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THE MAXIMUM OF A BRANCHING RANDOM WALK
WITH SEMIEXPONENTIAL INCREMENTS

By Nina Gantert

Technische Universität Berlin

We consider an infinite Galton–Watson tree � and label the vertices v
with a collection of i.i.d. random variables �Yv�v∈�. In the case where the
upper tail of the distribution of Yv is semiexponential, we then determine
the speed of the corresponding tree-indexed random walk. In contrast to
the classical case where the random variables Yv have finite exponential
moments, the normalization in the definition of the speed depends on the
distribution of Yv. Interpreting the random variables Yv as displacements
of the offspring from the parent, �Yv�v∈� describes a branching random
walk. The result on the speed gives a limit theorem for the maximum
of the branching random walk, that is, for the position of the rightmost
particle. In our case, this maximum grows faster than linear in time.

1. Introduction and statement of the result. Let � be an infinite tree
with vertices v and with a distinguished vertex ρ called the root. Let �Xv�v∈�
be a collection of i.i.d. random variables. Given � and the collection �Xv�v∈�, we
define the tree-indexed random walk �Sv�v∈� by Sv �= ∑

w≤v Xw where w ≤ v
means that v is a descendant of w (i.e., w is on the shortest path from ρ to v.)
We denote the rays of the tree by ξ (rays are infinite paths from ρ to which do
not backstep) and the set of rays by ∂�. For a vertex v
 �v� denotes the distance
of v to the root, that is, the number of edges on the shortest path from ρ to
v. There are different ways to define a speed for the random walk �Sv�v∈�. In
[2], [9] and [11], the following notions of speed were considered:

Cloud speed: scloud �= lim sup
n→∞

1
n

max
v��v�=n

Sv


Burst speed: sburst �= sup
ξ∈∂�

lim sup
v∈ξ

Sv
�v� 


Sustainable speed: ssust �= sup
ξ∈∂�

lim inf
v∈ξ

Sv
�v� 


One has always

ssust ≤ sburst ≤ scloud
(1)

The inequalities may be strict in general; we refer to [11] for examples. How-
ever, it was shown that for Galton–Watson trees, these speeds coincide. A
Galton–Watson tree is defined as follows: let Z be a random variable with
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values in �0. Consider the branching process �Zn� with Z0 = 1 and Zn+1 =∑Zn
i=1Z

�n�
i where Z�n�

1 
 Z
�n�
2 
 
 
 
 are i.i.d. random variables with the same dis-

tribution as Z and draw edges between the offspring and their parent, the
first ancestor being the root.

Let m �= E�Z�. Assume

Xv is not a.s. constant, E
[
Xv

] = 0

and E
[
exp�λXv�

]
<∞ for all λ ≥ 0


(2)

Let S̃n �= ∑n
i=1Xi be the sum of i.i.d. random variables Xi with the same

distribution as Xv, and let I�a� be the corresponding rate function defined by

I�a� �= − lim
1
n

logP�S̃n > na�
(3)

Let s∗ �= sup�s�I�s� ≤ logm�.
Theorem 1 (Hammersley [7], Kingman [8], Biggins [3]). Let � be a Galton–

Watson tree with mean m > 1. Suppose the vertices of � are labeled by i.i.d.
random variables �Xv� satisfying (2). On the event that � survives, we have a.s.,

ssust = sburst = scloud = s∗
(4)

We refer to [11] for the proof.

Remarks. (i) Interpreting the random variables �Xv� as displacements of
the offspring from the parent, the tree-indexed random walk is a branching
random walk, and Theorem 1 says that, under the hypothesis 2, the position
of the rightmost particle moves linearly in time, with speed s∗.

(ii) For connections to first passage percolation, we refer to [2].

We will here consider one of the cases where (2) is not satisfied. Let �Yv�v∈�
be a collection of i.i.d. random variables with finite expectations. We will
assume that the distribution of Yv has the following semiexponential upper
tail. Let r ∈�0
1�. Assume

P�Yv ≥ t� = a�t� exp�−L�t�tr�(5)

for t large enough, where a and L are slowly varying functions such that
L�t�/t1−r is nonincreasing for t large enough. Let ψ be a positive function
such that

L�ψ�n��ψ�n�r
n

→
n→∞ 1
(6)
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Let

S
ψ
cloud �= lim sup

n→∞
1

ψ�n� max
v��v�=n

Sv


S
ψ
burst �= sup

ξ∈∂�
lim sup

v∈ξ

Sv
ψ��v�� 


S
ψ
sust �= sup

ξ∈∂�
lim inf
v∈ξ

Sv
ψ��v�� 


Examples.

1. L�t� ≡ b. Then we can take ψ�n� = �1/b1/r�n1/r.
2. L�t� = log t. Then we can take ψ�n� = �rn/ log n�1/r.
3. L�t� = log log t. Then we can take ψ�n� = �rn/ log log n�1/r.

We will prove the following.

Theorem 2. Let � be a Galton–Watson tree with mean m > 1. Suppose the
vertices of � are labeled by i.i.d. random variables �Yv� satisfying (5), and ψ
satisfies (6). On the event that � survives, we have a.s.,

s
ψ
sust = s

ψ
burst = s

ψ
cloud = �logm�1/r
(7)

Remarks. (i) Exactly as for Theorem 1, there is an interpretation in terms
of branching random walk: under the hypothesis (5), the position of the right-
most particle moves faster than linear in time, namely like ψ�n��logm�1/rat
time n. In the case where Z has a distribution with a regularly varying tail,
a limit theorem for the distribution of the position of the rightmost particle
has been proved in [4].

(ii) Let Mn �= maxv��v�=n Sv be the position of the rightmost particle in the
branching random walk. We can interpret (4) as well as (7) by saying that
the growth of Mn is the same as if the rays of the tree were independent.
Differences between a collection of independent rays and the rays of the tree
are expected to appear if one investigates the fluctuations of Mn. In the case
where Z has a distribution with a regularly varying tail, this was analyzed
in [5].

(iii) Note that the limit value �logm�1/r only depends on rwhereas the func-
tion ψ, which gives the normalization, also depends on L. A similar phe-
nomenon occurs if one considers functional Erdős–Renyi laws for random
variables satisfying (5): the normalization that is, in this case the “size of
the window,” depends on L but the limit set only depends on r; we refer to [6].
The reason one has to normalize with ψ�n� instead of n is the bigger influ-
ence of extreme values; roughly speaking, the tail of the sum of i.i.d. random
variables Yv is given by the tail of the maximum.

(iv) Except that we assumed that Yv has a finite expectation, we did not
make requirements on the lower tail of the distribution of Yv, that is, on the
decay of P�Yv ≤ t� for t→ −∞.
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Example. Let � be a binary tree and �Xv�v∈� be an i.i.d. collection of ran-
dom variables with distribution N�0
1�. Due to Theorem 1, we have a.s.,

sup
ξ∈∂�

lim
v∈ξ

Sv
�v� = lim

n→∞
1
n

max
v��v�=n

Sv = �2 log 2�1/2
(8)

Let β > 2 and Sβv �= ∑
u≤v X

β
u. Due to Theorem 2 with Yv =X

β
v 
 r = 2/β and

ψ�n� = 2β/2nβ/2, we have a.s.,

sup
ξ∈∂�

lim
v∈ξ

S
β
v

�v�β/2 = lim
n→∞

1
nβ/2

max
v��v�=n

S
�β�
v = �2 log 2�β/2
(9)

2. Proof of Theorem 2. The key to the proof of Theorem 2 is provided
by the following logarithmic tail asymptotics for i.i.d. random variables with
a semiexponential upper tail as in (5).

Theorem 3. Let Y
Y1
 
 
 
 
Yn be i.i.d. random variables with finite expec-
tation E�Y�. Let r ∈�0
1�. Assume

P�Y ≥ t� = a�t� exp�−L�t�tr�(10)

for t large enough, where a and L are slowly varying functions such that
L�t�/t1−r is nonincreasing for t large enough. Let ψ be a positive function
satisfying (6). Let Sn �= ∑n

i=1Yi. Then we have, for x > 0,

lim
n→∞

1
n

logP�Sn ≥ ψ�n�x� = −xr
(11)

Under stronger assumptions on L and a, one can give much more precise
expansions instead of logarithmic asymptotics. This was carried out by A. V.
Nagaev; we refer to the survey paper [10] by S.V. Nagaev, page 764.

Proof.
Lower bound. Let ε > 0. Since Y1
 
 
 
 
Yn are independent, we have

P�Sn ≥ ψ�n�x� ≥ P�Y1 ≥ ψ�n��x+ ε��P
[ n∑
i=2

Yi ≥ ψ�n��−ε�
]

(12)

Since ψ�n�/n → ∞, the second term on the r.h.s. of (12) goes to 1 due to the
law of large numbers. For the first term on the r.h.s. of (12), we have

P�Y1 ≥ ψ�n��x+ ε�� = a�ψ�n��x+ ε�� exp�−L�ψ�n��x+ ε��ψ�n�r�x+ ε�r�

Taking logarithms, dividing by n and letting n→ ∞ yields, due to (6),

lim inf
n

1
n

logP�Sn ≥ ψ�n�x� ≥ −�x+ ε�r
(13)

For ε→ 0, the lower bound in (11) follows.
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Upper bound. We can assume w.l.o.g. (replacing Y with Y+) that Y is non-
negative. Note that

P�Sn ≥ ψ�n�x� ≤ P

[
max
1≤i≤n

Yi ≥ ψ�n�x
]
+P

[ n∑
i=1

Y
�n�
i ≥ ψ�n�x

]

(14)

where Y�n�
i �= YiI�Yi≤ψ�n�x�. For the first term on the r.h.s. of (14), we have

P

[
max
1≤i≤n

Yi ≥ ψ�n�x
]
≤ na�ψ�n�x� exp�−L�ψ�n�x�ψ�n�rxr�
(15)

hence

lim sup
n

1
n

logP
[
max
1≤i≤n

Yi ≥ ψ�n�x
]
≤ −xr
(16)

For the second term on the r.h.s. of (14), apply Chebyshev’s inequality with
c > 0 to get

P

[ n∑
i=1

Y
�n�
i ≥ ψ�n�x

]
≤ E

[
exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]n

×exp�−cL�ψ�n��ψ�n�rx�

(17)

where Y�n� �= YI�Y≤ψ�n�x�. We will show that for c < xr−1,

lim sup
n

logE
[
exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]

≤ 0
(18)

Equations (6), (14), (16) and (17) then imply

lim sup
n

1
n

logP�Sn ≥ ψ�n�x� ≤ −xr
(19)

Proof of (18). Let k ∈ � be such that k > r/�1− r�. Using the estimates
log x ≤ x− 1 and ex − 1 ≤ x+ 1

2x
2 + 1

6x
3 + · · · + �1/�k+ 1�!�xk+1ex, we have

logE
[
exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]

≤ c
L�ψ�n��
ψ�n�1−r E

[
Y�n�]

+ 1
2
c2
L�ψ�n��2
ψ�n�2�1−r�E

[�Y�n��2]+ 1
6
c3
L�ψ�n��3
ψ�n�3�1−r�E

[�Y�n��3]+ · · ·

+ 1
�k+ 1�!c

k+1 L�ψ�n��k+1

ψ�n��k+1��1−r�E
[
�Y�n��k+1exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]

(20)

Since we assumed Y to be nonnegative, and because of (10), we have that for
each m
 lim supn E��Y�n��m� <∞, and we see from (20) that it suffices to show



1224 N. GANTERT

that, for c < xr−1,

lim sup
n

L�ψ�n��k+1

ψ�n��k+1��1−r�E
[
�Y�n��k+1 exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]

≤ 0
(21)

Since

L�ψ�n��k+1

ψ�n��k+1��1−r�−1
→

n→∞ 0(22)

due to our assumption on k, it is enough to show that, for c < xr−1,

lim sup
n

1
ψ�n�E

[
�Y�n��k+1 exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]

<∞
(23)

Fix ε > 0
 Due to the Cauchy–Schwarz inequality,

E

[
�Y�n��k+1 exp

(
c
L�ψ�n��
ψ�n�1−r Y

�n�
)]

≤ E
[
�Y�n���k+1��1+ε�/ε

]ε/1+ε
E

[
exp

(
�1+ ε�cL�ψ�n��

ψ�n�1−r Y
�n�

)]1/1+ε(24)

The first term on the r.h.s. of (24) remains bounded for n→ ∞. To prove (23),
it therefore suffices to show that for c < xr−1, we have, for each T > 0,

lim sup
n

1
ψ�n�E

[
exp

(
�1+ ε�cL�ψ�n��

ψ�n�1−r Y
�n�

)
�Y�n� ≥ T

]
<∞
(25)

Now we use the fact that for a nonnegative random variable X and t > 0,
0 < T < K <∞, we have

E
[
exp�tXI�x≤K��I�X≥T�

]
=

∫ K

T
tetsP�X > s�ds+ etTP�X ≥ T� − �etK − 1�P�X >K�


(26)

Plugging in K = ψ�n�x and t = �1+ ε�c�L�ψ�n��/ψ�n�1−r�, we get

1
ψ�n�E

[
exp

(
�1+ ε�cL�ψ�n��

ψ�n�1−r Y
�n�

)
�Y�n� ≥ T

]

≤ 1
ψ�n�

∫ ψ�n�x

T
�1+ ε�cL�ψ�n��

ψ�n�1−r exp
(
�1+ ε�cL�ψ�n��

ψ�n�1−r s
)
P
[
Y�n� > s

]
ds(27)

+ 1
ψ�n� exp

(
�1+ ε�cL�ψ�n��

ψ�n�1−r T
)
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The second term on the r.h.s. of (27) goes to 0 for n → ∞. The first term on
the r.h.s. of (27) is, for n large enough,

≤ 1
ψ�n�

∫ ψ�n�x

T
�1+ 2ε�c exp

(
�1+ ε�cL�ψ�n��

ψ�n�1−r s
)
a�s�exp�−L�s�sr�ds

= C1

∫ 1

T/ψ�n�x
exp

(
�1+ ε�cL�ψ�n��

ψ�n�1−r ψ�n�xs
)
a�ψ�n�xs�

× exp�−L�ψ�n�xs�ψ�n�rxrsr�ds(28)

= C1

∫ 1

T/ψ�n�x
a�ψ�n�xs�

× exp
(
ψ�n�r[�1+ ε�cL�ψ�n��xs−L�ψ�n�xs�xrsr])ds


where C1 = �1 + 2ε�cx. Due to our assumptions on L, we now see that if
c�1+ε� < xr−1, the integral remains bounded for n→ ∞, and this proves (23).
Finally, since ε > 0 was arbitrary, we conclude that (18) holds for c < xr−1.

Remark. We see from the proof that it suffices to have

a1�t� exp�−L1�t�tr� ≤ P�Y ≥ t� ≤ a2�t� exp�−L2�t�tr�(29)

with a1
 a2
L1
L2 as in Theorem 3.

We now follow the strategy in [11]. Let S̃n �= ∑n
i=1Yi where Yi
1 ≤ i ≤ n,

are i.i.d. with the same distribution as Yv.

Step 1. Exactly as in [11], we show that a.s. on nonextinction of �,

s
ψ
cloud ≤ �logm�1/r
(30)

Let q be the probability of extinction of �. We denote by �n the vertices of �
at level n. Due to Theorem 3, for each ε > 0, there is δ > 0 such that, for n
large enough,

P
[
S̃n > ψ�n��logm+ ε�1/r] ≤ exp�−n�logm+ δ�� =m−n exp�−nδ�
(31)

We have

P
[
Sv > ψ�n��logm+ ε�1/r for some v ∈ �n� nonextinction

]
= 1

1− q

∞∑
k=1

P
[
Sv > ψ�n��logm+ ε�1/r for some v ∈ �n

∣∣��n� = k
]

×P���n� = k�(32)

≤ 1
1− q

∞∑
k=1

kP���n� = k�m−ne−nδ = 1
1− q

mnm−ne−nδ = 1
1− q

e−nδ


where the inequality is due to (31). Equation (30) is straightforward from here
by applying the Borel–Cantelli lemma.
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Step 2. We show that a.s. on nonextinction of �,

s
ψ
sust ≥ �logm�1/r
(33)

This time, we have to modify the argument in [11].

(i) Assume that the Galton–Watson tree has finite variance: that is, σ2 �=
Var�Z� < ∞. Let δ > 0 and a = �logm�1/r − 2δ. Let 1 < γ < �logm��a+ δ�−r
and M > 0. We denote the integer part of γk by �γk�. We will consider the
following tree ��γ
M� which is embedded in �. The vertices wk at level k of
��γ
M� satisfy

w0 = ρ
 �wk� = �wk−1� + �γk�

Swk

> Swk−1
+ ψ��γk��a


Su > Swk−1
− �γk�M for all u in the path from wk−1 to wk


We will first show that, for M large enough, on nonextinction of �
 ��γ
M�
survives with positive probability. Here ��γ
M� corresponds to a branching
process with time-dependent branching, which is constructed by:

(a) Considering the levels �γ� + �γ2� + · · · + �γk� of the original tree �;
(b) Performing a (dependent) percolation where one keeps each path from

level �γ� + �γ2� + · · · + �γk−1� to level �γ� + �γ2� + · · · + �γk� as an edge of
��γ
M� with probability

pk �= P

[
S̃�γk� > ψ��γk��a
 min

1≤j≤�γk�
S̃j > −�γk�M

]



Note that

P

[
min

1≤j≤�γk�
S̃j > −�γk�M

]
≥ P

[
1

�γk�
�γk�∑
j=1

Y−
j < M

]
(34)

and, for M large enough, the last probability goes to 1 for k → ∞ due to
the law of large numbers. Together with Theorem 3, this implies that pk ≥
exp�−�γk��a+δ�r� for k large enough. Denote by Vk the size of the generation
at level �wk� in �, before percolation, and by Vk the size of the generation
at level �wk� in � after percolation. Here �Vk�k≥0 and ��Vk�k≥0 are branching
processes with time-dependent branching. More precisely, V0 = �V0 = 1 and

Vk =
Vk−1∑
j=1

Xk
j
 �Vk =
�Vk−1∑
j=1

�Xk
j
(35)

where Xk
j
 j = 1
2
 
 
 
 
Vk are i.i.d. (Xk
j is the number of descendants in
the �γk�th generation of the jth vertex at level k − 1 of ��γ
M��, and �Xk
j,
j = 1
2
 
 
 
 
 �Vk are i.i.d. with

�Xk
j =
Xk
j∑
i=1

Yi
k
(36)
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where Yi
k
 i=1
2
 
 
 
 
Xk
j are (dependent) random variables with P�Yi
k =
1� = pk = 1 − P�Yi
k = 0�. Let m̄k �= E� �Xk
j� and σ̄2

k �= Var� �Xk
j�. We will
show that

Wk �=
�Vk

m̄km̄k−1 · · · m̄1

 k = 1
2
 
 
 
(37)

is a uniformly integrable positive martingale. We then conclude that for W �=
limk→∞Wk, we have E�W� = E�Wk� = 1 and therefore P�W > 0� > 0 which
implies that P���Vk� survives� > 0. To prove uniform integrability, we will show
that

sup
k

E�W2
k � <∞
(38)

Note first that, due to (36),

m̄k = pkE�Xk
1� = pkm
�γk� and E� �X2

k
1� ≤ pkE�X2
k
1�
 k = 1
2
 
 
 
 
(39)

hence

σ̄2
k ≤ pkVar�Xk
1� + �pk − p2

k�E�Xk
1�2
 k = 1
2
 
 
 
 
(40)

Recursive calculation of the variance of a branching process with time-
dependent branching yields

Var��Vk�
m̄2
km̄

2
k−1 · · · m̄2

1

=
k∑
j=1

σ̄2
j

m̄2
jm̄j−1 · · · m̄1

(41)

=
(
σ̄2

1

m̄2
1

+ σ̄2
2

m̄2
2m̄1

+ · · · + σ̄2
k

m̄2
km̄k−1 · · · m̄1

)

 k = 1
2
 
 
 
 


For the number of descendants Xk
1, we have

Var�Xk
1� =
σ2m�γk�−1

(
m�γk� − 1

)
m− 1


 k = 1
2
 
 
 
(42)

(see also [1], page 4). Due to (37) and (41), we have

E�W2
k� ≤

Var��Vk�
m̄2
km̄

2
k−1 · · · m̄2

1

+ 1

=
k∑
j=1

σ̄2
j

m̄2
jm̄j−1 · · · m̄1

+ 1
 k = 1
2
 
 
 
 
(43)

Since E�Xk
1� =m�γk�, we see from (42) that

Var�Xk
1�
E�Xk
1�2

≤ C1
 k = 1
2
 
 
 
 
(44)
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where C1 is a constant depending on m and σ but not on k. Using (39), (40)
and (44), we see that

σ̄2
j

m̄2
j

≤ 1
pj
C1 +

(
1
pj

− 1
)
≤ �C1 + 1� 1

pj

 j = 1
2
 
 
 
(45)

and, using (45) and

pj ≥ exp�−�γj��a+ δ�r�
 E� �Xj
1� = pjm
�γj�
 j = 1
2
 
 
 
 
(46)

we see that the r.h.s. of (43) can be bounded uniformly,

sup
k

k∑
j=1

σ̄2
j

m̄2
jm̄j−1 · · · m̄1

≤ C2 sup
k

k∑
j=1

1
pjpj−1m

�γj−1�pj−2m
�γj−2� · · ·p1

≤ C2

∞∑
j=1

mj

(
e�a+δ�

r

m1/γ

)�γj�+�γj−1�+···+�γ�
<∞


(47)

where C2 = �C1+1�. The last term in (47) is finite since �a+δ�r < �1/γ� logm,
and together with (43), this proves (38). Hence, we have shown that P���Vk�
survives� = P���γ
M� survives� > 0. However, on nonextinction of ��γ
M�,
we have

s
ψ
sust ≥ lim inf

k→∞
a
(
ψ��γ�� + · · · + ψ��γk−1��)− �γk�M

ψ��γ�� + · · · + ��γk�� = a

γ1/r

(48)

For γ → 1, this yields sψsust ≥ a with positive probability. Now, exactly as in
[11],

A �= ���� finite or sψsust ≤ a on ��(49)

is an inherited property. Applying the 0–1 law proved in [11], Proposition 3.2,
we conclude that P�sψsust ≥ a� = 1 a.s. on nonextinction. For δ→ 0, (33) follows.

(ii) Finally, if the variance ofZ is infinite, we can approximate in the follow-
ing way: let Z�K� = ZI�Z≤K� where we choose K ∈ � large enough such that
m�K� �= E�Z�K�� > 1. Then Z�K� has finite variance. The corresponding tree
��K� is the tree remaining if we delete in � the K+ 1th, K+ 2th,
 
 
, children
of every vertex. Now, by (i), we have sψsust ≥ �logm�K��1/r a.s. on nonextinction
of ��K�. For K → ∞, we have m�K� → m and therefore sψsust ≥ �logm�1/r a.s.
on nonextinction of �.

Step 3. Together with the first step, we have now shown that a.s. on nonex-
tinction of �, we have

�logm�1/r ≤ s
ψ
sust ≤ s

ψ
burst ≤ s

ψ
cloud ≤ �logm�1/r
 ✷(50)
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