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Summary. Using self-similarity of Brownian motion and its representation as 
a product measure on a binary tree, we construct a random sequence of probability 
measures which converges to the distribution of the Brownian bridge. We establish 
a large deviation principle for random fields on a binary tree. This leads to a class of 
probability measures with a certain self-similarity property. The same construction 
can be carried out for C [0, l]-valued processes and we can describe, for instance, 
a CE0, 1J-valued Ornstein-Uhlenbeck process as a large deviation of Brownian 
sheet. 
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Introduction 

Self-similarity of Brownian motion induces a certain ergodic behaviour of the 
Brownian bridge. We investigate large deviations of this ergodic behaviour. Let 
C[0, 1]o,o be the space of all functions X in C[0, 1] with X(0) = X(1) = 0 and 
P the distribution of the Brownian bridge. We define mappings To, T1 of C [0, 1]o, o 
on itself which describe rescalings of the left and the right half of the function 
X: (To X)t = ~ ( X t / 2  - t X l / 2 ) ,  (T1 X)t = ~(X(t+ 1)/2 - -  (1 -- t)X1/2), respectively. 
Due to the self-similarity of Brownian motion, P is invariant and, in fact, even 
ergodic under To and T1. 

For  each function cosC[0,1]o,o and each 0~{0,1} ~, we now construct 
a sequence of probability distributions R,,o(co) on C[0, 1]0, o:R,,0(co) 
= (l/n) Sk_-lo 3r0~ ... r0oO~, where 3~ denotes Dirac measure on co. This means that in 

each step we choose, according to 0, the left or the right half of the function co and 
rescale it. R~,o(co) is the empirical distribution corresponding to this sequence of 
functions. Let 01, 02, .  �9 be independent coin tossings under 2. We can show that 
R,,o(co) converges to P for P-a.e. co and 2-a.e. all 0. This ergodic behaviour of the 
Brownian bridge P says that we can reconstruct P with an "infinitesimal" piece of 
a single "typical" trajectory around a "typical" point of the unit interval [0, 1], if we 
identify 2 with Lebesgue measure. 
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We get another description of To and T1 using the L6vy-Ciesielski construction 
of the Brownian bridge: each function in C [0, 1]o, o can be written as a superposi- 
tion of the Schauder functions e~,kk  = 1 , 2 , . . . , 2  "-1, n = 1,2 . . . .  : 

co 2 n - 1  
X (t) = Z ,  = L ~ k = t Y,. k (X) e,,k (t), 0 < t -< 1. This defines a mapping of C [0, 1]0, o 

into IR r, where I :=  { (n , k ) l k=  1 , 2 , . . . , 2 " - l , n =  1 ,2 , . . . }  has the structure of 
a binary tree. To and Ta, interpreted as mappings of IR x into IR t, correspond to 
shifts of the tree to the left and to the right, respectively. P corresponds to the 
product measure on tR x with marginal distribution N(0,1), i.e. the random 
variables Y,,k, k = ,1 ,2 , . . .2"-1 ,  n = 1 , 2 , . . .  are independent with distribution 
N(0, 1) under P. Similar representations of stochastic processes as tree-indexed 
random variables have been investigated recently in the context of wavelet trans- 
forms, see [2]. 

We now look at large deviations of the convergence of R,,o to P. Note that 
R,, 0 would not correspond, on the lattice ~a, to the usual empirical field, but rather 
to the empirical distribution of a sequence of configurations we get shifting along 
the path of a (transient) random walk on the lattice. The same model has been 
considered independently by Ben Arous and Tamura.  They get, for each fixed 0, 
a large deviation principle for the distributions of R,,o, where the rate function 
depends on 0. We are interested in "uniform" bounds; in particular, we want to 
look at probability measures on the tree which are invariant under all shifts, not 
only for a fixed 0. We prove that the finite-dimensional marginals of R,,o satisfy 
a large deviation principle and characterize the rate function as a "mean entropy" 
(Theorem 4.1). Minimizing this rate function leads to the class of self-similar 
probabili ty measures, defined by invariance under To and T~. Such a self-similar 
probabili ty distribution on IR I can be identified, under certain conditions, with 
a probabili ty distribution on C[0, 1]0,o. We investigate some properties of the 
corresponding "self-similar" stochastic processes. 

More generally, we may replace IR with a Polish space S and P with a product 
measure on S t. If  we set S = C[0, 1] (see Sect. 5), the product measure on S t with 
Wiener measure as one-dimensional marginal can be identified with the distribu- 
tion of Brownian sheet. We can describe then, for instance, a C[0, 1]-valued 
Ornstein-Uhlenbeck process as a large deviation of Brownian sheet. 

1 L6vy representation of functions in C[O, 1]o as elements of IRIo 

We consider the following representation of functions in C [0, 1] 0 which is the space 
of all functions X in C[0,1]  with X ( 0 ) =  0. Let the Haarfunct ions  q~o, ~P,,k, 
k = 1, 2 , . . . ,  2 "-  1, n = 1, 2 . . . .  be defined as 

and 

(po(t) = 1 O_< t _< l  

2(.-1,2 ( k - 1 ) / 2  ~ ~ _ < t < ( k - 1 / 2 ) / 2  ~-1 

~0..k(t) = _ 2(. 1,2 (k - 1/2)/2 ~- 1 < t < k/2"-  

0 else. 

Then {~0o,c0,,,k,k = 1,2 . . . . .  2 "-1, n = 1 , 2 , . . . }  forms a complete, or thonormal  
system in L2[0, 1]. It  is the oldest example of an orthonormal  wavelet basis with 
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"mothe r  wavelet"  (p~, 1 (see, for instance, [4]). We won ' t  represent  X as a superposi-  
t ion of ~Oo, ~O,,k, k =  1,2 . . . . .  2 "-*,  n =  1 , 2 , . . . ,  (wavelet transform),  but  as 
a superposi t ion  of the related Schauder functions eo, e,,k, k = 1 , 2 , . . .  ,2 " - l ,  
n = 1, 2 . . . . .  , defined as follows 

t 
eo(t) = t, e,,k(t) = f~o,,k(s)ds, 0 _< t _< 1, k = 1,2 . . . .  , 2  n 1, n ---~ 1,2 . . . . .  

o 

For  X e C [ O ,  lJo, we set 

h,, k(X) : =  X ((k - 1/2)/2 ~- ~) - �89 ~- ~) + X ((k - 1)/2"-  ~)) 

and 

Yo(X)  = X(1), Y,,,k(X) : =  2("+l)/2"hn,k(X), k = 1 , 2 , . . .  , 2 ' - * ,  n = 1,2 . . . .  (1.1) 
N 2 n - I  

Let XX(t)  = Y o ( X ) ' t  + ~ ~ Y. ,k(X)e. ,k( t ) .  
n : l  k = l  

We then have 

L e m m a  1.1 (i) X u is the linear interpolation of  X on the N-th dyadic partition of  
[0, 1]. This implies 

lim sup I X U ( t ) -  X(t) l  = 0 .  
N--+ ce t ~ [ 0 , 1 ]  

(ii) Let (X> 2~ : =  ~ t  ( X ( k / 2  ~) - X ( ( k  - 1)/2x)) B be the quadratic variation of  
X on the N-th dyadic partition. We then have 

< X > ~  -~ = y 2  + ( y . , 0 2  . 

n = I  k ~ 

(iii) X is absolutely continuous with X '  ~ L B [0, 1], i.e. X is in the Cameron-Martin 
~o ~ 2  n - I  space H, if and o n l y / f  Y~ + ~ . = i  z .k=l  (Y,,.k) z < c~. In this case, we have 

~o 2 n - 1  

L [0,11 Y ~ +  ~ Z Y 2 _ ~  = ( , , ~ )  . 
n = l  k=l 

Sketch of  a proof. (i) follows by induct ion on N; 
(ii) follows by induct ion on N. 

(iii) follows by the representat ion of X'  as a Fourier  series with respect  to the 
comple te  o r t hono rma l  system of H a a r  functions. D 

Probabi l i ty  did not  enter until now. Let now P be Wiener  measure  on C[0,  1]0. 

Theorem 1.2 Yo, Y,,k, k = 1, 2 , . . . ,  2 " -  ~, n = 1, 2,. , . are iid random variables with 
distribution N (0, 1) under P. 

Sketch of a proof. I t  is enough to show that  Yo, Y , ,k ,k  = 1,2 . . . . .  2 "-1,  
n = 1 , 2 , . . .  are pairwise uncorrela ted with distr ibution N(0,  1) under  P. [] 

Remark 1.3 Theo rem 1.2 leads to an a lgor i thm for the s imulat ion of the Brownian 
path.  The  law of  large numbers  and L e m m a  1.1 (ii) imply the following: 
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Corollary 1.4 <X> zN converges P-a.s. and in L2(P) to 1 if N ~ oo. 

Remark 1.5 This construction of Brownian motion goes back to L6vy and 
Ciesielski (see [13] for references), it can be carried out for every complete 
orthonormal system in L 2 [0, 1]. Let {~0k [k > 1} be a complete orthonormal system 
in L 2 [ 0 ,  1]. 

ek(t) := t Cpk(S)ds, O <-- t <-- l, k =  1,2 . . . . .  
0 

Let Yk, k = 1, 2 , . . .  be iid with distribution N(0, 1) and set 

X t : =  ~ Ykek(t) 0 _ < t _ < l .  
k = l  

Then (X~)o_<~_<l is a Brownian motion (see It6 and Nisio [11] for a proof). 

Let Io : = {0, (n, k), k = 1, 2 . . . . .  2"- 1, n = 1, 2 , . . .  }. We interpret Io as a binary 
tree: 

""V V V V  

0 

Fig. 1 

To each function in C[0,1]o corresponds a set of coefficients Yo, 
Y,,k,k = 1,2 . . . .  ,2" 1, n = 1 ,2 , . . .  according to the mapping from C[0, 1]o to 
IR r~ defined in (1.1). The converse, however, is not true: not each element of IR x~ is 
a function in C [0, 1]o, hence not each probability distribution on IR ~~ is a probabil- 
ity distribution on C[0, 1]o. 

Lemma 1.6 Let Q be a probability distribution on IR I~ M,"  = 

and X ~ as in Lemma 1.1. I f  

~ Q [ M , > 2  ~ " ] <  o o f o r a n c ~ <  1/2 
n = l  

max [ Y.,kl 
k = l , 2  . . . .  , 2 n - 1  

(1.2) 

then Q IX"  converges uniformly] = 1, i.e. Q is a probability distribution on 
c[o, i ]o. 
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Proof. We equip Cl-O, 1]o with the s u p r e m u m  n o r m  HXII = sup !X(t)l. It is 
enough to show that  ~<o, 1~ 

Q[]kX"-X"-~[ i  >an-I < oo (1.3) 
n = l  

for a sequence ( a , ) , :  1, z . . . .  _~ IR with ~ a,  < oo. 
r t = l  

The Borel -Cante l l i  l emma  then implies that  (X"),,=~, 2 . . . .  forms Q-a.s. a 
Cauchy  sequence in C[0,  1]o. To  show (1.3), we note  that  

IIX" - X"-~I[ < M . ' 2  -("+1)/2 , (1.4) 

hence 

If  we set 

and apply  (1.2), the claim follows. 

Q[I[X" - x"- l] l  > a,] ~ Q[M, > 2("+1)/2a,] . 

a n = 2  - ' "  (1/2) w i t h f l = ( 1 / 2 ) _ ~ > 0  

[] 

2 Construction of a random sequence of probability distributions which converges 
to the distribution of  the Brownian bridge 

Let P be the dis tr ibut ion of the Brownian  bridge. Then  Yo = 0 P-a.s. and Yn, k, 
k = 1, 2 . . . . .  2 n- 1, n = 1, 2 , . . .  are iid r a n d o m  variables under  P with distr ibution 
N (0, 1). We set 

I : - - - { ( n , k ) l k = l , 2 , . . . , 2  n - l , n = l , 2 , . . . }  
and 

f 2 = C E 0 , 1 ] o , o : = { X ~ C [ 0 , 1 ] l X ( 1 ) = X ( 0 ) = 0 } ,  X,(co):=co(Q. 

We then have f~ = C[0,  1]o, o - IRI. We denote  the set of all probabi l i ty  distribu- 
t ions on f2 by ~ 1  (f2). 

We consider the m a p p i n g  To: f2 ~ f2, defined as 

(ToX)t = x/2(X,/2 - tX1/2) 0 <_ t <_ 1. 

To corresponds  to a shift to the left of the tree, i.e. Yn,k(Toco) = Y,+l,k(co). In the 
same way, we define TI :  ( 2 - .  (2 as 

( T I X ) t : :  % / ~ ( X ( t + l ) / 2  - -  (1 - t ) X l / 2 )  0 ~ t -~ 1. 

T1 corresponds  to a shift to the right of the tree, i.e. Y,,k (Tlco) = Y,+ 1, z "-1 +k (co)- 
P is invar iant  under  To and under  T1. 

We now consider the bigger space f~, defined as 

O = o •  N 

= (co,0) 0~{o ,1}  ~ 

f i := P x 2 ,  
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where ;~ denotes product measure on {0, 1} • with 2[01 = 0] = 2[01 = 1] = 1/2. Let 
the shift i? on ~ be defined as 

T : O ~  

(co,(O~, 02,. �9 .)) ~ (To1 co,(02,03, . . . ) ) .  

/5 is invariant under i?. We can even show: 

Theorem 2.1 /5 is ergodic with respect to T. 

Proof Let Y*  :=  ~ a ( { T  m, m > n}) be the tail-field on O./s is  a product measure 
n 

on f2, hence Kolmogorovs 0-I-law is satisfied: 

P [ A ] = 0 o r P [ A ]  = 1  if A s o  ~ * .  

The a-field S : =  {A IT- 1A = A}, generated by the shift-invariant sets, is contained 

i n ~ * , h e n c e w e h a v e P [ A ] = O o r P [ A ] = l ,  i fAES,  i.e. /sis ergodic under i?. [] 

Let 6~k~ denote Dirac measure on iPkc5 and define the probability distribution 

/~,(c5) by R,((5) := (l/n) ~ = 1 c~Tk-l.~ (where ir ~ denotes the identity). Let R,, o (co) 

denote the marginal distribution of/~,((5) on f2 for fixed 0: 

_1 ~ 3(To)k -1 Rn,0(co ) = nk=l 

where 

(To)kco = To~ o .  �9 �9 o To,CO, k > 1, 

( Zo )~ co = co. 

For each 0~ {0, 1} N, R,,o is a random variable with values in J/Z1 (f2). 

Theorem 2.2 For 2-a.e. 0 and P-a.e. co, R,,0(co) converges weakly to P. 

Proof. Let f :  ~ ~ IR be measurable and bounded. With Birkhoffs ergodic theorem 
we get from Theorem 2.1: 

l n - - 1  

nk ~f~ ~k ,-*~ , f f d P  P - a.s., 

i.e. 

ffdR,,o(CO) ~ f f d P  for 2-a.e. 0 and P-a.e.co . 

Since the set of all bounded, continuous functions on ~ is countably generated, this 
implies 

R,,o -~ P for 2-a.e. 0andP-a . e ,  co. [] 

Remark 2.3 In fact, (R,,o) converges weakly to P for each 0 e {0, 1}N (this was 
shown by Ben Arous and Tamura in an unpublished paper). 

Remark 2.4 Theorem 2.2 says that we can reconstruct Wiener measure with an 
"infinitesimal piece" of a single "typical" path around a "typical" point of the unit 
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interval. This property characterizes fractals: the information about a fractai object 
is contained in a arbitrary small pa~ of the o_bject. Of course, we are dealing with 
random fractals: the invariance of P under T corresponds to a "self-similarity in 

distribution": ( ~ ( X t / 2  - tX1/2))o<__t~ 1 and (x/2(X(~+ 1)/2 - (1 - t)X1/2))o_<t_< 1 
have the same distribution under P as (Xt)o~t<= 1. We get a deterministic fractal, if 
we set, for instance, all the coefficients I1,,,k, k = 1, 2 . . . ,  2 "-  1, n = 1, 2 . . . .  to the 
value 1, see Sect. 5, Example 5.3. 

Remark 2.5 Let Q c J~l(f2) and let (~:= Q x )~. Then Q ~ P implies (~ ~/5,  hence 
R,,o (co)--, P (~-a.s., i.e. for ).-a.e.0, Q-a.e. co. This means Q cannot be reconstructed 
in this way, but we get P from a path which is "typical" for Q. The intuition behind 
this is the following: the drift of Q with respect to P is lost because of the iterated 
rescaling, see also Lemma 1.1(iii). 

3 Generalization to probability distributions on S t 

Let S be a Polish space. We may now replace IR with S and consider g2 = S t. Let 
/~ be a probability distribution on S and P = [Ii~t # be the corresponding product 
measure on S t. 

We define To, T,,Y2, P ,T ,R ,  and R,,o as in Sect. 2. We equip S t with the 
product topology and -~1 (SX), the set of probability distributions on S r, with the 
topology of weak convergence. We then get, in the same way as Theorem 2.2: 

Theorem 3.1 For )~-a.e. 0 and P-a.e. co, R,,0(co) converges to P (in JCi 1 (St)). 

Definition 3.2 We call Q stationary or self-similar, if Q is invariant under To and 
under T1. Let J/d] denote the set of all stationary pr_obability distributions on f2. 
We call Q ~dg] ergodic, if (~ ' =  Q x 2 is ergodic on f2 with respect to i ?. 

Remark 3.3 If Q is ergodic, R,,o(co) converges to Q for Q-a.e. co and 2-a.e. 0. 

4 Large deviations 

In the following we investigate large deviations of the convergence of R,,,0 to P in 
Theorem 3.1. Note that R,,o would not correspond, on the lattice ;~d, to the usual 
empirical field, but rather to the empirical distribution of a sequence of configura- 
tions we get shifting along the path of a (transient) random walk on the lattice (see 
also Remark 4.8). Ben Arous and Tamura got, for each fixed 0, a large deviation 
principle for the distributions of R,,o, where the rate function depends heavily on 
0 (see [3]). We are interested in estimates which do not depend on 0. In particular, 
our rate function will be finite only on probability distributions which are station- 
ary, i.e. invariant under all shifts To. There is, however, no large deviation principle 
holding "uniformly" in 0: we can get the bounds in Theorem 4.1 only for 2-a.e. 0. To 
understand why, look at the following example: 

Let I = IR and A : =  {QIQ[Y2,2 > Yl,l l  = 1}. If we shift only to the left, 
i.e. take 0 = (0,0,0 . . . .  ), we have P[Rn,o~A] = P [ Y z , 2 > Y t , t ]  ~, hence 
(1/n)logP[R, .oeA] = logP[g2 ,  2 > Yl, ll. If we shift only to the right, i.e. take 
0 = ( 1 , 1 , 1  . . . .  ), we get P [ R , , o e A J = P [ Y 1 ,  1< Y2,2< Y3,4< . . . <  Y,,2"-~], 
hence (l/n) log P[R, ,oeA]  --, - oo. 
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Also, there is no "global" rate function concentrated on J ]  (O). This will follow 
from Theorem 4.1. We give an illustrative example: 

Let 1 = IR and P = [Ii~rN(O, 1) as in Sect. 2. Consider Am : {Q]Eo.[Ym , 1] = 
E o E Y m ,  2]  = . . . = E Q [ Y m , 2 m - 1  ] => b }  ( m  = 1,2 . . . .  ,) where b > 0. Since P is 
a product measure, we have, for all 0, 

P[R.,o cAm] = P [ Y .  ~ b] 2m-' , 

where ]?. is the arithmetic mean of Ya, 1, Y2,1, Y3,1 , . . . ,  Y.,1. So we get 

lim l-logP[R,,o cAm] = - 2 m- 12(b) 
n n 

for all 0, where 2(x) = x2/2 is the rate function for the large deviations of the 
arithmetic mean of iid random variables with distribution N (0, 1). On the other 
hand, A,, c~ Jg]  (O) = A1 c~ JZ]  (O) for each m. 

We establish a principle of large deviations for the finite-dimensional marginal 
distributions of R,,0 on S J (J ___ I, J finite) under P. Recall P is, in this section, 
a product measure on S I. Let us begin with some notation: we denote the map- 
ping of the index set I on itself, which corresponds to To, again by To, 
i.e. T o ( n , k ) = ( n + l , k )  and, in the same way, T l ( n , k ) = ( n + l , 2 " - ~ + k )  
(k = 1, 2 , . . . ,  2"- a, n = 1, 2 , . .  ). Let J _ I and let Too denote the identity. Let 

k - 1  Fk(O, J) := Ue=o To, o . .  �9 o TooJ be the set of coordinates, generated by J after 
k - 1 shifts according to 0, (k > 1), Fo (J) :=  J. Let Yk (0, J ) ' =  a({ Y~li c Fk (0, J)}) 
be the corresponding a-field. We write (To) t instead of To, O ' . "  o Too, hence 

F~(0, J) = U ~ e=0 (To) t J, (k > 1). Let Jr ~) denote the set of all probability 
distributions on S I as before. We now consider subsets As of ~/g~ (SI), which are 
characterized in the following way: let J _~ I, J finite, Bj _~ J ~  (S J) measurable and 

A j : =  {QIQl~o(J) ~ Bj}  (4.1) 

i.e. if Q is in Aj or not depends only on the finite-dimensional marginal of Q on 
~ 0  (J). We then have: Aj is open in J/ll ( f2)~  Bj is open in rig1 (S J). 
Let the relative entropy H(QIP)Is~ of Q with respect to P on the a-field ~- be 

d e 0 n e d  as  .on. a o d  = + c a n  

following large deviation principle: 

Theorem 4.1 Let J ~ I, J finite. Then there is a funct ion/ j :  ~ 1  (~)-'-> [0, 003, such 
that the following holds for all As of the form in (4.1): 

Aj open ~ ~ 1 log P ERn,o 
n n 

Aj closed ~ l~m 1 log P JR,, 0 
n n 

c Aj]  => - inf Ij(Q) 
Q e A s  

c Aj]  =< - inf Ij(Q) 
Q~Aj 

for 2-a.e. 0. Further, ls : J l l  (O) ~ [0, oo] is lower semicontinuous, 1j(Q) = + oo if 
Qr and we have for QcJ/{]:  

Is(Q) = lim 1- f H(QIP)I ~ (o,j,2(dO) . 
u n n 
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Proof We fix J and write Y 0 ,  ~0(0),  A instead of ~ o  (0, d), ~n(O, d), As. The basic 
idea of the p roof  is to represent  Rn,ols% as the empirical  distr ibution of a M a r k o v  
chain of order  m. We will give an explicit p roof  of the lower bound  and refer to 
a general theorem in the p roof  of the upper  bound.  

First  we investigate the behav iour  of the R a d o n - N i k o d y m  derivatives of Q with 
respect to P on the a-fields Yn(0): in fact, we need to know only the growths  of the 
relative entropies  H (QIP)]~,~0) of Q with respect to P on the a-fields ~ (0). 

Theorem 4.2 For each Q 6 ~/~], ( i /n)  H (QJP)l~nr converees to Is(Q) for s 0, 
where 

Is(Q) = lira 1-fH(QIP)l~"(~ e [0, oo ] 

Further, Is(') is lower semicontinuous and affine. 

Remark 4.3 If  Q is ergodic, we have for 2-a.e. O: (l/n) log dQ converges Q-a.s. to 
~ ( 0 )  

Is(Q). 

Proof of  Theorem 4.2 Let (~ = Q • )~,/5 = p • 2. We make  use of a theorem of 
A. B a r t o n .  

Theorem 4.4 Let (Xn),= 1,2,. �9 �9 be a stationary process with values in a Standard 
Borel space E. Let Q be the distribution of (Xn), and P~JAI1 (E N) be a "reference 
measure": P is stationary and Markov of order m (i.e. P [ A I X n - 1 , . . .  ,X1]  = 
P [ A I X , - I , . . . ,  Xn-m] for all a(Xn,Xn+l . . . .  ) measurable sets A and n > m). 
Define the a-fields A n : =  a ( X l , X 2  . . . .  ,Xn). Then the specific relative entropy 
h (Q IP) of Q with respect to P exists: 

h(QIP) = lim 1H(Q[P)Id,~ [0, oo ] . 
n n 

See Bar ron  [1, Theo rem 1] for the proof.  
No te  that  H(QIP)[~,, is increasing, so h(QJP) = oo if there is an n such that  

H ( Q I P ) I ~  = oo. 
We apply  T h e o r e m  4.4 with Q, P, E :=  {(Y, . . . .  Yt)t Y~ ~S} x {0, 1}, where 

(1, 2 . . . . .  [ )  is an enumera t ion  of d. 
filets, r0 s, r0 z s . . . .  )• can be identified with a s ta t ionary  measure,  M a r k o v  of 

order  m on E N, where X ,  consists of the [ - tuple  of r a n d o m  variables Yi, i ~ T o- 1 d 
and 0n. 

m :=  max  {nl3k with ( n , k ) ~ J }  - 1. (4.2) 

(Since the sets Tg J,  n = 1,2 . . . .  are not  disjoint in general, fil~(s,ros, r~os . . . .  )• is 
in general not  a p roduc t  measure  on EN). In  the same way, we can identify 
a s ta t ionary  and  ergodic (~ with a s ta t ionary  and  ergodic probabi l i ty  distr ibution 
on E N, respectively. Hence  we get f rom Theorem 4.4 

3 Is(Q) = lira -1 H (QIP)I ~<x . . . . . .  x~). 
n Y/ 
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If we set I /Q)  := Is((2), we get 

Ij(Q) = lira ! f H  (QIP)I:,(0)2(dO). (4.3) 

It remains to show that I j  is lower semicontinuous and anne;  for this, we refer 
to [9]. [] 

Remark 4.5 Q c ~ and Ij(Q) = 0 imply Q = P. 

The next step in the proof of the lower bound is to show that the set of ergodic 
probability distributions is dense in J//]. 

Lemma 4.6 Let Q ~ Jds> Then there is a sequence of ergodic probability distributions 

(Q,),=1,2 . . . .  such that Q~ -~ Q, and Ij(Q,)-~ Ij(Q)for n--* oQ . 

The proof is similar to the proof of Lemma 4.8 in F611mer [7]. 

Note that Theorem 4.2, Lemma 4.6 and Remark 3.3 can be used to prove the 
lower bound with a standard argument (see [5, p. 76]). 

For  each 0, R,, 0L~o is the n-th empirical distribution of a Markov chain of order 
m. This chain is, in the terminology of Deuschel et al. [6] R-mixing with M = 1 if 
R > m (see (4.2)), since o-( { Toko,, 0 _< k < r }) and o({ Toko~, k > r + m }) are indepen- 
dent. A general theorem about uniform large deviations (see [6, p. 91]) implies, 
together with the contraction principle, that for each 0, the distributions 
of e~,o]~o, n >  1, satisfy a large deviation principle with rate function 
h0,j;./~/'l(~"o)---~ [0, oO ] and ho, j(v) = inf(Io, s(Q)lQ EJ//~(0),QIo% = v} with 
Io, j (Q)= lira, (1/n)H(Q[ P)[~,(0). (Here, ~/~] (0) denotes the set of probability 
distributions which are invariant under To). It remains to identify this rate 
function with the rate function in Theorem 4.1. Theorem 4.2 implies that for 
2-a.e. 0, inf{Io, j(Q)JQeM//~(O), Q[~o = v} = inf{Io,s (Q)[Q~dg], Q[o% = v} and 
lim, (1/n)H(QlP)lg,(o) = Ij(Q), SO lo , j (Q.  ) = I j (Q)  for 2-a.e. 0. [] 

Note that for each L>O,  {QI~olIs(Q) <= L} is a compact subset of 
~'tl (S J, o~o), but {QIIj(Q) =< L} is in general not compact in Jg l  (Q). 

Of course, the arguments in [6] are much more general than our situation 
requires. For  a direct proof of Theorem 4.1, we refer to [9]. 

Theorem 4.1 says that we have to minimize the rate functional I j  over the set of 
probability distributions Jr (St). It is therefore natural to ask about the proper- 
ties of probability distributions in ~ / ]  (SI). We omitted Yo, but we can extend 
any stationary measure on S I to a stationary measure on S x~ Let 
P = 1~io/~  e . / ~  (S I~ denote a product measure and consider J/{~ = ~ (St~ 
Probability distributions in d//] are typically singular with respect to P. More 
precisely, Q~J~], Q ~ P ~ Q  = P. In particular, Q E ~ ]  has infinite relative 
entropy with respect to P, if Q ~ P. We can show, though, that a specific relative 
entropy with respect to P exists for each Q ~ J ~ .  Consider the (r-fields 
~2 ~ = ~({ Yo, Ym, klm <= n}). 
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Lemma 4.7 Every Q edg** has a specific relative entropy h(QIP) with respect to P: 

h(Q[P) = lira 1 H(QIP)lg2, 
. 2 

1 
= s u p ~ H ( Q I P ) l ~ 2 , e [ O ,  ~ ]  . 

n .L 

In particular: QeM/L], h(QIP) = O ~ Q  = P .  
Further, h(" [P) is affine on dg] ((2). 

Sketch of a proof Let V be the set containing all subsets of Io. Then the function 
f :~U+IR,  f(V)=H(QIP)L+({y+li~v}) is a superadditive set function, i.e. 
f ( V  w W) > f ( V )  + f ( W )  for disjoint sets V, W e U. Here we made use of the 
product structure of P. The rest of the proof is left to the reader (see also Georgii, 
[10, Chap. 15, Sect. 2], for a general argument). [] 

Remark 4.8 Look at 

1 
R,(CO) := 7a ~ ~ 6(ro) ++" 

~" 0 E { 0 ,  1}" k = l  

R,(co) is the analogon to the usual empirical field on the tree. Then the same 
arguments as in the proof of Theorem 2.2 show that R,(co) + P for P-a.e. co. The 
distributions ofR,, n > 1, satisfy a large deviation principle with good rate function 
I where I(Q) = h(QIP ) for Q + ~ ] ,  I(Q) = + ~ else. We don't give a proof here, 
since it consists merely in carryitlg over arguments in [6] or [8] from the lattice to 
the tree structure. (The arguments in [6] or [8] can here be simplified of course, 
since we treat the particularly nice case of a product measure P.) 

5 Examples 

5.1 Stationary probability distributions on IR ~o 

Let P = lq~  ~o N(0, 1) ~ J l ]  (1RIo) denote Wiener measure. Can we identify a self- 
similar probability distribution on 1R*o with a probability distribution on C [0, 130? 
Notice this is not clear a priori. In Lemma 5.1 below we give a condition on 
Q which guarantees that the support of Q is contained in C [0, 1]o. Our conjecture 
is, however, that this holds true for every Q e J//] (IRIo). Because we deal with 
stationary probability distributions, condition (5.1) below involves only the one- 
dimensional marginal distribution of Q. 

Lemma 5.1 Let Q ~ ]  = ~/~] (lRIo) and 

~ 2" 1{2 [IYol > 2  ~"]< oo for a n ~ <  1/2. (5.1) 
n = l  

Then Q is a probability distribution on C[0, 1]o. 

Proof. We can replace (1.2) in Lernma 1.6 with (5.1): 

QEM" ~ 2+"]----QI max I Y+,,d ~ 2+"I + Q I  max I Y.,kI ~ 2++~' 1 
L k = l , 2 ,  . . . , 2  n 2 ~ L k = 2 n - 2 + l , - - - ,  2 n - - i  

= 2Q[M,-1 ~ 2 ~"3 , 
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since Q is stationary. By iteration, we conclude Q[M,  > 2 ~'] < 2"-1Q[I  Yol > 2~"] �9 

Let  v be the distribution of Yo under  Q. Sufficient for (5.1) to hold is, for instance, 

flxl2+~dv < oo for an e > 0 or sup]A~(t)J < C, where # = N ( 0 , 1 ) .  
ten 

If the support  of Q is contained in C[0, 1]o, we get the coordinate  process 
(X,)o =<t :< 1 via 

2n-1 

Xt(co)= Yo(cO)'t + ~ ~ Y,,k(CO)e,,k(t) ( 0 < t < l )  (5.2) 
. = 1  k = l  

as in Sect. 1. In this case, we can write the o--field o~2. in Lemma 4.7 as 
~ = a({Xk, z-- lk  = 0, 1 , . . .  , 2"}), and we have an interpretat ion of the specific 
relative en t ropy h (Q I P) as a limit of entropies on the dyadic parti t ions of the unit 
interval. 

The  simplest case of a s tat ionary probabil i ty  distribution is, of course, a product  
measure Q = ~ieXo v. What  can we then say about  (Xt)o=<t_<a? 

L e m m a  5.2 Let Q = I-lie1 ~ v and assume Q satisfies (5.1) . 

(i) Let fx2dv< oo. Then EQ[XtXs] =fx2dv'(t A S). Further, (Xt)o<=,<_l has 
quadratic variation (Xt)o<_t<_ 1 (along the sequence of dyadic partitions of[O, 1]) and 

( X ) t  = ( f x2dv ) ' t  (0 <_ t <- 1), Q-a.s. 

(ii) Let f x4dv < oo . Then (Xt)o <_t<_ 1 is locally Hblder-continuous with exponent 7, 
for each 7 < 1/2. 

For  the proof, we refer to [9]. 

In general, (Xt)o ~t <= 1 is not  a Markov  process under  Q. We can state the following 
"weakened Markov  property":  the condit ional  distribution of {Xt[ t ~ ] ( k -  1)/2", 
k/2"[}, given { X t l t e [ O , ( k -  1)/2"1 u [k /2" , l ]} ,  depends only o n  X(k_l)/2,~ and 
X k / z . , k =  1,2 . . . .  , 2 " , n =  1 , 2 , . . .  

Example 5.3 Let v = N(a, 1) and Q = 1 l id  v. Of course, condit ion (5.1) in Lemma  
5.1 is satisfied. Q is the distribution of (Bt + a'g(t))o<=,<=l, where (B,)o_<,_<l is 

g(t) 

Fig. 2 
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oo 2 n - 1 

a Brownian bridge and g the self-similar function g (t) = ~ 
n = l  k = l  

g is the profile of the fractal "mount Takagi" (see [14]). 

e,,k(t)(O <- t <_ 1). 

5.2 Brownian sheet and other examples with S = C[0, 1] 

Except Brownian motion (multiplied with constants), real-valued diffusions resp. 
their bridges are not self-similar in our sense, i.e. invariant under To and under Tz. 
But if we allow the coefficients I70, Y,, k, k = 1,2 . . . . .  2"-~, n = 1, 2 , . . .  to have 
values in a function space, we can describe well-known, "smooth" objects like the 
C[0, 1]-valued Ornstein-Uhlenbeck process. Take S = C[0, 1] and poo = i~i~io p 
e d { ]  (S*o), where P denotes Wiener measure on C[0, 1]. Set 

aO 2 n -1  

X ( t , T ) =  Yo(V) . t  + ~, ~ Y , , k ( z )e , , k ( t )  (0=<t , z=<l ) .  (5.3) 
n = l  k = l  

(X  (t, "))o_<t_< 1 is then a C[0, 1J-valued Brownian motion under P~ : For  tl ,  t2, t3, t4 
with 0 __< t I < t 2 =< t 3 ~ t 4 ~ 1 the increments X ( t > . )  - X ( t x , . ) ,  X ( t 4 . , .  ) - 

X (t3,') are independent and 1/(x~22 - tl) (X (t2,') - X ( t l , ' ) )  has distribution P. 
In the same way, (X(. ,  Z))o_<~_<l is a C[0, 1J-valued Brownian motion under P% 
We call p~o infinite-dimensional Wiener measure or the distribution of "Brownian 
sheet". Let us replace P~ with another Gaussian product measure 

Q ~ = IF[ ~ o  Q ~ ~r ( s~~ 

Lemma5.4 Let  Q. be a Gaussian probability distribution on C[0,1]  with 
EQ [Yo(z)] = 0 (0 _< z --< 1) and set 

n 1 
oO 2 

x(t,~)= ro(~).t+ Y. Y~ Y.,k(~)e.,~(t) (0__<t,~__<l) 
n = l  k = l  

where Yo, Y,, k, k = 1, 2 . . . . .  2" i n = 1,2 . . . .  are independent with distribution Q. 
We then have 
(i) For each r e  [0,1], (X(t ,r))o<t< i is a Brownian motion with variance 
Ee[ro(~)~]. 

(ii) The C [0, 1J-valued process (X  (t, "))o <_, <_ 1 has independent increments, and 

1/(~22 - t l ) (X( t2 , ' )  - X(t l , . ) )  has distribution Q (0 <= tl < t2 <= 1). 

The proof  is easy: we refer to [9]. 

Example  5.5 Let Q e ~ l  (C[0,1])  be the distribution of an Ornstein-Uhlenbeck 
process starting in 0, i.e. the distribution of (Z~)o_<t_<i, where (Zt) solves the 
stochastic differential equation 

dZ,  = d W~ - Ztdt 

and (Wu)0_<,_<l is a Brownian motion under Q. Then the C[0, 1J-valued process 
(X  (', Z))o,~<_l is a C[0,1]-valued Ornstein-Uhlenbeck process under Q% i.e. 
X~ := x ( . ,  T) solves the ("infinite-dimensional") stochastic differential equation 

dX~ = dW~ - X ,  dz 
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where We : =  W(-,~) is a C[0,  1]-valued Brownian mot ion  under  Q~. 
We can describe Q~ with Theorem 4.1 as a "large deviation" of P~,  i.e. as the 
solution of  a variat ional  problem where we have to minimize the rate function in 
Theorem 4.1 over a certain subset of  rig1 (C[0, 11I~ More  precisely, set 

A "= { / ~  J ~  (C[0, 11Io)[/~[~o f ib  } 

where 

U : =  { R l f  X ~ d R  < 1 - e ', 0 < t < 1}, 

B ~ J/ll  (C[0, 1]). Here A is of  the form in (4.1), i .e . /~EA iff the one-dimensional  
marginal  distr ibution o f / r  is in B. The rate function I j( .  ) is here the specific relative 
en t ropy h(-IP~~ Since Q minimizes the relative ent ropy H ( '  ]P) over B (this is 
shown in [9]), Q~ minimizes h ( . I P  ~176 over A. In this way, we may  see the 
C[0,  1J-valued Orns te in -Uhlenbeck  process as a large deviation of Brownian 
sheet. 
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