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Abstract. We consider biased random walk on supercritical percolation clusters in Z
2. We

show that the random walk is transient and that there are two speed regimes: If the bias is
large enough, the random walk has speed zero, while if the bias is small enough, the speed
of the random walk is positive.

1. Introduction

The following model is considered in the physics literature as a model for trans-
port in an inhomogeneous medium. Let p ∈ (pc, 1), where pc = 1

2 is the critical
probability for bond percolation on Z

2. We perform i.i.d. bond percolation with
parameter p on Z

2. For convenience, we always condition on the event that the
origin belongs to the infinite cluster. The corresponding measure on percolation
configurations will be denoted by P ∗

p . Let β > 1. Consider the random walk start-
ing at the origin with transition probabilities defined as follows. Let Zn = (Xn, Yn)

be the location at time n. Let ln be the number of neighbors Zn has in the infinite
cluster. If Z̃n = (Xn + 1, Yn) is one of these neighbors, then Zn+1 = Z̃n with
probability

β

β + ln − 1

and Zn+1 is any of the other neighbors with probability

1

β + ln − 1
.
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If Z̃n is not a neighbor of Zn (i.e. the edge (Zn, Z̃n) is closed) then Zn+1 is chosen
among the neighbors of Zn with equal probabilities. This is a random walk with
bias to the right, where the strength of the bias is given by the parameter β. To
our best knowledge, the first authors who considered this model are M. Barma and
D. Dhar in [3].

Let ω be the percolation configuration. We write P
β
ω for the conditional law of

the random walk given ω, and P
β,∗ for the joint distribution of (ω, (Zn)n=1,2,...).

P
β,∗ restricted to (Zn)n=1,2,... is the law of the walk averaged over the realizations

of the percolation configuration.
Our main result is the following theorem, which proves part of the predictions

of [3].

Theorem 1. For every p ∈ (pc, 1), there exist 1 < β� ≤ βu < ∞ such that if
1 < β < β� then

lim
n→∞

Xn

n
> 0 P

β,∗–a.s.

and if β > βu then

lim
n→∞

Xn

n
= 0 P

β,∗–a.s.

The following conjecture goes back to [3].

Conjecture 1. The statements of Theorem 1 hold with βcrit := β� = βu.

While there is a large physics literature on this model, as, for instance, [3, 9,
10], there are few mathematical results. The biased random walk on the perco-
lation cluster is a random walk in a random environment on Z

2. There has been
remarkable recent progress on laws of large numbers for random walk in dependent
random environments, see [8, 20, 21]. However, in all of these papers, there are
boundedness assumptions on the transition probabilities which are violated in our
case.

In contrast to the biased case, simple random walks on percolation clusters were
investigated in the probability literature for some time. The first work on the subject
was done By Grimmett, Kesten and Zhang [14], where they proved that simple ran-
dom walk on supercritical percolation clusters in Z

d is transient for d ≥ 3. Other
papers include [6], [15], [16], [1], [5].

In order to prove that there is a positive speed regime, we first assume that p is
close enough to 1 and show the following.

Proposition 2. For every p close enough to 1, there exists β� > 1 such that if
β < β� then

lim
n→∞

Xn

n
> 0 P

β,∗–a.s. (1)

The paper is organized as follows. Sections 2, 3, 4, 5, 6, and 7 are devoted to the
proof of Proposition 2. Using renormalization arguments we show in Section 8 that
the statement of Proposition 2 holds for every p > pc. In Section 9, we define βu
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and show that for p > pc and β > βu, the speed is zero. In fact, our βu is the pre-
dicted value of βcrit in Conjecture 1, see [3]. The proofs in this section carry over to
the multidimensional case, i.e. to biased random walks on supercritical percolation
clusters in Z

d , d ≥ 2.
While finishing this paper, we learned that A. S. Sznitman has independently

obtained results similar to ours. In [22], he investigates biased random walks on
supercritical percolation clusters in Z

d , d ≥ 2, where the transition probabilities
correspond to weights given by scalar products with a direction vector. He shows
the analogue of Theorem 1 and obtains a CLT in the positive speed regime. While
both [22] and this paper use a regeneration structure to derive the main results, the
techniques of the two papers are quite different. Sznitman uses very precise infor-
mation about the random walk and its analytical properties, while our approach
uses more detailed information about the percolation cluster.

2. A positivity criterion for the speed

In order to simplify the arguments, we will without loss of generality condition,
throughout the proof, on the event that the origin is in the infinite cluster on the left
half–plane, i.e. on the event that there is an infinite cluster on {(x, y) : x ≤ 0} and
that the origin is in this infinite cluster. This event has positive probability: in fact,
due to the results of [4], the probability that there is an infinite cluster on the left
half-plane equals 1 whenever p > pc (see also [13]). Denote the corresponding
probability measure on percolation configurations by P̂p, and the resulting joint
law of (ω, (Zn)n=1,2,...) by P

β .

Remark 1. Assume that the origin is not in the infinite cluster on the left half-plane.
Take an arbitrary vertex z which is in the infinite cluster to its left. Then there is
a finite open path � connecting z to the origin. If the statements in Theorem 1
hold almost surely for the random walk starting from z, then they also hold almost
surely for the random walk starting from the origin, since starting from z, we have
a positive probability to go to the origin.

We give a criterion which will later be used to show that the speed is strictly
positive for β small enough. We will prove in Lemma 6 and Lemma 13 that

lim
n→∞ Xn = ∞ P

β–a.s. (2)

We call n > 0 a fresh epoch if Xn > Xk for all k < n and we call n a regenera-
tion epoch if, in addition, Xk > Xn for all k > n. Let the regeneration epochs be
0 = R0 < R1 < R2 < . . . . Exactly as in [18], one shows that there are, Pβ–a.s., in-
finitely many regeneration epochs and that the time differences (Ri+1−Ri)i=1,2,3,...

and the increments between regeneration epochs (XRi+1 − XRi
)i=1,2,3,... are i.i.d.

sequences under P
β . Standard arguments then imply that if Eβ(R2 − R1) < ∞,

then

lim
n→∞

Xn

n
= Eβ(XR2 − XR1)

Eβ(R2 − R1)
> 0 P

β–a.s. (3)
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Fig. 1. Traps in the percolation cluster, p = 0.9. Vertices are represented by squares. Bad
vertices are shaded. Marked are the closed dual bonds.

3. An exponential bound on the size of traps

We use the following decomposition of the percolation cluster into good and bad
points. The definition of a good point might seem artificial at first sight, but the
results of Sections 4 and 5 will clarify the choice of this definition.

Definition 1. A point z = (x, y) ∈ Z
2 is good if there exists an infinite path

{z0 = z, z1 = (x1, y1), z2 = (x2, y2), ...} such that for k = 1, 2, 3, . . . ,
(A) |yk − yk−1| = 1 and xk − xk−1 = 1.
(B) The edges {(xk−1, yk−1), (xk, yk−1)} and {(xk, yk−1), (xk, yk)} are open.

Denote the infinite cluster by I and the set of good vertices by J . A vertex z is bad
if z ∈ I and z is not good. Connected components of I \J will be called traps (see
Figure 1). For a vertex v, let C(v) be the trap containing v. (C(v) is empty if v is a
good point.) The length of a trap T is

L(T ) = sup{|x1 − x2| : ∃y1, y2 such that (x1, y1) ∈ T and (x2, y2) ∈ T }
and the width is

W(T ) = sup{|y1 − y2| : ∃x1, x2 such that (x1, y1) ∈ T and (x2, y2) ∈ T }
If T is empty, then we take L(T ) = W(T ) = 0. For convenience, we will use the
notation L(v) for L(C(v)) and W(v) for W(C(v)).

Lemma 1. For every p close enough to 1, there exists α = α(p) < 1 such that
P̂p(L(0) ≥ n) ≤ αn and P̂p(W(0) ≥ n) ≤ αn for everyn. Further, limp→1 α(p) =
0.
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Fig. 2. The unique contour around an even trap in the even lattice. Vertices of the even lattice
are represented as squares. Marked are the dual bonds.

Proof. Call two vertices even–connected if ‖u − w‖1 = 2. That is, (x, y) and
(x′, y′) are even–connected if either |x−x′| = |y−y′| = 1 or

(|x − x′|, |y − y′|) =
(0, 2) or

(|x − x′|, |y − y′|) = (2, 0). We define the even trap Ce(v) of a point v

as the even–connected component of bad points v′ with

‖v′‖1 ≡ ‖v‖1 mod 2,

containing v. In particular, all points v′ in C(v) with

‖v′‖1 ≡ ‖v‖1 mod 2

are also in the even trap of v (but the even trap may contain additional points not
in C(v)). The following is obvious.

Fact 1. Every vertex in C(0) is either an element of Ce(0) or a neighbor of a vertex
in Ce(0). In particular, L(0) ≤ L(Ce(0)) + 2 and W(0) ≤ W(Ce(0)) + 2.

Thanks to Fact 1, we only need to give exponential bounds to L(Ce(0)) and to
W(Ce(0)). Consider the following percolation model on the even lattice (i.e. the
lattice whose vertices are {v ∈ Z

2 : ‖v‖1 is even} and which has an undirected
edge between every (x, y) and (x′, y′) such that |x −x′| = |y −y′| = 1): The bond
between (x, y) and (x + 1, y ± 1) is open if and only if in the original model the
edges {(x, y), (x + 1, y)} and {(x + 1, y), (x + 1, y ± 1)} are open. This is a model
of dependent oriented percolation, and we denote the corresponding probability
measure by Pp,oriented.

Let p′ be close to 1. By the results in [17], there exists p < 1 such that Pp,oriented
dominates i.i.d. bond percolation with parameter p′ on the even lattice. Consider
Ce(0) in the even lattice. Let the outer boundary of a set of vertices be the set of
all edges which have one vertex in the set and one in the complement. The outer
boundary can be identified with a contour in the dual lattice (see Figure 2). Hence,
the number of outer boundaries of size n is bounded by exp(O(n)) (each contour,
which needs not to be simply connected, can be identified with a random walk path).
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By an argument similar to that of [12] p. 1026, at least half of the edges in the outer
boundary of Ce(0) are closed (in Figure 2, these are the boundary edges marked
with a “C”). Therefore, if p′ is close enough to 1, L(Ce(0)) and W(Ce(0)) have
the desired exponential tail with respect to i.i.d. bond percolation with parameter
p′ on the even lattice, hence also with respect to Pp,oriented. ��

4. Bound for back–stepping from a good vertex

The following simple observation is essential to the proof. Let H(n) be the σ–field
generated by the history of the random walk until time n, i. e. H(n) = σ({Z0 =
0, Z1, Z2, . . . , Zn}). Let P β

ω,H(n)
be the conditional distribution of P

β
ω , given H(n),

and P
β

H(n)
be the conditional distribution of P

β , given H(n). Define τn(X) =
min{i > n : Xn = X}. In order not to overload the notations, in many places
throughout the section we chose to omit the integer brackets, e.g. we write �/3
instead of [�/3].

Lemma 2. There exists D′ = D′(β) such that for every � = 1, 2, 3, . . . and for
every configuration ω such that z = (x, y) is a good point,

P
β

ω,H(n)
(τn(Xn − �) ≤ τn(Xn + �/3)|Zn = z) < D′β−�/3.

Proof. The transition probabilities can be described with the following electrical
network: Give a weight to each open edge e: if e = {(x, y), (x + 1, y)} then e has
weight w(e) = βx+1, and if e = {(x, y), (x, y ± 1)} then e has weight w(e) = βx .
If e is closed, then its weight is 0. The random walk (Zn) has transition probabili-
ties proportional to the weights of the edges from a vertex. For background on the
description of reversible Markov chains as electrical networks, we refer to [11] and
to [19].

The following fact is well known, but for the convenience of the reader we will
recall its proof.

Fact 2. Let G be a finite electrical network, and let A and B be disjoint sets of
vertices in G. Let z be a vertex in G, and let τ(z → A) (resp. τ(z → B)) be the
hitting time of A (resp. B) for a walk starting at z. Let Cz,A (resp. Cz,B ) be the
effective conductance between z and A (resp. B). Then,

P (τ(z → B) < τ(z → A)) ≤ Cz,B

Cz,A

. (4)

Proof. Let π(z) be the sum of the weights of all edges containing z. Let uj be the
location of the walker at time j . Let ki be the i–th time the walk returns to z (i.e.
k0 = 0, and ki+1 = τki

(z)). We call the interval [ki−i , ki − 1] the i–th excursion.
For a set D ⊆ G, let V (i, D) be the event that the walker visits D during the i–th
excursion. Then, for every i,

P(V (i, D)) = Cz,D

π(z)
. (5)
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(see e.g. equation (2.4) of [19]). By (5), for every i,

P (V (i, B)|V (i, A ∪ B)) = Cz,B

Cz,A∪B

.

In particular, decomposing the sequence of excursions according to the first visit
to A ∪ B and using the fact that the excursions are i.i.d., we get

P (τ(z → B) < τ(z → A) ) ≤ Cz,B

Cz,A∪B

≤ Cz,B

Cz,A

.

��
Consider the box B = [x − �, x + �/3] × [y − β2�/3, y + β2�/3]. In view

of Fact 2, we need to estimate the effective conductances between z and the face
B+ = {x+�/3}×[y−β2�/3, y+β2�/3] and between z and the rest of the boundary
of the rectangle.

1. Cz,B+ is bounded from below by the conductance of the good path from z to
B+, which is at least D1β

x for some D1 = D1(β).
2. Consider B− = {x − �} × [y − β2�/3, y + β2�/3]. The conductance Cz,B− is

bounded from above by the sum of the weights w(u, u + (1, 0)) for u ∈ B−.
But for every such u, w(u, u + (1, 0)) ≤ βx−�+1 (with inequality because the
weight is zero if the edge is closed), and there are 2β2�/3 such edges. Therefore
Cz,B− ≤ D2β

x · β−�/3 for some D2 = D2(β).
3. Consider B∗

1 = [x −�, x +�/3]×{y −β2�/3} and B∗
2 = [x −�, x +�/3]×{y +

β2�/3}. By Nash–Williams’ inequality (equation (2.15) on page 38 of [19]),

Cz,B∗
j

≤ β−2�/3
x−1+�/3∑

i=x−�

βi+1 ≤ D3β
x · β−�/3

for some D3 = D3(β).

From 1., 2. and 3. we see, using (4), that the probability to exit B not through B+
is at most O(β−�/3). ��

The following lemma gives a bound for the probability of back–stepping from
a good point at a fresh epoch. Recall that n > 0 is a fresh epoch if Xn > Xk for
all k < n.

Lemma 3. Assume that p is close enough to 1. Let G(z) be the event that z is
a good point and let F(n) be the event that n is a fresh epoch. Then there exists
K = K(β, p) such that for every � = 1, 2, . . . ,

P
β

H(n)
(there is an m ≥ n such that Xm ≤ x − �) |Zn = z, F (n), G(z) )

≤ Kβ−√
�/K, P

β–a.s.

To prove Lemma 3, we will use the following lemma:
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Lemma 4. In the notations of Lemma 2, let τ ′
n(X) be the first fresh epoch, later

than n, such that the random walk hits a good point whose first coordinate is larger
or equal to X. Then, there exists a constant D = D(β, p) such that for every
� = 1, 2, . . . ,

P
β

H(n)

(

τn(Xn − �) < τ ′
n(Xn + �/6)

∣
∣
∣
∣Zn = z, G(z), max

0≤i≤n
Xi < Xn +

√
�

)

≤ Dβ−√
�/D, P

β–a.s.

In particular,

P
β

H(n)
(τn(Xn − �) < τ ′

n(Xn + �/6) |Zn = z, F (n), G(z) ) ≤ Dβ−√
�/D, P

β–a.s.

(6)

Proof. For i = 1, . . . , [
√

�/6], let ti = τn(Xn + i
√

�). For convenience, if ti = ∞
then we say that Zti = ∞ and Zti is not a good point. We define the right hand
trap (resp. right hand even trap) of a bad point z = (x, y) to be the connected
component (resp. even connected component) of bad points z′ = (x′, y′) such that
x′ ≥ x, containing z. The right hand even trap of a point z will be denoted by RT(z).
Let L(RT(z)) be the length of the (right hand even) trap RT(z). If z is a good point
then we say that L(RT(z)) = 0.

Claim 3. For z = (x, y), let ωl(z) be the configuration of all edges to the left of
the line Lx = {(x, ỹ)|̃y ∈ Z}, and let ωr(z) be the configuration of all edges to the
right of Lx , including the vertical edges on the line Lx . For α as in Lemma 1, and
k = 1, 2, . . . ,

P̂p (L(RT(z)) ≥ k | ωl(z) ) ≤ αk, P̂p–a.s. (7)

In particular,

P̂p (G(z) | ωl(z) ) ≥ 1 − α, P̂p–a.s. (8)

Proof. Since we condition on the origin being in the infinite cluster on the left half–
plane, the event {L(RT(z)) ≥ k} is independent of ωl(z) and the claim follows from
the proof of Lemma 1. ��

We want to estimate the probability of the following event: There exists some
1 ≤ i ≤ [

√
�/6] such that ti < τn(Xn − �) and the point Zti is good. By (7), for

every i, conditioned on ti < ∞,

P
β

H(ti )

(

L(RT(Zti )) ≥ 1

2

√
�

)

≤ α
1
2

√
�, P

β–a.s. (9)

Using (8), again conditioned on ti < ∞, yields

P
β

H(ti )

(

G(Zti )

∣
∣
∣
∣L(RT(Zj )) <

1

2

√
� for all 1 ≤ j < i

)

≥ 1 − α, P
β–a.s.

(10)

since we condition on an event which is measurable with respect to ωl . The lemma
now follows from Lemma 2, (9) and (10). ��
Proof of Lemma 3. Lemma 3 now follows from (6) in Lemma 4 by iterating. ��
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5. An a priori bound

In this section we show an a priori bound for the distance the random walk goes to
the right.

Lemma 5. If p is close enough to 1, then for β > 1 close enough to 1, there exists
a constant C such that for every n large enough,

P
β(Xn ≤ Cn

1
10 ) ≤ n−2.

In order to prove Lemma 5 we will give an estimate on the number of distinct
sites visited by the random walk.

Definition 2. For a trap T , the size of T is S(T ) = L(T ) + W(T ).

Claim 4. Let T be a trap of size at most s, and let z = (x, y) ∈ T . Let

φ(s) = βs

(

s2 + 2

β − 1

)

· (3 + β)

≤ C(β)β2s .

Then, for every m, and for every configuration ω with z and T as above,

P
β
ω (#{i : Zi = z} ≥ m) ≤

(

1 − φ(s)−1
)m

.

In particular, if z is a good point, then

P
β
ω (#{i : Zi = z} ≥ m) ≤

(

1 − φ(1)−1
)m

.

Proof. Recall the description of the transition probabilities with an electrical net-
work. By equation (2.3) of [19], starting at z, the probability of ever hitting z again
is

1 − Cz,∞
π(z)

(11)

where π(z) is the sum of the weights of all edges containing z. Clearly,

π(z) ≤ βx(3 + β). (12)

We need to bound Cz,∞ from below. In order to do that we will bound the resistance
Rz,∞ = 1/Cz,∞ from above. For a good point z = (x, y), the resistance Rz,∞ is
bounded from above by the resistance of the good path which is

2β−x

β − 1
. (13)

If z is in a trap T of size at most s, let z0 be a good point on the boundary of T .
Then,

Rz,∞ ≤ Rz,z0 + Rz0,∞. (14)
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Let q = (z, . . . , z0) be a path in T from z to z0. Then, the resistance of q is bounded
by the the product of the length of q and the maximal resistance of all bonds in q.
Since q is in T , its length is bounded by s2 and the maximal resistance of all bonds
in q is bounded by the maximal resistance of all bonds in T which is at most βs−x .
Therefore,

Rz,z0 ≤ s2βs−x.

Further, x0 ≥ x − s. Hence, using (13) and (14),

1

Cz,∞
= Rz,∞ ≤ β−x ·

(

s2βs + 2βs

β − 1

)

(15)

The claim now follows from (11), (12) and (15). ��
Proof of Lemma 5. Let p be close enough to 1 so that Pp(S(0) ≥ n) ≤ αn for all
n large enough, with some α < 1. Let u be large enough so that

u log α < −4, (16)

and β > 1 close enough to 1 so that

u <
1

200 log β
. (17)

By (17), for every large enough n and for every s ≤ u log n,

φ(s) ≤ n1/10. (18)

By the choice of u the probability that there exists a trap or an even trap of size big-
ger than u log n somewhere in the square [−n, n] × [−n, n] is smaller than 1

2n−2.
We now condition on the event A1 that there are no such traps. Since at times up
to n the random walk cannot leave the cube [−n, n]2, at any time before n we are
either at a good vertex or in a trap of size at most u log n.

Claim 5. Conditioned on A1, with probability larger than 1 − exp(− 1
2n1/5), the

random walk visits at least n7/10 points up to time n.

Proof. By (18) and by Claim 4, for every z ∈ [−n, n] × [−n, n], the probability
that z is visited more than n3/10 times is bounded by

(

1 − n−1/10
)n3/10

≤ exp
(

−n2/10
)

.

Therefore, the probability that any point in [−n, n] × [−n, n] is visited more than
n3/10 times is bounded by

4n2 exp
(

−n2/10
)

≤ exp

(

−1

2
n1/5

)

(19)

for n large enough. But if no point is visited more than n3/10 times, then at least
n7/10 points are visited. ��
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Let B be the event that the random walk visits at least n7/10 points up to time
n.

Claim 6. Conditioned on B, with probability at least 1 − exp(− 1
4n1/5),

max
1≤i≤n

Xi − min
1≤i≤n

Xi ≥ n1/10.

Proof. Recall the Varopoulos–Carne bound for the n–step transition probabilities
of a reversible Markov chain with reversible measure π (see [7]):

P n(a, b) ≤ 2
√

π(b)/π(a) exp

(−d(a, b)2

2n

)

(20)

where d(a, b) is the (graph) – distance between a and b. Using (20) and a union
bound, for every 1 ≤ i < j ≤ n, and all ω

P β
ω

(

Xi = Xj and |Yi − Yj | ≥ n6/10
)

≤ Cn4 exp

(

−1

2
n1/5

)

where C = C(β) is a constant. Taking the union over all possible pairs i, j ,

P β
ω

(

∃i, j such that Xi = Xj and |Yi − Yj | ≥ n6/10
)

≤ Cn6 exp

(

−1

2
n1/5

)

≤ exp

(

−1

4
n1/5

)

for n large enough. However, if max
1≤i≤n

Xi − min
1≤i≤n

Xi ≤ n1/10 and at least n7/10

points are visited, then there have to be i and j such that Xi = Xj and |Yi − Yj | ≥
n6/10. ��
Claim 7. With probability at least 1 − exp(−n1/30), for every 1 ≤ i < j ≤ n

Xj − Xi ≥ −n1/20.

Proof. For z = (x, y) and z′ = (x′, y′),

π(z′)
π(z)

≤ Cβx′−x,

where C = C(β) is a constant. Fix i < j and z and z′ in [−n, n] × [−n, n] such
that x − x′ > n1/20. Then, again using (20),

P β
ω (Zi = z and Zj = z′) ≤ 2

√

π(z′)
π(z)

≤ Cβ−n1/20

Summing over all of the possible values of i, j , z and z′, we get

P β
ω

(

∃i < j such that Xj − Xi < −n1/20
)

≤ Cn6β−n1/20

≤ exp
(

−n1/30
)

for n large enough. ��
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Hence, with P
β–probability at least 1 − n−2, by Claim 7

min
1≤i≤n

Xi ≥ −n1/20.

and, by Claim 6,

max
1≤i≤n

Xi − min
1≤i≤n

Xi ≥ n1/10,

hence

max
1≤i≤n

Xi ≥ n1/10 − n1/20,

but, again due to Claim 7,

Xn − max
1≤i≤n

Xi ≥ −n1/20.

Hence, with P
β -probability at least 1 − n−2, for n large enough,

Xn ≥ n1/10 − 2n1/20 ≥ 1

2
n1/10.

��
Lemma 6. Let p be close enough to 1, and β > 1. Then

lim
n→∞ Xn = ∞ P

β–a.s. (21)

Proof. We prove the lemma by iterating Lemma 4. Let N > 1 be an arbitrary pos-
itive integer. Let T be the even trap containing the origin. Let �0 = 2L(T )2 + N ,
and let �i+1 = 13�i/12 for every i = 0, 1, . . . . Let τg be the first time in which
the walker is in a good point. We define inductively the following times: t0 = τg ,
ti+1 = τ ′

ti

(
Xti + �i/6

)
. Let

Ai = {
τ ′
ti

(
Xti + �i/6

)
< τti (Xti − �i)

}

Then by Lemma 4, for every i,

P
β(Ai) ≥ 1 − Dβ−√

�i/D.

(The first formula in Lemma 4 is needed since t0 is not necessarily a fresh epoch).
Therefore,

P
β

( ∞⋂

i=1

Ai

)

≥ 1 − 2Cβ−√
N/D (22)

for some C = C(β). Note that Xti − �i ≥ Xti−1 − 11
12�i−1. Hence, if Ai occurs for

every i, then ti < ∞ for every i, and

Xs > Xti − �i ≥ Xt0 − �0 + 1

12

i−1∑

j=1

�j ≥ Xt0 + C�0

(
13

12

)i

for every s > ti . In particular, if Ai occurs for every i then (21) holds. By (22), the
event in (21) occurs with probability at least 1−2Cβ−√

N/D for every N . Therefore,
it occurs a.s. ��
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Fig. 3. A sample path, p = 0.55 and β = 2.5, gray lines are at regenerations.

6. The environment after a regeneration

As the reader recalls from Section 2, we say that n > 0 is a fresh epoch if Xn > Xk

for all k < n and we say that a fresh epoch n is a regeneration epoch or regener-
ation if, in addition, Xk > Xn for all k > n (see Figures 3 and 4). In this section
we consider the distribution of the percolation cluster to the right of Zn = z, given
that n is a regeneration.

For every z = (x, y) ∈ Z
2, let Sz be the environment to the right of z, i.e. for

every x̃ > 0 and ỹ ∈ Z, the edge Sz({(̃x, ỹ), (̃x, ỹ ± 1)}) is open if and only if
{(x + x̃, y + ỹ), (x + x̃, y + ỹ ± 1)} is open and Sz({(̃x, ỹ), (̃x + 1, ỹ)}) is open if
and only if {(x + x̃, y + ỹ), (x + x̃ + 1, y + ỹ)} is open. For every time n let (Fn)

be the future of the walk after time n, i.e. Fn(k) = Zn+k − Zn, k = 0, 1, 2, . . . .
Let µ = µβ be the distribution of {(F0), S0} under P

β , conditioned on the event
{Xi ≥ 1 ∀i ≥ 1}. This is well defined because P

β(Xi ≥ 1 ∀i ≥ 1) > 0.

Lemma 7. LetRn be then–th regeneration. Then, for alln, the law of {(FRn), SZRn
}

is µ.

Lemma 7 is proved in the same way as Proposition 3.4 of [18]. Let ζ =
ζ(p, β) = P

β(Xi ≥ 1 ∀i ≥ 1).

Corollary 3. The law of {(FRn), SZRn
} is absolutely continuous with respect to P

β .
Furthermore, its Radon–Nikodym derivative with respect to P

β is

dµ

dPβ
= I{Xi≥1 ∀i≥1} · ζ−1 ≤ ζ−1 < ∞.
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Fig. 4. A sample path, p = 0.65 and β = 2.5, gray lines are at regenerations.

7. Proof of Proposition 2

Proposition 2 is a consequence of the following lemma.

Lemma 8. Let β and p be as in Lemma 5. Then, Eβ(R2 − R1) < ∞.

We will first show the following.

Lemma 9. Let β and p be as in Lemma 5. Then, Eβ(R1) < ∞.

Proof. We will show that

∞∑

n=1

P
β(R1 > n) < ∞. (23)

We will estimate P
β(R1 > n) for n large enough in order to show (23). Let u

be as in the proof of Lemma 5. Let A1 be the event that the even traps (as defined
in Page 225) in [−n, n]2 are of size not larger than u log n. For n large enough, the
probability of A1 is at least 1 − n−2.

Let

κ = K2 max

(
3

log β
, 2u

)

,

where K is the constant from Lemma 3. Let γn be the smallest even integer ≥
κ(log n)2 and let

Ti = inf{k : Xk ≥ iγn}



The speed of biased random walk on percolation clusters 235

Claim 8. Let g(z) be 1G(z). Let η = η(p) > 0 be the probability of a vertex
to be good. Then, there exists η′ > η/2 and i.i.d. Bernoulli random variables
Li, i = 1, 2, . . . where Li = 1 with probability η′ and Li = 0 with probability
1 − η′, such that the total variation distance between the conditional distribution of
(g(ZTi

), 1 ≤ i ≤ n1/20), given A1, and the distribution of (Li, 1 ≤ i ≤ n1/20) is
bounded by n−2.

Proof. If we condition on nonexistence of even traps of size larger than u log n, the
point ZTi

is good if and only if there exists a good path starting at ZTi
and ending

at the line

{((i + 1)κ(log n)2, y) : y ∈ Z}.

Let η′ be the P
β -probability of the existence of such a path. We now define the

random variables Li, i = 1, 2, . . . : let Li be the indicator of the event that there is
a good path starting at ZTi

and ending at the line {((i + 1)κ(log n)2, y) : y ∈ Z}.
Since we condition on the origin being in the infinite cluster in the left half-plane,
the conditional probability of {Ln = 1}, given H(ZTn) and the percolation con-
figuration on {(x, y)|x ≤ ZTn}, does not depend on H(ZTn) and the percolation
configuration on {(x, y)|x ≤ ZTn}. Therefore, the random variables Li are i.i.d.
Since the conditional distribution of (g(ZTi

), 1 ≤ i ≤ n1/20), given A1, was ob-
tained from the distribution of (Li, 1 ≤ i ≤ n1/20) by conditioning on an event of
probability at least 1−n−2, the total variation distance between the two distributions
is bounded by n−2. ��

Let A2 be the event that Ti < n for every 1 ≤ i ≤ n1/20. By Lemma 5, for n

large enough, P
β(A2) ≥ 1 − n−2.

Let A3 be the event that there are at least 1
4ηn1/20 values of i in {1, 2, ..., [n1/20 ]}

such that g(ZTi
) = 1. By Claim 8, for n large enough, P

β(A3|A1) ≥ 1 − 3n−2 and
therefore P

β(A3) ≥ 1 − 4n−2.
Let ξj be the j–th value of Ti such that g(ZTi

) = 1. We define

D(i) = inf{Xk − Xξi
: k > ξi}

and

D̃(i) = inf{Xk − Xξi
: ξi < k < ξi+1}.

Claim 9. There exists ρ > 0 such that

P
β

H(ξi )
(D(i) = 1) ≥ ρ P

β–a.s.

Proof. The claim is a direct consequence of Lemma 3: take � such that Kβ−√
�/K <

1, then the probability of the event {D(i) = 1} is bounded below by (β +3)−2�(1−
Kβ−√

�/K). ��
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Obviously, D(i) ≤ D̃(i) for every i. Therefore,

P
β

H(ξi )
(D̃(i) = 1) ≥ ρ P

β–a.s. (24)

Note that, for all i, D̃(i−1) is H(ξi)-measurable. Therefore, by (24) and successive
conditioning, for every k,

P
β(D̃(i) < 1 for all i = 1, . . . , k) ≤ (1 − ρ)k.

Let A4 be the event that there exists some 1 ≤ i ≤ 1
4ηn1/20 such that D̃(i) = 1.

Then,

P
β(A4) ≥ 1 − (1 − ρ)

ηn1/20

4 = 1 − o(n−2).

Let A5 be the event that D(i) = D̃(i) for every 1 ≤ i ≤ 1
4ηn1/20. For every i,

D(i) = min
(
D̃(i), D(i + 1) + Xξi+1 − Xξi

)
. (25)

By Lemma 3,

P
β(D(i + 1) ≤ Xξi

− Xξi+1) ≤ P
β(D(i + 1) ≤ −κ log n) ≤ Kβ

−3 log n
log β = Kn−3

(26)

Combining (25) and (26), we get that P
β(D(i) �= D̃(i)) ≤ Kn−3 for every i.

Therefore, P
β(A5) = 1 − o(n−2).

Claim 10. If A1, A2, A3, A4 and A5 all occur, then R1 ≤ n.

Proof. By the occurrence ofA2 andA3, ξi < n for every i ∈ Bn = [1, . . . , 1
4ηn1/20].

By the occurrence of A4, there exists i0 ∈ Bn such that D̃(i0) = 1. By the occur-
rence of A5, D(i0) = 1. Let t = ξi0 . Then t < n. By the definition of {ξi}, the
epoch t is a fresh epoch. On the other hand, for every k > t ,

Xk ≥ Xt + min(Xj − Xt : j > t) = Xt + D(i0) = Xt + 1 > Xt

and therefore t is a regeneration epoch. ��
Hence

P
β(R1 > n) ≤ P

β(Ac
1) + P

β(Ac
2) + P

β(Ac
3) + P

β(Ac
4) + P

β(Ac
5) = O(n−2),

which yields (23). ��
Proof of Lemma 8. For a random variable X and a distribution ν, we denote the
expected value of X under ν by Eν(X). We want to show that EPβ (R2 −R1) < ∞.
Recall the distribution µ = µβ from Section 6. The distribution of R2 − R1 under
P

β is the same as the distribution of R1 under µ. Therefore, all we need to show is
that Eµ(R1) < ∞. But, using Corollary 3 and Lemma 9,

Eµ(R1) ≤ EPβ (R1) · sup

(
dµ

dPβ

)

< ∞.

��
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8. Renormalization

In this section we show how to combine standard renormalization ideas with our
arguments in order to carry over our results for every p > pc. We use the renor-
malization scheme that is used in [6], [15] and [1]. Fix a value p ∈ (pc, 1).

Notice that everything we did so far is also valid when we consider site percola-
tion with retention probability p̂ < 1 instead of bond percolation. We will assume
that p̂ < 1 is close enough to 1 to apply our previous arguments (to be specified
later). Let N be a (large) positive integer, divisible by 8.

For each v ∈ N ·Z2 define QN(v) to be the square of side-length 5N/4 centered
at v. Let p ∈ (pc, 1). Consider i.i.d. bond percolation with parameter p on Z

2, and
let Ap be the random set of vertices v ∈ N · Z

2 such that QN(v) contains a con-
nected open component which connects all 4 faces of QN(v) but contains no other
connected open component of diameter greater than N/10. It follows from Propo-
sition 2.1 in [2] that if N is large enough then Ap dominates i.i.d. site percolation
with parameter p̂ on Z

2. We choose N to be such a large enough value.
For p close to pc it is possible to show that there is (a.s.) no point in the lattice

that satisfies the definition of a good point (Definition 1 on page 224). Therefore,
we need a new notion of a point being good. In order to avoid confusion, we will
use the term p–good for the new definition.

Definition 3. We say that a square QN(v) is p–good if v ∈ Ap and there exist
v1 = v = (x1, y1), v2 = (x2, y2), v3 = (x3, y3), v4 = (x4, y4), ... such that
(A) For every k, xk − xk−1 = N and yk − yk−1 = ±N .
(B) For every k, both vk and vk + (N, 0) are in Ap.

A square is considered p–bad if it is not p–good.

If z is a point in the p–good square QN(v1) that belongs to the big com-
ponent in the square, then there exists an infinite path starting at z that is con-
tained in the union of the squares QN(v1), QN(v1 + (N, 0)), QN(v2), QN(v2 +
(N, 0)), QN(v3), QN(v3 + (N, 0)), . . . . (This follows from the definition of Ap –
note that a connected component crossing the overlapping part of two good squares
has to cross both squares!) We call this path a p–good path starting at z.

Definition 4. We say that a point z is p–bad if it is in a p–bad square and belongs
to the infinite cluster.

Definition 5. We say that a point z is p–good if
(A) z is not p–bad.
(B) There exists an (infinite) p–good path z1 = (x1, y1) = z, z2 = (x2, y2), z3 =
(x3, y3), z4 = (x4, y4), . . . starting at z such that xk > x1 for every k > 1.

Definition 6. A p–trap is a connected component of p–bad points.

Remark 2. The reader is advised to notice that:
(A) The squares are not disjoint. Therefore a point could belong to both a p–good
square and a p–bad square. In this case, if it is connected to infinity then it is p–bad.
(B) Not all of the points that are connected to infinity are p–good or p–bad.
(C) A p–good path may also contain p–bad points.
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(D) If p̂ is close enough to 1, a square has a positive probability of being p–good,
and a vertex has a positive probability of being p–good.

In particular, a point at the boundary of a p–trap might not be a p–good point.
Therefore, we also need the following weaker definition.

Definition 7. A p–OK point is a point that is not p–bad and is in the big cluster
of a p–good square.

Once we defined a p–trap and a p–OK point, the argument for transience of
the random walk follows the same lines as in the case where p is close enough to
1. More precisely, let Tp(z) be the p–trap containing z, and let Lp(z) and Wp(z)

be the length and the width of Tp(z).

Lemma 10. There exists α < 1 such that P̂p(Lp(0) ≥ n) ≤ αn and P̂p(Wp(0) ≥
n) ≤ αn for every n.

The proof is the same as the proof of Lemma 1, assuming p̂ is close enough to
1 and considering oriented percolation on the sublattice of the centers of squares.

Lemma 11. For a point z = (x, y), let OK(z) be the event that z is a p–OK point.
Then, there exists a constant K ′ = K ′(p, β) such that for every � = 1, 2, . . . ,

P
β

H(n)
(there is an m ≥ n such that Xm ≤ x − �) |Zn = z , F (n), OK(z))

≤ K ′β−√
�/K ′

.

The proof, again, is similar to that of Lemma 3 since one can bound from below
the conductance of every p–good path starting at z.

In order to prove the equivalents of Lemma 5 and Lemma 6 we need the fol-
lowing simple claim:

Claim 11. Let T be a p–trap. Every point at the boundary of T is p–OK.

Using Claim 11, Lemma 11 and Lemma 10 we can now prove the following
two lemmas the same way Lemma 5 and Lemma 6 were proved.

Lemma 12. For β > 1 close enough to 1, there exists a constant C such that for
every n large enough,

P
β(Xn ≤ Cn

1
10 ) ≤ n−2.

Lemma 13. Let β > 1, then

lim
n→∞ Xn = ∞ P

β–a.s. (27)

The proof of Theorem 1 now a follows the same lines as the proof of Proposition
2 in Section 7, using the notions “p–good” and “p–trap” instead of “good” and
“trap”.
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9. Zero speed region

Theorem 4. For every p ∈ (pc, 1), there exists a finite value βu = βu(p) > 1
such that for β > βu,

lim
n→∞

Xn

n
= 0 P

β–a.s.

Further, limp↘pc βu(p) = 1.

Proof. We will first define βu and show that for β > βu, the speed of the random
walk is 0. For this purpose, we will consider configurations where the origin 0 is
the beginning of a dead end. Call a vertex z = (x, y) the beginning of a dead end
if z is in the infinite cluster to its left, but in a finite cluster to its right. The dead
end starting at z is the finite cluster to the right of z, containing z. We now consider
a dead end A starting at the origin. Let d(A) := max{x : (x, y) ∈ A} denote the
depth of A. Let N(A) denote the number of vertices of A which are on the line
L = {(0, y) : y ∈ Z}. Let EA denote the set of edges of A and BA denote the set
of all edges which have at least one vertex in A, but are not in EA. The probability
of A under i.i.d. bond percolation is pA := p|EA|(1 − p)|BA|. Let DE denote the
set of all dead ends. The following claim is easy, we omit its proof.

Claim 12. Let {ωr = A} denote the event that all the edges in EA are open in ω

and all the edges in BA are closed in ω. Then,

P̂p (ωr = A) ≥ C(p)pA

where C(p) is a constant depending only on p.

Let

�(p, β) :=
∑

A∈DE

pA



N(A)−1
∑

e=(z1,z2)∈EA

βx1∨x2



 (28)

where z1 = (x1, y1) and z2 = (x2, y2). We define βu = βu(p) as the threshold
value for convergence, i.e. such that �(p, β) < ∞ for β < βu and �(p, β) = ∞
for β > βu. It is easy to see, giving a lower bound for �(p, β), that βu < ∞ for
all p. Let T0 := inf{j > 1 : Xj = 0}, and let TA be the time spent in the dead end

A. Then, on {ωr = A}, E
β
ω(TA) = E

β
ω(T0|X1 ≥ 0).

Lemma 14. For β > βu,

Eβ(T0) = ∞. (29)

Proof. We will show that for β > βu, the expected time spent in a dead end starting
at 0 is infinite, giving a lower bound for the latter by considering the time spent in
the dead end up to the first return to L. Consider the random walk on A, starting
from 0. Let TA,0 := inf{j > 1 : Zj ∈ L}. We have, on {ωr = A},

Eβ
ω(TA,0|X1 ≥ 0) ≥ 2

3 + β
N(A)−1

∑

e=(z1,z2)∈EA

βx1∨x2 (30)
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This follows from the fact that for a recurrent Markov chain on A with invariant
measure π , the expected return time to a vertex z is π(A)/π(z). In our case, the
invariant measure π(z) is given by the sum of the weights of all edges e = (z, ·)
where the weight of an edge e = (z1, z2), z1 = (x1, y1), z2 = (x2, y2) is given by
βx1∨x2 , hence π(A) = 2

∑

e=(z1,z2)∈EA

βx1∨x2 . (30) now follows by merging all of

the vertices of A ∩ L into one vertex. ��

Lemma 15. For β > βu, the speed of the random walk is zero.

Proof. We define a sequence of ladder times L1, L2, . . . . Let L1 be the first fresh
epoch such that ZL1 is the beginning of a dead end. Let AL1 be the dead end
starting at L1 and d(AL1) its depth. Let L2 be the first fresh epoch such that
XL2 > XL1 + d(AL1) and ZL2 is the beginning of a dead end, and continue the
recursion. If n is a fresh epoch, the environment to the right of Zn has the same
distribution as the environment to the right of the origin under P̂p. Therefore, the
probability that the first hitting time of {(x, y) : x = XLi

+ d(ALi
)+ 1} is a ladder

time is strictly positive and does not depend on i. In particular, there are infinitely
many ladder times. We will show that XLn/Ln → 0, P

β–a.s. for n → ∞. Note
that Li+1 − Li ≥ TAi

and the random variables (TAi
) are i.i.d. under P

β and have,
due to Lemma 14, infinite expectation for β > βu. This implies that Ln/n → ∞,
P

β–a.s. for n → ∞. On the other hand, the random variables XLi+1 −XLi
are i.i.d.

and we claim that they have exponential tails and, in particular, finite expectations.
To see this, note that due to Lemma 1 and Lemma 10, the depth of a dead end has
an exponential tail, i.e. P̂p(d(A0) ≥ s) ≤ exp(−c(p)s) for s large enough, where
c(p) is some constant depending only on p. For an integer t which is divisible by
20, we want to estimate the probability of the event

XLi+1 − XLi
> t.

Let s = t/20. Let τj := inf{k : Xk = XLi
+ 10j}, j = 1, 2, . . . . Let B denote

the event that 0 is connected to {(10, y) : y ∈ Z} if we remove all the vertices on
the line {(−1, y) : y ∈ Z}, and let γ = P̂p(B). Then, conditioning on the event
that the dead end beginning at Li has depth at most 1

2 t , consider the fresh epochs
τj , j = 11s, . . . , 20s. They have either to be beginnings of dead ends or they have
to be connected to the next line at distance 10. Hence

P
β(XLi+1 − XLi

≥ t) ≤ exp

(

−c(p)
1

2
t

)

+ γ s ≤ exp(−c̃(p)t)

for some constant c̃(p).
Hence, lim sup XLn/n < ∞, P

β–a.s. and we conclude that XLn/Ln → 0,
P

β–a.s. Since Ln+1/Ln → 1, P
β–a.s. for n → ∞, this suffices to prove that

Xn/n → 0, P
β–a.s. for n → ∞. ��

Lemma 16. We have βu(p) → 1 for p ↘ pc.
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Proof. Fix β > 1. Let ∂+Bn := {(x, y) : x = n and |y| ≤ n}. Then, for every n,
using the proof of Lemma 14,

Eβ(T0|X1 ≥ 0) ≥ βnP̂p(0 is connected to a vertex v ∈ ∂+Bn)

× P̂p(the clusters of all vertices z ∈ ∂+Bn are finite).

Now, since p > pc,

P̂p(0 is connected to a vertex v ∈ ∂+Bn) ≥ µp > 0. (31)

Let δ > 0 be such that

W := β(1 − δ)4 > 1.

For p close enough to pc, since θ(pc) = 0, Pp(C0 finite) ≥ 1 − δ (where θ(p)

denotes the probability that the origin belongs to an infinite open cluster, and
we refer to [13] for the fact that θ(pc) = 0). Hence, using the FKG inequali-
ty, Pp(the clusters of all vertices z ∈ ∂+Bn are finite) can be estimated as follows.
For p close enough to pc,

Pp(the clusters of all vertices z ∈ ∂+Bn are finite) ≥ (1 − δ)4n.

We conclude that also

P̂p(the clusters of all vertices z ∈ ∂+Bn are finite) ≥ c(1 − δ)4n.

for some constant c = c(p). Thus, for every n,

Eβ(T0|X1 ≥ 0) ≥ µpβn(1 − δ)4n = µpWn. (32)

Since W > 1 and (32) holds for every n, we conclude that Eβ(T0|X1 ≥ 0) = ∞.
Recalling (28) and (30), we see that �(p, β) = ∞, hence β ≥ βu. ��

Theorem 4 now follows from Lemma 15 and Lemma 16. ��
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