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A note on logarithmic tail asymptotics and mixing
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Abstract

Let Y1; Y2; : : : be a stationary, ergodic sequence of non-negative random variables with heavy tails. Under mixing
conditions, we derive logarithmic tail asymptotics for the distributions of the arithmetic mean. If not all moments of Y1
are �nite, these logarithmic asymptotics amount to a weaker form of the Baum–Katz law. Roughly, the sum of i.i.d.
heavy-tailed non-negative random variables has the same behaviour as the largest term in the sum, and this phenomenon
persists for weakly dependent random variables. Under mixing conditions, the rate of convergence in the law of large
numbers is, as in the i.i.d. case, determined by the tail of the distribution of Y1. There are many results which make these
statements more precise. The paper describes a particularly simple way to carry over logarithmic tail asymptotics from
the i.i.d. to the mixing case. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

Throughout this note, Y1; Y2; : : : will be non-negative random variables, Sn :=
∑n

i=1 Yi, and we will denote
m0 :=E[Y1]6∞. We recall the Baum–Katz law, see Baum and Katz (1965) or Peligrad (1985).

Theorem 1. Assume Y1; Y2; : : : are i.i.d. Let p¿ 1. Then; the following two statements are equivalent:
(i) E[Yp

1 ]¡∞.
(ii) For each  ¿1 and for each m¿m0; we have

∞∑
n=1

n p−2P[Sn¿n m]¡∞: (0)

Theorem 1 (in a more general form) was extended under conditions on the �-mixing coe�cients or the
�-mixing coe�cients in Peligrad (1985). We will extend a weaker form of Theorem 1 under conditions on
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the �-mixing coe�cients. Since the �-mixing coe�cients are always smaller than the �-mixing coe�cients,
we have to assume a decay which is faster than logarithmic as in Peligrad (1985). In Section 3, we give a
counterexample (where �(n)=n−c for a constant c) to stress that a logarithmic decay of �-mixing coe�cients
is in general not su�cient. Our assumption neither implies nor does it follow from the assumptions in Peligrad
(1985), Daley et al. (1996) or Kiesel (1997).
Let us �rst give a weaker form of Theorem 1 in terms of logarithmic asymptotics.

Theorem 2. Assume Y1; Y2; : : : are i.i.d. Let �¿ 1. Then the following holds.
(a) If E[Y �

1 ] =∞; and P[Y1¿t]¿L(t)=t� for some slowly varying function L; then for m¿ 0 and  ¿1

lim inf
n

1
log n

logP[Sn¿n m]¿− (� − 1): (1)

(b) If E[Yp]¡∞ for each p¡�; then for m¿m0 and  ¿1

lim sup
n

1
log n

logP[Sn¿n m]6− (� − 1): (2)

It is not di�cult to prove Theorem 2 directly, i.e. without making use of Theorem 1. We conjecture that (1)
holds true without the additional assumption on Y1. But, even then, Theorem 2 is weaker than Theorem 1
because from Theorem 2, one does not know if the sum in (0) converges or diverges at the critical point
pc := sup{p: E[Yp

1 ]¡∞}. More precisely, Theorem 2 is equivalent to the following.

Theorem 3. Assume Y1; Y2; : : : are i.i.d. Let pc := sup{p: E[Yp
1 ]¡∞} and assume pc ¿ 1. Then the follow-

ing holds.
(a) If P[Y1¿t]¿L(t)=tpc for some slowly varying function L and if p¿pc; then for m¿ 0 and  ¿1

∞∑
n=1

n p−2P[Sn¿n m] =∞: (3)

(b) If p¡pc; then for m¿m0 and  ¿1
∞∑
n=1

n p−2P[Sn¿n m]¡∞: (4)

The aim of this note is to show how logarithmic asymptotics, as given in Theorem 2, can be extended to a
stationary, mixing sequence Y1; Y2; : : : under assumptions on the decay of the �-mixing coe�cients. We use
only �-mixing coe�cients; for the de�nition of other mixing coe�cients and for the relations between them,
we refer to Bradley (1986). We recall the de�nition of the �-mixing coe�cient. For two random variables
X and Z , denote the distribution of (X; Z) by �(X;Z) and the distributions of X and Z by �X and �Z . The
�-mixing coe�cient of X and Z is de�ned by

�(X; Z) := 1
2‖�(X;Z) − �X ⊗ �Z‖; (5)

where ‖�−�‖ denotes the (total) variation norm of the signed measure �−�. Now, for a sequence of random
variables (Y1; Y2; : : :), de�ne

�(n) := sup
k ∈N

�((Y1; : : : ; Yk); (Yk+n; Yk+n+1; : : :)): (6)

The sequence is called absolutely regular if �(n) → 0 for n → ∞, cf. Bradley (1986). Our main results are
the following two theorems.

Theorem 4. Assume Y1; Y2; : : : is a stationary sequence such that log �(n)=log n → −∞. Let �¿ 1. Then (a)
and (b) in Theorem 2 hold.
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Theorem 5. Let a1; a2 and L be slowly varying functions; with L(t)=log t → ∞ for t → ∞ and

lim inf
t→∞

L(t
)
L(t)

= lim sup
t→∞

L(t
)
L(t)

=: h(
)¿ 0 (7)

for 
∈ ]0; 1[. Assume that log �(n)=L(n)→ −∞. Then the following hold:
(a) If P[Y1¿t]¿a1(t) exp(−L(t)); then for m¿ 0 and  ¿1

lim inf
n

1
L(n )

logP[Sn¿n m]¿− 1: (8)

(b) If P[Y1¿t]6a2(t) exp(−L(t)); then m0 = E[Y1]¡∞ and for m¿m0 and  ¿1

lim sup
n

1
L(n )

logP[Sn¿n m]6− 1: (9)

Our mixing conditions are satis�ed in many circumstances. Often, one has even an exponential decay of
the �-mixing coe�cients; for instance, every Doeblin–Markov chain is �-mixing with �(n)→ 0 exponentially
fast, hence �(n)→ 0 exponentially fast, cf. Bradley (1986).
In the i.i.d. case, one can of course give very precise expansions for P[Sn¿nm] instead of just logarithmic

asymptotics. For instance, if the distribution of Y1 has a regularly varying tail and m0¡∞, it is known that
for m¿m0,

P[Sn¿nm] ∼ P
[
max
16i6n

Yi¿n(m− m0)
]
∼ nP[Y1¿n(m− m0)] (10)

(see for instance Vinogradov, 1994).
If the distribution of Y1 is semiexponential as in the setting of Theorem 5, precise expansions for P[Sn¿nm]

can be found in Rozovskii (1994).
We show here only that, under mixing conditions, the logarithmic asymptotics are the same as in the i.i.d.

case. One might ask about the conditions to carry over (10), possibly with some constants, to the mixing
case. Davis and Hsing (1995) have some results in this direction. Example 1 shows, however, that if there is
not enough mixing, not even the logarithmic asymptotics are in general the same as in the i.i.d. case.
For simplicity, we consider only non-negative random variables. However, it is obvious from the proofs

that the results can be extended under suitable assumptions on the lower tail of the distribution of Y1.

2. Proofs

Proof of Theorem 4. We will use the following decoupling lemma due to H. Berbee.

Lemma 1. Let X1; X2; : : : ; Xn be random variables on a probability space (
;A; P) and let �k :=
�((X1; : : : ; Xk); (Xk+1; : : : ; Xn)). Then there exist independent random variables X̃ 1; X̃ 2; : : : ; X̃ n on the same
probability space such that X̃ i and Xi have the same distribution (16i6n) and

‖�(X1 ; X2 ; :::; Xn) − �(X̃ 1 ; X̃ 2 ; :::; X̃ n)‖6�1 + · · ·+ �n: (11)

See Berbee (1987) and Schwarz (1980) for the proof. We will apply the lemma to decouple Yi and Yj when
|i − j| is big enough.
Take any 
∈ ]0; 1[. Decompose the set {1; : : : ; n} into ‘(n) blocks of length k(n) and a block of length less

than k(n), where k(n), ‘(n) are integers with k(n)=n
 → 1, ‘(n)=n1−
 → 1 for n → ∞.
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Proof of (a). Since Y1; : : : ; Yn are non-negative, we have

P[Sn¿n m] = P

[
n∑

i=1

Yi¿n m

]
¿P

[ ‘(n)∑
i=1

Y(i−1)k(n)+1¿n m

]
: (12)

We apply Lemma 1 to {Y(i−1)k(n)+1; 16i6‘(n)} and get

P[Sn¿n m]¿P

[ ‘(n)∑
i=1

Ỹ i¿n m

]
− ‘(n)�(k(n)); (13)

where Ỹ 1; : : : ; Ỹ ‘(n) are i.i.d. with the same distribution as Y1. The second term on the r.h.s. of (13) is neg-
ligible: In fact, we have log �(k(n))=log n → −∞, since log �(k(n))=log k(n)→ −∞ and log k(n)=log n → 
.
Therefore, log(‘(n)�(k(n)))=log n→−∞. For the �rst term on the r.h.s. of (13), we have, using
Theorem 2,

lim inf
n

1
log n

logP

[ ‘(n)∑
i=1

Ỹ i¿n m

]

= lim inf
n

1− 

log ‘(n)

logP

[ ‘(n)∑
i=1

Ỹ i¿‘(n) =(1−
)m

]
¿(1− 
)

(
− � 
1− 


+ 1
)

: (14)

Since 
∈ ]0; 1[ is arbitrary, (1) holds.

Proof of (b). Note that

P[Sn¿n m]6 P

[
1

‘(n) k(n) 

n∑
i=1

Yi¿m

]

6 P


 1
k(n) 

k(n)∑
i=1

1
‘(n) 

‘(n)+1∑
j=1

Y( j−1)k(n)+i¿m




6 k(n) P


 1
‘(n) 

‘(n)+1∑
j=1

Y( j−1)k(n)+1¿m


 : (15)

We apply Lemma 1 to {Y( j−1)k(n)+1; 16j6‘(n) + 1} here, yielding

P[Sn¿n m]6k(n) P

[
1

‘(n) 

‘(n)+1∑
i=1

Ỹ i¿m

]
+ k(n) (‘(n) + 1)�(k(n)); (16)

where Ỹ 1; : : : ; Ỹ ‘(n)+1 are i.i.d. with the same distribution as Y1. The second term in (16) can be shown to be
negligible, exactly as the second term in (13). To estimate the �rst term, we use Theorem 2 and get

lim sup
n

1
log ‘(n)

logP

[
1

‘(n) 

‘(n)+1∑
i=1

Ỹ i¿m

]
6− (� − 1): (17)

Since log ‘(n)=log n → 1− 
 and log k(n)=log n → 
, (16) and (17) yield

lim sup
n

1
log n

logP[Sn¿n m]6
 − (1− 
)(� − 1): (18)

Since 
∈ ]0; 1[ is arbitrary, (2) holds.
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Proof of Theorem 5. First one has to prove (a) and (b) for the i.i.d. case, see Gantert (1996) or Rozovskii
(1994). Then, to show (a), one uses P[Sn¿n m]¿P[Y1¿n m], and one proceeds directly without making
use of the assumption on �(n). (The mixing condition is needed, however, if we drop the assumption that Y1
is non-negative.)
Proof of (b). Let 
∈ ]0; 1[. Decompose the set {1; : : : ; n} into ‘(n) blocks of length k(n) and a block of

length less than k(n), where k(n), ‘(n) are integers with k(n)=n
 → 1, ‘(n)=n1−
 → 1 for n → ∞. As in (15),
we have

P[Sn¿n m]6k(n) P

[
1

‘(n) 

‘(n)+1∑
i=1

Ỹ i¿m

]
+ k(n) (‘(n) + 1)�(k(n)); (19)

where Ỹ 1; : : : ; Ỹ ‘(n)+1 are i.i.d. with the same distribution as Y . We �rst show that the second term on the
r.h.s. of (19) is negligible: we have

1
L(n )

log �(k(n)) =
log �(k(n))
L(k(n))

L(k(n))
L(n )

→ −∞ (20)

due to our assumptions on � and L. Further, log ‘(n)=L(n )→ 0 and log k(n)=L(n )→ 0, hence

1
L(n )

log (k(n) (‘(n) + 1)�(k(n)))→ −∞: (21)

We turn to the �rst term on the r.h.s. of (19). The tail asymptotics for the i.i.d. case imply that

lim sup
n

1
L(‘(n) )

logP

[
1

‘(n) 

‘(n)+1∑
i=1

Ỹ i¿m

]
6− 1: (22)

Our assumptions on L imply limn L(‘(n) )=L(n ) = h(1− 
)¿ 0. Therefore, (19) and (22) yield

lim sup
n

1
L(n )

logP[Sn¿n m]6− h(1− 
): (23)

It is easy to see that due to our assumptions on L, h(1 − 
) → 1 for 
 → 0. The claim follows by letting

 → 0 in (23).

3. A counterexample

We give an example of a Markov chain where �(n)6n−c for some constant c, but the upper bound (b) in
Theorem 2 does not hold. As a consequence, the equivalence of (i) and (ii) in Theorem 1 breaks down. This
shows that if one uses �-mixing coe�cients, a logarithmic mixing rate as in Peligrad (1985) is not su�cient.

Example 1. Let �¿ 1 and a(x) := exp(−(1=x�)) where �¿ 1=(�− 1). For two probability distributions � and
� speci�ed below, let Y1; Y2; : : : be the Markov chain with kernel �(x; ·) = a(x)�x(·) + (1 − a(x))�(·) and
starting distribution �. We assume that P[Y1¿t] = 1=t� for t¿1, i.e. � has density f(t) = �=t�+1 for t¿1,
and � is chosen such that � is the invariant distribution for the Markov chain. More precisely, � is given by
d�=d�(x) = (1− a(x))(

∫
(1− a(x))�(dx))−1.

Claim. �(n)6n−�=�const: and, for m¿m0 = E[Y1],

lim inf
n

1
log n

logP[Sn¿nm]¿− (�− 1): (24)
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Proof. We see that either (Y1; : : : Yk) and (Yk+n; Yk+n+1; : : :) are independent or we have Yk=Yk+1= : : :=Yk+n,
and the second case occurs, given Yk , with probability a(Yk)n. This implies

�(n)6
∫

a(x)n�(dx) =
∫ ∞

1
exp

(
− n

x�

) �
x�+1

dx6n−�=�const: (25)

Let k(n); n= 1; 2; : : : , be a sequence of integers with k(n)=n
 → 1, where 
= �=(1 + �). We then have

P[Sn¿nm]¿P
[
Y1¿

nm
k(n)

; Yk(n) = Yk(n)−1 = · · ·= Y1

]
= P

[
Y1¿

nm
k(n)

]
a
(

nm
k(n)

)k(n)

:

Taking logarithms gives

logP[Sn¿nm]¿log
(
k(n)�

n�m�

)
+ k(n)

(−k(n)�

n�m�

)
: (26)

Since k(n)1+�=n� → 1, dividing by log n in (26) and letting n → ∞ yields

lim inf
n

1
log n

logP[Sn¿nm]¿− �+
�

1 + �
�¿− �+ 1; (27)

where the last inequality holds because �¿ 1=(�− 1).

Note that this Markov chain does not satisfy Doeblin’s condition.
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