, respectively.
Chapter 4 contains the analysis of mean flow quantities (chapter 4.1) and coherent structures
(chapter 4.2). The results of the previous chapters are concluded in chapter 5, and with
an outlook into new approaches to tackle remaining and newly found questions the thesis
finishes.
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In the first part of this chapter, the tools to acquire the turbulent flow data are presented.
The computational fluid dynamics code used to conduct the simulations, and its applied
methods to solve the governing equations numerically are briefly introduced. As next step,
it is shown how the code was applied to the present flow case. Moreover, it is described
what kind of data was gathered throughout the simulations. A grid-study and a two-point
correlation are presented in section 2.2 to validate the applied methods for the setup of
the present flow case. In section 2.3, the Reynolds number for the flow case is defined and
discussed. The chapter finishes with the description of the setups for the different simulations
carried out for this thesis. Please note that the numerical method, validation and simulation
setup are also described in Brosda & Manhart (2022) for the case of a semi filled pipe
flow.

2.1. Numerical Method

As shown in Chapter 1, turbulent flows are governed by the Navier-Stokes equations (1.1a)
and (1.1b) which are numerically discretised in a flow simulation. Moreover, turbulent
flows consist of various – large and small – scales of motions and all of them have to be
addressed with a numerical simulation. A DNS resolves all the scales of motion. Hence,
DNS provides high accuracy without using any further model, but needs both high spatial
and temporal resolution in order to resolve even the smallest scales. Thus, DNS creates
large computational costs and needs to be employed carefully with regard to costs and
energy consumption.

The simulations were carried out on the SuperMUC at the Leibniz computing Centre ap-
plying the scientific in-house code MGLET (Manhart et al., 2001), which is under constant
development, see latest publication by Sakai et al. (2019). MGLET is using a finite-volume
method with a staggered, Cartesian grid (Harlow & Welch, 1965). Spatial approximation
is provided by a second order central difference scheme and time integration is applied by
an explicit third order low-storage Runge-Kutta scheme (Williamson, 1980). A conservative
second order Immersed Boundary method represents arbitrarily shaped geometry using a
ghost-cell method (Peller et al., 2006), (Peller, 2010). Please note in order to achieve a
conservative second order immersed boundary method, the momentum and mass balance
are treated differently. The velocity in the cells which are intersected by the boundary are
set as Dirichlet boundary condition. Therefore, MGLET applies a second order point-wise
interpolation for the advective and diffusive terms in the momentum balance (Peller et al.,
2006). The mass flux is interpolated by considering the open face areas and used as boundary
condition of the Poisson equation. Usually, the interpolated mass flux of a intersected pres-
sure cell is not divergence free, hence, a flux correction was introduced (Peller, 2010). This
procedure reduced the mass defect in selected cases by three orders of magnitude (Peller,

25
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2010). Thus, mass conservation is guaranteed cell-wise after the pressure correction cycle.
As MGLET employs a finite-volume method, no singularity appears at the mixed-corner,
where the free surface and the wall intersect. By applying a multi-grid hierarchy the grid can
be refined locally by zonally embedded grids, see Manhart (2004). This enables a simulation
with flexible grid refinement along the wall and in the mixed-corner. The code has been
used for a large variety of different flow cases: e.g. Manhart (1998), Breuer et al. (2009),
Schanderl & Manhart (2018), Strandenes et al. (2019).

The flow domain is a partially filled pipe with radius R, length L and flow depth H, see figure
2.1. Simulations for three different filling ratios were conducted: H/R = 0.5, H/R = 1.0
and H/R = 1.5. The flow is driven by a constant body force g1 in streamwise direction,
which can also be seen as gravity force or pressure gradient. The constant body force
sets the friction velocity uτ =

√
τw/ρ a priori via the integral force balance τw = ρg1RH .

The volume force g1 can also be interpreted as a gravity force or as a pressure gradient.
Periodic boundary conditions are applied in streamwise direction to model an infinitely long
pipe, which enables to develop a statistically steady and fully-developed turbulent flow in
a fairly small domain. The wall of the pipe is at rest and modeled by a no-slip boundary
condition, i.e. u|wall = 0. At the free surface, there is a slip boundary condition with zero
free surface parallel shear stresses, zero free surface normal velocity and no deformation,
i.e. no surface waves are modeled. Hence, the Froude number is approximately zero. This
limitation is accepted, because on the one hand this study does not aim to document any
Froude number dependencies. On the other hand, almost all simulations documented in the
literature review (cf. section 1.2 and 1.3) were also employing a rigid slip condition as free
surface, thus, comparisons to the existing simulations are possible. Furthermore, Lee et al.
(2012) simulated an open-duct with moving free surface for three different Froude numbers
(Fr = 0.2, 0.5, 0.8). The basic flow pattern with an inner and an outer secondary vortex was
observed for all Froude numbers and strong differences between the different Froude number
simulations were reported for the turbulence statistics and the free surface deformations.
However, for Fr = 0.2 only small deviations were found compared to a rigid slip condition
at the water surface. From experimental studies of a wide open-duct flow, Kumar et al.
(1998) concluded that a rigid plane with a slip condition is suitable to represent flows with
Froude numbers smaller than 0.5. Certainly, the present study cannot be compared to high
Froude number flows, but for similar flows with low Froude numbers a good agreement is
expected.

Pipe flow simulations are often conducted using a grid with cylindrical coordinates. However,
grids with cylindrical coordinates would have cut cells at the free surface for any filling than
semi and full pipe flow. In addition, grid cells in the centre of the pipe might become very
thin, which might cause problems during the simulations. Hence, for the sake of simplicity
and efficiency of the flow solver, a Cartesian grid is applied, see figure 2.2 for semi filled
pipe flow of Reτ = 460. The additional cells outside of the pipe’s boundary, which have to
be included for the Cartesian grid, can be tolerated, because of the efficiency of the flow
solver. For all simulations one grid was applied over the whole cross-section with an equal
grid cell size in x2- and x3-direction and elongated in streamwise direction (red grid). This
is further specified in a following section of this chapter where the simulation parameters are
described for all different simulations. For semi filled pipe flow up to Reτ = 230 and for the
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Figure 2.1: Flow domain

Figure 2.2: Grid configuration for semi filled pipe flow of
Reτ = 460, base grid (red) and local grid re-
finement (blue)

simulation with a filling ratio of 75% and Reτ = 180, only one grid level was used. With
increasing Reynolds numbers, a finer resolution is required especially where velocity gradients
are large. In order to save computational costs, a second grid-level is added improving the
grid resolution by a factor of two only in the vicinity of the wall, where large velocity
gradients predominantly appear. The area of each mixed-corner is also refined for larger
Reynolds numbers, because the flow physics in this area are of special interest for this thesis.
This was done for the semi filled pipe flow at Reτ = 460 and for the case of 25% filling ratio
at Reτ = 180. Please note that for the post-processing only the results of the base grid
were used. To obtain a fully-developed turbulent flow, the following procedure by Jiménez
& Moin (1991) is applied: a constant flow velocity, a high Reynolds number and a random
disturbance are set as initial conditions; once a turbulent boundary layer started to form
at the wall, and its turbulence spread over the entire cross-section, the Reynolds number
was decreased in steps by adjusting the viscosity of the fluid until the intended conditions
of the simulation are reached. After the flow reached a steady state, the flow statistics (e.g.
averaged and instantaneous flow fields) were recorded.

2.2. Validation

The numerical flow configuration of the present flow case has not been examined yet, so it is
important to validate the simulation setup. This is first of all done by a grid study, checking
whether the simulations converge with respect to the grid resolution. In a second step the
Cartesian grid configuration is validated by simulating a full pipe flow and comparing the
results to validated data from literature, generated by a different numerical method. Whether
the length of the domain is long enough is confirmed by means of two-point correlations.
Moreover, many previous studies are mentioned in section 1.3 and 1.4, with the most relevant
studies Liu et al. (2022); Ng et al. (2018); Clark & Kehler (2011); Yoon et al. (2012) and
Sakai (2016), which serve as comparison and reference to the present results, if possible.
Finally, as mentioned in section 2.1, the applied numerical methods, boundary and initial
conditions were already used in different setups and validated in that respect, which gives
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Figure 2.3: Grid-study of wall shear stress τw/τ0 for Reτ = 180 for semi filled and full pipe flow.
Grid-size equal to ∆x+

2 = ∆x+
3 = 3.2, 1.6, 1.2, 1.0 and 0.8 wall units for semi filled and

0.8 wall units for full pipe flow.

confidence for the present simulations.

At first, a grid-study for semi filled pipe flow is presented. It is based on the wall shear
stress, which is a highly sensitive parameter for the grid resolution. The Reynolds number
was kept constant at Reτ = 180. A single-grid configuration with constant grid spacings
at ∆x+

2 = ∆x+
3 = 3.2, 1.6, 1.2, 1.0 and 0.8 was used. Note that the streamwise spacing was

set to ∆x+
1 = 6 ∆x+

2 . Figure 2.3 shows the converging behaviour of the mean wall shear
stress. Please note that the wall shear stress is normalised by the average wall shear stress
τ0, obtained from the global force balance. Additionally, the wall shear stress along one
half of a full pipe simulation is included from the finest resolution (∆x+

2 = ∆x+
3 = 0.8 and

∆x+
1 = 6 ∆x+

2 ). The wall shear stress was obtained a posteriori, i.e. τw is not directly
obtained from the simulation, but was computed using the velocity gradients at a wall
distance of ∆r+ = 2 in radial, wall normal direction. Therefore, the mean velocities in
Cartesian coordinates were interpolated to Polar coordinates. It can be seen for the coarser
simulations that there are larger deviations of the maxima in the mixed-corner and the
minima at approximately ±3/8π. For the coarsest resolution strong wiggles can be noticed,
which is somewhat expected, because the grid resolution is coarser than the distance between
the interpolation point of the velocity gradient and the wall. In general, the finer resolutions
∆x+

2 = ∆x+
3 ≤ 1.2 agree very well, only small bumps in the centre are visible, which

disappear for the finest resolution. The wall shear stress distribution of the finest grid is
very smooth over the whole wetted perimeter. The remaining variations in the centre part
also occur for the wall shear stress in the full pipe flow at the same grid resolution. The
maximum deviation of the wall shear stress of the full pipe flow is less than 1% of the ideal
value. Hence, the full pipe flow simulation shows a high azimuthal homogeneity of the wall
shear stress.

In order to validate the Immersed Boundary Method (IBM) and the Cartesian Grid con-
figuration, a full pipe flow was computed at three different grids, ∆x+

2 = ∆x+
3 = 3.2, 1.6

and 0.8 for Reτ = 180. These simulations are compared to a DNS of full pipe flow with
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body-fitted grids by El Khoury et al. (2013). Looking at the (IBM) in detail, the actual wall
distance of the centres of the first momentum cells near the wall are randomly distributed.
Converting the Cartesian gridspacing of ∆x+

i = 0.8 at Reτ = 180 into Polar coordinates,
it turns out that the mean wall distance of the momentum cell centres is ∆r+ = 0.7871
with a root mean square (rms) of ∆r+

rms = 0.8135. This spatial variability in the cell cen-
tre position produces numerical errors, which are represented in the variations of the wall
shear stress distribution. The grid-study of the full pipe flow mostly shows the influence
of the boundary condition on the homogeneity of the computed wall shear stress and its
azimuthal symmetry. For completeness of the description of the implemented IBM, please
note that only fluid cells, which are not intersected by the wall, receive the driving body
force. This reduces the global volume force that acts on the fluid, because it is not applied
on the complete round pipe but on a smaller volume. The differences in the volume are 0.5%
at ∆x+

i = 0.8, 1.4% at ∆x+
i = 1.6 and 2.6% at ∆x+

i = 3.2. The differences are small for
the finest resolution, but the Reynolds numbers Reτ given in table 2.2 (see section 2.4) are
actually by about 0.4% smaller than given. For the flow case of a predicted friction Reynolds
number of Reτ = 180 this means, that the predicted value is actually Reτ ≈ 179.3. More-
over, from the results of the simulation it is possible to obtain a friction Reynolds number a
posteriori, which is equal to 181.3. However, the differences between the predicted and the
obtained friction Reynolds number are small. Thus, in the following it will be related to the
friction Reynolds number based on the idealized prediction, hence, in the present example
Reτ = 180.

In addition to the grid-convergence study, figure 2.4 (left) shows a comparison between
the streamwise velocity averaged in both time and space (azimuthal direction) of the full
pipe flow simulation and data from El Khoury et al. (2013). This is done to further assess
the possible drawbacks of a Cartesian grid compared to a body-fitted grid. The averaged
streamwise velocity profile (left figure) converges in the viscous layer towards the law of the
wall, but it only shows satisfying agreement for the finest grid of 0.8 wall units. While the
velocity of the coarse grid is slightly lower in the centre than the one of El Khoury et al.
(2013), the finer grid velocity converges at a somewhat higher magnitude already at the
medium grid with 1.6 wall units. Between the finest and second finest grid uτ/ub differs by
0.6% and compared to El Khoury et al. (2013) a slightly larger difference of 1.1% can be
reported.

In figure 2.4 (right) the convergence behaviour of the rms of the velocity fluctuations in
full pipe flow are shown and compared to the profiles of El Khoury et al. (2013). The
finest grid matches the reference very well for all components. While for u+

1,rms and u+
θ,rms

the finest resolution is needed, u+
r,rms seems to be converged already in the coarsest simula-

tion. Please note that there is no distortion of the Reynolds stresses visible near the wall.
Thus, it is concluded, that the IBM is able to represent the pipe’s wall at the chosen grid
resolution.

Overall, the convergence study indicates that the grid resolution of ∆x+
2 = ∆x+

3 = 0.8 and
∆x+

1 = 6∆x+
2 is sufficiently fine. Note that at the two highest Reynolds numbers, a grid cell

aspect ratio of ∆x1/∆x2 = 4 was used.

A second important aspect is that the length of the domain with its periodic boundary con-
dition in streamwise direction should be long enough in order to avoid unphysical constraints
on the largest flow structures. The pipe length is approximately 8πH for Reτ = 180. A
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Figure 2.4: Azimuthally averaged streamwise velocity u1/uτ in wall-normal direction xn for full pipe
flow of Reτ = 180 for different grid resolutions (left). Red represents ∆x+

2 = ∆x+
3 = 0.8,

blue corresponds to 1.6 and green to 3.2. For comparison, data from El Khoury et al.
(2013) is included as grey circles and the black line shows the linear law of wall u+

1 = x+
r .

The boxes include details of the near-wall and centre region. Rms of velocity fluctuations
u+

1,rms (+) , u+
r,rms (◦) and u+

θ,rms (×) in inner units for the full pipe flow simulation of
Reτ = 180 averaged in azimuthal direction (right). Lines correspond to the present
simulation and every fifth data point of El Khoury et al. (2013) is included as circles
for comparison.

standard two-point correlation (Sillero et al., 2014)

κij(x− x′) =
ui(x, t)uj(x′, t)

σ(ui(x, t))σ(uj(x′, t))
, (2.1)

is applied for all three velocity components to assess the streamwise correlation for points
across the whole cross-section. The slowest decay of the correlation κij appears in the mixed-
corner (x2/R = −0.97,x3/R = 0.97), see figure 2.5 (left), where half of the domain length is
shown. The correlation for the streamwise velocity κ11 needs the longest distance of about
a quarter of the pipe length to sufficiently decay. Note that for Reτ < 140 the pipe length
was enlarged to ≈ 12πH in order to satisfy the criteria of decaying two-point correlations
(see figure 2.5 (right)).

From the streamwise two-point correlation an integral length scale L11 can be computed for
each point of the cross-section:

L11 =

∫ L/2

0

κ11(x1 − x′1) d(x1 − x′1). (2.2)

The distribution of L11 over the cross-section is shown in figure 2.6. High values of L11

can be found along the wall and especially in the mixed-corner. Hence, the decay of the
two-point correlations is much faster in most of the cross-section than in the mixed-corner,
which was shown in figure 2.5. The investigations of the two-point correlation were done for
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Figure 2.5: Streamwise-temporal 2-point correlation κij for all three velocity components in the
mixed-corner at position x2 = −0.97, x3 = 0.97 for 50% filling ratio and Reτ = 180
(left) and Reτ = 115 (right). Black solid line represents κ11, red dashed line κ22 and
blue dotted line κ33.

all simulations.

In the framework of very-large-scale motions in open-channel flows even longer domains
might be required as Zampiron et al. (2020) observed very-large-scale motions of lengths
up to 25 flow depths. Such structures could not be represented in the present simulation
setup. However, Feldmann et al. (2018) reported that 14 radii are sufficiently long to obtain
converged second-order statistics in a full pipe flow and Ng et al. (2021) reported a maximal
length of structures of approximately 11R in partially filled pipe flow, which is the same
flow case as this thesis deals with. In addition, Liu et al. (2022) report an absence of
VLSMs for a LES with similar Reynolds numbers as Ng et al. (2021). The flow domain
in this study is more than twice as large as structures reported by Ng et al. (2021), which
had Reynolds numbers twice as large than the maximum Reynolds number of this study.
Moreover, it is also longer than what has been used in other recent, comparable numerical
studies, e.g. (Pirozzoli et al., 2018). Another aspect is that the phenomenon of secondary
flow is well developed and occurs in a similar manner as in other literature, see section 3.2.
Last point to mention is, that very-large-scale motions are usually considered in the context
of large Reynolds number (Monty et al. (2009), Reτ = 3000), whereas this study deals with
comparably small Reynolds numbers with a maximum of Reτ = 460. However, for channel
flow the influence of very-large-scale motions starts to be recognisable in the energy spectrum
from Reτ = 550 on (del Álamo & Jiménez, 2003).

Based on the aforementioned, it is assumed, that the simulation domain is sufficiently long
and the grid resolution is fine enough to study the phenomenon of secondary flow in partially
filled pipe flow.



32 2.3. Definition of Reynolds Number

Figure 2.6: Integral length scale L11 of the streamwise-temporal 2-point correlation κ11 over the
cross-section for Reτ = 180 and 50% FR.

2.3. Definition of Reynolds Number

The definition of the Reynolds number Re is important to be able to compare the simulations
between each other and to literature. So far partially filled pipe flows were only studied by
experiments. For comparison to numerical simulations one can only refer to full pipe flow and
open-channel flows with various aspect ratios. On the one hand the experimental community
commonly uses a bulk Reynolds number Reb = ubDH

ν
, with ub being the bulk velocity, DH

being the hydraulic diameter DH = 4 ·RH and ν the kinematic viscosity. On the other hand
the numerical community is used to work with the friction Reynolds number Reτ = uτ `

ν
,

with uτ being the friction velocity and ` = δ being the boundary layer thickness. For full
pipe flows, ` is considered to be the pipe radius R and for open-channel flows to be the water
height H.

Using Reb as reference Reynolds number would be intuitive, but as ub is a result of the
simulation, Reb can only be roughly estimated a priori. On the other hand, for a steady
flow, the wall shear stress is in balance with the driving body force, see the integral force
balance τw = ρg1RH , thus, the friction velocity uτ and therefore also Reτ can be calculated
a priori. Hence, Reτ is used as reference Reynolds number and Reb is calculated a posteriori
to be able to compare to experiments.

If the friction Reynolds number for a partially filled pipe flow was defined the same way
as for full pipe flows, with ` = R, one viscous length scale δν/R would be constant across
all filling rates, leading to the same length of the viscous layer for all filling rates. Hence,
there would be a smaller number of wall units per flow depth for low filling ratios compared
to high filling ratios. In contrast, if ` = H is set the same number of wall units per flow
depth occur for the different filling ratios, but δν/R gets larger with increasing filling ratio.
Compare table 2.1, which shows δν normalised by the radius R for the three different fillings
for Reτ = 180. Another possibility is to set ` = 2RH resulting in a δν/R that is the same as
in the semi filled pipe case where ` = R and reflecting the global geometry settings for other
filling ratios. In the first three approaches the viscosity was adjusted to equal the assumed
Reynolds number, as ` and uτ are set by definition. The last considered approach is to keep
the viscosity constant for each Reynolds number for all filling ratios. The constant viscosity
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is set according to the viscosity of the semi filled case, where ` = R (e.g. for Reτ = 180
ν is kept constant at 0.0556/(Ruτ )). ` can then be calculated by ` = Reτν

uτ
. This leads

to a decreasing ` for an increasing flow depth, which is counter-intuitive, see table 2.1. In
contrast, for the cases ` = H and ` = 2RH the resulting wall unit lengths are increasing as
the filling rate increases.

Filling ratio H/(2R) ` = R ` = H ` = 2RH ` = Reτν
uτ

25 % 0.005556 0.002778 0.003258 0.007254
50 % 0.005556 0.005556 0.005556 0.005556
75 % 0.005556 0.008333 0.006704 0.005057

Table 2.1: Wall unit length δν/R for different definitions of `; Reτ = 180

The aspects that are expected to be strongly responsible for the secondary flow pattern are
the geometry and the mixed-corner vortex, which scales with wall units (Sakai, 2016). Hence,
` = 2RH , including both aspects, is used as length scale for the reference Reynolds number
Reτ = uτ2RH

ν
. The bulk Reynolds number Reb = ubDH

ν
, with DH = 4RH , can be used to

conveniently compare to most experimental publications.

2.4. Simulation Setup

For this study various different flow set-ups were simulated. Within the first simulation
series the Reynolds dependency was studied for a semi filled pipe flow. For the second
simulation series the friction Reynolds number was kept constant at 180 and the filling ratio
was varied from H/(2R) = 25% over 50% to 75%. In the upper part of table 2.2, the
different simulations and the corresponding parameters for the semi filled pipe are listed.
The main parameter is the friction Reynolds number Reτ = uτ2RH

ν
. It ranges from 115,

which is just maintaining turbulence, to 460, a moderately turbulent flow. Accordingly, a
bulk Reynolds number Reb = ubDH/ν can be calculated. Please note that for the semi
filled cases Reb is based on the pipe diameter, because DH = 2R, being in line to the full
pipe flow definition and is equal to a Reynolds number based on the hydraulic diameter DH

as used by e.g. Ng et al. (2018). As mentioned in section 2.1 and 2.3, Reτ was fixed for
each simulation run a priori and Reb was resulting from the simulation. The lower part of
table 2.2 contains the simulations with different filling heights and constant friction Reynolds
number. For the different filling ratios the simulations were set up such that Reτ = 180.
The bulk Reynolds number is, as mentioned above, a result from the simulations and it can
be seen that the resulting Reb’s for different filling ratios and constant Reτ only have small
deviations.

The following data was gathered: Instantaneous three-dimensional flow fields were captured
each time after the bulk flow had passed the pipe once. Instantaneous values of all three
velocity components and of the pressure were gathered at 38000 single points at 200 cross-
sections that were equally distributed along the length of the pipe. At the individual cross-
sections, the points were spread in a Cartesian equidistant manner. The data was collected
every ten viscous time units. To be able to investigate the wall shear stress, further single
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H/(2R) Reτ Reb L/R Ntotal × 106 ∆x+
1 ∆x+

2 = ∆x+
3 ∆tb ∆t+

0.5 115 3239 38.46 48 4.38 0.73 11489 93058
0.5 120 3363 38.46 48 4.56 0.76 9053 76898
0.5 140 3875 25.91 43 4.74 0.79 11486 115395
0.5 180 5198 25.54 90 4.74 0.79 5068 62849
0.5 230 6874 25.36 242 3.32 0.83 5511 84424
0.5 460 15452 25.36 749 3.32 - 6.64 0.83 - 1.66 4958 135489
0.25 180 5332 14.85 118 3.2 - 6.4 0.80 - 1.6 5048 52296
0.75 180 5318 30.53 102 3.16 0.79 6058 91790

Table 2.2: Simulation parameters for turbulent partially filled pipe flow. H/(2R) filling ratio. Reτ =
uτ 2RH/ν, Reb = ubDH/ν friction and bulk Reynolds number. Total number of grid
points Ntotal. ∆x+

i grid spacing in wall units (close to wall - bulk region). ∆tb = ∆tub/R,
∆t+ = ∆tu2

τ/ν averaging time for statistics in bulk time units and viscous time units.

points were placed two wall units above the wall in wall normal direction. Along the wetted
perimeter, 2.5 wall units were between the single points and in streamwise direction the
points had a distance of 1/10 of the pipe length. The instantaneous data at these points
was also gathered at an interval of ten viscous time units. For various flow parameters, like
velocity and its statistical moments or spatial gradients of the fluctuating velocity, ensemble-
averaged values were gathered with respect to time, see equation (1.7). Similar to Sakai
(2016), ensemble-averaged quantities were accumulated approximately every single viscous
time unit for over at least 4950ub/R bulk time units to ensure a sufficient number of samples.
During the post-processing, the samples were further averaged over the domain length and
advantage was taken of the half plane symmetry of the flow by mirroring the averaged
values.



3. Basic Flow Description for Partially Filled
Pipe Flows

In this first chapter of results, the flow in partially filled pipes is examined applying basic sta-
tistical concepts, hence, the main flow parameters are presented.

The flow will be explored over two main parameters. First, the Reynolds number, i.e. the
degree of turbulence, is adjusted from marginally turbulent to moderately turbulent flow.
Second, for a fully-turbulent state different filling ratios are analysed. For both varying
parameters following the main flow quantities are investigated: the mean streamwise velocity,
the secondary flow, the wall shear stress and the turbulence intensities. With the help of
the various analysis the following questions are addressed.

• How does the friction factor change with Reynolds number and filling ratio?

• What is the distribution and statistics of the wall shear stress?

• What is the detailed mean secondary flow structure?

• Is there a corner vortex at the mixed-corner? Under which conditions, will this vortex
be present and how do its extensions scale?

• How do Reynolds stresses interfere with the mean secondary flow?

• How does the primary and secondary flow and other flow quantities change with
Reynolds number?

• How does the filling ratio with its acute and obtuse mixed-corner affect the primary
and secondary flow and other flow quantities?

Moreover, for the case of semi filled pipe flow, the minimum turbulent Reynolds number and
the minimal domain length are reported.

In this chapter 3, there are already first comments on the generating and maintaining pro-
cesses of secondary flows. However, in the following chapter 4, a detailed analysis on the
generation mechanism of secondary currents is examined based on the main flow parameters
of this chapter.

Please note that the section 3.1 (Friction Factor λ) for the case of semi filled pipe flow and the
section 3.2 (Reynolds Dependency for Semi Filled Pipe Flow) are mostly already published in
Brosda & Manhart (2022). If additional results, that were not part of the publication, are pre-
sented, it will be emphasized in the beginning of the paragraphs.

35
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3.1. Friction Factor

Please note that the results for the 25% and 75% filled case are first published in this
thesis.

The friction factor is an important parameter for engineering problems. In order to estimate
the friction losses within a pipe system, one needs to know λ for the different parts of the flow
system. Moreover, the role of friction can be compared for different geometries, roughness
and Reynolds numbers via the dimensionless friction factor λ.

For turbulent flows in pipes and open-channels, a relation between wall shear stress τw and
the friction factor λ is defined as follows, e.g. (Oertel, 2012):

τw = λ ·
ρu2

b

8
(3.1)

As τw and ub are results from the simulations λ can be calculated. Equation (3.1) can
be further transformed to λ = (8g1RH) /u2

b , with g1 being the constant volume force. In
addition, one can define the friction coefficient as Cf = λ/4 Pope (2000). In 1932, Prandtl
has defined an empirical function (eq. (3.2)) between the Reynolds number Reb and the
friction factor λ for a turbulent flow in fully filled smooth pipes with Reb < 106 (Oertel,
2012). Please note, equation (3.2) can be extended to hydraulically rough flows, see eq.
1.19. The wall of the pipe of the present simulations is smooth as well, thus, a comparison
to smooth, full pipe flow should give reasonable results.

1√
λ

= 2 · log10(
√
λReb)− 0.8 (3.2)

In figure 3.1 (left), the relation between Reb and λ is shown for laminar and turbulent flows
in semi filled pipes like in the Moody-diagram. The red pluses represent semi filled pipe flows
of the present study which are compared to measurements for semi filled pipe flow by Ng
et al. (2018) (×) and Yoon et al. (2012) (�) and a LES of Liu et al. (2022) (+). In addition,
data of full pipe flows are included: present simulation (◦), measurements from Schlichting
& Gersten (2017) (◦) and Ng et al. (2018) (◦). The relation between Reb and λ for full pipe
flows follows the black line, i.e. the Prandtl-equation (3.2).

While the measurements of Ng et al. (2018) and Yoon et al. (2012) suggest a large increase of
the friction factor in semi filled pipe flow compared to full pipe flow, the present simulations
show a good agreement with the full pipe flow. The LES of Liu et al. (2022) lies slightly un-
derneath the Prandtl’s relation for hydraulically smooth pipe flows. One has to bear in mind
that both measurements are affected with large uncertainties. Yoon et al. (2012) performed
stereoscopic PIV from which they were not able to compute the wall gradient directly. Thus,
they estimated the wall shear stress on the basis of a fitted streamwise velocity, based on
the method proposed by Chiu & Said (1995). Unfortunately, it is unclear, how accurate
this procedure is. Ng et al. (2018) obtained the friction factors from a global force balance
for which they measured the slope of the water surface. They rate this indirect method
as associated with ”relatively large uncertainty”. Ng et al. (2018) also plotted the relation
with an equivalent length scale, taking the flow cross-section into account, which made their
results match the full-pipe flow distribution better. However, based on the validation and
grid study presented in section 2.2, it seems that the large increase of the friction factor as
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Figure 3.1: Bulk Reynolds dependency of friction factor λ (left). Friction Reynolds number Reτ over
bulk Reynolds number Reb (right). + indicate present semi filled pipe flow simulations.
◦ represent present full-pipe flow simulation. × and ◦ represent present 25% and 75%
filled pipe flow, respectively. Grey ◦ are measurements for full pipe flow extracted from
textbook of Schlichting & Gersten (2017). × show data for 52% filled pipe by Ng et al.
(2018), ◦ show data for full-pipe by Ng et al. (2018), and � represents a measurement
by Yoon et al. (2012). In magenta the results of the LES of Liu et al. (2022) is included:
×, + and ◦ represent 25%, 52% and 75% filling ratio, respectively. Solid line follows
equation (3.2) and dashed line follows λ = 64/Reb. � show Sakai (2016)’s data for
rectangular open-channel flow.

inferred from the two experiments is unrealistic.

In addition to the data of semi filled and full pipe flow, the data for the quarter filled ×
and three-quarter filled ◦ flow cases of the present study are also included in figure 3.1
(left), as well as the data from the LES of Liu et al. (2022) for higher Reynolds numbers
(H/(2R) = 0.25 : × and H/(2R) = 0.75 : ◦). In general, it seems like they also agree
with Prandtl’s friction law for smooth pipes. The non-semi fillings of the present study have
slightly smaller friction factors, deviating 5− 7% from the semi filled flow case. In contrast,
Ng et al. (2018) reported higher global values for λ and a correlation to the filling height.
The higher the flow depth the higher the friction factor, deviating about 14% for smaller
fillings and up to 50% for greater fillings. Please note in order to further validate the post-
processing for the friction factor, three laminar simulations were simulated additionally.
These low Reynolds number cases match the laminar relation for a fully filled pipe flow
λ = 64/Reb (dashed line). This is expected and consistent to the analytical solution of a
fully symmetric flow.

Figure 3.1 (right) shows the ratio between Reτ and Reb. Red pluses show the results of
the present semi filled pipe flow and as black squares data of Sakai (2016) for an open-duct
flow with an aspect ratio of W/H = 2 is included. The two data sets agree very well for all
Reynolds numbers. By combining Prandtl’s friction law for smooth pipes (eq. (3.2)) with
the relation between τw and λ (eq. (3.2)), the definition of the friction velocity (eq. (1.15))
and the definitions of Reτ and Reb, a relation between Reτ and Reb can be deduced for
smooth full pipe flow (black solid line). Both data sets follow the black solid line, hence, the
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friction factors of the two different geometries do hardly differ from full pipe flow. Moreover,
this comparison gives further confidence that the friction factor is not underestimated by the
present simulations. Please note to be able to compare the two different flow cross-sections,
the Reynolds numbers of the rectangular cross-section were calculated by using an equivalent
length scale Heq as characteristic length scale. By assuming an equally large cross-sectional
area for both geometries Heq has been defined as Heq = H 2√

π
, with H being the flow depth

(Sakai, 2016).
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3.2. Reynolds Dependency for Semi Filled Pipe
Flow

Please note that most of the results have been published in Brosda & Manhart (2022),
otherwise it is emphasized in the beginning of the paragraph.

3.2.1. Mean Flow

Mean Streamwise Velocity and Velocity-Dip Phenomenon

Although the rotational symmetry of the pipe is broken, radial profiles in laminar flow
are invariant with respect to rotations about the pipe axis. This does not hold true for
turbulent flows. In figure 3.2, the normalised mean streamwise velocity is shown for Reτ =
115, 140, 180 and 460. The distribution of the mean streamwise velocity is Reynolds number
dependent. For Reτ ≥ 140, the so-called velocity-dip phenomenon can be observed, i.e. the
maximum velocity – indicated by a plus in the plots – is not at the free surface, but below
on the vertical symmetry line. The distance of the velocity maximum from the free surface
increases within this Reynolds number range, which is further investigated below. These
velocity distributions differ significantly from rotational symmetry. The general picture is in
accordance with findings from higher Reynolds numbers in partially filled pipe flows (Knight
& Sterling, 2000; Clark & Kehler, 2011; Yoon et al., 2012; Ng et al., 2018) and rectangular
open-duct flow (Tominaga et al., 1989; Joung & Choi, 2009; Sakai, 2016). For the very low
yet fully turbulent Reynolds number Reτ = 115 the velocity distribution is much closer to
full pipe flow and no velocity-dip phenomenon can be detected. The same behaviour was
observed by Sakai (2016) for a turbulent rectangular open-duct flow at marginal Reynolds
numbers.

The distance of the maximum mean streamwise velocity from the free surface is shown in
figure 3.3 in inner units. For comparison, the data of a rectangular open-duct flow are shown
(Sakai, 2016), taking the difference in cross-sectional area into account via the equivalent
length scale Heq as introduced in section 3.1. For the very low Reynolds numbers, there is a
slight difference, which can be explained by the different geometry and the vortex pattern,
but for higher Reynolds numbers both cases match well. The distance in outer units can be
compared to several other measurements of semi filled pipe flows (Knight & Sterling, 2000;
Clark & Kehler, 2011; Yoon et al., 2012; Ng et al., 2018) at higher Reynolds numbers, see
figure 3.4. The experiment of Yoon et al. (2012), which is in the same Reynolds number range
as the present simulation, deviates with more than 20% from the data of this study. Maybe
their inflow length of 25DH is too short to have fully-developed secondary flow structures.
Note that on the one hand Demuren & Rodi (1984) reported a fully developed secondary
flow in a rectangular channel not before 70DH from the inlet. On the other hand, the high
Reynolds number cases would approximately follow the trend of the current data. Taking
all data into account, after a strong increase for small Reynolds numbers, the distance from
the velocity maximum to the free surface ∆z/R seems to settle for larger Reynolds numbers
between 0.3 and 0.4.

The magnitude of the normalised maximum mean streamwise velocity decreases with Reynolds
number when normalised by ub, see figure 3.5. This means that the momentum is more evenly
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Figure 3.2: Mean streamwise velocity u/ub of Reτ = 115, 140 (left column) and 180, 460 (right
column, top to bottom). + indicates the position of the velocity maximum. Please
note, that the distributions were symmetrized using the half-plane symmetry.

distributed with higher Reynolds number, hence, the velocity distribution is more balanced
and its peak, the maximum velocity, is less distinct. The data for umax/ub reported in the
literature do not show a distinct trend. While the maximum velocity measured by Ng et al.
(2018) agrees with this study, the older measurements by Yoon et al. (2012),Clark & Kehler
(2011) and Knight & Sterling (2000) largely deviate.

The velocity-dip phenomenon can also be seen in figure 3.6 (left), which shows the mean
velocity profiles in the symmetry plane in inner units. Please note that for this plot, the
local wall shear stress was used, obtained by the velocity gradient at the wall, see section
3.2.2 figure 3.13. Near the wall, all profiles collapse to the linear law of the wall. For
Reτ ≤ 140, the profiles do not develop a logarithmic layer, whereas for Reτ = 180 and 230
a logarithmic layer can be observed, which reaches up to the velocity-dip but the slopes are
decreasing with increasing Reynolds number. Overall, the Reynolds numbers seem to be too
low to describe a clear logarithmic behaviour, like known from higher Reynolds number pipe
flows (El Khoury et al., 2013). However, the standard log-law u+ = 0.41−1ln(x+

3 ) + 5.2 is
approached for Reτ = 460. At this Reynolds number, a pronounced wake region develops
beneath the velocity maximum. With increasing Reynolds number, the wake region becomes
more distinct, which appears also in experiments and simulations of full pipe flow (Zagarola
& Smits (1997) and El Khoury et al. (2013)), but has not been reported in experiments of
semi filled pipe flow so far (Ng et al., 2018).

The results of the following small paragraph have not been included in Brosda & Manhart
(2022) and are first published in this thesis. In figure 3.6 (right) the distribution of the mean
streamwise velocity is shown at approximately 8 wall units below and parallel to the free
surface. All the velocities of the different Reynolds numbers follow the linear relation until
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Figure 3.3: Distance ∆z/R from the
free surface to the maximum
mean streamwise velocity of
Reτ = 115, 120, 140, 180, 230, 460
(+). � represent data for rectan-
gular open-duct flow from Sakai
(2016).

Figure 3.4: Distance ∆z/R from the free
surface to the maximum mean
streamwise velocity of Reb =
3274, 3414, 3924, 5254, 6935, 15630
(+). � represent data for rectan-
gular open-duct flow from Sakai
(2016). Including data from experi-
ments: � (Yoon et al., 2012), × (Ng
et al., 2018), ∗ (Clark & Kehler,
2011) and � (Knight & Sterling,
2000).

Figure 3.5: Maximum mean streamwise velocity umax/ub of Reb =
3274, 3414, 3924, 5254, 6935, 15630. Including experimental data: � (Yoon et al.,
2012), × (Ng et al., 2018), ∗ (Clark & Kehler, 2011) and � (Knight & Sterling, 2000).
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approximately x+
2 = 11, from where they start separating. Velocities of Reτ ≤ 140 further

increase before aligning with the logarithmic layer until the vertical bisector of the pipe. For
larger Reynolds numbers the distribution is more complex. After 11 wall units, the increase
of velocity becomes less strong and the velocities stay smaller until the centre is reached.
For Reτ = 460, the velocity almost stagnates in the buffer layer and from approximately
x+

2 = 70 on the velocity increases slightly stronger again.

Figure 3.6: Mean streamwise velocity distribution u/uτ,local from the wall to the pipe centre at the
vertical symmetry line (left) and from the wall to the pipe centre horizontally along the
free surface ≈ 8 wall units below (right) of Reτ = 115, 120, 140, 180, 230, 460.

In outer units, the distribution of the mean streamwise velocity shows that the velocity
gradient gets steeper close to the wall as Reynolds number increases (fig. 3.7, left). For
low Reynolds numbers, u/ub increases monotonically and reaches higher magnitudes. At
high Reynolds numbers, the velocity distribution is more complex. They have a less steep
gradient from a wall distance of x3/R = 0.1 on and the velocity-dip phenomenon in the
bulk region. The velocity profiles show a similar distribution as the experimental results
of Ng et al. (2018) and Yoon et al. (2012). The latter, however, does not indicate an as
pronounced velocity-dip phenomenon as the results of this study and the velocities are much
higher when normalised by ub. The velocity magnitude of the experiment by Ng et al.
(2018) fits quite well to the present data and they also found a gradient close to zero when
approaching the free surface. For the data of Yoon et al. (2012) this feature appears less
clear. If choosing the maximum streamwise velocity umax as normalisation (fig. 3.7 (right),
not yet published in Brosda & Manhart (2022)), the different distributions lie on top of
each other in the bulk region. Moreover, this normalisation shows more clearly that the
velocity-dip phenomena is more distinct for the large Reynolds number simulations of this
study than for the experiments. The deviations in the vicinity of the wall are similar for
both normalisations.
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Figure 3.7: Mean streamwise velocity distribution u/ub (left) and u/umax (right) from the wall
to the pipe centre at the vertical symmetry line of different Reb (right). Including
experimental data: � (Yoon et al., 2012), × (Ng et al., 2018).

Mean Secondary Flow

The mean secondary flow is formed by the in-plane velocity components u2 and u3. The
geometry and the position of the vortical structures generated by the secondary flow are
described especially with respect to the Reynolds number dependence, and compared with
known flow patterns from literature.

In order to visualize the streamlines of the mean secondary flow the stream function is
evaluated for the mean in-plane velocities. The stream function ψ is two-dimensional and is
defined as

u = ∇× ψ, (3.3)

which is equal to equation (3.4) for Cartesian coordinates.

u2 =
∂ψ

∂x3

; u3 = − ∂ψ
∂x2

(3.4)

Along the Cartesian grid the change in ψ can be calculated by

∆ψ = u2∆x3 − u3∆x2. (3.5)

Moreover, the stream function in the cross-section is directly linked to the streamwise vor-
ticity by ∇2ψ = −ω1 = −(∂u3/∂x2 − ∂u2/∂x3).

Throughout two streamlines, a constant mass flux is transported. The step between two
streamlines is kept constant for all stream function visualisations. Hence, more streamlines
for a vortex means more mass flux by a vortex. Basically it also means, that the higher the
peak value of ψ of a vortex the higher the mass flux between the wall and the vortex centre.
In addition, the circulation of a vortex Γ can be described by the integrated velocity along the
structure’s boundary, which can be defined by an iso-contour line. Having the same velocity
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Figure 3.8: Contours of stream function ψ of mean crossflow velocities u2 and u3 and as greyscale
the velocity magnitude of

√
u2

2 + u2
3/ub for Reτ = 115, 140 (left column) and 180, 460

(right column, top to bottom). The increments for the contourlines of ψ are 0.003. For
clarity, the increments of Reτ = 460 are doubled. Please note, that the distributions
were symmetrized using the half-plane symmetry.

threshold limiting the boundary of a structure leads to the length of the perimeter as crucial
parameter for the circulation’s magnitude. Thus comparing the perimeter of streamlines
gives a relative measure of the circulation. The circulation can also be expressed as the
vorticity integrated over the vortex area AS.

Γ ≡
∫
S

u(s)ds =

∫
AS

ωndAS (3.6)

Looking at the distribution of streamlines of the secondary flow over the cross section, an
alternating pattern of clock-wise (red) and anti-clockwise (blue) rotating vortices can be
found, which are symmetrically arranged with respect to the vertical bisector, see figure
3.8. The basic pattern does not change with Reynolds number. According to Grega et al.
(2002), the vortex in the mixed-corner is also called inner secondary cell and the centre
vortex outer secondary cell. For very low Reynolds numbers, the vortices are almost equally
strong and distributed over the whole circumference. The inner secondary cell gets smaller
and moves towards the mixed-corner when the Reynolds number increases. In contrast, the
centre vortex enlarges and is shifted towards the free surface. For higher Reynolds numbers,
the outer secondary cell has a negligible effect in the bottom region of the pipe. These
observations are in line with the distribution of the in-plane velocity magnitude

√
u2

2 + u2
3/ub,

shown as greyscale in figure 3.8. For friction Reynolds numbers smaller than 180, the in-
plane velocities are active over the whole cross-section. With higher Reynolds numbers,
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the activity in the bottom region becomes less and the areas with high in-plane velocities
concentrate at the free surface. The maximum in-plane velocity magnitude increases with
Reynolds number from 1.3% to 5.7% of ub, see table 3.1 (note, that the grey scales in the
plot do not represent the exact range). This agrees well with data found in the literature
for similar geometries (Tominaga et al., 1989; Sakai, 2016; Ng et al., 2018; Liu et al., 2022).
Table 3.1 also indicates the position of the maximum secondary flow, which is always at
the free surface. For Reτ ≤ 140, the inner secondary cell contains the maximum at about
0.8R. For higher Reynolds numbers, the secondary flow is stronger in the outer cell at
x2/R ≈ 0.42, hence, the outer secondary cell obtains more energy with increasing Reynolds
number.

Reτ
√
u2

2 + u2
3|max/ub ±x2/R x3/R

115 0.0126 0.7993 1.0
120 0.0145 0.7993 1.0
140 0.0208 0.8374 1.0
180 0.0331 0.3991 1.0
230 0.0448 0.4310 1.0
460 0.0566 0.4446 0.9982

Table 3.1: Maximum magnitude of secondary flow and its position for different Reynolds numbers

The velocity-dip appears as soon as the outer secondary cell moves towards the free sur-
face. For Reτ = 115, the outer secondary cell circulates more fluid in the lower half of the
cross-section, whereas there is already more convection in the upper half for Reτ = 140,
transporting high momentum fluid from the free surface towards the centre bottom. This
can also be observed in the data of Sakai (2016).

The pattern of the mean streamwise vorticity is similar to the one of the stream function,
but does not exactly reflect the mean vortex pattern, see figure 3.9. As it is the Lapla-
cian of the stream function, the vorticity describes a smaller structure than the stream
function. This is especially visible for the shear layers at the wall. As the Reynolds num-
ber increases, the vorticity maxima are even further shifted towards the free surface than
the vortex centres deduced from the streamlines. Similar to the stream function, the mean
streamwise vorticity is almost zero in the bottom region for higher Reynolds numbers, hence,
the influence of the mean secondary flow is very small in the lower part of a semi filled
pipe.

The distance of the vortex centres to the free surface (red) and the mixed-corner (blue) are
shown in outer units over the bulk Reynolds number in figure 3.10 (left). In general, for
both vortices, the distances to the free surface and the mixed-corner decrease with increasing
Reynolds numbers. However, for the outer secondary cell the distance to the mixed-corner
is approximately constant at ∆s/R ≈ 0.6 for the higher Reynolds numbers, whereas the
other distances are further decreasing. In wall units, the outer secondary cell (+) does not
scale, whereas both distances of the inner secondary cell (◦) scale well (figure 3.10, right)
especially at higher Reynolds numbers. Its distances range from 20 to 50 wall units. This
is in agreement with the findings of Sakai (2016) for rectangular open-channel flow in a
similar range of Reynolds numbers. If the inner vortex continues to scale with inner units at
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Figure 3.9: Mean streamwise vorticity ω1 ·R/ub of Reτ = 115, 140 (left column) and 180, 460 (right
column, top to bottom). The increments for the contourlines of ω1R/ub are 0.04. Please
note, that the distributions were symmetrized using the half-plane symmetry.

higher Reynolds numbers one can expect that the inner secondary cell becomes very small
compared to the radius of the pipe. Consequently, it would be more and more difficult to
detect it by measurements with limited spatial resolution. This could explain why previous
measurements in partially filled pipe flow only reported the outer secondary vortex (Clark
& Kehler, 2011; Ng et al., 2018). Unfortunately, no detailed visualisation of the mixed-
corner flow is provided by Liu et al. (2022). Hence, it is unclear whether they observed the
inner secondary vortex. However, the outer secondary vortex is in good agreement for all
publications.

The results of the following paragraph have been published in Brosda & Manhart (2022)
apart from the parameter circulation Γ. This parameter was first included in this thesis.
As a measure for the strength of the secondary vortices, the peak values of the stream
function in the inner and outer secondary cells are documented in figure 3.11 in red and
the magnitudes of the circulation in blue, defined by equation (3.6). At the lowest two
Reynolds numbers, both vortices exhibit the same amount of volume flux between the free
surface and the vortex centre. At higher Reτ , the peak of the stream function reaches larger
values in the outer vortex than in the inner vortex. While the stream function seems to
saturate for larger Reynolds numbers in the outer vortex, it appears to attain its maximum
at between Reτ = 230 and 460 in the inner vortex. Both circulation and stream function
peaks agree very well, only the circulation peak of Reτ = 460 shows instead of a slight
decrease a small increase, however, it still seems to indicate a beginning saturation for larger
Reynolds numbers in this study.
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Figure 3.10: Normalised distance ∆s from the mixed-corner (blue) and free surface (red) to the
minimum and maximum of the stream function ψ in outer (left) and inner units (right)
over Reb and Reτ , respectively. ◦ corresponds to the inner secondary vortex and + to
the outer secondary vortex.

Figure 3.11: Normalised peak values of the
stream function ψ/(uτR) (red)
and circulation Γ/(ubR) (blue)
of the inner (◦) and the outer
secondary cell (+) of Reτ =
115, 120, 140, 180, 230, 460.

Figure 3.12: Positions of the inner and outer
secondary cell centres for Reτ =
115, 120, 140, 180, 230, 460. Cell
centres are defined as local minima
and maxima of the stream function
ψ. ◦ corresponds to the inner sec-
ondary vortex and + to the outer
secondary vortex.



48 3.2. Reynolds Dependency for Semi Filled Pipe Flow

The Reynolds dependency of the positions of the inner and outer secondary cells within the
cross-section is shown in figure 3.12 by the locations of the vortex centres in one half of
the duct. The vortex centres are defined as minima and maxima of the stream function,
thus, in agreement to the stream function distribution (cf. figure 3.8) the vortex centres
move upwards as Reynolds number increases. The inner secondary cell does always cover
the position in the mixed-corner and with decreasing size it further moves into the mixed-
corner. For small Reynolds numbers, the outer vortex centre is located close to the bottom
and its circulation is similar to the one of the inner vortex. For moderate Reynolds numbers,
its position and the covered area changes quickly. As the inner vortex becomes smaller, the
size of the outer secondary cell becomes larger and moves to the centre. While the vorticity
of the inner vortex strongly increases with Reynolds number (figure 3.9), its peak stream
function remains bounded (figure 3.11). The peak values of the stream function in the
outer cell grow stronger with Reynolds numbers than the one of the inner cell, whereas
its vorticity only moderately increases. For higher Reτ , the position and the intensity of
the outer secondary cell seems to stabilise, whereas the intensity of the inner secondary
cell even decreases. Apparently, with increasing Reynolds number, the outer secondary cell
becomes more and more the dominating vortex. A similar observation has been made by
Pirozzoli et al. (2018) for the case of a closed square duct. They observe a corner-circulation
with inner scaling and a core-circulation scaling with the duct half height, the latter becomes
more and more dominant with increasing Reynolds number.

3.2.2. Wall Shear Stress

The local wall shear stress τw is an important parameter in terms of sedimentation and
resuspension in sewage pipes. Its distribution over the perimeter can be seen as footprint
of the secondary flow. The wall shear stress is obtained by near wall velocity gradients,
see section 2.2. In figure 3.13 (left), the distribution of the time-averaged wall shear stress
τw/τ0 around the wetted perimeter is shown for various Reynolds numbers, τ0 being the
perimeter- and time-averaged wall shear stress. The maxima can be found at the mixed-
corners independent of the Reynolds number. A local minimum can be found at ±π/4 for
the lower Reynolds numbers and moves towards the mixed-corners with increasing Reynolds
number. At small Reynolds numbers (Re ≤ 140), the distribution is nearly harmonic with
a clear local maximum in the symmetry plane of the pipe. This local peak flattens and its
magnitude decreases towards τw ≈ τ0 when the Reynolds number is increased. Eventually,
secondary local maxima form between the flat region and the minima. For small Reynolds
numbers, the maxima in the corners and in the symmetry plane have approximately the same
magnitude. For increasing Reynolds numbers, the difference between maxima and minima
becomes larger, while in the symmetry plane, the wall shear stress tends to be τw ≈ τ0,
reflecting the low activity of the secondary flow in the lower part of the pipe, cf. figure 3.8.
The wall shear stress distribution can be directly linked to the secondary flow. In regions
with a secondary flow pointing towards the wall, τw is high and when the secondary flow is
directed away from the wall τw is small.

In figure 3.13 (right), the current results are compared with the high Reynolds number
experiments of Knight & Sterling (2000) (Reb = 110, 000) and Clark & Kehler (2011)
(Reb = 557, 000, only data for one side available). They both match each other fairly
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Figure 3.13: Normalised mean wall shear stress τw/τ0 of Reτ = 115, 120, 140, 180, 230, 460 (left).
Normalised mean wall shear stress τw/τ0 of Reb = 15452 and including experimental
data: ∗ (Clark & Kehler, 2011) (Reb = 557000) and � (Knight & Sterling, 2000)
(Reb = 110000) (right). Please note, that the distributions of the present data were
symmetrized using the half-plane symmetry.

well, but as they could not detect the inner secondary cell within their measurements, they
also do not show a global wall shear stress maximum at the mixed-corner. Instead, they
found the global minimum at the mixed-corner and the global maximum at the centre bot-
tom.

The results of the following small paragraph have not been published in Brosda & Manhart
(2022) and are first published in this thesis. In order to get a first impression of the instan-
taneous wall shear stress, its local values along the perimeter were obtained from velocities
interpolated to a wall distance of ∆r+ = 2. The probability density functions (PDF) of the
instantaneous wall shear stress are presented for different positions in figure 3.14: close to
the mixed-corner (left); at the minimum value of the time-averaged τw (middle); and where
the plateau-like region starts (right) for Reτ = 180. It can be seen that in the mixed-corner
a wide range of wall shear stresses are equally likely to occur and even values larger than

Figure 3.14: PDF of the instantaneous wall shear stress for Reτ = 180 at the positions −1.514 ≈
0.48π,−1.359 ≈ 0.43π and −1/4π (from left to right).
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2τw/τ0 have a probability greater than 1%. Values below 1 are more unlikely in the mixed-
corner than at the position of minimum wall shear stress. The PDF at the position of the
minimum wall shear stress seems to be more confined to values around τw/τ0 = 0.85 as the
standard deviation is only σ = 0.30 in comparison to σ = 0.42 for the position at the mixed-
corner. When the plateau-like region is reached, the mean of the distribution is equal to one
τw/τ0 and the PDF has a slightly larger standard deviation (σ = 0.34) than the PDF at the
minimum. Overall, strong wall shear stress events (τw > τ0) are likely to appear almost all
over the perimeter.

In addition, the root-mean-squares (rms), skewness and flatness of the wall shear stress
fluctuations are plotted along the perimeter in figure 3.15, enabling a quantitative assessment
of the wall shear stress fluctuations. In general, the distribution of the rms resembles the
mean wall shear stress distribution with its maxima at the mixed-corners, followed by a
minimum and a plateau in the centre. Hence, the largest fluctuations in wall shear stress
occur in the mixed-corner. With increasing Reynolds number the local minimum moves
towards the mixed-corner as it was observed for the mean wall shear stress. The rms-level
in the centre increases with Reynolds number and nearly reaches τw,rms/τ0 ≈ 0.4, a value
that was observed in channel and pipe flows at high Reynolds numbers (Alfredsson et al.,
1988; El Khoury et al., 2013). The local fluctuations in the mixed-corners are about 1.2−1.7
times stronger than in the centre of the perimeter. Moreover, they reach approximately the
value by which the time-averaged wall shear stress exceeds the perimeter-averaged one. The
skewness and the flatness have similar distributions. Close to the mixed-corner a minimum
occurs, where the distributions are closest to a Gaussian distribution (S = 0; F = 3). The
minimum is followed by a maximum and in the centre of the perimeter a plateau establishes,
which increases with increasing Reynolds number. At the plateau, the skewness approaches a
value of S(τw) ≈ 0.9−1.1 and the flatness a value of F (τw) ≈ 4−5, which resembles the values
reported for a channel flow of Reτ = 180 by Kim et al. (1987).

In the mixed-corner, the secondary flow points towards the pipe’s wall transporting high mo-
mentum fluid to the wall and generating the large wall shear stress values in the mixed-corner.
The first wall shear stress minimum is found close to the location where the secondary flow
separates from the perimeter and marks the end of the inner vortex. This is demonstrated
in figure 3.16 in which both locations are plotted in dependence of the Reynolds number.

Figure 3.15: Normalised root-mean-square of wall shear stress fluctuations τw,rms/τ0 (left), skewness
(middle) and flatness (right) of the wall shear stress fluctuations over the perimeter for
Reτ = 115, 120, 140, 180, 230, 460. Please note, that the distributions were symmetrized
using the half-plane symmetry.
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Figure 3.16: Azimuthal distance in wall units ∆s+ from mixed-corner to first minimum of wall
shear stress (+) and to the separation point of the secondary flow (◦) for Reτ =
115, 120, 140, 180, 230, 460.

At the lower Reynolds number, the separation point is about ten wall units further away
from the mixed-corner than the wall shear stress minimum. The distance from the mixed-
corner to the first wall shear stress minimum and the separation point has its minimum at
Re ≈ 230. At Reτ = 460 the distance to both points increases and reaches approximately
90 and 65 wall units, respectively. More data at higher Reynolds numbers would be neces-
sary to elucidate a scaling here. In comparison to a flow in a rectangular cross-section, the
location of the wall shear stress minimum is in agreement for low Reynolds numbers with
the results from Pinelli et al. (2010) and Sakai (2016) (cf. section 1.3 (Primary Flows in
Open Channels)).

The combination of the wall shear stress maximum, minimum and the inner secondary flow
resembles the near-wall turbulence concept of high and low velocity streaks and the quasi-
streamwise vortices. In canonical pipe flow, the wall shear stress fluctuations are linked
to the appearance of streaks in instantaneous near-wall streamwise velocities, which are
plotted in figure 3.17 at a constant distance from the wall of 10 wall units. An alternating
pattern of low- and high-speed streaks can be detected independently of Re. In outer units,
individual streaks become smaller with increasing Reynolds number, as they scale with inner
units, having an average spacing of 100 wall untis in channel flow (Kim et al., 1987). This
streak spacing would give rise to about 3.5 high-speed streaks fitting in the perimeter at
Reτ = 115 and to 14.5 streaks at Reτ = 460. The instantaneous velocity distributions do
not contradict such a spacing. The wall shear stress peak in the mixed-corners, i.e. at ±1

2
π,

can hardly be seen as increased levels in the instantaneous velocity distribution. There are
strong fluctuations of the streamwise velocity at 10δν wall distance which do not seem to
differ in the mixed-corners from the centre of the channel.

The observation that the time-averaged wall shear stress distribution is not visible in in-
stantaneous velocity distributions is supported by figure 3.18 in which cross-sectional distri-
butions of the instantaneous streamwise velocity are plotted. The uplift of low-speed fluid
from the wall can be clearly seen at several spots along the circumference. With increasing
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Figure 3.17: Instantaneous normalised streamwise velocity u1/ub at a constant distance of 10 wall
units from the wall over the channel length for Reτ = 115, 140, 180, 460 (top to bottom).

Figure 3.18: Instantaneous, cross-sectional slice of normalised streamwise velocity u1/ub for Reτ =
115, 140 (left column) and 180, 460 (right column, top to bottom).
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Reynolds number, more and smaller uplift events can be seen, as expected. There is no
specific structure visible in the mixed-corners. However, for the higher Reynolds numbers,
the velocity-dip is clearly visible.

In order to evaluate the characteristics of the wall shear stress distribution, running averages
of the wall shear stress were computed at a fixed streamwise position using an averaging
time of one flow-through time L/ub. These are plotted for 40 ·L/ub (figure 3.19). In this
representation, the short-time fluctuations which obscured the long-term variations of the
wall shear stress are not visible. It becomes obvious that the running averages reveal large
wall shear stresses in the mixed-corners for most of the time. In addition to these wall shear
stress maxima in the mixed-corners, local minima occur next to them. The variations in the
centre appear more randomly and only few extreme values occur. In a similar manner, Pinelli
et al. (2010) investigated the velocity streak behaviour for the solid corner in a rectangular
closed-duct with a local wall shear stress minimum appearing in the vicinity of the solid
corner. The Reynolds dependency of their velocity streaks is analogous to the one of the
present study, with the only difference that in the current case the fixed peak is not in the
solid corner, but at the free surface. Overall, the evaluation of the wall shear stress and
near wall velocity streaks suggests that the mixed-corner vortex is not a stable vortex – in
the sense that it rotates constantly in the same direction – but results from an averaging of
many individual uplift and downwash events which are present in wall-bounded turbulence.
However, figure 3.17 indicates that the structures contributing to the inner secondary cell
are rather long structures of up to approximately 10R. This is in good agreement with the
findings of Sakai (2016), who did a statistical analysis on the probability of vortex positions
in rectangular open-channel flow. He showed that in the mixed-corner mostly vortices are
present that rotate towards the wall at the free surface, which would generate a similar
wall shear stress pattern like the running averaged wall shear stress distribution in figure
3.19.

The results of the following paragraph have not been included in Brosda & Manhart (2022)
and are first published in this thesis. To assess whether the wall shear stress near the left and
right mixed-corner are correlated, the joint probability density function is displayed in figure
3.20. It shows that there is hardly any correlation between the left and right instantaneous
wall shear stresses. Combinations of low and high magnitudes are equally likely to occur,
implying that wall shear stress events on the left and right mixed-corner are independent of
each other.

Figure 3.19: Temporal distribution of the normalised, short-time averaged, mean wall shear stress
τw/τ0 over the perimeter for Reτ = 180. One time instant equals to the averaged τw
over a period of L/ub. The total time interval is 40 L/ub.
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Figure 3.20: Normalised joint PDF of τw/τ0 taken from the vicinity of the left and right wall for
Reτ = 180.

It seems that low- and high-speed streaks appear for all Reynolds numbers. These structures
can be associated to quasi-streamwise vortices and they scale in inner units, i.e. with a
streak spacing of around 100 wall units. In the low Reynolds number cases (Reτ ≤ 140),
they fill the whole cross-section and their movement is restricted. It seems that in this
range, only four streaks fit into the semi filled pipe. This leads to a preferential position of
the streamwise vortices which can explain the mean secondary flow cells and the harmonic
distribution of the mean wall shear stress. At higher Reynolds numbers (Reτ ≥ 180), the
time-averaged secondary cells seem to be lifted from the lower part of the semi filled pipe
towards the free surface (see figure 3.8). This might be a result of a larger variability of the
streaks in circumferential direction which leads to averaging effects of the low- and high-speed
zones in a statistical sense. This can explain the plateau in the wall shear stress. Similar
observations for a comparable range of Reynolds numbers were made by Pinelli et al. (2010)
for a rectangular closed-duct flow. In the mixed-corners, there is always a low- or a high-speed
streak, since, at the free surface, the in-plane velocity vector always points towards or away
from the corner for kinematical reasons, thus fixing the streak there. From figure 3.19, it
can be inferred that high-speed fluid is transported towards the corners, thus, the secondary
flow preferentially points towards the mixed-corners.

The results of the following paragraphs in this section have not been published in Brosda &
Manhart (2022) and are first published in this thesis. The following analysis was inspired
from Pinelli et al. (2010), who investigated turbulent flows of low Reynolds numbers in a
closed square duct. Samples of the wall shear stress were taken every 10 viscous time units
with sampling points along the perimeter with approximately two wall units apart from each
other at one fixed streamwise position.

Figure 3.21 shows the temporal development of the global minima of the wall shear stress.
For all Reynolds numbers, two pronounced clusters of wall shear stress minima can be
detected that form roughly a line, however, with increasing Reynolds number, the temporal
distribution of minima get less coherent. At Reτ = 115, the branches of the minima meander
in separate sides of the pipe and it seems that one can follow the two separated minima in
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Figure 3.21: Development over time of the position of the instantaneous global minimum value of
wall shear stress for Reτ = 115, 140, 180, and 460 (top to bottom).
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time. For larger Reynolds numbers, also two pronounced lines can be identified. Their spatial
variations decrease as Reynolds number increases, but the number of minima not directly
related to these two lines increase and mostly appear in between the two lines, rarely at
the mixed-corner. For Reτ = 460, the distribution is almost homogeneous apart from a
layer with only few minima directly in the mixed-corner and a following region with stronger
accumulation of minima right next to it. This behaviour is consistent to the Reynolds-
number dependent distribution of the mean wall shear stress.

These positions of the wall shear stress minima are plotted as PDF in figure 3.22(left), and
the general pattern of the negative part of the mean wall shear stress becomes apparent.
With increasing Reynolds number, the high minimum τw probabilities shift from ±1/4π
towards the mixed-corner and they become higher and more concentrated. In the centre of
the perimeter the probability of a minimum slightly increases for higher Reynolds numbers.
The PDF of the maxima of the wall shear stress (fig. 3.22, right) shows that the maximum is
located most likely directly at the mixed-corner and only single events are found in the rest
of the perimeter. It is striking that the distribution of the maxima reveals two distinct peaks
at the mixed-corner with a strong decrease towards the centre of the pipe. This indicates
that the maxima are much more persistent for all Reynolds numbers, thus, a high-speed
streak is most of the time present in the mixed-corner, but the following low speed streak
varies.

Thus far, only the dominating component – the streamwise component – of the wall shear
stress was studied, however, for the secondary flow, the in-plane components also play an
important role, as they are the direct footprint of the secondary flow at the wall. As the
distribution of wall shear stress is along the perimeter, the Cartesian in-plane components
are transformed into polar coordinates applying the transformation in appendix A. Hence,
an azimuthal wall shear stress component τw,θ = µ∆uθ

∆xr
can be defined. Moreover, the near-

wall pressure pw can be interpreted as normal stress in the wall normal direction. The inner
secondary cells in the mixed-corners are the strongest secondary flow close to the wall, which
is present in the mean distribution of the azimuthal wall shear stress and the pressure, see
figure 3.23. τw,θ has a magnitude up to 9% and pw up to 44% of the globally averaged wall
shear stress τ0. In the bottom of the cross-section, from −π/4 to π/4 magnitudes around zero

Figure 3.22: Probability density function of the instantaneous position of the global minimum (left)
and maximum (right) value of wall shear stress for Reτ = 115, 140, 180, and 460.
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Figure 3.23: Azimuthal component of the normalised mean wall shear stress τw,θ/τ0 (blue) and the
normalised normal stress at the wall pw/τ0 (red), respectively, for Reτ = 180. Please
note, that the distributions were symmetrized using the half-plane symmetry.

occur for the azimuthal component. The peak of the azimuthal wall shear stress is about 15
wall units away from the mixed-corner, where the secondary flow is strongest coming from the
free-surface and decreases as the wall friction decelerates the secondary flow. pw is in line with
the azimuthal wall shear stress component and the secondary flow. It has its maximum at
the mixed-corner, where secondary flow is directed towards the wall. From the mixed-corner
on, the magnitude decreases strongly until a local minimum is reached at about 75 wall units
from the wall, where the separation point of the secondary flow is located. Next to the local
minimum the pressure slightly increases before the magnitude decreases in the symmetry
plane again to the same value as the other local minimum.

In figure 3.24, the PDF of the positions of the maxima (dashed line) and minima (solid line)
with a bin size of four wall units are shown for τw,θ (left) and pw (right). The azimuthal
component has the highest peaks in the mixed-corner, where a maximum means flow in
positive azimuthal direction and a minimum denotes a flow in negative azimuthal direction.
The mixed-corner peak overlaps with a small peak of the opposite direction, and agrees with
the distribution of the streamwise component, when keeping in mind the connection between
velocity streaks and quasi-streamwise vortices. In addition, there is another wide, local peak
in the bottom between −1/4π and 1/4π, where many maxima and minima of the azimuthal
component appear. Apparently, this accumulation of peaks is not present in the mean wall
shear stress distribution of the azimuthal component, hence, the flow is very active in the
bottom part of the pipe, but the various peaks must balance each other over time. At about
±1/4π, almost no minima nor maxima occur. This separates surprisingly strictly the upper
flow, where secondary flow is present, from the lower, bottom flow. Apart from the mixed-
corner, the two distributions of minima and maxima of the pressure are very similar to each
other. An almost constant amount of maxima and minima is present over the perimeter
with a hardly detectable peak at the very bottom. Compared to the mean distribution these
peaks seem to balance each other, thus, the peaks do not have a strong influence on the
mean distribution. In the mixed-corner the minima occur less, however, about 8 times more
maxima appear, which is in line with the global maximum in the mixed-corner of the mean
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Figure 3.24: Probability density function of the instantaneous position of the global maximum
(dashed line) and minimum (solid line) value of the azimuthal wall shear stress com-
ponent (left) and the pressure at the wall (right) for Reτ = 180.

pressure distribution.

3.2.3. Reynolds Stresses

In this section, the spatial distribution of the Reynolds stresses is investigated. The Reynolds
number dependence of the Reynolds stress profiles in the symmetry plane (figure 3.25) is
shown first. For the normal stresses, the rms of the velocity fluctuations is plotted. Between
their maxima and the wall, all profiles share a high degree of similarity with those found
in full pipe flow, which are shown from the wall until the pipe’s centre. The streamwise
normal stresses u′21 are largest and peak at around x+

3 ≈ 15. The peak position is rather
independent of the Reynolds number while its magnitude slightly increases. Similarly to
observations of El Khoury et al. (2013), there is a strong increase of the peaks from the
other Reynolds stresses with Reynolds number. Note, that in the symmetry plane, u3 is the
radial component and u2 is the azimuthal component. The most prominent difference to
the Reynolds stress distributions in full pipe flow is found near the free surface at which the
velocity component perpendicular to the surface u3 is strongly damped and the other two
components are amplified. At a similar position as the mean streamwise velocity maximum,
minima of u1,rms occur with an intensity of about 0.75uτ and the one of u2,rms is slightly
smaller. The distances of these minima from the free surface seem to coincide in inner units
while the thickness of the damping layer of u3,rms to the free surface is much thinner. The
free surface layer thickness of 50 wall units reported by Nagaosa (1999) is not in accordance
with the present findings, because the distance between the free surface and the minima
of the x1- and x2- components neither scale in inner nor in outer units. The shear stress
u′1u

′
3 approaches zero at the free surface, but changes its sign beforehand and shows a small

positive maximum close to the free surface. Unlike the full pipe flow profile, which follows a
linear trend above the minimum, the Reynolds shear stress of the semi filled pipe flow does
not follow the linear trend. This difference is caused by the momentum transport of the
secondary flow.

The Reynolds stress distributions presented by Ng et al. (2018) are similar to the current
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Figure 3.25: Root mean square of the velocity fluctuations u1,rms/uτ , u2,rms/uτ , u3,rms/uτ and

Reynolds shear stress u′1u
′
3/u

2
τ in inner units in the vertical symmetry line of Reτ =

115, 120, 140, 180, 230, 460. The solid black lines represent full pipe flow from present
DNS. Please note that for the shown data along the vertical symmetry line the Carte-
sian coordinates in x2- and x3-direction are equal to the Polar coordinates θ and r,
respectively.

data. Unfortunately, they didn’t provide their results in inner units. However, their measured
maxima seem to be smaller than the present maxima when normalized by bulk units (Ng et al.

(2018): u′21 /u
2
b ≈ 0.01; present study, Reτ = 460: u′21 /u

2
b ≈ 0.025).

Looking at the cross-sectional distribution of the Reynolds stresses reveals that there are
equally high turbulence intensities around the perimeter except at the area of the mixed-
corner, see figure 3.26 showing the Reynolds normal and shear stresses for Reτ = 180 in polar
coordinates. The applied transformation can be found in appendix A. Since the single distri-
butions of ur,rms and uθ,rms show artefacts of the coordinate system in the centre of the pipe,
the sum of the cross-stream normal stresses is plotted. Please note that the individual terms
are shown in the appendix B. The streamwise stresses have considerably larger values than
the other stresses, demonstrating that the TKE (shown in section 4.1.3) is dominated by u′21 .

The minimum of u′21 appears approximately at the location of the mean streamwise velocity
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Figure 3.26: Normalised root mean square of velocity fluctuations u1,rms/uτ , (ur,rms + uθ,rms)/uτ
(top left and right) and Reynolds shear stresses u′1u

′
θ/u

2
τ , u′1u

′
r/u

2
τ (bottom left and

right) for Reτ = 180. Please note, that the distributions were symmetrized using the
half-plane symmetry.

maximum. The layer of large values of u′21 around the perimeter has local minima where the
secondary flow of the inner vortex is parallel to the wall. A local maximum occurs at the
location where the secondary flow points away from the wall.

The streamwise Reynolds stress and the sum of the cross-stream stresses are nearly homoge-
neous in the azimuthal direction in the lower part of the pipe within ±45o from the vertical
bisector. This is consistent with the observation that the secondary flow is weak in the lower
part of the flow and suggests that the flow near the lower wall could behave like a normal,
full pipe flow. This conjecture is partly supported by the shear stress u′1u

′
θ which is essen-

tially zero in the lower part. In agreement to Nezu & Nakagawa (1993), Blanckaert et al.
(2010) and Joung & Choi (2009), positive u′1u

′
θ matches clockwise rotation and negative

Reynolds shear stress occurs where counter-clockwise rotation is present. Please note that
the wall parallel coordinate of the references is defined inversely, hence, positive u′1u

′
θ matches

counter-clockwise rotation and vice versa. The distribution of u′1u
′
r shows a distribution of

minima along the wall that is not fully homogeneous in the lower part. Additionally, minima
occur at the free surface. The distribution u′ru

′
θ is omitted as the values are very small in the

entire cross-section compared to the other stress components.

The sum of the cross-stream components shows its maximum at about 0.25R from the
wall with a stronger contribution of the azimuthal component at the bottom and along
the wall, whereas the radial component has its maximum at the free surface. The mixed-
corner has predominantly a damping effect on the normal stresses u′21 and (ur,rms + uθ,rms).
The shear stresses, however, are strongly affected near the mixed-corner. The magnitude
of u′1u

′
r peaks in the area below the inner vortex where the secondary flow points away
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from the wall. The magnitude of u′1u
′
θ peaks in the region where the corner vortex flow

is parallel to the wall. Both of those peaks could be linked to strong fluctuations of the
corner vortex associated with the dynamics of the near wall streaks discussed in the previous
section.

In order to better understand the Reynolds stress distribution, the anisotropy of the Reynolds
stress tensor will be evaluated by the so-called Lumley triangle, which is also known as
turbulence triangle. The state of anisotropy is described by its invariants ζ and ξ. They
are defined by the eigenvalues of the Reynolds stress tensor ζ (eq. (3.7)) and ξ (eq. (3.8))
(Pope, 2000).

ζ2 =
1

3
(λ2

1 + λ1λ2 + λ2
2) (3.7)

ξ3 = −1

2
(λ1λ2(λ1 + λ2)) (3.8)

The Lumley triangle, defined in the eigenvalue space, assigns to its corners different turbulent
states, see figure 3.27 (left). The upper right corner describes turbulence that consists only
of fluctuations in one component (xc1), e.g. the streamwise component. In the upper left
corner a two-component turbulence state (xc2) is indicated, hence, the fluctuations of two
different components are equally intense. Whereas in the lower corner, the fluctuations of all
three components are equally contributing to the turbulence (xc3). In between the corners,
all kinds of intermediate states are possible.

In figure 3.27 (left), the turbulence state in the symmetry line is shown. Starting from
the wall (indicated in figure 3.27 (left) by x+

3 = 1), the general behaviour first follows the
distribution of a channel flow, see (Pope, 2000). At the wall, the streamwise component is
dominant and the azimuthal component is weakly present. At a wall distance of 10 wall units,
the flow tends towards the one-component state. This is more pronounced at lower Reynolds
numbers. With increasing wall distance, the Reynolds stresses move towards the isotropic
state until they reach a sharp turning point, which is closer to the isotropic state when the
Reynolds number is higher. This turning point is the point at which the boundary condition
of the free surface starts to damp the vertical component and which is marked by a local
minimum in the streamwise and spanwise Reynolds stresses. Upwards from this point, the
Reynolds stresses have to move towards the two-component state as the vertical component is
zero at the free surface. For Reynolds numbers ≥ 140, the two-components at the free surface
are equally strong, whereas for lower Reτ the second component is less dominant. Hence,
at the free surface, the anisotropy is shaped elliptical for Reτ = 115 and 120, and for higher
Reynolds numbers the anisotrpoy appears like a disk. For Reτ = 460, an oblate-spheroid
shaped anisotropy appears underneath the free surface.

In Brosda & Manhart (2022), the distributions over the cross-section were reported only for
Reτ = 180. For the other Reynolds numbers the results are first published in this thesis.
Emory & Iaccarino (2014) proposed to link the position in the anisotropy map to a colour
code, which can be used to visualise the different turbulence states over the entire cross-
section (figure 3.28). The specific colourmap is defined in figure 3.27 (right). Red corresponds
to a one-component, green to a two-component and blue to a three-component turbulent
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Figure 3.27: Lumley triangle of the Reynolds stress tensor in the vertical symmetry line for Reτ =
115, 120, 140, 180, 230, 460 (left) and colourmap according to non-linear anisotropy in-
variant map (right). x+

3 = 1 indicates the location of the wall for the distribution along
the vertical symmetry line.

state. Yellow, turquoise and pink describe intermediate states. The nearly one-component
turbulence (red colour) spreads along the whole perimeter including the inner vortex region.
From the Reynolds stress plots, it becomes clear that the streamwise component is dominant
in this region. With increasing Reynolds number, this wall layer shrinks. The shift to
orange colour for larger Reynolds numbers still indicates a mostly one-component behaviour.
Further away from the wall there is another ring-like area in which the Reynolds stresses
move towards the three-component state (magenta). The area of the velocity maximum is
characterised by a state which is near the three-component limit (blue). For Reτ = 115, this
three-component area misses, whereas it grows with larger Reynolds numbers. At the free
surface, a layer behaves different. Here, the damping of the vertical fluctuations changes the
flow state to a two-component limit (yellow and green). When moving from the mixed-corner
to the centre, the state changes gradually from a one-component (red) to two-component
(green) state. Again for Reτ = 115, only a yellow state is reached, which is in between one-
and two-component state.

The results of the following small paragraph have not been published in Brosda & Manhart
(2022) and are first published in this thesis. In figure 3.29, the anisotropy only according
to the x2- and x3-components is shown, where the dominating effect of the streamwise
component is excluded. The one-component turbulence (red) is at the wall and at the free
surface. The intermediate two-component turbulence (yellow) reaches into the mixed-corner.
In the centre, both components are equally intense. Again, as Reynolds number increases,
the one-component layer shrinks and the two component area increases and further reaches
to the wall and to the free surface.
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Figure 3.28: Anisotropy componentiality of Reynolds stresses over the cross-section for Reτ =
115, 140 (top) and 180 and 460 (bottom, from left to right). Please note, that the
distributions were symmetrized using the half-plane symmetry.

Figure 3.29: Anisotropy componentiality only for the in-plane components of Reynolds stresses over
the cross-section for Reτ = 115, 140 (top) and 180 and 460 (bottom, from left to right).
Please note, that the distributions were symmetrized using the half-plane symmetry.
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3.2.4. Minimum Turbulent Reynolds Number / Minimum Box
Size

Please note that the results of the following section have not been published in Brosda &
Manhart (2022) and are first published in this thesis.

The intention of this section is to address the following two questions: (i) which is the
lowest Reynolds number, and (ii) what is the minimum domain size, to still sustain a tur-
bulent semi filled pipe flow? Most probable the spatial resolution of the present simulations
is not fine enough to really study transitional effects, hence, only superficial evaluations
are made and these have to be taken with care. Moreover, these simulations are also not
taken into account for the analysis of the Reynolds-dependency compared to the integral
friction coefficient (cf. figure 3.1). Uhlmann et al. (2007) stated that the marginally tur-
bulent flow at minimal Reynolds number or minimum box size should contain structures,
which are part of the buffer-layer, but their sizes are in the order of magnitude of the duct
geometry.

The lowest Reynolds number with a turbulent flow was Reτ = 110. The procedure to reach
this low Reynolds number was the same as mentioned in chapter 2.1 and slightly adapted
in the same manner as Uhlmann et al. (2007): A fully-turbulent, high Reynolds number
simulation was established and if a turbulent flow was still present after 2000 bulk time
units, the Reynolds number was decreased step-by-step. The flow at Reτ = 110 kept being
turbulent over 8000 bulk time units, whereas for Reτ = 109 the flow completely laminarised,
which was indicated by the magnitude of turbulent kinetic energy, and by the fact that
the flow field qualitatively matched the laminar and symmetric distribution of a full pipe
flow. Like Uhlmann et al. (2007) reported for their marginal flow, also the flow at Reτ = 110
shows periods of apparently fully-turbulent flow and also sections of quasi-laminar flow. This
resembles the flow structure of transient flow the so-called ”puffs” (Avila & Hof, 2013). A
detailed description of the flow is not provided as the grid resolution is not satisfactory for
transient flows. In the flow of Reτ = 115, no puff events were found, either the flow does not
contain any, or they are so rare that they were not spotted. Sakai (2016) reported a minimal
Reynolds number of Reτ = 102 that is based on the flow depth for a rectangular open-duct
with a width to height aspect ratio of W/H = 2. This small difference is probably due to
the different geometry including solid corners, creating a larger total area. The larger total
area provides more space for the vortices to exist and to move. For the closed rectangular
duct the minimal friction Reynolds number, based on the half duct height, is even smaller
(Reτ = 77). Overall, it seems that the solid corners of the rectangular duct have a significant
impact on the generation of turbulence on the one hand, and structures can move in a larger
area on the other hand.

The other parameter, which was studied, is the minimal box size. For each domain size, the
same procedure, as reported in chapter 2.1, was undertaken to establish a turbulent flow.
The Reynolds number was kept constant at Reτ = 180 for the different domain sizes. For a
domain size of L+ = 170, turbulence could still be sustained, but for L+ = 141, turbulence
disappeared and a laminar flow profile could be detected. This agrees well with the limit
reported by Uhlmann et al. (2007) for a quadratic closed duct.
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3.3. Filling Ratio Dependency for Partially Filled Pipe Flow of
Reτ = 180

Similar to section 3.2, the basic flow quantities are described. In this section the Reynolds
number is kept constant and different filling ratios (FR), namely 25%, 50% and 75% filling
ratio, are compared to each other.

3.3.1. Mean Flow

Mean Streamwise velocitiy and velocity-dip phenomenon

As already known from section 3.2.1, the rotational symmetry is broken for all partially filled
pipe flows. Hence, depending on the filling ratio, the mean streamwise velocity deviates
from a homogeneous distribution in azimuthal direction, see figure 3.30. The deviations are
strongest for 25% FR with larger deviations at approximately x2 = ±0.5R. This bump is
also visible for 50% FR, but less strong. For 75% FR, the distribution is almost homogeneous
in azimuthal direction and no large deviations are visible anymore. However, the location
of the maximum velocity, marked with a black plus, is below the pipe centre at about
x3 = 0.9R. Hence, the velocity-dip phenomenon also occurs for 75% filled pipe flow, as
it deviates from the location with the largest distance to the wall, i.e. the centre of the
pipe. The smaller the filling ratio gets, the more a partially filled pipe flow resembles a
open-channel flow. The maximum velocity for 25% FR appears at the free surface, which is
surprising, because if one would approximate the cross-section as rectangular cross-section,
it would be classified as narrow cross-section (cf. section 1.3), and in narrow rectangular
cross-sections the velocity-dip phenomenon occurs.

For different pipe fillings, the distance between the position of the maximum mean streamwise
velocity ∆z(umax)/2R to the free surface is plotted over the filling ratio (fig. 3.31, left).
Besides the present study, also experimental and numerical data are included for various
Reynolds numbers from Reb = 5700 to 560, 000 (Clark & Kehler, 2011; Yoon et al., 2012; Ng
et al., 2018; El Khoury et al., 2013). In addition, the fully filled pipe flow is also taken into
account with the maximum mean streamwise velocity in the pipe centre. It becomes clear,
that especially for H/2R > 0.5 the position of the maximum mean streamwise velocity moves
with increasing filling ratio towards the centre of the pipe. The distance strongly depends
on the filling ratio and seems to be independent of the Reynolds number. Moreover, the
data show a linear trend of the type ∆z/(2R) = 0.6754(H/(2R))− 0.1642, which was fitted
using the method of least-square. The upper limit is defined by the full pipe flow, however,
the lower limit, i.e. at which filling ratio no velocity-dip phenomenon occurs anymore, is
not known a priori. The reported distances imply that up to a filling ratio of 25%, the
maximum mean streamwise velocity occurs at the free surface. For higher filling ratios
the velocity-dip phenomenon was observed. Please note that for filling ratios larger than
H/2R = 0.8, a spontaneous transition from a free surface flow to a pressurised flow can take
place, which is not taken into account in this consideration, see Trajkovic et al. (1999) for
example.

The distribution of momentum can be described by umax/ub, see figure 3.31 (right). In the
present study this ratio appears to be independent of the filling ratio and is approximately
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Figure 3.30: Mean streamwise velocity u/ub of Reτ = 180 for 25%, 50% (left, top and bottom,
respectively) and 75% filling (right). The cross indicates the position of the velocity
maximum. Please note, that the distributions were symmetrized using the half-plane
symmetry.

equal to the value of the full pipe flow. The data of Yoon et al. (2012) show larger values,
hence, a stronger concentration of momentum, and a decrease of umax/ub for increasing filling
ratios. In contrast, the results of Ng et al. (2018) increase with the filling ratio, and show
good agreement with the results of El Khoury et al. (2013) for the full pipe flow case. The
deviation between Ng et al. (2018) and the present results for the semi filled pipe flow can
be explained, by the different Reynolds numbers (cf. figure 3.5). Hence, the Reynolds effects
seem to become stronger with decreasing filling ratio.

The distribution of the mean streamwise velocity in the symmetry plane (fig. 3.32) is best
suited to compare with the full pipe flow, because the secondary flow has the smallest
influence in this plane, especially in the near-wall and buffer layer. This holds true in
particular up to a wall distance of approximately 30 wall units, where a very good match
to full pipe flow occurs for all filling ratios. Then slight differences occur: for 75% FR the
gradient is slightly steeper, whereas for 25% FR it is slightly less steep. Only for the FRs
50% and 75%, a logarithmic layer is possibly established, but for the lowest flow depth no
distinct logarithmic layer can be observed. Stronger deviations occur where the velocity
maximum occurs. For 75% FR, the velocity maximum is closer located to the pipe centre
than for the semi filled pipe flow and the velocity decrease afterwards is also stronger by a
factor of two. The normalised velocity at the free surface is approximately the same for 25%
and 50% FR.

In outer units, the mean streamwise velocity can be compared to the experimental results
of Yoon et al. (2012) and Ng et al. (2018), see figure 3.33. As already known from figure
3.32, the maximum velocity is approximately the same for the different filling heights of this
study. The gradient of the distributions at the wall gets slightly less steep with increasing
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Figure 3.31: Distance ∆z/(2R) from the free surface to the maximum mean streamwise velocity de-
pendent on the filling ratio H/(2R) for various Reb (left). Maximum mean streamwise
velocity umax/ub dependent on the filling ratio H/(2R) for various Reb (right). Present
study + (Reb ≈ 5350); Experiments: � (Yoon et al., 2012)(Reb ≈ 5700 − 19000), ×
(Ng et al., 2018)(Reb ≈ 30000), ∗ (Clark & Kehler, 2011)(Reb ≈ 340000 − 560000).
× and ◦ are simulations from El Khoury et al. (2013) with Reb = 5300 and
Reb = 37700, respectively. ( ) represents linear least-square fit following ∆z/(2R) =
0.6754(H/(2R))− 0.1642.

filling ratio. The distribution for 25% FR is monotonically increasing, but the distributions
for higher filling ratios are more complex, because they include the velocity-dip phenomenon
and a zero gradient at the free surface. Ng et al. (2018) reports smaller velocities for small
filling ratios, whereas for a high filling ratio the velocities match well with the present
simulation, only in the upper half of the flow depth the velocities are slightly smaller. This
filling ratio dependent behaviour is in accordance with the Reynolds effects discussed for
figure 3.31 (right). For all filling ratios, Yoon et al. (2012) found larger velocities for the
scaling with ub. However, the different distributions agree in general with each other for
each filling ratio.

Based on a modified log-wake-law (Guo, 2014), Guo et al. (2015) developed a set of equations
(eq. (3.9)–(3.11)) approximating the mean streamwise velocity distribution u(x2, x3) for
partially filled circular and other conic cross-sections with rough walls. This is interesting
especially as the velocity distribution might help to estimate the bulk velocity or discharge
in e.g. sewage pipes by a small number of measurements and input parameters. The velocity
distribution u(x2, x3) is defined as

u(x2, x3) = −uτ
κ

[ln
x3

x3,0

− 1

3
(
x3

∆z
)3]− uτφ(x2, x2,b), (3.9)

which requires the following input parameters: the global friction velocity uτ , which can be
determined from uτ =

√
τw/ρ and the global force balance τw = ρgIsRH that requires the

slope Is and the flow depth H as further input; the von Kármán constant κ = 0.41; the
position ∆z of the maximum mean streamwise velocity, for which the linear least-square fit
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Figure 3.32: Mean streamwise velocity distribu-
tion from the wall to the free sur-
face at the vertical symmetry line
of Reτ = 180 for 25% ( ), 50%
( ) and 75% FR ( ), and full
pipe flow ( ) normalised with
the local friction velocity. The
solid, black line represents the lin-
ear relation and the dashed, black
line the standard log-law u+ =
0.41−1ln(x3) + 5.2.

Figure 3.33: Mean streamwise velocity distribu-
tion from the wall to the pipe cen-
ter at the vertical symmetry line of
different Reb for 25% (blue), 50%
(red) and 75% (black). Present
study is represented by solid lines,
including symbols: ♦ (Yoon et al.,
2012), × (Ng et al., 2018)(each low-
est, highest and semi filled pipe
flow). Legend shows the filling ra-
tio and Reb.

from fig. 3.31 (left), following ∆z = 1 − (0.6754H − 0.1642(2R)), can be used. The two
missing terms x3,0 and φ(x2, x2,b) are defined by the equations (3.10) and (3.11), respectively.
x3,0 represents, depending on the wall roughness, the location of the zero-velocity in the
symmetry line at the wall and is defined as

1

∆z3
=

3

I2

(I1 −
A ln(x3,0)

2
− 3A

8uτ,centre/uτ
− κubA

2uτ,centre
). (3.10)

Equation (3.10) requires further input: I1 and I2 are geometry-dependent constants (Guo
et al., 2015); the area of the cross-section A; the bulk velocity ub; and the local friction
velocity in the symmetry line uτ,centre, which can be estimated from the present data (with
uτ,centre ≈ 1.025uτ ) or from Clark & Kehler (2011) (uτ,centre ≈ 1.1uτ ). The second missing
term φ(x2, x2,b) defines the spanwise velocity distribution as follows

φ(x2, x2,b) = −1

κ

[
ln

(
1− | x2

x2,b

|
)

+
1

3

(
1−

(
1− | x2

x2,b

|
)3
)]

, (3.11)

with x2,b being the horizontal distance to the closest wall.

The simulated and the modeled mean streamwise velocity distributions are shown in figure



3. Basic Flow Description for Partially Filled Pipe Flows 69

3.34 for filling ratios of 25%, 50% and 75%. The positions of the maximum velocity are
indicated by + and ×, referring to the present simulation and the approximation by Guo
et al. (2015), respectively. For the two higher filling ratios the maximum velocity position
of Guo et al. (2015) is a little bit lower compared to the simulations. Furthermore, the
modeled distributions are more flat over the centre for a filling ratio of 50% and 75%, and
there is a stronger velocity gradient at the wall. The variations due to the inner secondary
vortex around the mixed-corner cannot be reproduced by the suggested approximation.
Nevertheless, a fair overall agreement can be reported. By checking the hydraulic regime
according to the Moody-diagram based on the backwards-calculated roughness ks and the
Reynolds number a hydraulically smooth regime can be reported, being in line with the
friction factors derived from the simulations. This approximation offers a good estimate for
fully developed flows, in order to approximate the bulk velocity or the discharge in partially
filled pipes from a small number of measurement points.

Figure 3.34: Mean streamwise velocity u/ub of Reτ = 180. The cross-sections are divided into two
halves. Left: present simulations; right: approximation by method of Guo et al. (2015).
+ and × indicates the position of the velocity maximum for the present data and the
estimation by method of Guo et al. (2015), respectively.

Mean Secondary Flow

Mean secondary flow occurs in all partially filled pipe flows. Figure 3.35 shows the stream
function ψ and the velocity magnitude of

√
u2

2 + u3
2/ub for a 25%, 50% and 75% FR of

Reτ = 180. For 25% FR, the inner secondary cell is stronger and covers around one third of
the cross-sectional area. With increasing FR the inner secondary cell becomes smaller and
less strong until it almost vanishes for 75%. In contrast, the outer secondary cell changes
from a less dominant (25% FR) to a more dominant vortex with increasing FR. For 75%
FR, it covers almost the complete cross-section. The in-plane velocity intensities are more
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Figure 3.35: Contours of the stream function ψ of mean in-plane velocities u2 and u3 and as greyscale
the in-plane velocity magnitude of

√
u2

2 + u2
3/ub for Reτ = 180. Left column 25% and

50% filling, right column 75% filling. The increments for the contourlines of ψ are 0.003.
Please note, that the distributions were symmetrized using the half-plane symmetry.

concentrated towards the free surface with increasing FR. For 25% filling ratio, only a small
area in the bottom centre shows no secondary flow. The area with low secondary flow gets
larger for 50% FR and covers a third of the cross-section when the pipe is 75% filled. More-
over, the absolute area covered by stronger secondary flow increases with increasing filling
ratio, but relative to the total cross-section it decreases (the area A2,3 of

√
u2

2 + u2
3/ub > 0.01

relative to the total cross-section A decreases from A2,3/A = 0.39 (25%), over 0.36 (50%) to
0.34 (75% FR)). The in-plane velocities have higher intensities in the mixed-corner vortex
for lower filling ratios, for semi filled it is almost equal and for higher filling there is almost
no in-plane velocity for the inner, but high magnitudes for the outer secondary cell. Looking
from a kinematics point of view, a vortex can have different shapes, such as circular, elliptical
or arbitrarily deformed. In any case, however, it is a somewhat ’round’ structure. More-
over, the maximum diameter of vortices in rectangular (Sakai, 2016), trapezoidal (Tominaga
et al., 1989; Brosda, 2015) or partially filled pipe flow (Ng et al. (2018) and present study)
is proportional to the flow depth. Its horizontal extent is approximately of the same size.
Hence, the vortices of a certain size can not reach into the mixed-corner enabling another
vortex to evolve in the mixed-corner, see 25% filling ratio. This effect becomes less strong
for 50% filling ratio and the inner secondary cell gets much smaller compared to the outer
secondary vortex. For 75% filling ratio, the outer secondary cell gets even larger and com-
pletely fits to the upper half, leaving hardly any space for the inner secondary cell. As the
mixed-corner has an obtuse angle, the big centre vortex can fill out this mixed-corner almost
completely and no small vortex can develop. The mean secondary flow field of 75% filling
indicates that if vortices are present in the mixed-corner, the big centre vortex could flush
them away, preventing the generation of a stable mixed-corner vortex. In the lower half, the
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flow is similar to a pipe flow without any mean secondary flow. The secondary flow pattern
agrees well with Ng et al. (2018) for the outer cell at 50% and 75% FR. However, for all
filling ratios, they do not show any inner secondary cell. In the case of 25% FR the inner
secondary cell is more dominant and it would be more likely that the mixed-corner vortex
could be detected by measurements. Unfortunately, the lowest filling ratio of Ng et al. (2018)
is 44%, hence, no comparison of the secondary flow pattern is possible for the small filling
ratio.

The relation between the secondary flow and the vorticity was introduced in section 3.2.1.
Like for the secondary flow, the general pattern of the vorticity distribution is similar for
the different filling ratios, see figure 3.36. Two symmetric, counter-rotating centre-structures
are present for all filling ratios and the mixed-corner structure becomes less dominant with
increasing filling ratio. For 25% FR, the vorticity is active over the whole cross-section apart
from a small region at the bottom and as the filling height increases this inactive region is
growing until, for 75% FR, 2/3 of the cross-section are not affected by larger vorticity and
high magnitudes gather around the free surface. For 25% and 50% FR, the shear layer at
the wall from the outer secondary cell and the inner secondary cell itself are clearly two
different structures, connected by a saddle point, i.e. the location where the contourlines
of ω1 cross. Please note that the term saddle point is used in the context of describing the
scalar field ω1, not in terms of flow topography. The condition of a saddle point is met,
as the hessian matrix of ω1 is indefinite at the location of the saddle point. For 75% FR,
this distinction is not so clear anymore, as the shear layer of the inner secondary cell is
very small and the shear layer of the outer secondary vortex and the vortictiy of the inner
secondary vortex merge into each other. However, a saddle point, dividing the shear layer of
the outer secondary vortex and the vorticity of the inner secondary vortex, is also present.
The pattern of vorticity of the centre structure consists of two peaks for the 25% and 50%
FR, one near the free surface and one closer to the wall, whereas for 75% FR, only one peak
at the free surface exists.

Table 3.2 summarises the magnitudes and positions of the secondary flow maxima. It is obvi-
ous that secondary flow is present for all filling ratios. The magnitude of the maximum mean
secondary flow is similar for 25% and 50% FR, whereas it is approximately 1.5 times larger for
75% FR. The maximum is always located at the free surface, but for 25% FR, it is present in
the inner vortex, like for small Reynolds numbers, whereas for filling ratios of 50% and 75%,
the maximum velocity occurs in the outer secondary cell.

Filling rate
√
u2

2 + u2
3|max/ub ±x2/R x3/R

25 % 0.0345 0.6400 0.4974
50 % 0.0331 0.3991 1.0000
75 % 0.0512 0.4319 1.4974

Table 3.2: Magnitude and position of maximum in-plane velocity for different filling ratios; Reτ =
180

The distance between the peak values of the stream function and the free surface is com-
pared between the present study and the experiments of Ng et al. (2018) (fig. 3.37, left).
The distances agree quite well for the outer secondary cell when normalised in bulk units.
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Figure 3.36: Mean streamwise vorticity ω1 ·R/ub of Reτ = 180. Left column 25% and 50% filling,
right column 75% filling. The increments for the contourlines of ω1R/ub are 0.04.
Please note, that the distributions were symmetrized using the half-plane symmetry.

Figure 3.37: Left: Distance ∆s/R in outer units from the free surface to the minimum and maximum
of the stream function ψ for Reb = 5254. Red colour shows the present study, blue
symbols correspond to Ng et al. (2018), Reb = 30000. Right: Distance ∆s+ in wall
units from the free surface (red) and the mixed-corner (blue) to the minimum and
maximum of the stream function ψ for Reτ = 180. For both plots ◦ corresponds to
the inner secondary vortex and + to the outer secondary vortex.
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Its distances appear to be constant around 0.1/(2R) independent of the filling height and
independent of Re in the range of Reb = 5000 to 30, 000. The distance of the inner sec-
ondary cell is constant for 25% and 50% FR around 0.05/(2R) and drops for the 75% FR
by a factor of two. The distances of the inner and outer secondary cells to both the free
surface and to the mixed-corner decrease in wall units with increasing filling ratio, see figure
3.37, right. Especially for the 75% filling ratio, the distance of the inner secondary flow does
not follow the scaling of the Reynolds-dependence of semi filled pipe flows (section 3.2.1),
which has a lower limit of 20 wall units. Almost all distances have a filling ratio dependency,
only the distance from the free surface to the centre of the outer secondary cell does hardly
change from 50% to 75% FR. As mentioned above, these results cannot be extrapolated to
filling ratios higher than 80%, because the phenomenon of transition to a pressure flow can
occur.

The peak values of the stream function agree very well with the circulation of the inner and
outer secondary cell and display the same trends in figure 3.38, left. The inner secondary cell
becomes weaker with increasing filling height, whereas the outer secondary cell gets stronger.
The peak values of the stream function increase (outer) and decrease (inner) approximately
linearly. The distribution of the circulation is slightly more complex: it has a strong rise
between 25% and 50% FR for the outer secondary cell and only moderately increases in the
75% case. This is in good agreement with the qualitative plot of the secondary flow, see figure
3.35. When summing up the circulation of the inner and outer secondary cell, an increase
from 25% to 50% FR can be reported and then it stays approximately the same from 50%
to 75% FR. A similar observation can be drawn from the intensity of the stream function.
In figure 3.38 (right), the position of vortex centres are extracted and compared between
the different fillings. The outer vortex centre moves slightly outwards from the centre and is
always lower than the inner vortex. The inner vortex centre moves closer to the wall into the
mixed-corner. The distance between the vortex centres is smallest for 25% FR ∆s = 0.32R
and is similar for 50% and 75% FR with ∆s ≈ 0.44R.

Apparently, the in-plane circulation, i.e. the secondary flow, is as strong or even stronger
for the 75% filling than for the lower filling ratios, but the inner secondary cell has almost
vanished for the 75% filling. Hence, the outer secondary cell becomes more dominant, which
is similar to when increasing the Reynolds number in the semi filled case. This poses the
question, whether the mixed-corner vortex is really as important for the generation and
maintenance of the secondary flow as it seems when looking at the results of the semi filled
pipe flow. Possible conclusions from the 75% filled pipe flow are that either the inner vortex
is not as stable as for the semi filled flow and the obtuse shape of the mixed-corner is not
able to keep the vortices, but still it appears and plays its role in the generation process, or
a different, not known process needs to take place, where the outer vortex plays the major
role. These questions are addressed in chapter 4, where the generation process of secondary
flow will be investigated in detail.

3.3.2. Wall Shear Stress

As mentioned in section 3.2.2, the wall shear stress is very important for engineering appli-
cations. Besides a Reynolds number dependency the development of wall shear stress with
different filling ratios is also of interest. The mean wall shear stress indicates areas, where
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Figure 3.38: Left: Normalised peak values of the stream function ψ/(uτR) (red) and normalised
circulation Γ/(ubR) (blue) over the filling ratio for Reτ = 180. Right: Position of
inner and outer secondary cell for Reτ = 180. Colours represent the filling ratio:
25%(blue), 50%(red), 75%(black). For both plots ◦ corresponds to the inner secondary
vortex and + to the outer secondary vortex.

strong shear stresses act on the wall on average. The mean wall shear stress distributions of
50% and 75% FR have a similar pattern – a global maximum in the mixed-corner followed
by a global minimum, see figure 3.39 (left). Near the vertical bisector, the wall shear stress
is constant for most part of the perimeter with τw ≈ τ0. When comparing 50% and the 75%
FR, the maximum is stronger by a factor of 1.2 for 75% FR, whereas the minimum value
is lower for the 50% FR by a factor of 1.15. The maximum and minimum together appear
much closer to the mixed-corner for 75% than for 50% filling ratio. This is surprising as the
wall shear stress distribution was found to be linked to the mean secondary flow for the 50%
FR and the mean secondary flow of the inner vortex is much weaker for 75% FR, still the
wall shear stress maximum is higher. This can be understood, by looking at the boundary
condition of the free surface. The impact of the slip condition at the free surface can be
imagined as a mirror, i.e. the velocity field and the wall are mirrored at the free surface and
the sign of the x3-component of the velocity is switched. Hence, for 50% FR a regular full
pipe can be imagined, see figure 3.39 (right). For 75% FR a strongly obtuse angle larger than
180 degrees would be generated by the present and the mirrored wall, thus, the influence of
the wall friction on the velocity in the vicinity of the mixed-corner is smaller than for the
50% FR. Hence, a higher velocity at the wall and therefore also a higher wall shear stress is
generated. In contrast, the mean wall shear stress distribution of 25% FR shows a minimum
in the mixed-corner, because the velocities are smaller, as the acute angle generates a narrow
section at the mixed-corner. The global minimum in the mixed-corner is followed by a local
maximum and a minimum which can be directly linked to the secondary flow. The small
plateau in the centre has a slightly higher level of magnitude than the local maximum at the
side. At the bottom of the pipe, the secondary flow shows higher intensities than in the case
of the higher filling ratios, which results in a larger wall shear stress. The distribution of
wall shear stress in the 25% case resembles the distribution of a flow through a trapezoidal
cross-section (Tominaga et al., 1989; Brosda, 2015), as the cross-sectional shape is similar
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Figure 3.39: Left: Normalised mean wall shear stress τw/τ0 of Reτ = 180 for 25%( ), 50%( )
and 75%( ). Right: present wall (solid line) and mirrored wall (dashed line) due
to the slip boundary condition at the free surface. Please note, that the distributions
were symmetrized using the half-plane symmetry.

except the solid corners.

The wall shear stress distributions can be compared to experimental data of Knight &
Sterling (2000), however, their Reynolds numbers are much larger than those of the present
study. Surprisingly, the distributions agree well, see figure 3.40. Of course the experiments
were not able to measure the inner secondary cell, as it scales with wall units. But the
magnitudes of the plateau in the centre of the perimeter match very well. Moreover, the
magnitude of the minimum in the mixed-corner is similar to the magnitude of the minimum
between the inner and outer secondary cells of the present simulations. For 50% FR, only
the maximum in the mixed-corner misses. The 75% FR is compared to 66% and 83% FR
of Knight & Sterling (2000). The transition of the wall shear stress distribution from 50%
FR over 66% to 83% FR is explained by the particular structure of the secondary flow that
shifts towards the upper part of the cross-section with increasing flow depth, and therefore,
less high-momentum fluid is transported onto the lower part of the pipe. The 83% filled pipe

Figure 3.40: Normalised mean wall shear stress τw/τ0 of Reb ≈ 5300 ( ) for 25% (left), 50%
(middle) and 75% FR (right), including τw/τ0 as + for 33% (left), 50% (middle) and
83% and as × for 66% (right) by Knight & Sterling (2000) of Reb = 64, 000− 150, 000.
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flow shows an almost constant wall shear stress over the perimeter, just like the simulation
for 75% filling ratio, except for the small minimum and the stronger maximum at the mixed-
corner, which is hard to detect in experiments. For 25% FR the comparison is made to a
33% filled pipe-flow, which does already show a velocity-dip phenomenon. Moreover, the wall
shear stress distribution of Knight & Sterling (2000) shows a similar pattern as the 50% FR
with one maximum in the centre and minima at the sides. Translated into secondary flow,
it would mean that two counter-rotating vortices transport high-momentum fluid from the
centre of the free surface towards the pipe’s bottom. No additional maxima or minima are
reported by Knight & Sterling (2000), hence, there are no more footprints of secondary flow
documented. For the other filling ratios the inner vortex is relatively small and therefore
difficult to detect by measurements, but for the 25% FR, and therefore also for 33% FR,
the inner secondary vortex covers such a large area of the cross-section, that measurements
should detect it. Unfortunately, Knight & Sterling (2000) did not measure any in-plane
velocities. As mentioned above, it seems that the present wall shear stress distribution of
25% FR is much more resembled by the trapezoidal cross-section (Tominaga et al., 1989).
Their measurements reported an inner secondary cell, which covers most of the area between
the side wall and the free surface, for even higher Reynolds numbers, however, the geometry
is slightly different.

The root-mean-square of the wall shear stress fluctuations gives an idea how large the fluc-
tuations deviate from the local mean value. Figure 3.41 shows that the basic pattern of the
rms of the wall shear stress fluctuations is similar for all fillings. There is a maximum in
the mixed-corner, a small minimum next to it and a plateau-like mid-section. For the 25%
and the 50% FR, another local maximum occurs next to the minimum. The maxima of 25%
and 75% FR are higher than for 50% filling ratio by a factor of approximately 1.2 and 1.3,
respectively. The rms-maximum in the mixed-corner corresponds to 0.3-0.5 of the mean wall
shear stress maximum. The minima are lowest for 25% FR and similar for 50% and 75% FR
and the plateau is for all three filling-ratios around τw,rms/τ0 ≈ 0.35. It implies that extreme
events mostly occur at the mixed-corner.

The azimuthal distance from the mean wall shear stress minimum to the mixed-corner is in
a range of 55-90 wall units for different Reynolds numbers of semi filled pipe flow. For the
different filling ratios at Reτ = 180, figure 3.42 shows that this range only holds true for low
filling ratios. For the 75% FR, the distance drops to 20 wall units. The azimuthal distance
to the first minimum of the wall shear stress distribution and separation point of secondary
flow have a similar trend: in general the distance gets smaller as the filling ratio increases.
For 25% FR, the azimuthal distance to the first minimum of the wall shear stress distribution
agrees very well with the distance of the separation point of streamlines. For 50% filling ratio,
the distance is about 10 wall units larger than for the wall shear stress, whereas it is about
ten wall units smaller for 75% filling ratio. This shows that the wall shear stress and the
secondary flow are linked and describe a similar flow structure.

In order to get an impression of the instantaneous near-wall flow a snapshot of the streamwise
velocity located at a constant wall distance of 10 wall units is shown in figure 3.43 for different
filling ratios. For 25% FR, there are small velocities in the mixed-corner, followed by a small
layer where only few extreme values occur and in the middle part streaks with very high
and very low intensities alternate. For 50% filling ratio, an alternating pattern of velocity
streaks with very high and very low intensities are all over the cross-section, which is also the
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Figure 3.41: Root-mean-square of local, normalised wall shear stress fluctuations τw,rms/τ0 over the
perimeter for Reτ = 180 for 25%, 50% and 75% filling ratio (left to right). Please note
the different ticks and limits of the horizontal axis. Please note, that the distributions
were symmetrized using the half-plane symmetry.

Figure 3.42: Azimuthal distance in wall units ∆s+ from mixed-corner to first minimum of wall shear
stress (◦) and to the separation point of the secondary flow (+) for Reτ = 180.

case for 75% FR. The size of the streaks seems to be increasing as the filling ratio increases,
which also controls the number of streaks fitting along the perimeter. Please note, that as
the streaks are scaling in wall units, this should be in direct relation to the definition of
the friction Reynolds number, which was kept constant Reτ = uτ2RH

ν
= 180. The hydraulic

radius for the 25% FR is approximately half of RH of the 75% filled pipe flow. Hence, the
wall units of 75% FR are twice as large as for 25% FR, but its wetted perimeter is also twice
as long. The number of high velocity streaks included are approximately four for 75% FR
and five for 25% and 50% FR.

From the instantaneous streamwise velocity distribution in the cross-section no particular
pattern can be found in order to distinguish between the inner and outer secondary vortex,
as the different minima and maxima are not distributed in a sorted manner, see figure 3.44.
This implies, that the secondary flow is rather a product of many different single events than
a mean flow only slightly fluctuating over time. Moreover, the velocity-dip phenomenon can
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Figure 3.43: Instantaneous normalised streamwise velocity u1/ub at a constant distance of 10 wall
units from the wall over the channel length for Reτ = 180 for 25%, 50% and 75% filling
ratio (top to bottom).

Figure 3.44: Instantaneous normalised streamwise velocity u1/ub over the cross-section for Reτ =
180. Left column 25% and 50% FR, right column 75% FR.
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be detected for 50% and 75% FR, whereas for 25% FR the velocity maximum is closer to
the free surface.

For figure 3.45, the azimuthal wall shear stress distribution was short-time averaged at a
fixed streamwise position. The averaging interval was one flow-through time L/ub and in
total 40L/ub intervals are shown. In this representation, the short-time fluctuations which
obscured the long-term variations of the wall shear stress are not visible. For 25% FR, a
small layer of low intensity with the extent of only a few wall units that is hardly visible
in this representation occurs directly in the mixed-corner. It is followed by an area of
moderately high wall shear stress. Then a strong minimum appears almost throughout the
40 snapshots. In the middle, an alternating pattern of high and medium intensities occurs.
The distribution of the 50% filling ratio starts with highest wall shear stresses in the mixed-
corner and next low τw occur. The area of randomly distributed, moderately high and low
wall shear stresses covers more than half of the perimeter. Similar to 25% filling ratio, a
very small layer of a few wall units directly in the mixed-corner exists also for 75% FR,
however, it consists of very high intensities. It is followed by a minimum and an alternating
pattern over most of the perimeter, but in this case almost without any extreme events. This
goes hand in hand with the impression from the instantaneous velocity streaks, see figure
3.43, and the mean wall shear stress distribution which can be extrapolated from this short-
time average behaviour. Similar to the results of the Reynolds-dependency this short-time
average is already able to capture most of the general features of the mean wall shear stress
distribution.

3.3.3. Reynolds Stresses

This section investigates the Reynolds stresses for different filling ratios in the partially filled
pipe flow. In figure 3.46, the different components of the root-mean-square of the velocity
fluctuations of the different fillings are compared with each other in the symmetry plane.
Near the wall, the distributions of all FRs lie almost on top of each other for u1,rms, u3,rms and
u′1u

′
3, only for u2,rms, the first peak is filling ratio dependent. With decreasing FR the peak

increases, however, full pipe flow matches semi filled pipe flow. In the outer layer stronger
deviations appear for the different Reynolds stress distributions. At approximtely 100 wall
units u1,rms/uτ has a minimum of 0.94 for 25% and 50% FR, and approximately 0.8 for the
75% FR. The maximum afterwards, towards the free surface increases with filling height.
The transverse component u2,rms also has a minimum with a following maximum at the free
surface. With increasing filling ratio, the magnitude of the minimum and the maximum both
increase. For u3,rms, the 25% FR shows a monotonical decrease, whereas 50% and 75% FR
have a less steep gradient after the initial maximum. The 75% FR has a region of almost
constant u3,rms. Nevertheless, a steep decrease occurs towards the free surface, where all free
surface normal fluctuations are damped. The Reynolds shear stress u′1u

′
3 is also consistent

in the outer layer for the different fillings, only the full pipe flow slightly deviates. On the
one hand, the full pipe flow and the 25% FR distribution end without a change of sign at
zero shear stress. On the other hand, the 50% and 75% FR have a layer at the free surface
with positive shear stress, which is stronger for 75% filling ratio. At the free surface these
two distributions also come back to zero.

It is obvious, that the free surface has a strong impact on the Reynolds shear stresses. To
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Figure 3.45: Temporal distribution of the normalised averaged wall shear stress τw/τ0 over the
perimeter for Reτ = 180 and a filling ratio of 25%, 50% and 75% (top to bottom). One
time instant equals the averaged τw over a period of L/ub. Total time interval is 40
L/ub.

define exactly the thickness of this layer and where it begins is difficult, since small deviations
are present all over the distribution. A change of sign in gradient in comparison to the full
pipe flow serves as an estimate of the starting point of influence. For u1,rms and u2,rms,
the influence can be noticed from approximately 50 wall units away from the free surface
and for u3,rms it is difficult to say. The Reynolds shear stress changes sign about 40 wall
units away from the free surface. These observations agree with the results of Nagaosa
(1999), defining a free surface layer with a size of 50 wall units. However, as mentioned in
section 3.2.3, no scaling could be found for different Reynolds numbers of semi filled pipe
flow.

The Reynolds stresses can be compared to the experiment by Ng et al. (2018) only in outer
units, see figure 3.47. First focusing at the bulk region, the qualitative pattern of the dis-
tributions of the present study agree well with the experiments, however, the magnitudes of
the experiments deviate. At the free surface the experiments underestimate the magnitudes
for u+

1,rms and u+
2,rms and for u+

3,rms they do not meet the boundary condition that the vertical
component is damped to zero. These deviations occur probably because they could not
measure directly at the free surface. On the other hand, their free surface is able to move,
hence, a different pattern of Reynolds stresses is possible. In order to assess the free-surface
behaviour the Reynolds stresses are compared to the data of Lee et al. (2012). They inves-
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Figure 3.46: Root mean square of velocity fluctuations u+
1,rms, u

+
2,rms (top), u+

3,rms and Reynolds shear

stress u′1u
′
3/u

2
τ (bottom) in inner units in the vertical symmetry line of Reτ = 180

for 25% (+), 50% (+) and 75% (+) filling ratio. ( ) represents the full pipe flow
from present DNS (Reτ = 180). Please note that in the vertical symmetry line, the
Cartesian coordinates in x2- and x3-direction are equal to the Polar coordinates θ and
r, respectively.

tigated the free surface movement in the mixed-corner using a Direct Numerical Simulation
and compared it to experiments. They simulated a rectangular cross-section with an aspect
ratio of 1:1. Because of their small aspect ratio and rectangular cross-section the Reynolds
stresses show deviations especially near the wall, however, close to the free surface their re-
sults show a good agreement with the present study. Please note that their domain length is
rather small with L = 2π. Further note that the flow depth was set to be equal to semi filled
pipe flow, however, this is only an assumption to enable the comparison for the free-surface
region. Coming back to the experiments of Ng et al. (2018), all Reynolds stresses have much
lower magnitudes near the wall than the current results. Measuring Reynolds stresses using
PIV can be biased by a low-pass filter (Adrian & Westerweel (2011), p. 449), which reduces
the actual fluctuations and therefore the Reynolds stresses. This is also mentioned by Ng
et al. (2018). In addition, due to surface reflections measurements near the wall become
even more difficult. Nevertheless, of course there are deviations, but still their data captures
most of the main details, like peaks, minima, plateaus and change of sign. The agreement
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Figure 3.47: Reynolds stresses u′21 /u
2
b, u′22 /u

2
b, u′23 /u

2
b and u′1u

′
3

2
/u2

b in outer units in the vertical
symmetry line of Reτ = 180 for 25%, 50% and 75% filling ratio. Blue data is from
experiments of Ng et al. (2018) and simulations of Lee et al. (2012) for a rectangular
cross-section with aspect ratio W/H = 1 and a moving free surface.

of the present study with full-pipe flow DNS is very good near the wall. However, in the
bulk region, secondary flow and free surface effects influence the present profiles, see figure
3.46.

The distributions of the turbulence intensities over the whole cross-section are shown in
figures 3.48. In the left plot the streamwise component and in the right plot the sum of
the in-plane components are shown. For 50% and 75% FR, u1,rms is homogeneously dis-
tributed in azimuthal direction with some deviations in the upper part of the cross-section
due to the secondary flow. In the bottom part the distribution of 25% FR is similar to
the higher filling ratios, but shows small intensities in the mixed-corner. All fillings show
a minimum in the centre, which is further moving away from the free surface with in-
creasing filling. Similar to the streamwise component, the sum of the in-plane components
show high intensities along the perimeter, however, they decrease for all filling ratios ap-
proaching the free surface. Furthermore, low intensities occur along the free surface. Both
distributions, u1,rms and ur,rms + uθ,rms, are homogeneous along the perimeter as long as the
secondary flow intensity is low. This homogeneous area becomes larger with increasing filling
ratio.
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Figure 3.48: Normalised root mean square of velocity fluctuations u1,rms/uτ (left),
(ur,rms+uθ,rms)/uτ (right) for Reτ = 180 and each filling ratio: 25%, 50% and 75% (top
to bottom). Please note, that the distributions were symmetrized using the half-plane
symmetry.

The Reynolds shear stresses are shown in Polar and Cartesian coordinate system, see figures
3.49 and 3.50, respectively. Similar to the normal components, u′1u

′
r shows a homogeneous

layer of high intensities along the perimeter and minima in the top centre of the flow. Peaks
can be observed where the secondary flow is directed away from the wall. In addition, the
25% filling has a change of sign with small intensities in the mixed-corner. u′1u

′
θ appears

to be small over the cross-section where secondary flow is small and peaks occur where the
inner secondary cell is located. Especially for the 75% FR, high intensities concentrate at the
free surface, which are only u′1u

′
2 shear stresses, because the free surface normal component

is damped, see figure 3.50. Overall, with increasing filling ratio, the intensities along the free
surface become more intense, whereas they become less intense in the bottom part of the
pipe.

Corresponding to the colour-mapping of turbulence anisotropy for the Reynolds number
dependent cases (see section 3.2.3), figure 3.51 displays the occurrences of one- (red), two-
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Figure 3.49: Normalised Reynolds shear stresses u′1u
′
r/u

2
τ (left) and u′1u

′
θ/u

2
τ (right) for Reτ = 180

and each filling ratio: 25%, 50% and 75% (top to bottom). Please note, that the
distributions were symmetrized using the half-plane symmetry.

(green) or three-component (blue) turbulence. As in section 3.2.3, the colourmap is de-
fined according to the Lumley triangle in the lower right. The turbulence anisotropy of the
different fillings have many similar aspects: The one-component layer (orange/red) along
the perimeter and the transition to three components (blue) where the streamwise veloc-
ity maximum is located. Along the free surface, the one-component layer reaches further
into the centre with increasing filling height. The transition along the free surface from
the state of one- to two-component turbulence (green) takes a longer distance for the lower
filling ratio. However, the area of two-component turbulence is similar for different fill-
ings.
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Figure 3.50: Normalised Reynolds shear stresses u′1u
′
2/u

2
τ (left), u′1u

′
3/u

2
τ (right) for Reτ = 180,

25%, 50% and 75% filling ratio. For a better distinction the zero stress line (black
solid line) is added for u′1u

′
3/u

2
τ . Please note, that the distributions were symmetrized

using the half-plane symmetry.
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Figure 3.51: Anisotropy componentiality of Reynolds stresses over the cross-section for Reτ = 180.
Left column 25% and 50% filling, right column 75% filling; colourmap according to non-
linear anisotropy invariant map. Please note, that the distributions were symmetrized
using the half-plane symmetry.
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3.4. Conclusion

The computed friction coefficient in the present study for quarter-, semi- and three-quarter
filled pipe flow are in good accordance to Prandtl’s relation for smooth full pipe flows.
This finding establishes an update to previously published experimental results in which the
friction factors were reported to lie above the full pipe’s values.

For the mean streamwise velocity in general, a good agreement to existing experiments was
obtained, however, important details of the flow were found to be different. The analysis
of semi filled pipe flow for different Reynolds numbers reports that the appearance and
position of the maximum streamwise velocity are Re-dependent and seem to settle at a
distance of 0.3 − 0.4/R from the free surface for the highest simulated Reynolds number.
This is very similar to values found by Sakai (2016) for a rectangular open-channel flow
and within the range of values measured by Yoon et al. (2012) and Ng et al. (2018) for a
similar Reynolds number range. In the symmetry plane, the velocity in the lower half of
the domain seems to move towards the standard log-law and matches well with the profile
measured by Ng et al. (2018) at a slightly higher Reynolds number. In combination with
all data available in literature on the position of the maximum streamwise velocity ∆z, the
present results indicate a linear relation between ∆z and the FR. It follows ∆z/(2R) =
0.6754(H/(2R)) − 0.1642, providing an easy estimation for the position of the maximum
streamwise velocity. Moreover, this relation was used to approximate the streamwise velocity
distribution applying the procedure of Guo et al. (2015). Good agreement was found between
the approximation and the present study, however, the effects of the secondary flow could
not be represented by this estimation.

The secondary flow pattern is organised in four vortices which are arranged symmetrically
to the vertical bisector in two counter-rotating pairs. Thus, the existence of the so-called
inner secondary cell appearing in the mixed-corner of partially filled pipe flow, postulated
by Grega et al. (2002), was confirmed for the investigated range of Reynolds numbers and
the different filling ratios. This was already confirmed for rectangular open-duct flows by
simulations of Joung & Choi (2009) and Sakai (2016) for low Reynolds numbers. While
the geometry of the outer secondary cell scales in bulk units, the position and size of the
inner secondary cell in semi filled pipe flow scale with wall units. This could explain, why
it has not yet been found in experiments performed at much higher Reynolds numbers as it
becomes smaller with increasing Reynolds number. With decreasing filling ratio, the inner
secondary cell grows in size, whereas it almost vanishes for a high filling ratio (75%). Hence,
the outer secondary cell becomes more dominant with increasing filling ratio. Under which
conditions the mixed-corner vortex is present, not only in an averaged sense, but also in
instantaneous flow fields, is addressed in the next chapter.

The inner secondary vortex has strong implications on the distribution of the wall shear
stress over the perimeter. The inner vortex transports high-momentum fluid from the free
surface towards the wall, which results in a global maximum of the wall shear stress in the
mixed-corner. For semi filled pipe flow, an almost harmonic wall shear stress distribution
can be observed for the lowest Reynolds numbers with a local maximum in the centre of the
perimeter. At Reynolds numbers above Reτ ≈ 140, a plateau is formed in the centre of the
perimeter, which becomes wider as Reynolds number increases. At the highest simulated
Reynolds number, the wall shear stress in the centre is only slightly above the global wall
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shear stress, whereas in the mixed-corner, it is more than 40% larger. With increasing
filling ratio, the region of constant wall shear stress in the centre enlarges, and despite the
less intense inner secondary cell for high filling ratios, the maximum in the mixed-corner
increases. For the 25% filling ratio, there is a minimum of wall shear stress directly in the
mixed-corner. This is due to the narrow flow section in the mixed-corner, where the wall
friction has a stronger impact on the flow than in the other regions. So far, the wall shear
stress variations in the mixed-corner, presented in this study, have not been reported in
literature for partially filled pipe flow yet.

Instantaneous near-wall streamwise velocities are organised in a streaky pattern like in a
standard, full pipe flow. The increased near-wall velocities in the mixed-corner can not
be seen in instantaneous distributions. By applying running time averages on the wall
shear stress over time intervals of L/ub, the large wall shear stress fluctuations occurring
in the mixed-corner are smoothed, and the mean wall shear stress distribution becomes
detectable.

The Reynolds stresses in the symmetry plane behave similarly to the full pipe flow, apart
from a narrow layer at the free surface in which the vertical component is damped and the
horizontal components are amplified. In the lower part of the pipe, the Reynolds stresses are
nearly homogeneously distributed in azimuthal direction. At the free surface and especially
at the mixed-corner, this homogeneity is broken by the fact that local maxima or minima
occur in and around the corner vortex. An anisotropy map highlights the prominent role of
the free surface and the corner vortex for the Reynolds stresses and infers a Reynolds stress
anisotropy. Moreover, it gives rise to the generation of mean streamwise vorticity which –
according to the classical picture – is a necessary condition for the generation of secondary
flow, which will be discussed in the next chapter.



4. Generation Mechanism of Secondary
Flow

Chapter 3 revealed that the mean secondary flow has a much smaller magnitude than the
streamwise velocity, but its influence on the streamwise velocity and on the wall shear stress
distribution is profound. In general, two counter-rotating vortices occur on each side of
the symmetry plane. One vortex is located in the mixed-corner, scaling with wall units,
and the second vortex is attached to the free surface, which becomes more dominant with
increasing filling ratio and increasing Reynolds number. The velocity-dip phenomenon occurs
for Reτ ≥ 140 for semi filled pipe flow and 75% FR. The 25% filled pipe flow does not show
the velocity-dip phenomenon and resembles a trapezoidal open-channel flow. Except for 25%
FR, the wall shear stress has a maximum in the mixed-corner followed by a minimum which
is fully compatible with the secondary flow pattern. From the literature survey and the
results of chapter 3 following questions arise:

• Under which conditions is the mixed-corner vortex present?

• How and where is the streamwise vorticity generated?

• How does the mean secondary flow obtain its kinetic energy?

• What is the size and structure of coherent structures and how do they correlate to the
mean secondary currents?

• Which structures are involved in the generation mechanism of mean secondary flow
and how do they interact?

As mentioned in section 1.3, different approaches exist which try to explain the mechanism of
secondary flow. However, there is no comprehensive answer yet. One very important aspect
was mentioned by Nikora & Roy (2012) that the different explanations for secondary flow are
different perspectives on the same phenomenon, which all accentuate other aspects of the flow
based on the Navier-Stokes equations. The aim should be to bring the different perspectives
in agreement to obtain a full picture of the secondary flow mechanism (Nikora & Roy, 2012).
In the following chapter approaches to the secondary flow mechanism, such as the mean
vorticity equation, the mean and turbulent kinetic energy budgets and proper orthogonal
decomposition, are applied to partially filled pipe flow. Moreover, new methods that provide
additional perspectives are introduced: Gaussian filtering and conditional averaging of the
flow field. By interpreting the results in combination, the above mentioned questions are
tackled.

89
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4.1. Balances of the Reynolds-Averaged Flow
Statistics

There are various approaches to explain the secondary flow mechanism by analysing the
Reynolds-averaged flow (cf. section 1.3), which is appealing, because the secondary flow
is a mean flow phenomenon by definition. At first, some of the existing approaches are
examined in more detail in order to be able to assess, which of them may offer insights into
the secondary flow mechanism in partially filled pipe flows.

One of the approaches was introduced by Yang & Lim (1997) and Yang et al. (2012), who
analysed secondary flow in rectangular and trapezoidal open-channel flows and open channels
with longitudinal ridges. They used the RANS-equations and simplified versions for the near-
wall and bulk flow in order to explain the generation and appearance of the mean secondary
flow. However, some of their conclusions can neither be completely applied to the DNS
data of Sakai (2016) nor to the present data of partially filled pipe flow. For example,
Yang & Lim (1997) and Yang et al. (2012) introduced the concept of division lines, which
only applies for larger Reynolds numbers and does not take the mixed-corner vortex into
account. In the vicinity of solid corners, they concluded that secondary flow points towards
stronger wall shear stress. This can be applied to the vortices directly in touch with the
solid corner, however, not for the inner secondary cell at the mixed-corner. Moreover, they
have argued that the place where secondary flow is generated should be where secondary
flow is strongest. In the case of longitudinal ridges, the strongest secondary flow can be
found in the vicinity of the ridges themselves. While for Sakai (2016) and the present flow
case, the maximum of mean secondary flow can be found at the free surface, which makes a
comparison difficult. Nevertheless, at the free surface, where the maximum intensities of the
secondary flow can be found for partially filled pipe flows, the production of mean secondary
flow via the MKE-budget, which will be discussed in section 4.1.2, shows a peak as well. In
conclusion, the concepts of Yang & Lim (1997) and Yang et al. (2012) can hardly be used
to explain the generation processes of secondary flow occurring in partially filled pipe flows.
Mainly, because they were set up for different geometries and a different scope, as they have
described high Reynolds number flows, hence, they did not consider the inner secondary cell,
which is a main focus of this study.

The other approaches examining the Reynolds-averaged flow, that seem to be promising
to get insights into the secondary flow mechanism, are the analysis of the mean vorticity
equation and the budget equations of the MKE and TKE (Nikora & Roy, 2012). The in-
vestigation of the mean vorticity equation is the classical approach to analyse the secondary
flow mechanism (Nezu & Nakagawa, 1993). It enables to assign the generation of stream-
wise vorticity to terms based on the anisotropy of the Reynolds stresses and to localize
the process of vorticity generation. The two budget equations of MKE and TKE form a
framework to understand how the incoming kinetic energy is transformed within the flow
and how secondary flow obtains its kinetic energy. In the following section, the mean vor-
ticity equation and the budget equations of MKE and TKE are introduced and analysed
in detail and, in addition, possible connections between the different perspectives shall be
highlighted.
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4.1.1. Mean Vorticity Equation

Please note that the results and conclusions for semi filled pipe flow in this section have been
partly published in Brosda & Manhart (2022). Results for different filling heights are first
published in this thesis.

Einstein & Li (1958) were the first to derive that secondary flow of Prandtl’s second kind
is present in straight turbulent flows, if anisotropy of the in-plane Reynolds stresses occurs.
This conclusion can be drawn from the equation for the mean streamwise vorticity (eq. 1.14),
which simplifies for a straight and steady flow to
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The convection terms on the left hand side are balanced by gradients of the Reynolds shear
and normal stress terms and a vorticity dissipation term. The Reynolds shear and nor-
mal stress terms have been denoted as vorticity dissipation and generation, respectively
(Nezu & Nakagawa, 1993; Nikora & Roy, 2012). However, the delimitation between the two
processes is not accurate. Firstly, because this denomination is not invariant with respect
to coordinate transformations. Only as a sum, they are invariant and can be interpreted
as generation of streamwise vorticity (Einstein & Li, 1958; Nezu & Nakagawa, 1993). Sec-
ondly, positive values of the sum of the Reynolds stress terms generate streamwise vorticity
of counter-clockwise rotation. In contrast, negative values do not describe the dissipation of
vorticity, they generate streamwise vorticity with the opposite sense of rotation (clockwise)
compared to positive values. Thus, if anisotropy of the in-plane Reynolds stresses occurs,
streamwise vorticity is generated and, therefore, turbulence-induced secondary flow. In fig-
ure 4.1 one can see the sum of the Reynolds stress terms, which is approximately zero over
the whole cross-section apart from a small region at the mixed-corners and a layer at the
free surface in case of high Reynolds numbers. Please note that for the highest Reynolds
number artifacts from the grid refinement are present. These artifacts occur because the
boundary of fine to coarse grids is only first order accurate and only conserves mass but not
momentum.

For different filling heights, see figure 4.2, the general distribution of the vorticity generation
term is similar, the peaks are gathered in the mixed-corner, where always the same sense of
rotation is induced. However, in detail they differ: the peak is attached to the side wall for
25%, whereas with higher filling the Reynolds stress anisotropy gets concentrated more and
more in the mixed-corner and reaches out along the free surface. The change of sign of the
distribution does not perfectly match the separation of inner and outer secondary cell, but
it matches fairly well with the vorticity itself, which is shown as contours in the right half
of the cross-sections. A large area of high intensity of vorticity generation covers the shear
layer at the wall, especially for 25% and 50% filling. Another part is covered by the mixed-
corner vortical structure with the opposite sign as the shear layer. A similar pattern can be
found in Brosda (2015) for rectangular and trapezoidal open-duct flows and in Kara et al.
(2012) for compound open-channel flows. In these studies vorticity generation also occurs
in the vicinity of the solid-solid corners, nevertheless, the total secondary flow generated is
similarly strong as for semi filled pipe flow. This could mean that the mixed-corner alone is
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Figure 4.1: Sum of normalised vorticity generation
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of Reτ = 115, 140 (left column) and 180, 460 (right column, top to bottom). Please
note that the range of the colourmap of the left column is smaller by a factor of two.
Further note, that the distributions were symmetrized using the half-plane symmetry.

able to produce a secondary flow as strong as generated by a mixed-corner and a solid-corner
together. Hence, following the derivation of Einstein & Li (1958) and Nezu & Nakagawa
(1993), it can be concluded that the mixed-corner region is responsible for the generation of
the mean secondary flow in partially filled pipe flow, which also emphasizes the role of the
inner secondary cell.

4.1.2. Mean Kinetic Energy (MKE) Budget

Please note that the results and conclusions for semi filled pipe flow in this section have been
partly published in Brosda & Manhart (2022). Results for different filling heights are first
published in this thesis.

Theory of MKE-Budget

Nikora & Roy (2012) have proposed a path of kinetic energy highlighting the perspective of
the MKE-budget on the generation of mean secondary flow. It is based on the component-
wise MKE-budget for steady, straight and uniform flow. The MKE-budget equations are split
up into the streamwise component u2

1 (eq. (4.2)) and the sum of the secondary components
u2

2 + u2
3 (eq. (4.3)).
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Figure 4.2: Sum of normalised vorticity generation
((

∂2

∂x23
− ∂2

∂x22

)(
−u′3u′2

)
+ ∂2

∂x3∂x2

(
u′23 − u′22

))
R2/u2

τ

of Reτ = 180 for filling ratio 25%, 50% (left, top and bottom, respectively) and 75%
(right). In the right half, black contours indicate the distribution of ω1. Please note,
that the distributions were symmetrized using the half-plane symmetry.
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Please note since the steady volume force driving the flow gi acts only in streamwise direction
(g2 = g3 = 0), the energy input Ein appears only in the MKE-budget for the streamwise
component. In a gravity-driven flow, the term g3u3 would be in equilibrium with the hy-
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drostatic pressure, hence no energy input would occur in the velocity component u3. The
supplied kinetic energy is redistributed in space by the convection term C1 and the turbulent
and the viscous transport terms T1. Parts of the energy are directly dissipated (ε1) and other
parts are transferred to the TKE via the production P1. Please note that there is no direct
inter-component transfer term from the streamwise to the secondary velocity components.
The kinetic energy enters the mean secondary flow in a two-step process. First the MKE-
production terms P1 transfer energy to TKE, where it is partly dissipated, redistributed in
space and spread among the fluctuation components, see section 4.1.3. Second, some of the
remaining part is transferred to the secondary flow (u2

2 + u3
2) by the terms u′2u

′
j
∂u2
∂xj

and

u′3u
′
j
∂u3
∂xj

(P2,3). The secondary MKE is redistributed in space, directly dissipated or trans-

ferred back to TKE by the other terms in equation (4.3). In order to verify the suggested
path of kinetic energy and to explicitly apply it to the partially filled pipe flow, all important
terms of the path will be analysed in the following.

Analysis of MKE-Budget

First of all, the distributions of the primary and secondary MKE and TKE themselves are
introduced, see figure 4.3 and 4.4. The distribution of the primary MKE, u2

1, is similar to
the distribution of the streamwise velocity (figure 3.2) displaying large values of MKE in
the pipe’s centre and below where the velocity maximum can be found. In the vicinity of
the wall, a large bump in the primary MKE distribution can be found for 25% filling and a
small bump for 50% filling. These bumps occur, where secondary flow is pointing away from
the wall, transporting low momentum fluid to the centre. The distribution of 75% filling
is almost homogeneous along the wall. The secondary MKE has peak values less than one
per mille of the primary MKE. Two peaks can be found at the free surface symmetrically
between the pipe axis and the mixed-corners. Smaller local peaks can be found around the
corner vortex. For 75% filling these local peaks miss, because the inner secondary cell is
very weak.

The largest values of primary TKE, u′21 , can be found in a band along the perimeter at a wall
distance of approximately x+

n ≈ 15, see figure 4.4 (left). For 25% filling a minimum occurs
in the mixed-corner, where the influence of friction seems to be strong. In contrast, 75%
filling has maximum of primary TKE in the mixed-corner. The maxima of the secondary
TKE are distributed along the perimeter at larger wall distances than the maxima of the
primary TKE. For 75% filling another local maximum can be found in the centre of the
free surface, where TKE is produced, which is discussed later in this section, see figure
4.10.

Table 4.1 provides a quantitative comparison between the primary and secondary of MKE
and TKE. The individual energy shares are shown for all different Reynolds numbers and fill-
ing ratios. The mean kinetic energy is partitioned into 99.99% of primary kinetic energy and
only 0.01% of secondary kinetic energy, which does hardly change for different Reynolds num-
ber or filling ratios. The TKE is partitioned into 85% (Reτ = 115) to 60% (Reτ = 460) of the
primary component and 15% (Reτ = 115) to 40% (Reτ = 460) of the secondary components.
Different filling ratios do not change the partition, but with increasing Reynolds number the
secondary components get more energy, which is in agreement with the Reynolds-dependent
observations of the Reynolds stress anisotropy in section 3.2.3.
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Figure 4.3: Primary (left) and secondary (right) components of MKE of Reτ = 180 normalised by u2
τ

for filling ratio 25%, 50% and 75% (top to bottom). Please note, that the distributions
were symmetrized using the half-plane symmetry.

Filling ratio Reτ MKE1 MKE2,3 TKE1 TKE2,3

50 % 115 0.99996 0.00004 0.856 0.144
50 % 120 0.99995 0.00005 0.841 0.159
50 % 140 0.99994 0.00006 0.798 0.202
50 % 180 0.99989 0.00011 0.736 0.264
50 % 230 0.99987 0.00013 0.682 0.318
50 % 460 0.99986 0.00014 0.595 0.405
25 % 180 0.99987 0.00013 0.731 0.269
75 % 180 0.99985 0.00015 0.742 0.258

Table 4.1: Partition of total kinetic energy into primary and secondary components for different
Reynolds numbers
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Figure 4.4: Primary (left) and secondary (right) components of TKE k of Reτ = 180 normalised by
u2
τ for filling ratio 25%, 50% and 75%(top to bottom). Please note, that the distributions

were symmetrized using the half-plane symmetry.

In a next step, the budget of the MKE shall be validated by checking the residuum of
the primary and in-plane components of the MKE-budget at the free surface, where strong
convection is present. The residuum is the black solid line in figure 4.5 and 4.6. Hence, for
the primary MKE-budget the maximum residuum is less than 2% of the maximum of other
terms, apart from the very first cell at the wall. For the secondary components the residuum
is also less than 2% compared to the other terms apart from the first cells at the wall. Only
for Reτ = 460 a higher residual disturbance at the boundary of grid refinement can be
noticed, for the same reason as described in section 4.1.1.

Looking at the magnitude of the budgets, it is obvious that the primary MKE is highly dom-
inating the total MKE budget. Please note that a positive MKE-production P corresponds
to a transfer from TKE to MKE and a negative MKE-production P from MKE to TKE.
Very close to the wall the viscous transport and the dissipation balance each other. Going
further away from the wall the MKE-production, convection and turbulent transport also
contribute to the budget. In the bulk region the energy input is mainly balanced by the
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Figure 4.5: Primary terms of MKE budget terms taken four wall units below and parallel to the
free surface of Reτ = 115, 140 (left column) and 180, 460 (right column, top to bottom).

convection and the turbulent transport. For the primary terms a Reynolds-dependency can
be noticed. With increasing Reynolds number the global maxima of all peaks move closer
to the wall, x2/R = −1. Moreover, the peaks gain magnitude with increasing Reynolds
number and seem to saturate for higher Reynolds numbers. Focusing on the secondary com-
ponent mostly the terms of MKE-production, convection, pressure and turbulent transport
balance each other. Their development with changing Reynolds number is similar to the
primary terms. The magnitudes increase and seem to settle for higher Reynolds numbers
and the peaks shift towards the wall. A more detailed look on the budget is presented via
the expansion of each term over the whole cross-section.

Before describing each term in detail, please note that the visualisations of the primary and
secondary components have different scales. Let us start with the terms that redistribute
the incoming kinetic energy, thus, the convection and the transport terms. The primary
convection is strongly connected to the mean secondary flow. It has high intensities in the
mixed-corner, negative at the upper side of the inner secondary cell and positive at the
lower side of the vortex and reaching to the centre of the flow (see figure 4.7, left). This
means that the secondary flow transports high energetic fluid into the mixed-corners and low
energetic fluid from below the inner vortex into the bulk region. Within the area in which
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Figure 4.6: Secondary terms of MKE budget terms taken four wall units below and parallel to the
free surface of Reτ = 115, 140 (left column) and 180, 460 (right column, top to bottom).

the convection term is positive (marked as red) the streamwise velocity and, therefore, the
primary MKE increases along the streamlines. The area with negative values in the mixed-
corner becomes smaller as the FR increases, similar to the secondary flow. Moreover, for
all fillings the convection changes its sign at the position of the velocity-dip. The secondary
components of the convection are negligible small over the cross-section in comparison to
the other terms (see figure 4.7, right). Only for 75% filling small contributions directly
at the free surface are noticeable. Integrated over the whole cross-section the convection
is approximately 0. Hence, it describes a transport of energy, which does not change the
amount of energy over the entire cross-section.

Like convection, each transport term of the MKE-budget integrated over the cross-section
equals approximately zero. Therefore, MKE is transported and redistributed by the trans-
port terms, but they cannot produce or dissipate energy, because of their flux divergence
form. Overall, the primary transport terms T1 carry primary MKE from the pipe centre
(negative) towards the walls (positive), where it is either dissipated or transferred to TKE
(see figure 4.8, left). In other words, the turbulent transport T1,turb acts like a diffusion
of kinetic energy. In the vicinity of the wall the viscous transport is responsible for the
transport of kinetic energy towards the wall, where the viscous effects dissipate the kinetic
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Figure 4.7: C1 (left) and C2,3 (right) of Reτ = 180 normalised by ν/u4
τ for filling ratio 25%, 50%

and 75% (top to bottom). Please note, that the distributions were symmetrized using
the half-plane symmetry.

energy. This is shown by the small layer of high positive intensities along the perimeter. In
addition, the high positive intensities reach further to the centre, where secondary flow flows
away from the wall. In contrast, for 25% and 50% FR a minimum of the transport terms
appears in the mixed-corner, where secondary flow transports high momentum towards the
wall. For high filling ratio, no minimum is detectable in the mixed-corner, because of the
very small inner secondary vortex. However, the positive layer further spreads along the free
surface, being aligned with the outer secondary vortex.

The extreme values of the secondary transport terms T2,3 are smaller than the primary
extreme values by a factor of approximately 100 (see figure 4.8, right). They are mostly
active in the mixed-corner and in the centre of the free surface, negative where stagnation
and positive where separation points of the mean secondary flow exist. T2,3 mainly consists
of pressure and turbulent transport, whereas viscous transport is negligible. Moreover, the
distribution of T2,3 is strongly related to the secondary MKE-production P2,3, which are
described later in this section.
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Figure 4.8: T1 (left) and T2,3 (right) of Reτ = 180 normalised by ν/u4
τ for filling ratio 25%, 50%

and 75% (top to bottom). Please note, that the distributions were symmetrized using
the half-plane symmetry.

As mentioned above, the convection and transport terms integrated over the cross-section are
approximately zero, hence, the incoming energy is in equilibrium with the MKE-production
and the mean dissipation, which are examined next. Let us first focus on the dissipation
of MKE. The primary dissipation ε1 dissipates energy in the vicinity of the wall with its
highest intensities in the mixed-corner, see figure 4.9 (left). For 75% filling the peak in
the mixed-corner is less strong. The distribution of ε2,3 has only a very small layer along
the wall where the inner secondary cell is located, a little region at the bisector of the
mixed-corner or a small area at the free surface with a rather small impact, see figure 4.9
(right).

The last puzzle piece of the MKE-budget is the MKE-production displayed in figure 4.10,
which mostly transfers MKE to TKE. The primary MKE-production P1 is similarly dis-
tributed as the primary TKE itself. It seems to be very similar to the distribution in a
standard turbulent pipe flow with a nearly homogeneous distribution around the perimeter
apart from the mixed-corner, where lower values occur for 25% and higher values for 75%
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Figure 4.9: ε1 (left) and ε2,3 (right) of Reτ = 180 normalised by ν/u4
τ for filling ratio 25%, 50% and

75% (top to bottom). Please note, that the distributions were symmetrized using the
half-plane symmetry.

filling ratio. In contrast, the secondary MKE-production P2,3 is strong at the free surface,
where the secondary MKE has its maxima, see figure 4.10. In addition for 25% and 50%
filling local peaks appear at the upper wall, again, where secondary MKE also has local
maxima. While P1 is consistently negative in the MKE balance equation (energy is trans-
ferred from MKE to TKE), its counterpart P2,3 changes sign. This means that in the regions
where the MKE-production is positive, energy is transferred from the fluctuations to the
mean secondary flow (TKE→ MKE) and where P2,3 is negative: MKE→ TKE. Comparing
P2,3 to the secondary transport terms T2,3, they balance each other, hence, where P2,3 is
positive MKE is transported away and where P2,3 is negative secondary MKE is brought to
that location by T2,3.

It can be observed that kinetic energy is essentially transferred to the mean secondary
flow only in two regions symmetrically located about the vertical symmetry plane at the
stagnation point at the free surface that marks the boundary between the inner and the
outer vortex. The mean secondary flow points away from this stagnation point, thus, giving
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Figure 4.10: P1 (left) and P2,3 (right) of Reτ = 180 normalised by ν/u4
τ for filling ratio 25%, 50% and

75% (top to bottom). Please note, that the distributions were symmetrized using the
half-plane symmetry. For secondary components the stream function ψ of secondary
flow has been included in one half of the cross-section.

rise to a positive MKE-production u′2u
′
2
∂u2
∂x2

in the MKE balance. In the pipe centre, the
secondary flow points towards each other from both sides and is redirected downwards. This
situation generates a negative production term in the MKE balance and kinetic energy is
transferred back from the secondary MKE to the secondary TKE. A similar effect can be
observed at the lower boundary of the inner vortex where the secondary flow is directed
away from the wall. Here as well, transfer from secondary MKE to TKE is indicated by
a negative P2,3. Therefore, it can be deduced that a part of the kinetic energy that the
mean secondary flow receives at the free surface is passed back to the turbulent secondary
flow.

A condition of having a non-zero transfer between secondary MKE and TKE is that the verti-
cal fluctuations are damped near the free surface. This can be seen by rewriting the secondary
MKE-production P2,3 in equation (4.3) neglecting the shear production – which is small –



4. Generation Mechanism of Secondary Flow 103

and using the continuity equation (∂u2/∂x2 = −∂u3/∂x3):

u′2u
′
2

∂u2

∂x2

+ u′3u
′
3

∂u3

∂x3

≈
(
u′2u

′
2 − u′3u′3

) ∂u2

∂x2

. (4.4)

At the free surface, the vertical fluctuations u′3 are damped and the horizontal fluctua-
tions u′2 are amplified, compare figures 3.48 and 3.46. Thus, in contrast to an isotropic
turbulence structure the normal stress difference in equation (4.4) increases at the free
surface enabling exchange of kinetic energy between the mean and the fluctuating veloc-
ities.

In figure 4.10 (right) the stream function of the secondary flow is plotted in addition to the
MKE-production of secondary components. For the different fillings, the production of mean
secondary flow (P2,3 > 0) at the free surface (red area) is split up into a contribution to the
inner and outer secondary cell. For the semi filled case the produced secondary MKE seems
to be shared equally between inner and outer vortex. For 25% most of the energy seems to
be shifted into the inner secondary cell, whereas for 75% almost everything is provided for
the outer secondary cell. This distribution shows which vortex gets more energy, hence, is
the more dominant vortex. This is in good agreement with the filling-dependency reported
for the circulation in section 3.3.1.

In the next paragraph, the above mentioned findings shall be discussed in combination with
the results of section 4.1.1, which had shown that the sum of gradients of the Reynolds
stresses, which are responsible for generating streamwise vorticity, are located in the mixed-
corner. From the perspective of the MKE-budget, it can be deduced that mostly at the free
surface energy is transferred from TKE to the secondary MKE into its horizontal component
u2

2. This generates a flow towards the mixed-corner, where the flow is directed downwards.
The downward flow creates a shear flow along the wall until it meets the outer secondary
vortex. At this point the flow is again redirected away from the wall and most of the sec-
ondary MKE is transferred back to TKE. It is clear that this partial circle goes hand in
hand with rotation, i.e. streamwise vorticity, that occurs in the mixed-corner. Thus, the
two perspectives describe two different generation mechanisms of secondary flow, which do
not contradict each other. Furthermore, at least for 25% and 50% filling, where the inner
secondary cell plays an important role, one could argue that the two mechanisms strengthen
each other. Whereas for 75% FR, it is difficult to draw a similar conclusion, as the inner
secondary cell is very weak, but vorticity generation still occurs in the mixed-corner. Hence,
it is not clear whether the processes are similar to the other fillings. In conclusion, no clear
and convincing connection could be found between the two different approaches of secondary
flow generation mechanisms.

The path of kinetic energy is further illustrated by the cross-section integrated terms of the
MKE- and TKE-budget in figure 4.11 for semi filled pipe flow with Reτ = 180. Terms redis-
tributing kinetic energy in space, such as convection and the transport terms, vanish after
integration. About two thirds of the kinetic energy input are dissipated directly, which can
be explained by the relatively low Reynolds number (Reτ = 180). One third is transferred
to TKE and mainly dissipated by the turbulent dissipation ε′. Only a very small fraction,
less than one per mill of the total kinetic energy flux is fed back to the secondary flow via
the term P2,3 in an absolute sense.
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g1u1 : 1

ε: 0.6558

P1 : 0.3437

MKE TKEEnergy
input

ε′: 0.3391

P2,3 < 0 : 0.0024
P2,3 > 0 : 0.0031

Figure 4.11: Path of kinetic energy for Reτ = 180. Cross-section integrated values normalised by
the energy input gu1.

Figure 4.12: Cross-section integrated values of P1, ε and ε′ (left) and P2,3>0 and P2,3<0 (right) for
Reτ = 115, 140, 180, 230, 460 normalised by the energy input g1u1.

The path of the kinetic energy in figure 4.11 is complemented with values for other Reynolds
numbers in figure 4.12. As expected, with increasing Reynolds number direct dissipation ε de-
creases and the share of energy transferred to TKE increases. It can be seen that independent
of the Reynolds number the turbulent dissipation is nearly equal to the MKE-production.
The energy exchange between turbulence and secondary flow, P2,3 gets stronger with in-
creasing Reynolds number and seems to saturate for larger Reτ . This behaviour is similar to
the behaviour of the peak values of the stream function, see figure 3.11. The transfer from
the turbulence to the mean secondary flow (P2,3 > 0) is always larger than the transfer in
reverse direction (P2,3 < 0). The difference is the energy dissipation by the secondary flow
which has a nearly invisible share of the total energy balance.

Finally, the PDF of the cross-section integrated
∫

Ω
P2,3 is shown in figure 4.13. The absolute

values of
∫

Ω
P2,3 are displayed in the left plot. The PDF is nicely Gaussian distributed,

with a slightly non-zero mean value, equal to the absolute secondary MKE-production in
figure 4.11. For the plot on the right, two different PDF’s were created. The red PDF is
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Figure 4.13: Left: Integrated P2,3 over all values for each cross-section of all snapshots. The black
line indicates the mean value (≈ 9). Right: Histogram of minimum and maximum
of sign-separated integration of P2,3 over each cross-section of all snapshots. Both for
Reτ = 180 and 50% filling.

generated by only taking the positive values of the secondary MKE-production into account
for creating a cross-section integrated PDF

∫
Ω
P2,3|>0, whereas the blue PDF only considers

the negative values
∫

Ω
P2,3|<0. Both PDF’s are included in the right plot. Each of the two

sign-separated distributions shows a skewed distribution with the highest magnitude close
to zero and a long tail of large values. The extreme values are larger than for the absolute
secondary MKE-production, hence, if, for example, an event of strong positive P2,3 occurs
in a cross-section it is at least partly balanced by an event of negative P2,3. Moreover,
the sign-separated distribution shows that there are no occurrences with zero secondary
MKE-production. Thus, there is always a minimum amount of secondary MKE-production
occurring in each instantaneous cross-section.

Conclusion

Concluding this section, each individual distribution, primary and secondary terms, of con-
vection, transport, dissipation and MKE-production have in common, that their high inten-
sities are mostly along the perimeter, in the mixed-corner and along the free surface. There
are no high intensities where the mean streamwise flow has its maximum, the velocity-dip
phenomenon.

The mean secondary flow obtains its kinetic energy from the secondary fluctuations in a
small area around the stagnation point located at the free surface, separating the inner and
the outer secondary flow cells. From this point, one part of the secondary kinetic energy is
transported by turbulent transport towards the pipe’s centre, where its main part is fed back
to the secondary fluctuations. The largest values of secondary kinetic energy can be found
midway between the maximum (positive) and minimum (negative) of the MKE-production.
Another part of the secondary kinetic energy is transported towards the mixed-corner where
the majority of the direct dissipation of mean secondary kinetic energy takes place. With
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increasing filling ratio the amount of energy directed towards the centre also increases. For
75% filled pipe flow most of the secondary kinetic energy is directed towards the centre and
the inner secondary cell almost vanishes.

The share of direct dissipation by the primary flow decreases with increasing Reynolds
number while the transfer to TKE increases. The levels of energy fluxes to the secondary
flow are very small compared to the primary MKE-production and seem to saturate within
the Reynolds number range considered.

Comparing the processes occurring within the MKE-budget and the mean vorticity equation
shows that they are compatible with each other for 25% and 50% filling ratio. The intensity
and location of vorticity generation is sensible in connection with the location and division
of secondary MKE-production, however, no causality can be concluded. For 75% filled pipe
flow the location of vorticity production is in conflict with the results from the MKE-budget.
The mixed-corner region obtains only little secondary kinetic energy and the strong outer
secondary cell rotates in the opposing direction, but still strong vorticity production takes
place. However, on the one hand, the statistics of the secondary MKE-production obviously
do not incorporate the full turbulent dynamics. On the other hand, the streamwise vorticity
generation does only indicate, where a turbulence anisotropy exists and if there is any mean
secondary flow is generated, however, it does hardly provide any information about what
process takes place.

4.1.3. Turbulent Kinetic Energy (TKE) Budget

Theory of TKE-Budget

The turbulent kinetic energy budget links the transfer from MKE to TKE via P1 and the ex-
change processes of kinetic energy via P2,3 described in section 4.1.2. The TKE-budget equa-
tion (4.5) contains similar terms as the MKE-budget, but describes the turbulent processes in
a Reynolds decomposition sense, as mentioned in section 1.2.
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In the same manner as the MKE, the TKE can be decomposed into a part containing the pri-
mary component and a part containing the secondary components. The corresponding bud-
get equations are given in eqs. (4.6) and (4.7), respectively. Please note that the intercompo-
nent transfer term Π′ cancels out in equation (4.5), because of its divergence form, however,
for the component-wise budgets, the individual intercomponent transfer terms Π′1 and Π′2,3
are non-zero. Please keep in mind that the production term P appears in both in the MKE-
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budget equations (eq. 4.2 and 4.3) and in the TKE-budget equation (eq. 4.5), but with an
opposite sign. This means that according to its sign, its meaning is inverted. Hence, within
this section on the TKE-budget, a positive P means transfer from MKE to TKE and a nega-
tive P TKE to MKE. Therefore, P is called TKE-production.
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∂

∂xj

u′1u
′
1

2︸ ︷︷ ︸
convection C′

1

− ∂

∂xj

[
u′1u

′
1u
′
j

2
− ν

2

(
∂u′1u

′
1

∂xj

)]
︸ ︷︷ ︸

transport T ′
1

− p′
∂u′1
∂x1︸ ︷︷ ︸

intercomponent transfer
Π′

1

− u′1u
′
j

∂ū1
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∂

∂xj

u′iu
′
i

2︸ ︷︷ ︸
convection C′

2,3

− ∂

∂xj

[
1

ρ
p′u′j +

u′iu
′
iu
′
j

2
− νu′i

(
∂u′i
∂xj

+
∂u′j
∂xi

)]
︸ ︷︷ ︸

transport T ′
2,3

− p′
∂u′j
∂xj︸ ︷︷ ︸

intercomponent transfer
Π′

2,3

− u′iu
′
j

∂ūi
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Nikora & Roy (2012) have mentioned an analysis of the TKE-budget, which was applied by
Anderson et al. (2015), who studied the TKE budget for a open-channel flow with streamwise
ridges. By following the derivation of Hinze (1967, 1973), they could show that secondary
flow needs to be generated for their flow configuration. The assumptions of Hinze (1967,
1973) are a steady, turbulent and fully developed flow in a straight uniform geometry. Fur-
thermore, a high Reynolds number flow is assumed, in which the turbulent transport terms
T ′ can be neglected, as they are supposed to be small except near the wall. This leads to
C ′ ≈ P ′ − ε′, where locations with an imbalance between TKE-production and dissipation
need to generate convection, which also implies a non-zero secondary flow, see C ′1 in equation
(4.6). Unfortunately, Anderson et al. (2015) did not further investigate the processes of the
secondary flow mechanism. For the present study the assumption of large Reynolds num-
bers does not hold. Hence, the transport terms cannot be neglected. Nevertheless, energy
needs to be transported from TKE-production to the location, where it is either dissipated
or transferred back to MKE. In the present study, this transport is provided not only by
convection but also by the transport terms.

Analysis of TKE-Budget

In figure 4.14 the individual terms of the complete TKE-budget (eq. 4.5) and their residual
are shown, in order to validate the analysis. Apart from the very first cells in the mixed-
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corner the residual does not become larger than 5%. Moreover, a good agreement can be
found in comparison to full pipe flow, only the convection term C ′ plays a more important
part, which needs to be balanced by the other terms.

Figure 4.14: TKE budget terms taken four wall units below and parallel to the free surface of
Reτ = 180 for semi filled pipe flow. Terms are defined in equation (4.5).

In figure 4.15 all terms of the primary terms of the TKE-budget for a semi filled pipe flow
of Reτ = 180 are shown. In general, there must be a transfer from locations with high
TKE-production P1 to dissipation ε′1. It is shown that P1 and ε′1 are large in similar regions,
but do not match exactly. Moreover, because the components are split, an intercomponent
transfer Π′1 occurs, which acts like a sink of TKE for the primary components. C ′1 and T ′1 are
responsible for the transport of TKE. Please note that the peaks of the convective term are
much smaller than the transport term and occur in similar locations, hence, as mentioned
above, the latter cannot be neglected for this flow case. The transport T ′1 is strongly active
only in the vicinity of the wall, as expected. It transports TKE from the peaks of P1 towards
the wall, where it is dissipated. However, the dissipation occurs not only very close to the
wall, but in a larger band along the wall. Moreover, a small part of the primary TKE is
directly transferred to the secondary components by Π′1 at the same location, where it enters
the TKE.

The secondary components are presented in figure 4.16. Most of the primary TKE enters
the secondary components via Π′2,3, which is mostly directly dissipated, see distribution of
ε′2,3. Moreover, TKE enters and leaves the budget via P2,3 at the free surface and the upper
wall. Therefore, the transport terms and the convection provide the local redistribution,
which have their maxima in the surrounding of the mixed-corners. Hence, in the lower part
of the flow, the distributions resemble a full pipe flow, whereas the upper part of the flow is
strongly influenced by the free surface.



4. Generation Mechanism of Secondary Flow 109

Figure 4.15: Primary components of TKE-budget terms for Reτ = 180 and 50% FR normalised by
ν/u4

τ . C ′1, T ′1 (left column) and Π′1, P1, ε′1 (right column, top to bottom). Please note,
that the distributions were symmetrized using the half-plane symmetry.

Conclusion

To the end of this section, the investigations of the MKE- and TKE-budget shall be con-
cluded. Therefore, let us recall the schematic flux of energy presented in figure 4.11. It illus-
trates that most of the incoming energy is directly dissipated and the generation of secondary
flow is a subtle process. Energy is transferred from MKE to TKE predominantly via P12 and
P13 mostly along the wall. In order to transfer energy back to secondary MKE, a transition
to P2,3 needs to take place within the TKE-budget. This intercomponent transfer takes
place via Π′. Hence, the path of kinetic energy from the incoming energy to the secondary
flow is completed and a crucial term, the secondary production P2,3, is identified. However,
the perspective of the mean flow analysis provides an incomplete picture of the secondary
flow mechanism, because the flow is obviously turbulent. It is not clear, how the secondary
flow appears instantaneously, especially the flow in the mixed-corner. Furthermore, it is still
unclear what kind of coherent structures are involved in the secondary flow mechanism and
how they interact. This missing knowledge shall be addressed in the following section, which
deals with the dynamics of coherent structures.
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Figure 4.16: Secondary components of TKE-budget terms for Reτ = 180 and 50% FR normalised
by ν/u4

τ . C ′2,3, T ′2,3 (left column) and Π′2,3, P2,3, ε′2,3 (right column, top to bottom).
Please note, that the distributions were symmetrized using the half-plane symmetry.
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4.2. Analysis of Coherent Structures

The path of kinetic energy, how it reaches the mean secondary flow in a time-averaged
sense, became more clear with the analysis in section 4.1. The energy transfer term P2,3

is responsible for the energy transfer to the mean secondary flow. However, the mean flow
analysis only shows an average of the process, but not the possible variance of the process
in an instantaneous view. Whether similar mechanisms take place in the mean and in
the instantaneous flow is studied in the following sections. In addition it is investigated,
how this can be connected to classical structures occurring in turbulent channel flow like
velocity streaks, quasi-streamwise vortices, as described in section 1.2. The role of the
mixed-corner, which was already emphasized in all previous sections, continues to be of
special interest.

In order not to be overwhelmed by the complexity of instantaneous flow fields, different
features of the flow are accentuated by applying three different filters: the proper orthogonal
decomposition (POD), Gaussian filtering (GF) and conditional averaging. All three ap-
proaches are introduced and their individual perspectives on the secondary flow mechanism
are compared to each other and to literature, which is briefly summarised in the following.
Sakai (2016) has a strong focus on coherent structures for rectangular open-channel flow,
educing vortices and analysing their spatio-temporal behaviour. For partially filled pipe flow
Ng et al. (2018) have investigated instantaneous flow fields and streamwise structures ex-
tracted from velocity correlations. This analysis was extended by Ng et al. (2021) looking at
the TKE decomposed by a POD and at very large scale motions occurring in high Reynolds
number flows. The following analysis is mainly compared to these three publications, which
will be referred to in more detail, where appropriate.

Please note that in this section the production terms P1 and P2,3 always refer to the MKE-
production. Hence, positive P corresponds to transfer from TKE to MKE and negative P
corresponds to transfer from MKE to TKE.

Please further note that the coherent structure analysis in the following section is mostly
focused on the model case of 50% filling and Reτ = 180. However, the various investigations
were done for all different Reynolds numbers and filling ratios, which is taken into account
and contributes to the drawn conclusions. Moreover, if instantaneous flow fields are shown,
they always show the same instantaneous three-dimensional snapshot. In figure 4.17 this
snapshot is averaged in streamwise direction, which roughly reproduces the globally averaged
mean secondary flow. The inner secondary cell is weaker on the left side compared to the
right side, thus, more events that contribute to the secondary flow are expected on the right
side in negative x2-direction. Overall, it is assumed that this snapshot should include the
processes that generate the secondary flow.

Lastly, please further note that the author is aware that, as introduced in section 1.2 (Co-
herent Structures in a Wall-Bounded Flow) and mentioned by Robinson (1991), there is not
one unique definition of coherent structures. Many researchers agree on the conceptual idea
of a coherent structure (Robinson, 1991) that there is a quantity correlated to itself or a
different quantity over a significant space and time interval. In addition, it is also still under
ongoing discussion (e.g. Haller (2005)) which mathematical criterion describes vortices or
coherent structures best.
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Figure 4.17: Flow fields averaged over streamwise direction of one snapshot: Contours of stream
function ψ of crossflow velocities u2 and u3 (red indicates clockwise and blue represents
counter-clockwise rotation) and as greyscale the velocity magnitude of

√
u2

2 + u2
3/ub

for Reτ = 180. The increments for the contourlines of ψ are 0.003.

4.2.1. Proper Orthogonal Decomposition (POD)

The proper orthogonal decomposition is a tool to extract coherent structures in turbulent
flows. It was first introduced to fluid mechanics by Lumley (1967). The POD can decompose
a spatio-temporal process like turbulent flows into its individual – spatial and temporal –
components. Therefore, the flow is decomposed into statistically independent basis functions,
also called modes. These modes can be divided into spatial modes and their corresponding
temporal modes, also called time coefficients. The sum of all modes represent the complete
spatio-temporal process. The spatial basis functions are, in contrast to a Fourier transfor-
mation, not given a priori and show their own, individual temporal behaviour. But for
homogeneous directions the POD acts like a Fourier transformation. For partially filled pipe
flow, the POD was used by Ng et al. (2021) in order to describe high energy structures,
which are reported mostly in the vicinity of the mixed-corner.

In a first step the POD will be introduced and its basic parameters will be presented. In a sec-
ond step the decomposition will be used to filter the flow field and see how the energy transfer
towards secondary flow can be described, see section 4.2.3.

Theory of POD

Based on the POD approach described by Lumley (1967), Sirovich (1987) and Aubry (1991)
introduced the so-called Snapshot POD, which is applied in this study. The basic idea
is to linearly decompose the flow field into a discrete number Nk of temporal coefficients
ak and spatial modes Φk

i , see equation (4.8). Please note that because of the limita-
tion to discrete distributions, the relations can be also expressed in the instructive matrix
form.

ui(x, t) ≈
K∑
k=1

ak(t)Φk
i (x) , U = AΦ (4.8)

With U being a velocity matrix, which is set up in the following manner. The velocities
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ui(x, t) are given at NP discrete points distributed over the two-dimensional cross-section Ω
and at NT discrete points in time that are stored in U:

ui(x, t)→ UT =



u1(x1, t1) · · · u1(x1, tNT )
...

. . .
...

u1(xNP , t1) · · · u1(xNP , tNT )
u2(x1, t1) · · · u2(x1, tNT )

...
. . .

...
u2(xNP , t1) · · · u2(xNP , tNT )
u3(x1, t1) · · · u3(x1, tNT )

...
. . .

...
u3(xNP , t1) · · · u3(xNP , tNT )


(4.9)

With UT being the transposed matrix of U. More than 8000 instantaneous cross-sectional
slices were used as input. By taking advantage of the half plane symmetry the instantaneous
slices were mirrored, leading to more than NT ' 16000 samples as input for the correlation
matrix and creating a symmetric set of samples. Please note that this enforces symmetric
spatial modes, which has to be taken into account for interpretation and comparison to
modes reported by other authors. Moreover, the number of points in time NT equals the
number of modes Nk that are generated by the POD.

The matrix of the temporal coefficients A is defined as

ak(t)→ A =

 a1(t1) · · · aNk(t1)
...

. . .
...

a1(tNT ) · · · aNk(tNT )

 (4.10)

and describes the temporal dynamics of the spatial modes Φ, which are defined in matrix
form as follows

Φk(x)→ Φ =

 Φ1(x1) · · · Φ1(xNP )
...

. . .
...

ΦNk(x1) · · · ΦNk(xNP ).

 (4.11)

The spatial modes Φ shall be derived for the best correlation to u(t) by maximising |u ·Φ|2
‖Φ‖2 ,

with ‖ϕ‖ being the L2-norm. Hence, the spatial modes are maximised for high kinetic energy.
This maximisation problem can be rewritten as the Fredholm integral of a spatial correlation
matrix that correlates the velocities in space, and the spatial modes Φ as eigenfunctions. As
a high spatial resolution can strongly enlarge the spatial correlation matrix, Sirovich (1987)
and Aubry (1991) developed the snapshot POD, which correlates the velocities in time. For
the snapshot POD the above mentioned Fredholm integral including the spatial correlation
matrix is transformed into a similar equation (eq. 4.12), but based on the temporal correla-
tion matrix C(t, t′) (For details of the transformation the reader is referred to either Sirovich
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(1987) or Aubry (1991)):

∫
T

C(t, t′)ak(t′)dt′ = λkak(t) , CA = AΛ (4.12)

with the eigenvalues Λ = λkδkl being associated to with the amount of kinetic energy.
The eigenvalue problem enforces orthogonality of the individual modes in order to properly
separate the kinetic energy. As mentioned above, the input for the eigenvalue problem is the
temporal correlation matrix C(t, t′):

C(t, t′) =
1

NT

∫
Ω

ui(x, t)ui(x, t
′) , C =

1

NT

UUT . (4.13)

The spatial modes are then calculated from the eigenvalues and eigenvectors of equation
(4.12) as:

Φk
i (x) =

1

NTλk

∫
T

ak(t)ui(x, t) , Φ =
1

NT

Λ−1ATU. (4.14)

For a more detailed description the reader is referred to Sirovich (1987).

A brief summary of POD analysis for similar flows is provided in the following. For full pipe
flow Hellström et al. (2011); Hellström & Smits (2014); Hellström et al. (2015, 2016) applied
a POD to analyse the flow structures. They found VLSMs, which they could describe with
the first 4 to 10 modes (Hellström et al., 2011). These first modes appeared as pairs, which
were all attached to the wall. Moreover, the first ten modes are responsible for 43% of the
Reynolds shear stress −u′1u′r, especially in the outer flow region (Hellström & Smits, 2014).
From mode 15 on, the spatial modes consist not only of structures attached to the wall but
also of structures detached from the wall. Hence, reconstructing the flow field with the high
energy modes up to mode 15 does only recreate wall-attached structures. Including further
low-energy modes, enables to reconstruct also wall-detached structures. Moreover, they re-
ported that the previously found VLSM can be described by a superposition of several modes
and can also experience transitions between modes (Hellström et al., 2015). Hellström et al.
(2016) found a self-similarity in the structures according to a length scale dependent on the
distance between the peaks of the low order modes and the wall. For narrow open-channel
flows with longitudinal ridges at the bottom, Vanderwel et al. (2019) state that they could
reconstruct large scale motions that are responsible for most of the secondary flow in this
flow case by the first six modes. From the literature of different, but similar flow cases it
can be concluded that the high-energy modes represent the most important flow features of
streamwise and in-plane components. As mentioned above, Ng et al. (2021) did snapshot
POD for their PIV-data of partially filled pipe flow, which will be compared to the results
of the present study.

Before coming to the results of POD, the general partitioning of the kinetic energy of par-
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tially filled pipe flow into primary and secondary component is introduced and its implica-
tions on the POD are discussed. Obviously, the streamwise component is the dominating
component, see figure 4.18, which makes it difficult to identify the subtle influence of the
cross-stream components. Only 1-2% of the streamwise kinetic energy are turbulent energy,
whereas the kinetic energy of the secondary flow consists of approximately 97-99% TKE,
see figure 4.18. Please keep in mind table 4.1, for the ratio between primary TKE to sec-
ondary TKE (TKE1 : TKE2,3 ≈ 3 : 1), showing the importance of the mean streamwise
flow.

Figure 4.18: Ratio of TKE to total kinetic energy of all (red, left), only primary (blue, left) and
secondary components (red, right). Pluses indicate 50% , crosses 25% and circles 75%
filling ratio.

Two different possibilities are used as input for the present POD, either all three components
of the velocity or – as this study focuses on secondary flow – only the cross-stream com-
ponents. The identification of modes of the three-component POD is strongly dominated
by the streamwise component, which is expected and of course it is important to include
this fundamental part of the flow. But as reported in section 4.1.2 the secondary flow and
especially its production is a key for the mean flow distribution. In order to extract the in-
fluence of the secondary flow another POD is done only with the cross-stream components.
In section 4.2.1 (Spatial Modes Φ) it will be shown, that the most energy containing mode
– the zeroth mode – is equal to the mean flow for all three components. This is expected
as the primary MKE contains around 98% of the total kinetic energy. If only the cross-
stream components serve as input for the POD, mean and fluctuating part of the flow are
not sharply divided. This is also somewhat expected, as figure 4.18 (right) shows that the
mean flow is responsible for only 2% of the cross-stream kinetic energy. Hence, in order
to get a clear division, which is the starting point of the phenomenon of mean secondary
flow, the mean flow of the secondary components is subtracted a priori and only the fluctu-
ations are used as input for the second POD-approach. In the following the POD with all
three components and full velocities as input gets the abbreviation 3C-POD and the input
including only fluctuations of the two in-plane components is called 2C-POD. Please note
that the most energy intense mode for 3C-POD is equal to the mean flow, see sections 4.2.1
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(Temporal Coefficients a) and 4.2.1 (Spatial Modes Φ) and is called ”zeroth” mode (k = 0).
Hence, for both approaches, the fluctuating modes (k > 1) only include turbulent kinetic
energy.

Energy Fractions λ

The eigenvalue problem results in temporal coefficients and the eigenvalues themselves. Each
eigenvalue is equal to the kinetic energy contained in a specific mode and they are ordered
from the most energy intense to the least. First of all, the normalised energy spectrum
is shown for 3C-POD in figure 4.19 (left) and for 2C-POD (right). The zeroth mode of
3C-POD has a higher energy than the following modes by a factor of 1000. The following
decay of the energy of the fluctuating modes gets stronger with increasing mode number.
The strong energy decay, especially for the low energy modes, and the lack of energy ac-
cumulation in the low energy modes indicate that enough samples were used in order to
capture the most important structures of the flow and to represent most of the energy con-
taining modes. Moreover, both plots show that with increasing Reynolds number a larger
number of modes are needed in order to achieve a satisfying degree of energy decay. How-
ever, by normalising the number of modes by Re

6/4
b the various distributions agree well, as

it would be expected for two dimensional input slices. Please note that the distribution
for Reτ = 460 deviates from the others, because the resolution of the velocity fields that
serve as input for the PODs is coarser by a factor of two compared to the other Reynolds
numbers.

Figure 4.19: Energy spectrum of 3C-POD (left) and 2C-POD (right) of semi filled pipe flow for
Reτ = 115, 140, 180 and 460 in red, green, blue and black, respectively. The number

of modes are normalised by Re
6/4
b .

The partitioning of the energy among the fluctuating modes is shown for 3C-POD in figure
4.20 and for 2C-POD in figure 4.21. For both PODs either the Reynolds-dependency (left
plot) or the filling ratio dependency (right plot) is shown. Generally, the energy is distributed
over a greater number of modes for higher Reynolds numbers, i.e. the high energy modes
contain relatively less energy. The first ten modes contain 20% (Reτ = 460) up to 50%
(Reτ = 115) for 2C-POD and up to 60% for small Reynolds numbers for 3C-POD. 90% of
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the energy are contained in 444 modes for 2C-POD and 618 modes for 3C-POD for semi
filled pipe flow at Reτ = 180. Further details on specific numbers of modes containing a
certain amount of energy can be found in table 4.2. The distribution for different FRs only
deviate for the most energy containing modes. With lower FR the energy content increases
for the first few modes for both input approaches. Ng et al. (2021) show similar results for
their energy fractions. However, the magnitudes of their first modes are larger by a factor
of 2-3 with a Reb being twice as large as the highest Reynolds number of the present study
and their number of snapshots is smaller by a factor of five.

Figure 4.20: Relative (blue) and cumulative energy content (red) per mode for Reτ = 115 (solid),140
(dashed),180 (dotted),460 (dashed-dotted) (left) and different filling ratios (25%, solid;
50%, dashed; 75%, dotted) Reτ = 180 (right) for 3C-POD.

Figure 4.21: Relative (blue) and cumulative energy content (red) per mode for Reτ = 115 (solid),140
(dashed),180 (dotted),460 (dashed-dotted) (left) and different filling ratios (25%, solid;
50%, dashed; 75%, dotted) Reτ = 180 (right) for 2C-POD.

The amount of TKE contained by individual modes of the different POD approaches gives a
clue how differently the two approaches distribute the fluctuating energy among the modes,
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3C-POD 2C-POD

filling ratio Reτ 30% 50% 90% filling ratio Reτ 30% 50% 90%

50 % 115 4 8 60 50 % 115 4 9 60
50 % 140 5 12 95 50 % 140 5 13 80
50 % 180 8 20 154 50 % 180 8 18 116
50 % 230 11 29 228 50 % 230 10 25 162
50 % 460 23 65 590 50 % 460 21 54 414

25 % 180 8 20 160 25 % 180 7 18 120
75 % 180 10 24 178 75 % 180 10 23 137

Table 4.2: Number of modes needed to reconstruct more than 30%, 50% or 90% of the total energy
for different Reynolds numbers and filling ratios by 3C- (left) and 2C-POD (right).

see figure 4.22. The TKE per mode was obtained by reconstructing all the flow cross-
sections that served as input for the POD’s per mode, using equation (4.8). Based on
the instantaneous flow cross-sections the TKE was computed. It shows that for the 3C-
POD the share of primary TKE decreases with increasing mode, as expected from the
figures above. In contrast, the first modes of 2C-POD contain only approximately a third of
TKE1 compared to the 3C-POD modes. Moreover, the amount of primary TKE is roughly
equally distributed among the first modes of 2C-POD. For higher modes the amount of
TKE1 seems to become similar for both approaches. For the modewise distribution of
secondary TKE a similar partition of TKE occurs, but the 2C-POD and 3C-POD have op-
posite roles. The modes of the 3C-POD have an approximately constant amount of energy,
whereas the energy of the first modes of the 2C-POD is larger and decreases with increasing
mode. Hence, the different POD approaches decompose the flow as expected, dependent
on their dominating input: the streamwise component is responsible for the partition of the
3C-POD, whereas the energy partition of the 2C-POD is driven by the secondary compo-
nents.

Please note that for the 3C-POD all three velocities are used to decompose the flow, thus,
all three components are available in the 3C-POD. However, despite the fact that only the
cross-stream components were used for the 2C-POD to generate the temporal modes ak and
the energy fractions λ, the temporal modes can be applied not only on the cross-stream
velocities to generate the spatial modes, but also on the streamwise velocity (cf. eq. (4.14)).
Hence, for both approaches all three components can be analysed despite their different
input. However, please further note that this procedure does not enforce orthogonality for
the streamwise components of the 2C-POD.

Temporal Coefficients a

The PDF of the temporal coefficients of the most energy intense modes are very similar for
both POD approaches, see figure 4.23. For both cases the distributions of the different modes
are Gaussian distributed around zero. Applying the same binning range for the different
approaches, the peak probabilities and the standard deviations resemble each other. Please
note that the zeroth mode of 3C-POD has, in contrast to the fluctuating modes, a non-
zero mean and a much smaller standard deviation than the fluctuating modes, which is not
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Figure 4.22: Share of primary (left) and secondary TKE (right) per mode and POD approach for
semi filled pipe flow of Reτ = 180. + 3C-POD, + 2C-POD

included in the figure. Moreover, the PDF’s of other fillings and other Reynolds numbers
are similar for both approaches, too.

Figure 4.23: PDF of normalised modes ak(t) for 3C-POD (left) and 2C-POD (right) for Reτ = 180
with 50% filling.

Spatial Modes Φ

The spatial modes Φk(x) show a pattern of positive and negative intensities for all three
velocity components over the cross-section. For the in-plane components streamlines can be
computed with a distribution of intensities. However, only in combination with the temporal
coefficients the flow directions can be calculated and assigned.

First, the spatial modes are shown for 3C-POD, Reτ = 180, see figures 4.24 and 4.25. The
coloured contours represent the magnitude of the streamwise component. Blue and red
distinguishes structures with opposite sign, but, as mentioned above, only in combination
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with the temporal modes the actual direction can be stated for each time instant. The
streamlines show flow paths of the cross-stream components, which can be both ways and
the colour of streamlines shows the magnitude of the cross-stream velocities. Black means
high intensity and white denotes low intensity. Figure 4.24 shows the zeroth mode, which is
equal to the mean flow, compare figures 3.2 and 3.8. In addition to this qualitative compar-
ison, it can be reported that the kinetic energy of the streamwise component, reconstructed
from the zeroth mode, deviates from the original primary MKE only by 1.5h. The kinetic
energy of the secondary components of the zeroth mode differs by 3.1% from the original
secondary MKE. Hence, the zeroth mode equals the mean flow qualitatively and quantita-
tively.

Figure 4.24: Zeroth spatial mode Φ0 of 3C-POD for Reτ = 180 and 50% FR. Φ0
1 is shown in blue

(low) to red colour (high intensity) and the gray contours display the magnitude of the
cross-stream components Φ0

2 and Φ0
3 (black = high intensity, white = low intensity).

The fluctuating modes of the 3C-POD show more complex patterns (fig. 4.25). The high
intensities can be found along the wall, whereas the bulk region and the centre of the free
surface lack high intensities. The first four modes have a pattern of negative and positive
velocity streaks at the upper side wall. One positive and negative streak are connected and
also include a cross-stream structure with high intensities where the streamwise component
is strong, too, creating three-component structures. Especially for the first ten modes, it is
visible that the modes appear in pairs – one mode is symmetric and one is anti-symmetric,
which can also be seen in Matin et al. (2018) for a square closed-duct flow. The modes
of each pair supplement each other. For example Φ1 has two strong streamwise intensities
with the same sign at the free surface. In combination with Φ2, which has two strong
streamwise intensities with opposite sign at the free surface, the intense patches of Φ1 can
either be strengthened or weakened. This depends on the combination with their temporal
coefficients. For instance, if the temporal coefficients are positive for both modes, the high
intensity in blue colour at the free surface in positive x2-direction would be strengthened
and the structure in negative x2-direction would be balanced. If the temporal coefficients
have opposite sign, the effect would be mirrored and if one temporal coefficient is small,
the other mode dominates. Due to the possible combinations of the mode pairs, the same
structures can evolve as from the modes obtained by Ng et al. (2021). However, because
they did not include mirrored samples into the velocity correlation matrix C(t, t′), they
obtained different modes with structures on each side only. This effect of combining mode
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Figure 4.25: Spatial modes Φ1, Φ2 (top row, left and right), Φ3, Φ4 (second row), Φ11, Φ80 (third
row) and Φ146 (bottom row) for 3C-POD of Reτ = 180 and 50% FR. Φk

1 is shown in
blue to red colour and the gray contours display the magnitude of the cross-stream
components Φk

2 and Φk
3 (black = high intensity, white = low intensity).

pairs strengthening and weakening each other also appears for the cross-stream structures
of the 3C-POD. The modes Φ1 and Φ2 have one strong pair of streamwise intensities on
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each side and one dominating cross-stream structure, resembling the outer secondary cell,
whereas only a very small and weak structure is noticeable in the mixed-corner. Mode Φ3

and Φ4 have three intense streamwise structures in each half of the pipe and two cross-stream
structures, with one structure approximately covering the inner secondary cell and another
structure below, again resembling the outer secondary vortex. These first four modes contain
approximately 17% of the fluctuating energy. For higher modes, see lower rows of figure 4.25,
the structures get smaller and more peaks appear along the wall and several azimuthal layers
of peaks appear, as known from POD in pipe flow (Hellström & Smits, 2014). In comparison
to the inhomogeneous peak distribution of the high energy containing modes, the peaks of
the higher modes appear along almost the complete wall, which is similar to the distribution
of full pipe flow.

For 25% and 75% filling the first four spatial modes of the 3C-POD are shown in the appendix
C, see figures C.1 and C.2. Generally, the modes of 75% FR are similar to the modes of 50%
FR. For the 25% filled case it already became noticeable that it is different to the others,
which is also present in the spatial modes. More details and a small comparison to the POD
of Ng et al. (2021) is given in the appendix.

In figure 4.26 the spatial modes of the 2C-POD are shown. The 2C-POD modes are quite
different to the 3C-POD modes, as their high peaks are not restricted to the near-wall region.
The high energy modes have high magnitudes in the bulk region and at the free surface and
are less attached to the wall. Similar to 3C-POD pairs of symmetric and anti-symmetric
modes can be observed that supplement each other: Φ1 and Φ2; Φ4 and Φ6. Interpreting the
streamwise velocity pattern as streaks, the first mode represents the flow pattern with the
minimum possible number of streaks contributing to turbulent flow. For each following mode
one streamwise velocity peak is added. Please note that in contrast to the pair pattern, it is
also possible to interprete mode Φ2 as a link to both modes Φ1 and Φ4. Nevertheless, a pair
pattern can again be detected for the following modes. For higher modes, the development is
similar to 3C-POD. The structures get smaller, the peaks of the structures move towards the
wall and more layers of structures are possible. Please note that the appearance of the spatial
modes do not differ much for different Reynolds numbers.

The first four spatial modes of the 2C-POD for 25% and 75% FR can be found in the
appendix C, see figure C.3. In general, the first four modes show the same behaviour as
for 50% FR, however, the structures are deformed vertically: compressed for 25% FR and
stretched for 75% FR.

Reconstructed Flow Fields

The POD is often used as a tool to condensate the most important structures from the
flow field, in order to make the spatio-temporal dynamics tangible. However, the temporal
coefficients and spatial modes are abstract quantities and difficult to interpret. Instanta-
neous flow fields can be reconstructed from selected modes giving an impression about how
the POD decomposes the flow. By projecting the spatial modes on the temporal coeffi-
cients, instantaneous velocity cross-sections, which were used as input for the POD, can be
reconstructed.

In figure 4.27 the flow field was reconstructed using all the high energy modes, that cumula-
tively sum up to 30%, 50% and 90% of the fluctuating energy, i.e. for more energy a larger
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Figure 4.26: Spatial modes Φ1, Φ2 (top row, left and right), Φ4, Φ6 (second row), Φ11, Φ80 (third
row) and Φ146 (bottom row) for 2C-POD of Reτ = 180 and 50% FR. Φk

1 is shown in
blue to red colour and the gray contours display the magnitude of the cross-stream
components Φk

2 and Φk
3 (black = high intensity, white = low intensity).

number of modes is used, compare table 4.2. For 30% the first eight, for 50% the first 20
and for 90% the first 154 modes are used to reconstruct the flow field. Hence, these recon-
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Figure 4.27: Reconstructed instantaneous and fluctuating velocities u′1/ub (left), u′2/ub (middle) and
u′3/ub (right) from 3C-POD for Reτ = 180 and 50% FR. Using most energy containing
modes representing 100%, 90%, 50% and 30% of fluctuating energy (top to bottom).
The included energy corresponds to all, the first 154, 20 or 8 modes, respectively.

structed flow fields can be compared to the complete, fluctuating, instantaneous flow field of
a certain time instance. Comparing the different instantaneous velocity components it can
be noticed that the TKE is similarly distributed as shown in figure 4.22. On the one hand,
the 50% high energy modes of the streamwise component contain approximately 63% of the
complete primary TKE. On the other hand, for the cross-stream components only 21% of
the complete secondary TKE is contained within the 50% high energy modes. Moreover,
the reconstructed flow fields from 30% of the fluctuating energy show high intensities along
the walls for all three velocity components, which is consistent with the distribution of the
high energy modes.

In figure 4.28 the same velocity instance is reconstructed using the modes of the 2C-POD.
The difference for 90% of the fluctuating energy is negligible, but for the lower energy
fractions some interesting observations can be made. As expected from the distribution of
the spatial modes, the reconstructed velocity for 30% and 50% consist of structures that are
more present in the bulk region than for 3C-POD. Moreover, the amount of secondary TKE
present for the 30% case is higher than for 3C-POD (approximately 50% of total secondary
TKE), whereas the primary TKE is smaller, which is consistent with the observations in
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Figure 4.28: Reconstructed instantaneous and fluctuating velocities u′1/ub (left), u′2/ub (middle) and
u′3/ub (right) from 2C-POD for Reτ = 180 and 50% FR. Using most energy containing
modes representing 100%, 90%, 50% and 30% of fluctuating energy (top to bottom).
The included energy corresponds to all, the first 116, 18 or 8 modes, respectively.

section 4.2.1 (Energy Fractions λ). Similar to the reconstructed flow field via the 3C-POD
only a rough image is established by 30% of the fluctuating energy, however, some important
features like the global rotational structure are already visible.

Figure 4.29 and 4.30 show the fluctuating streamwise vorticity 25 wall units below and par-
allel to the free surface of one snapshot in order to compare the two POD’s. Please note
that the vertical height of the horizontal plane was chosen, in order to cut through and,
therefore, show the structures that possibly correlate to the mean secondary flow. The spa-
tial modes were used to generate the temporal coefficients for all cross-sectional slices of a
snapshot, which made it possible to reconstruct one three-dimensional snapshot from the
two-dimensional POD modes. As known from chapter 3 and section 4.1 the vorticity at
the mixed-corner and along the free surface are an important region for the generation of
secondary flow. For both PODs, the differences for 90% of the fluctuating energy are again
negligible. The vorticity magnitude and its distribution is similar for 50% and 30% for both
PODs. Strong structures can be found along the side walls and in the centre mostly low
magnitudes occur. However, one difference is, that 3C-POD reconstructs elongated vor-
ticity patches and 2C-POD rather reconstructs small, alternating events. Moreover, single
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Figure 4.29: Instantaneous ω′1R/ub 25 wall units below and parallel to the free surface from 3C-
POD for Reτ = 180 with 50% FR. Using most energy containing modes representing
100%, 90%, 50% and 30% of fluctuating energy (top to bottom).

events of strong vorticity in the complete instantaneous distribution are still assignable by
the modes containing the highest 30% of the fluctuating energy by 2C-POD, whereas the
3C-POD generates mostly long structures in the vicinity of the wall, which can hardly be
linked to the complete instantaneous velocity distribution.

Conclusion

To conclude the section on POD, the distribution of the full energy content of each mode does
not differ too much between the 3C- and 2C-POD. However, each of the two different ap-
proaches divides the primary and secondary TKE differently, dependent on which velocity is
the dominating input for each POD. For 3C-POD, the secondary TKE is equally distributed
over the first 10 modes, whereas for 2C-POD the first mode contains most secondary TKE
and it decreases continuously for the next modes. For the primary TKE the distributions of
the individual modes show the opposite. A strong dependence for the 3C-POD and constant
amount of energy for the first modes of 2C-POD can be reported for the primary TKE of the
first modes. The fluctuating temporal coefficients of both PODs are Gaussian distributed
around zero. The spatial modes for 3C-POD are more connected to strong streamwise ve-
locity peaks along the wall and for 2C-POD larger structures covering more the bulk region
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Figure 4.30: Instantaneous ω′1R/ub 25 wall units below and parallel to the free surface from 2C-
POD for Reτ = 180 with 50% FR. Using most energy containing modes representing
100%, 90%, 50% and 30% of fluctuating energy (top to bottom).

of the flow. The spatial restriction of the high energy containing modes indicates that both
POD approaches are not able to describe vortices moving over these boundaries very well.
Hence, the sorting mechanism described by Sakai (2016) can hardly be reproduced by only
the high energy-containing modes. The more modes are included, the more spatial dynamics
are reconstructed. The differences of the spatial preferences between the two approaches are
also well visible in instantaneous velocity fields being reconstructed by high energy contain-
ing modes representing 30% of the energy. On the one hand, the instantaneous streamwise
vorticity along the free surface reconstructed from 2C-POD indicate that individual strong
structures that resemble the instantaneous flow field are carrying a considerable amount of
secondary TKE. On the other hand, elongated structures along the mixed-corner that re-
semble the inner secondary cell can be reported for the 3C-POD, being consistent with Ng
et al. (2021).

Taking all the above mentioned results into account, it is difficult to judge, which POD
approach is more suitable to analyse the secondary flow. On the one hand, not to take the
dominating streamwise component into account seems not justifiable, because the primary
and secondary flow are directly connected. On the other hand, the secondary flow is such
a subtle process, whose kinetic energy is more coherently divided into modes with higher
and lower energy for the 2C-POD. At first glance, it seems that the two different PODs
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emphasize two different aspects of the flow – the near wall behaviour is more covered by
the high energy modes of the 3C-POD and the bulk flow is more represented by the high
energy modes of the 2C-POD. However, the results of section 4.1 have shown that the crucial
terms of the secondary flow mechanism, the vorticity generation and secondary production,
are based on secondary velocity components only. Hence, in terms of the secondary flow
mechanism, the 2C-POD should be more relevant.

How the decomposed flow fields can help to further understand the secondary flow mecha-
nism, will be investigated in the section after the next section. Before that, another tool, the
Gaussian filtering, is introduced, which is also applied to study the generation mechanism
of secondary flow and is compared to the approach of POD.

4.2.2. Gaussian Filtering (GF)

Considering the instantaneous flow, many detailed and small structures are visible, however,
based on the knowledge of energy spectra and also by just looking at the flow fields qualita-
tively, larger structures do also exist. Plotting the vorticity, the most intense regions usually
highlight the small scales, as the vorticity is related to terms of derivatives. In contrast, large
scales are not directly available using the vorticity. One way to extract the larger structures
from the flow is the POD, introduced in the last section (section 4.2.1). Another possibility
is to filter the flow field with a Gaussian function, which was done for example by Lozano-
Durán et al. (2016); Lee et al. (2017) and Motoori & Goto (2019). Lozano-Durán et al. (2016)
study self-similarities of flow dynamics in the inertial range, by comparing various quantities
at different scales obtained via GF. Motoori & Goto (2019) use Gaussian-filtered flow fields
to investigate a hierarchy of vortices. From the filtered velocities various flow quantities
can be deduced, for example, the streamwise vorticity. Of course, the vorticity is not the
ideal quantity to identify coherent structures especially at the wall, where strong shear is
taking place. Therefore, the swirl- and low-pressure-condition of Kida & Miura (1998) was
applied and also the instantaneous wall shear stress was included. These two parameters
were compared to the constructed vorticity iso-surfaces, in order to give more confidence
about the extracted structures, which will be shown later on.

In contrast to the POD, which decomposes the flow into modes according to their kinetic
energy, the GF can divide the flow by the size of its flow structures. As the GF is only
influenced by the width of its kernel, it is a purely geometrical filter that filters the whole
flow equally. Thus, all three velocity components receive the same filtering over the com-
plete flow field, which separates the flow into small and large scales. Hence, the aim of
applying GF on the flow is to understand which size of structures is involved in secondary
flow and its generation mechanism. Please note that due to the relatively small Reynolds
numbers, a scale separation is usually not expected to happen. However, Sakai (2016) is
reporting a scale separation already for similarly small Reynolds numbers, taking place as
soon as the velocity-dip phenomenon occurs, which is the case for the presented Reynolds
number.

Theory of Gaussian Filtering

The Gaussian filter was set up, based on the approach of Lozano-Durán et al. (2016), who
did extensive comparisons between two different implementations of the filter. The Gaussian
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filter is applied on all velocity components ui in all three directions x, see equation (4.15),
and in the same manner on the pressure.

ũi(x) =
∑
x3,P

∑
x2,P

∑
x1,P

ui(xP )

× C(x)exp

(
− 2

σ2
((x1,P − x1)2 + (x2,P − x2)2 + (x3,P − x3)2)

)
∆x1∆x2∆x3

(4.15)

The coefficient C(x) is adjusted in such a way, that the kernel volume is equal to one,
independent of its width σ. σ describes the standard deviation of the filter kernel. Later on
in the text, it will be referred to the filter width in inner units σ+ = σuτ/ν. The aspect ratios
of the filter widths are set homogeneously in all three directions. Different filter kernels are
applied by changing σ, i.e. with a larger σ the filtered flow field represents larger structures.
In figure 4.31 the one dimensional PDF and the wavenumber spectrum of the Gaussian
kernel are shown. With decreasing filter width the PDF becomes more narrow but its peak
magnitude increases. Please note that compared to the normal distribution the exponent in
equation (4.15) is multiplied by a factor of four, which makes the present distributions more
narrow. In Fourier space the filter acts like a low pass filter, hence, with increasing filter
width more and more wavenumbers are cut off. However, it is not a sharp cut-off in Fourier
space, but a Gaussian cut-off.

Figure 4.31: PDF (left) and wavenumber spectrum (right) of the applied Gaussian kernel for various
filter widths σ+.

As a result each velocity component and the pressure component are filtered in all three
dimensions, generating instantaneous, filtered 3D-flow fields, which can be further analysed.
In contrast to the channel flow of Lozano-Durán et al. (2016), only one homogeneous direction
is present in partially filled pipe flow. Moreover, at the top boundary a free surface occurs.
For the wall, Lozano-Durán et al. (2016) compared two different implementations of the filter,
one with a mirroring of the velocities at the wall and changing the sign of the wall normal
component and the other one truncates the filter kernel at the wall. The two approaches
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Gaussian kernel

−u3,mirrored

u2,mirrored

u2

u3

Figure 4.32: Sketch of the Gaussian kernel at the wall (left) and at the free surface (right) with the
velocities u2 and u3 and their corresponding mirroring at the boundary.

gave similar results, however, the first generates incompressible and the second slightly
compressible filtered flow fields. Because of the different boundary conditions, the approach
of mirroring the velocities to the outside of the flow domain has been applied: at the wall the
three velocities were mirrored with a negative sign; at the free surface, the free surface normal
velocity u3 was also mirrored with a negative sign but the free surface parallel velocities u1

and u2 were only mirrored without a change of sign, see figure 4.32. Hence, the filtered
flow field remains incompressible. The pressure field was simply mirrored at all boundary
conditions for the filtering procedure.

Filtered Flow Fields

In order to be able to compare the Gaussian filtered flow fields to the flow fields reconstructed
by the POD, the amount of TKE that remains in the filtered fields is displayed, see figure
4.33. The ratio of TKE decreases continuously with increasing filter width. With increasing
Reynolds numbers it decreases less strong, because the filter width becomes smaller in an
absolute sense. Hence, for the model case (Reτ = 180 and FR 50%) σ+ = 5 corresponds
approximately to 90%, σ+ = 20 to 50% and σ+ = 30 to 30% TKE compared to the non-
filtered TKE.

In order to compare the Gaussian filtered flow fields to the reconstructed flow fields of
the POD, the same flow fields are shown in this subsection. Figure 4.34 shows the same
instantaneous cross-section like in figures 4.27 and 4.28 for the POD’s. The fluctuating
velocity components ũ′1, ũ′2 and ũ′3 are Gaussian filtered with different filter widths, which
correspond approximately to the same level of TKE as shown in the POD. With increasing
filter widths the velocities are more and more homogeneously distributed over the cross-
section and the peaks are flattened. The streamwise component clearly shows the main
velocity streaks in the vicinity of the wall. Also in the strongly filtered representation a
streak pattern is visible, which is qualitatively consistent with the non-filtered flow field.
Moreover, it is in good agreement with the reconstructed fluctuating velocities of the 3C-
POD, see figure 4.27. With increasing filter width the in-plane components show that a large
vortex can be detected rotating clockwise in the centre of the flow. In comparison to the
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Figure 4.33: Ratio of TKE in Gaussian-filtered fields for various Reynolds numbers and FRs over
the filter widths σ+ = 5, 10, 20, 30, 40, 60 and 80.

reconstructed fluctuating velocities of the 3C-POD the represented high intensity regions of
the in-plane velocities do not match for comparing 30% of the high energy modes to a filter
width of σ+ = 30. However, comparing the filtered velocities to the fluctuating velocities
of the 2C-POD, a similar pattern of intensities can be noticed. Hence, the fluctuating
velocity distributions of the Gaussian filtered approach indicate that they represent the
near wall behaviour of the streamwise velocity, which is covered by the 3C-POD, and the
characteristics of the in-plane velocity components in the bulk region, reconstructed by the
2C-POD.

In the following paragraphs the Gaussian filtered, vortical structures are investigated. There-
fore, as mentioned above, GF was also applied on the pressure, which enables the usage of
the structure criterion of Kida & Miura (1998). The structure criterion can be applied in a
2D-plane to detect vortex centres. For each cross-section local pressure minima are localized.
At each position of the pressure minima a swirl condition is tested. The discriminant of the
two-dimensional cross-stream velocity gradient tensor D2,3 = 1/4(∂u2/∂x2 − ∂u3/∂u3)2 +
∂u2/∂x3∂u3/∂x2 needs to be smaller than zero. Both conditions are applied to the Gaussian
filtered fields and the identified vortex centres are compared to the Gaussian filtered vorticity
distribution in figure 4.35. In the non-filtered case, most of the vortical structures repre-
sented by the vorticity are also identified by the criterion of Kida & Miura (1998). A good
agreement can also be found for the filtered distributions. Not every ω̃1-peak is identified by
the criterion of Kida & Miura (1998), however, it is in good accordance for the most intense
ω̃1-structures. This accordance was checked for all the cross-sections of an entire snapshot
for different filter widths, supporting that the vortex centres identified by the criterion of
Kida & Miura (1998) match with distinct events of vorticity. Please note that the structure
criterion of Kida & Miura (1998) was not applied to the structures reconstructed by POD,
because the decomposed pressure was not available.

In addition the instantaneous, non-filtered wall shear stress is shown along the pipe’s cir-
cumference in figure 4.35. The wall shear stress is supposed to be the foot-print of the flow
on the wall. On the one hand, the comparison of the non-filtered wall shear stress with
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Figure 4.34: Gaussian-filtered instantaneous, fluctuating velocities ũ′1/ub (left), ũ′2/ub (middle) and
ũ′3/ub (right) with filter widths σ+ = 0, 5, 20, 30 (top to bottom) for Reτ = 180 and
50% FR.

the filtered vorticity adds another possibility to check the plausibility of the visualised vor-
tical structures. On the other hand, the question arises, which part of the flow is mostly
responsible for the wall shear stress. By advancing through every cross-section of an in-
stantaneous snapshot the spatial structure and the relations between small and large scale
vortical structures and the non-filtered wall shear stress can be investigated. This is realized
by a spatial sequence of cross-sectional slices displaying one non-filtered and one Gaussian
filtered streamwise vorticity ω̃(σ+ = 0;σ+ = 30) and the non-filtered wall shear stress along
the perimeter, see figure 4.36.

The small scale (non-filtered) structures are shown by red (clockwise) and blue (counter-
clockwise rotation) contour lines, the large scale structures are represented by pink (clock-
wise rotation) and cyan (counter-clockwise rotation) filled contours and the wall shear stress
is displayed along the perimeter in a colourmap from blue over green to red. The visualisa-
tion shows a highly chaotic distribution of small and large structures that strongly interact.
However, certain spatial patterns are remarkable: First of all, the small and large scale struc-
tures and the wall shear stress are very consistent. Small and large scale structures are often
part of the same structure, they have a large common area and overlap each other. It also
occurs that a large scale structure consists of two or three small scale structures. Hence, it is
difficult to detect a scale separation, which is somewhat expected, as the Reynolds number
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Figure 4.35: Instantaneous, Gaussian filtered ω̃1R/ub for Reτ = 180 and 50% FR with a filter width
of σ+ = 0, 5 (top left and right), 20 and 30 (bottom left and right). Red contours
show clockwise and blue contours show counter-clockwise rotation. + indicate vortex
centres defined by the condition of Kida & Miura (1998). Outside, along the perimeter
the non-filtered wall shear stress τw/τ0 is plotted, with its colourmap next to the
cross-section. The increments for the contourlines of ω̃1R/ub are 0.83 (top) and 0.19
(bottom).

is relatively small. However, as mentioned above Sakai (2016) reports a scale separation
already for similarly small Reynolds numbers. Another noticeable pattern shows a wall at-
tached structure that consists of small and large scales, which appears in the sequence on
the left side near the wall at about 45 degrees. Advancing in streamwise direction, first an
increase in wall shear stress can be noticed, followed by a developing small scale structure at
the wall that further grows away from the wall, where it also consists of larger scales. Usu-
ally, such structures were found to end in the buffer layer. Please note that the described,
wall-attached structure agrees quite well to the concept of hairpin structure known from
the near-wall turbulence (cf. section 1.2 (Coherent Structures in a Wall-Bounded Flow)),
however, for most of the observed structures only one leg could be identified. In general, it
could be observed that in addition to the large number of wall-attached structures, many
structures exist that are not attached to the wall, which often have a lower intensity com-
pared to the near-wall structures. However, there are only few structures that are further
away from the wall than 0.5R, whether they are small or large scale structures. Thus, the
most active area is near the wall and in the buffer layer.

As known from section 3.2.1, the structures in the lower part of the flow balance themselves if
averaged over time. Averaging over the structures in the upper part of the flow generates the
mean secondary flow. The contribution of the different scales to the mean secondary flow can
be investigated in figure 4.37. As in section 4.2.1, figure 4.37 shows the fluctuating streamwise



134 4.2. Analysis of Coherent Structures

Figure 4.36: Spatial sequence of instantaneous cross-sectional slices of non-filtered ω1R/ub (contour
lines), Gaussian filtered ω̃1R/ub (filled contours) and wall shear stress τw/τ0 (colour
along perimeter) of Reτ = 180 and 50% FR. The order is from top, left to bottom,
right; also indicated by the streamwise coordinate x1. The distance between each slice
is approximately 29 wall units. Red and pink structures indicate clockwise and blue
and cyan structures show counter-clockwise rotation. Outside, along the perimeter the
non-filtered wall shear stress τw/τ0 is plotted, with its colourmap next to the cross-
section. The increments for the contourlines of ω1R/ub are 0.3 and for the filled contour
of ω̃1R/ub 0.12.
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vorticity in a horizontal plane parallel and 25 wall units below the free surface. From the
top to the bottom σ+ increases. In general, the vorticity distributions show their highest
magnitudes mostly along the wall and hardly in the centre of the flow. With increasing filter
width thin peak structures disappear, for example at x1/R ≈ 4.5 and x2/R ≈ 0.9, whereas
larger structures with high intensities stay present. At the wall in negative x2-direction many
strong positive vorticity events occur directly at the wall and are often followed by a negative
event. The same pattern is visible at the other mixed-corner in positive x2-direction, however,
the signs of the structures are reversed. Furthermore, it appears that for all different filter
widths there are negative and positive ω̃′1- structures that reach from the mixed-corner into
the centre with an angle from the wall of approximately 30◦. With increasing filter width,
it seems that the positive and negative structures form more pronounced pairs of counter-
rotating vortices, which reach from the wall towards the centre producing an upwelling in
between the vortices. In the centre of the free surface, the filtered vorticity fields also show
counter-rotating vortices that create a downwelling, which is in line with the mean secondary
flow. Moreover, as the filter width increases, some structures are merged forming bigger
structures, nevertheless, the streamwise length of coherent structures does hardly exceed 2R
for any filtering. Comparing the observed vortex pairs with the vortex sorting mechanism
proposed by Sakai (2016), it appears difficult to apply the vortex sorting mechanism on
the vortex pair. By applying Taylor’s frozen turbulence hypothesis, one can argue that
a temporal development of the flow can be approximated by advancing backwards in the
spatial flow field. That would mean that both vortices would move towards the mixed-
corner independent of their sense of rotation, which does not agree with the vortex sorting
mechanism. Lastly, the instantaneous filtered fields of ω̃′1 shall be compared to filtered ω′1
obtained by the two POD’s (cf. figure 4.29 and 4.30). Please keep in mind that the amount of
TKE is approximately the same for the corresponding, filtered vorticity fields. Furthermore,
it shall be recalled that both POD’s reconstruct the vorticity in two-dimensional slices,
whereas the GF acts equally in all three dimensions. The Gaussian filtered fields show a
much stronger similarity to the 2C-POD, as it preserves the individual high intensities of the
non-filtered field even better. Further comparing of the two approaches shows that the GF
keeps the aspect ratio of the structures almost constant for different filter widths, whereas
the structures generated by the 2C-POD are more round. Hence, these differences reflect
the characteristics of the individual approaches.

Neither in single cross-sections (figure 4.36) nor in the horizontal plane (figure 4.37) the
features of the mean secondary flow with the inner and outer secondary cell can be ob-
served directly in the instantaneous flow. Structures that resemble the inner secondary cell
appear, but they are inclined towards the flow centre and they do not span over a longer
distance. A big eddy like the outer secondary cell can rarely be observed as instantaneous
vortex. If such structures can be detected in single cross-sections then they soon vanish
again, probably because of the interaction with other structures. Hence, the mean sec-
ondary flow does not seem to be stably present and only deviations from its mean occur, but
the analysis rather suggests that the secondary flow is the result of averaging many individ-
ual events. This is consistent with the observations of the instantaneous wall shear stress
distributions in section 3.2.2 and agrees with the results of the coherent structure analysis
of Sakai (2016).
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Figure 4.37: Gaussian filtered instantaneous, fluctuating streamwise vorticity ω̃′1R/ub 25 wall units
below and parallel to the free surface of Reτ = 180 and 50% FR with a filter width scale
of σ+ = 0, 5, 20, 30 (top to bottom). Red contours show clockwise and blue contours
show counter-clockwise rotation.

Conclusion

In conclusion, the GF, in contrast to the POD, is applied in all three dimensions on the
complete three dimensional fields, hence, three dimensional dynamics are preserved. With
enlarging the filter width, small scales are filtered and large scales become more visible,
however, at the same time the kinetic energy in the filtered flow field decreases. Most
of the intense small and large scale structures appear in the vicinity of the wall and the
buffer layer, and occur less in the bulk region. Along the free surface a pattern of counter-
rotating, streamwise vortex pairs can be detected that are inclined by approximately 30◦

from the wall and become more distinct with increasing filter width. Please note that the
inclined vortex pairs are not consistent with the vortex sorting mechanism proposed by
Sakai (2016). However, especially for larger filter widths, the overall arrangement of the
vortices and their corresponding sense of rotation resemble the mean secondary flow. Most
of the small and large scale structures that occur along the free surface have a streamwise
length of less than 2R and, because of the inclined structures, an alternating pattern of
positive and negative vorticity appears in streamwise direction. This indicates that the
mean secondary flow is formed by averaging over a large number of different large and
small scale structures, instead of a stable vortex pattern that only deviates from its mean
representation.
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Thus far, only the appearance of the secondary flow was investigated by the filtered flow
fields. In the next section, the analysis of filtered flow fields shifts to the generation mech-
anism of secondary flow, especially the transfer of kinetic energy to the mean secondary
flow.

4.2.3. Filtered Transfer of Kinetic Energy

In this section the approaches of the previous sections shall be combined. On the one hand,
section 4.1.2 has shown, that the generation of mean secondary flow is governed by the
production of secondary MKE via P2,3. On the other hand, the flow was decomposed and
filtered by means of POD and GF, see sections 4.2.1 and 4.2.2, which gave an idea about the
various modes and structures that contribute to the complex instantaneous secondary flow.
In combination, the above mentioned analyses provide a filtered P2,3, which gives insights
about the structures that are involved in the generation process, about which approach is
more suited to extract the P2,3-mechanism and about the relation between filtered P2,3 and
the corresponding vortical structures.

Theory of Filtered Transfer of Kinetic Energy

The idea of analysing filtered terms of the MKE- or TKE-budgets was introduced by Do-
maradzki et al. (1994), who investigated the influence of subgrid-scale processes on the energy
transfer by filtering data of a DNS. They applied a spectral cut-off filter on their channel
flow data to reconstruct a filtering similar to the one which occurs in a LES, because of the
coarser grid compared to DNS. In addition to the subgrid-scale processes, they also investi-
gated the energy transfer between MKE and TKE. They reported that the mean energy is
mostly transferred to the large turbulent scales and the transfer takes place in the boundary
layer. Bauer et al. (2019) extended their investigations to pipe flow for higher Reynolds
numbers with a similar treatment of the data. They analyse the inter- and intrascale energy
transfer with respect to the dominating streamwise component of the filtered TKE-budget
with a focus on the VLSMs and how they obtain energy. The derivation of the filtered
TKE-budget by Bauer et al. (2019) shows that, in addition to the known production term,
two more terms occur that describe the subfilter-scale diffusion and the interscale flux of
TKE. However, as the present study focuses on the transfer of energy between TKE and
MKE only the known production term is investigated.

In the present analysis the MKE-production u′iu
′
j ∂/∂xj(ui) is split up into different parts.

First of all, the instantaneous flow fields are split into their mean and fluctuating parts.
Then one of the above introduced filters, either one of the POD’s or the GF, is applied on
the fluctuating flow fields. From the filtered, fluctuating flow fields ũi

′ũj
′ can be generated,

and in combination with the gradient of the mean flow the MKE-production ũi
′ũj
′ ∂/∂xj(ui)

is obtained. Note that filtered quantities are denoted by ϕ̃ and ϕ still denotes temporal
averaged variables, as introduced in section 1.2. From the POD’s only certain modes are
selected to obtain the filtered MKE-production P̃ij
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with aki as temporal coefficients and Φk
i as spatial modes with the zeroth mode (k=0) as mean

flow. Hence, the MKE-production term is split up into high energy and low energy containing
parts. For the GF different filter widths are used to generate various filtered, fluctuating
ũi
′ũj
′, hence, in combination with the gradient of the mean flow, the filtered MKE-production

P̃ij reads ũ′iũ
′
j ∂/∂xj(ui). This filter separates the contribution of the large and the small

scales. The filtered statistics for all three approaches are generated from approximately 180
snapshots. In the following subsection the filtered MKE-production is analysed with respect
to the applied filter and its filtering feature. Please keep in mind that within section 4.2
the secondary MKE-production P2,3 is defined positive, if energy is transferred from TKE
to MKE. The reverse energy transfer is defined as negative.

Results of Filtered Transfer of Kinetic Energy

To begin with, the MKE-production terms of the primary component P̃1 are shown in figure
4.38. Please keep in mind that for Reτ = 180 and 50% FR the filter widths of the GF
correspond to a filtered ratio of TKE as follows: σ+ = 0 to 100%, σ+ = 5 to 90%, σ+ = 20
to 50% and σ+ = 30 to 30%. The distribution shows the filtered P̃1 five cells below and
parallel to the free surface. The different distributions of the 3C-POD resemble the non-
filtered distribution quite well with a lower magnitude, especially for the near-wall peak. In
contrast, for 2C-POD the 50% high energy containing modes do hardly contribute to the
near-wall peak. However, in the bulk region, most of the MKE-production term is provided
even by the 30% high energy containing modes. The GF seems to filter P1 similarly as the
3C-POD. In comparison to 30% of the 3C-POD, the filter width σ+ = 30 contains an equally
high near-wall peak, whereas in the bulk region σ+ = 30 consists of slightly higher P̃1-values.
Hence, near the wall P1 rather consists of small scales and in the bulk region more of large
scales.

Figure 4.38: MKE-production term P̃1 five cells below and parallel to the free surface in outer scaling
reconstructed from 3C- (left) and 2C-POD (middle) from the first modes including
various amount of the fluctuating energy and Gaussian filtered for different filter widths
(right) for Reτ = 180 and 50% FR.

In the following paragraph, the key term, the filtered secondary MKE-production term
P̃2,3, is analysed. In figure 4.39, its two-dimensional distribution over the cross-section is
shown, which gives a good impression of the various MKE-production peaks for the different
filters. Please note that the colour map changes from top to the bottom according to the
amount of TKE contained by the filtered velocity field. The POD filtered P̃2,3 show similar
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filtering effects like the instantaneous velocities reconstructed by the same POD modes (cf.
figures 4.27 and 4.28). In detail, the 3C-POD shows that when only the first fluctuating
modes containing 30% of the energy are used as filter, the structures of P2,3 along the
wall are predominantly conserved. Hence, the filtered MKE-production peaks at the wall
and in the mixed-corner preserve higher magnitudes than the negative MKE-production
in the centre of the free surface. In contrast, the 2C-POD filtering mainly conserves the
features of P2,3 at the free surface and slightly damps the peaks along the wall. However, the
qualitative distribution of the peaks does hardly change, thus, the 2C-POD maps its share
of the energy quite well in P̃2,3. The magnitude of the Gaussian filtered secondary MKE-
production (right column) only decreases at the wall for larger filter widths, whereas the
peaks at the free surface are conserved and a little widened in the spatial sense. Hence,
GF indicates that both the small and the large scales similarly contribute to the total
P2,3.

Figure 4.39: Secondary MKE-production P̃2,3 of 3C- (left) and 2C-POD (mid), reconstructed from
the first modes including 100% (first), 90% (second), 50% (third) and 30% (fourth
row) of the fluctuating energy. Right: Gaussian filtered P̃2,3 with filter widths σ+ = 0
(first), σ+ = 5 (second), σ+ = 20 (third) and σ+ = 30 (fourth row). All plots for
Reτ = 180 and 50% FR.

A more quantitative comparison is possible with the line plots along the free surface, where
the strongest secondary MKE-production takes place. In figure 4.40, the distributions show
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that 3C-POD reconstructs a smaller share in the bulk region than the 2C-POD. The 2C-POD
reconstructs a similar magnitude even in the vicinity of the wall, but the positive peak is
slightly shifted away from the wall. The reproduction with 50% of the fluctuating energy by
2C-POD reconstructs a larger share throughout the distribution than the 50% distribution
of 3C-POD. Moreover, the cross-sectional view shows that it also accounts similarly for the
peak at the wall, which is less pronounced for 2C- than 3C-POD comparing the 30%-energy
cases. It indicates that the 2C-POD is better in capturing the process of secondary MKE-
production compared to 3C-POD. In contrast to the two POD approaches, the GF applies
similarly well and evenly to both high peaks. Moreover, the magnitudes of the filtered peaks
are equally high as the magnitudes from 2C-POD.

Figure 4.40: MKE-production term P̃2,3 ν/u
4
τ five cells below and parallel to the free surface re-

constructed from 3C-POD (left) and 2C-POD (middle) from the first modes including
various amount of the fluctuating energy and Gaussian filtered for different filter widths
(right) for Reτ = 180 and 50% FR.

In order to compare the overall MKE-production of the different Reynolds numbers and
filling ratios, the positive and negative part of P̃2,3 were separately integrated over the
cross-section for the various filtering options for POD (see figure 4.41) and GF (see figure
4.42). Please note that the positive part is normalised by the non-filtered, positive part
and likewise vice versa for the negative part. The amount of reconstructed P̃2,3 can be
compared to the energy included to reproduce the flow fields (30%, 50%, 90% and 99%
for the POD’s). The secondary MKE-production from 3C-POD contains a smaller share
than the energy content introduced for the filtering, especially for the positive P̃2,3 of 30%
(≈ 10− 30%P̃2,3) and 50% energy content (≈ 20− 55%P̃2,3). For the 2C-POD a larger share
than the energy input remains in the filtered secondary MKE-production. For an energy
input of 30% approximately 30 − 50%P̃2,3 is reconstructed. In most cases a larger share
is reconstructed by the negative P̃2,3 than by the positive. However, this does not mean
that the absolute negative MKE-production is higher, because, as mentioned above, the
normalisation is different and decouples the two variables. A Reynolds number dependency
can be found for both POD-filtered cases, as for higher Reynolds numbers the share of
reproduced secondary MKE-production is increased for the positive and negative part. An
exceptionally high secondary MKE-production is reconstructed for 75% filled Reτ = 180
case, where more than 60% of the negative P̃2,3 is already captured by the modes carrying
only 30% of the fluctuating energy. This higher MKE-production rate is also visible for 50%
of the energy.
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Figure 4.41: Negative and positive separately integrated secondary MKE-production
∫

Ω P̃2,3 ≶ 0
filtered according to their included energy to reconstruct velocities for 3C- (left) and
2C-POD (right) for various Reτ and filling ratios. Blue: P̃2,3 < 0; red: P̃2,3 > 0.
Normalised by the individual, non-filtered

∫
Ω P2,3 ≶ 0.

The Gaussian filtered overall MKE-production is shown in figure 4.42. Generally, most of
the data points lie slightly above the diagonal, hence, in relation, the filtered flow fields
contain a slightly higher amount of secondary MKE-production than corresponding TKE.
In contrast to the PODs, no clear distinction can be found between positive and negative
P̃2,3. Only for 75% FR the negative value is much higher than the positive. Moreover, the
same Re-dependency applies as for the PODs – with increasing Reynolds number the share
of integrated MKE-production slightly increases.

In summary, the spatial distributions of P̃2,3 and the integral analysis indicate that the small
scales and the modes containing a small amount of energy, have a non-negligible contribution
to the energy transfer, which is also concluded by Sakai (2016).

In order to assess the influence of single POD modes and the different Gaussian filter widths
in detail, figure 4.43 gives insights about the cross-sectional averaged, complete P̃2,3-term
and its individual cross-sectional averaged terms P̃22, P̃33, P̃23 and P̃32. 3C- and 2C-POD
show differences in the distribution of the single modes. As expected from the recreation
of the secondary TKE (cf. figure 4.22) the high energy modes of the 2C-POD also better
concentrate strong secondary MKE-production and for modes with k > 40 there are less
deviations from zero than for the 3C-POD modes. For the GF, the cross-sectional averaged,
complete P̃2,3 shows an almost linear decrease and even negative net MKE-production occur
for larger filter widths. From the spatial distributions (cf. figure 4.39) it is known, that the
negative MKE-production in the centre of the free surface remains the most intense peak
for stronger filtering, which results in the negative P̃2,3. Please note an important difference
between the representations is that the single values of the POD-modes can be summed up
and give the total magnitude without filtering, whereas for the GF the non-filtered value
is described only by σ+ = 0. The complete secondary MKE-production can be split up
into its individual terms P̃22, P̃33, P̃23 and P̃32. For all filtered and also the non-filtered field
P̃22 is the most important term, acting in the non-filtered flow mostly at the free surface.
Only for the 2C-POD the negative branch is not dominated by P̃22. The POD-filter shows
that the most energy containing modes also dominate the individual MKE-production terms
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Figure 4.42: Negative and positive separately integrated secondary MKE-production P̃2,3 ≶ 0 fil-
tered according to the ratio of included TKE (cf. figure 4.33; for Reτ = 180 σ+ = 5
corresponds to 90%, σ+ = 20 to 50% and σ+ = 30 to 30% of TKE.) for various Reτ and
filling ratios. Blue: P̃2,3 < 0; red: P̃2,3 > 0. Normalised by the individual, non-filtered∫

Ω P2,3 ≶ 0.

with a similar level of consistency as for the total P̃2,3. The distributions of the single terms
obtained by GF indicate that the terms P̃22 and P̃33 dominate and the shear terms are
less important. Overall, the results indicate that the mean secondary MKE-production is a
multi-scale process, that it is not only governed by the small or the large scales, but by all
of them. Similarly, one can state that that both high and low energy modes contribute to
P3,2.

Thus far, only mean quantities were investigated for the filtered transfer of kinetic energy. In
the following paragraph the instantaneous filtered secondary MKE-production u′iu

′
j ∂ui/∂xj

is studied in instantaneous snapshots in order to see, whether similar observations can be
made or whether the instantaneous flow behaves differently. The visualisations of the in-
stantaneous secondary MKE-production in figure 4.44 show the free surface plane for the
same snapshot as the other instantaneous figures in the sections and chapters above. The
free surface plane is the most interesting horizontal plane, because of the filtering definition
ũ′iũ
′
j∂ui/∂xj. The definition determines that strong events are always located in areas, where

the mean secondary flow has strong gradients, hence, in the upper third of the cross-section
and especially at the free surface. The limits of the colour-map of the non-filtered case are
chosen such that its strong peaks are highlighted. This colourmap is defined as 100% and
for the filtered fields the limits of the colourmap are reduced to 30% as the filtered fields
correspond to 30% of the fluctuating energy. Please keep in mind that in contrast to the
POD filtering, which is a two dimensional filter applied on every cross-sectional slice, the GF
applies on all three dimensions. Independent of the filter method, positive and negative P̃2,3

are clearly restricted to the same areas as the average MKE-production term. Looking at
the distribution of positive and negative peaks of the non-filtered and filtered fields, it does
not seem that they appear in pairs or differently connected, but mostly independent from
each other. For 3C-POD, some of the filtered peaks do not match to the non-filtered peaks,
i.e. at x1/R ≈ 25 and x2/R ≈ 0.75. Apparently, in that case the high energy modes are
more responsible for a larger share of the MKE-production event than for other peaks. In
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Figure 4.43: Modewise, cross-section averaged secondary MKE-production P k2,3 (left) and positive

and negative separately integrated, individual components P k22, P
k
33, P

k
23, P

k
32 (right)

of 3C- (top) and 2C-POD (middle). Bottom row: Gaussian filtered, cross-section
averaged secondary MKE-production P̃2,3 (left) and positive and negative separately
integrated P̃22, P̃33, P̃23, P̃32 (right). All values are normalised by the cross-sectional
integrated

∫
Ω P2,3 and all plots are for Reτ = 180 and 50% FR.

contrast, the filtered P̃2,3-peaks of the 2C-POD, and even more of the GF, are more relatable
to the non-filtered peaks. Moreover, only positive peaks are noticeable for 3C-POD, whereas
for 2C-POD and GF a larger amount of positive and negative peaks is visible. This is also in
line with the results of the temporal averaged and filtered secondary MKE-production (cf.
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Figure 4.44: Instantaneous secondary MKE-production P̃2,3 ν/u
4
τ along the free surface for Reτ =

180 and 50% FR. Top row: non-filtered P2,3; second and third row: P̃2,3 reconstructed
by the first modes including 30% of the fluctuating energy from 3C-POD and 2C-POD,
respectively; bottom row: Gaussian filtered P̃2,3 with σ+ = 30.

figure 4.39).

Lastly, the filtered P2,3 in figure 4.44 is compared to the filtered vorticity in figures 4.29,
4.30 and 4.37. The P2,3-peaks of 2C-POD have a rather round shape, whereas the peaks
of 3C-POD and GF are more elongated being similar to the shape of the vorticity peaks of
the corresponding approaches. In addition to the comparison of the shape of structures, the
filtered vorticity fields and the filtered secondary MKE-production show the relation between
vortical structures and P2,3-peaks. For this investigation the focus is on the 2C-POD and
the GF, because the 3C-POD hardly contains P̃2,3-peaks along the free surface. On the one
hand, the positive P̃2,3-peaks that occur close to mixed-corner are mostly accompanied by
either one or two counter-rotating vortical structures for both approaches. On the other
hand, no connection can be noticed between the negative P̃2,3-peaks in the centre and high
intensities of ω̃1.

Conclusion

In conclusion, the transfer of kinetic energy between TKE and MKE is a multi-scale and
multi-mode process. The 3C-POD is less suited to extract the transfer mechanism than the
2C-POD and the GF. 2C-POD and GF are able to define high energy modes and large scale
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structures, respectively, which contain a slightly larger share of P2,3 than corresponding TKE.
Looking at the individual terms of the secondary MKE-production, P22 and P33 have a larger
contribution compared to the shear terms. However, all applied filterings show that the low
energy modes and the small scales have a non-negligible impact on the transfer mechanism,
which is in agreement with the results of Sakai (2016). The instantaneous filtered and non-
filtered P2,3 indicate that strong secondary MKE-production events are often surrounded by
strong vortical structures. However, a clear picture of the MKE-production between P2,3

and ω1 could not be detected. Therefore, a conditional averaging of strong P2,3 events is
investigated in the next section.

4.2.4. Conditional Averaging of High Secondary MKE-Production
Peaks

In section 4.1.2 the path of kinetic energy towards secondary flow was reconstructed and the
term of secondary MKE-production P2,3 was found to be the link between turbulent flow
and secondary flow. The modes and the scales involved in the process of secondary MKE-
production were investigated in the previous sections of this chapter. In this section the
tool of conditional averaging is introduced. Conditional averaging was used, for example, by
Nagaosa & Handler (2003), who analysed near-wall structures and their vertical evolution. In
combination with many other references, cited also in section 1.2 (Free Surface Flows), they
conclude for open-channel flows without side walls that the structures generated near the wall
move towards the free surface during strong ejection events. In this study, positive and strong
P2,3-events serve as the condition to average. The investigation of conditionally averaged flow
fields shall help to get a more distinct image of positive and strong P2,3-events, of what they
have in common and what kind of structures are involved.

Please keep in mind that within this section 4.2 the secondary MKE-production term P2,3

is defined positive, if energy is transferred from TKE to MKE. The reverse energy transfer
is defined as negative.

Procedure of Conditional Averaging

In this thesis, the following procedure was applied to extract the mechanism of kinetic
energy transfer between secondary MKE and TKE is as follows: In a first step, the highest
positive and the lowest negative values of P2,3 within an instantaneous cross-sectional slice
are gathered and categorized as positive and negative peak (ext(P2,3)| > 0, < 0). From each
cross-sectional slice of over 180 snapshots the magnitude and position are collected for each
peak. From the set of positive and negative peaks, the 5% of the most extreme events are
selected for each case. Figure 4.45 shows the spatial distribution of the positive (red) and
negative (blue) P2,3-peaks of the 95%-quantile.

It becomes clear that many of the negative peaks occur at the side wall and most of the
positive peaks at the free surface, where the mean secondary MKE-production also has its
peaks (cf. figure 4.10). As the focus of this study lies on the mean secondary flow, the
positive P2,3-events that transfer energy from TKE to MKE are the most interesting events.
They mostly occur along the free surface, hence, all the events which are located in the
vicinity of the free surface are collected. The horizontal line delimits the peaks that appear
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25+

left centre right

Figure 4.45: Locations of positive (×) and negative instantaneous P2,3-peaks (+) of the 95%-quantile
for Reτ = 180 and 50% FR. The black horizontal line represents the distance of 25
wall units from the free surface. At the top the horizontal categories are shown.

in the vicinity of the free surface from the peaks below. The distance of the horizontal
line from the free surface is 25 wall units and defines the free surface layer, from which
the peaks are collected. In a last step the collected positive and negative peaks are each
categorized according to the location where they occur: in the mixed-corner in positive and
negative x2-direction or in the centre. Hence, snapshots were scanned for the following six
events: minima and maxima in the free surface layer occuring in the left, centre or right
section.

Quantitative Results of Conditional Averaging

Before analysing the conditionally averaged flow fields, the following paragraphs quantify
how many events the procedure includes and excludes, its Reynolds- and filling-dependency
and the correlation of extreme P2,3-events to the secondary MKE-production integrated over
the cross-section.

First, the PDF of instantaneous P2,3-values over all cells is shown in figure 4.46 (left) in
semi-logarithmic axes. Cell-values of 80 snapshots of the semi filled pipe flow at Reτ = 180
were used for this evaluation. The standard deviation is σ = 0.0055, which is approximately
equal to the 5%- and 95%-quantiles. The distribution is right-skewed with a skewness of
S = 1.76 and its kurtosis is F = 134, hence, it contains more outliers than the standard
normal distribution. Around 45% of the cell values of P2,3 are close to zero, being smaller
than the standard deviation by a factor of ≈ 10. On the one hand, this reflects the fact
that only very little secondary MKE-production takes place in most of the cross-section,
as the gradient of mean secondary flow is strongest at the free surface and at the wall,
where inner and outer secondary cell flow either towards or away from each other. On
the other hand, the PDF could further indicate that P2,3 occurs as very rare but intense
events.

Let us focus on the extreme events that are part of the 95%-quantile and only occur in
the free surface layer. In total 12129 extreme events were found in the free surface layer
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Figure 4.46: Left: PDF of all normalised instantaneous P2,3-cell values of 80 snapshots (Reτ = 180
and 50% FR). Vertical lines: 5%- and 95%-quantile. Maximum value: 0.4441; mini-
mum value: -0.5838. Right: Share of negative (blue) and positive (red) instantaneous
P2,3-peaks of the 95%-quantile found in the free surface layer in comparison to number
of peaks of the 95%-quantile in whole cross section. + represents 50%, × 25% and 4
75% FR.

for semi filled pipe flow at Reτ = 180, which split into 7083 positive events, 2816 negative
events, and 1115 events with a negative and positive peak occurring simultaneously in the
free surface layer. Figure 4.46 (right) shows the ratio for positive and negative peaks from
the 95%-quantile that occur in the free surface in comparison to the extreme peaks occurring
in the complete cross-section. Hence, it basically shows the ratio of the number of peaks
above the horizontal line to all peaks, shown in figure 4.45. This ratio was computed for
five different Reynolds numbers and the different FRs. More than 80% of the positive
peaks appear for intermediate Reynolds numbers in the free surface layer and approximately
40% of the negative peaks. Far less peaks occur in the free surface layer for Reτ = 115,
because the distribution of P2,3-peaks is more equally distributed over the cross-section.
For Reτ = 460 almost 80% of the positive peaks take place in the free surface layer and
approximately 25% of the negative peaks. Outstanding are the number of peaks for 25%
and 75% filled: Only 10% of the negative and only 60% of the positive extreme events occur
in the free surface layer for the small filling ratio. Whereas almost all positive and negative
extreme events occur in the free surface layer for 75% filling. This is in accordance to the
distribution of the mean secondary MKE-production (cf. figure 4.10). As mentioned above,
please keep in mind that many negative events are excluded, because the area of negative
MKE-production at the wall below the inner secondary cell is not taken into account in the
free surface layer.

In figure 4.47 (left) the distribution of extreme events are shown according to their spatial
categorization and in dependence of Reynolds number for semi filled pipe flows. Most of
the extreme events (70 − 80 %) are maxima, hence, secondary MKE-production of mean
secondary flow, in the mixed-corner, whereas minima in the mixed-corner and in the centre
occur only in 8 − 20 % of the events. Maxima in the centre are negligible. The extreme
events occurring in the left and right mixed-corner are evenly distributed. Overall, the
separation of extreme events resembles the mean P2,3 distribution, keeping in mind that a



148 4.2. Analysis of Coherent Structures

Figure 4.47: Number of peaks of P2,3 from the 95%-quantile occurring in the free surface layer
according to their categorization for Reτ = 115, 140, 180, 230, 460 for 50% FR (left)
and for Reτ = 180 for 25%, 50% and 75% FR (right). + shows the share of maxima in
the mixed-corner, + maxima in the centre, + the share of minima in the mixed-corner
and + minima in the centre. For different filling ratios following additional symbols are
introduced: × shows the share of maxima in the left mixed-corner, 4 shows the share
of maxima in the right mixed-corner, × the share of minima in the left mixed-corner
and 4 the share of minima in the right mixed-corner.

certain amount of negative events miss in this representation. For different filling rates figure
4.47 (right) provides information. With increasing filling ratio the number of minima in the
centre increases, until, for 75% filling ratio, the number of minima in the centre is about
50% and equal the sum of maxima in the left and right corner. Thus, minima in the centre
are more important for this filling rate. The other trend is that maxima in the mixed-corner
become less with increasing filling ratio. Minima in the mixed-corner and maxima in the
centre are almost negligible. Considering the results from figure 4.47 (right) that only one
third of the extreme events occur in the free surface layer, it indicates that the process to
generate secondary flow differs from the higher filling rates.

In order to get an impression what kind of impact a instantaneous P2,3-peak and especially
its extreme events have on the complete MKE-production over the cross-section, the relation
between positive or negative P2,3-peaks in the free surface layer (ext(P2,3)|≶0,25+) and the
net MKE-production of a cross-section (

∫
Ω
P2,3) is shown in figure 4.48. The lines show the

5%-(negative) and 95%-quantile (positive) of the net MKE-production and the 95%-quantile
of the negative (left plot) and positive (right plot) extreme events. Please note that both∫

Ω
P2,3 and ext(P2,3)|≶0,25+ are normalized by the corresponding positive or negative peak of

the mean secondary production P 2,3. Negative P2,3-peaks are multiplied with −1 to bring
them to the positive scale to simplify comparisons. The negative extreme events hardly
have any impact on the net MKE-production. Whereas, the positive extreme events have a
more distinct correlation, which can be seen by the fact that the values above the horizontal
line are mostly on the right, hence, they are linked to positive net MKE-production and
only a comparably small number of extreme events are connected to negative net MKE-
production.
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Figure 4.48: Scatter plot of cross-sectional instantaneous P2,3-peaks occurring in the free surface
layer and the corresponding secondary MKE-production integrated over the cross-
section

∫
Ω P2,3. On the left only negative P2,3|<0,25+- and on the right only positive

P2,3|>0,25+-peaks are considered. The vertical lines indicate the 5%- and 95%-quantiles
of
∫

Ω P2,3 and the horizontal line shows 95%-quantile of the peak distribution. Both
plots for Reτ = 180 and 50% FR.

Conditionally Averaged Flow Fields

After describing the procedure of gathering the conditionally averaged flow fields and quan-
tifying the different events, the spatial distribution of the conditionally averaged flow fields
are investigated by visualising the streamwise vorticity and the secondary MKE-production.
Please note that the case of 25% filling is not included into the spatial analysis, because
only very few events were captured in the free surface layer, hence, a different procedure to
extract the extreme events of secondary MKE-production would have been necessary. Fur-
ther note that the conditionally averaged flow field for a P2,3-event in the left mixed-corner
is basically symmetric to the one in the right mixed-corner and both events, right and left,
occur equally often. Hence, advantage of the vertical symmetry plane was taken and the
conditionally averaged field of the event in the left mixed-corner was mirrored to the right
and both were averaged. This averaging increases the sample size of an event occurring in
the mixed-corner by a factor of two.

In a first step, only the cross-sections where the peaks occurred, were averaged, see 4.49 for
Reτ = 180 and 50% filling. The peaks for the averaged cross-sections are categorized by
the location of the peak and whether it is a negative or positive peak. Please note that the
increments of the contourlines are increased for this plot (negative P2,3 peaks in the mixed-
corner; top, left) by a factor of two. The negative P2,3 peaks in the mixed-corner (top,
left) show the strongest vorticity peaks compared to the other distributions. Interestingly, a
pattern close to the mean vorticity pattern can be identified. The maximum events of P2,3

in the mixed-corner (top, right) also strongly resemble the mean vorticity distribution with
positive secondary MKE-production at the free surface between inner and outer secondary
cell. Hence, the minima and the maxima in the mixed-corner describe a similar event, which
consists of an inner and an outer secondary cell. The distribution of the minima in the centre
shows only weak vorticity intensities in the centre. However, with a clear division of signs
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to each side and distinct inner secondary cells. In the center of the free surface where the
negative MKE-production peak is located almost no vorticity is present. In conclusion, all
the different categories of extreme events at the free surface resemble the mean distribution
vorticity, hence, they do not contradict each other, they rather support the same flow pattern.
Note that there are no figures for maxima in the centre, because hardly any maxima occurred
in the centre.

Figure 4.49: Secondary MKE-production P2,3 normalised by ν/u4
τ in colour and streamwise vorticity

ω1 as gray (clockwise) and black (counterclockwise rotation) contours of Reτ = 180 and
50% FR, being conditionally averaged for minima (left) and maxima (right) secondary
MKE-production peaks. Top row shows average over all corner peaks and second row
shows peaks in the centre. Please note that the increments of the contourlines are
increased by a factor of two for the minimum events in the mixed-corner (top, left).

For 75% filling the distributions of the streamwise vorticity (figure 4.50) are very similar at
the free surface to the ones of 50% filling. This is surprising, because, in contrast, the mean
secondary flow of 75% FR shows a pattern with a very small inner vortex only. This could
have suggested that other dynamics take place, but apparently, the obtuse angle does not
have a strong impact on the appearance of the structures of the conditionally averaged flow
field. The free surface wall interactions seem to be similar, but the bottom part gets larger,
where no large magnitudes occur in the conditionally averaged sense.

For the three dimensional conditionally averaged flow fields the instantaneous snapshots were
averaged the following way: Each P2,3-peak was categorised in the above mentioned manner
and then the snapshot was shifted in streamwise direction such that the peak is centred within
the snapshot. The velocity flow fields were centred according to the P2,3-peak, too, and then
averaged over all peak occurrences. This procedure was applied for each peak category.
Moreover, as mentioned above, advantage of the vertical symmetry plane was taken, by
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Figure 4.50: Secondary MKE-production P2,3 normalised by ν/u4
τ in colour and streamwise vorticity

ω1 as gray (clockwise) and black (counterclockwise rotation) contours of Reτ = 180 and
75% FR, being conditionally averaged for minima (left) and maxima (right) secondary
MKE-production peaks. Top row shows average over all corner peaks and second row
shows peaks in the centre. Please note that the increments of the contourlines are
increased by a factor of two for the minimum events in the mixed-corner (top, left).

mirroring the conditionally averaged field of the peak in the right mixed-corner to the left.
Please note that the snapshot can be shifted in streamwise direction without limits, because
of the periodic boundary condition in streamwise direction.

In 3D it is possible, instead of examining the streamwise vorticity or the contours of the
stream function of the secondary flow, to calculate the Q-criterion (Hunt et al., 1988). It
applies to the velocity gradient tensor J = ∇u and uses its second invariant to define
structures. J can be split up into the sum of the rate-of-strain tensor ST = 1

2
(∇u+ (∇u)T )

and the vorticity tensor ΩT = 1
2
(∇u− (∇u)T ), being the symmetrical and anti-symmetrical

part of the velocity gradient tensor, respectively. The second invariant of J can be defined
as Q = ‖ΩT‖2 − ‖ST‖2, with ‖ϕ ‖2 being the Euclidean norm. In the case of Q > 0 the
magnitude of vorticity is greater than the rate-of-strain magnitude, hence, vorticity is the
dominating process. Please note that in the fluid mechanics community a unique definition
for structures is missing and still under discussion. Nevertheless, the Q-criterion, which is
used within this thesis, is widely used to define structures in 3D-space. The same analysis
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Figure 4.51: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion (QR/ub = 0.023) coloured with ω1R/ub for
Reτ = 180 and 50% FR. View from top (top) and view from side with a cut at x2 = 0
(bottom).

Figure 4.52: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion (QR/ub = 0.023) coloured with ω1R/ub (see
fig. 4.51) for Reτ = 180 and 50% FR. View in streamwise direction.
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was also performed using the λ2-criterion of Jeong & Hussain (1995), which gave almost
indistinguishable results.

The most frequent event for the free surface layer in the 95%-quantile is the maximum P2,3

in the mixed-corner for all Reynolds numbers, hence, in the following this category is investi-
gated in detail. For Reτ = 180 and 50% FR the figures 4.51 and 4.52 show the conditionally
averaged flow field of the maximum P2,3-event in the mixed-corner. In figure 4.51 a view
on the conditionally averaged structure is shown from the top (top plot) and from the side
(bottom) and in figure 4.52 the domain can be seen in streamwise direction. The green
patch represents the contour of the positive secondary MKE-production P2,3 ν/u

4
τ = 0.054

and the other structures are a contour of the Q-criterion QR/ub = 0.023. The structures
from the Q-criterion are coloured by the magnitude of the streamwise vorticity ω1R/ub. Blue
indicates counter- and red clockwise rotation. The inner secondary cell is present in both
mixed-corners of the pipe over the whole domain with deformations, where the P2,3-peak is
located. In front of the MKE-production peak a red clockwise rotating structure is present,
which reaches from the wall underneath the mixed-corner cell to the free surface. It seems
the red structure is wall-attached and evolves from the wall to the free surface. In between
the outer structure and the mixed-corner cell a flow towards the free surface is generated,
where it is redirected, creating mean secondary flow via P2,3. The mixed-corner vortex gets
back to its shape after less than 2R behind the P2,3-peak and the red structure ends again
in the bulk flow. The red structure consists of two parts, one part is directly at the wall and
the other is at the free surface. This configuration reminds of the mean streamwise vorticity
distribution, showing two peaks, one at the wall below the inner secondary cell and one at
the free surface.

As shown in figure 4.47 (right) also for 75% FR the maximum P2,3-events are responsible
for more than half of the extreme peaks in the free surface layer. As the mixed-corner has
an obtuse angle, the structural connection between wall and free surface might be different
for 75% filling ratio. Nevertheless, in figures 4.53 and 4.54 a very similar conditionally
averaged structure is found. The basic configuration is the same for both FRs with the
mixed-corner vortex and the clockwise rotating structure evolving from the side wall to the
free surface. The inner secondary cell has approximately only half the size compared to the
inner vortex of 50% FR. The vertical size of the outer structure is approximately 0.5R in
both cases.

The conditionally averaged structures of different Reynolds numbers for 50% FR are shown
in figure 4.55. The view on the flow fields is in flow direction. On the one hand, the mixed-
corner vortex gets smaller with increasing Reynolds number, as expected from the inner
scaling of the inner secondary cell of the mean flow. On the other hand, with decreasing
Re the outer structure becomes more distinct and the iso-contour becomes more coherent.
With the contour level of Q being approximately constant for all Reynolds numbers, it can
be seen that at smaller Re less other structures are present around the peak structure in
the conditionally averaged flow field, neither in front nor behind nor next to it. For the
case of higher Re, many small structures that have the same rotation as the mean flow,
can be observed in front and behind the P2,3 peak at the free surface. Along the bottom
small structures occur only close to the wall and seem to be randomly distributed, also
according to their sign. A sensitivity study of the threshold for Q showed that the threshold
seems to be sensible, because, for instance, at Reτ = 460, a higher threshold would let all
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Figure 4.53: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion (QR/ub = 0.023) coloured with ω1R/ub (see
fig. 4.51) for Reτ = 180 and 75% FR. View from top (top) and view from side with a
cut at x2 = 0 (bottom).

Figure 4.54: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion (QR/ub = 0.023) coloured with ω1R/ub (see
fig. 4.51) for Reτ = 180 and 75% FR. View in streamwise direction.
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Figure 4.55: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion coloured with ω1R/ub (see fig. 4.51). View in
streamwise direction for Reτ = 140 (left), 180 (middle) and 460 (right) for 50% filling
ratio. Threshold for QR/ub is 0.02, 0.023 and 0.035, respectively. View in streamwise
direction. Note that the figure is available in the appendix D with enlarged size.
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Figure 4.56: Definition of lengths of conditionally averaged structures of maximum P2,3 events in
the mixed-corner.

Figure 4.57: Lengths ∆L of conditionally averaged structures of maximum P2,3 events in the mixed-
corner. Left: +: transverse width complete structure Wcs, ◦: transverse width free
surface part of structure Wfs, +: streamwise length complete structure Lcs, ◦: stream-
wise length free surface part of structure Lfs. Right: +: distance core to free surface,
◦: distance core to centre, +: distance lower contour to free surface ∆fs, ◦: distance
centre contour to centre ∆cc.
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structures disappear simultaneously and with a smaller threshold the distinction between
the conditionally averaged structures and the surrounding flow field would be less clear.
However, the choice of the threshold value remains subjective. Moreover, please note that
the presence of randomly distributed structures along the bottom and in front and behind
the peak structure indicates that the statistics are not fully converged yet. With increasing
sample size these structures should disappear, however, the qualitative pattern would not
change.

The dimensions of the outer structure, which are defined in figure 4.56, are compared for the
different Reynolds numbers in figure 4.57. Either the dimension of the complete structure
is taken, or only from its free surface part. The transverse width for the complete Wcs or
the free surface structure Wfs is approximately the same for different Reynolds numbers,
whereas the streamwise length gets smaller with increasing Re (fig. 4.57 left). By increasing
the threshold of the Q-criterion, a core of the structure was localised in the free surface part
of the structure. The right plot of figure 4.57 shows its distance to the free surface, which
gets slightly less with increasing Reynolds number, whereas the distance of the core to the
vertical symmetry line increases. Hence, with higher Re the outer structure moves closer to
the free surface and the mixed-corner.

In a last step, the conditionally averaged structures are compared to the instantaneous ex-
treme events, which were used for the conditional averaging. Looking at instantaneous flow
fields of extreme events, a direct representation of the Q-criterion shows the smallest scales,
which, mostly show a chaotic, overwhelming distribution of single structures, see figure 4.58
(top). For the bottom plot the instantaneous velocity field was Gaussian filtered with a filter
width of σ+ = 20. Then the vorticity and Q-criterion were calculated from the filtered veloc-
ity field. Surprisingly, the high MKE-production does not necessarily occur in between two
counter-rotating structures. The P2,3-event at x1/R ≈ 10 and x2/R ≈ 0.8 seems to be accom-
panied by two counter-rotating structures, a blue one in positive x2-direction and a red one
in negative x2-direction. However, for the P2,3-event at x1/R ≈ 8 and x2/R ≈ −0.8 only one
red structure occurs right at its place. Hence, the structures found in the 3D-representation
of the conditionally averaged flow fields, cannot be easily found in instantaneous flow fields.
This underlines the mostly conceptual meaning of the conditionally averaged flow fields, as
already pointed out by Jiménez & Kawahara (2012).

Conclusion

In summary, extreme events of P2,3 were conditionally averaged for 50% and 75% FR in
a 25 wall units large free surface layer. In general, the conditionally averaged flow fields
resemble the mean secondary flow. Most of the extreme events that transfer TKE to MKE
are occurring in the mixed-corners at the free surface. The extreme events of P2,3 do not
dominate the cross-section integrated secondary MKE-production, but they are correlated
and produce a trend. Hence, the extreme events can be analysed conceptually. For 50% FR,
strong secondary MKE-production occurs at the free surface between two counter-rotating
vortical structures. On the one side there is a structure resembling the inner secondary cell,
that is persistent over a larger distance. On the other side a bigger, wall-attached structure
reaching to the central free surface occurs. Surprisingly, the same pattern of structures can
be detected for 75% filled pipe flow. Although the inner secondary cell is hardly present in
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Figure 4.58: Instantaneous extreme event of P2,3 (green) with Q-criterion coloured with ω1R/ub of
complete (top) and gaussian filtered velocity field (filter width σ+ = 20) (bottom) for
Reτ = 180 and 50% FR.

the mean flow of 75% FR, similar structures are responsible for extreme events of secondary
MKE-production. Hence, the impact of the obtuse angle on the extreme events of P2,3 is
small. The filling ratio 25% was not examined in detail, because most of the strong secondary
MKE-production events do not occur at the free surface. Therefore, a different conditional
averaging process would need to be implemented, in order to extract the extreme events for
this filling ratio.
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4.3. Conclusion

As mentioned in the introduction to this chapter, its aim is to show different perspectives
of the secondary flow mechanism and trying to identify common and complementing features.

The classical approach of analysing the mean streamwise vorticity equation shows that the
gradients of turbulence anisotropy, which are responsible for vortictiy production, have high
intensities in the vicinity of the mixed-corners. Hence, in each mixed-corner, which are the
only geometrical inhomogeneity in partially filled pipe flow, vorticity is generated with oppos-
ing sign being in line with the rotation of the mean secondary flow for 25% and 50% FR. As
the inner secondary cell is very weak and small for 75% FR, the strong vorticity generation in
the mixed-corner is not in line with the mean secondary flow.

Another perspective are the MKE- and TKE-budget, which provide a complete picture of
the path of kinetic energy: the incoming energy, which only has a streamwise component,
enters the MKE-budget, where it is either directly dissipated or transferred to TKE. By the
intercomponent transfer energy also reaches the cross-stream components. A small share
of energy is transferred back to MKE, generating secondary flow. This energy transfer is
provided by the secondary production term P2,3 and occurs in a small area around the
stagnation point located at the free surface, separating the inner and the outer secondary
flow cells. From this point, secondary kinetic energy is either transported along the free
surface towards the pipe’s centre or towards the mixed-corner. With increasing filling ratio
the amount of energy directed towards the centre increases. For 75% filled pipe flow almost
the entire secondary kinetic energy is directed towards the centre and the inner secondary
cell almost vanishes.

Comparing the processes occurring within both kinetic energy budgets and the mean vor-
ticity equation shows that they are compatible with each other for 25% and 50% FR. The
intensity and location of vorticity generation can be connected to the location and division
of secondary production and both processes are consistent with each other. However, no
causality can be concluded. For 75% filled pipe flow, the location of vorticity production is
in conflict with the occurring secondary flow and the results from the MKE-budget.

In addition to the mean flow analysis, which showed that the secondary production P2,3

is a key term, coherent structures, defined by POD, GF and conditional averaging, gave
insights into the turbulent dynamics of the flow and its connection to the generation process
of secondary flow.

Two different two-dimensional PODs were employed, which decompose the TKE differently
by taking either all three or only the cross-stream velocity components into account. On
the one hand, the 3C-POD and its TKE decomposition are governed by u1, because the
streamwise component dominates the flow. On the other hand, for the 2C-POD only the
cross-stream components are taken into account, thus, the most energetic modes contain the
most secondary TKE. The fluctuating temporal coefficients are Gaussian distributed around
zero for both PODs. The spatial modes of the 3C-POD are more connected to strong stream-
wise velocity peaks along the wall and for 2C-POD larger structures occur covering more the
bulk region of the flow. The spatial restriction of the high energy containing modes indicates
that both POD approaches are not able to describe vortices moving over these boundaries
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very well. Hence, the sorting mechanism described by Sakai (2016) can hardly be reproduced
by only the high energy-containing modes. The differences of the spatial preferences between
the two approaches are also well visible in the instantaneous velocity and vorticity fields,
reconstructed by the high energy containing modes representing 30% of the energy. On the
one hand, the instantaneous streamwise vorticity along the free surface reconstructed from
2C-POD indicate that individual strong structures that resemble the instantaneous flow field
carry a considerable amount of secondary TKE. On the other hand, elongated structures
along the mixed-corner that resemble the inner secondary cell can be reported for the 3C-
POD, being consistent with the 3C-POD of Ng et al. (2021).

In contrast to the POD, the GF is applied in all three dimensions on the complete three
dimensional fields, hence, three dimensional dynamics are preserved. With enlarging the
filter width, small scales are filtered and large scales become more visible, however, at the
same time the kinetic energy in the filtered flow field decreases. Most of the intense small
and large scale structures appear in the vicinity of the wall and in the buffer layer, and
occur less in the bulk region. Along the free surface, a pattern of counter-rotating vortex
pairs can be detected that are inclined by approximately 30◦ from the wall, which become
more distinct with increasing filter width. Please note that the inclined vortex pairs are not
consistent with the vortex sorting mechanism proposed by Sakai (2016). However, especially
for larger filter widths, the overall arrangement of the vortices and their corresponding sense
of rotation resemble the mean secondary flow. Most of the small and large scale structures
that occur along the free surface have a streamwise length of less than 2R and, because of
the inclined structures, an alternating pattern of positive and negative vorticity appears in
streamwise direction. This indicates that the mean secondary flow is formed by averaging
over a large number of different large and small scale structures, instead of a stable vortex
pattern that only deviates from its mean representation. This result is consistent with Sakai
(2016), whilst it does not agree with a conceptual description of the secondary flow structures
by Ng et al. (2021). They describe an interaction between a mean outer secondary cell and
instantaneous structures, however, as mentioned above, the present results do not show a
temporally stable outer secondary vortex.

Applying the POD and GF on P2,3 shows that the 3C-POD is less suited to extract the
transfer mechanism than the 2C-POD and the GF. 2C-POD and GF are able to define
high energy modes and large scale structures, respectively, which contain a slightly larger
share of P2,3 than corresponding TKE. However, all applied filterings show that the low
energy modes and the small scales have a non-negligible impact on the transfer mechanism,
which is in agreement with the results of Sakai (2016). Hence, the generation of secondary
flow is a multi-scale and multi-mode process. The instantaneous filtered and non-filtered
P2,3 indicate that strong secondary MKE-production events are often surrounded by strong
vortical structures.

As a further complementary approach, events of high P2,3 magnitudes were conditionally
averaged for 50% and 75% FR. In general, the conditionally averaged flow fields resemble
the mean secondary flow pattern. Most of the extreme events that transfer TKE to MKE
occur in the mixed-corners at the free surface. The extreme events of P2,3 do not dominate
the cross-section integrated secondary MKE-production, but they are correlated and produce
a trend. For 50% FR, strong secondary MKE-production occurs at the free surface between
two counter-rotating vortical structures. On the one side there is a structure resembling the
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inner secondary cell, that is persistent over a larger distance. On the other side a bigger,
wall-attached structure reaching to the central free surface occurs. Similar results were
found by Sakai (2016), who investigated the temporal development of coherent structures in
a rectangular open-channel flow. He states that the inner secondary cell consists of rather
long structures, whereas the velocity-dip phenomenon is generated by vortices moving from
the side walls to the top centre. Surprisingly, the same pattern of structures as for 50% FR
can also be detected for 75% filled pipe flow. Although the inner secondary cell is hardly
present in the mean flow of 75% FR, similar structures are responsible for extreme events of
secondary MKE-production. Hence, the impact of the obtuse angle formed by the pipe wall
and the free surface on the extreme events of P2,3 is small.

Comparing the spatial distributions of the generation term of vorticity of the mean vorticity
equation with P2,3 and the conditionally averaged extreme events, the different perspectives
do not contradict each other for the case of 50% filled pipe flow. For 75% filling ratio, the
vorticity generation and conditionally averaged fields show similar distributions as for 50%
FR, however, the inner secondary cell vanishes for the mean flow and the distribution of the
mean secondary production does not imply a two vortex mechanism. Hence, the distributions
of the generated vorticity and of the mean secondary production would contradict. But the
knowledge of the conditional averaging enables to speculate that the process of generating
secondary flow is similar for both filling ratios.



5. Conclusion

To the end of this thesis the main results of the present study are summarised and an outlook
for future work is given.

5.1. Main Results

This thesis investigates the first results of a DNS of partially filled pipe flow for marginal to
moderate Reynolds numbers. The aim of this thesis was to provide a detailed flow description
and analyse the generation mechanism of the turbulence-induced secondary flow. A special
focus was placed on the role of the mixed-corner, which is the only geometrical inhomogeneity
in partially filled pipe flow.

The numerical methods applied in the simulations were carefully validated by a grid study.
The combination of Cartesian grid and immersed boundary method was further investigated
simulating a full pipe flow and comparing it to literature. Moreover, the length of the do-
main was assessed by analysing the streamwise two-point correlation of the velocities. For
the 50% filling ratio (FR), simulations were performed from Reτ = 110, which was found to
be the lowest friction Reynolds number that could sustain a turbulent flow, to Reτ = 460,
which was the highest Reynolds number. In addition to the semi filled pipe flow, FRs of
25% and 75% were simulated for Reτ = 180.

Over the considered parameter range, the friction coefficient was found to agree well with
Prandtl’s relation for smooth full pipe flow. The present values are lower than previously
published experimental results, however, Ng et al. (2018) reported larger uncertainties for
their data. In general, a good agreement to existing experiments was obtained for the
mean streamwise velocity distribution. The position of the maximum streamwise velocity
is Re-dependent and seems to settle for semi filled pipe flow at 0.3 − 0.4R below the free
surface for the highest simulated Reynolds number. In combination with all data avail-
able in literature on the distance between the maximum streamwise velocity and the free
surface ∆z, the present results indicate a linear relation between ∆z and the FR (H/2R):
∆z/(2R) ≈ 0.6754(H/(2R))−0.1642. This relation can be used to approximate the stream-
wise velocity distribution applying the procedure of Guo et al. (2015), which provides a
good estimation, however, it neglects any effect of secondary flow. In the lower half of the
domain, the streamwise velocity distribution becomes closer to the standard log-law with
increasing Reynolds number and, overall, it matches well with the profile measured by Ng
et al. (2018).

The mean secondary flow has a maximum magnitude of 1-6% of ub, which occurs at the
free surface. The secondary flow pattern is organised in four vortices, which are arranged in
two counter-rotating vortex pairs symmetrical to the centre plane. Thus, the existence of
the so-called inner secondary cell appearing in the mixed-corner, postulated by Grega et al.
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(2002), was confirmed for the investigated range of Reynolds numbers and the different FRs.
In agreement with Sakai (2016), the present study can report that the position and size of
the inner secondary cell in semi filled pipe flow scale with wall units. The fact that the inner
secondary vortex becomes smaller with increasing Reynolds number could explain why it has
not yet been found in experiments performed at much higher Reynolds numbers (e.g. Ng
et al. (2018)). A larger inner secondary cell could be detected for 25% FR, whereas it almost
vanishes for a high FR (75%). Hence, the outer secondary vortex becomes more dominant
with increasing FR. In contrast to the inner secondary cell, the geometry and position of the
outer secondary cell scale with outer units.

The wall shear stress distribution is strongly influenced by the comparably weak secondary
flow. In the mixed-corner, a global wall shear stress maximum appears for all Reynolds
numbers at 50% FR of up to 1.4 times the mean wall shear stress τ0 and 1.7 τ0 for Reτ = 180
with 75% FR. The wall shear stress maximum occurs, because the inner vortex transports
high-momentum fluid from the free surface towards the wall. The maximum is followed
by a minimum, which creates an almost harmonic wall shear stress distribution for the
lowest Reynolds numbers with a local maximum in the pipe’s symmetry plane. At Reynolds
numbers above Reτ ≈ 140, a plateau with a magnitude of approximately 1.05 τ0 is formed in
the centre of the perimeter, which becomes wider as Reynolds number increases. The region
of constant wall shear stress in the centre of the perimeter enlarges also with increasing FR.
Moreover, the maximum of the wall shear stress in the mixed-corner even increases for high
FRs despite the less intense inner secondary cells. For 25% FR, there is an extra wall shear
stress minimum directly in the mixed-corner, because of the low flow intensities generated by
the narrow flow section in the mixed-corner. Instantaneous near-wall streamwise velocities
are organised in a streaky pattern like in a standard full pipe flow. The increased near-wall
velocities in the mixed-corner can not be seen in instantaneous distributions. However, by
applying running time averages on the wall shear stress over time intervals of L/ub, the large
wall shear stress fluctuations occurring in the mixed-corner are smoothed, and the mean wall
shear stress distribution becomes detectable.

The Reynolds stresses in the lower part of the pipe behave similarly to the full pipe flow and
are nearly homogeneously distributed in azimuthal direction. Near the free surface this ho-
mogeneity is broken. The vertical Reynolds stress component is damped and the horizontal
components are amplified. Especially at the mixed-corner local maxima or minima occur in
and around the inner secondary vortex, which infers a Reynolds stress anisotropy.

Within this study different perspectives on the secondary flow mechanism were investigated
to understand the mechanism and to identify common and complementing features between
the perspectives.

The classical approach is the analysis of the mean streamwise vorticity equation. It shows
that the gradients of the Reynolds stress anisotropy, that are responsible for vortictiy produc-
tion, have high intensities in the vicinity of the mixed-corners. Hence, in each mixed-corner
vorticity is generated with opposing sign being in line with the rotation of the mean sec-
ondary flow.

Another perspective are the mean kinetic energy (MKE-) and turbulent kinetic energy
(TKE-) budgets, which provide a complete picture of the path of kinetic energy: the in-
coming energy, which only has a streamwise component, enters the MKE-budget where it
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is either directly dissipated or transferred to TKE. Within the TKE-budget, the energy is
also distributed to the cross-stream components. A small share of energy is transferred back
to MKE, generating secondary flow. This energy transfer is provided by the secondary pro-
duction term P2,3. It occurs in a small area around the stagnation point located at the free
surface, separating the inner and the outer secondary flow cells. From this point, secondary
kinetic energy is either transported along the free surface towards the pipe’s centre or towards
the mixed-corner. With increasing FR the amount of energy directed towards the centre
increases. For 75% filled pipe flow almost the entire secondary kinetic energy is directed to-
wards the centre and the inner secondary cell almost vanishes.

Comparing the processes described by both kinetic energy budgets and the mean vortic-
ity equation shows that they are compatible with each other for 25% and 50% FR. The
intensity and location of vorticity generation can be connected to the location and divi-
sion of secondary production and both processes are consistent with each other. How-
ever, no causality can be concluded. For 75% filled pipe flow, the location of vorticity
production is in conflict with the occurring secondary flow and the results from the MKE-
budget.

In addition to the mean flow analysis, coherent structures defined by proper orthogonal
decomposition (POD), Gaussian filterting (GF) and conditional averaging, gave insights
into the turbulent dynamics of the flow and its connection to the secondary flow mecha-
nism.

Two different two-dimensional PODs were employed, which decompose the TKE differently
by taking either all three or only the cross-stream velocity components into account. On
the one hand, the 3C-POD and its TKE decomposition are governed by u1, because the
streamwise component dominates the flow. On the other hand, for the 2C-POD only the
cross-stream components are taken into account, thus, the most energetic modes contain the
most secondary TKE. The fluctuating temporal coefficients are Gaussian distributed around
zero for both PODs. The spatial modes of the 3C-POD are more connected to strong
streamwise velocity peaks along the wall, whereas for 2C-POD, the spatial modes represent
structures that occur more in the bulk region of the flow. Interesting insights are provided
by the instantaneous streamwise vorticity distribution along the free surface reconstructed
from the first most energetic modes representing 30% of the TKE. ω1 reconstructed by 2C-
POD indicates that individual strong structures that resemble the instantaneous flow field
carry a considerable amount of secondary TKE. In contrast, elongated structures along the
mixed-corner that resemble the inner secondary cell can be reported for the 3C-POD, which
is consistent with the 3C-POD by Ng et al. (2021).

In contrast to the POD, the GF is applied in all three dimensions on the complete three-
dimensional fields, hence, three-dimensional dynamics are preserved. With enlarging the fil-
ter width, small scales are filtered and large scales become more visible, however, at the same
time the kinetic energy in the filtered flow field decreases. Most of the intense small and large
scale structures occur in the vicinity of the wall and the buffer layer. Along the free surface a
pattern of counter-rotating vortex pairs can be detected, which are inclined by approximately
30◦ from the wall and become more distinct with increasing filter width. Please note that the
inclined vortex pairs are not consistent with the vortex sorting mechanism proposed by Sakai
(2016). The various visualisations of the filtered vorticity indicate that the mean secondary
flow is formed by averaging over a large number of different large and small scale structures,
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instead of a stable vortex pattern that only deviates from its mean representation. This
result is consistent with Sakai (2016), whilst it does not agree with a conceptual description
of the secondary flow structures by Ng et al. (2021).

Applying POD and GF on P2,3 shows that the 3C-POD is less suited to extract the transfer
mechanism than the 2C-POD and the GF. 2C-POD and GF are able to define high energy
modes and large scale structures, respectively, which contain a slightly larger share of P2,3

than corresponding TKE. However, all applied filterings show that the low energy modes
and the small scales have a non-negligible impact on the transfer mechanism. This is in
agreement with the results of Sakai (2016). Hence, the generation of secondary flow is a multi-
scale and multi-mode process. Moreover, the instantaneous filtered and non-filtered P2,3-
visualisations indicate that strong secondary MKE-production events are often surrounded
by strong vortical structures.

As a further complementary approach, events of high P2,3 magnitudes were conditionally
averaged for 50% and 75% FR. In general, the conditionally averaged flow fields resemble
the mean secondary flow pattern. Most of the extreme events that transfer TKE to MKE
occur in the mixed-corners at the free surface. However, the extreme events of P2,3 do not
dominate the cross-section integrated secondary MKE-production, but they are correlated
to each other and produce a trend. For 50% FR, strong secondary MKE-production occurs
at the free surface between two counter-rotating vortical structures. On the one side there is
a structure resembling the inner secondary cell, that is persistent over a larger distance. On
the other side a bigger, wall-attached structure reaching to the central free surface occurs.
These results are compatible with the conclusions drawn by Sakai (2016). Surprisingly, the
same pattern of structures as for 50% FR can be detected also for 75% filled pipe flow.
Although the inner secondary cell is hardly present in the mean flow of 75% FR, similar
structures are responsible for extreme events of secondary MKE-production. Hence, the
impact of the obtuse angle formed by the pipe wall and the free surface on the extreme
events of P2,3 is small.

Comparing the spatial distributions of the vorticity generation term, the secondary MKE-
production and the conditionally averaged extreme events, the different perspectives do not
contradict each other for the case of 50% filled pipe flow. For 75% FR the vorticity genera-
tion and conditionally averaged fields show similar results as for 50% FR. However, neither
does the mean flow show a distinct inner secondary cell, nor the distribution of the mean
secondary production does imply a clear two vortex mechanism. Hence, the distributions
of the generated vorticity and of the mean secondary production would contradict. But the
knowledge of the conditional averaging enables to speculate that the generation of secondary
flow is similar for both filling ratios.

5.2. Future Work

In this thesis, various fundamental questions were answered, for example, the appearance
of secondary flow, how the secondary flow obtains its energy and what happens, if ex-
treme events of secondary MKE-production occur. Nevertheless, some questions remain
open whilst new questions have arisen.

First of all, the current state of art lacks confirmation of the inner secondary cell by physi-
cal experiments. This could be either done by multiple experiments of an increasing filling
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ratio, starting from a quarter filled pipe, or by different angles in a trapezoidal cross-section.
Another option would be to perform a low Reynolds number experiment, where the inner sec-
ondary cell becomes large enough that it should be clearly detectable.

In addition to the MKE- and TKE-budgets, Nikora & Roy (2012) suggest to also investigate
the mean and turbulent enstrophy budgets which ”represent a measure of the density of the
kinetic energy of helical motions rather than of all motions” Nikora & Roy (2012). As the
mean secondary flow is a vortical structure, it would be very interesting to investigate the
coupling between the mean and turbulent vortical energy.

The present analysis of the POD lacks the dynamic interaction in streamwise direction.
Hence, a next step could be to perform a three-dimensional POD generating three-dimensional
modes. Moreover, the three-dimensional POD enables to analyse the interaction and ex-
change processes between modes, which could give insights about the exchange of kinetic
energy and also of enstrophy between different modes. However, the three-dimensional POD
needs a large number of three-dimensional snapshots, hence, a large eigenvalue problem has
to be solved, which is computationally demanding.

The most prominent, still open question is: what is the causality within the secondary
flow mechanism. Which event triggers what? At this moment only speculation is possible,
however, it might be a chicken-egg problem that, when turbulence is initiated, only needs to
be sustained.

Nevertheless, the self sustaining process (SSP) described by Waleffe (1997) seems to be worth
to look into. High vorticity production occurs only in the mixed-corner, which indicates that
this is a location where the SSP might take place and sustains the inner secondary cell. Wal-
effe (1997) proved the insensitivity of the SSP to both boundary conditions, slip and no-slip,
which emphasizes the possible ability of the mixed-corner to accommodate the SSP. Within
the SSP an instability, which can be described by Fourier-modes, occurs that triggers a non-
linear feedback. The non-linear feedback is supposed to be strongest, where the vorticity
generation is strongest, hence, the mixed-corner. Thus far, the idea that the mixed-corner is
a location, where the SSP has higher probability to occur than elsewhere, is only speculation
and needs detailed investigations. However, if it is the case, the mixed-corner vortex could
be the starting point of the secondary flow mechanism.

It seems that the data of the present thesis is compatible with a SSP occurring in the mixed-
corner, which enables to speculate about the secondary flow mechanism. Please note that
the conditionally averaged 3D-fields show a persistent inner secondary cell not only for the
extreme but also for the moderate P2,3 events. Hence, the appearance of the inner secondary
cell could be interpreted as the basic structure that is often present. In contrast, the outer
vortex might be prone to occur, if the inner and a counter-rotating structure occur together
by coincidence and strengthen each other. It can be speculated that the inner vortex is able
to exist on its own in the mixed-corner, whereas the inner vortex is a precondition for the
outer secondary vortex to be generated. However, the above mentioned thoughts are only
ideas, which have to be verified by further investigations.



166 5.2. Future Work



Bibliography

Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry . Cambridge Univer-
sity Press, Cambridge.
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Domaradzki, J. A., Liu, W., Härtel, C. & Kleiser, L. 1994 Energy transfer in
numerically simulated wall-bounded turbulent flows. Physics of Fluids 6 (4), 1583–1599.

DWA 2011 DWA-Regelwerk / Merkblatt. 181 . Deutsche Vereinigung für Wasserwirtschaft
und Abwasser.

DWA 2012 DWA-Regelwerk / Merkblatt. 110 . Deutsche Vereinigung für Wasserwirtschaft
und Abwasser.

Einstein, H. A. & Li, H. 1958 Secondary currents in straight channels. American Geo-
physical Union Transactions 39 (6), 1085–1088.

El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer,
G. & Johansson, A. V. 2013 Direct numerical simulation of turbulent pipe flow at
moderately high reynolds numbers. Flow, turbulence and combustion 91 (3), 475–495.

Emory, M. R. & Iaccarino, G. 2014 Visualizing turbulence anisotropy in the spatial
domain with componentality contours. pp. 123–138. Center for Turbulence Research, Stan-
ford University.

Feldmann, D., Bauer, C. & Wagner, C. 2018 Computational domain length and
reynolds number effects on large-scale coherent motions in turbulent pipe flow. Journal of
Turbulence 19 (3), 274–295.

Garbrecht, G., ed. 1987 Hydraulics and Hydraulic Research; A historical Review .
Balkema.

Garbrecht, G. 1995 Meisterwerke antiker Hydrotechnik . Vieweg+Teubner Verlag, Wies-
baden.

Garbrecht, G. & Netzer, E. 1991 Die Wasserversorgung des geschichtlichen Jericho und
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Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. Journal of Fluid Me-
chanics 842.



170 Bibliography
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Springer Vieweg.

Orlandi, P. 1990 Vortex dipole rebound from a wall. Physics of Fluids A: Fluid Dynamics
2 (8), 1429–1436.

Pan, Y. & Banerjee, S. 1995 A numerical study of free-surface turbulence in channel
flow. Physics of Fluids 7 (7), 1649–1664.

Passerat, J., Ouattara, N. K., Mouchel, J. M., Vincent, R. & Servais, P. 2011
Impact of an intense combined sewer overflow event on the microbiological water quality
of the Seine River. Water Research 45 (2), 893–903.

Peller, N. 2010 Numerische Simulation turbulenter Strömungen mit Immersed Bound-
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Appendix

A. Transformation Scheme for Vectors and
Tensors from Cartesian to Polar
Coordinates

The following transformations were applied to vectors and tensors to switch from the Carte-
sian to the Polar coordinates (cf. section 3.2.3).

Vector transformation:uruθ
u1

 =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

u2

u3

u1

 (A.1)

Tensor transformation:τrr τrθ τr1
τθr τθθ τθ1
τ1r τ1θ τ11

 =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

τ22 τ23 τ21

τ32 τ33 τ31

τ12 τ13 τ11

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (A.2)
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B. Artifacts of Cartesian and Polar
Coordinate System on In-Plane
Components of Reynolds Normal
Stresses

Figure B.1 illustrates the influence and artifacts of the Cartesian and the Polar coordinate
system on the in-plane components of the Reynolds normal stresses (cf. section 3.2.3). The
artifacts of the Cartesian coordinate system become visible along the wall, where the az-
imuthal and wall normal components are divided into the x2- and x3-components. The Polar
coordinate system has artifacts in the pipe centre.

Figure B.1: Normalised root mean square of Reynolds stresses u2,rms, u3,rms (top) and ur,rms, uθ,rms

(bottom) for Reτ = 180 and 50% FR.
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C. Spatial Modes of 3C- and 2C-POD for
25% and 75% FR

As additional information to section 4.2.1 (Spatial Modes Φ), the spatial modes Φk for 25%
and 75% filling ratio of Reτ = 180 are shown in figures C.1 and C.2 for 3C-POD and fig-
ures C.3 for 2C-POD. The colourful contours represent the magnitude of the streamwise
component. Blue and red distinguishes structures with opposite sign, but, as mentioned
in section 4.2.1, only in combination with the temporal modes the actual direction can
be stated for each time instance. The streamlines show flow paths of the cross-stream
components, which can be both ways and the colour of streamlines shows the magnitude
of the cross-stream velocities. Black means high intensity and white denotes low inten-
sity.

For 25% and 75% filling the first four spatial modes and Φ11 and Φ80 of 3C-POD are shown in
figure in figures C.1 and C.2. It already became noticeable, that the quarter filled flow case
is different to the others, which is also present in the spatial modes. They cover the whole
cross section with high intensities, only in a small layer at the free surface intensities are low.
Unfortunately, no proper comparison to other data is possible for 25% filling, but for 75%
filling Ng et al. (2021) provides data. They report only high intensities in the upper half of the
cross-section for high energy modes, whereas figure C.1 shows high energy modes with high
intensities also at the bottom. Note that this can only be stated for the six high energy modes
reported by Ng et al. (2021). Similar to the spatial modes of 50% filling (cf. figure 4.25)
the high intensities appear in small regions at the wall for the first modes. With decreasing
energy content the intensities are more homogeneously distributed along the wall and also
various azimuthal layers of high intensities can be identified.

The first four spatial modes of the 2C-POD for 25% and 75% FR can be found in fig-
ure C.3. In general, the first four modes show the same behaviour as for 50% FR, how-
ever, the structures are deformed vertically: compressed for 25% FR and stretched for 75%
FR.
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Figure C.1: Spatial modes Φ1, Φ2 (top row, left and right), Φ3, Φ4 (middle row) and Φ11, Φ80

(bottom row) for 3C-POD of 75% FR and Reτ = 180. Φk
1 is shown in blue to red colour

and the gray contours display the magnitude of the cross-stream components Φk
2 and

Φk
3 (black = high intensity, white = low intensity).
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Figure C.2: Spatial modes Φ1, Φ2 (top row, left and right), Φ3, Φ4 (middle row) and Φ11, Φ80

(bottom row) for 3C-POD of 25% FR and Reτ = 180. Φk
1 is shown in blue to red colour

and the gray contours display the magnitude of the cross-stream components Φk
2 and

Φk
3 (black = high intensity, white = low intensity).
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Figure C.3: Φ1, Φ2 (top, left and right) and Φ3, Φ4 (bottom) for 2C-POD of 75% FR (upper half)
and 25% FR (lower half) and Reτ = 180. Φk

1 is shown in blue to red colour and the
gray contours display the magnitude of the cross-stream components Φk

2 and Φk
3 (black

= high intensity, white = low intensity).



D. Reynolds-Dependency of Conditionally
Averaged P2,3-Event

The following figures D.1, D.2 and D.3 are already integrated in section 4.2.4 as figure 4.55.
For sake of better visibility the single plots are shown again with enlarged size.

Figure D.1: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion coloured with ω1R/ub. View in streamwise
direction for Reτ = 140 and 50% FR. Threshold for Q R/ub is 0.02.

182



Appendix 183

Figure D.2: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion coloured with ω1R/ub (see fig. D.1). View in
streamwise direction for Reτ = 180 and 50% FR. Threshold for Q R/ub is 0.023.

Figure D.3: Conditionally averaged flow field of the positive extreme event of P2,3 (green) in the
mixed-corner with contour of Q-criterion coloured with ω1R/ub (see fig. D.1). View in
streamwise direction for Reτ = 460 and 50% FR. Threshold for Q R/ub is 0.035.
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