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Summary. Using self-similarity of Brownian motion and its representation as
a product measure on a binary tree, we construct a random sequence of probability
measures which converges to the distribution of the Brownian bridge. We establish
a large deviation principle for random fields on a binary tree. This leads to a class of
probability measures with a certain self-similarity property. The same construction
can be carried out for C[0, 1]-valued processes and we can describe, for instance,
a C[0, 1]-valued Ornstein—Uhlenbeck process as a large deviation of Brownian
sheet.
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Introduction

Self-similarity of Brownian motion induces a certain ergodic behaviour of the
Brownian bridge. We investigate large deviations of this ergodic behaviour. Let
C[0,1]o,0 be the space of all functions X in C[0,1] with X (0) = X{1) = 0 and
P the distribution of the Brownian bridge. We define mappings 7o, 7y of C[0,1]4
on itself which describe rescalings of the left and the right half of the function
X:(To X)o = /2(Xy, — tX 1)), (T1 X) = V2X s 12 — (1 — )X 15), respectively.
Due to the self-similarity of Brownian motion, P is invariant and, in fact, even
ergodic under T, and 7.

For each function weC[0,1]o,o and each 6e{0,1}™, we now construct
a sequence of probability distributions R, 4(w) on C[0,1], ¢:R, ¢(w)
= (1/n) ZZ;é 5Tek e Tg where §,, denotes Dirac measure on w. This means that in
each step we choose, according to 8, the left or the right half of the function w and
rescale it. R, ¢(w) 18 the empirical distribution corresponding to this sequence of
functions. Let 84,0, . . . be independent coin tossings under 4. We can show that
R, o(w) converges to P for P-a.e. w and Ai-a.e. all 6. This ergodic behaviour of the
Brownian bridge P says that we can reconstruct P with an “infinitesimal” piece of
a single “typical” trajectory around a “typical” point of the unit interval [0, 1], if we
identify 4 with Lebesgue measure.
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We get another description of 7, and T'; using the Lévy—Ciesielski construction
of the Brownian bridge: each function in C[0, 1], , can be written as a superposi-
tion of the Schauder functions e, , k=1,2,...,2" '\ n=1,2,. . .:

an—1

X@)=Y,- Y Y. (X)e,.(r),0 <t < 1 This defines a mapping of C[0, 1], o
into RY, where I'= {(n,k)|k=1,2,...,2" " ",n=1,2,...} has the structure of
a binary tree. T, and T, interpreted as mappings of R' into R’, correspond to
shifts of the tree to the left and to the right, respectively. P corresponds to the
product measure on R! with marginal distribution N(0,1), ie. the random
variables Y, ., k=1,2,...2" !, n=1,2,... are independent with distribution
N(0,1) under P. Similar representations of stochastic processes as tree-indexed
random variables have been investigated recently in the context of wavelet trans-
forms, see [2].

We now look at large deviations of the convergence of R, 5 to P. Note that
R, ¢ would not correspond, on the lattice Z¢, to the usual empirical field, but rather
to the empirical distribution of a sequence of configurations we get shifting along
the path of a (transient) random walk on the lattice. The same model has been
considered independently by Ben Arous and Tamura. They get, for each fixed 6,
a large deviation principle for the distributions of R, ¢, where the rate function
depends on 6. We are interested in “uniform” bounds; in particular, we want to
look at probability measures on the tree which are invariant under all shifts, not
only for a fixed 6. We prove that the finite-dimensional marginals of R, , satisfy
a large deviation principle and characterize the rate function as a “mean entropy”
(Theorem 4.1). Minimizing this rate function leads to the class of self-similar
probability measures, defined by invariance under T, and 7. Such a self-similar
probability distribution on R’ can be identified, under certain conditions, with
a probability distribution on C[0,1],,,. We investigate some properties of the
corresponding “self-similar” stochastic processes.

More generally, we may replace IR with a Polish space S and P with a product
measure on S”. If we set S = C[0, 1] (see Sect. 5), the product measure on S* with
Wiener measure as one-dimensional marginal can be identified with the distribu-
tion of Brownian sheet. We can describe then, for instance, a C[0, 1]-valued
Ornstein—Uhlenbeck process as a large deviation of Brownian sheet.

1 Lévy representation of functions in C[0, 1], as elements of R'0

We consider the following representation of functions in C[0, 1], which is the space
of all functions X in C[0,1] with X(0) = 0. Let the Haar functions @q, ®n, i,
k=12...,2""1 n=1,2,... be defined as

pot) =1 0=t=1

and
202 (2t << (k- 1/2)/27 "
Puilt) =( — 20702 (e —1/2)/2 " < < kj2r!
0 else.
Then {@o, @ur,k=1,2,...,2" 1, n=1,2,...} forms a complete, orthonormal

system in L2[0,1]. It is the oldest example of an orthonormal wavelet basis with
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“mother wavelet” ¢, ; (see, for instance, [4]). We won’t represent X as a superposi-
tion of o, @uu k=1,2,.. L2 m=1,2,..., (wavelet transform), but as
a superposition of the related Schauder functions eo, €, ., k=1,2,...,2"74,
n=1,2,...., defined as follows

t
eO(t):tﬁ en,k(t):f(/)n,k(s)dss O§t§17 k:172""’27,71371:1927“--
0

For X eC[0,1],, we set
o (X)) i= X ((k = 1/2)/2°7 ) = 3(X (k/27 1 + X ((k — 1)/2" 7))

and

Yo(X)= X (1), Y, i (X):= 2("“”2-]1,,,,‘(X), k=12 ..,2" Y n=12,... (L1
N 2n—1

Let XN(1) = Yo(X) t+ Y Y Y, u(X)en(t) .
n=1 k=1

We then have

Lemma 1.1 (1) X is the linear interpolation of X on the N-th dyadic partition of
(0,1]. This implies

lim sup |XV(t) — X(1)] =

N=o 1e[0,1]
(i) Let (X33 := Y 20 (X (k/2%) — X ((k — 1)/2"))? be the quadratic variation of
X on the N-th dyadic partition. We then have

N 1 y 2"t
Xt = W(IV% + 3 ) (Y,,,k)z).
“~ n=1 k=1
(i) X is absolutely continuous with X’eL2 [0,1], 1.e. X is in the Cameron—Martin
space H, if and only if Y3 + Z Z (Y,, «)? < co. In this case, we have

w 21

IX15=1X1F0n=Y5+ Y Y (Y7
n=1 k=1
Sketch of a proof. (i) follows by induction on N;
(ii) follows by induction on N.
(iii) follows by the representation of X’ as a Fourier series with respect to the
complete orthonormal system of Haar functions. O

Probability did not enter until now. Let now P be Wiener measure on C[0,1],.

Theorem 1.2 ¥y, ¥, . k= 1,2,...,2""  n=1,2,.. . are iid random variables with
distribution N{0,1) under P.

Sketch of a proof. It is enough to show that Yo, Y, ,,k=1,2,..., 2%}
n=1,2,... are pairwise uncorrelated with distribution N (0,1) under P. [J

Remark 1.3 Theorem 1.2 leads to an algorithm for the simulation of the Brownian
path. The law of large numbers and Lemma 1.1(ii) imply the following:
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Corollary 1.4 (X )%N converges P-a.s. and in L*(P)to 1 if N— .

Remark 1.5 This construction of Brownian motion goes back to Lévy and
Ciesielski (see [13] for references), it can be carried out for every complete
orthonormal system in L*[0, 1]. Let {¢,|k = 1} be a complete orthonormal system
in L*[0,1].

ek(t):zft os)ds, 0t k=12,....
[4]
Let Yy, k= 1,2,. .. be iid with distribution N (0, 1) and set
X;:= i Yier(t) 0211,
k=1
Then (X,)o<:<; is a Brownian motion (see Ité6 and Nisio [11] for a proof).

Let Io:= {0,(n k), k= 1,2,...,2" ", n=1,2,. ..} . Weinterpret I, as a binary
tree:

4,1)

3,0

]

Fig. 1

To each function in C[0,1], corresponds a set of coefficients Yo,
Yowk=1,2...,2""1 n=12,... according to the mapping from C[0,1], to
R’ defined in (1.1). The converse, however, is not true: not each element of R is
a function in C[0, 1], hence not each probability distribution on R’ is a probabil-
ity distribution on C[0, 1]1,.

Lemma 1.6 Let Q be a probability distribution on R™, M,,: = max ‘11 Yol

k=1,2,...,2
and X~ as in Lemma 1.1. If

Y Q[M,>2""]1< oo for an a« < 1/2 1.2)
n=1
then Q[X™ converges uniformly]=1, ie. Q is a probability distribution on
C[0,1],-
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Proof. We equip C[0,1], with the supremum norm (X | = sup |X (). It is
enough to show that te[0, 1]

Y QLIX"— X" >a,] < (13

for a sequence (a,),-1,2, . .. < R with Z a, < .
n=1
The Borel-Cantelli lemma then implies that (X™),,-; »
Cauchy sequence in C[0,1],. To show (1.3), we note that

| X7 — X" S M- 27002 (14)

forms Q-as. a

hence
OlIIX"— X" > a,] £ Q[M, >20"V%, 7.

If we set
a,=2" "0 with B = (1/2) —« >0

and apply (1.2), the claim follows. [

2 Construction of a random sequence of probability distributions which converges
to the distribution of the Brownian bridge

Let P be the distribution of the Brownian bridge. Then Y, = 0 P-as. and Y, ,,
k=1,2,...,2" 1, n=1,2,...are iid random variables under P with distribution
N(0,1). We set

I'={(mk)lk=12,...,2, n=12,...}
and

Q= C[0,1]0,0:={XeC[0,1]|X(1) = X(0) =0}, X.(0):=o().

We then have @ = C[0,1], o, = R’. We denote the set of all probability distribu-
tions on Q by .#, ().
We consider the mapping Ty: Q — , defined as

(ToX)=/2(X,, —tX,,,) 0<tg1.

T, corresponds to a shift to the left of the tree, ie. Y, ,(Tow) = Y,+1 (). In the
same way, we define 7,: Q — Q as

(T3 X) = /2K s 2 = (1 = )X,5) 0S1<1,

Ty corresponds to a shift to the right of the tree, ie. Y, , (Ty@) = Y 11, n—t4,(@).
P is invariant under T, and under T;. _
We now consider the bigger space (2, defined as

Q=0x{0,1}¥
& =(,0) 8e{0,1)N
P:=Px],
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where 4 denotes product measure on {0, 1}™ with A[6;, = 0] = A[6; = 1] = 1/2. Let
the shift 7' on Q be defined as
T:Q->Q
(,(01,8,,...))— (T61 ,(02,03,...)).
P is invariant under 7. We can even show:

Theorem 2.1 P is ergodic with respect to T.

Proof. Let #* := (o ({T™ m > n}) be the tail-field on Q. P is a product measure
on Q, hence Kolm(;gorovs 0-1-law is satisfied:

P[A]=0o0r P[A] =1 if AeF*.
The o-field S:= {A|T - 1% = A}, ggne_rated by tlle shift-invariant sets, is conEained
in #* hence we have P[A]=0o0r P[A] =1, ifAeS,ie. Pisergodicunder 7. [J

Let 57,(&_) denote Dirac measure on T*® and define the probability distribution
R,(®) by R,(®) := (1/n) Yo L 57"‘ 14 (where T° denotes the identity). Let R, 4(w)
denote the marginal distribution of R,(®) on Q for fixed 6:

n

1
Ruol@) =7 3 80

where

(T =T, 0 -0 Thw, k=1,

(Tp)’w = w.
For each 0€{0,1}™, R, 4 is a random variable with values in . (Q).
Theorem 2.2 For l-ae. 0 and P-ae. w, R, o(w) converges weakly to P.

Proof. Let f: Q2 — R be measurable and bounded. With Birkhoffs ergodic theorem
we get from Theorem 2.1:

1n~1 _ _ -
=Y foT'——[fdP P-as.,
k=0 Ande o)

ie.
[fdR, o(w) - [fdP for J-ae.fand P-ae.w.
Since the set of all bounded, continuous functions on Q is countably generated, this
implies
R,, > P for Zae fand P-ac.w. O
Remark 2.3 In fact, (R, ) converges weakly to P for each 0e{0,1}" (this was
shown by Ben Arous and Tamura in an unpublished paper).

Remark 2.4 Theorem 2.2 says that we can reconstruct Wiener measure with an
“infinitesimal piece” of a single “typical” path around a “typical” point of the unit



Self-similarity of Brownian motion 13

interval. This property characterizes fractals: the information about a fractal object
is contained in a arbitrary small part of the object. Of course, we are dealing with
random fractals: the invariance of P under T corresponds to a “self-similarity in
distribution™: (ﬁ(Xz/z — tX12))osiss and (\/E(X(z+ n2— (1= 0X12)ozest
have the same distribution under P as (X,)o<,<;- We get a deterministic fractal, if
we set, for instance, all the coefficients Y, ,, k= 1,2...,2""}, n=1,2,. .. to the
value 1, see Sect. 5, Example 5.3.

Remark 2.5 Let Q € #,(Q) and let @ := Q x 4. Then Q < P implies @ < P, hence
R, ¢(w)— P Q-as,ie. for 1-a.c.0, Q-a.e. w. This means Q cannot be reconstructed
in this way, but we get P from a path which is “typical” for Q. The intuition behind
this is the following: the drift of @ with respect to P is lost because of the iterated
rescaling, see also Lemma 1.1(jii).

3 Generalization to probability distributions on S’

Let S be a Polish space. We may now replace IR with S and consider 2 = §7. Let
i be a probability distribution on S and P = [];.; 1 be the corresponding product
measure on S7. L

We define Ty, Ty,Q,P,T,R, and R, , as in Sect. 2. We equip $' with the
product topology and .4 (S¥), the set of probability distributions on S’, with the
topology of weak convergence. We then get, in the same way as Theorem 2.2:

Theorem 3.1 For /-ae. 0 and P-a.e. o, R, 4(w) converges to P (in .4 (S")).

Definition 3.2 We call Q stationary or self-similar, if Q is invariant under 7, and
under 7. Let .4 denote the set of all stationary probability distributions on Q.
We call Qe #5 ergodic, if Q:= Q x A is ergodic on Q with respect to 7.

Remark 3.3 If Q is ergodic, R, 4(w) converges to Q for Q-a.e. w and 1-a.e. 0.

4 Large deviations

In the following we investigate large deviations of the convergence of R, 4 to P in
Theorem 3.1. Note that R, ; would not correspond, on the lattice Z¢, to the usual
empirical field, but rather to the empirical distribution of a sequence of configura-
tions we get shifting along the path of a (transient) random walk on the lattice (see
also Remark 4.8). Ben Arous and Tamura got, for each fixed 6, a large deviation
principle for the distributions of R, 4, where the rate function depends heavily on
8 (see [3]). We are interested in estimates which do not depend on 6. In particular,
our rate function will be finite only on probability distributions which are station-
ary, i.e. invariant under all shifts 7,. There is, however, no large deviation principle
holding “uniformly” in 8: we can get the bounds in Theorem 4.1 only for A-a.e. 8. To
understand why, look at the following example:

Let I = R and A:= {Q|Q[ Y2, > Y; ] = 1}. If we shift only to the left,
te. take 6 = (0,0,0,..), we have P[R,,€A4] = P[Y,,>Y,,]", hence
(1/m)log P[R, € A] =log P[Y,, > Y; {1 If we shift only to the right, ie. take
0=(1,1,1,..), we get P[R,4ycA]=P[Y, < Yy2<Ys4<...<VY, 1],
hence (1/n) log P[R, €Al > — .
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Also, there is no “global” rate function concentrated on .45 (Q2). This will follow
from Theorem 4.1. We give an illustrative example:

Let]=Rand P = [[,s N(0,1) as in Sect. 2. Consider A, : {Q|Eg[Y,, 1] =
EolYmol= ... =Eg[Y,om-1]2b} (m=12,...,) where b >0. Since P is
a product measure, we have, for all 6,

P[Rno€4n] = P[¥, 2 b7 |

where Y, is the arithmetic mean of Y, 4, Y, (, Y3.1,..., ¥, 1. So we get
1
lim-log P[R, 4 € Apn] = — 2" 1A(D)
n K

for all 9, where A(x) = x?/2 is the rate function for the large deviations of the
arithmetic mean of iid random variables with distribution N (0, 1). On the other
hand, 4,, " .45 (Q) = A; N M5 (Q) for each m.

We establish a principle of large deviations for the finite-dimensional marginal
distributions of R, 4 on 8’ (J = 1, J finite) under P. Recall P is, in this section,
a product measure on S’. Let us begin with some notation: we denote the map-
ping of the index set I on itself, which corresponds to 7,, again by T,
ie. Ton,k)=(m+ 1,k) and, in the same way, T ;(mk)=@n+ 1,2""1+k)
(k=12...,2"" 1, n=12..) Let J= I and let T, denote the identity. Let
F, (9, J U o Ty, © - -0 Ty J be the set of coordinates, generated by J after
k—1 shlfts according to0,(k= 1), Fo(J):=J.Let #,(0,J):= a({ Yi]i € (6, J)})
be the corresponding o-field. We write (7p)¢ instead of T,,O- -0 Ty , hence
F(0,0) = JE=5(TyY J, (k= 1). Let .#(S") denote the set of all probability
distributions on S’ as before. We now consider subsets 4, of .#, ('), which are
characterized in the following way: let J < I, J finite, By S .# (S7) measurable and

Aj:= {Q|Q[90(J) € BJ} 4.1)

ie. if Q is in A; or not depends only on the finite-dimensional marginal of Q on
Fo(J). We then have: 4; is open in .#(Q)< B, is open in .4 (S').
Let the relative entropy H(Q|P)|z of Q with respect to P on the o-field # be

d
defined as EQ[logﬁ(f], ifQ < Pon#,and = + o else. Now we can state the
following large deviation principle:

Theorem 4.1 Let J < I, J finite. Then there is a function I,: .#(Q) — [0, o], such
that the following holds for all A; of the form in (4.1):

—1 .
Ay open :hm;logP[Rn,o €A ]2 — me 1;(Q)
n €Ay

-—1 }
Ay closed :lrmzlogP[R,,,g € Ay]1 £ — inf I;(Q)
n Qed,;

for A-ae. 0. Further, I, # ((Q)— [0, co] is lower semicontinuous, I;(Q) = + oo if
Q¢ A and we have for Qe M 7:

(@) = tim [ H(QIP), 0. 4(d0)
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Proof. We fix J and write # 4, #,(0), A instead of F (6, J), #,(0, J), A;. The basic
idea of the proof is to represent R, 4|5, as the empirical distribution of a Markov
chain of order m. We will give an explicit proof of the lower bound and refer to
a general theorem in the proof of the upper bound.

First we investigate the behaviour of the Radon-Nikodym derivatives of Q with
respect to P on the o-fields & ,(6): in fact, we need to know only the growths of the
relative entropies H (Q|P){#, ) of Q with respect to P on the ¢-fields %, (0).

Theorem 4.2 For each Qe 4%, (1/n) H(Q|P)| #, @ converges to 1,(Q) for i-ae. 0,

where

1
1,0) = llmﬁfH(QlP)lgn(e)i(dG)E [0, o]
Further, I,(-) is lower semicontinuous and affine.

d
Remark 4.3 1f Q is ergodic, we have for 2-a.e. 8: (1/n) ]ogE}Qg converges Q-a.s. to
Zu(0)

1,(Q).

Proof of Theorem 4.2 Let Q = Q x i, P = P x J. We make use of a theorem of
A. Barron .

Theorem 4.4 Let (X,),=1.2,... be a stationary process with values in a Standard
Borel space E. Let Q be the distribution of (X,), and Pe .# (E™) be a “reference
measure”: P is stationary and Markov of order m (ie. P[A|X,_,,..., X;]=

PlA|X, -1, .. .. Xp-m] for all 6(X,,X,41,...) measurable sets A and n > m).
Define the o-fields A,:=0(X,X,,...,X,). Then the specific relative entropy
h(Q|P) of Q with respect to P exists:

1
h(Q|P) = lim - H(Q|P)|.;,€[0, 0 .

See Barron [1, Theorem 17 for the proof.

Note that H(Q|P}|,, is increasing, so h(Q|P)= oo if there is an n such that
H(Q|P)|y, = .

We apply Theorem 4.4 with O, P, E:= {(Yy,... Y|V, €S} x{0,1}, where
{(1,2,. .. .7/)is an enumeration of J.

Pl,,( 1.T,5.T2J....)xs Can be identified with a stationary measure, Markov of
order m on E™, where X, consists of the /-tuple of random variables Y}, i € Tg‘l J
and 6,.

m:= max {n|3k with (n,k)eJ} — 1. 4.2)

(Since the sets T4 J,n = 1,2, . . . are not disjoint in general, P{,,(, T,0.T2J, .. )x@ 18
in general not a product measure on EM). In the same way, we can 1dent1fy
a stationary and ergodic @ with a stationary and ergodic probability distribution
on EN, respectively. Hence we get from Theorem 4.4

N o1 = =
EIJ(Q)ZllnmﬁH(Q|P)|ﬂ'(X1,~.-,Xn)'
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If we set 1;(0):= E(Q), we get
1
[;(Q) = lim ;fH(QlP)l%(e) A(do) . (4.3)

It remains to show that I; is lower semicontinuous and affine; for this, we refer
to[9]. O

Remark 4.5 Qe M and 1;(Q) = 0 imply Q = P.

The next step in the proof of the lower bound is to show that the set of ergodic
probability distributions is dense in .#5.

Lemma 4.6 Let Q €.45. Then there is a sequence of ergodic probability distributions
(Qn)n=1, 2,... SL{Ch that Qn - Qa and IJ(Qn)_’ IJ(Q)fOT’ n— 0.

The proof is similar to the proof of Lemma 4.8 in Follmer [7].

Note that Theorem 4.2, Lemma 4.6 and Remark 3.3 can be used to prove the
lower bound with a standard argument (see [5, p. 76]).

Foreach 6, R, 4|, is the n-th empirical distribution of a Markov chain of order
m. This chain is, in the terminology of Deuschel et al. [6] R-mixing with M = 1 if
R = m(see (4.2)), since o({ Tp*,,0 < k = r})and o({ To*y, k = r + m})are indepen-
dent. A general theorem about uniform large deviations (see {6, p. 91]) implies,
together with the contraction principle, that for each 6, the distributions
of R, glz, n=1, satisfy a large deviation principle with rate function
ho, gl 1(Fo)—[0,00] and hy,;(v) = inf {14, ;(Q)|Q €#5(6),Ql5, = v} with
Iy, ; (Q) = lim, (1/n) H(Q| P)|#, - (Here, #7(0) denotes the set of probability
distributions which are invariant under Tj). It remains to identify this rate
function with the rate function in Theorem 4.1. Theorem 4.2 implies that for
J-ae. 0, inf{Is,;(Q)| Q€3 (0), Qls, = v} = inf{l,,, (Q)|Qe M4, Q|s, = v} and
lim, (1/n) H(Q|P)| 7,0 = 1:(Q), s0 Iy, ;(Q) = 1,;(Q) for J-ac. 6. =

Note that for each L=0, {Ql, [[,(Q)< L} is a compact subset of
M (ST, Fo), but {Q]1,(Q) < L} is in general not compact in .#,(2).

Of course, the arguments in [6] are much more general than our situation
requires. For a direct proof of Theorem 4.1, we refer to [9].

Theorem 4.1 says that we have to minimize the rate functional I, over the set of
probability distributions .4 (S). It is therefore natural to ask about the proper-
ties of probability distributions in .#%(S"). We omitted Y,, but we can extend
any stationary measure on S’ to a stationary measure on ST, Let
P= Hido € A5 (ST denote a product measure and consider 5 = 445 (S").
Probability distributions in .# are typically singular with respect to P. More
precisely, Qe.#5, Q < P=-Q = P. In particular, Qe.#7 has infinite relative
entropy with respect to P, if  # P. We can show, though, that a specific relative
entropy with respect to P exists for each Qe.#4. Consider the o-fields
yz“ = J({Yo, Ym!k|m é n})
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Lemma 4.7 Every Q c.# % has a specific relative entropy h(Q|P) with respect to P:

1
hQIP) = lim = H (QIP)l,,

1
= sup 2, H(Q|P)|5,ne[0, 0] .

In particular: Qe #5, h(Q|P)=0=0=P.
Further, h(+|P) is affine on 4 $(2Q2) .

Sketch of a proof. Let ¥~ be the set containing all subsets of 1. Then the function
[V >R, f(V)=H@IP),qyicvy IS a superadditive set function, ie.
SV oWz fV)+ f(W) for disjoint sets V, W e ¥". Here we made use of the
product structure of P. The rest of the proof is left to the reader (see also Georgi,
[10, Chap. 15, Sect. 2], for a general argument). [

Remark 4.8 Look at

1 n
Rn(w) = ? Z Z 5(T9)kw .
0e{0, 1}" k=1
R,(w) is the analogon to the usual empirical field on the tree. Then the same
arguments as in the proof of Theorem 2.2 show that R,(w)— P for P-a.e. w. The
distributions of R,, n = 1, satisfy a large deviation principle with good rate function
I where I(Q) = h(Q|P) for Qe 4%, I(Q) = + <o else. We don’t give a proof here,
since it consists merely in carrying over arguments in {6] or [8] from the lattice to
the tree structure. (The arguments in [6] or {8] can here be simplified of course,
since we treat the particularly nice case of a product measure P.)

5 Examples

5.1 Stationary probability distributions on R’e

Let P =] ]ic1, N(0,1) € .45 (R'0) denote Wiener measure. Can we identify a self-
similar probability distribution on R'e with a probability distribution on C [0, 17,?
Notice this is not clear a priori. In Lemma 5.1 below we give a condition on
0 which guarantees that the support of Q is contained in C[0,1],. Our conjecture
is, however, that this holds true for every Qe .45 (IR%). Because we deal with
stationary probability distributions, condition (5.1) below involves only the one-
dimensional marginal distribution of Q.

Lemma 5.1 Let Qe 45 = M5 (R*) and

i 21O Yel =227 < o0 forana< 1/2. 5.1)

n=1
Then Q is a probability distribution on C[0,1],.
Proof. We can replace (1.2) in Lemma 1.6 with (5.1):
O[M, =z2"] = Q[ max [Vl 2 2“”1 +0 [ max Yo il 2 20‘"}
2 1

k=12, ...,2»" k=27"24+1, ..., 21~

=20[M,_, 22"],
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since Q is stationary. By iteration, we conclude Q[ M, = 2*] < 2" 1Q[| Y,| = 2*].
OJ

Let v be the distribution of ¥, under Q. Sufficient for (5.1) to hold is, for instance,

d
Sf1x[**¢dv < co for an & >0 or supld—v(t)l < C, where u= N(0,1).
teR 1

If the support of @ is contained in C[0,1],, we get the coordinate process
(Xt)0§t§1 via

n—1

o 2
Xfw)=Yo(w) t+ 3 Y Yydw)e,t) Ot=1) (5.2)
n=1 k=1
as in Sect. 1. In this case, we can write the o-field %#,. in Lemma 4.7 as
Fon=0({Xy.2--lk =0,1,...,2"}), and we have an interpretation of the specific
relative entropy A(Q|P) as a limit of entropies on the dyadic partitions of the unit
interval.
The simplest case of a stationary probability distribution is, of course, a product
measure Q = ]—[ielo v. What can we then say about (X )o<<1?

Lemma 52 Let Q =[],
1]

(i) Let [x*dv< co. Then Eo[X,X,]= [x*dv-(t A 5). Further, (X)o<i=1 has
quadratic variation {X,)o<,<1 (along the sequence of dyadic partitions of [0,1]) and

(X> = (fx*d)t (0<t=1), Q-as.

(ii) Let [x*dv < oo. Then (X)o<,<1 is locally Holder-continuous with exponent 7y,
for each y < 1/2.

v and assume Q satisfies (5.1) .

For the proof, we refer to [9].

In general, (X,)o</<; is not a Markov process under Q. We can state the following
“weakened Markov property™: the conditional distribution of {X,|te J(k — 1)/2",
k/2"[}, given {X,|te[0,(k — 1)/2"] U [k/2" 1]}, depends only on X_ 1)« and
Xyom k=1,2,...,2 n=1,2,...

Example 5.3 Letv = N(a,1)and Q = | ],.; v. Of course, condition (5.1) in Lemma
5.1 is satisfied. Q is the distribution of (B, + a-g{t))o<,<1, Where (Blo<,<1 18

git)

Fig. 2
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a Brownian bridge and g the self-similar function g () = Z z w02 1)
=1 k=1

g is the profile of the fractal “mount Takagi” (see L14])-

5.2 Brownian sheet and other examples with S = C[0,1]

Except Brownian motion (multiplied with constants), real-valued diffusions resp.
their bridges are not self-similar in our sense, Le. invariant under T, and under 7T7.
But if we allow the coefficients Yo, Y, 1, k= 1,2,...,2" 1, n=1,2,... to have
values in a function space, we can describe well-known, “smooth” objects like the
C[0, 1]-valued Ornstein—Uhlenbeck process. Take S = C[0,1] and P* = H,HO p
€ .45 (S'0), where P denotes Wiener measure on C[0, 1]. Set

—-1
o 2"

X(t,t)=Yo(@)-t+ ) Y You(@e,x(t) OZt,751). (5.3)
n=1 k=1

(X (., ))o<,<1is then a C[0, 1]-valued Brownian motion under P*: For t,t,, t3, 14
with 0Z¢, <t, 26321, 1 the increments X(t,,) — X (t1,), X(ta,")—
X (t3,-) are independent and 1/(\/t, — t1)(X (t3,") — X (t1,*)) has distribution P.
In the same way, (X (-, 1))o<.<1 18 @ C[0, 1]-valued Brownian motion under P*®.
We call P® infinite-dimensional Wiener measure or the distribution of “Brownian
sheet”. Let us replace P* with another Gaussian product measure

0% =1y, Q € Ms(5™).

Lemma 5.4 Let Q be a Gaussian probability distribution on C[0,1] with
EolYon)]=00=7<1)and ser

X(t,1)=Yo(r) t+ Z Z ne(@en ) O=26ts)
n=1 k=1
where Yo, Y, i, k=1,2,...,2" L, n=1,2,... areindependent with distribution Q.
We then have
(i) For each t€[0,1], (X(t,7))o<i<1 IS a Brownian motion with variance
EglY, (1.
(i) The C[0,1]-valued process (X (t," ))o<.<1 has independent increments, and

L/(/ta — 1) (X (t5,") — X(t1,.)) has distribution Q (0 <t < t, £ 1).

The proof is easy: we refer to [9].

Example 5.5 Let Qe #,(C[0,1]) be the distribution of an Ornstein—Uhlenbeck
process starting in 0, ie. the distribution of (Z,)o<,<;, where (Z,) solves the
stochastic differential equation

dZ, = dW, — Zdt

and (W,)o<u<: 1S @ Brownian motion under Q. Then the C[0,1]-valued process

(X¢,9)os.<1 18 a C[0,1]-valued Ornstein—Uhlenbeck process under Q%, iec.
X.:= X(-,7) solves the (“infinite-dimensional”) stochastic differential equation

dX,=dW, — X.dt
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where W, := W{(-,7) is a C[0, 1]-valued Brownian motion under Q*.

We can describe Q® with Theorem 4.1 as a “large deviation” of P®, ie. as the
solution of a variational problem where we have to minimize the rate function in
Theorem 4.1 over a certain subset of .4, (C[0, 1]%). More precisely, set

A:={Re.#,(C[0,11%)|R|,, B}
where
B:={R|fX}R<1—e",0<1<1},

B < .#,(C[0,1]). Here A is of the form in (4.1), i.e. R€ A iff the one-dimensional
marginal distribution of R is in B. The rate function I,(-) is here the specific relative
entropy k(- |P®). Since Q@ minimizes the relative entropy H (-|P) over B (this is
shown in [9]), 0° minimizes k(-|P*) over A. In this way, we may sec the
C[0,1]-valued Ornstein—Uhlenbeck process as a large deviation of Brownian
sheet.
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