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Summary

The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observa-
tory (DSCOVR), launched in February 2015, is the first scientific mission offering the unique
view of the Sun-illuminated half of the Earth from the vicinity of the Lagrangian point L;,
at about 1.5 million kilometers far away from Earth. The EPIC instrument, which provides
measurements for 10 narrow channels ranging from ultraviolet to near-infrared, aims to offer
global hourly information about the concentration of trace gases and the properties of clouds,
aerosols, and the Earth’s surface.

This dissertation describes a framework for the fast and accurate retrieval of liquid-water
cloud macrophysical properties from radiance measurements acquired by the EPIC/DSCOVR
instrument. The first point that the dissertation addresses is the solution of the registration is-
sue discovered in the EPIC Level 1B Version 2 collection, which is essential for the usefulness
of this collection in any scientific work. By developing an unsupervised registration correc-
tion algorithm, the overall registration accuracy of this Level 1B collection improves from 5 to
about 1 ground pixel. In addition, the EPIC instrument degradation is studied for 4 years of
mission data and correction factors are derived accordingly for the 10 EPIC channels.

The second part of this work analyses the combination of standard acceleration techniques
to increase the time efficiency of the radiative transfer models describing how light is ab-
sorbed and scattered in the atmosphere and later measured by EPIC, and it shows that the
computation times can be reduced at least two orders of magnitude without a significant im-
pact on the model accuracy. For the computation of the derivatives of the physical model
with respect to the retrieved parameters, the use of the forward-adjoint approach reduces the
computation time by three orders of magnitude. The acceleration techniques reduce the time
required for the generation of look-up tables from weeks into days.

The Optical Cloud Recognition Algorithm (OCRA), which estimates the cloud fraction
by means of image analysis, is applied to four years of EPIC measurements and compared
against the daily cloud fraction product from MODIS (Moderate-Resolution Imaging Spectro-
radiometer). Finally, the Retrieval Of Cloud Information Using Neural Networks (ROCINN),
which estimates two cloud macrophysical parameters (cloud optical thickness and cloud-top
height) from measurements in the oxygen A- und B-bands, is implemented for the EPIC in-
strument. From a sensitivity analysis performed with synthetic EPIC measurements under
several sources of uncertainty, it can be concluded that only the cloud-top height can be re-
trieved with an acceptable accuracy. Finally, the combination of both OCRA and ROCINN is
applied to one EPIC test dataset, and the retrieved results are compared with the operational
cloud products of the EPIC/DSCOVR mission.
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Zusammenfassung

Die ,Earth Polychromatic Imaging Camera” (EPIC) an Bord des , Deep Space Climate Obser-
vatory” (DSCOVR) wurde im Februar 2015 gestartet und ist die erste wissenschaftliche Mis-
sion die einen einzigartigen Blick auf die von der Sonne erleuchtete Hilfte der Erdkugel aus
der Néhe des Lagrange-Punktes L; ermoglicht, aus eine Entfernung von etwa 1.5 Millionen
Kilometern. Das EPIC Instrument misst in zehn schmalen Spektralbereichen, welche vom
Ultravioletten bis ins Nah-Infrarote reichen und zielt auf die Ableitung der Konzentration von
Spurengasen und Eigenschaften von Wolken, Aerosolen sowie der Beschaffenheit der Erd-
oberfldche mit einer globalen raumlichen Abdeckung und sttindlicher zeitlicher Auflésung.

Diese Dissertation beschreibt ein Verfahren fiir die schnelle und genaue Bestimmung von
makrophysikalischen Parametern von Wasserwolken aus den Radianz-Messungen des EPIC
Instruments. Als ersten Punkt behandelt die Dissertation eine Losung des Problemes der Bild-
korrektur, welche essentiell fiir eine wissenschaftliche Nutzbarkeit der EPIC Daten aus der
Level 1B Version 2 Kollektion ist. Durch die Entwicklung eines automatisierten Korrektural-
gorithmus wird die rdumliche Genauigkeit der Level 1B Kollektion von 5 auf etwa 1 Boden-
Pixel reduziert. Zusétzlich wird die Langzeitstabilitdt des EPIC Instruments iiber einen Zeit-
raum von 4 Jahren analysiert und Korrekturfaktoren fiir alle 10 EPIC Kanéle berechnet.

Der zweite Teil dieser Arbeit untersucht die Kombination von Standard-Beschleunigungs-
techniken um die Effizienz der verwendeten Strahlungstransportmodelle, welche die atmo-
sphérischen Absorptions- und Streuprozesse der vom EPIC Instrument gemessenen Strah-
lung beschreiben, zu erhohen. Es wird gezeigt, dass die Rechenzeit um mindestens zwei Gro-
Benordnungen reduziert werden kann ohne dabei einen signifikanten Effekt auf die Modell-
genauigkeit zu haben. Fiir die Berechnung der Ableitungen des physikalischen Modells in
Bezug auf die abgeleiteten Parameter reduziert der ,forward-adjoint” Ansatz die Rechenzeit
um drei Grofienordnungen. Diese Beschleunigungstechniken verkiirzen damit die Dauer fiir
das Erzeugen von Umsetzungstabellen von Wochen zu Tagen.

Der OCRA Algorithmus bestimmt den Wolkenbedeckungsgrad mittels Bildanalyse und
wird auf 4 Jahre EPIC Daten angewendet und mit dem tdglichen Wolkenprodukt des MODIS
Instruments verglichen. Der ROCINN Algorithmus bestimmt die makrophysikalischen Wol-
kenparameter optische Dichte und Wolkenhohe aus Messungen in den O, A- und B-Banden
und wird ebenfalls an das EPIC Instrument angepasst. Aus Sensitivitdtsstudien mit syn-
thetischen EPIC Messungen unter der Berticksichtigung mehrerer Fehlerquellen, ldsst sich
schlussfolgern, dass nur die Wolkenhdhe mit geniigender Genauigkeit bestimmt werden kann.
Abschlieflend wird die Kombination OCRA/ROCINN auf einen EPIC Testdatensatz ange-
wandt und die abgeleiteten Ergebnisse mit den operationellen EPIC Produkten verglichen.
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Chapter 1
Introduction

The story of the Deep Space Climate Observatory (DSCOVR) dates back to 1998, when for
the first time it was proposed to establish an Earth observation system orbiting around the
Lagrangian point L;, at about 1.5 million kilometers far away from Earth on the Sun-Earth
path. Originally named as Triana, the initial goal of this mission of the National Aeronautics
and Space Administration (NASA) was to provide an hourly view of the Sun-illuminated half
of the Earth suitable for climate observations. Short after January 2001, the mission was put
on hold. NASA renamed the spacecraft to Deep Space Climate Observatory (DSCOVR) in
2003. It was not until 2009 that the DSCOVR project was brought back to life. After several
years of refurbishment, DSCOVR was finally launched in February 2015, and it reached its
destination around the Lagrangian point L; in June 2015.

Among other instruments on board DSCOVR, the Earth Polychromatic Imaging Camera
(EPIC) is responsible for the acquisition of measurements of the Sun-illuminated half of the
Earth ranging from the ultraviolet to the near-infrared. Since the first image was acquired on
6 July 2015, a broad scope of scientific research products and analyses based on EPIC imagery
have been developed [1]: trace gas estimation in the atmosphere, such as ozone [2-5] and
sulfur dioxide [6] from volcanic eruptions; determination of aerosol properties [7-9]; studies
on cloud dynamics [10, 11]; surface characterisation [12]; and vegetation monitoring [13-15].

Clouds are one crucial component of the Earth’s atmosphere. They are an important com-
ponent of the hydrological cycle, and since about 70% of the Earth is covered by clouds [16],
the characterisation of the atmosphere necessarily needs to account for them. The retrieval
of atmospheric trace gas components needs this cloud information as support data [17], and
surface products need to be able to detect the presence of clouds in order to separate clear-sky
scenes from cloud-contaminated scenes.

Atmospheric radiative transfer theory models how the incident Sun light is absorbed and
scattered by the constituents of the Earth’s atmosphere (gases, clouds and aerosols) and the
Earth interfaces [18]. The solution of the radiative transfer equation allows to determine the
radiance reflected at the top of the atmosphere (TOA) at a given spectral wavelength, which
may be measured by instruments on board Earth observation satellites. While the estimation
of trace gas constituents is performed on the basis of the Differential Optical Absorption Spec-
troscopy (DOAS) [19], the estimation of cloud properties is normally inferred from radiation
measurements in regions of the electromagnetic spectrum where only the molecular oxygen
(Oy) is responsible for the main absorption of the radiation. Since the molecular oxygen trace
gas column concentration remains stable in the atmosphere, the impact of the O, presence to
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the expected TOA radiation at the O, absorption spectral windows under clear-sky conditions
is known in advanced. If this TOA radiation is higher than expected, it indicates that only a
portion of the oxygen column is absorbing the incident light, while the remaining portion is
shielded by an object in the atmosphere (e.g. a cloud). Two spectral windows of absorption by
molecular oxygen in the visible and near-infrared are the oxygen A-band (759-770 nm) [20]
and the oxygen B-band (685-695 nm) [21].

The retrieval of cloud properties based on TOA radiance measurements are optimisation
problems in which the model function to fit is the solution of the radiative transfer equa-
tion for an atmosphere containing a cloud. The optimiser is a non-linear least squares solver
[22, 23]. Examples of model functions are the libraries DISORT (DIScrete Ordinate Radiative
Transfer) [24], DOME (Discrete Ordinate method with Matrix Exponential) [25], and LIDORT
(LInearized Discrete Ordinate Radiative Transfer) [26]. The calls to these libraries are in gen-
eral computationally expensive, especially when the number of streams, used to replace the
multiple-scattering term of the radiative transfer equation with a quadrature sum, is high.

Since the EPIC instrument contains two pairs of absorption and reference channels in the
oxygen A-band and B-band, information about the cloud properties could potentially be esti-
mated from them. The discussion about the retrieval of cloud properties started years before
the launch of DSCOVR. In 2013, Yang et al. published a first methodology that claimed that
cloud-top height and cloud geometrical thickness could be retrieved from EPIC measure-
ments in the oxygen bands simultaneously for fully-cloudy scenes over ocean surfaces [27].
Posterior analyses on cloud information content corrected these results, stating that only the
cloud-top height could be retrieved with acceptable uncertainty in most of the cases [28, 29],

and that only one piece of information is available.

1.1 Motivation

After this first description, at least four aspects in regard to the retrieval of cloud parameters

from EPIC can summarise the motivation for this dissertation to be developed:

e First of all, there is a need to ensure the existence of a reliable source of measurements
from EPIC/DSCOVR, i.e. well calibrated and geolocated measurements.

¢ There is a need to know which cloud macrophysical information is actually possible to

retrieve from measurements of the EPIC/DSCOVR mission.

¢ The retrieval of cloud macrophysical properties applied to real data requires the cloud

retrieval algorithms to be fast but at the same time accurate.

¢ Current standard radiative transfer models may be very accurate but at the cost of high

computation times.

These four points will be addressed in the following chapters of the dissertation.

German Aerospace Center -12- Technical University of Munich
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1.2 Overview of the dissertation

This dissertation is divided in six chapters. After the current Chapter 1, which acts as entry
point to the dissertation topic, the next chapters address the different aspects required for a
successful and fast implementation of the retrieval of cloud properties from EPIC/DSCOVR:

¢ The objective of Chapter 2 is to describe the pre-processing steps needed to sanitise the
original EPIC measurements. After a short description of the EPIC instrument channels
and its official calibration coefficients, the chapter presents an unsupervised registration
correction algorithm that fixes the misregistration issues of the EPIC Level 1B collection
version 2. After this correction is applied to four years of EPIC datasets, global trends of
the EPIC measurements are analysed to estimate the degradation of the instrument and
provide correction factors for the calibration coefficients of each of the 10 EPIC channels.

¢ In Chapter 3, the challenges associated to the radiative transfer modelling for EPIC are
outlined. The goal of having a fast and accurate radiative transfer model for clouds
is approached by using two variants: through model simplifications, and through the
use of acceleration techniques based on dimensionality reduction of the optical proper-
ties. A similar investigation is performed for the computation of the radiative transfer
model derivatives with respect to the cloud parameters, for which the forward-adjoint

approach is compared to the standard linearisation of the radiative transfer problem.

¢ The Chapter 4 focuses on the application of the Optical Cloud Recognition Algorithm
(OCRA) to retrieve the cloud fraction from EPIC/DSCOVR datasets. By taking advan-
tage of the results from Chapter 2, clear-sky maps are created with high registration
accuracy for the EPIC channels using 4 years of data from the EPIC Level 1B collec-
tion version 2. The OCRA scaling and offset parameters are estimated accordingly. The
OCRA parameters and clear-sky maps are used to generate four years of EPIC radiomet-
ric cloud fraction datasets, which are validated with the daily MODIS cloud product.

¢ Chapter 5 describes the setup and application of the Retrieval Of Cloud Information
using Neural Networks (ROCINN) to the EPIC Level 1B collection version 2. An exten-
sive analysis of the ROCINN configuration is outlined, such as the proper description
of the input space and the procedure to find out appropriate neural networks that em-
ulate the time-expensive radiative transfer models accurately. These neural networks
are used to perform a sensitivity analysis that determines the actual capabilities of the
EPIC instrument to infer information about cloud macrophysical properties. The find-
ings of this sensitivity analysis are evaluated with one EPIC test dataset, for which the
OCRA/ROCINN combination is applied, and the resulting ROCINN cloud products
are compared with the corresponding operational EPIC cloud products from NASA.

Finally, Chapter 6 recapitulates the findings of the former chapters from a global perspec-

tive, and it indicates in addition future lines of work.

German Aerospace Center -13 - Technical University of Munich
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Chapter 2

The EPIC instrument

In this chapter, we first provide a short overview of the EPIC instrument and the radiometric
calibration and registration performed in the EPIC Level 1B product (version 2).

The EPIC operational processor is in charge of converting the Level 0 raw EPIC measure-
ments, i.e. the number of photons reaching the detector, into count rates by dividing over the
exposure times [30]. In this conversion, several instrument effects are also corrected, e.g. the
dark offset and dark rate signals; the nonlinearity of EPIC electronics response; the variation
of EPIC sensitivity with the temperature; the differences in pixel-to-pixel sensitivity (flat field-
ing); the vignetting and etaloning effects; and the stray-light effect. These corrections together
with the evaluation of the EPIC geolocation algorithm [31] for every channel produce the
EPIC Level 1A product. This product is used as input to generate the Level 1B product, in
which the EPIC images within every dataset are collocated to share common geolocation ar-
rays. After an analysis of the EPIC Level 1B dataset collection, we concluded that at least two
additional corrections need to be performed before we can use these data for the retrieval of
cloud properties. In summary, we developed two algorithms that solve the following issues:

1. The EPIC geolocation for the Level 1B datasets (version 2) has a misregistration of about
5 pixels between the arrays of measurements and the arrays of Earth coordinates. We de-
veloped an automatic algorithm that improves the geolocation by calculating a motion
(i.e. rotation and translation) plus a radial distortion correction. The optimal registration
parameters are obtained by comparison of expected and actual locations of coastline fea-
tures found using computer vision techniques. With our approach, the misregistration
is reduced from 5 to about 1 ground pixel [32].

2. The EPIC calibration factors are not constant in time: the instrument degradation effects
need to be considered. The degradation factors f,iegr are modelled as a linear polynomial
,%egr(t) =1+ cgfgr(t — to), being t( a reference point in time ¢ and CO%8" the degradation
ratio, and they must be applied to fix the original calibration factors. After this correc-
tion, the calibration factors for the ultraviolet channels increase yearly by about 0.6%,
and for the visible and near-infrared channels they decrease yearly from 0.3% to 0.8%.

Scientific contributions

V. Molina Garcfa, S. Sasi, D. S. Efremenko, D. Loyola, Improvement of EPIC/DSCOVR image registra-
tion by means of automatic coastline detection, Remote Sensing 11 (15) (2019) 1747.
d0i:10.3390/rs11151747
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2.1 Instrument description and radiometric calibration

The instrument EPIC (Earth Polychromatic Imaging Camera) is a spectroradiometer with ten
spectral channels distributed in the ultraviolet, visible and near infrared, ranging from 317 to
780 nm. The instrument consists of a CCD (Charge-Coupled Device) detector together with a
30-cm aperture Cassegrain telescope. Its maximum signal-to-noise ratio (SNR) is 290 [33].

A description of the EPIC channels is shown in Table 2.1. The mechanism allowing EPIC
to measure these ten spectral channels consists of two wheels, with six holes per wheel in
which ten spectral filters are placed (two of the wheel holes remain empty). The transmission
functions of the filters, which determine the instrument spectral response function (ISRF), is
shown in Figure 2.1. For all EPIC channels the spectral width is found below 3 nm. Among
these channels, EPIC has two pairs of reference and absorption channels in the oxygen A-band
(780 and 764 nm) and B-band (680 and 688 nm). These oxygen bands have been used success-

tully with other sensors to retrieve macrophysical cloud properties [34, 35].

Table 2.1: Description of the EPIC channels, adapted from EPIC’s main website [36].

Channel Central wavelength / nm Full width / nm Primary application
1 3175+ 0.1 1.0+0.2 Ozone, sulfur dioxide
2 325.0+0.1 2.0+0.2 Ozone
3 340.0 +0.3 3.0+ 0.6 Ozone, aerosols
4 388.0+0.3 3.0+£0.6 Aerosols, clouds
5 443.0+1.0 3.0+0.6 Aerosols, clouds
6 551.0+1.0 3.0+£0.6 Aerosols
7 680.0 + 0.2 3.0+0.6 Aerosols, clouds, vegetation
8 687.75 £ 0.20 0.80 +0.20 Aerosols, clouds, vegetation
9 764.0 = 0.2 1.0+£0.2 Cloud height
10 779.5 £ 0.3 20+04 Clouds, vegetation

Every image for every EPIC channel has a shape of 2048 x 2048 detector pixels, with a
temporal resolution within one or two hours depending on the season, and a varying ground
pixel size of about 12 x 12 km? at the center of the images. The effective spatial resolution is
coarser, however, because the EPIC images are averaged on board the DSCOVR spacecraft to
reduce the amount of data that needs to be transmitted.

The EPIC instrument lacks of an onboard facility for radiometric calibration. To obtain
physical magnitudes from the calibrated counts per second (cps) measured by the EPIC in-
strument, it is mandatory to perform a vicarious calibration in which the EPIC observations
are compared to other measurements that can be considered as reference. In this regard, Ge-
ogdzhayev and Marshak [37] calibrated four EPIC visible and near-infrared channels (443,
551, 680 and 780 nm) by comparison with measurements from the MODIS sensor on board
the Terra and Aqua satellites, and two oxygen-absorbing bands (688 and 764 nm) by means

German Aerospace Center -18 - Technical University of Munich



Retrieval of cloud properties from EPIC/DSCOVR Victor Molina Garcia

1.0 - .

0.8 |- .

0.6 |- N

ISRF

04 N

02 N

0.0 M L J -

| | | | | |
300 350 400 450 500 550 600 650 700 750 800
Wavelength / nm

ch. 1 ch. 2 ch. 3 ch. 4 ch. 5
——ch. 6 ch.7 ch.8 —— ch.9 ——ch. 10

Figure 2.1: ISRF for the EPIC channels. The last four EPIC channels constitute the

absorption-reference pairs in the oxygen A- and B- bands.

of EPIC lunar observations, and it was found that for these EPIC channels it is enough to
define a constant calibration factor to convert from engineering units into top-of-atmosphere
reflectance. Herman et al. calibrated the four ultraviolet channels by comparison with mea-
surements from OMI on board Aura and OMPS on board Suomi-NPP [33], although for this
case the calibration coefficients are not constant but they increase about 1.6% per year on
average. In Table 2.2, the original calibration factors {ky}.0_; for the ten EPIC channels are
summarised. Their accuracy is about 1 to 3%. The calibration factors k;, can be used to con-
vert the EPIC measurements C,, (in cps) into top-of-atmosphere reflectances [p,, cos 6] by the

relation

7T Ly

=, 2.1
EOm/R%S ( )

Pm c0s0y = ki, Cyy =

where, for every EPIC channel m, we denote with L,, the radiance, Eo the exoatmospheric
mean solar irradiance, p;, the true reflectance factor of the Earth, cos 6y the solar zenith-direc-
tional cosine on the Earth view scene, and Rgg is the ratio of the Earth-Sun mean distance rg
and the Earth-Sun distance r for the given day number 7n4,y:

r 271
Rgs = % ~ 1 —0.016729 cos 360 0.9856(nday —4)]. (2.2)

Table 2.2: Calibration factors kg for the EPIC channels [38].

Channel m 1 2 3 4 5
Kmo / cps™! 1216 x 107%  1.111x107*  1975x107° 2685x107° 8340 x 10~

Channel m 6 7 8 9 10
Kmo / cps™! 6.660 x 107®  9.300 x 107®  2.020 x 107> 2360 x 107>  1.435 x 107°
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2.2 Geolocation

The operational EPIC geolocation algorithm computes the Earth latitudes and longitudes cor-
responding to every EPIC pixel location. These arrays of Earth coordinates are computed by
means of a navigation algorithm that determines the DSCOVR spacecraft location and orien-
tation and, taking into account the optical distortions of the EPIC telescope, it maps the 3D
Earth coordinates into the 2D detector grid [31]. In the EPIC Level 1A products, every chan-
nel stores its own array of Earth coordinates, as the images within one acquisition are taken
asynchronously and they are not collocated. In the EPIC Level 1B products, the images from
every Level 1A product are collocated into a common array of Earth coordinates.

With few exceptions over the entire EPIC mission, the channel collocation is performed
successfully. However, and although the operational navigation algorithm provides a good
initial estimation for the geolocation of the EPIC Level 1B images, they still present a misregis-
tration that is not neglectable and it is especially noticeable when observing the expected and
actual locations of the land bodies (Figure 2.2). The misregistration issue was already reported
and briefly described for the version 1 of the EPIC Level 1B products by Haney et al. [39], and
it persists in the EPIC Level 1B version 2.

Figure 2.2: Reflectances from EPIC Level 1B version 2 on 2018-08-04 10:44:25 UTC
using the false-RGB channels at 780, 551 and 388 nm. The coastlines are drawn in

white line. On the left side, the complete Earth image is shown. On the right side,

we zoom into two regions in which the misregistration is visible.
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The scientific algorithms for the retrieval of atmospheric properties either make use of the
EPIC geolocation information directly (e.g. the Optical Cloud Recognition Algorithm [40]) or
rely on ancillary information that depends on the Earth coordinates, e.g. the surface altitude
and albedo. Therefore, the misregistration of the EPIC Level 1B version 2 imagery difficults
the use of the EPIC measurements to generate EPIC Level 2 atmospheric products.

To solve the misregistration, we developed an automatic EPIC registration algorithm [32]
that is based on the following assumptions:

1. The original geolocation error is smaller than 10 detector pixels.

2. Itis possible to find pairs of EPIC Level 1B pixels corresponding to expected and actual
ground locations.

3. It is possible to model the registration correction as a function that transforms wrong
measurement pixel indices into correct measurement pixel indices, leaving the original

geolocation arrays untouched.

This registration algorithm was applied on false-RGB images consisting of the EPIC true re-
flectance values at 780, 551 and 388 nm, with the northern polar region of the Earth located at
the top of the image (as in Figure 2.2). The true reflectance p can be obtained from the EPIC
Level 1B images by converting the engineering units with the calibration factors described in
Section 2.1 and dividing by the solar zenith-directional cosine cos 6. The choice of the false-
RGB image channels is arbitrary, i.e. other channels can be used as long as oceans and land
bodies can be clearly distinguished. The registration obtained for such false-RGB images can
be used for the remaining EPIC channels because they are collocated.

2.2.1 Identification of expected and actual feature locations

The first step to fix the misregistration of an EPIC Level 1B image is to identify singular lo-
cations (features) for which it is possible to know where they should be found and where
they are actually found. The coastlines are a good source of these features, since the expected
(correct) coastlines can be inferred from the arrays of Earth coordinates in combination with a
land-ocean mask, and the actual (incorrect) coastlines can be found in the EPIC measurement
images by means of edge detection algorithms (e.g. the Canny algorithm [41]).

We show one example of such theoretical (expected) and radiometric (actual) coastlines
in Figure 2.3. From this figure it can be observed that the radiometric coastline is polluted in
general with other detected edges, e.g. cloud borders or interfaces between two different land
cover types. However, they do not need to be filtered as long as we restrict the identification
of features to the neighbourhood of the theoretical coastline.

Once the expected and actual coastline masks are computed, we must find features that are
common to both theoretical and radiometric coastlines, as long as the misregistration of the

radiometric coastline is not severe. This is an image matching problem that can be addressed
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(a) (b)

Figure 2.3: Comparison of the (a) theoretical and (b) radiometric coastlines for one
of the EPIC regions shown in Figure 2.2. The radiometric coastline is polluted with
other type of borders detected by the Canny algorithm (e.g. clouds edges and land

cover interfaces).

with the conventional pattern recognition techniques of common use in computer vision, and

whose procedure is usually divided in three tasks:

1. Detect keypoints (e.g. edges, corners or regions of interest) in the compared images.
2. Describe every keypoint by a descriptor vector that uses neighbourhood information.

3. Match pairs of keypoints from both images using the similarity of their descriptors.

We choose the detector and descriptor ORB (Oriented FAST and Rotated BRIEF) [42] through
its OpenCV [43] interface because this algorithm is not patented and the amount of detected
keypoints in our coastline binary images is enough for this application. Because the descrip-
tor vectors that ORB computes are binary (i.e. their components are either 0 or 1), the key-
points detected and described with ORB for both the theoretical and radiometric coastlines
are matched by using a brute-force matcher with the Hamming distance as measurement, i.e.
the number of different bits in the descriptor vectors of the compared keypoints.

Given a set of 1 theoretical keypoints {zyy, }211:1 with descriptor vectors {dyy, },';1:1 and a

set of np radiometric keypoints {zy, };?_;, with descriptor vectors {dyy, };”_,, the brute-force

=1/
matcher states that a pair of keypoints (zy;, z;) is a valid matching pair if z; is the keypoint
of the radiometric coastline with the smallest descriptor distance to the keypoint zj; in the
theoretical coastline and the reciprocal statement also holds. After finding matching keypoint
pairs with the minimum Hamming distance criterion, which only considers the similarity of

descriptor vectors, we reject clear outliers based on the spatial constraints of our problem:

1. The spatial distance between a radiometric keypoint z,; and the theoretical coastline.

2. The spatial distance between the keypoints of a matching pair (zy;, zp;).

If any of these spatial distances is greater than a threshold (e.g. 10 pixels), the matching pair
is discarded, otherwise it is preserved (Figure 2.4).
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Figure 2.4: Pairs of matching keypoints found in one of the EPIC regions shown in
Figure 2.2 after applying the outlier rejection step based on spatial criteria. The key-
points detected in the theoretical coastline (white lines) are shown as white points,
while the corresponding keypoints detected in the EPIC radiometric coastline are

shown as yellow points. Every matching pair is connected with a red segment.
2.2.2 Description of the registration function

The registration function f is the mathematical expression that describes how a “distorted”
pixel located at indices [x4,14]" (hereinafter the superscript T stands for “transpose”) can be
converted into its registered counterpart located at indices [x;, y;]T. We model this transforma-
tion f using an empirical approach that describes common registration issues, such as optical

distortions or incorrect instrument orientations, and whose expression is the following;:

[xr]:[xs]+[xo}+[ C?SQ sinG][xu—xo], 23)
Yr Ys Yo —sinf cosf Yu — Yo
where [x5, ys] T is the shift vector, 0 is the rotation angle around the center of rotation [xo, yo] T,

and [xy, yu] " are the pixel indices after applying a radial distortion correction by means of the

single-parameter Fitzgibbon division model [44, 45]:

xo || e Xq — Xe 1
[y“]_[yc%g@’r){yd—yc]’ s 1) =3 (24)

where A is the first radial distortion coefficient, [x., yC]T is the center of distortion and r is the
distance from the distorted point to the center of distortion:

r= \/(xd — %)%+ (Ya — yo)? (2.5)
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2.2.3 Optimisation of the registration parameters

The registration function in Eq. 2.3 depends on eight unknown parameters which we need to

estimate. Based on empirical observations, we apply two restrictions to simplify the problem:

1. The center of distortion and the center of rotation are identical, i.e. xo = x. and yo = y..

2. The center of distortion/rotation is assumed known and located at the image center.

With these assumptions, the transformation from [x4, y4]" to [x;, yx]T (Eq. 2.3) is simplified to:

R B R B R e A At PRCY

which depends on four parameters (i.e. x5, ys, 0, A), as the point [x., yc|T is now fixed.
In order to compute the optimal transformation parameters, we adapt Eq. 2.6 for n > 2
known pairs of distorted and registered points {([x4;, ¥ai] ', [*ri, yri] ') 7y, Le.

Xr1 [ xs + xc ] [ cosf sinf --- 0 0 [ 9(A,71) (xq1 — xc) ]|
Yr1 Ys + Ye —sinf cosf --- 0 0 2(A,71) (Va1 — ye)
= : + : : : : : , (2.7)
Xrn Xs + Xc 0 o .- cos® sinf | | g(A, ) (xgn — Xc)
L Yrn | L Ys + Y | . 0 0 oo —sin® cosO] [ g(A,7n) (Yan — Ye)

which can be rewritten in compact form as

zr = f(z4, 20, p), (2.8)
where f denotes the transformation of the distorted data vector zq = [X4q1,Yq1,- - -, Xdn, Ydn] "
into the registered data vector z; = [Xy1,Yr1, ..., Xen, ym]T by means of a known center of dis-
tortion/rotation z. = [xc,yc]" and an unknown state vector p = [xs,ys, 0, A]T.

The state vector p that optimally transforms z4 into z, can be computed by minimisation
of a selected objective function ®(p). Our fitting problem is much more sensitive to the pa-
rameters [0, A]T, i.e. small perturbations added to them cause large transformations for points
far from the center of distortion/rotation [xc,yc]T. This will have a negative impact on those
images for which the number of matching features is very low, since the remaining outliers
in the matching pairs will perturbate the solutions for [0, A]T and the optimal state vector will
not have enough quality. For this reason, the minimisation problem needs to include some
constraints to succeed globally (i.e. in as many EPIC Level 1B datasets as possible).

In [32], we included this constraint by selecting the Tikhonov function 7 (p) as the objec-
tive function to be minimised [46]:

T(p) = 5 (1f(za 70 ) — 2l P+l [Lp — p)IP), 29)

where « is the regularisation parameter, L is the regularisation matrix, and p, is the a priori
state vector. Such objective function penalises the solutions that deviate in excess from the
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a priori state vector p,, i.e. from the external knowledge about the solution. One advantage of
this approach is that the retrieval of the optimal state vector p is done individually for every
EPIC Level 1B dataset. However, it also requires the selection of the regularisation parameter
« and the regularisation matrix L, which can turn into solutions that barely deviate from the
a priori state vector p, if they overconstrain the trust region for the solution.

An alternative procedure to the Tikhonov approach may combine simple Gauss-Newton
optimisations (i.e. the objective function is the sum of squared residuals) with constraints that
can be inferred from at least three different sources:

1. Quality constraints, i.e. the quality of the matching pairs used to create z4 and z;.
2. Bound constraints for the state vector components p; forj =0, ..., 3.

3. Temporal constraints for some of the state vector components.

This alternative procedure consists of two steps, in which the first step is used to compute a
first estimation of the optimal solutions and infer two of the state vector components based on
the constraint analysis, and the second step repeats the retrieval of the remaining state vector
components using the knowledge from the first step. It proceeds as follows:
1. Compute the unsupervised estimation of the registration vector p“ for each EPIC dataset,
given as the Gauss-Newton optimal solution of the registration problem with [xs, ys, 0, A] T
as retrieved parameters and [0, 0, 0.5, —5 x 10~7]T as initial guess.

(a) For every unsupervised registration vector, discard it if the quality and bound con-
straints are not met. The following empirical constraints were chosen:

i. An unsupervised registration vector is discarded when there are less than 100
matching pairs, or the descriptor distance of the best pair is more than 8, or the
mean descriptor distance of all matching pairs is more than 40 (Figure 2.5).

ii. Anunsupervised registration vector is discarded if any of the following bound-
ing conditions is true:

xs & [-20,20], ys ¢ [—20,20], 6¢10,2], A¢[-1x10750]. (2.10)

From empirical analysis, 6 is non-negative because the rotation must be coun-

terclockwise, and A is non-positive because the images have barrel distortion.

(b) With the unsupervised registration vectors that were not discarded, estimate the

Lomb-Scargle temporal signals of the daily-averaged state vector components.

2. Compute the supervised estimation of the registration vector p® for every EPIC dataset,
given as the Gauss-Newton optimal solution of the registration problem, but using the

Lomb-Scargle values from Step 1b for every EPIC dataset timestamp as initial guesses,

and with only [xs, ys]T as retrieved parameters, leaving [0, A]T fixed.
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Figure 2.5: Histograms of quality constraint parameters for the EPIC mission from
2015-06-12 until 2019-06-27 containing more than 20000 datasets. The histograms
show (a) the number of matching features found per image, (b) the descriptor dis-
tance for the best matching pair on each, and (c) the mean descriptor distance for the

matching features found per image.

2.2.4 Results

We estimated the optimal transformation parameters for all the available datasets from EPIC
Level 1B version 2 within the time period from 12 June 2015 to 27 June 2019. The parameters
were computed with an Intel(R) Xeon(R) Gold 6152 CPU @ 2.10 GHz processor, distributed
in 48 parallel processes with 2 threads per process. The clock time required for the complete

period of study, which includes 20775 datasets, remained below 12 hours.

From the complete period of study, 19841 datasets (i.e. 95.5%) returned optimal unsuper-
vised registration vectors satisfying the bounding conditions from Step 1a; this number was
increased to 20711 (i.e. 99.7%) after the supervised registration, from which we infer that the
constraints applied to the registration parameters 6 and A allow to improve the registration
of the EPIC images that fail without supervision. The remaining 64 EPIC datasets (i.e. 0.3%)
were not registered because no matching features were found, either because any of the cho-
sen false-RGB channels was missing or the measurements were faulty. Figure 2.6 shows two
examples in which the registration before and after applying our procedure can be observed.
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Figure 2.6: Image registration for the zoomed EPIC regions in Figure 2.2 (a) before

and (b) after applying the correction. The theoretical coastlines are shown in white

lines.

In Figure 2.7, we present the histograms of spatial distances between the points of every
matching pair within the time series in study before and after applying the registration pro-
cedure from Section 2.2.3. In comparison to the results from [32], the time series now contains
one additional year of EPIC datasets and the optimisation process is changed to the two-step
Gauss-Newton approach, but the conclusions from [32] remain.

(a) Histogram before registration (b) Histogram after registration
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Figure 2.7: Histograms of spatial distances between the points of matching pairs
(a) before applying registration, i.e. where they are originally located, and (b) after
applying registration, i.e. after converting the distorted points into registered points

using our registration model, for the time period under study.
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In Figure 2.7a, the distribution of spatial distances before registration presents the higher
density of occurrences in the interval of [2.50,7.75) pixels, and about 50% of the values are
found in the range of [0,5) pixels. In Figure 2.7b, after registration, this distribution presents
higher density of occurrences in the range of [0,2.5) pixels, and about 50% of the values occur
in the range of [0,1.75) pixels. The mode is found in the bin of [1.00,1.25) pixels.

The existence of the right tail in the histogram of Figure 2.7b indicates that some matching
pairs do not reduce their spatial distance after the registration, or they may even increase it.
This fact may indicate us that some invalid matching pairs can pass the outlier rejection step
during the matching of the theoretical and radiometric coastlines. However, it also shows that
the amount of wrong matching pairs is not substantial, as they do not significantly influence
in the retrieval of the registration parameters.

The histogram mode in Figure 2.7b is found above one pixel because of the necessary dis-
cretisation of the coastline and the actual EPIC ground pixel size. We computed the theoretical
coastlines as the last contour of land pixels from a reference land-ocean mask, while the ra-
diometric coastlines were obtained by finding intensity borders in the generated false-RGB
images, which usually coincide with the actual land borders (Figure 2.8), but for certain cases
the radiometric coastline can be found one pixel inside land (when the pixel is a mixture of
land and ocean information) or one pixel outside land (due to water turbidity).

In Figure 2.9 we present the time evolution of the unsupervised registration parameters
for the EPIC datasets that passed the constraint conditions. After an analysis of dominant
frequencies based on the Lomb-Scargle method [47-49], we observe that all the parameters

have an oscillatory behaviour, which can be described for every parameter as follows:

1. The horizontal shift xs oscillates around its mean of 2.0 pixels, with one main frequency
of period 174 days.

2. The vertical shift ys oscillates around its mean value of —0.4 pixels, with two main fre-
quencies of periods 362 and 184 days. The signal has a damping behaviour which the
standard Lomb-Scargle method does not cover.

3. The rotation angle 6 has a mean value of 0.4 deg, and we can observe up to three main
frequencies of periods 347, 182 and 120 days. When compared to the initial results in
[32], the mean value is now slightly smaller and the signal amplitude is higher.

4. The distortion parameter A has a mean value of —5.4 x 10~?, and its two main frequen-
cies have periods of 175 and 90 days. As it was described for 6, the signal amplitude for

A is higher when compared to the results in [32].

It can be observed that the periods of all these main frequencies stay close to proper fractions
of the Earth’s orbit period around the Sun. In particular, all the registration parameters share
one common frequency of period in the interval [174, 184] days, which probably corresponds
to the 180-day orbit period of DSCOVR'’s spacecraft around the Lagrangian point L [50].
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Figure 2.8: Theoretical (white lines) and the radiometric (yellow lines) coastlines for

one of the EPIC regions in Figure 2.2 (a) before and (b) after applying the registration

algorithm.
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2.3 Degradation

The sensors on board satellites usually suffer from in-flight instrument degradation, i.e. a
variation in the sensitivity and calibration parameters caused by the severe conditions out-
side the Earth’s atmosphere. To maintain the stability of the sensor measurements during the
mission lifetime, the degradation of the instrument must be estimated and removed from the
measurements. This correction is normally implemented by comparison with a reference time
in which the calibration parameters are known. Examples of this degradation correction can
be found in the literature for low-Earth orbit sensors, such as GOME on board ERS-2 [51],
SCIAMACHY on board ENVISAT [52], and GOME-2 on board the MetOp satellites [40].

For the EPIC instrument, Herman et al. reported the existence of degradation at least for
the ultraviolet channels [33], which translates into a yearly increase of about 1.6% in their cor-
responding calibration factors. Geogdzhayev and Marshak did not report such degradation
for the visible and near-infrared channels in their vicarious calibration [37].

We performed a global degradation analysis over the 10 EPIC channels for the time period
from 12 June 2015 to 27 June 2019. For every date within the time period of study, we com-
puted the global daily mean true reflectances {py,(¢)}10_; using all the EPIC datasets available
for that date after applying the registration correction explained in Section 2.2 and after con-
verting from engineering units C,, into true reflectance p,, using the calibration coefficients
{kmo}0_, that are summarised in Section 2.1 and dividing by the zenith-directional cosine
cos 6.

We define the degradation trend pgfgr for the m-th channel as the fitting line of the global
daily mean true reflectance p,, with the time ¢:

P (1) = ¥+ b (t — to), @11

where 458" # 0 is the value of pf}fgr at the reference time point t(, and DI is the degrada-
tion slope. For the EPIC instrument, we set the reference point on 1 January 2016 12:00 UTC
(with POSIX time tyg = 1451649600 s), because this is the reference time in which the calibra-
tion factors for the ultraviolet channels were computed. It is common to reformulate Eq. 2.11

dividing by 258" and so define the degradation factor f,%egr as

_degr

d d
deBr(p) = O 1 4 38 (1), (2.12)
Ay ©
where cﬁfgr = biegr/ aiegr is the degradation ratio. Once chgr is determined, the degradation

effect can be removed from the EPIC measurements dividing the uncorrected true reflectance

Pm by the degradation factor f,iegr:

corrpy _ Pm(t)  kmo Cu(t) _ Cun(t)
P (1) = degr(y) — fdost (4 cosfy bin ) cos by’ (2.13)
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where p$X™ is the degradation-corrected true reflectance, C,, is the EPIC measurement in cps,
cos B is the solar zenith-directional cosine, and k;, is the degradation-corrected calibration
factor for the m-th EPIC channel:

(1) = 20 Ko , (2.14)

= g[egr(t) - 1+C(31€gr(t—t0)

being ko the original m-th calibration factor from Table 2.2. If chgr < 0, then the calibration

factor k;, increases with time; conversely, if cf,,egr > 0, then k,, decreases with time.

& are presented in Table 2.3. The time

The results obtained for the degradation ratios coe
evolution of the global daily mean reflectances and their trend lines are shown in Figure 2.10

for the ultraviolet channels and in Figure 2.11 for the visible and near-infrared channels.

Table 2.3: Degradation ratios cjfgr for the EPIC channels.

Channel m 1 2 3 4 5
cesr -1 2064 x10710  —1.926 x10710 —1745x10"10 —1.621x10"11 9293 x10~1
Channel m 6 7 8 9 10

cdegr j 5—1 1214 x10710 2430 x10~10 2300 10710  1.826 x10710  1.750 x10~10
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Figure 2.10: Global daily mean true reflectance p as a function of time ¢ for the EPIC
ultraviolet channels. The trend lines are plotted for every channel as dashed lines

with the same colours.
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visible and near-infrared channels. The trend lines are plotted for every channel as

dashed lines with the same colours.

From Figure 2.10, we observe decreasing time trends for the global daily mean reflectance
of the EPIC ultraviolet channels. This implies, as seen in Table 2.3, that the degradation ra-
tios c‘,i,,egr are smaller than 0 and, thus, the calibration factors k;, for the ultraviolet channels
increase with time. This conclusion points into the same direction as in [33], although our
yearly gain is smaller. For the first three channels, f,%egr is about 0.994 one year after the refer-
ence time tp, which is equivalent to a yearly increase of 0.6% for the original calibration factors
kmo. The degradation of channel 4 is one order of magnitude smaller when compared to the
others.

From Figure 2.11, we can see that the trends of the visible and near-infrared channels are

&' are greater than 0. One year after the

slightly positive, and thus their degradation ratios coe
reference time t(, the degradation ratio f,%egr is roughly between 1.003 and 1.008, which means

a yearly decrease from 0.3 to 0.8% in the original calibration factors k.
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Chapter 3
Radiative transfer model

In this chapter, we provide an analysis of accuracy and efficiency of several radiative trans-
fer models that describe the dependency between the cloud macrophysical parameters and
the measurements as observed by the EPIC instrument. The analysis includes two quasi-exact
models—the discrete ordinate and matrix operator methods with matrix exponential (DOME
and MOME, respectively)—and two approximate models—thick-cloud asymptotic model and
equivalent-Lambertian cloud model. For the quasi-exact models, two approaches to compute
the Jacobian of the measurements with respect to the cloud parameters are also studied: the

linearised and the forward-adjoint approaches. The main findings are summarised as follows:

1. The approximate cloud models show worse accuracy than the quasi-exact models when
simulating measurements in the EPIC oxygen A-band absorption channel. When com-
pared to reference spectra, the asymptotic model errors are large for cloud optical thick-
nesses smaller than 10, and the equivalent-Lambertian cloud model errors are large for
all cloud optical thicknesses and have a bias of 10% for optically-thick clouds.

2. The quasi-exact models provide measurements with a relative error less than 1.7% when
using 32 discrete ordinates, and the time efficiency can be improved two orders of mag-
nitude by combining two acceleration techniques (correlated k-distribution and princi-

pal component analysis) to 18 s per measurement without significant error increase.

3. The forward-adjoint and the linearised approaches provide similar results when evalu-
ating radiance derivatives with respect to cloud optical thickness and cloud-top height;
the computation time is decreased three orders of magnitude combining the forward-
adjoint approach and PCA on correlated k-distribution to 13 s for each derivative pair.

Scientific contributions
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3.1 Introduction

The estimation of atmospheric properties from remote sensing measurements (e.g. the layer
height and the optical depth of clouds and aerosols) aims to find the set of atmospheric pa-
rameters x (i.e. state vector) for which a certain radiative transfer model f reproduces a set of

radiances y° (i.e. measurement vector):

¥’ = f(x,b) + 9, (3.1)

where b is a set of auxiliary parameters that are assumed known (e.g. the surface height and
albedo) and § denotes the error data vector. Such ill-posed problems are solved on the basis of
non-linear optimisation techniques [53] combined with Tikhonov regularisation [54], which
involves the evaluation of the radiative transfer model f and the derivatives of the model
with respect to the state vector components at every iteration of the optimisation procedure.

For operational scientific applications, there is the need to find a radiative transfer model
with high accuracy and time efficiency, since the lack of accuracy would produce wrong es-
timates of the set of radiances y°, and the lack of time efficiency would not allow to process
the huge amount of measurements acquired by the instrument. An accurate method to model
the radiative transfer in a molecular atmosphere generally requires a line-by-line (LBL) calcu-
lation procedure to compute the gas absorption coefficients, which may be computationally
expensive if all the gas absorption lines over the spectral region of interest are considered. The
computation time of a quasi-exact model can be reduced at the cost of the accuracy using two
approaches: (1) approximate models, i.e. simplifications on the underlying physical description
that reduce the complexity of the radiative transfer problem; and (2) acceleration techniques,
i.e. methods that exploit the redundancy present in the optical data to reduce the number of
wavelengths in which the quasi-exact radiative transfer problem is solved.
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Figure 3.1: Simulated DOME radiances L at EPIC absorption oxygen A-band of the
test scenarios for several viewing zenith angles 0, as functions of the cloud optical
thickness 1. The reference number of discrete ordinates is M = 128. The radiances

L are normalised by the solar top-of-atmosphere irradiance Ey.
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3.2 Quasi-exact models

By quasi-exact radiative transfer model, we refer to the models that provide solutions of the
radiative transfer equation under a minimum set of assumptions (i.e. the discretisation of the
inhomogeneous atmosphere in N levels separating N — 1 homogeneous layers), and which
are used as starting point to design approximate models after imposing additional assump-
tions. The quasi-exact models analysed for its applicability in retrieval of cloud properties from
EPIC/DSCOVR are the scalar discrete ordinate method with matrix exponential (DOME) and
the scalar matrix operator method with matrix exponential (MOME). A complete description
of DOME is found in [55, 56], and the specific details of the DOME and MOME implementa-
tions for the retrieval of cloud properties from the EPIC mission are found in [57].

The results in this chapter show radiance comparisons with respect to a set of reference
cloud radiance simulations in the EPIC absorption oxygen A-band. The test scenarios utilise
clouds modelled as a homogeneous layer of water droplets following a Gamma size distribu-
tion with mean radius of 8 pm, the cloud-top height is fixed to 4 km, the cloud geometrical
thickness is set as a function of the cloud optical thickness 7., and the surface is assumed as
Lambertian with fixed albedo of 0.06. We assume that the solar and viewing zenith angles are
similar, i.e. g = 0 + eg with 0 < g9 < 1deg, and the relative azimuth angle is Agp = 176 deg.
The number of discrete ordinates is fixed to M = 128. The viewing zenith angle and the cloud
optical thickness are varied to generate a total number of 90 radiance simulations. The full
description is found in [57]. The computation times in this chapter are user times, i.e. they are
the sum of all the computation times from the parallel threads involved in the computations

of the 90 test scenarios. The reference simulated radiances are presented in Figure 3.1.

We concentrated on the effects of the number of discrete ordinates M on the accuracy of
the quasi-exact models. The number of discrete ordinates is the parameter used to discretise
the viewing zenith angle in a fixed number of values and so convert the multiple-scattering
integral term from the radiative transfer equation into a Gauss-Legendre quadrature sum. The
number of discrete ordinates has an impact on the accuracy of the simulated radiances, as it
modulates the error in the quadrature sum, but it also has an impact on the time efficiency,
since more quadrature points require more computations and more time. In addition to this,
the number of discrete ordinates M limits the maximum number of iterations in which the ra-
diance L is expanded as a Fourier series in Ap, which is critical due to the viewing geometry of
EPIC, close to the glory region in the scattering phase function of the Mie water droplets [58],
and which requires a long series expansion for the single-scattering contribution to describe
the glory effect properly. In Figure 3.2, we show the relative errors in the EPIC simulated radi-
ances for the reference scenarios when the number of discrete ordinates M is decreased from
the original value 128 into 8, 16, 32 and 64. Their corresponding computation times and the
speed-up factors with respect to the reference simulations are shown in Table 3.1.
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Figure 3.2: Relative errors ¢, in the DOME radiances L/ E of the test scenarios for
different cloud optical thicknesses 7. and viewing zenith angles § when the number

of discrete ordinates M is reduced.

As expected, from Figure 3.2 and Table 3.1 we see that reducing the number of discrete or-
dinates has a positive impact in the time efficiency, but it has a negative impact in the accuracy,
especially for small cloud optical thicknesses, i.e. when the single-scattering term contributes
more than the multiple-scattering term. The relative errors increase up to about 3.7% if M = 8.
A compromise between accuracy and time efficiency is found when M = 32. In this case, the
radiance relative errors remain below 1% when the cloud optical thickness is greater than 10,
and below 1.7% when it is lower than 10, and the speed-up factor with respect to the reference
simulations is 93.6. This is the number of discrete ordinates that we will use in the following.

Finally, in [57] we also analysed the discrepancies between the quasi-exact models DOME
and MOME for the case in which the number of discrete ordinates is equal to 32. It was found
that the radiances from both models show negligible differences for the set of reference sce-

narios. For this reason, in the next sections we will refer to DOME as our quasi-exact model.

Table 3.1: Computation times and speed-up factors for the radiance simulations in

Figure 3.2 when compared to the reference simulated radiances in Figure 3.1.

M 128 64 32 16 8
Time / min 160116 14548 1711 284 67
Speed-up factor - 11.0 93.6 563.8 2389.8
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3.3 Approximate models

By approximate radiative transfer model, we refer to the models that are based on a quasi-exact
model (such as DOME) and make additional assumptions in order to reduce the complexity
of the radiative transfer problem. The first assumption in the approximate models is to replace
the atmosphere below the cloud and the surface with an equivalent-Lambertian surface at the

cloud-bottom height. From this assumption, we inspect two approximate models:

1. the asymptotic models, which, based on the assumption of a cloud optical thickness 7.
sufficiently large, derive simple analytical expressions for the reflection and transmis-
sion matrices from the asymptotic theory of optically-thick layers [59]; and

2. the equivalent-Lambertian cloud model, in which the atmosphere below the cloud-top
height is replaced by an equivalent-Lambertian surface with a ground albedo equal to

the spherical albedo of the atmosphere.

Figure 3.3 presents the relative errors in the simulated radiances at the EPIC absorption
oxygen A-band for the test scenarios when utilising the 0-order asymptotic model and the
equivalent-Lambertian cloud model. In the asymptotic model, we can observe that the model
has acceptable results when the cloud optical thickness is very large, which is expected since
the model starts from the assumption 7. — co. However, the relative errors increase up to 24%
for small values of the cloud optical thickness. The maximum relative error for 7. < 10 can be
reduced to 4% if asymptotic models of higher order are used [57]. The equivalent-Lambertian
cloud model appears inaccurate in the complete range of cloud optical thicknesses of study.
When 7. < 10, the relative errors in the simulated radiances increase up to 40%, while for
T. — oo the model tends to an underestimation bias of about 10%.

Because neither the asymptotic model nor the equivalent-Lambertian cloud model offer
the accuracy of DOME with M = 32 discrete ordinates, these models are discarded.

%102 0-order asymptotic model x10~2 Equivalent-Lambertian model
16 — T T T T T 40 —~ T T T T T
81 i 20| .
S 0 em——— o5y
S~ ~ 0 - —
S IS
%y W TR —y—r—v—T-
16| | —20 |- s
—24 | | | | | | —40 | | | | | |
0 10 20 30 40 50 0 10 20 30 40 50
T Tc

’_._9:50 e 0=15° —e 0=30° —— 0—=45° — O —60°

Figure 3.3: Relative errors ¢, in the radiances L/ E of the tests scenarios for several
cloud optical thicknesses 7. and viewing zenith angles 6§ when approximating with
the 0-order asymptotic model and the equivalent-Lambertian cloud model. These

simulations used a fixed number of discrete ordinates M = 32.
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3.4 Acceleration techniques

The computation of a spectrum by means of a quasi-exact model is time-consuming in general
because it implies that we need to solve the radiative transfer equation for a large number of
wavelengths in order to capture all the features of the spectral signal. For a given instrument
channel of central wavelength A. and slit function g(A. — A) of width s, the signal received by

the instrument is the convolution of the slit function and the monochromatic radiance L, i.e.
Act+s/2
LA = [ g(Ac= A La(A) . (3.2)

—s/2

If we assume that the slit function g(A. — A) varies smoothly with the wavelength A, then
the convolution may be approximated by discretising the wavelength space into a set {)\i}f\iﬁ
of N, equally-spaced wavelengths in the spectral interval with a discretisation step AA so that

Al—Az)‘zAc—; and /\NA+A2A:AC+;,
and then Eq. 3.2 may be rewritten as
Ny Ai+AA/2
L) = L g0e=A) [ 1 a0 dA (33)

Note that the assumption of smoothness done for the slit function g is in general not applica-
ble to L,, since we are normally interested in spectral regions in which strong gas absorption
takes place, and so L may show big variations within a discretisation step AA (even of several
orders of magnitude).

The aim of the acceleration techniques for radiative transfer modelling is to find an accu-
rate approximation of the integral term in Eq. 3.3, since a naive numerical integration would
require, for each i = 1,...,N,, a fine gridding of the spectral space [A; — AA/2,A; + AN /2]
and, thus, a huge amount of radiative transfer calls to estimate L, (A). Two main approches
are presented here:

1. The correlated k-distribution method, which simplifies the integral term with an appro-
priate change of variable that permits us to evaluate the integral using a Gauss-Legendre
quadrature with few quadrature points.

2. The principal component analysis (PCA) method, which simplifies the computation of
the integrand L) (A) by using a prediction-correction approach, in which the prediction
is performed using a simpler model (i.e. the predictor) and the correction is estimated
with a correction factor evaluated in the space of optical data.

Both methods exploit the redundancy of information in the gas optical properties. We claim
that these methods may also be combined to speed up the radiative transfer computations.
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3.4.1 Correlated k-distribution method

The correlated k-distribution method is based on the grouping of spectral intervals according

gas

abs Of

to the strength of the absorption coefficients [60]. First, since the absorption coefficient k
the main absorbing gas has a greater spectral variability than the molecular and particulate
scattering, we may redefine L, as:

La(A) = La(kges (A))-

abs

For a homogeneous atmospheric layer, the transmission within a spectral interval is in-
dependent of the line-by-line Varlablhty of k8.5 with respect to the wavelength A, but it only
& e within that interval [61]. Let be F; = F;(k%2) the cumu-

(A) in the spectral interval [A; — AA/2,A; + AA/2], and
(F) the quantile function (i.e. the inverse of the cumulative distribution function). The

depends on the distribution of k%,

lative distribution function of k&2°

abs
gas
kabs i

correlated k-distribution method rewrites Eq. 3.3 after a change of variable from A to F as:
NA 1 as
L(A) = 82 Y g(Ac=A) | La(KES (F)) aF, (3.4)
i=1
and, selecting a Gauss-Legendre quadrature of pairs { (F;, w;) }El, Eq. 3.4 becomes:
N,
L(Ac) = ALY g(Ac— Z wj Ly (K& . (F)).- (3.5)
i=1

The values k%" .(Fj) can be computed by inverting the cumulative distribution functions
F; of the line-by-line gas absorption coefficients or, when using the exponential-sum fitting
of transmittance method [62], by solving a nonlinear least squares problem. Eq. 3.5 can be

rewritten as a quadrature rule of the original Eq. 3.2:

Ni _ —
L(Ac) = ), Wpg(Ae = Ap) La(kGz (Ay)) (3.6)
p=1
after defining a new set of Ny = N, Ny wavelengths {/\,,} 2, and weights { wp} p21, through
the following relations:
Xp = )\i/ wp = A\ ZU]', (37)

with index p given by
p=(—1)Ng+j

foreachi = 1,...,Ny and j = 1,..., Ng. Note that {Xp}pﬁil consists of N, groups of Ny
identical wavelengths, and that k3 (A,) = k&% .(F)).

abs abs,i
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3.4.2 Principal component analysis method

The principal component analysis (PCA) method is used in the context of radiative transfer
forward modelling as a dimensionality reduction technique of the optical properties [63-65].
This method assumes that the spectral radiance L, (A) in Eq. 3.3 can be written as the product

of a predictor and a corrector, i.e.
Ly(A) = Lya(A) exp[f(A)], (3.8)

where L) ,(A) is a radiance provided by a predictor radiative transfer model, and f(A) is a
correction factor. Setting a number of wavelengths N, large enough to capture the gas ab-

sorption features, we can convert Eq. 3.3 into the classical naive numerical integration, i.e.

L(A Zlg (Ae = Ai)La(Ai) AA = Zg Ai)Laa(Ai) exp[fr(Ai)] A,
iz
requiring N, evaluations of the predictor radiative transfer model, which is faster than the
quasi-exact radiative transfer model, and N, evaluations of the correction factor f;.
An efficient and accurate method for computing f1(A) is given by Natraj et al. [63, 64].
If the atmosphere is discretised in N levels, for every wavelength in the set {A; } 2, we can
define the (2N — 2)-dimensional optical vector

x; = x(A;) = [logk&= (M), logkL . (A)]T,

abs,n sct,n

where ki: .(Ai) and k2% | (A;) are the mean gas absorption coefficient and the mean molec-
ular scattering coefficient, respectively, for the wavelength A; and the n-th atmospheric layer,
withn = 1,..., N — 1. This vector x; encapsulates the variability of the optical parameters
for a given Wavelength Principal component analysis is then performed over the set of opti-
cal vectors {xl , i.e. we apply a change into an orthogonal basis {uy N 1Y in an alternative
Ny-dimensional space such that N,
X R XA Y quu =X+ Axj,
1=1
where % is the mean vector of {x;},, and {g;1}*, is the set of components of x; under the

new basis. Finally, the correction factor f] is expanded as a second-order Taylor expansion:
1
fL(Ai) = fL(xi) = fL(f) + VfL(f) Ax; + EAx;r vsz(.’f) Ax;.

The partial derivatives in V f (%) and V?f; (%), which are computed with first- and second-
order central finite differences, and the reference value f (%) require the evaluation of f; for
a small number of optical vectors x as the logarithm of the quotient of L, and L) , using the
optical properties encapsulated in x. These are the unique calls to the gquasi-exact model, while
the predictor model needs to be called N, additional times.
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3.4.3 Principal component analysis on correlated k-distribution method

In the previous subsections, we described the formalism of the correlated k-distribution and
the principal component analysis methods in the context of radiative transfer modelling. The
PCA formalism is initially applied to a fine wavelength grid {)\i}f\gy such that it is possible
to generate convolved spectra from numerical integration of Eq. 3.3. However, the PCA for-
malism remains valid if instead of using the set of wavelengths {1}, we consider the set of
wavelengths {Xp}pﬁi , of the correlated k-distribution method, in which case the wavelength
variability is encapsulated in the optical vectors x(A,).

Figure 3.4 shows a comparison of radiative transfer model errors for the same scenarios as
presented in Figure 3.1 when using different acceleration techniques and a number of discrete
ordinates M = 32. On the top left, the original LBL calculation is shown, while the other plots
show the simulations when using the correlated k-distribution method, the PCA method and
the PCA on correlated k-distribution method. For the correlated k-distribution method, we
used N) = 60 and Nq = 4. For the simple PCA method, Ny = 20000 was selected, the PCA
orthogonal basis had size N, = 4, and the predictor model was the two-stream DOME. For
the PCA on correlated k-distribution method, we used N, = 4 principal components on the
set of N, = 240 wavelengths of the correlated k-distribution method.
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Figure 3.4: Relative errors ¢, in the simulated DOME radiances L/ E of the reference

example scenario (Figure 3.1) for different cloud optical thicknesses 7. and viewing

zenith angles 6 when applying acceleration techniques such as correlated k-distri-

bution, PCA and a combination of both.
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Table 3.2: Computation times for the simulated spectra in Figure 3.4, and speed-up

factors with respect to the LBL case.

LBL calculation Corr. k-distribution PCA PCA on corr. k-distribution

Time / min 1711 159 22 5
Speed-up factor - 10.8 77.8 342.2

From Figure 3.4 we observe that it is possible to simulate EPIC spectral measurements in
the oxygen A-band of absorption with any of these acceleration techniques, with neglectable
variation in the relative errors when compared to the LBL computation for M = 32. However,
the time efficiency of the acceleration techniques is different, and it is connected to the num-
ber of necessary calls to the quasi-exact model. This computation time is shown in Table 3.2. It
may be observed that the technique of applying PCA on the correlated k-distribution method
is the one providing the highest speed-up with respect to the LBL computation, and the com-

putation time is reduced two orders of magnitude with respect to the LBL case.

3.5 Linearisation of the radiative transfer model

The retrieval of the atmospheric constituents from satellite measurements is an optimisation
problem and thus requires not only an efficient and accurate radiative transfer forward model,
but also the derivatives of this model with respect to the atmospheric parameters to be re-
trieved. The process of obtaining this set of partial derivatives to construct the Jacobian of the
optimisation problem is commonly referred to as linearisation analysis. Two common lineari-

sation approaches may be considered:

1. In the linearised forward approach, the partial derivatives of the radiance L with respect
to the retrieved atmospheric parameters are computed analytically. This approach has
been developed for the conventional discrete ordinates method and for matrix operator
method by Spurr [66-68].

2. In the forward-adjoint approach, the radiance L is expressed as the scalar product of the
solution of the adjoint problem and the source function of the forward problem. By per-
forming the linearisation of the forward and adjoint problemes, it is possible to determine
analytical expressions for the derivatives of the radiance with respect to the atmospheric

parameters [69, 70].

In the context of the retrieval of cloud macrophysical parameters from measurements of the
EPIC/DSCOVR instrument, we have implemented the computation of the partial derivatives
with respect to the cloud optical thickness and the cloud-top height for the DOME and MOME
radiative transfer models by means of both the linearised forward and the forward-adjoint
methods [71], which also benefit from the acceleration techniques developed for the forward
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models. In particular, it may be noted that the principal component analysis in the linearised

problem may be implemented in two different manners:

1. The first method follows the same procedure as described for the forward model, i.e. the
derivative of the radiance L with respect to each retrieved parameter ¢, is computed by
means of a predictor-corrector approach:

dLA(A) 9L (A)
Igm  OGm

exp|far/ac, (A)],

where L, ,(A) is a radiance from a predictor radiative transfer model, and fy1 /5, (A) is
the correction factor for the derivatives of Ly (A) with respect to Gy,.

2. The second method performs the linearisation directly on the restoration formula from
Eq. 3.8, which involves the computation of the partial derivatives of the components g;;
with respect to G,.

For the derivative analysis, we chose a test of scenarios utilising the same cloud model, EPIC
absorption oxygen A-band and configuration as in the radiance analysis, with the following
modifications: the viewing zenith angle is fixed to § = 30 deg, the surface albedo is set to 0.2,
the number of discrete ordinates is set to M = 32 according to the conclusions in Section 3.2,
and the derivatives with respect to the cloud optical thickness 7. are evaluated for a fixed
cloud-top height i = 4 km, while the derivatives with respect to the cloud-top height h; are
computed for a fixed cloud optical thickness 7. = 5.

Figure 3.5 shows the derivatives of the radiance for the test of scenarios when using the
linearised DOME model (LDOME). On the left, we observe that d(L/Ey)/01. is always non-
negative, so the increases in the cloud optical thickness for a fixed cloud-top height imply in-
creases in the observed radiances, although this increase is less evident as 7. becomes higher.
On the right, we see that d(L/Eg) / 9h; is also non-negative and more significant as i increases,
which is a clear consequence of the shielding effect of the molecular oxygen below the cloud.
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Figure 3.5: Simulated derivatives of the DOME radiances with respect to the cloud

optical thickness 7. and the cloud-top hegiht h; at EPIC absorption oxygen A-band

for the test scenarios of viewing zenith angle 6 = 30 deg. The reference number of

discrete ordinates is M = 32.
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Since it was observed that the behaviour of LDOME, the linearised MOME (LMOME) and
the forward-adjoint DOME (FADOME) is practically identical [71], we focused the analysis on

the impact of the acceleration techniques in the accuracy and time efficiency of the derivative

computation. Figure 3.6 shows the relative errors in the computation of radiance derivatives

for the test scenarios when compared to the simulations in Figure 3.5. We may observe that
the relative errors remain below 0.5% for d(L/Ey)/07. and below 1% for d(L/Ey) / ohs.
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Figure 3.6: Relative errors ¢, in the simulated derivatives of L/Ey when compared
to the reference values in Figure 3.5 for the models LDOME, LMOME and FADOME
using the three acceleration techniques (correlated k-distribution, PCA, and PCA on

correlated k-distribution). The number of discrete ordinates is M = 32.
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Table 3.3: Computation times in minutes to simulate the derivatives of L/ Ey with re-

spect to T, for the different models and acceleration techniques. The speed-up factor
corresponds to the ratio between LDOME and FADOME.

Acceleration techniques

Linearised models Speed-up

LDOME LMOME FADOME factor

LBL calculation

Correlated k-distribution method

PCA method

PCA on corr. k-distribution method

3625 4602 1804 2.0
678 869 335 2.0
8 9.5 6 1.3

6 7.5 3.5 1.7

Table 3.4: Computation times in minutes to simulate the derivatives L/Eq with re-

spect to hy, for the different models and acceleration techniques. The speed-up factor
corresponds to the ratio between LDOME and FADOME.

Acceleration techniques

Linearised models Speed-up

LDOME LMOME FADOME factor

LBL calculation

Correlated k-distribution method

PCA method

PCA on corr. k-distribution method

2451 3079 1240 2.0
456 574 224 2.0
5.5 6.5 4.5 1.2

4 5 2.5 1.6

Finally, in Table 3.3 and Table 3.4 we may observe the computation times to simulate the

derivatives shown in Figure 3.4 for the three linearised models and the three possible acceler-

ation techniques as well as the simple LBL calculation. Each case (i.e. model and acceleration
technique) consists of 16 simulations of d(L/E) /97, and 11 simulations of o0(L/Ey)/h. It is
observable that FADOME is in general the fastest method, followed by LDOME, with inde-
pendence of the acceleration technique being used. The best configuration is FADOME com-

bined with the PCA on correlated k-distribution method, which provides a global speed-up
factor of about 1000 when compared to the equivalent LDOME LBL calculation.
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Chapter 4

EPIC-OCRA: Estimation of
cloud fraction from EPIC/DSCOVR

In this chapter, we present the Optical Cloud Recognition Algorithm (OCRA) applied to the

estimation of the radiometric cloud fraction from EPIC/DSCOVR measurements, which is

crucial in atmospheric remote sensing, as it is one key cloud macrophysical parameter needed

for trace gas retrieval [72]. Our main contributions are summarised as follows:

1. We give an estimation of the viewing angle dependency in the EPIC top-of-atmosphere

(TOA) reflectances p,,, m = 1, ...,10. This dependency relates to the BRDF effect and it
is modelled separately for water and land locations for the 10 EPIC channels by means
of polynomial factors fyi€¥ () evaluated for the scene viewing zenith angle 6. The TOA
reflectance divided by fyie" () is used to define the OCRA radiometric quantity p92.

. We created reference clear-sky maps with a spatial grid resolution of 0.2 deg x 0.2 deg
for the OCRA radiometric quantities p5;"™, m = 1, ..., 10, for the 10 EPIC channels, using
a temporal kernel reduction method performed independently for every EPIC channel,
and which is based on the assumption that, for every Earth location, the likelihood of
finding a clear-sky scene increases when the OCRA radiometric quantities decrease.

. We determine OCRA scaling and offset parameters («, §) for the EPIC channels at 388,
551 and 780 nm, which have a time-oscillating behaviour related to the yearly evolution
of the global TOA reflectance. We show that a proper selection of the OCRA threshold
parameter p is crucial to ensure that the upper bound in the OCRA radiometric cloud
fraction is not lower than 1 over bright surfaces.

. We compute the EPIC OCRA radiometric cloud fraction, which is the geophysical pa-
rameter needed for trace gas retrieval and for quantitative cloud studies. Our OCRA ra-
diometric cloud product for EPIC provides more information than the operational EPIC
cloud product version 1 [73], which only includes a simple cloud mask [74].

. We compare the EPIC radiometric cloud fractions with the MODIS/Terra geometric
cloud fractions, and a median discrepancy of about —0.186 is found, which decreases
to —0.040 if we discard water locations with clouds of optical thickness lower than 10.
EPIC UV-VIS channels are almost insensitive to this kind of clouds.

Conference contributions

V. Molina Garcia, R. Lutz, D. Loyola, Applying the OCRA algorithm to the retrieval of the cloud frac-
tion from EPIC/DSCOVR, oral presentation at 21st EGU General Assembly, 7-12 April 2019, Vienna
(Austria), European Geosciences Union, 2019.
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4.1 Introduction

The Optical Cloud Recognition Algorithm (OCRA) is a method for determining the cloud
coverage [75], i.e. the fraction of a remote sensing scene covered by clouds, from UV-VIS-NIR
measurements under the assumption that the sensor measurements may be divided into two
main components: a background term that is cloud-free and a remainder term that describes
the influence of the clouds.

Let be Soera C {m}},?zl a subset of size 712 from the sensor channel indices, and let be
p;?cra, j € Socra, @ physical quantity derived from the sensor measurements for a number #qcra
of sensor channels. Given a certain remote sensing scene, we define the vector of differences
A= [A]-]T as a vector of 1ocra components in which each component provides the difference

ocra

between the OCRA quantity value 75 expected in the absence of clouds and the value p

ocra
]
actually measured by the instrument, i.e.

A; = p% — p25, (4.1)

For a given remote sensing scene, OCRA defines the radiometric cloud fraction xcr in terms
of the vector of differences A as:

1/2
XCF = min {1, Z lX]‘ max {O, (A] — ﬁ])}z} ’ (42)

jesocra

which can be interpreted as the norm of the positive components from the difference vector

between A and a quantity bias vector B = [B;]T, with B; < 1, weighted by the components of

a scaling vector & = [(x]-]T, with «; > 1. In particular:

* The scaling terms {«;}cs,,, weight the components of the vector of differences A based

ocra

on an effective valid range for each A;, j € Socra- They are responsible of setting the

upper limits of {A;};cs,,, for which the scene is considered as fully cloudy.

ocra

* The offset terms {f;}jes,.., correct the clear-sky OCRA quantities from biases of the

actual values {p?""},cs,,. They are responsible of setting the lower limits of {A;}jes

ocra ® ocra

for which the scene is considered as cloud-free.

The norm-based definition of the radiometric cloud fraction is clipped to ensure that the valid
range of xcr lies within the interval [0, 1].

ocra extracted from the EPIC measurements

The description of the proper OCRA quantity p
is described in Section 4.2. The estimation of the OCRA quantities {p%ra }j€Soea nder cloud-
free conditions, i.e. the generation of the OCRA clear-sky maps, is detailed in Section 4.3. The
determination of {&;};cs,.., and {B;}jes.., is outlined in Section 4.4. The application of OCRA
to the EPIC/DSCOVR mission, as well as a global comparison between the EPIC radiometric

cloud fraction and the MODIS geometric cloud fraction products, is shown in Section 4.5.
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4.2 Nadir-effective TOA reflectance

The computation of the radiometric cloud fraction by means of OCRA requires the use of
an input quantity that is statistically independent from the time t and the viewing geometry
(i.e. the viewing zenith angle 0). The time dependency can be handled for a time-dependent
quantity by generating clear-sky maps on a periodic basis that can capture the variations of
the input quantity over the seasons. The viewing geometry dependency, however, imposes
restrictions on the quantity that can be used by the OCRA algorithm. In particular, the TOA
reflectance p is not suitable as OCRA input, as p may depend strongly on the viewing zenith
angle 6 (Figure 4.1a) [76]. The use of the TOA reflectance p would translate into two main
consequences within the OCRA framework:

1. As the OCRA clear-sky map generation relies on a kernel-reduction approach in which
the clear-sky scenario of every map cell is the farthest measurement from the white in a
given time period, OCRA clear-sky maps using p as input quantity will be mainly built
with values from small viewing zenith angles, whose measurements tend to be smaller.

2. The evaluation of the radiometric cloud fraction by means of the differences in the TOA
reflectance p with respect to a clear-sky scenario computed as in the previous point will
identify the positive deviations from the clear-sky scenario due to high viewing zenith
angles as if they were due to the presence of clouds.

To avoid this problem, we define the TOA reflectance p,(t,6) for the EPIC m-th channel
as the product of the nadir-effective TOA reflectance p;},(t), which is defined as independent
from the viewing geometry [77], and a viewing correction factor £V (6):

pm(t,0) = py, (1) £, (9), (4.3)

and such nadir-effective TOA reflectance p;,(¢) can be used as a valid OCRA input quantity
o (see Figure 4.1b).

(@) (b)

Figure 4.1: Horn of Africa as seen from EPIC Level 1B version 2 RGB on 2019-03-20
11:15:31 UTC: (a) TOA reflectance and (b) nadir-effective TOA reflectance.
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The viewing correction factors { fyi€" (6) } 10

', encapsulate the reflectance variations mainly
due to the non-Lambertian behaviour of the Earth’s land and ocean surfaces (i.e. the BRDF
effects), as well as the Rayleigh scattering in the atmosphere. These correction factors can be

parametrised in terms of an n-th degree polynomial in the viewing zenith angle 6 (in degrees):

;ieW( glmt Z av1ew 91 (4.4)
17él
where f;; glmt( 6) is a factor describing the glint effect for small values of 6, given by the follow-

ing expression in the viewing zenith angle 0 (in degrees):

1 over land,

8int(g) = (4.5)

1+ exp(bglmt + bgh; '62)  over ocean,

where bg determines the glint enhancement at the nadir view and bglmt < 0 modulates the
exponent1a1 decay of the glint enhancement.

In order to determine the viewing correction factors { £y (6)}19_| for the ten EPIC chan-
nels, we selected all the available datasets from EPIC Level 1B version 2 within the time period
from 12 June 2015 to 27 June 2019 that could be geocorrected by means of the registration al-
gorithm in Section 2.2 [78]. For every geocorrected dataset and m-th channel, m = 1,...,10,
we applied the following steps if the channel was present:

1. Convert the EPIC engineering units into TOA reflectance p$™ (Eq. 2.13) using the unde-
graded calibration factor defined in Eq. 2.14 and the degradation ratios from Table 2.3.

2. Separate the TOA reflectances by their associated land-ocean mask value.

3. For every land-ocean case:

(a) Group the measurements in 1-deg bins for the viewing zenith angle 6 € [0,60) deg.

(b) Recompute the mean TOA reflectance p$>™ () for each viewing zenith angle bin.
The mean is recalculated from the mean value stored from the previous datasets
and that from the current dataset, weighted by the number of measurements used
for the stored result and the number coming from the current dataset.

Once these corrections were applied to all the datasets, the resulting mean TOA reflectances
over land were least-squares fitted to a fifth degree polynomial in 0 as defined in Eq. 4.4, with
ngfint((?) 1. For the resulting values over ocean, the values g5 (6 < 15 deg) were used first
to determine the glint coefficients [b;gnl,lg t, bfj}; t] , and the viewing correction coefficients were
titted as for the land case after removing the glint effect.
Figure 4.2 shows the mean TOA reflectance g5, for every EPIC channel as a function
of the viewing zenith angle 6, together with the fitting polynomials f}/€¥(6) computed as
described in the previous paragraphs, and normalised to the mean TOA reflectance value at

the first viewing zenith angle bin.
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(a) Channels 14 (land) (b) Channels 1-4 (ocean)
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Figure 4.2: Dependency between the EPIC global mean reflectances and the viewing
zenith angle for the UV channels (a) over land and (b) over ocean, and for the VNIR
channels (c) over land and (d) over ocean. The circles represent the mean values
obtained from the EPIC datasets, and the solid lines correspond to the fitting poly-
nomials fy€"(#) normalised to nadir view. The glint effect is observable over ocean

for the VNIR channels and small viewing zenith angles.

Table 4.1 and Table 4.2 present the viewing correction polynomial coefficients {a;ileiw} over

land and ocean, respectively, for each of the ten EPIC channels. Table 4.3 provides the glint
glint
m,i
ments over ocean for channels 4 to 10.

correction polynomial coefficients {b°." }, which are applicable only to the EPIC measure-
From this procedure, we define the OCRA input quantity p5 " for every pixel acquired at
time t as the nadir-effective TOA reflectance, i.e. from Eq. 4.3 and Eq. 2.13:

P = (o5 (1) = f“(Vt(Gg)) ~ ot m

where ky, (t) is the degradation-corrected calibration factor, Cy, (¢, 0) is the EPIC measurement

(4.6)

in cps, fyieW(9) is the viewing correction factor, 6 is the viewing zenith angle, and 6, is the

solar zenith angle.
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Table 4.1: Polynomial coefficients for EPIC viewing correction over land.

view
Channel a0

view
a

view
a

view
a

view
a

m,2 m,3 m,4 m,5
1 0.997 +6.429 x107° —5.881 x107° +2.066 x10~7  —1.878 x10~?
2 0.996 +1.628 x10~* —9.032 x10~° 42932 x1077  —2.347 x10~°
3 0.996 +2.246 x1074 —1.150 x107° +3.557 x10~7  —2.548 x10~?
4 0.995 +3.083 x10~4 —1.873 x107° +5.296 x10~7  —3.702 x10~°
5 0.996 +3.565 x10~* —2.411 x107° +6.597 x10~7  —4.667 x107°
6 0.996 +2.625 x10~* —2.269 x107° +6.521 x1077  —4.937 x107?
7 1.001 —5.263 x1077 —9.780 x107° +4.080 x10~7  —3.420 x10~°
8 1.004 +1.898 x107° —1.134 x107° +4.151 x10~7  —3.437 x10~°
9 0.994 +1.444 x10~% —1.539 x10~° +3.940 x1077 —2.918 x10~°
10 0.994 +6.284 x107° —8.509 x10° +2.897 x10~7  —2.268 x10~?

Table 4.2: Polynomial coefficients for EPIC viewing correction over ocean.

Channel aview

view
a

view
a

view
a

view
a

m,0 m2 m,3 m4 m,5
1 0.999 —7.680 x10~° +8.907 x10~° —1.623 x10~7 +8.084 x1010
2 0.998 —6.541 x107° +1.137 x107° —2.015x10~7  41.259 x10~°
3 0.998 —1.368 x10~4 +1.759 x10~> —3318 x10~7  42.455 x107?
4 1.003 —1.336 x10~4 +1.719 x107> —3.138 x10~7 +2.444 x10~°?
5 1.004 —1.096 x10~4 +1.601 x107° —2.857 1077  42.307 x10~°
6 1.004 —4.907 x107° +1.190 x10~> —1.833x1077  +1.400 x10~°
7 1.005 —5.436 x107° +1.300 x107> —2.061 x10~7  +1.564 x10~°
8 1.004 +5.740 x10~6 +6.370 x10~° —7.013 x10~8 +4.414 x1010
9 1.004 +1.335 x10~* —5.188 x10~° +1.627 x10~7 —1.283 x107?
10 1.006 —4.857 x107° +1.129 x107° —1.561 x10~7  +1.146 x10~°

Table 4.3: Polynomial coefficients for EPIC glint correction over ocean.

Channel billi(l; ¢ bfil,i; ¢

1 — —

2 — —

3 — —

4 -3.126 —0.019
5 —2.361 —0.016
6 -1.713 —0.014
7 —1.465 —0.013
8 —1.615 —0.012
9 -1.779 —0.016
10 —1.389 —0.015
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4.3 Clear-sky map generation

Once the OCRA quantity p° is defined, the next preparation step is the creation of the OCRA
clear-sky maps. These maps provide the OCRA quantity values { 050" }ieSom €Xpected under
cloud-free conditions for the OCRA channels j € Soera at every Earth’s location at a given
time f, and they are utilised to estimate the differences in p°" for every ground-pixel mea-
surement.

Given a cell in a clear-sky map, the cell value is obtained by means of a kernel-reduction

method over the OCRA quantity values {p?"*(x,y)}jes,, computed from the sensor mea-

surements that lie within the map cell for a given period of time. The kernel function must
be chosen so that it guarantees the selection of the cell measurements that correspond most
likely to a clear-sky scene.

Depending on the channel interdependency during the generation of the clear-sky maps,

we can distinguish two different approaches:

1. In the channel-independent approach, the kernel-reduction method is applied to the OCRA
quantities { p;’cra} j€Soua directly. The generation of the clear-sky maps can be performed
for every OCRA channel independently, and the kernel function follows a minimum-
based criterion: for every map cell centered at Earth’s coordinates (x,y) and for every
OCRA channel j € Socra, the clear-sky scene value p;?,gra(x, y) is determined as the small-
est o7 (x,y) value within the time series of study.

2. In the channel-dependent approach, the kernel-reduction method is applied to the OCRA

quantities { p;?cra} j€Soura after their conversion to the normalised rgb color space. For this

ocra

approach, 7cra is set to 3, and the color vectors Urgh = 7,8, b]T are defined by means of
the following components:

P (x, ) PS5 (X, y)
"= oma. v 8= ;o b=1-r—g
Y P (x,y) Y 08 (x,y)
jesocra jesocra

The generation of the clear-sky maps using the color vector v.g, adds interdependency
accross the OCRA quantities 07 from different channels, and the kernel function uses
a maximum-based criterion: for every map cell centered at Earth’s coordinates (x, ), the
clear-sky scene is determined as the set of values {07 (x, ) } jes.., within the time se-
ries of study for which the distance of vy, = [g,b]" to the white point wgy, = [1/3,1/3]7
is maximum. This approach has been applied to the estimation of the radiometric cloud
fraction for the sensor GOME on board ERS-2 [79] and GOME-2 on board MetOp-A and
MetOp-B [80]. The TROPOMI mission implements a variant of the channel-dependent
approach in which two OCRA channels are used instead of three [81], and for which the

white point corresponds to wgp, = [1/2,1/2]T.
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We created latitude-longitude clear-sky maps for the 10 EPIC channels on a daily basis
with spatial grid of 0.2 deg x 0.2 deg using the channel-independent approach over the time
period from 12 June 2015 to 27 June 2019. We chose the channel-independent approach be-
cause it allows to calculate the clear-sky maps channel by channel, and such clear-sky maps
can be used for any combination of EPIC channels that is chosen as OCRA channels. This is
not possible under the channel-dependent approach, as the clear-sky values {p;’f)ra (%, Y) }i€Soua
for each map cell are coupled, and a hypothetical redefinition of the OCRA channels would
require to recompute the clear-sky maps. The kernel reduction is done in three steps:

1. For every EPIC dataset in the time period and every EPIC channel m =1, ..., 10, project
the OCRA quantities pj;™® onto an equidistant cylindrical projection map with a spatial
grid of 0.2 deg x 0.2 deg using nearest neighbours. If multiple values lie on the same
cell, apply an average kernel. We refer to these projected datasets as individual maps.

2. For every date within the time period, let Sy be the set of all the available individual
maps belonging to that given date. We calculate the daily map as the result of applying a
day-kernel on the maps in Sy along the time dimension. The day-kernel used to generate
the EPIC daily maps was the median function.

3. For every day d of the year, let Sp be the set of daily maps whose day number d; verifies
|di —d mod 365| < 14. We compute the clear-sky daily map as the percentile ¢ < 100 of

the maps in Sp along the time dimension. For the EPIC clear-sky maps, we chose g = 1.

(a) NH spring equinox (20 March)

(b) NH summer solstice (21 June)
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(c) NH autumn equinox (22 September)
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Figure 4.3: EPIC clear-sky maps generated with the channel-independent approach
using the EPIC channels at 680, 551 and 433 nm. These maps correspond to the con-
tiguration RGB (Red-Green-Blue). Cells in which no measurements verified the con-
ditions 6y < 60 deg and 8 < 60 deg are shown in black; these regions change with

the season: Northern Hemisphere spring (a), summer (b), autumn (c) and winter (d).
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(a) NH Spring equinox (20 March)
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(d) NH Winter solstice (21 December)
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Figure 4.4: EPIC clear-sky maps generated with the channel-independent approach
using the EPIC channels at 780, 443 and 388 nm. We will refer to this configuration
as NGU (Near infrared-Green-Ultraviolet).

Figure 4.3 shows the resulting EPIC clear-sky maps at the solstices and equinoxes for the
EPIC RGB channels (Red-Green-Blue) at 680, 551 and 433 nm. We can observe that the kernel
reduction method based on the channel-independent approach is capable of producing maps
in which the basic land /ocean cover classifications are visible (water, barren land, vegetated
land, permanent snow /ice).

In the same way, Figure 4.4 shows the EPIC clear-sky maps at the solstices and equinoxes
for the EPIC NGU channels (Near infrared-Green-Ultraviolet) at 780, 551 and 388 nm. These
clear-sky maps use EPIC channels that are similar to those from the OCRA implementation
for GOME-2 in [80].

From the results presented in Figure 4.3 and Figure 4.4, we can also observe the existence
of regions in which the clouds are still not completely removed. This happens especially over
specific areas over ocean, such as the Northern Pacific Ocean (Figure 4.4b) and the Antarctic
Ocean (Figure 4.4d). Two main reasons may describe this issue:

1. There is a limitation in the geocorrection algorithm from Section 2.2. The geocorrection
depends on the detection of coastline features, therefore the likelihood of not finding a
solution for the transformation vector is higher for the EPIC datasets in which the Pacific
Ocean covers most of the sunlit half of the Earth because the coastlines are limited and
concentrated in the outer part of the EPIC image, which has worse spatial resolution. As
we do not use the EPIC datasets that cannot be geocorrected well enough, the number

of measurements available over the Pacific Ocean is smaller (see Figure 4.5).

German Aerospace Center -59 - Technical University of Munich



Retrieval of cloud properties from EPIC/DSCOVR Victor Molina Garcia

(a) NH Spring equinox (20 March) (b) NH Summer solstice (21 June)
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Figure 4.5: Number of EPIC measurements used to create the EPIC NGU clear-sky
maps from Figure 4.4. For every example case, the number of available measure-

ments over the Pacific Ocean is in general smaller than in other regions.

2. The selection of the median function as kernel in the Step 2 of the kernel reduction pro-
cedure may play a negative role over regions that are mostly cloudy. When generating
a daily map, every map cell will store a clear-sky measurement only if at least one half
of the measurements within that location and day correspond to scenes without clouds,
a condition that might not be found in certain regions for any of the days within the
time period of analysis. We also studied the use of a small percentile as kernel function
for Step 2. While this improves the cloud cleaning over ocean map cells, it has a severe
negative impact over the land map cells, because there is a tendency to select measure-
ments with elevated viewing zenith angles as optimal clear-sky land scenes, and these
measurements have much worse spatial resolution and also worse registration (even af-
ter the geocorrection of Section 2.2). A compromise solution could be the use of different

day-kernels for ocean and land map cells.

The Step 3 of the kernel reduction procedure differs on the temporal gridding with respect
to the OCRA implementations for the GOME, GOME-2 and TROPOMI missions. While the
latter ones construct the clear-sky maps on a monthly basis and use interpolation for dates
in between maps, the OCRA implementation for EPIC uses a moving kernel that allows to
generate global clear-sky maps for every day of the year. This will have a positive impact on
the description of events that occur at small temporal scales, e.g. ice/snow melting.

German Aerospace Center - 60 - Technical University of Munich



Retrieval of cloud properties from EPIC/DSCOVR Victor Molina Garcia

4.4 Scaling and offset parameters

For each instrument channel used in the OCRA algorithm, the scaling parameter «; and the
offset parameter ; can be obtained from the statistical analysis of the histograms of differ-
ences A; available within a representative period of time (e.g. for each date). Let Py, (x) and
Fa,(x) be the probability and cumulative distribution functions, respectively, derived from
the histograms of A; at a certain date:

* We define the scaling parameter a; by means of the value x, of the variable x for which
the cumulative distribution function Fa, () reaches a predefined threshold value p, with
0 < p <1 (Figure 4.6a):

w=— | Falx)=p. 4.7)

Typical values of p are 0.99 in the GOME and GOME-2 implementations [79, 80], which
use three OCRA channels, and 0.90 in the TROPOMI implementation [81], which uses
two OCRA channels.

* We define the offset parameter B; as the value of the variable x in which the probability
distribution function P, (x) finds its maximum value (Figure 4.6b):

Bj = argmax Py, (x). (4.8)

Because the cumulative distribution function Fy, (x) is positive monotonic, an increase in the
selected threshold value p translates into an increase in the value x;, and, thus, a decrease in
the scaling parameter a;; conversely, a decrease in the threshold value p causes a decrease
in the value x, and an increase in the scaling parameter «;. The proper selection of p is
a crucial aspect of the scaling parameter estimation, as the upper limit for the radiometric
cloud fraction ycr may depend on the scaling parameters {«;}cs,..,- Let consider a scenario
in which the offset terms {;};cs,.,, are small enough, and let assume that the OCRA quanti-

ties {07} jes,. are greater than the clear-sky quantities {7} es,.,, but smaller than 1:

:B] ~ 0, 0< p]g),gra < p?cra <1, v] € Socras

then an upper limit xp . for the radiometric cloud fraction xcr can be inferred from Eq. 4.2

as follows. First, let the offset terms {;}cs,.., be neglected and, as p7 > 75

e [ 2 omax(0.0F) = [ F ot —ir
jesocra jesocra

This expression can be converted into a lower-equal inequality by replacing each ;" with its
maximum value 1, and by replacing p75™ with the minimum clear-sky OCRA quantity from
the set {077 } jes.c. €.
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Xee S [ o (1= p900)2 = (1= p95%) | Yo a5 =(1—ppang)y/llell,
jesocra

]Esocra
where jmin = arg mm{po‘”f""}]esocra and || - |1 denotes the Manhattan norm, and we can con-
clude that the upper limit x5 for the radiometric cloud fraction xcr verifies:

2P < i {1, (1—p2m2g) Hw!h} .

In particular, o will be lower than 1 if the following criterion holds:

1
2
(1—=pfm0)” < Talli” (4.9)
(a (b)
1o Channel 10 (N) 10 Channel 10 (N)
' ] ‘ix‘ogo 036|‘x09‘9‘0‘65‘ |/5§Q0‘005 P
1.0 T e IIIII| 8- -
X f
- .
| <
| >
| L
-02 00 02 04 06 08 10
X
Channel 6 (G) Channel 6 (G)

1.2 1 T 1 T 7 1 1 T T +r 1 1 11T 12 T T T 1 T T ]

|XO_90:0.33 |X0.99:0.64 ,BG—0005

1.0 10 |- .

—~ 8 *
a3
B i
S i
2 [ .
O Ll I thii TR R
08 1.0 -02 00 02 04 06 08 10
X
Channel 4 (U) Channel 4 (U)
1.2 T T 3 T 1 T % T T T ] 12 L L |
|JCO_90:0.26|X0.99:0.54 .

10— — == .
.08 .
=
0.6 |
(5

-02 00 02 04 06 08 10

06 08 1.0

Figure 4.6: Estimation of OCRA scaling and offset parameters for NGU channels of
EPIC on 26 September 2017. (a) Cumulative distribution functions Fa, (x). (b) Prob-
ability distribution functions Pa (x).
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From the criterion derived in Eq. 4.9, we infer that xcr may have an upper-bound below 1
for scenes with high surface reflectivity (i.e. high value of p;.’mcfjo) if the Manhattan norm of « is

too small, i.e. if the threshold value p used to determine {«;}es,., is too high. For example, a

scene in which Phioo = 0.6 (e.g. permanent ice) would require ||la||; 2 6.25 to ensure that the
upper bound for the radiometric cloud fraction definition xcr is 1. Considering the scaling
parameters for the three channels in Figure 4.6:

ol = [772,6.06,1479]T, el = [2.37,2.44,3.43]",

we observe that the inequality Eq. 4.9 does not hold neither for “NG%% nor for ocNG%gg, so the

radiometric cloud fraction range for scenes with iy =~ 0.6 will be [0, 1] when using three
OCRA channels, as desired. If we restrict OCRA to only use the last two channels in Figure 4.6,
i.e. if the scaling vectors are
aliy™ =6.06,1479]T,  aly” = (244,343,

then the criterion Eq. 4.9 allows us to conclude that, for the scenes in which p?°9, ~ 0.6, it is
not possible to reach the maximum radiometric cloud fraction of 1 if p = 0.99 is combined
with the OCRA two-channel approach, while p = 0.90 allows to keep the radiometric cloud
fraction upper limit still equal to 1.

Since the EPIC global mean TOA reflectances are periodic functions of time ¢ (Figure 2.10
and Figure 2.11) due to the changes in the illumination conditions and the Lissajous orbit of
DSCOVR, we also analysed the temporal evolution of the scaling and offset parameters «;
and B; for two different threshold values p = 0.99 and p = 0.90. While the offset parameters
p; were found to be stable and can be assumed constant for the EPIC mission, the scaling pa-
rameters ; show an oscillating behaviour (Figure 4.7 and Figure 4.8) which can be modelled

in terms of a series of N = 2 Lomb-Scargle signals [82-84]:

_ N 27
“](t) = &j Z ]nCOS(w]n( to) + ¢]n)] ’ Win = ﬂ’ (4.10)

where f is the reference time on 1 January 2016 12:00 UTC (with POSIX time 1451649600 s), &;
is the mean scaling parameter, and A; ,;, wj ., Tj» and ¢; , denote the amplitude, pulse, period
and initial phase of the n-th Lomb-Scargle signal.

Table 4.4 and Table 4.5 present {f;}cs,., and the Lomb-Scargle signal parameters used to
model {a;(t)};es,., for the thresholds p = 0.99 and p = 0.90, respectively, for the EPIC NGU
channels. The three scaling parameters are modelled with signals of similar frequency, with
mean periods Tj; ~ 363.5 days and T;, ~ 183.9 days, which are similar to the periodicities in
the time evolution of the EPIC global mean TOA reflectances in Figure 2.10 and Figure 2.11.
Furthermore, for each channel, the location of the signal maxima and minima in Figure 4.7
and Figure 4.8 correspond to the signal minima and maxima in Figure 2.10 and Figure 2.11,

which is expected since «; is inversely correlated to pocra and thus to the EPIC reflectances p;.

German Aerospace Center -63- Technical University of Munich



Retrieval of cloud properties from EPIC/DSCOVR Victor Molina Garcia

2016-01-01 2017-01-01 2018-01-01 2019-01-01
T T T T T T w T ; : .
o 45 : l : : ch.4 |
[*))
S B ! ! ch. 6 N
1 4.0 ; | I ch.10 | 4
|

e
o
T

T
[

|

@
o
T

W'Mw gt/ w«m

! !
| | | |
1. 44 1. 46 1. 48 1.50 152 1.54 1.56
POSIX time -1072 / s

|

Scaling parameter o
NN
o

L

T

—
[6)]
T
|

Figure 4.7: Time evolution of «; for the EPIC NGU channels with p = 0.99.
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Figure 4.8: Time evolution of «; for the EPIC NGU channels with p = 0.90.

Table 4.4: OCRA offset/scaling parameters for the EPIC NGU channels (p = 0.99).

Channel B; & First sig_nlal Second si_glnal
Ajx Tjp/day " ¢j1/rad Ajr  Tip/day " ¢j»/rad
4 0.007  3.213 0.169 364.9 +2.731 0.136 182.0 —2.420
6 0.006 2370 0.152 363.2 +2.901 0.074 180.7 —2.358
10 0.005 2263 0.240 365.3 +2.938 0.093 186.0 —2.044

Table 4.5: OCRA offset/scaling parameters for the EPIC NGU channels (p = 0.90).

Channel B; s First sig_nlal Second si_glnal
Aj1 Tja/day " ¢j1/rad Ajr  Tjp/day™ " ¢jp/rad
4 0.007 12316 1.397 363.6 +2.576 1.626 184.1 +3.837
6 0.006  7.815 0.897 361.7 +2.673 0.884 184.6 +3.768
10 0.005 6.883 1.183 362.1 +2.821 0.726 185.8 —2.346
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4.5 Results

In this section, we show the OCRA radiometric cloud fractions generated for the EPIC mis-
sion within the time period from 12 June 2015 to 27 June 2019, and its comparison with the
geometric cloud fractions from the MODIS/Terra Level 3 daily product MOD08_D3 [85]. As
OCRA quantities p°“?, we used the nadir-effective TOA reflectance outlined in Section 4.2 for
the EPIC channels at 551 and 388 nm (GU, i.e. 11ocra = 2), and the reference clear-sky maps
were generated by using the channel-independent approach in Section 4.3. The OCRA scaling
and offset parameters are taken from Table 4.5 for the EPIC channels 6 and 4 (i.e. p = 0.90).
In contrast to the 3-channel OCRA implementation utilised for the GOME and GOME-2
missions, and following the 2-channel OCRA implementation for TROPOMI, it was decided
not to use the EPIC channel 10 at 780 nm, since this is the EPIC reference channel in the oxy-
gen A-band, which will be employed in the retrieval of other cloud macrophysical properties
(cloud-top height and cloud optical thickness), and the cloud information content in the oxy-
gen A-band is limited [86—89]. Due to the use of two channels as OCRA quantities instead of
three channels, we set p = 0.90 as threshold and not p = 0.99, in order to avoid the upper-
bound limitations in the radiometric cloud fraction definition described in Section 4.4.
Figure 4.9 shows an example of the OCRA procedure. In Figure 4.9a, we observe an EPIC
NGU image subset converted into nadir-effective reflectances (channel N is included only
for visualisation), and Figure 4.9b shows the corresponding expected clear-sky scenario. The
2-channel differences of Figure 4.9a with respect to Figure 4.9b are used to evaluate the OCRA
formula in Eq. 4.2 and generate the radiometric cloud fraction in Figure 4.9¢c. We see that the
cloud features in Figure 4.9a are well captured by the radiometric cloud fraction in Figure 4.9¢.

(b) (o)

. o) 'v vd .;1;'_

: [ : ,‘;? i 08
4 " -" ‘. -~
doe 2 ¢ F o 06
. R’ h 0.4
’ ‘B oz
| A

o - 0.0

Figure 4.9: Example of OCRA application on an EPIC Level 1B image subset (In-
dia and Sri Lanka) on 2017-08-24 05:07:46 UTC: (a) nadir-effective reflectance for
the EPIC NGU channels, (b) clear-sky scene reprojected to the EPIC Level 1B image
Earth coordinates, and (c) radiometric cloud fraction xcp using the 2-channel ap-
proach (GU) and threshold p = 0.90. The first EPIC channel N is included in (a) and

(b) only for visualisation purposes.
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(a) EPIC nadir-effective reflectance (NGU), 15 June 2018
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Figure 4.10: Example of daily median-aggregated OCRA radiometric cloud fraction

on 15 June 2018, regridded onto an equidistant cylindrical projection map with a
spatial grid resolution of 0.2 deg x 0.2 deg: (a) nadir-effective reflectance for EPIC
NGU channels, and (b) OCRA radiometric cloud fraction xcr using the 2-channel
approach (GU) and p = 0.90. The first EPIC channel N is included in (a) only for

visualisation purposes.

Figure 4.10 presents the median-aggregated OCRA radiometric cloud fraction for all the
EPIC datasets available on 15 June 2018. Similarly to Figure 4.9, we can observe that the main
cloud features that are visible in the nadir-effective EPIC Level 1B product (Figure 4.9a) are
well captured in the OCRA radiometric cloud fraction (Figure 4.9b).

To perform the comparison between the EPIC OCRA radiometric cloud fraction and the
MODIS/Terra geometric cloud fraction, we computed collocated EPIC OCRA daily mean ra-
diometric cloud fraction maps with the same projection and spatial resolution as the MODIS
Level 3 daily aggregated products (i.e. equidistant cylindrical projection and spatial grid of
1 deg x 1 deg). For every MODIS map cell, the selection of EPIC cloud fraction values lying
onto the cell which are time-collocated is done using the mean solar time expected for the
MODIS cell, i.e. the EPIC values are time-collocated with the MODIS cell if the absolute dif-
ference between their hour angles and the cell hour angle is smaller than a given threshold.
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The time collocation of MODIS and EPIC values requires, thus, two filtering steps:

1. From the MODIS daily geometric cloud fraction maps, we discard the cells for which
the standard deviation of the solar azimuth angle ¢ is greater than an empirical thresh-
old of 10 deg. For these map cells, the daily geometric cloud fraction uses measurements
from different orbits (i.e. measurements acquired with a significant time difference), so
they are not suitable for the comparison. As a consequence, measurements from higher
latitudes are in general discarded. For the remaining MODIS cells, we estimate the mean
local hour angle wy, using the MODIS/Terra Level 3 mean solar angles:

sin ¢ sin@o] (411

wp = arcsin [— cos 3(d))

where @y is the solar azimuth angle (defined clockwise from due North), 6 is the solar
zenith angle, and 6(dy) is the Sun’s declination approximated by the formula:

21

d(dy) = (0.410152 rad) sin [365

(284 + d])] , (4.12)

in which dj denotes the Julian day number.

2. For every EPIC dataset used to generate an EPIC daily radiometric cloud fraction map,

we determine the expected local hour angle wMOPS(x, ) for each pixel located at the

image pixel coordinates (x,y), and we estimate the actual local hour angle wC(x, y)
by using Eq. 4.11 and the solar angles available within the given EPIC dataset. The pixel

value is discarded if:

]wEPIC(x,y) — wﬁ/[ODIS(x,y)\ > 15 deg, (4.13)

which permits to compare measurements with a maximum time difference of about 1 h.
Note that the solar azimuth angle ¢ in the EPIC datasets uses a reverse sign convention,

so a sign change is required before using Eq. 4.11.

Figure 4.11 presents the daily radiometric cloud fraction product from the EPIC sensor
using the OCRA algorithm (Figure 4.11a) and the daily geometric cloud fraction product from
the MODIS/Terra Level 3 collection (Figure 4.11b) on 3 November 2017. We see that the main
cloud patterns are shared between both products and, as expected, the EPIC product presents
in general lower values than the MODIS product (Figure 4.11c). The discrepancy between the
EPIC and MODIS products is higher under the presence of thin clouds, i.e. clouds with optical
thickness lower than 5 (Figure 4.11d), while the agreement is higher under the presence of
optically thick clouds and under clear-sky conditions. This difference between the radiometric
cloud products and the geometric cloud fraction products is expected and has been already
reported in previous studies [79-81]: the OCRA algorithm makes use of the EPIC UV-VIS
channels, which are not sensitive to optically thin clouds that can be detected by the short-
wave infrared (SWIR) channels from MODIS.
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(a) EPIC cloud fraction (3 Nov. 2017) (b) MODIS cloud fraction (3 Nov. 2017)
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(c) Cloud fraction difference (3 Nov. 2017) (d) MODIS cloud optical thickness (3 Nov. 2017)
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Figure 4.11: Daily comparison on 3 November 2017 between (a) EPIC radiometric
cloud fraction and (b) MODIS geometric cloud fraction. (¢) Difference between EPIC
and MODIS cloud fractions, and (d) MODIS cloud optical thickness. OCRA and

MODIS results agree very well for optically thick clouds and in clear-sky scenes.
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Figure 4.12: Difference between EPIC and MODIS daily cloud fractions for the pe-
riod from 12 June 2015 to 27 June 2019 (a) over land, (b) over water, and over water

only when the cloud optical thickness T is (c) greater than 5 or is (d) greater than 10.
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Figure 4.13: Difference between daily EPIC radiometric cloud fractions and MODIS
geometric cloud fractions for the time period from 12 June 2015 to 27 June 2019 (a)
over water plus land, and (b) over water locations with optically thick clouds with
T > 10 plus land.

Figure 4.12 shows the histograms of differences between the EPIC daily radiometric cloud
fraction and the MODIS daily geometric cloud fraction for the time period from 12 June 2015
to 27 June 2019. Figure 4.12a shows the difference over land locations, for which we observe
a good agreement, with the histogram median value at —0.024. Figure 4.12b presents the dif-
ference over water locations; the histogram is displaced to the left of the zero value, showing
a global underestimation of the EPIC cloud fraction with respect to the MODIS cloud fraction
with a histogram median value of —0.239. The difference between cloud fractions over water
can be better analysed after excluding optically thin clouds (i.e. clouds with an optical thick-
ness T lower than a small threshold). In Figure 4.12¢, we observe the difference over water
locations when only considering clouds for which T > 5. This histogram still has a similar
behaviour to that of Figure 4.12b, although the histogram median value is reduced to —0.177.
Similarly, in Figure 4.12d we see the difference over water locations only when 7 > 10. In this
case, the histogram shape changes significantly and turns more similar to that of Figure 4.12a,
with a histogram median value of —0.058.

Figure 4.13 presents the histograms of differences when aggregating land and water loca-
tions (Figure 4.13a), and when aggregating land locations and those water locations for which
the cloud optical thickness 7 is greater than 10 (Figure 4.13b). The global median difference
is located at —0.186, and it decreases to —0.040 after discarding thin clouds over water. These
histograms support our findings about the lack of sensitivity of the EPIC UV channels to the

presence of optically thin clouds.
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Chapter 5

EPIC-ROCINN: Estimation of
cloud properties from EPIC/DSCOVR

In this chapter, we implement and analyse the Retrieval Of Cloud Information using Neural
Networks (ROCINN) to estimate cloud optical thickness and cloud-top height of liquid-water
clouds from EPIC/DSCOVR measurements. Our main contributions are the following:

1. The input space definition needs to be addressed for the specific geometries of EPIC.
Replacing the viewing zenith angle with the relative zenith angle ensures that the neural
networks will be later trained for back-scattering viewing geometries while unfeasible
geometries will be skipped, and replacing the relative azimuth angle with the scattering
angle allows to keep the handling of perpendicular incident or viewing geometries (i.e.
undefined relative azimuth angle) outside of the neural network training process.

2. The radiative transfer model for EPIC can be replaced by two feed-forward neural net-
works corresponding to the clear-sky and fully-cloudy scenarios, and one single hidden
layer is enough to reach errors lower than 0.3% for 80% of the validation dataset when
using 64 neurons for the clear-sky neural network and 128 neurons for the fully-cloudy

neural network.

3. The sensitivity analysis shows that only the cloud-top height can be retrieved with cer-
tain accuracy for most sources of uncertainty. Combining noise of SNR equal to 290 and
fixing the cloud effective particle size to 13 pym and the cloud geometrical thickness to
2km, 80% of the validation dataset allows to retrieve the cloud optical thickness and
cloud-top height with absolute errors within [—26, +-38] and [—0.74, +-0.92] km, respec-
tively. The retrieved cloud optical thicknesses are strongly affected by the selection of a
fixed cloud effective particle size and by negative offsets in the cloud fraction.

4. The conclusions arisen from the sensitivity analysis agree with the comparison between
the retrieved ROCINN cloud products and the operational EPIC cloud products for one
test example.

Conference contributions

V. Molina Garcia, D. Loyola, Retrieval of cloud properties from EPIC/DSCOVR with ROCINN/OCRA:
Status report, oral presentation at DSCOVR Science Team Meeting, 6—8 October 2020, Greenbelt, MD
(United States), National Aeronautics and Space Administration, 2020.

V. Molina Garcia, D. S. Efremenko, A. del Aguila, Automatic differentiation for Jacobian computations

in radiative transfer problems, 21st European Workshop on Automatic Differentiation, 19-20 Novem-
ber 2018, Jena (Germany), Friedrich Schiller University Jena, 2018.
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5.1 Introduction

The Retrieval Of Cloud Information using Neural Networks (ROCINN) is an algorithm for
retrieving cloud macrophysical parameters from remote sensing radiance measurements [90].
In its more general approach, ROCINN solves an optimisation problem in which the original
(and time-expensive) radiative transfer model (RTM) assumed as forward model is replaced
by a weighted linear combination of two trained feed-forward neural networks:

Yy = RTM(x/ P) ~ (1 - XCF) NNclear-sky(psg) + XcF NNioud (x/ Psg, PC) = RTMNN(x/ P), (51)

where y is the measurements vector, x is the state vector (i.e. the cloud properties allowed
as retrieval variables), p denotes a generic data vector, Psg is the data vector of surface and
geometry parameters, p_ is the data vector consisting of the non-retrieved cloud properties,
and xcr is the cloud fraction, which acts as weight of the weighted linear combination.

The optimiser can be any standard non-linear least squares solver, such as Gauss-Newton
[91], Levenberg-Marquardt [92] or Tikhonov [93]. Throughout this chapter, we will utilise the
Levenberg-Marquardt algorithm as ROCINN optimiser, which balances between the Gauss-
Newton and the gradient descent methods [94] and is more robust than the standard Gauss-

Newton even if the initial solution is far from the final minimum. The objective function is:
@(x,p) = [ly’ — RTMxn(x, p)[2, (52)

and the solution is found with successive updates of x by an update step Ax obtained from:
[J7] + adiag(J"])]Ax = [y — RTMnn(x, p)], (5.3)

where | is the Jacobian of the model function with respect to the state vector components, and
a > 0is a damping factor adjusted at each iteration, normally by reducing its value if ®(x, p)
reduces fast, and by increasing it if ®(x, p) increases. For « — 0, the method is equivalent
to Gauss-Newton, whereas for &« — oo, the method is equivalent to gradient descent. In this
chapter, the initial value of a is set to 0.001 max{diag(J"])}. For the purpose of this research,
a standard feed-forward neural network class has been implemented in Python. The deriva-
tives of this neural network implementation (and, thus, the elements of J) are obtained by au-
tomatic differentiation with the self-implemented Python library dnumpy [95], which extends
a subset of numpy [96] functionality with derivative propagation using function decorators.

The description of the neural network input/output space and its hyperparameter analy-
sis is provided in Section 5.2. In Section 5.3, we present the sensitivity analysis in the retrieval
of two cloud macrophysical parameters (cloud optical thickness and cloud-top height) based
on different sources of uncertainty. Finally, in Section 5.4 we show a comparison between the
retrieved ROCINN cloud products with the operational EPIC/DSCOVR cloud products for
one test example and provide a discussion of the results.
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5.2 Neural network configuration

5.2.1 Input space definition

The first step in the neural network training process is the generation of an appropriate input
sample, i.e. the set of points distributed through the input space of the forward model to be
approximated by the neural network. A proper selection of the input points is crucial for the
neural network training and validation processes to succeed [97], and it should consider:

¢ the selection and number N of input variables,
¢ the distribution of the input sample points within the input space, and

¢ the minimal number of input sample points n which is enough to describe the features

of the forward model being approximated.

The set of input variables for radiative transfer modelling consist of—at least—two surface
parameters (surface altitude /s and surface albedo As) and three geometric parameters (rela-
tive azimuth angle Ay, solar zenith angle 6y, viewing zenith angle 6) to model the clear-sky
scenes. This set of input variables is increased with the set of cloud properties (cloud effec-
tive particle size 7, cloud optical thickness 7., cloud-top height h; and cloud geometrical
thickness Ah.) to model the cloudy scenes. To sum up, the input space for the neural network
modelling the clear-sky scenes has a number of dimensions N,y = 5, and the input space
for the neural network modelling the cloudy scenes has a number of dimensions Njoudy = 9-

Given the number of input dimensions N, the generation of each input sample point is

divided in three stages:

1. The generation of a point within the RN unit hypercube by means of a low-discrepancy
sequence generator. An example of this kind is the Halton generator [98], which cre-
ates sample points relying on a set of N van der Corput generators [99] in which the

sequence bases are coprime numbers.

2. The rescaling of the point components into the valid ranges for every input dimension
and, if required, the remapping of the point components by means of an importance
function [97] that mimics the probability density function of the input variables, which

may not be necessarily uniform.

3. The validation of the input point based on additional criteria, such as physical or geo-
metrical constraints. If these restrictions are not held by the input point, it is discarded.

It is common practice to substitute the input geometric parameters [Ag, 6y, 0]T with their

corresponding cosines [cos Ag, pio, ,]T, where jo = cos 6y and y = cos 6, since this is the ac-

tual dependency of the radiative transfer model on the geometric parameters. The selection of
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the input geometric parameters for our problem is modified from this standard setup because

of two additional aspects that need to be taken into consideration:

1. The input variables are selected under the assumption that they are independent from
each other. Due to the viewing geometry of the EPIC instrument, this assumption does
T

not hold for the pair [y, ] ', since the relative zenith angle A@ = 6 — 6 is always lower

than approximately 12 deg in absolute value (Figure 5.1). This means that a sampling
method that considers [p, #]T as independent input variables will generate a signifi-
cant number of points of the input space that are not representative of the EPIC viewing
geometries, e.g. combinations of small solar zenith angles and high viewing zenith an-
gles (see Figure 5.2). From this fact, the input geometric parameters are modified from
T

[cos A, pio, 1] T into [cos Ag, o, AB]T, from which we may recalculate y as

i = cos O = cos [arccos jy + Af],

and which requires to add a geometric restriction in order to consider an input point as
valid, since § must be restricted to the range [0,90) deg:

0 deg < arccos po + A8 < 90 deg. (54)

2. From the nature of the spherical coordinates system, A¢ is undefined (and so is cos Ag)
whenever 6 or 0 are equal to 0 (i.e. whenever g or y are equal to 1). In such situations,
variations in cos A¢ should not cause variation in the neural network output values.
Since this behaviour cannot be captured well enough by the neural networks, it is rec-
ommended to replace cos Ag with the cosine of the scattering angle cos © to describe
the geometric configuration, since cos ® is well-defined when 6 or 6 are equal to 0 and

cos Ag can always be recovered from the relation:
cos® = —pop + [(1 — u3)(1 — u?)]*% cos Ag. (5.5)

In summary, the free input geometric parameters used for the generation of the input sample
points should be [cos ®, uo, AO]T, since they allow us to generate valid [Ag, 6o, 8] T points with
appropriate geometric constraints for the EPIC instrument while avoiding the configurations
with undefined Ag¢ for normal incident Sun light or nadir view.

The importance functions for the two surface properties (i.e. altitude and albedo) need to
be generated from auxiliary database sources. In the case of the surface elevation, the impor-
tance function is obtained from the statistics of ETOPO1 data [100] regridded to a resolution
of 0.2 deg (see Figure 5.3a). For the surface albedo, the importance function is computed from
the statistics of MERIS black-sky albedo climatology [101] interpolated to the four EPIC chan-
nels in the oxygen bands (see Figure 5.3b). The use of these importance functions during the
input space sample generation will increase the concentration of sample points with surface
altitudes close to 0 km and also smaller surface albedos (As < 0.2), which correspond to com-

patible configurations over ocean.
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Figure 5.1: Distribution of geometric variables for the EPIC mission during the pe-
riod from 12 June 2015 to 27 June 2019: (a) solar zenith angle 6y, (b) viewing zenith
angle 6, (c) relative azimuth angle Ag and (d) relative zenith angle Af. We observe
that the distributions of the solar and viewing zenith angles are very similar, and the

distribution of their relative differences is always below 12 deg in absolute value.
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Figure 5.2: Distribution of 250 input sample points in the projected space of [0y, 8] T
when the sample generator relies on (a) the pair [y, #]T and (b) the pair [po, AO]T.
The light blue area is the region where |Af| < 12 deg, and which corresponds to the

real EPIC viewing geometries.
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Figure 5.3: Distribution of surface variables for the EPIC mission as obtained from
the auxiliary databases (i.e. ETOPOL1 for the surface altitude, MERIS climatology for

the surface albedo).

The input space sample generation does not apply any importance function to the compo-
nents corresponding to the cloud properties, in order to cover the domain of definition for the
potential retrieved parameters as uniformly as possible. However, we need to apply physical
restrictions, e.g. to avoid unfeasible configurations in which the cloud geometrical thickness
is bigger than the cloud-top height. The domains of definition were chosen as [4,20] pm for
reff, (0,150] for 7., [1,15] km for h and (0,4] km for Ah.. Figure 5.4 shows the resulting distri-
butions for the four cloud variables when generating the first 20000 sample points. While 7
and 7. follow a quasi-uniform distribution, the physical restriction Ah. < h. causes a decrease

of points for /. < 4 km, and a global negative slope in the distribution of Ah..
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Figure 5.4: Distributions of the cloud variables as generated by a Halton sequence

of 20000 points without importance sampling but applying physical constraints.
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5.2.2 Validation dataset generation

The neural network training processes require to generate training and validation datasets,
consisting of vectors of input parameters (five if dealing with clear-sky scenes, nine for cloudy
scenes) and the corresponding vectors of output values (four radiances). The training data is
employed by an optimiser to find the sets of biases and weights that allow the neural network
to better reproduce the underlying physical model. The validation data is used to ensure that
the neural network does not overfit the training data.

To obtain a first rough estimate of the minimum sample size that is representative of the
population of atmospheric scenes, we analysed basic statistics of the radiative transfer output
space as a function of the sample size. Figure 5.5 and Figure 5.6 show the evolution of the
radiance mean and standard deviation, respectively, as a function of the input sample size for
the clear-sky and cloudy scenes. We see that the convergence of the radiance mean and stan-
dard deviation is not reached at least until considering 10000 sample points. For validation

purposes, next sections will therefore use a validation sample consisting of 20000 points.
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Figure 5.5: Sun-normalised radiance mean as a function of the number of sample

points for (a) clear-sky and (b) cloudy scenes.
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Figure 5.6: Sun-normalised radiance standard deviation as a function of the number

of sample points for (a) clear-sky and (b) cloudy scenes.
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5.2.3 Hyperparameter analysis

The hyperparameter analysis in machine learning studies the influence of the model hyper-
parameters on the performance of a trained machine learning model [102]. By model hyper-
parameters, we refer to those parameters that are not computed or optimised as part of the
training process of the machine learning model. For instance, neural network hyperparame-
ters include the topology and number of neurons per hidden layer, the activation functions,
the optimiser, the tolerance convergence value to consider for the residuals and the gradient
update, and the maximum number of iterations.

Our hyperparameter analysis focused on the influence of the number of neurons and the
training dataset size on the performance of the trained neural networks modelling clear-sky
and cloudy scenes as seen by EPIC. The other hyperparameters were fixed: the topology was
set to multi-layer perceptron; the number of hidden layers was set to one; the activation func-
tions were set to hyperbolic tangent for the connection between input and hidden layers, and
to linear for the connection between hidden and output layers; the optimiser was chosen to L-
BFGS-B [103, 104], the tolerance convergence was set to 10~ 12 for the residuals and 10~ for the
gradient update; the maximum number of iterations was set to a high value to ensure that the
training processes stop due to the former tolerance values. Specific to the L-BFGS-B optimiser
is the maximum number of variable metric corrections utilised to define the limited memory
matrix, which was fixed to 64. All the neural networks were trained with scikit-learn [105],
and both training dataset inputs and outputs were scaled with standard scalers (i.e. scalers
that convert the training dataset inputs and outputs so that each input and output component
will have mean equal to 0 and standard deviation equal to 1).

In Figure 5.7, we show the performance of the trained neural networks for clear-sky and
cloudy scenes as a function of the training dataset size (from 600 to 160000) and the number of
neurons in the hidden layer (from 8 to 160, trained every 8 neurons). To analyse the neural net-
work performance, we focused on the mean absolute error (MAE) of the neural networks to
predict the outputs of a validation dataset of 20000 points, and on an overfitting ratio defined
as the quotient of the MAE on the validation dataset over the MAE on the training dataset.
A neural network is considered well trained when the validation MAE remains small and
the overfitting ratio is close to 1. High values in the validation MAE and an overfitting ratio
close to 1 indicate that the neural network suffers from underfitting, i.e. the neural network
configuration is too simple to encapsulate the underlying physical model from the training
data. High values for the validation MAE and high overfitting ratios indicate that the neu-
ral network suffers from overfitting, i.e. the training dataset is not representative of the data
population, or the neural network configuration contains too many parameters (biases and
weights) with respect to the training dataset size, and the final selection of biases and weights
fits the training data too well but do not encapsulate the global behaviour of the underlying
physical model.
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Figure 5.7: Performance of the neural networks simulating the clear-sky and cloudy
scenes as a function of the training dataset size and the number of neurons in the
hidden layer. (a) and (b) show the MAE on the validation dataset, while (c) and (d)
show the overfitting ratio.

From Figure 5.7a and Figure 5.7¢, at least 100000 training points and 64 neurons are re-
quired to ensure a validation MAE lower than 5.3 x 10~ sr~! and an overfitting ratio below
1.025 for the neural network simulating clear-sky scenes. From Figure 5.7b and Figure 5.7d, at
least 100000 training points and 128 neurons are required to ensure a validation MAE lower
than 2.3 x 10~* sr~! and an overfitting ratio below 1.025 for the neural network simulating
cloudy scenes. In general, we see that there is not a unique optimal configuration neural net-
work for each case. After a sufficient training dataset size and number of neurons, the vali-
dation MAE tends to stabilise. It is also interesting to point that the overfitting ratio tends to
increase with the number of neurons if the number of training points is fixed.

For the clear-sky scenes, we chose the neural network trained with 64 neurons and 120000
training points. For the cloudy scenes, we chose the neural network trained with 128 neurons
and 140000 training points. The performance of these networks is shown in Figure 5.8. For
both neural networks, 80% of the outputs from the validation dataset can be predicted with a

relative error smaller than about 0.3%.
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Figure 5.8: Neural network performance (64 neurons and 120000 training points for
clear sky; 128 neurons and 140000 training points for cloudy sky) for the validation
datasets; (a) and (b) show the errors on the predicted validation outputs in absolute

value, whereas (c) and (d) show the corresponding relative errors.

5.3 Sensitivity analysis

In this section, we perform a sensitivity analysis on the retrieval of two cloud macrophysi-
cal parameters, cloud optical thickness (COT) and cloud-top height (CTH), based on various
known sources of uncertainty. The forward model for this analysis is the set of neural net-
works chosen in the previous section, and replace the original radiative transfer model DOME
applied to the EPIC instrument. Unless otherwise stated, the sensitivity analysis is performed
on the set of N = 20000 examples corresponding to the validation dataset described in the
previous section, the scenes under study are fully cloudy, the initial guess is 10! ~ 31.6 for
COT and 10 km for CTH, and only one source of uncertainty is addressed at a time.

5.3.1 Sensitivity to instrument measurement noise

The first source of uncertainty in study is the instrument noise, which is described by means
of the signal-to-noise ratio (SNR). For the EPIC instrument, this maximum SNR is 290 [106],
while the SNR according to the design specification is about 200 [107], and the value may
even be lower (about 40) in dark areas such as clear-sky scenes over ocean (as stated by J.
Herman at DSCOVR Science Team Meeting 2019).
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We performed the retrieval of cloud macrophysical properties (COT and CTH) over the
synthetic validation data sample under the assumption of perfect knowledge of both CER and
CGT for each sample scene, and using perturbed Sun-normalised radiances {y°};cy given in

terms of their exact theoretical values {y, }icn:

=, =789,
where j is the EPIC channel index and (5{}015"' is a random variable with mean pngise = 0 and
standard deviation defined as onoise = ¥;j/SNR > 0, and which lets us rewrite Eq. 5.6 as:

(5.6)

S __ noise __ _ . N(O,l)
yz’j = Yij + 51']‘ = Yij +N( n01se) =VYij + Onoise 'N(Orl) = Yij <1 + SNR . (5'7)
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Figure 5.9: Absolute error in the retrieved cloud macrophysical parameters (COT,
CTH) for the synthetic validation sample as a function of the SNR: (a) and (b) for
SNR — oo (i.e. no noise), (c) and (d) for an SNR equal to 290 (maximum instrument
value), and (e) and (f) for an SNR equal to 100.
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Figure 5.10: Relative error in the retrieved cloud macrophysical parameters (COT,
CTH) for the synthetic validation sample as a function of the SNR: (a) and (b) for
SNR — oo (i.e. no noise), (c) and (d) for an SNR equal to 290 (maximum instrument
value), and (e) and (f) for an SNR equal to 100.

Figure 5.9 shows the absolute retrieval errors in COT and CTH on the synthetic valida-
tion sample when three different values of SNR are used (infinity, 290 and 100), whereas the
corresponding relative retrieval errors are shown in Figure 5.10. In the absence of instrument
noise (Figure 5.9a and Figure 5.9b), the median absolute errors were +5.8 x 1073 for the COT
and —1.7 m for the CTH, and 80% of the absolute errors were found within [—1.50, 4-0.99] for
the COT and within [—0.12, +0.10] km for the CTH, and 80% of the relative errors were found
within [—1.9%, 4+1.4%] for the COT and within [—1.6%, +1.9%] for the CTH (Figure 5.10a and
Figure 5.10b); the rate of converged retrievals was 98.5%. This case would correspond to the
ideal situation in which no noise would be present in the EPIC measurements and we would

also know all the non-retrieved parameters with complete accuracy. If the SNR is decreased
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to its maximum value of 290 for EPIC (Figure 5.9¢ and Figure 5.9d), the median errors remain
negligible in both retrieved parameters, but the histograms of errors are spread so that 80%
of the absolute errors are found within [—5.2, +4.1] for the COT and within [—0.19, +0.17] km
for the CTH, and 80% of the relative errors are found within [—5.6%, +4.9%)] for the COT and
within [—2.3%, +2.5%] for the CTH (Figure 5.10c and Figure 5.10d); the rate of converged re-
trievals decreases slightly to 98.3%. Finally, if the SNR is decreased to 100 (Figure 5.9e and
Figure 5.9f), the histograms of errors spread more so that 80% of the absolute errors are found
within [—13, +10] for the COT and within [—0.39, +-0.39] km for the CTH, and 80% of the rel-
ative errors are found within [—13%, +12%] for the COT and within [—4.8%, +5.2%)] for the
CTH (Figure 5.10e and Figure 5.10f); the rate of converged retrievals decreases to 97.5%. In
general, we observe that the retrieval of COT is more sensitive to the SNR than the retrieval of
CTH. This result is expected, as the COT is closely related to the absolute measurements in the
non-absorbing O, channels, whereas the CTH is closely related to the absorption-continuum
ratio within the corresponding O, channels.

In Figure 5.11, we show the dependency of the absolute retrieval error statistics as a func-
tion of the SNR. For both COT and CTH, the absolute median error remains close to 0 for
any SNR greater than 50 (Figure 5.11a and Figure 5.11b). The spread of the error histograms
can be inferred from the IDR, and it is a decreasing function of the SNR (Figure 5.11¢ and
Figure 5.11d). Both results are expected, since the Gaussian noise has mean 0 (i.e. unbiased),
and the size of the noise is modulated with oyeise, Which is inversely proportional to the SNR.
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Figure 5.11: Dependency of the absolute retrieval error statistics (median and IDR)

as a function of the SNR.
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5.3.2 Sensitivity to fixed cloud geometrical thickness

Another source of retrieval uncertainties is the value defined for the cloud geometrical thick-
ness (CGT) in the radiative transfer model. Since the information content in the EPIC channels
located at the oxygen bands is limited, only the cloud-top height (CTH) can be retrieved with
an acceptable uncertainty [108, 109]. As a consequence, the radiative transfer model needs to
define the CGT based on an a priori assumption, for example, by setting the CGT to a fixed
value. This is the approach followed by the TROPOMI/Sentinel-5P cloud processor, where
the CGT is fixed to 1 km [90].

We performed the retrieval of cloud macrophysical properties (COT and CTH) over the
synthetic validation data sample under the assumption of measurements without noise, per-
fect knowledge of CER and different fixed values of CGT (which differ from their actual ones).
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Figure 5.12: Absolute error in the retrieved cloud macrophysical parameters (COT,
CTH) for the synthetic validation sample as a function of the fixed CGT: (a) and (b)
for CGT = 0.5 km, (c) and (d) for CGT = 1 km, and (e) and (f) for CGT = 3.0 km.
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Figure 5.13: Relative error in the retrieved cloud macrophysical parameters (COT,
CTH) for the synthetic validation sample as a function of the fixed CGT: (a) and (b)

for CGT = 0.5 km, (c) and (d) for CGT = 1 km, and (e) and (f) for CGT = 3.0 km.

Figure 5.12 presents the absolute retrieval errors in COT and CTH on the synthetic validation
sample if the CGT is set to a fixed value (0.5 km, 1 km and 3 km); the corresponding relative
retrieval errors are shown in Figure 5.13. We see that setting the CGT to a fixed value does not
have a significant impact on the retrieved COT independently from its value (Figure 5.12a,
Figure 5.12¢ and Figure 5.12e). In the three cases, the median absolute errors in COT is close
to 0, and at least 80% of the absolute errors are within [—2.9, 4+1.8], i.e. at least 80% of the
relative errors are within [—3.9%, +2.5%)]. The rate of converged retrievals was at least 98.4%.

In Figure 5.12b, Figure 5.12d and Figure 5.12f, we observe the statistics of absolute re-
trieval errors for CTH on the synthetic validation data sample for the cases in which CGT is
fixed to 0.5 km, 1 km and 3 km, respectively. When CGT is fixed to 0.5 km, the absolute errors
in the retrieved CTH present a median bias of —0.48 km and 80% of the absolute errors are
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found within [—1.4, 40.10] km. When CGT is fixed to 1 km, the median bias as well as the in-
terval for the IDR are shifted to —0.28 km and [—1.1, +0.31] km, respectively. Finally, if CGT is
fixed to 3 km, we observe a median bias of +0.33 km and the IDR interval is [—0.20, +1.3] km.
The histograms of absolute errors in CTH are in general non-symmetric with respect to its me-
dian value: they have a negative skew when the fixed CGT tends to underestimate the actual
CGT values, and they have a positive skew when the fixed CGT tends to overestimate them.

The statistics of relative retrieval errors in CTH are shown in Figure 5.13b, Figure 5.13d
and Figure 5.13f. We see that the bias in the median relative error in CTH is an increasing func-
tion of the fixed CGT, moving from —6.0% when CGT is set to 0.5km, to —3.4% when CGT
is set to 1 km, and to +3.8% when CGT is fixed to 3 k. The IDR interval is not constant as it
occurred for the absolute errors in CTH: the relative errors in CTH are within [—20%, +1.3%]
when CGT is fixed to 0.5 km, it shifts and narrows to [—15%, +4.8%] when CGT is fixed to
1 km, and it shifts and stretches to [—2.2%, +25%] when CGT is fixed to 3 km. The effect in
the skewness is similar to the one observed in the histograms of absolute errors in CTH.

In Figure 5.14, we show the dependency of the absolute retrieval error statistics as a func-
tion of the fixed CGT. For both COT and CTH, the absolute median error is an increasing func-
tion of the fixed CGT (Figure 5.14a and Figure 5.14b), and their values are close to 0 when the
CGT is fixed to about 2 km, which is the middle point of the CGT domain definition used to
train the cloudy-sky neural network. For both COT and CTH, the IDR is a convex function of
the fixed CGT (Figure 5.14c and Figure 5.14d), but their minima are found at different values:
at about 2.4 km for the error in COT, and at about 1.6 km for the error in CTH.
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Figure 5.14: Dependency of the absolute retrieval error statistics (median and IDR)

as a function of the fixed CGT.
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5.3.3 Sensitivity to fixed cloud effective particle radius

As described in Section 3.2, liquid-water clouds can be modelled as a homogeneous layer
of Mie water droplets whose radii follow a Gamma size distribution characterised by the
cloud effective particle radius (CER) [110]. Several instruments exploit the use of radiance
measurements at shortwave infrared spectral windows containing information on CER, e.g.
at 1.6, 2.1 and 3.7 pm [111-116]. Since none of these spectral windows are available in the
EPIC instrument, the radiative transfer model needs to define the CER based on an a priori
assumption. Similarly to the CGT, one approach is to fix the CER to a predefined value, as
done by the operational EPIC/DSCOVR cloud processor, where the CER is set to 14 pm for
liquid-water clouds [117]; and by the TROPOMI/Sentinel-5P cloud processor [90].
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Figure 5.15: Absolute error in the retrieved cloud macrophysical parameters (COT,
CTH) for the synthetic validation sample as a function of the fixed CER: (a) and (b)
for CER = 8 ym, (c) and (d) for CER = 12 um, and (e) and (f) for CER = 16 pm.
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Figure 5.16: Relative error in the retrieved cloud macrophysical parameters (COT,
CTH) for the synthetic validation sample as a function of the fixed CER: (a) and (b)
for CER = 8 ym, (c) and (d) for CER = 12 pym, and (e) and (f) for CER = 16 pm.

We simulated the retrieval of cloud macrophysical properties (COT and CTH) over the
synthetic validation data sample under the assumption of measurements without noise, per-
fect knowledge of CGT and different fixed values of CER (differing from the correct values).
Figure 5.15 shows the absolute retrieval errors in COT and CTH on the synthetic valida-
tion dataset if the CER is fixed to 8, 12 and 16 pm, and Figure 5.16 shows the associated
retrieval relative errors. With these configurations, the CTH retrieval is not affected signifi-
cantly, with absolute errors in CTH whose median is close to 0 km and whose IDR interval is
contained within [—0.42, +-0.53] km (Figure 5.15b, Figure 5.15d and Figure 5.15f), i.e. within
[—5.4%, +7.1%] in relative error (Figure 5.16b, Figure 5.16d and Figure 5.16f).

Figure 5.15a, Figure 5.15¢ and Figure 5.15e present the corresponding absolute retrieval
errors in COT caused by fixing the CER. When CER is set to 8 pm (Figure 5.15a), the median
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of the retrieved absolute errors in COT is biased to —9.5, and 80% of the simulated retrievals
have COT errors within [—57, +15], or within [—61%, +25%] in relative error (Figure 5.16a);
the rate of converged retrievals was 93.3%. For CER fixed to 12 pm (Figure 5.15¢), the COT er-
rors are less biased, with a median absolute error of —0.51 and an IDR interval of [—31, +35],
or within [—36%, +52%] in relative error (Figure 5.16¢); the rate of converged retrievals de-
creased to 90.0%. Finally, when CER is fixed to 16 pm (Figure 5.15e), the COT errors are again
more biased, with a median absolute error of +-3.9 and an IDR interval of [—12, +-46], or within
[—14%, +71%] in relative error (Figure 5.16e); the rate of converged retrievals also decreased
to 85.7%. In general, the histograms of absolute errors in COT are also non-symmetric with
respect to its median value: they have a negative skew if the fixed CER tends to underestimate
the correct values, and a positive skew if the fixed CER tends to overestimate the correct ones.

In Figure 5.17, we observe the dependency of the absolute retrieval error statistics as a
function of the fixed CER. For the COT, the absolute median error is an increasing function
of the fixed CER (Figure 5.17a), with a value close to 0 when CER is about 13 um; the IDR is
a decreasing function of the fixed CER (Figure 5.17c), but it does not let us draw conclusions
due to the severe skewness of the histograms of absolute and relative COT errors. For the
CTH, the absolute median error is a decreasing function of the fixed CER (Figure 5.17b), and
it approaches to 0 when CER is also about 13 pm; the IDR is a convex function with a spread

minimum area for CER between 9 and 13.5 ym.
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Figure 5.17: Dependency of the absolute retrieval error statistics (median and IDR)
as a function of the fixed CER.
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5.3.4 Sensitivity to negative offset in surface albedo

Former subsections discussed the sensitivity in the retrieval of cloud macrophysical proper-
ties when addressing limitations related to the instrument, e.g. the signal noise or the fixing of
model parameters (CGT and CER) due to the lack of enough information content in the EPIC
channels. The surface properties (i.e. height and albedo), which are ingested from auxiliary
datasets (digital elevation models and climatology maps, respectively), are additional sources
of uncertainty in the retrieval process. Current digital elevation models are quite accurate (e.g.
ETOPOI1 [100]) and the main uncertainties are related to the regridding process to the actual
spatial resolution of the target instrument. Standard climatology maps for surface albedo in-
clude the black-sky albedo (BSA) database from the MERIS instrument [101], or the recent
surface Lambertian-equivalent reflectance (LER) maps for GOME-2 and SCIAMACHY [118].
Since the EPIC instrument channels do not coincide in general with those of the climatology
database, rough interpolation with the closest database channels needs to be applied.

We analysed the impact of a surface albedo bias equal to —0.05 for all the oxygen-band
channels on the retrieval of cloud macrophysical properties (COT and CTH) over the syn-
thetic validation data sample, assuming that no other sources of uncertainty are present (i.e.
no noise, perfect knowledge of CGT and CER). Figure 5.18a and Figure 5.18c show the his-

tograms of absolute and relative retrieval errors in COT, respectively, whereas Figure 5.18b
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Figure 5.18: Absolute and relative errors in the retrieved cloud macrophysical pa-
rameters (COT, CTH) for the synthetic validation sample after including an offset of
—0.05 to the surface albedos.
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and Figure 5.18d present the histograms of absolute and relative retrieval errors for the CTH,
respectively. For the COT, the underestimation in the surface albedo causes a positive skew
in the distribution of absolute errors, with a median value of +0.62 and an IDR interval of
[—0.27, +11]; similarly, the distribution of relative errors has a median value of +1.1% and an
IDR interval of [—0.32%, +23%)]. The long right tail in Figure 5.18¢ is caused by the synthetic
scenes in which the COT is very small, and for which the negative bias in the surface albedo
is compensated with a much higher optical depth for the cloud. For the CTH, the negative
bias in the surface albedo is propagated as a slight negative skew in the distribution of ab-
solute errors, with a median value of —0.042 km and an IDR interval of [—0.60, +0.068] km,
and the distribution of relative errors has a median value of —0.5% and an IDR interval of
[—7.8%, +1.1%]. Overall, the impact of the surface albedo bias is higher in COT that in CTH,
and the rate of converged retrievals (96.3%) was not affected significantly.

5.3.5 Sensitivity to negative offset in cloud fraction

All former sensitivity analyses were performed under the assumption of fully-cloudy scenes.
However, real instrument measurements may also correspond to partially-cloudy scenes, for
which the cloud fraction (CF) is not exactly 1, but lies within the interval 0 < CF < 1. The Op-
tical Cloud Recognition Algorithm (OCRA), whose implementation and application for EPIC
was presented in Chapter 4, provides a radiometric cloud fraction based on image analysis,
which may be used to feed the scene cloud fraction into ROCINN. In Section 4.5, we showed
that the EPIC radiometric cloud fraction has a median difference of about —0.04 with respect
to the MODIS geometric cloud fraction over water bodies and high COT and over land for
any COT. Based on this result, it is also of interest to discuss the impact that a negative offset
in the cloud fraction would show in the retrieved cloud macrophysical parameters.

The synthetic validation data sample for this analysis is an extension of the validation sam-
ple used in previous sensitivity analyses, in which we attach an additional pseudo-random
column corresponding to the CF, and in which the Sun-normalised radiances are computed as
the CF-weighted linear combination of the clear-sky and cloud-sky neural networks. For our
analysis, the CF were generated by means of a van der Corput sequence with base equal to 29
(i.e. coprime of the bases used for the other parameters during the input sample generation)
and rescaled to the interval [0.1,1.0]. As in previous sensitivity analyses, no other sources of
uncertainty were included (i.e. no noise and perfect knowledge of CGT and CER).

Figure 5.19a and Figure 5.19c show the histograms of absolute and relative retrieval er-
rors in COT, and Figure 5.19b and Figure 5.19d show the histograms of absolute and relative
retrieval errors in CTH. The first important point to mention is that the rate of converged re-
trievals decreased substantially to just 62.5%. The distribution of absolute errors in the COT
suffers from a significant positive skew, with median COT error of +22 and IDR interval of
[—19, +78] (Figure 5.19a). When analysed in relative values, the distribution of COT errors has
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Figure 5.19: Absolute and relative errors in the retrieved cloud macrophysical pa-
rameters (COT, CTH) for the partially-cloudy synthetic validation sample after in-

cluding an offset of —0.05 to the cloud fraction.

a positive median of 35%, and 80% of the results lie within [—25%, +140%] (Figure 5.19¢). We
also observe a second mode on the left tail of the histogram, corresponding to non-converged
retrievals in which COT barely deviated from the initial guess. Underestimating the CF trans-
lates into lower Sun-normalised radiances simulated by the radiative transfer model for the
non-absorbing regions of the oxygen bands, which the retrieval process compensates by in-
creasing the COT of the cloud layer; this compensation will be higher when the CF is lower.
For the CTH, the negative bias in the CF does not have a significant impact on the median
error (absolute or relative), but the IDR interval spreads to [—0.75,2.1] km in absolute values
(Figure 5.19b) and to [—8.3%, +31%)] in relative values (Figure 5.19d). The right skew spread
is also consequence of the non-converged retrievals that were mentioned for Figure 5.19¢, and

for which CTH barely moved from its initial guess of 10 km.

5.3.6 Sensitivity to combined sources of uncertainty

To conclude the sensitivity analysis, we include one additional study with several of the for-
mer sources of uncertainty combined together. We performed the retrieval of cloud macro-
physical properties (COT and CTH) over the synthetic validation data sample (i.e. all fully-
cloudy scenes) under the assumption of noisy measurements with a SNR equal to 290, a fixed
CGT value of 2 km and a fixed CER value of 13 pm.
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Figure 5.20: Absolute and relative errors in the retrieved cloud macrophysical pa-
rameters (COT, CTH) for the synthetic validation sample when at the same time the
SNR is set to 290, the CGT is fixed to 2 km and the CER is fixed to 13 pm.

In Figure 5.20a and Figure 5.20b, the absolute retrieval errors for COT and CTH under
these combined sources of uncertainty are shown. In Figure 5.20c and Figure 5.20d, we display
their corresponding relative errors. The rate of converged retrievals was 88.6%.

Regarding the COT, the median absolute error was equal to +-0.37 (almost unbiased), and
80% of the simulated retrievals found COT with an absolute error within [—26, +38], which
translates into an interval of [—30%, +57%] in relative terms. Regarding the CTH, the median
absolute error was equal +0.037 km (almost unbiased too), and the IDR interval for the CTH
absolute error was [—0.74, +0.92] km, or [—9.2%, +17%]| when analysed in relative errors.

To sum up, all the sensitivity analysis point into the same conclusion: the CTH is a much
more reliable retrieval parameter than the COT, based on the sources of uncertainty that have
been described. The measurement noise plays no role in the retrieval error bias for both CTH
and COT: the distribution of retrieval errors spreads if the SNR is decreased, especially for the
COT, but this spread is small for the maximum instrument SNR value of 290. Fixing the CGT
plays little role in the COT retrieval, whereas it may introduce a bias in the retrieved CTH, as
well as a bigger error spread. Fixing the CER does not affect the CTH retrieval, but it strongly
affects both COT retrieval bias and error spread. A negative offset in the surface albedos
causes an increase in the retrieved COT, but the magnitude is much smaller than the errors
due to fixing CER. Finally, a negative offset in the cloud fraction causes strong overestimations
in the retrieved COT and decreases the retrieval convergence rate considerably.
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5.4 Results

In this section, we provide a comparison of the cloud products as obtained by ROCINN and
the corresponding operational EPIC products for one test example. The EPIC Level 1B image
corresponds to 2018-10-10 16:39:39 UTC. The associated dataset from the EPIC Level 2 CLOUD
Version 1 collection was employed as reference.

To construct the vector of measurements y, the image counts per second need to be con-
verted first to reflectances by using the calibration factors corrected from degradation (result
from Chapter 2), and from them into Sun-normalised radiances. Because of the geometric con-
straints for the calibration factors, we restrict our comparison to pixels with solar and viewing
zenith angles below 60 deg.

Regarding the ROCINN configuration, we fixed the CER and the CGT to 13 ym and 2 km,
respectively, to create the data vector p_. We used the same initial guesses for COT and CTH
as in Section 5.3 to define the state vector x. The data vector P is constructed with surface
altitudes regridded from the ETOPO1 database, surface albedos from the MERIS black-sky
albedo database interpolated to the EPIC oxygen band channels, and the geometric variables
available in the EPIC Level 1B dataset. The retrieval is restricted to pixels with xcr > 0.1.

In Figure 5.21a, we show the EPIC false-RGB image (channels at 780, 551 and 388 nm) for
the test example. The associated OCRA radiometric cloud fraction is shown in Figure 5.21b
(result from Chapter 4). As expected, global cloud features are properly identified in the ra-
diometric cloud fraction, except for the optically-thin clouds over water.

(a) False RGB (b) OCRA cloud fraction

1.0

Figure 5.21: (a) False-RGB image from the EPIC Level 1B dataset on 2018-10-10 at
16:39:39 UTC using channels at 780, 551 and 388 nm. (b) OCRA radiometric cloud

fraction for the former dataset.
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(a) ROCINN cloud optical thickness (b) Operational cloud optical thickness

0 3 6 9 12 15 0 3 6 9 12 15
Figure 5.22: Cloud optical thickness (a) with ROCINN and (b) operational reference,
and cloud-top height (c) with ROCINN and (d) operational reference as retrieved

from the oxygen channels of the EPIC test dataset.

Figure 5.22a and Figure 5.22¢ show the COT and CTH values as retrieved by ROCINN for
the EPIC test dataset. The operational COT and cloud effective height (CH) are shown next to
them in Figure 5.22b and Figure 5.22d.

With respect to the retrieved optical thickness, the agreement is mixed. The thick clouds
(COT > 20) are identified as such by both products, although the absolute discrepancy may
be considerable. The operational product also shows thin clouds (COT < 5) over ocean (see

German Aerospace Center -97 - Technical University of Munich



Retrieval of cloud properties from EPIC/DSCOVR Victor Molina Garcia

x10° (a) COT difference x10° (b) (CTH - CH) difference
Median: 2.7 | b T Median: +0.93km | | |
4 |-IDR:21 | e 4 [ IDR:2.3 km | e
*E 3 Dll_!r Do 1 -‘é) 3 Dy ' Do 1
3 | 2 I
o 2 i 1 0 2 i a
ol J l—l_’M | | J lh_ﬁ—\,@ |
O L I I | L 0 I | L | I
—-60 —40 —-20 O 20 40 60 -6 -4 -2 0 2 4 6

COT difference (CTH - CH) difference / km

Figure 5.23: Absolute difference between the retrieved cloud macrophysical param-
eters (COT, CTH) with ROCINN and the operational EPIC cloud product (COT, CH)
for the EPIC test dataset.

e.g. over the South Pacific), but in these areas the retrieved COT is higher for ROCINN. We
must note that the operational product works using a cloud mask, while ROCINN works
using a cloud fraction, and in Section 5.3.5 we saw that negative offsets in the cloud fraction
are translated into an increase in the retrieved COT. This phenomenon can also be observed
in Amazonia in Figure 5.22a: pixels close to the cloud fraction threshold of 0.1 suffer from a
considerable increase in the COT. The ROCINN retrievals were also more unstable close to
the zenith angle edge of 60 deg.

With respect to the retrieved cloud-top height, the agreement between both products is
in general high. There is a slight tendency of bigger height values by ROCINN for the higher
clouds (visible e.g. in the hurricane over Florida). For lower clouds over ocean, the operational
CH goes also below 2 km, which was not possible for our ROCINN configuration because of
the fixed value for the CGT.

Finally, in Figure 5.22 we present the histogram of differences in COT and CTH between
the cloud macrophysical parameters retrieved with ROCINN and the EPIC operational cloud
products for the EPIC test dataset. The COT difference has a median value of +2.7, and for
80% of the pixels the COT differs within [—4.3, +16]. The histogram has a small second local
maximum in the bin at [145, 150], which corresponds to the unstable ROCINN retrievals at the
zenith angle edge of 60 deg. The difference between the ROCINN CTH and the operational
CH has a median value of +0.93 km, and for 80% of the pixels this difference is found within
[4+0.039, 4+-2.3] km. In Section 5.3.2, we showed that the fixed CGT value may cause an overall
bias in the retrieved CTH values. The operational EPIC cloud effective height will be therefore
equivalent to the ROCINN forward model with a lower fixed CGT.
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Chapter 6
Conclusions

The goal of this dissertation was to create a framework for the retrieval of cloud macrophysi-
cal properties from measurements of the EPIC/DSCOVR instrument. The implementation of
this framework, however, required to expand the scope of the thesis to ensure its success.

First of all, the retrieval required a reliable source of EPIC radiance measurements. At the
time in which this dissertation was started, the latest EPIC Level 1B Version 2 collection was
unfortunately not reliable enough due to severe misregistration issues that would translate
into wrong assignments of surface properties for each pixel scene, and the errors in the sur-
face properties would affect any retrieval of physical parameters in which the surface prop-
erties were assumed as a priori (and correct) data. Therefore, a solution for this problem had
to be developed as shown in Chapter 2. A representative number of EPIC Level 1B datasets
was inspected and the effects of common camera issues (wrong camera orientation, problems
related to the optical elements of the instrument) were investigated. We found out that a com-
bination of motion (shift plus rotation) and radial distortion correction could fix the majority
of the EPIC Level 1B datasets with a registration error of about 1 ground pixel instead of
the initial registration error of about 5 ground pixels. The EPIC Level 1B Version 3 collection,
whose processing started in late 2019, improves the registration of the EPIC imagery signifi-
cantly by means of coastline comparison with the MODIS and GOES-17 sensors [119], and the
registration issue was reported as the result of inaccuracies in the measurements provided by
the star tracker used to control the instrument orientation as well as in the characterisation of
the telescope lens (stated by K. Blank at DSCOVR Science Team Meeting 2019). This proves
that the registration function described in this work, which was published as a peer-reviewed
article [120], was indeed addressing the underlying problems of EPIC.

The second problem to address in this dissertation was the time efficiency of the radiative
transfer models. Any retrieval algorithm that uses standard non-linear optimisers will require
several calls to the model function. If the model function is time-consuming, then the retrieval
computation time will be at least as high as the number of calls to the model function. Since
the number of EPIC measurements is found in the order of 10° per dataset, and each dataset is
generated every one or two hours, it is not possible to use standard radiative transfer models
as model functions for operational purposes. In this regard, ROCINN replaces the radiative
transfer model with the combination of two neural networks, whose computation time is very
small, but the neural networks need to be trained in advance with training and validation data
previously obtained by calling the time-consuming radiative transfer model. This means that
the time efficiency problem would persist during the training and validation data generation.
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These concerns are discussed in Chapter 3 with two peer-reviewed publications [121, 122]
and one co-authored review [123]. In this chapter, the possibility to use approximate mod-
els to describe the clouds within the radiative transfer model was analysed (e.g. asymptotic
models, clouds as Lambertian surfaces), but it was discarded because of the errors propagated
from the model simplifications. Alternatively, a combination of two acceleration techniques
(correlated k-distribution and PCA) was found to decrease the computation time by two or-
ders of magnitude with respect to the equivalent LBL calculations. Thanks to this speed-up,
the creation of training and validation tables for ROCINN would take, instead of weeks, only
about 1 day for the clear-sky scenes and about 2.5 days for the cloudy-scenes covering 200000
scenarios and running the radiative transfer simulations on a high-end 44-core server.

The underlying non-linear optimisation within the retrieval of cloud properties needs not
only the evaluation of the physical model, but also the derivatives (Jacobian) of the model
with respect to the retrieved variables, in order to compute the state vector update at each
iteration of the optimisation process. In this regard, Chapter 3 showed that the combination
of the former acceleration techniques with the forward-adjoint approach decreases the com-
putation time by three orders of magnitude with respect to the equivalent linearised LBL cal-
culations. This improvement could be exploited to also include the derivatives of interest as
outputs of the neural networks trained for ROCINN. This idea was finally discarded for two
reasons. First, increasing the number of outputs in the trained neural networks would result
into an increase of complexity for the output space, and this would imply that the topology
of the neural networks would need to become more complex (e.g. by increasing the number
of hidden layers or the neurons per hidden layer). Second, the optimisation algorithms are
implemented under the assumption that for a given model function f, the state vector up-
date depends on the Jacobian J¢; for consistency reasons, it was decided to simply use the
derivatives of the neural networks with respect to the state vector components since, from
the point of view of ROCINN, the neural networks are the model function. In the case of the
ROCINN feed-forward neural networks, the internal operations reduce to matrix additions,
matrix multiplications and evaluations of the hyperbolic tangent, and all these operations can
be differentiated easily. Instead of implementing the derivatives only for this specific case, the
prototype Python library dnumpy was developed [124]. The library is built as a superset of
numpy, i.e. the public interface of numpy is preserved, but dnumpy allows to define variables
within the standard arrays, and the numpy functions overloaded by dnumpy keep track of the
presence of these variables and apply appropriate rules for the propagation of the deriva-
tives with respect to the found variables (i.e. automatic differentiation in forward mode). As
a use case, dnumpy provides the derivatives of the ROCINN implementation of this thesis, but
the benefit is that any scientific work written in Python with numpy as core library can also
use dnumpy to compute derivatives, as demonstrated for example with the radiative transfer

library pydome [125].
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In Chapter 4, the OCRA algorithm for the retrieval of cloud fraction was implemented for
EPIC and applied to the 4 years of data available in the EPIC Level 1B Version 2 collection. The
main power of OCRA resides in having a simple retrieval model with fast but at the same time
accurate results. From the comparisons of the EPIC radiometric cloud fraction product with
the daily geometric cloud fraction product from MODIS, it was seen that EPIC-OCRA has
good agreement over land, and also over water as long as the clouds are optically thick. When
optically thin clouds are found over water, the performance of EPIC-OCRA is limited, with a
tendency to estimate cloud fractions lower than MODIS. All in all, the application of OCRA
as described in Chapter 4 allows to obtain a cloud fraction product for EPIC that enhances
the operational cloud mask product, which is limited to only four possible values (clear with
high confidence, clear with low confidence, cloudy with low confidence, and cloudy with
high confidence) [126], and it accomplishes it without using any of the EPIC channels located
at the oxygen bands (i.e. the channels usually employed to retrieve cloud properties).

In Chapter 5, the ROCINN algorithm was implemented for EPIC. First, the importance
of choosing an appropriate input space for the neural networks was outlined. From the sys-
tematic hyperparameter analysis, the main conclusion is that there is not a unique optimal
neural network topology. The only requirements to train neural networks for ROCINN are
to ensure that the neural network topologies are not too simple (to avoid underfitting), and
that the neural networks do not overfit the training data after the training process. It is still
important to keep in mind that, for a feed-forward neural network with one hidden layer, the
total number of neural network parameters (i.e. biases and weights) increases with the num-
ber of neurons. Therefore, the number of neurons should not be increased unless the accuracy
enhancement is worthwhile. Once the final configurations for the ROCINN neural networks
are chosen, they act as extremely fast emulators of the radiative transfer model and provide
in addition the derivatives of first order with respect to the input parameters.

After all these considerations, the final ROCINN neural networks for clear-sky and cloudy-
sky scenes were built with 64 and 128 neurons, respectively, and they provide high accuracies,
with less than 0.3% error for 80% of the validation dataset. These neural networks were used
in order to perform a sensitivity analysis on the retrieval of cloud optical thickness and cloud-
top height for liquid-water clouds, based on several sources of uncertainty. From this analysis,
it was shown that the EPIC cloud-top height retrieval remains stable for most of the sources
of uncertainty, except for the case in which the cloud geometrical thickness is fixed to a con-
stant value, where a negative bias (resp. positive bias) is found if the fixed cloud geometrical
thickness underestimates (resp. overestimates) its real value. Combining the main sources of
uncertainty, the cloud-top height is retrieved within +1 km for 80% of the cases. However,
the cloud optical thickness is significantly affected by several sources of uncertainty, such as
fixing the cloud effective particle size or the existence of a negative offset in the surface albedo

or the cloud fraction, and the uncertainty spread is too wide to guarantee reliable results.
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Finally, the OCRA and ROCINN algorithms were used together to retrieve cloud fraction,
cloud optical thickness and cloud-top height on one EPIC Level 1B test dataset, and the re-
trieved results were compared with the corresponding operational cloud products. The cloud
optical thickness shows a mixed agreement, while the cloud-top height agrees well in general,
and the existence of a positive bias in the differences between the ROCINN cloud-top height
and the operational cloud effective height are explained from the selection of the fixed cloud
geometrical thickness.

Future lines of work could further improve the retrieval of cloud properties from EPIC
measurements. The current radiative transfer theory only considers the modelling of liquid-
water clouds. However, a significant amount of clouds are found in ice phase. Therefore, the
EPIC radiative transfer model presented in this thesis could be extended so that both types of
cloud phases can be modelled. The migration to the EPIC Level 1B Version 3 collection, which
aims to provide better image registration, could also be addressed, and for which the OCRA
support data (clear-sky maps, and the scaling and offset parameters) would need to be recom-
puted. The EPIC OCRA /ROCINN results could also be further compared with the complete
operational EPIC cloud product collection from NASA, as well as with other missions, like
MODIS, TROPOMI and CALIPSO. In addition, improvements to the ROCINN configurations
could be further investigated. One improvement is related to the setup of the initial guesses
for the state vector, which in this dissertation were always set to the same pair of fixed values.
The ROCINN implementation for TROPOM]I, for example, uses the solutions obtained under
the assumption of clouds as Lambertian surfaces (CRB) as initial guesses for a second optimi-
sation process with clouds as homogeneous layers (CAL). And since the fixing of the cloud
geometrical thickness translates into biases in the retrieved cloud-top height, the possibility
to parameterise the cloud geometrical thickness as a function of the cloud-top height at each

iteration of the retrieval process could be investigated.
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Appendix A
List of abbreviations

Abbreviation
BFGS
BRDF
BRIEF
BSA

CAL
CALIPSO
CCD
CER

CGT

CH

coT

cps

CPU

CRB
CTH
DISORT
DOAS
DOME
DSCOVR
ENVISAT
EPIC

ERS
ETOPO1
FAST
FDOME
GOES
GOME
IDR

ISRF
L-BFGS-B
LBL
LDOME
LER
LIDORT
LMOME
MAE
MERIS

Description
Broyden-Fletcher-Goldfarb-Shanno algorithm
Bidirectional Reflectance Distribution Function
Binary Robust Independent Elementary Features
Black-Sky Albedo

Clouds As Layers

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
Charged-Coupled Device

Cloud Effective particle Radius

Cloud Geometrical Thickness

Cloud effective Height

Cloud Optical Thickness

counts per second

Central Processing Unit

Clouds as Reflective Boundaries

Cloud-Top Height

DIScrete Ordinate Radiative Transfer
Differential Optical Absorption Spectroscopy
Discrete Ordinates with Matrix Exponential
Deep Space Climate Observatory
ENVIronmental SATellite

Earth Polychromatic Imaging Camera
European Remote sensing Satellite

Earth TOPOgraphy 1 arc minute

Features from Accelerated Segment Test
Forward-Adjoint DOME

Geostationary Operational Environmental Satellite
Global Ozone Monitoring Experiment
InterDecile Range

Instrument Spectral Response Function
Limited-memory BFGS with Bounds
Line-By-Line

Linearised DOME

Lambertian-Equivalent Reflectance

LInearized Discrete Ordinate Radiative Transfer
Linearised MOME

Mean Absolute Error

MEdium Resolution Imaging Spectrometer
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Abbreviation
MetOp
MODIS
MOME
NASA

NGU

NPP

OCRA

OMI

OMPS
OpenCV
ORB

PCA

POSIX

RGB
ROCINN
SCIAMACHY

SNR
SWIR
TOA
TROPOMI
UTC

[SAY

VIS

VNIR

Description

Meteorological Operational satellite
MODerate-resolution Imaging Spectroradiometer
Matrix Operator with Matrix Exponential

National Aeronautics and Space Administration

Near infrared-Green-Ultraviolet

National Polar-orbiting Partnership

Optical Cloud Recognition Algorithm

Ozone Monitoring Instrument

Ozone Mapping and Profiler Suite

Open Computer Vision

Oriented FAST and Rotated BRIEF

Principal Component Analysis

Portable Operating System Interface

Red-Green-Blue

Retrieval Of Cloud Information using Neural Networks
SCanning Imaging Absorption spectroMeter for Atmospheric

CartograpHY

Signal-to-Noise Ratio

ShortWave InfraRed

Top Of Atmosphere

TROPOspheric Monitoring Instrument
Universal Time Coordinated
UltraViolet

VISible

Visible Near-InfraRed
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Abstract: In this work, we address the image geolocation issue that is present in the imagery of
EPIC/DSCOVR (Earth Polychromatic Imaging Camera/Deep Space Climate Observatory) Level 1B
version 2. To solve it, we develop an algorithm that automatically computes a registration correction
consisting of a motion (translation plus rotation) and a radial distortion. The correction parameters
are retrieved for every image by means of a regularised non-linear optimisation process, in which
the spatial distances between the theoretical and actual locations of chosen features are minimised.
The actual features are found along the coastlines automatically by using computer vision techniques.
The retrieved correction parameters show a behaviour that is related to the period of DSCOVR
orbiting around the Lagrangian point L;. With this procedure, the EPIC coastlines are collocated with
an accuracy of about 1.5 pixels, thus significantly improving the original registration of about 5 pixels
from the imagery of EPIC/DSCOVR Level 1B version 2.

Keywords: EPIC; registration; geolocation; computer vision; regularisation

1. Introduction

The spacecraft DSCOVR (Deep Space Climate Observatory) provides a unique view of the
Earth from its Lissajous orbit around the Earth-Sun Lagrangian point L1, at a distance of 1.5 million
kilometres from the Earth. DSCOVR carries a range of sensors on board, including EPIC (Earth
Polychromatic Imaging Camera) for climate science applications [1].

EPIC consists of a CCD (Charge-Coupled Device) camera that monitors the sunlit half of the Earth
in 10 spectral channels ranging in the ultraviolet, visible and near infrared—approximately from 317 to
780 nm. Every two hours, EPIC measures its 10 channel images with a shape of 2048 x 2048 detector
pixels, and a varying ground pixel size of approximately 12 x 12 km? at the center of the images.
These available channels make EPIC a suitable candidate for several applications, such as monitoring
the vegetation condition [2], the synoptic ozone [3], the sulphur dioxide content from volcanic
eruptions [4,5], the aerosol layer height and optical depth [6,7], and different cloud properties [8].
Extensive work has been performed to estimate the cloud information content in the EPIC oxygen
bands [9,10], as well as its sensitivity to liquid-phase cloud microphysical parameters [11].

Standard techniques for retrieval of atmospheric properties, such as the layer height and
the optical depth of clouds and aerosols, are non-linear least squares fitting [12] and Tikhonov
regularisation [13], which match the results of forward simulations (i.e., synthetic spectra) with
the actual measurements (i.e., real spectra). The forward simulations are performed on the base of
radiative transfer models. Due to the particular viewing geometry of EPIC, with scattering angles
ranging between 168 and 176 degrees, the radiative transfer modelling faces challenges in terms of
computational efficiency and accuracy [14,15], which can be solved by using various acceleration
techniques [16-18]. Furthermore, this approach needs to assume that the surface properties required
as input for the radiative transfer model, e.g., the surface altitude and the spectral surface albedo,
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are already known from external sources. The assignment of surface altitude and surface albedos
must be performed for every image pixel based on their corresponding latitude and longitude values
allocated in the EPIC Level 1B (L1B) arrays of Earth coordinates, which are provided together with the
measurement arrays.

Since the evaluation of these surface properties for each image pixel is based on its geolocation
information, any incorrect registration of the images can lead into an invalid assignment of these
surface properties and, thus, an erroneous retrieval of the atmospheric properties. In the case of
EPIC, the geolocation arrays, including the latitude and longitude locations as well as the Sun and
instrument viewing angles, are computed by means of a complete navigation algorithm. Essentially,
it determines the spacecraft location and orientation and maps the 3D-model coordinates into the
2D image coordinates [19]. This mapping includes an optical correction modelled as a small barrel
distortion. Although this navigation algorithm provides a good first estimate for the image geolocation,
the imagery from EPIC L1B version 2 presents a misregistration that is especially noticeable when
inspecting the expected and actual locations of the land bodies (Figure 1). A similar problem was
already mentioned and briefly described for the previous release L1B version 1 [20].

In this article, we develop an automatic registration algorithm for EPIC that relies on the expected
location of the Earth land bodies. Assuming that the geolocation error is smaller than 10 detector pixels,
we state that it is enough to apply a transformation on the measurement pixel indices, consisting of a
motion (translation plus rotation of the Earth’s disk) together with a small optical correction, in order
to improve the registration of the EPIC imagery. The optimal transformation parameters must be
computed for every EPIC L1B dataset with the help of reference pixels taken from the expected and
actual locations of the land bodies, which can be determined by using conventional pattern recognition
techniques that are of common use in computer vision.

Figure 1. Example of reflectance image from EPIC L1B version 2 on 20 March 2016 at 18:36:56 UTC,
with the coastline shape vector drawn in white line. On the left side, the full Earth’s disk is shown.

On the right side, we zoom into two regions where the misregistration is noticeable.
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2. Methodology

In this section, we present a mathematical model that describes the misregistration of the EPIC
L1B images, and we also describe the procedure to estimate the optimal transformation parameters that
improve their registration quality. The original EPIC L1B images are accessible through NASA Earth
Data portal [21]. In the following, we use the word image to refer to false-RGB images containing the
reflectance values from the EPIC channels of 779.5, 551.0 and 443.0 nm, with the northern polar region
of the Earth’s disk located at the top of the image (as the example shown in Figure 1). The original
counts per second measured by EPIC can be converted into reflectance by using the calibration factors
estimated by Geogdzhayev and Marshak [22] and dividing then by the solar zenith-directional cosine.
Although the transformation parameters were obtained for these false-RGB images, they can be used
for all the EPIC L1B channels.

2.1. Mathematical Description

Given an original image pixel located at indices [x4,y4]T (hereinafter the superscript T stands
for “transpose”) which is not aligned with the proper pixels from the arrays of Earth coordinates,
we model its transformation into a registered pixel at indices [x, y;|T by the following expression:

[xr}:[xs}jL{xo]Jr[ CQSG sin@][xu—xo], 1)
Yr Ys Yo —sinf cosf Yu— Yo
where [xs, y5]T is the shift vector, 6 is the rotation angle around the center of rotation [xg,yo]T,

and [xy, yu]T are the pixel indices after radial distortion correction by means of the single-parameter
Fitzgibbon division model [23,24]:

Uﬁ } :W*W'”[iiii } 1= 1 @)

where A is the first radial distortion coefficient, [xc, yc]T is the center of distortion and r is the distance
from the distorted point to the center of distortion:

=\ (ra — 32+ (va — o)™ ®

The alignment transformation (Equation (1)) depends on eight different parameters which are
unknown and need to be estimated. Before proceeding further, and based on empirical observations,
we need to apply two restrictions in order to reduce the complexity of the problem:

1. The center of distortion and the center of rotation are assumed identical, i.e., xg = xc and yp = ye.
2. The center of distortion/rotation is assumed to be known and located at the center of the image.

Under these assumptions, the transformation (Equation (1)) from [xg, y4]T to [xr, y]T can be
simplified into:

R R B R It o el PR

which depends on four parameters (i.e., xs, ys, 6, and A), as the point [x., yc|T is fixed now. To compute
the optimal transformation parameters, we adapt Equation (4) for n > 2 known pairs of distorted and

registered points {([xq;, YailT, [%ri vl )}y e,

Xr1 Xs + X¢ cosf sinf --- 0 0 g(A,71) (xq1 — xc)

Y Ys + Ve —sinf cosf --- 0 0 g\ 11) (ya1 —ye)
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rewritten in compact form as
zr = f(2za, e/ P) (6)

where f denotes the transformation of the distorted data vector z4 = [x41,¥d1, - - -, Xdn, Ydn|T into the
registered data vector zy = [X1,Yr1, - - ., Xrn, Yrn|T by means of a known center of distortion/rotation
ze = [%¢,Yc|T and an unknown state vector p = [xs,ys,6,A]T. The state vector p, that optimally
transforms z4 into z, can be computed by least squares minimisation of the Tikhonov function 7 (p)
defined as

T(p) = 5 (I1f(a 20 p) — 2l P +allLip — p)IP). 7)

where « is the regularisation parameter, L is the regularisation matrix, and p, is the a priori state
vector. The procedure to minimise 7 (p) is iterative; starting from an initial guess P (o), the kth iteration
consists of four steps [25]:

1. Compute the vector y;, at iteration k as

Y = 2r — f(z4, ze, p(k)) + I(k)(}”(k) ~Pa) ®

where J ;) denotes the Jacobian matrix of f with respect to the state vector p at iteration k:

T = % ) i=1,...,2n, j=1,...,4 ©9)
(k) ap;
P=P(x)

2. Compute the regularised generalised inverse J' at iteration k by means of generalised singular
value decomposition:

Ty = Ul g +aLTL) T, (10)

3.  Compute the state vector p for the next iteration k + 1:

Pk+1) = Pat ]Erk)y(k)- (11)

4. Check the convergence criteria. If any is passed, set p, = p ;1) and exit; otherwise, go to Step 1
for iteration k + 1. We use the following convergence criteria:

e  X-convergence criterion: ||p 1) — P()|| < 6, where § is a predefined tolerance value.

e  S-convergence criterion: \s(k 1) — s(k)| < ¢, where ¢ is a predefined tolerance value and
sy = 1f(zd, zes ) — 2] |? is the squared residual sum at iteration k.

Our fitting problem is much more sensitive to the parameters [0, A]T, i.e., small perturbations
in these parameters cause large transformations, especially for points far from the center of
distortion/rotation [x.,yc|T. For this reason, the computation of the optimal state vector p, is
performed in two steps:

1. Define an a priori state vector p,, = [0,0,604,A3]T with no shift, and compute the optimal
state vector p,, by applying Tikhonov least squares minimisation with § = 6, and A = A, as
fixed parameters.

2. Use p,, from the previous step as the new a priori state vector p, = p,,, and compute the optimal
state vector p, by applying Tikhonov least squares minimisation with no fixed parameters.

The configuration for the second-step Tikhonov least squares minimisation is summarised
as follows:
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1.  The analysis of the Jacobian matrices at the first iteration by means of the generalised singular
value decomposition shows that « ~ 100 is an appropriate value for the regularisation parameter.

2. The regularisation matrix L is defined as a diagonal matrix,

. fwx, wy, wy w

L = diag Tx ¥ 76 OTAL

€x, €y, € €
where, for every parameter, we denote by ¢ its expected dispersion, and we denote by w € [0, +c0)
a weighting factor that determines its freedom in the retrieval, so that w — 01 implies total
freedom and w — +oco fixes the parameter to the a priori solution [25]. Based on the expected

dispersions of the state vector components, which are set as

ex, =10, &, =10, e =01deg e =1x10"5,

the optimal weights have to be found empirically by performing a set of retrievals with synthetic
data, ensuring that the state vector components stay within the valid ranges around the a priori
solution. For our case, the following optimal values are found:

wy, =0, wy, =0, wy = 10, wy = 10,

S S

thereby implying total freedom for [xs, ys|T and reduced freedom for [0, A]T.
3. The first a priori state vector p,, is set with the following initial guesses for the rotation angle
and the radial distortion parameter:

0, =05deg, A;=-5x10".

The workflow for the complete non-linear optimisation process is summarised in Figure 2a.

2.2. Detection of Matching Coastline Features

The registration of an image by means of the model described in Section 2.1 assumes that the
data vectors z4 and z; are known. In our case, they can be built with a sufficient number of pairs of
incorrect points [x4,y4]T and correct points [x;, yr|T within the image. The coastline that is visible in
this kind of images is a source of these points of interest, as the correct coastline can be determined
with the arrays of Earth coordinates, which are available. With this consideration, we compute the
required pairs of incorrect and correct points as follows (see Figure 2b):

1.  Create a mask with the theoretical coastline, i.e., that inferred from the arrays of Earth coordinates.
2. Create a mask with the radiometric coastline, i.e., that inferred from the actual image.
3. Find pairs of common features from both coastline masks by using computer vision techniques.

2.2.1. Computation of the Theoretical Coastline

The computation of the theoretical coastline, i.e., the coastline that is assumed to be correct, can be
divided into three steps:

1.  Create the theoretical land mask by checking for every image pixel if its (latitude, longitude)
pair is contained inside a land polygon from the low-resolution GSHHG (Global Self-consistent,
Hierarchical, High-resolution Geography database) [26].

2. Apply one morphological binary erosion to the theoretical land mask with a flat diamond shaped
structuring element of dimensions 3 x 3 [27].

3. Compute the theoretical coastline mask as the result of the bitwise operator XOR on the original
and eroded theoretical land masks.
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(@) (b)

Registration Initial guesses EPIC L1B
model f 0, and A, dataset

|

First regularised Data
non-linear fitting preparation
Parameters A priori Earth location False RGB
« and L state vector p, arrays image
Second regularised GSHHG Canny
non-linear fitting evaluation algorithm
Optimal Theoretical Radiometric
state vector p, coastline mask coastline mask
ORB ORB
Theoretical Radiometric
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Brute-force matcher
with spatial constraints

Pairs of feature-matching
image coordinates z; and zg4

Figure 2. Workflow chart for the computation of the optimal transformation parameters for a given

image. (a) Main workflow chain in which the non-linear least squares fitting with regularisation is
performed. (b) Secondary workflow chain in which the known data vectors z, and zq are prepared.

2.2.2. Computation of the Radiometric Coastline

The computation of the radiometric coastline, i.e., the coastline that is visible in the image, is a
common edge detection problem in image analysis, and can be performed as follows:

1.  Convert the image channel with the highest contrast between land and water into 8-bit form
(i.e., the false-red channel, which corresponds to the 779.5 nm EPIC channel).

2. Compute the median value v from the Earth pixels of this 8-bit image.

3.  Compute the radiometric coastline mask by applying the Canny edge detection algorithm [28] on
the previous 8-bit image with hysteresis thresholding parameters given by

Hower = max|[0, (1 — o)), tupper = min[255, (1 +0)v), (12)

where o > 0is an argument that controls the separation between both thresholds [29] and its value
is found empirically: if o is small, only the strong borders are preserved; if ¢ is big, both strong
and weak borders are kept. For our purpose, we found that o = 0.33 is a good compromise.
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With this procedure, the radiometric coastline will be polluted in general with other edges also
present in the image, e.g., cloud edges (see Figure 3). However, they do not need to be filtered as long
as the detected matching features are restricted to the neighbourhood of the theoretical coastline.

(@)

Figure 3. Comparison of the (a) theoretical and (b) radiometric coastlines for one of the regions shown
in Figure 1. The radiometric coastline is partially polluted with other type of borders detected by the
Canny algorithm (e.g., clouds or interfaces between two different land covers).

2.2.3. Matching of Coastline Features

Once the theoretical and radiometric coastline masks are computed, it is possible to find features
that are common to both masks, as long as the misalignment and distortion of the radiometric coastline
is not severe. Such image matching problem is one of the fundamental research topics in computer
vision [30]; the procedure to find common features between two images consists of three steps:

1.  Detect keypoints (e.g., edges, corners, and regions of interest) in the compared images.
2. Describe every keypoint by a descriptor vector with information from its neighbourhood.
3. Match keypoint pairs based on the similarity of their descriptor vectors.

Examples of successful detectors and descriptors are SIFT (Scale-Invariant Feature Transform) [31],
SURF (Speeded-Up Robust Features) [32] and ORB (Oriented FAST and Rotated BRIEF) [33].
OpenCV [34] already provides a complete interface to these algorithms. For our purpose, we use ORB
because it is not patented, its time performance is better, and the amount of detected keypoints is
enough. ORB consists of two routines:

1. The ORB detector is a modified version of the keypoint detector FAST (Features from Accelerated
Segment Test) [35]. In addition to the original FAST, it also computes the orientation angle of the
detected keypoints.

2. The ORB descriptor is a modified version of the descriptor BRIEF (Binary Robust Independent
Elementary Features) [36]. The binary descriptor vector generated by the original BRIEF shows
problems when identifying matching keypoints under rotation conditions; ORB fixes the issue
taking into consideration the orientation computed by the ORB detector.

The keypoints detected and described with ORB for both the theoretical and radiometric coastline
masks are matched by using a brute-force matcher with Hamming distance as measurement (see [37] for
further details). Given a set of theoretical keypoints {zyy, }21]:1 with descriptor vectors {dyy, }lezl and
a set of radiometric keypoints {zy, },'222:1 with descriptor vectors {dyy, }1}122:1/ the matching algorithm
proceeds for every theoretical keypoint z1;, 1 < i < ny, as follows:
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1. Compute the Hamming distance (i.e., the number of positions at which the corresponding values
of arrays are different [38]) i, from zy; to every radiometric keypoint zy,, 1 < k» < n, as

Mpits

hig, = Y (d1i)m & (dagy ) m, (13)

m=1

where np; is the length of the binary descriptor vectors, & is the XOR operator, and (dy;), and
(dak, )m denote the mth components of the descriptor vectors dy; and dyy,, respectively.

2. Select the radiometric keypoint zp; with minimum Hamming distance to zj; as the matching
candidate for the theoretical keypoint z;;, where

j=arg min{hikz}g:l. (14)

3. For the given radiometric keypoint z;;, compute its Hamming distance /i, ; to every theoretical
keypoint zy;,, 1 < ky < ny, as

Mpits

hij =Y (d1k)m @ (doj)m- (15)

m=1

4.  The pair (zy, zzj) is a valid matching pair only if zy; is the theoretical keypoint with minimum
Hamming distance to z;, otherwise the pair is discarded, i.e., it is valid only if

i = arg min{hklj}zllzl. (16)

The previous procedure ensures that all the valid pairs of matching keypoints hold the minimum
Hamming distance criterion reciprocally. Note that this criterion, however, does not consider any
spatial restriction, but only the similarity between the descriptor vectors. Due to the spatial constraints
of our problem, the valid pairs need to be filtered based on two additional spatial criteria (Figure 4):

1.  The spatial distance between a theoretical keypoint z1; and the theoretical coastline.
2. The spatial distance between the keypoints of a matching pair (z1;, z3))-

Figure 4. Pairs of matching keypoints found within one of the regions shown in Figure 1 after applying
the outlier rejection step based on spatial criteria. The keypoints detected in the theoretical coastline
(white lines) are shown as yellow points, while the corresponding keypoints detected in the radiometric
coastline are shown as green points. Every matching pair is connected with a red segment.
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If any of these spatial distances is greater than a threshold (e.g., 10 pixels), the pair is discarded.
After the application of this filter, the remaining pairs are used to build the registered data vector
z, with the theoretical keypoints and the distorted data vector zq with the radiometric keypoints.
Alternatively, an approach based on RANSAC (RANdom SAmple Consensus) [39] could be added
afterwards in the retrieval procedure to generate z; and z4. We do not use it in this article because the
improvement in our registration problem was small and it increased the computation time in excess.

3. Results

We performed the estimation of the optimal transformation parameters for all the datasets from
EPIC L1B version 2 within the time period from 13 June 2015 to 31 July 2018. The parameters were
computed with an Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz processor using a single thread, and it
required approximately 15 s of computation time for every image (i.e., roughly between 18 and 36 h
for every year of datasets, assuming 12-24 available datasets per day). To assess the behaviour of the
obtained results, we analysed the following aspects:

1.  The performance of the non-linearised fitting procedure in reducing the spatial distance between
the image coordinates from matching theoretical and radiometric features.

2. The global impact of this correction procedure on the image registration quality.

3. The behaviour of the retrieved transformation parameters as a function of time.

In Figure 5, we show the result of computing the spatial distances between the points of every
matching pair before and after applying the registration procedure described in the previous section.
The histograms were calculated for all the matching pairs that were found in all the EPIC L1B images
within the complete time period under study. In Figure 5a, we can observe a normal distribution of
spatial distances spread within the interval of [0, 10] pixels, with a higher density of occurrences in the
subinterval of [3,7] pixels. We can find 50% of the values in the range of [0, 5] pixels. The histogram is
cut for values higher than 10 pixels due to the spatial constraints defined in Section 2.2.3. In Figure 5b,
we see that the distribution of spatial distances is turned into a Gamma distribution whose mode is
found in the bin of [1.25, 1.50] pixels, and where approximately 50% of the values are located within the
range of [0,1.75] pixels. The distribution also shows a long decreasing tail on its right side, meaning
that a small percentage of values are now greater than 5 pixels.

(a) Histogram before registration (b) Histogram after registration
10° -10°
8 — T T T 8 T T T
6 - 6 -
B >
Q - — Q - -
g 5
s 4l IR |
S 1 g 1
3 3
2 - 2 -
0 I I T 0 L S S N N
0 5 10 15 0 5 10 15
Spatial distance / pixels Spatial distance / pixels

Figure 5. Histograms of spatial distances (in pixels) between the points of matching pairs:
(a) before applying registration, i.e., as they are originally located; and (b) after applying registration,
i.e., after transforming the distorted points into registered points with the model described in Section 2.
The histograms were computed for all the matching pairs found in three years of EPIC L1B images.

From these histograms, we conclude that the transformation significantly reduces the spatial
distance between pairs of matching points. As long as these matching pairs are representative of the
distortion that the original images suffer, this fact translates into an improvement in the registration
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of the images. The existence of the right tail in the histogram in Figure 5b also suggests that some
matching pairs do not reduce its spatial distance after the transformation, or they might even increase
it. Indeed, this means that there are matching pairs whose points do not correspond to the same
feature, but they could still pass the quality filters applied in our procedure. As the amount of
wrong matching pairs is not substantial, they do not significantly influence in the retrieval of the
transformation parameters, and for every wrong matching pair the points are moved to their new
positions determined by the optimal transformation parameters. The location of the histogram mode
in Figure 5b is above one pixel due to the necessary discretisation of the coastline together with the
actual ground pixel size. The theoretical coastlines were always computed as the last contour of land
pixels for every land body based on the GSHHG database. The radiometric coastlines were obtained
by finding intensity borders within the false-RGB images, which coincide in general with the actual
land borders (see Figure 6), but in some cases they can be found one pixel inside land (because the
land—ocean interface pixels are a mixture of land and ocean information) or one pixel outside land
(due to water turbidity).

Figure 6. Comparison of the theoretical coastline (white lines) and the radiometric coastline

(yellow lines) for one of the regions shown in Figure 1 (a) before and (b) after applying the registration.

In Figure 7, we show the application of the registration procedure to four examples of EPIC L1B
image regions. On the left side, we observe the original L1B images with the corresponding theoretical
coastline shape vector superposed. On the right side, the image pixels are relocated by means of
our registration model with the transformation parameters automatically retrieved for every image.
It can be observed that there is an improvement in the collocation of the radiometric coastline and the
theoretical coastline with respect to their original situation. Because the features were detected along
the coastlines, the density of matching features is sensitive to the percentage of land that is visible on
every image. As a consequence, the procedure may fail for those images in which the majority of the
Earth’s disk corresponds to the Pacific Ocean due to the absence of matching features with enough
quality. For these situations, we must rely on the retrieved parameters from other images that are close
in time.

In Figure 8, we show the time evolution of the transformation parameters for the complete
time period under study. The time series was computed for the daily mean values of each parameter.
We observed that the horizontal shift x; has an oscillatory behaviour around its mean value of 2.5 pixels,
while the vertical shift ys also presents a periodic response around its mean value of —0.2 pixels.
The rotation angle 6 and the distortion parameter A present noisier time series, and their values remain
closer to the mean values of 0.498 deg and —4.958 x 107, respectively. Indeed, this means that these
two parameters tend to stay close to their a priori solutions—an expected result based on the selection
of the regularisation matrix L. The negative sign of A indicates that the original EPIC L1B images still
suffer from a slight barrel distortion.



Remote Sens. 2019, 11, 1747 11 of 16

@)

(b)

Figure 7. Examples of different reflectance images from EPIC L1B version 2 before (left) and after

(right) applying the new registration: (a) Europe and North Africa on 4 August 2015 14:37:27 UTC;
(b) East Asia on 24 July 2016 07:09:19 UTC; (c) Caribbean Sea and Gulf of Mexico on 15 December 2017
17:17:03 UTC; and (d) the south of Africa and Madagascar on 16 May 2018 09:10:54 UTC.
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Figure 8. Time series plot for every transformation parameter: (a) the horizontal shift xs; (b) the vertical
shift ys; (c) the rotation angle 6; and (d) the radial distortion parameter A. The blue lines represent the
evolution of the daily mean value for every parameter, while the light red curves represent the daily
dispersion of each parameter given as the daily mean value plus/minus the daily standard deviation.

The time series in Figure 8 can be also interpreted as noisy signals with unevenly sampled data due
to the days where there are not enough images to be processed. To estimate the dominant frequencies
for every time series, we computed their periodograms by means of the Lomb-Scargle method [40-42].
Before this computation, the signals need to be adapted to have zero mean (subtracting their mean
values) and standard deviation of unity (dividing by their standard deviations). In Figure 9, we show
the resulting normalised periodogram amplitudes for every transformation parameter as a function of
the time period. It can be noticed that three parameters (xs, ys, and A) share one common frequency
whose period Tj is located in the interval of [173,180] days, and two parameters (ys and A) share a
second frequency whose period T; is located in the interval of [363,366] days. The first period T}
corresponds to the 180-day orbit period of DSCOVR’s spacecraft around the Lagrangian point L; [43].
The rotation angle 8 shows different dominant frequencies; however, we do not consider them relevant
because the behaviour of its time series is indeed flat around a constant value.
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Figure 9. Normalised periodogram amplitude A as a function of the time period in days for every
transformation parameter: (a) the horizontal shift xs; (b) the vertical shift ys; (c) the rotation angle 6;
and (d) the radial distortion parameter A.

4. Conclusions

In this study, we addressed the geolocation issue that is present in the imagery from EPIC L1B
version 2, and to solve it we developed a fast automatic image registration scheme consisting of a
motion plus a radial distortion correction. The optimal transformation parameters were computed
through Tikhonov least squares minimisation, in which the reference pairs of distorted and registered
pixel coordinates were determined automatically by matching features from the theoretical and
radiometric coastlines.

We showed that the shift parameters [xs, y5]T present an oscillatory behaviour whose period
is close to the period of DSCOVR’s Lissajous orbit, while the rotation angle 6 and the distortion
parameter A were found to be more stable and close to the a priori solution that we provided.
After the proposed registration, the spatial distances between the common features found in the
theoretical and radiometric coastlines are concentrated around the interval of [1.25,1.50] pixels,
a considerable improvement compared to the interval of [3,7] pixels from the original L1B images.
Therefore, we conclude that this procedure enhances the registration of the images from EPIC L1B
version 2 with their corresponding arrays of Earth coordinates. This enhancement will have a positive
impact in climate science applications from EPIC measurements, as it will reduce the errors in the
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retrieval of atmospheric properties due to the inappropriate selection of the surface properties of every
pixel. The algorithm developed in this work could be adapted for improving the registration of the
future geostationary UVN (Ultraviolet-Visible-Near-infrared) sensors Sentinel-4, GEMS and TEMPO.

This study was based on the OpenCV library, which contains other matching algorithms apart
from the brute-force matching of corresponding keypoints, including template matching (e.g., Chamfer
matching [44]). In principle, it is interesting to compare their efficiencies for solving the registration
problem considered in this article. In addition, the effect of using different robust estimators
(e.g., RANSAC) can be analysed in more detail. These topics will be investigated in our future research.
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Abbreviations

The following abbreviations are used in this manuscript:

BRIEF Binary Robust Independent Elementary Features
CCD Charge-Coupled Device

DSCOVR  Deep Space Climate Observatory

EPIC Earth Polychromatic Imaging Camera

FAST Features from Accelerated Segment Test

GEMS Geostationary Environment Monitoring Spectrometer

GSHHG  Global Self-consistent Hierarchical, High-resolution Geography database
L1B Level 1B
MERIS MEdium Resolution Imaging Spectrometer

NASA National Aeronautics and Space Administration
ORB Oriented FAST and Rotated BRIEF

RANSAC RANdom SAmple Consensus

RGB Red Green Blue

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Features

TEMPO Tropospheric Emissions: Monitoring of POllution
UVN Ultraviolet-Visible-Near-infrared
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A review of the matrix-exponential formalism in radiative transfer
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Abstract

This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves
as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered.
The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations
method is proved rigorously by means of the matrix exponential formalism. For optically thin layers approximate solution
methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equa-
tions are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parametriza-
tions of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.
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1. Introduction

The radiative transfer is an important issue for astro-
physics, atmospheric physics, meteorology and engineering
sciences. A wide range of solution methods of the radiative
transfer equation (RTE) have been proposed (see, e.g., [1-
11] and references therein for a general review). The discrete
ordinate method [6, 12-14] and the matrix operator method
[15-18] involve replacing the continuous dependence of the
radiance on direction by a dependence on a discrete set of
directions. For a homogeneous layer, the discretized radia-
tive transfer equation then takes the form of a system of linear
first-order differential equations. In the classical discrete or-
dinate method of Chandrasekhar, the solution of the system
of equations is expressed as a linear combination of charac-
teristic solutions of the discretized problem, while the ma-
trix operator method is primarily oriented toward numeri-
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cal computations of the reflection and transmission matrices.
Another group of methods are based on the concept of in-
variant imbedding, which is due to Ambarzumian [19]. Am-
barzumian derived an equation for the reflection function of
a semi-infinite atmosphere by noting that the reflection func-
tion remains unchanged upon addition of a new layer. This
technique was further generalized by Chandrasekhar [13] to
a finite layer, while Bellman et al. [20] showed that the reflec-
tion function derived by using the invariant imbedding satis-
fies the Riccati equation.

The system of differential equations of the discretized ra-
diative transfer equation can be solved by using a classi-
cal mathematical procedure involving the matrix exponen-
tial operator, in which the system matrix appears in the expo-
nent. Waterman [21] was the first who provided a matrix ex-
ponential description of radiative transfer. Mathematical el-
egance aside, he showed its practical value in radiative trans-
fer computations from both the analytical and purely numer-
ical point of view. In particular, Waterman related the ma-
trix exponential to the extinction matrix incorporating the re-
flection and transmission matrices of a homogeneous layer,
provided an eigenvector representation of the matrix expo-
nential, derived analytical expressions for the reflection and
transmission matrices in the limit of small and large optical
thicknesses, showed that the matrix exponential can be used
to generate starting values for the doubling method, and ap-
plied the matrix exponential formalism to conservative scat-
tering. Flatau and Stephens [22] extended the concept of
matrix exponential of a homogeneous layer to an inhomo-
geneous atmosphere by introducing the so-called propaga-
tor (matrix) operator. As Waterman, Flatau and Stephens re-
lated the propagator to the extinction matrix of a homoge-
neous layer, notified the similarity between the matrix ex-
ponential solution and Chandrasekhar’s discrete ordinate so-
lution, established various properties of the propagator and
used them to derive the Riccati matrix equations for an in-
homogenous atmosphere, as well as the adding and doubling
formulas. Although in both papers [21, 22] an eigendecompo-
sition method for computing the matrix exponential is con-
sidered, explicit and stable representations of the reflection
and transmission matrices are not given. This problem has
been solved by Nakajima and Tanaka [18] by using a system
of characteristic solutions of the discretized problem, and by
Budak et al. [23, 24] by using the matrix exponential formal-
ism. It should be also mentioned that Doicu and Trautmann
[25, 26] designed the so-called discrete ordinate method with
matrix exponential to compute the radiance field in a multi-
layered atmosphere.

The purpose of this paper is to provide a consistent
overview of the matrix exponential description of radiative
transfer. We mainly focus on a mathematical rigorous and
self-contained analysis based on the results given in [21, 22,
27] and our own results [25, 26, 28, 29]. The final goals are
to prove the mathematical equivalence of the discrete ordi-
nate method, matrix operator method, and the matrix Riccati
equations method, on the one hand, and to derive efficient
computations formulas for the reflection and transmission

matrices in the limit of small and large optical thicknesses,
on the other hand.

The rest of the paper is organized as follows. In Section 2,
we present the discrete ordinate setting in which the matrix
exponential method is applied, while in Section 3, we dis-
cuss the eigendecomposition method for computing the ma-
trix exponential. Section 4 is devoted the discrete ordinate
method with matrix exponential. In Section 5, dealing with
the matrix operator method with matrix exponential, we de-
rive several representations of the reflection and transmis-
sion matrices for arbitrary optical thickness, as well as, for
small and large optical thicknesses. In Section 6 we establish
the matrix Riccati equations, prove the mathematical equiv-
alence between the matrix Riccati equations method and the
matrix exponential method in computing the reflection and
transmission matrices of a homogeneous layer, and discuss
some approximation solution methods for small values of
the optical thickness and/or single scattering albedo. Finally,
Section 7 contains some concluding remarks. Additional re-
sults dealing with a justification of the Gaussian quadrature
in the discrete ordinate method, a review of eigendecompo-
sition methods for computing the matrix exponential, and an
extension of the analytical results to conservative scattering
are presented in appendices.

2. Matrix formulation of the radiative transfer equation

For a given solar direction Q¢ = (-, o), with o > 0 be-
ing the cosine of the solar zenith angle and ¢ the solar az-
imuthal angle, the equation describing the radiative transfer
in a plane-parallel homogeneous layer of optical thickness T
is

dIy(T, 1, — o, @ — @o)
H dr

— w =T/ o
=I4q(7, 1, — o, @ — @o) — EFop(u, —Ho, ¢ —ole

w

21 1
/ p i, - (T, 1, — o9’ — po)du'de’, (1)
4m o Ja

where I4(7, 1, — o, @ — o) is the diffuse radiance at optical
depth 7 along the direction specified by the cosine of the
zenith angle u and the azimuthal angle ¢, p(u, ¢/, ¢ — ¢') is
the scattering phase function for the radiation scattered from
the direction Q' = (i, ¢’) into the direction Q = (i, ), w is
the single scattering albedo, and Fy is the solar flux. For sim-
plicity, the thermal emission term is neglected in equation
(1). If the homogeneous layer is placed in a multi-layered
atmosphere at optical depth 7, the radiative transfer equa-
tion for the diffuse radiance e I(7o + 7, L, — o,  — o) con-
tains the direct transmission term exp[—(to + 7)/ o] instead
of exp(—7/ ). The total radiance, defined in terms of the dif-
fuse and direct radiances by

I(z, p, — o, @ — o) = Ia(T, Wy — o, P — o) + 1o (T, 4, — o, P — Po)

solves the radiative transfer equation (1) without the single
scattering source term. Note that for the direct radiance I,



we have

IO(TyIJ; _Il(),(p—(po) = Foa(ﬂ+ﬂ0)6((p_(p0)e—'r//.toy

and

di,
“E(T’”’ — o, @ — o) = Io (T, 4, — o, P — o).

Considering the Fourier cosine expansions for the phase
function

Mmax
pinp, =9 =Y @=6mo)pmpp)cosimlp—¢"l,  (2)
m=0

and the diffuse radiance

Mmax
I4(T, 1, — o, @ — o) = Y Iam (T, 1, —po) cos[m(p — o),  (3)
m=0
where Mpax is the number of azimuthal modes in the expan-
sions, yields the following radiative transfer equation for the
individual azimuthal components of the radiance:

m dIdm (T) H, _IJO)

dr = Idm(T» H, —‘UO).

w _
~ 2= 8m0) 1 Fopm(th —Ho)e t/to

1
- %w / R W) Iam (T, 1, —po)dp’. (4)

To simplify notations, hereafter the index m will be sup-
pressed with the dependence on azimuthal mode assumed.

In order to deal with (4) we replace the integral by a sym-
metric quadrature rule with 2N nodes and weights, i.e., if px
with k = 1,...,N, is a node associated with the weight wy,
then —py is also a node associated with the same weight.
Usually, the quadrature is chosen to be (double) Gaussian, in
which case the number of azimuthal modes is Mpax <2N —1.
This result is discussed in Appendix 1. In the discrete ordinate
space, the radiative transfer equation for the diffuse radiance
vector ig = [if,ig]" with i = [am(xpr,—po)l, k = 1,..., N,
reads as

di
ﬁ(r) =—Aig(r)—e "Mb, 0<T<T. (5)

The entries of the layer matrix

Al Ap ]
A= , 6
[ A1z —An ©

are

Aj =MS,W-M,
A =MS_W, (7)

while the entries of the layer vector

(8)

are
bl = Mb-H
b, = -Mb_, 9)
where
1
[Silkr = E(Upm(ﬂk;iﬂl); (10
Wik = wibii, an
1
Mly; = —0bk, 12)
Hi
Fy
(bl = (2—5m0)Ewpm(iIJk;—,U0); (13)

for k,I=1,...,N. Here, 6, is the Kronecker symbol.

In order to reduce the eigenvalue decomposition of A from
a general to a symmetric problem, we define the scaled dif-
fuse radiance Vectorfd = Hg ,Ta] T through the relation

-~ N U
iy =WZMZij. (14)

Hereafter, the “hat” symbol on vectors and matrices refers to
scaled quantities. For the scaled diffuse radiance vector, the
radiative transfer equation is

di, N ~ _
f(x):—Aid(r)—e‘””Ob, 0<T<T, (15)
T

where the expressions of the scaled layer matrix A and the
layer vector b are as in (6) and (8), respectively, with

A =MIWEZ(S, —W HMZW?,

A, =MIW2S_MIW?, (16)
and

b, =M2W?b,,

b, = -MZWZb_. 17)

From the principle of reciprocity of the phase function, it fol-
lows that S; and S_, and so, that A;; and A}, are symmet-
ric matrices. The scaling procedure (14), which is equiva-
lent to the application of a similarity transformation to A with
the diagonal block matrices w2 M*%, is standard in radiative
transfer and has been used by Waterman [21], Nakajima and
Tanaka [18], and Stamnes and Swanson [14].

In the framework of the matrix exponential approach, the
solution of the initial value problem consisting in the vec-
tor differential equation (15) and the initial condition ig (0),
is given by

-~ T o~ —~
Ta(@m) =e 14 (0) —/ e AT~ q7/ (18)
0
Let us give an interpretation of the matrix exponential solu-
tion (18). Making use of a spectral decomposition of the ma-

trix A, it can be shown that

T n ! ’ ~ n —~ ~
/ e AT e T/ dr' = (e AT —e /MO (- oA) ' b, (19)
0



whence, setting

€= o — o) 'b, (20)
we express (18) as

140 = e AT [i5(0) — ¢ + e Mg, 1)

The classical approach for solving the vector differential
equation (15) is to express the general solution as the sum of
a homogeneous and a particular solution, i.e.,

(@) = +1p(@). (22)
The particular integral solving (15), is
ip(1) = e /Mg, (23)

where € is given by (20). The homogeneous or the fundamen-
tal solution solves the equation

dip S

—— (@) =—-Ain(7), (29)
dr

and is given by

W) =e AT, 25)

The integration vector ¢, is obtained from (22) and the initial
condition ig (0); the result is €, = i4(0)—¢. Then, accounting of
(22), (23), and (25) we find that an equivalent representation
of (21) is

1) = e AT [i4(0) -1, (0] +1, (7). (26)

If the incident direction pg coincides with a discrete ordinate
direction, say uo = y; for some [, then the homogeneous and
particular solutions can be interpreted as the total and direct
radiance vectors, respectively. To show this, let us define the
vector i, (0) = [i5(0),i;(0)]7 by} (0) = 0 and

e F
B0 =2=6m) 2/ EE5yy, k=1,...,N.
21\ wy

By straightforward calculation it can be shown that i, (0) =
—C. As a result, the particular solution Tp (7) given by (23) can
be identified with the direct radiance Vectorfo (1), defined by
1o (1) = e TH01, (0), ie., 1o (1) = —fp(r), and so, the total radi-
ance vector i(7), defined byf(r) =fd(r) +TO (1), can be identi-
fied with the homogeneous solution i, (7). Note that both i
and Tp solve the differential equation /J()d/i\@ (r)/dt = —?@ (1),
while both i and ih solve the differential equation (24). It
should be pointed out that in a continuous setting, the total
radiance is a generalized function, or a distribution, while in
a discrete setting and under the above assumption, the total
radiance, regarded as a function g, has a jump at y; = y;(=
Ho)-

In [22], the matrix exponential exp(—fir), reflecting the
internal properties of the homogeneous medium, is called
propagator and is denoted by P(1), i.e., P(1) = exp(-A1). If

the initial condition is given, then the solution deeper in the
medium can be recovered (propagated) down from the up-
per boundary by applying this propagator. However, the ob-
tained solution has no physical meaning, as long as the ra-
diative transfer equation cannot be treated as an initial value
problem. The initial condition means that both sets of up-
ward and downward radiances at the upper boundary are
known, a fact which typically does not occur in atmospheric
radiative transfer. This by no means reduces the usefulness of
matrix exponential (propagator), as it will be demonstrated in
the course of our analysis.

3. Eigendecomposition method for computing the matrix
exponential

The matrix exponential can be computed by using an
eigendecomposition of the matrix A. Exploiting the block
symmetry of A, we find

L o[ A 0 o

A=V| | _A]v, @7)
with

AR

V_[v_ 7. (28)

and (the abbreviation 'not’ stands for notation)
A = diag[Ay, ..., An] = [Ag]. (29)

The spectral decomposition of the matrix A can be obtained
by one of the following methods: direct decomposition of an
asymmetric matrix [14], square-root decomposition [18], and
Cholesky decomposition [30]. These approaches are summa-
rized in Appendix 2. In (28), the matrices V. are of the form

<5 ~t ~+ , DOt 4
Vi =[vy,...,.Vyl = [V,

S+

v . . ~ .
where | _k | are the right eigenvectors of A corresponding to
k
A, and Vﬁ are the right eigenvectors of A corresponding
k

to —Ak. The matrix exponential is then given by

_Ar _of| T(@ 0 o1

e _v[ o Tin |V (30)
with

I'(7) = [e 7). 31

From (30) it is apparent that the computation of the matrix
exponential requires the computation of the inverse of the
right eigenvectors matrix V. In Waterman’s approach, the in-
verse V! is computed by using the following result: For any
matrix A, which has a complete set of linearly independent
eigenvectors, the inverse of the right eigenvector matrix is the
transpose of the left eigenvector matrix. Indeed, let A be an



n x n matrix with distinct eigenvalues, Xy be a right eigenvec-
tor of A corresponding to Ay, i.e., Ax; = A;X, and y; be a left
eigenvector of A corresponding to A;, i.e., ATy; = A;y;. Then,
from y] Ax = Aky] Xk = Ajy] Xi, we see that for A # A;, we
have lexk = 0. Moreover, assuming that x; and y are nor-
malized in the sense that ylka =1, k=1,...,,n, we find that
X! = YT, where X = [x¢] and Y = [yx]. Thus, the spectral de-
composition of A reads as A = XAX~! = XAY'.

Accounting of (27)-(29), we deduce that the systems of nor-
malized right and left eigenvectors corresponding to A; and
— A are

. . P
(e ! ok ],—Slgn(a’“) k) (32)
Ve = by la] bk
and
. . ) o
(A ——= ik ],M Y5 ), (33)
la| * "k 1/ a] k
respectively, with ai = |[V; |[* - |[¥} || To simplify notations
we put
|1 |VJE' — V3 and v, = sign(ap)vy, (34)
ag
so that
64— _‘—,+
k k
(/lk, & ] o ) (35)
and
_ v Vi
[ Ak,[ d | ) (36)

are the systems of normalized right and left eigenvectors cor-
responding to A1 and — Ay, respectively. Thus, we have V™! =

\_IT, with

-V, WV

|l v v | 37
V. =[] (38)
The spectral decomposition of A is then
~ s~ A 0 |=T
A—V[ o AV (39)
or explicitly,

N St =+ 17T o =— T
K:Zak[ Ve || Yk —Ak[ Vk H L T
k=1 Vi Vi Vi Yk
while the matrix exponential is
“Ar _o| T 0 =T
AT _
e ' =V 0 TI(-7) v, (41)

or explicitly,

- N v
e—A‘[ — Z e—/lk‘[ A]f
k=1 v

(42)

A short comment is in order. In the absence of scatter-
ing (w = 0), we have A;; = —Ay = -M, and Ajp = Ay = 0.
As a result, we obtain \7+ =0, V_ =1, and A = M; thus,
the eigenvalues are the inverse of the discrete ordinates, i.e.,
Ak = 1/ug. The matrix exponential is the diagonal matrix
exp(Ar) = [eM7;e "] and the homogeneous solution at 7 =
7, given by in (7) = [e*7; e 7]y (0), is a representation of the
Beer-Lambert attenuation law for the downward and upward
radiances, i.e., [T}’l(?)]k = exp(—AT) ﬁﬂ(o)]k and [Tﬁ(())]k =
exp(—AxT) [T;; (7)1, respectively. If scattering is present, the
Beer-Lambert law is still valid but for the downward and up-
ward radiances &_(7) and &_(0) corresponding to the trans-
formed radiance vector

@] o1
E@ |71 o0

We proceed now to derive some matrix identities which
will be frequently used in the following. In terms of block ma-

£ = Vi@.

. . . =T .
trices, the orthogonality relation VV' =1,y , where I, is the
identity matrix of dimension 2N x 2N, reads as

PN s o T
BT %

from which we infer that
V.V -V, V] =1y, (44)
VAL AGE (45)

Similarly, from \_ITV =1I,5, we obtain
VIV V.V, =1y, (46)
ViV, =V V.. @7)

Accounting of (44)-(47), the following matrix identities read-
ily follow:

T

viv=vy,, (48)
AR AR A sl (49)
RS A v vl v (50)

On the other hand, from (34) and (38), we see that
‘_/i = Vi §, (5 1)

where S = [sign(ay)] is a diagonal matrix of plus and minus
ones. As SS = I, we find that the matrices Vi\?_ and V,V-!
are symmetric, i.e.,

Vivo)'=viv, (52)
v, v-hT=v, v, (53)



but V_Vf and V:1V+ are not; in particular, we have

V_svhHT =v_svT, (54)
(\7:1\7+)T = §(v:1v+)§~ (55)

Solution (18) with the matrix exponential as in (41) is the
starting point in our analysis. This solution, in the form of the
propagator P(t) = exp(—Art), is a combination of both grow-
ing and decaying exponentials. For large optical thicknesses,
growing exponentials will dominate the solution given in
this form, and the direct application of the propagator leads
to numerical instability. This behavior is referred to as di-
chotomic [22]. However, by appropriate manipulations of
(18) and by introducing scaling transformations, computa-
tionally stable equations, the so-called layer equation and the
interaction principle equation can be derived. These equa-
tions, which are the quintessence of the discrete ordinate
and matrix operator method with matrix exponential, are dis-
cussed in Sections 4 and 5, respectively.

4. Discrete ordinate method with matrix exponential

In the framework of the discrete ordinate method with ma-
trix exponential, the layer equation is a computationally sta-
ble relation connecting the layer-top radiance vector ig(0)
and the layer-bottom radiance vector fd(r) [25, 26]. For a
multi-layered atmosphere, each layer equation is assembled
into the system matrix of the entire atmosphere. By imposing
appropriate boundary conditions at the top and the bottom
of the atmosphere, the system of equations is solved for the
level values of the radiances. Thus, the method avoids com-
puting an explicit solution for each layer by imposing bound-
ary conditions for the entire atmosphere, as well as, the con-
tinuity condition for the radiances across the layer interfaces.

The layer equation is derived by inserting the matrix expo-
nential representation (41) in (18), and by multiplying the re-
sulting equation with an appropriate scaling matrix as in [31].
The result is

=T+ =T+ =T~

DTV ig(@) =DMV i4(0) -Dp(T)V b, (56)
where

_ Iy © [r@m o
D1(T)—[ 0 @ |’ Do(ﬂ—[ 0 Iy ],

e~ AkT _e~T/Ho 0
[o—A
Dy(@) = lm(]) . (57)
1/u0+/1k

If the level values of the radiances iq(0) and iq(7) are known,
the radiance at an internal point 7, with 0 < 7 < 7, is com-
puted as

i) = VE(1,7)

£.(0) ]_A
@ VEy (7,7)7, (58)

where now &(7) = [€, (1),&_(1)]7 =\7de(1), n= V'b,and

[t o
E(Ty T) - 0 FG—T) ’
e—/lkr_e—'r/ug 0
= _ 1/up—A7
Eb(T,T)—[ ((’) ¢ g 1=~ (L Umo) (59)
—e 1/[Jo+ﬂ.k

The matrix exponential representation of the solution as
given by (18) is mathematically equivalent to the classical
Chandrasekhar’s representation in terms of the characteristic
solutions

~

ot

e M7 | Yk | and eMT X’i (60)
v v
k k
To show this equivalences, we consider (20), i.e.,
1a(1) = e (i3 (0) — 1 (0)] +1p (1), 61)
for 0 <7 <7. Using (30) and writing
I'(1) 0 [ T 0
0 I(-7 |~ 0 TI(-7)
-1
I 0 I 0
[ o r@ |lo r@ | (62)
we obtain
~ [ Virm V_Ir(7-1) al -~
ig(1) = V.ro VJ(?—T) B +ip (1), (63)

where the N-dimensional vectors &« and  do not depend on
7, and are given by

¥

The explicit form of (63), i.e.,

V. V.I(7)
V. VI (7)

-1
[iq(0) —ip(0)]. (64)

T At | Vi e | Ve L
iq(r) = Z aie K|+ Bre . +1ip (1), (65)
k=1 k k

is the solution representation in the Chandrasekhar’s discrete
ordinate method. Another representation can be obtained by
using the relation

rm o |_[T@® o0 ]
0 ren || o rEn
-1
1 -1 1 -1
o o [F(ﬂ ro | 0 ©@
which yields
L40) = V.r@-7)+V,I['(1) V.-I@-1)-V,I(7)
W= Vr@-n+Vv.r@ v,.r@-n-v.ru
x[ p ]ﬁpm, (67)



with

-1

V-rm-v, [i4(0) —ip(0)]. (68)

a] [ V-ID+V,
B | V.Ir@-V_

V.Ir@®+V_

[E—

From (67), we get

o o (et [ VE ] e | Vi
ia(m) =) akle & |re o
k=1 k k

+,6k(—e_’1” Vi k )+i @) (69)
v vi LA

4o @) [ v

where as before, the integration constants a and S do not
depend on 7.

Equations (63)-(64) and (67)-(68) are equivalent solution
representations in the matrix exponential method and will be
used in the next section to derive the reflection and transmis-
sion matrices. In both representations, the radiance vector at
optical depth 7 is a superposition of eigenfields propagating
from the upper and lower boundaries, with the attenuation
factors exp(—Ax 1) and exp[—A,(T — 1)], respectively.

Although the classical and the matrix exponential version
of the discrete ordinate method are very similar, several dif-
ferences can be emphasized:

1. In the classical discrete ordinate method, the expan-
sion coefficients aj and S are the unknowns of the dis-
cretized radiative transfer problem and are computed
by imposing the continuity condition for the radiances
across the layer interfaces. In the discrete ordinate
method with matrix exponential, the unknowns are the
level values of the radiances. Once they are computed,
the integration constants can be obtained from (64) or
(68).

2. In the classical discrete ordinate method, the compu-
tation of the particular solution requires the computa-
tion of the inverse (I — oA)~!. This inversion step is not
present in the discrete ordinate method with matrix ex-
ponential. However, if the systems of normalized right
and left eigenvectors stay at our disposal, the constant
vector ¢ which enters in (23), can be calculated with a
less computational effort as

oo G=pen)! 0 =T
c=V 0 I+ poA)"! V' b (70)

for yp # A, k=1,...,N.

5. Matrix operator method with matrix exponential

In a continuous setting, the interaction principle equation,
which is the central feature of the matrix operator method, re-
lates the outcoming radiances at the layer top 14(0, i, — o, @ —
(o) and layer bottom I4(7, —, — o, ¢ — o) to the incoming ra-
diances I4(0, =, — o, ¢ — o) and 14(7, U, — o, ¢ — o) through
the reflection, total transmission and diffuse transmission
functions R(u, 1, — @";T), T(u, 1, — ¢';7) and Ta(u, 1, —

¢';7), respectively, where u, ¢/ > 0. The transmission func-
tion for the diffuse radiance Ty is related to the transmission
function for the total radiance by the relation

— _ T =
Tal, 1, p—¢sT) = Ty, u’,q)—q)’;r)—ﬁé(u—u’)éup—(p’)e T,

(71)
Considering the Fourier cosine expansions

Mmax
14T, pt,— 0, @ — 90) = Y Iam(@, it —po) coslm(@ — po)l, (72)
m=0

Mmax

X, 90— @0 =) (2= 8m0) Xm(, 1';T) coslm(p — "],
m=0
(73)
where X stands for R, T, and Ty, and noting that
_ 1 o
Ty (i, 15 7) = T (1, (3 7) + z—lu,é(u— phe TH, (74)

for any azimuthal mode m, yields the following representa-
tions of the interaction principle in the Fourier space:

1
Igm (0, 1, — o) = (2 _5m0);IJOF0Rm (1, to; T)
1
+2/ R (i, 1;7) Igm (0, — ', —po) ' dpt’
0
1
+2 / Ty (i, 15 0) Iam (T, ', — o) p' dpt! (75)
0
and
_ 1 _
Iam (T, —p, — o) = (2= O mo) ;quo Tam (4, po; 7)
1
+2 / Ty (s 157 I (0, — ', — o) o' dp/
0
1
+2 / Ron (i, 15 D) Iy @, ', —po) ' dpt’. (76)
0

The plane albedo r, total transmission ¢, and the spherical
albedo r of the layer are given by

1 1
r(u,f)=2/ Ro(u,u’;?),u’d,u’z.’z/ Ry, wop'dy!,  (77)
0 0
1 1
tw,T) =2 / To(u, ps ' dp’ = 2 / To,wp'dy’,  (78)
0 0

1 1
rs(T) =4 / / Ro(p, p'; 1)’ pdpt' dps, (79)
0 0

while for a homogeneous layer with an underlying Lamber-
tian surface of albedo A, the interaction principle is

1 _
Iam (0, p, — o) = (2 =6 mo) ;HOFORAm(H» Ho;T)

1
+2 / Ram(, ;D) Iam 0, ', —po) ' dy’ - (80)
0



and
_ 1
Iam (T, =1, — o) = (2 = O mo) ;quo Taam (W, to; T)
1
+ 2/ Tam (W, 1'57) Igm (0, — ', — o) ' dp’,
0
(81)

where

_ A
Ram (i, 1;7) = Ry (1, 157) + o T D, 7), (82)
- N

Tam (W, 157 = Ton(p, 1T _)+5mo r(/u,T)t(u 7, (83)

A _ _
r(u, 7) t(uo, 7).
— rS
(84)

T adm (1 p0;T) = Tam (s o3 T) + 6 o 1

For a pertinent and mathematical elegant description of the
radiative transfer in a continuous setting including the defini-
tions of the reflection and transmission functions, as well as
the derivation of the interaction principle equation, we refer
to [32].

In a discrete setting, the interaction principle equation re-
lates the outcoming radiancesf&r 0) andfa (7) to the incoming
radiances/i\a 0) andfg (7) through the reflection and transmis-
sion matrices R and T, respectively. Transforming the solu-
tion representations of the matrix exponential method into
a form which resembles the interaction principle equation,
equivalent expressions for the reflection and transmission
matrices can be obtained. This derivation can be regarded
as a conversion of the initial value problem of the matrix ex-
ponential method into a two-point boundary value problem
(the incoming radiances Td‘ (0) and Tg (7) are specified). In
the framework of the matrix exponential formalism, the re-
flection and transmission matrices are introduced in a natu-
ral way, and as they are well behaved and bounded, the nu-
merical instability is avoided. In the matrix operator method
and for a multi-layered atmosphere, the reflection matrix of
the entire atmosphere is computed recursively from the re-
flection and transmission matrices of each layer by using the
adding algorithm.

5.1. Reflection and transmission matrices of a homogeneous
layer

First representations of the reflection and transmission
matrices can be obtained from layer equation (56). Express-
ing (56) in terms of the upward and downward radiance vec-
tors ia—' (0) and i;’ (7), we obtain the interaction principle equa-
tion
i 30 i+
@

) (85)

I
=) =)
=) =

—_—

[

where R=R(@), T=T(7), and

- o~ — — -1 — —
[ R T ]_ TOv. -V TOV. -V,
T R V. rovl V. reov.
(86)
-~ —T —T -1
[ Z. ]z T@v. . Vo b b 87)
z- V_ r@v,

By inspection of (86) it is apparent that the computation of
R and T requires an inversion and a multiplication of ma-
trices of dimension 2N x 2N. Similar expressions for R and
T, which however do not use the right- and left-eigenvectors
technique, can be found in [23, 24]. The 2N x 2N matrix in
the left-hand side of (86) is called extinction matrix. The ex-
tinction matrix is expressed in terms of R and T , and as the
propagator, it depends only on the internal properties of the
homogeneous layer [22].

The computation of the reflection and transmission ma-
trices can be halved in order. These representations, corre-
sponding to the interaction principle equation

i _[I} T [ i;@-i;© it o ©8)
iq (7) T R i)~ (7) i (7) I

can be derived from (63)-(64), and (67)-(68), and do not nec-
essarily require the use of the systems of normalized right and
left eigenvectors. In the first t case, we use (63) with 7 =7 and
(64) to express 1a(7) = [if @),1; @1" and 1a(0) = (i} (0),i; (011",
respectively, in terms of a and p; from these representations,
we get

ld o \7+Vr_(?) Vo 5 |+ ‘+ EE; (89)
an
+ { +
i 291 |-l o¥m 75 im0
and further,
A\7+ 1 RS GEE
dr) vro V. v.ro v
X[ lgg—lp B[ e @D
Employing now the matrix identity
o i
[ 11: fo :[ —AEBC ACBC ] 92)
with
C=A-BA!'B)}, (93)
we end up with
R=(V,-V_IV_'V.n(V_-Vv,rv_'v.n™! (94)
T=V_.r-v,.v2'v,nv_-v,rv:'v,n-, (95)



where I' = I'(7). In the second case, we proceed analogously
and use the matrix identity

-1

A -B 1] A1 ATl
A B _5[ _B—l B—l :|? (96)
to conclude that
~ 1 ~ ~ ~ ~ ~ ~ —~
R= (V. +V-D)(V- +V. D)+ V-V (Vo -V, DY,
97)
~ 1 ~ ~ ~ _ ~ ~ ~ ~ _
T= IV, +V-D(V-+V.D) LV, -V.D(V_-V,D'].
(98)

By making use on fundamental matrix identities it can be
shown that (94)-(95) and (97)-(98) are identical. On the other
hand, it is apparent that (94)-(95) require 2 matrix inversions
and 5 matrix multiplications, while (97)-(98) require 2 matrix
inversions and 2 matrix multiplications. In this regard, the
quantities which enter in the interaction principle equation
(85) may be computed as follows:

1. calculate the matrices R and T from (97) and (98), re-
spectively,

2. calculate the particular solution by means of (23) and
(70), and the particular solution source vector according

to
b [ O] [R T][i0
3z i; (7) T R|[ij(7)

Depending on the choice of the method for computing the
spectral decomposition of the layer matrix A, specific rep-
resentations of R and T can be derived. In the square-root
method, the matrices Q, and Q_, defined by V, = (Q,+Q_)/2
and V_ = ((A)Jr - 6_)/ 2, are related through the relation (cf.
(344) of Appendix 1) Q_ =— (A);TA, and it can bee shown that
R and T can be expressed in terms of Q3 only. On the other
hand, in the Cholesky method, the identity (cf. (351) of Ap-
pendix 1) @;T = —Q_A can be used to express R and T in
terms of Q_ only. These representations which play an im-
portant role in the asymptotic theory will be derived in Sec-
tion 5.4.

We conclude this section by presenting Waterman'’s deriva-
tion of the reflection and transmission matrices. Considering
for simplicity, the interaction principle equation for the ho-
mogeneous solution (cf. (88))

() R T[] i

’h =| X Z ||z

tw Lt sllEm ] o
we obtain

o -1 _T-1p o

20| g0 toreor || 2 | (100)
i@ RT! T-RT IR i (0)
On the other hand, from (cf. (26))

i@ _az| B0

~h — AT ~h

[ig(ﬂ e Lo | (101)

it is apparent that the matrix exponential is identified as

~

T-! -T-R

RT ! T-RT!R

-AT _

(102)

Flatau and Stephens [22] called (102) the fundamental rela-
tionship connecting the propagator (matrix exponential) and
the extinction matrix. So basically, what we have to do is to
evaluate exp(—AT), to invert its upper-left-hand block to ob-
tain T, and finally, to postmultiply its lower-left-hand block
by T in order to get R. By means of (41) in conjunction with
(28) and (37), we find

Tl =V, I@V. +V_.I(-DV,
RT = V. Ir@V, +V,I(-DV..

(103)
(104)

Equations (103)-(104) have been used by Waterman as a start-
ing point for deriving the expressions of the reflection and
transmission matrices for small and large values of the op-
tical thickness. Here, we use a different approach in order to
show the equivalences with (94)-(95), and so, with (97)-(98).
Let us define the quantity
A =T w1

To=V_ I'@V_, (105)
which is computationally stable, and let us construct the ma-
trix product

T =1-V, T@OV.V_ T@VL (106)
Then, we obtain

ESI P < ol T o-17-1

T, T =1-V,IT@V.V_ IOV} (107)
and so,

T=V 'TV_-v,Iv.v.'7, (108)
R=(V,-V.IV.V_ DV_-V,IV.V_ '), (109)

where, as before, I' = T'(7). Equations (108)-(109) seems to
be new. However, employing (48) and (50) in (108)-(109),
yields (94)-(95), and the mathematical equivalence between
the various representations of the reflection and transmission
matrices is proved.

The analytical formulas derived so far are valid for non-
conservative scattering (w # 1). The case of conservative scat-
tering, which is merely of theoretical interest, is treated in Ap-
pendix 3.

5.2. Discrete approximations of the reflection and transmis-
sion functions of a homogeneous layer

There are several applications, e.g., asymptotic theory, in
which discrete approximations of the reflection and trans-
mission functions of a homogeneous layer are of particular
interest. Considering the interaction principle (88) and pass-
ing from the scaled diffuse radiance vector iy to the diffuse



radiance vector ig according to the transformation rule (cf.

(14) & = W2 M~ 2i%, we obtain

ig 0) _ R T iy (0 ) <

i (7) T R || i(7)-e e e kg,
(110)

where

R=MIW 2RWIM~2, 111)

T=MZW 2TW:M 2, 112)

and ¢ = [c1,¢c]T = oI — woA)~'b, or blockwise, c1p =
W_%M%El,g. Further, from (75), (76) and (110) we find the re-
lations

(R (i, uD] = R, (113)
[T (K, p)1 =T, (114)
[Ryn (ks fto)] = €1 —Rcy —e T/MOTcy, (115)
[Tam (i, po)] = e T/Mc, —Tcy —e T/HMRe,, (116)
where the matrices R and T, given by
R= %RMW_I = %M% “2RWIM?, (117)
T:%TMW’I:%M%W’%TW’%M%, (118)

are the discrete approximations of the reflection and trans-
mission functions, respectively, and the vector ¢ = [c, C2] Tig
defined through the relation ¢ = (2 — 8 ,,,0) (Fo/ ) oc. In addi-
tion, the matrix

Tq¢=T-D, (119)
with
D]y = T e TSy, (120)

is the discrete approximation of the diffuse transmission
function, i.e.,

[Tam (i, w1 = Tq. (121)

Equations (117) and (118) show how to convert the scaled re-
flection and transmission matrices into physical functions.
As the interaction principle has been formulated for the dif-
fuse radiance, relations (115) and (116) corresponding to the
incident direction can be used for checking the reflection and
transmission matrix calculations. The computational pro-
cess of some reflective and transmissive characteristics of the
layer involves the following steps:

1. For the azimuthal mode m = 0, compute the plane
albedo vector r and the transmission vector t of the layer

r=2RWM '1 =Rl,
t=2TWM 1 =TI,

(122)
(123)

10

together with the spherical albedo

re=4v' Rv=2v'R1, (124)

wherev=WM11and1=11,...,1]7.
2. Compute the reflection and transmission matrices of the
layer with an underlying Lambertian surface

A
Rp=R+ 1 6m0ttT,

(125)

Ts

Ta=T+ Smort”. (126)

s

3. For the azimuthal mode m = 0, compute the plane
albedo vector of the homogeneous layer with an under-
lying Lambertian surface

ry=2R,WM 1 (127)
and the spherical albedo
rsa=4vIR,v. (128)

According to (74), the total transmission function is a gener-
alized function, or a distribution. In a discrete setting this
means that in contrast to the diffuse transmission matrix
[Tam (L, 113 7)1, the total transmission matrix [Ty, (L, 1i; 7)1,
regarded as a function of y;, has a jump at y; = ug.

The discrete approximations of the reflection and trans-
mission functions R(u,y',¢ — ¢';7), T(u, ', — ¢’;T) and
Ta(u, ¢, @ —¢';7) are obtained by summing up the Fourier se-
ries in the azimuth, i.e.,

Mmax
X= ) (2-8mo)Xmcosimlp—¢],

m=0

(129)

where X stands for R, T, and T4. The number of azimuthal
modes Mpax is whether Myax =2N — 1, or Mpax < 2N —-1. In
the second case, an azimuthal convergence test over the diag-
onal elements of R and Ty is performed. A stronger test may
involve the convergence of the Frobenius norms of R and T.

For highly peaked phase functions the delta-M method [33]
can be used. In this case, the matrices S, and hence, the ma-
trices V. in (97)-(98) are altered by modifying the Legendre
expansion coefficients y,, of the phase function p(u, u', p—¢’)
and the single scattering albedo w according to

o L oo ap (130)
Kn= =7 O f

and

* _ 1_f

w* = l—fww' (131)

respectively, while the diagonal matrix I' = [e”*7] in (97)-
(98) is altered by modifying the optical thickness 7 accord-
ing to T* = (1 - fw)T. Here, the truncation factor f is defined
by f = (1/2)y2n. The delta-M method enhances the conver-
gence of R and T4 when compared with the corresponding
results obtained in the absence of truncation.



The delta-M method can be used in conjunction with the
truncated-plus-single-scattering (TMS) method [34]. The ap-
plication of the TMS correction to the reflection matrix of a
semi-infinite atmosphere was discussed in [35]. For a layer of
finite optical thickness, the TMS corrections of the reflection
and transmission matrices use the corresponding functions
in the single-scattering approximation

Rss (i, o, @ — o;T) = mwmu,—uo,w—wo) (132)
x[1- e—(l/,u0+1/p)?]’
1
TSSd(NvNO)(p_(pO;ﬂ = mwp(—ll,—,uo;(l)—(.oo) (133)

< (e—?/,u _ e‘?’“o),
For example, the TMS correction of the reflection function is

AR, o, —90; T) = RS (W, o, —0; T) — Res (W, o, p—00; T),
(134)

where,

RS (1, o, @ — 03 T) = P, — o, @ — o) (135)

1 w
4(pu+p) 1- fo
< [1 _ e—(l/u0+1/p)?* ],

Nmax

2n+1
P, — o, @ —Po) = Y
n=0

2

XnPn(cos®),

and

4(u+ po)
1 _e—(llu0+1/y)?*]’

RE (W, o, @ — po; T) W p* (W, —po, 9 —po)  (136)

X

correspond to the “exact” and truncated phase functions, re-
spectively. In (135), P, are the normalized Legendre poly-

nomials, cos® = —upg+ /1 —p2/1- ,u(z) cos(@ — o), Npax >

2N —1 is the number of all expansion coefficients, and 7" is
the delta-M scaled optical thickness. The truncated phase
function p*(®) in (136) can be computed in two different
ways. If an azimuthal convergence test is performed (Mpax <
2N -1), p*(©) is computed as

Mmax
p* (=0, @ — o) = Y, (2=8mo) Py (1, —po) cos[m(e — ¢o)l,

m=0
(137)

2N-1
Pt —Ho) = D xn Py (WP (ko)
n=m

where P]* are the normalized Legendre functions, and other-

wise, as

2T 2+l
pr@©) =)
n=0 2

X Pn(cos®). (138)
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To analyze the accuracy of the TMS method in computing
the reflection and transmission functions we perform numer-
ical simulations of the Earth Polychromatic Imaging Camera
(EPIC) measurements in the oxygen A-band absorption chan-
nel at 764 nm (Channel 9). Note that this channel is used for
cloud parameters retrieval, and that the EPIC instrument, on-
board the Deep Space Climate Observatory (DSCOVR), mea-
sures from the L1 Lagrangian point, at which the satellite re-
mains near the Sun-Earth line. For an atmospheric layer con-
sisting of oxygen molecules and a water cloud, we assume
that the radiative transfer in the layer involves, in addition
to cloud scattering and absorption, oxygen absorption. More
precisely, we neglect the molecular Rayleigh scattering, that
is, for the homogenized layer, we use the approximations
Oext ™ Oggy + Ugbs’ Osct ® Ogey, Xn & X7 Where o¢yy, 05y
and y¢ are the extinction coefficient, scattering coefficient
and the phase function expansion coefficients of the cloud,
while O'gb ; is the absorption coefficient of the oxygen gas. Per-
haps it should be pointed out that the high oxygen absorption
(computed by line-by-line calculations), yields a large inter-
val of variation of the single scattering albedo of the homog-
enized layer (between 0.2 and 0.999) As the Sun is in the back
of the instrument, the observed scattering angle is close to
the backscattering direction. To model the scattering in the
backward region, we take p = po, and as in [36], we choose
¢ — o =176°. In Table 1 we show the relative errors in R and
Ty, defined by

and similarly for €7, for the delta-M method and the delta-M
method with TMS correction. The optical thickness is T = 5,
the single scattering albedo is w = 0.85, and the phase func-
tion corresponds to a water-cloud model with a Gamma size
distribution
[
-a
Amod

of parameters apyoq = 10 um and a = 6. The droplet size
ranges between 0.02 and 50.0 ym, and the reference val-
ues Ryer and Tyrer correspond to Nranx = 565. The results
demonstrate that the TMS method requires less discrete or-
dinates N as the standard delta-M method. This observation
implies that the TMS method improves the accuracy of reflec-
tion and transmission functions calculations.

This model based on an eigendecomposition method for
computing the matrix exponential is used as a reference for
testing the approximate representations of the reflection and
transmission matrices in the cases of thin and thick layers. In
particular, for the EPIC instrument, we compute the relative
errors

-

where as before, X stands for Rand T, and ¢ — ¢ = 176°.

Jo IR, 11,90 = 903 D) = Rees (1, 1, — o D)) 2dpe
Jo Rt o0 = po; T)d

(139)

P(a) x a%exp (140)

LA (X — [Xregl k)

, (141)
Z;CVZI [Xref]ik




Table 1: Relative errors €g and e7 for the delta-M method and the delta-M
method with TMS correction, and for different values of the number of dis-
crete ordinates per hemisphere N.

N Delta-M Delta-M and TMS
ER ET ER ET

128 3.80e-4 4.44e-4 3.53e-4 4.44e-4
64 1.64e-2 2.06e-3 1.41e-3 1.91e-3
56 1.97e-2 2.81e-3 1.61e-3 2.56e-3
48 2.28e-2 4.24e-3 2.21e-3 3.70e-3
32 4.34e-2 8.63e-3 3.76e-3 7.73e-3
16 6.12e-2 2.85e-2 2.42e-2 2.66e-2
8 1.95e-1 1.05e-1 6.71e-2 8.97e-2

5.3. Reflection and transmission matrices of a homogeneous
thin layer

For optically thin layers, the Padé and Taylor series approx-
imations to the matrix exponential can be used for comput-
ing the reflection and transmission matrices and so, to avoid
the solution of an eigenvalue problem. The interest in such
small values of T stems from the possibility of using these
approximations to generate starting values for the doubling
method. Parenthetically, we note that the basic recursion re-
lations of the doubling method can be obtained by using the
matrix exponential formalism. Indeed, setting R = R(7) and
T, = T(@) for the layer of optical thickness 7, and R, = R(27)
and Tg =T(27) for the layer of optical thickness 2T, we express
(102) for the layers T and 27, as

- T! -T7IR
—AT — . N 1 lA
© RT! T -RT'R ] (142)
and
e[| Tl TR (143)
R.T,! T,-R.T,'R,

respectively, and use the identity exp(—2AT) = [exp(—A7)]?, to
obtain

TZ -T,'R, Til -T;'Ry
B.A-1 7 _P.T-ID =l el A _R.TID
RT,! T,-R.T,'R, RT! T-RT'Ry
(144)
Solving for R, and T, we get
R, =R, +T R, 1-RH)7'Ty, (145)
T, =T,-R)'Ty, (146)

which are the recursion relations of the doubling method.

5.3.1. Padé approximation

In radiative transfer, the Padé approximation has been sug-
gested by Flatau and Stephens [22] for computing the extinc-
tion matrix and the source function integral of a layer. More

recently, McGararagh and Gabriel [37] used this approxima-
tion in connection with the matrix operator method. Essen-
tially, the nth diagonal Padé approximation to the exponen-
tial of the matrix A7 is defined as [38]

e ~ D, A1) "'N, A7), (147)

where D,, (A7) and N,,(A7) are polynomials in At of degree 7,
given by

n

D,@Ar) =Y cir Ak, (148)
k=0
n

N, A7) = Y (D¢ 7 Ak, (149)
k=0

and

Cr = (2n——k)'n' (150)

T enikin-K

From (148) and (149) it is readily seen that N, (A1) = D, (-A7).
To compute D, (A7) and N, (A7) we have to compute powers
of A. By taking advantage of the block symmetries within A
(cf. (6)), we find

N Xk Yi

T EDYe DR (15

where for k = 2, the matrices X;. and Y are computed recur-
sively as

Xy = Xy_1A11 — Y141, (152)
Yi =X;1A12 - Yi1Ay, (153)
with the initial values

X; =Aj1, (154)
Y; =Aj. (155)

The coefficients c; are also computed recursively by means
of

n—-k+1

= mck—b (156)

Ck
with the initial value ¢; = 1/2. Accounting of (151), the matri-
ces D, (A7) and N, (A7) of (148) and (149), respectively, can be
written as

. I+X: Y
D, Ar) = on n_ ] (157)
n Y, I+X,
~ I+X Y,
N, Ar) = n n ] (158)
n Y, I+X}
where
n
Xt =Y D Xy, (159)
k=1
n
YE= Y #DFer*yy (160)



Inserting (147) together with (157) and (158) into the homo-
geneous solution representation (26) yields

R, =H,01+X})) - G,Y, (161)
T,=G,I+X;)-H nY;, (162)
with

G, = (E,—F,E;'F,) 7, (163)
H, =E;'F,G,, (164)
and

E,=1+X,, (165)
F,=Y;. (166)

Equations (161) and (162) give the nth-order Padé approxi-
mations to the reflection and transmission matrices. In the
case n =1, we find Xj = i(?/ZA)f\H and Yi = i(?A/Z)Klg. Asa
result, we obtain E; =1— (7/2)A1; and F; = (7/2)A;2, and so,

~ T~ T .~
Ri=Hi0+ A1)+ SGiku, (167)
~ T~ T .~
T, =G I+ EAH) + EHlAlz. (168)

Further, approximating El‘1 ~ I+ (T/2)A1, and retaining only
the first-order terms in the Neumann series of the inverse
in (163), gives G; = I+ (T/2)A;; and H; = (7/2)A;2, and ulti-
mately

-~

R; =_A12 and Tl = I+?1§11. (169)

This is the infinitesimal generator initialization scheme of
Grant and Hunt [39] (see (181) below).

5.3.2. Taylor series approximation
The Taylor series approximation uses the definition of the
matrix exponential, namely

—~ n
—At _, _Nk = _kak
eI+ ) (-1 T A (170)
k=1
Accounting of (151), we obtain
A= ” 1 X Y
-AT k1 =k k k
e =1+ - — , 171
LEVET] Chby, cnkx, (71)
while from (142) we get
N . n
T'~T,' =1+ ) 7°E, (172)
k=1
N . n
RT ' =R, Y 7°Fy, (173)
k=1
where the matrices E; and Fj are now given by
(-1 )k
E; = X and Fy. = Yk, (174)

k!
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respectively. Using (172) and (173), and seeking for expan-
sions of the form

n
T,=1+) 7°Gy, (175)
k=1
. n
R,=) 7H (176)
k=1

we find that the matrices G,, and H,, in (175) and (176) can be
computed recursively as

G; = -Ey, (177)
n—1
G, = - Y E,kGi,nz2, (178)
k=1
and
H; =F,, (179)
n—1
H,=F,+ ) F,_«Gr,n=2, (180)
k=1

respectively. Equations (175) and (176) give the nth-order
Taylor series approximations to the transmission and reflec-
tion matrices. In the case n = 1, we obtain the infinitesimal
generator initialization scheme of Grant and Hunt [39],

T, =1+7A;;, Ry =TA}», (181)

in the case n = 2, we obtain the expanded diamond initializa-
tion scheme of Wiscombe [40],

s 5 1—2 A2 A2
T, =T, + 7 @&F +A%), (182)

~ ~ 1, o o o~

R, =Ry + 512 (A11A12 +A12A11), (183)
and finally, in the case n = 3, we obtain the scheme of Water-
man [21],

1. o e
T;=To+ grf‘(Aff1 +2A%,A1; +2A11A%, +ApA A pp),  (184)

f{g = ﬁz + %fs (ZK?Z +K%1312 +1§121§%1 + 2;&111/&12@11). (185)

The Padé and Taylor series approximations are based on
the computation of powers of A, for which we used (151)-
(155). An alternative approach for computing A¥, which ex-
ploits more efficiently the symmetries of the matrix A, has
been proposed by Waterman [21], and can also be found in
Flatau and Stephens [22], and McGarragh and Gabriel [37].
The idea is to consider the similarity transformation A =

L'AL, with
1
andL™! = \/i[ I
211

yielding exp(—Ar) = Lexp(-A7)L™!, D, (A7) = LD, (AT)L™},

and N, (A7) = LN, (Ar)L™!. Thus, by this similarity transfor-
mation, we have to compute powers of A, for which we find

(186)

k k
- U o U 0
2k _ —
A ‘[ o uf [ 0 Whk | (187)
~ . UFA_
2k+1 _ x2kx _
AZFL =R A—[ ONE, o ] (188)



Table 2: Relative errors g and e for the series approximations (Padé and
Taylor approximations with n = 5) and the exponential infinitesimal genera-
tor initialization (EIGI).

Series approximations EIGI

T IATIl2 ~ er €T £R £T

5.0e-4 0.30 2.12e-3  1.85e-3 1.16e-2  1.18e-2
1.0e-3  0.66 4.38e-3 3.87e-3 2.15e-2  2.29e-2
2.0e-3 1.22 9.47e-3  1.14e-2 3.65e-2  4.48e-2
3.0e-3 1.83 1.54e-2  2.85e-2 4.58e-2  6.91le-2
4.0e-3 244 2.23e-2  6.15e-2 5.12e-2  9.79e-2
5.0e-3 3.05 2.98e-2  9.18e-2 5.45e-2  1.31le-1

where U=A_A,,and A, =A;; +A},.

The accuracy of the reflection and transmission matrices

computed by the Padé and Taylor series approximations is
high if [|AT|| < 1; thus, for small values of 7. Therefore, the
series approximations can be used for the initialization of the
doubling method in radiative transfer. The doubling method
is equivalent to the so-called scaling and squaring technique
for reducing the norm of a matrix and exploits a fundamental
property unique to the exponential function, namely
e AT _ (e—K?/zx)zs.
In practice, we choose s as the smallest power of 2 for which
[|AT||/2° < 1, evaluate the reflection and transmission matri-
ces of the layer of optical thickness 7/2° by means of series
approximations, and use the doubling equations to build up
the reflection and transmission matrices of the layer of opti-
cal thickness 7. As compared to other initialization methods
based on the single scattering approximation, e.g., the expo-
nential infinitesimal generator initialization (EIGI) given by
[41]

N 1=
[Rercrlkr = ur(1—e ) [Aral ki,

~ _ 1=z _1=
Tercrli = pe(l—e YA s + 61 ',

with A9, = A;; + M (see (292) below), the series approxima-
tions are more accurate and so, reduce the number of dou-
bling needed. This result can be inferred from Table 2, in
which the relative errors in the discrete approximations to the
reflection and transmission functions for different values of
[|AT||» are illustrated. Note that the Padé and Taylor approx-
imations yield the same relative errors, and that the relative
errors are of about 1% for ||AT||, < 1.

It is a simple exercise to combine the Padé approximation
with the Taylor series approximation to derive an approxi-
mation of the layer equation in the discrete ordinate method
with matrix exponential. Starting from the solution represen-
tation (18) and using the Padé approximation for exp(—K?)
and the Taylor series approximation for exp[~A(7T — 1)], gives
the nth-order approximation of the layer equation (compare
to (56))

D, A7) 14(7) =N, A7) 14 (0) - B,(T)b, (189)
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where

T
B, (7) =D, (A7) / e AT T THoqy
0

:10(ﬂ1+k;[ckr Io® + —— (@)
min(k—1,n) (_1)k_l .
+ (1-8k1) ot Iy (@ (AL, (190)
and
T 1_ *?//Jo
10(?)=/ e THogr =% (191)
0 (1/ po)
T =k -7/
k Ho
Ik(?):/ G-nkegr =~ X 1 @ k=1
0 (/o) (1/po)
(192)
Note that because of
—k+1
Ik(‘[') = O(m), T<1,
each term in the sum (190) behaves as O(?k“f&k). The

first-order approximation of (189) is equivalent to the finite-
difference method described by Lenoble [5], and used in at-
mospheric remote sensing by Rozanov et al. [42].

5.4. Reflection and transmission matrices of a homogeneous
thick layer

When the optical thickness is sufficiently large, the reflec-
tion and transmission matrices can be expressed by sim-
ple analytical expressions known as the asymptotic theory
of thick layers. This analytical model is much faster and
more convenient for theoretical considerations than numer-
ical models based on discrete ordinate schemes.

5.4.1. Asymptotic theory

In the classical asymptotic theory, the reflection and trans-
mission functions for optically thick atmospheres are given
by [32]:

I, = ! mle_Zk? !

Ry (4, 115 7) = Roomn (14, ) _6m0Te_2k?K(mK(“ ), (193)
!, = k7 !

Tm(,u,p;‘r) =5momK(#)K(ﬂ ). (194)

Here, k is the diffusion exponent describing the attenuation
of the radiation in the diffusion domain and being defined as
the smallest positive eigenvalue of the equation

1

(1-kwi(w = % / po(p, 1)i(u)dy, (195)
-1

while i(u) is the corresponding eigenfunction, or the diffu-
sion pattern, satisfying the Sobolev-van de Hulst relation

1
i(—p)=2 / Rooo (p, )i () ' dy/ (196)
0



and the normalization condition

1 1
- i (wdp = 1.
From (195), (197), and the normalization condition of the
phase functions |’ 711 po(u, u")dy' = 2, we find the following ex-
pression for the diffusion exponent,

(197)

2(1-w)
=" (198)
S iwpdu
The escape function K(u) is given by the relation
1
mK (1) = i(w) — 2/ Rooo (pt, )i (—pt ) ' dpt! (199)
0
and satisfies the normalization condition
1
2 / K(wi(wpdp =1, (200)
0
where the constant m is defined by
1
m=2 / i*(wpdy. (201)
-1

Finally, the constant 1, also known as the negative internal
reflection coefficient, is computed as

1
1=2 / K(wi(-wpdp. (202)
0

Relations (193) and (194) show that R depends on the az-
imuthal angle through the reflection function of a semi-
infinite atmosphere Ry, and that T is azimuthally inde-
pendent. For a layer with an underlying Lambertian sur-
face of albedo A, the reflection and transmission functions
Ram(u, p';7) and Tapm(u, 1';7) are given by (82) and (83), re-
spectively, with

r(W,T) = Foo(lt) — mnl e 2T K (W) (203)
HoT) = Toollt 1—12e-2kT K
HT) = —— oK gy (204)
B = 2e-aa H,
2
— mn“1 kT
I's(T) = I'soo — PR . (205)

Here, ro, and ry are the plane albedo and spherical albedo
of a semi-infinite atmosphere, respectively, and n is the u-
weighted mean of the escape function

1
n= 2/ K(p)pdp. (206)
0

In a discrete ordinate setting, the reflection matrix of a
semi-infinite atmosphere can be obtained by solving the Am-
bartsumian nonlinear integral equation by simple iteration
[35], while the diffusion pattern and the diffusion exponent
can be obtained by solving the integral equation (195) in con-
junction with (197) and (198) [43]. The constant m is then
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computed from (201), while K(u), 1, and n follow from (199),
(202), and (206), respectively. A different discrete ordinate ap-
proach, which is based on an eigendecomposition method
for computing the reflection and transmission matrices has
been proposed by Nakajima and King [27]. Here, we ap-
ply this approach to estimate R and T, given respectively by
(97) and (98), in the limit of large 7. Choosing the square-
root method for computing the spectral decomposition of the
layer matrix A, we begin by estimating the matrix product
(V, +V_I)(V_ +V,I)! for large values of the optical thick-
ness. Using the identity (cf. (344)) 6_ —QJTA, where
Q+ = V+ +V_, Q_ = V+ —V_,and A = [Ak], and setting

T not

Q"2 Q=1qi,....qn], (207)
we obtain
Vi +V_D(V_+V, D!
=(A'-D+A'QIAd-TI,BA) ', ]QTATY, (208)
where
1 T
A= §(I+QAQ ) (209)
B=Q'A'Q, (210)
and
1 -1 +
H+=§[I—(I—I‘)(I+F) 1=1[m], (211)
. e MT
= T k=1,..,N. (212)

Note that all information about the eigenvectors of A are en-
capsulated in the matrix Q. Two comments are in order:

1. As A and B are symmetric, we see that

AA-TL,BA) ', = [(AIL,) "' —B] ! (213)

and so, that (\7+ +V_I)(V_ +V+I‘)‘1 are symmetric.
2. If the eigendecomposition of A is computed by the

Cholesky method, the key quantity is the matrix Q_; we
use the identity (cf. (351)) Q77 = —Q_A , set

Q_2'Q=Iq,....qnl, 214)

and obtain

WV, +V_D)(V_+V, D)

=A'-D+ATIQII-I,AB) T, A]QTAT! (215)
Then, from (213) and the relation
(I-TLAB) 'L A = [(AIL) ' -B] 7}, (216)

we deduce that both methods are equivalent.



Considering (211) and (212), we assume that for large 7, we
may approximate

0 - 0
M, ~ 7y, ,
0 - 1

(217)

where 7}, corresponds to the smallest eigenvalue Ay in the
set {A1,A2,...,An}. As a result, we obtain

V. +V_.DV_+V,D)!

-k7T
~(A -+ ———knkL as 7 — oo, (218)
1+leld VN
where k = Ay is the diffusion exponent,
121—ANbNN=1—kq, (219)

is the negative internal reflection coefficient, g = byy =

[B] v is the extrapolation length, and
ky=A"lqy, (220)

is a discrete approximation to the scaled escape function. The
matrix product (V, —V_I)(V_ -V, I)~! is estimated in a sim-
ilar manner. We get

V,-V_D(V_-V,D)!

=A'-D+ATIQ[Ad-T_BA) 'TIL]QTATY, (221)
with
1
M= [ (@+T) -0 =yl (222)
B e~ MT
nkz—m,kzl,...,N, (223)
whence, under the assumption
0O - 0
I_=ny as T — 0o, (224)
o --- 1
we end up with
V:-V-DV- -V,
1 L o
~ (A7 -I) - ——=kyky as 7 — 0. (225)
1-lekd N
Inserting (218) and (225) in (97) and (98), we obtain
R=R,, - Tkykl, (226)
T=tkyky, (227)
where
Ro=A""-1 (228)

is the scaled reflection matrix of a semi-infinite atmosphere,
and

kle—Zk?
T pea (229
- ke X7
t= m . (230)
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Figure 1: The phase functions for a;,,q =8 ym and a;,oq = 16 ym.

By numerical simulation it can be shown that the diffusion
exponent k = Ay increases as the azimuthal mode m in-
creases. In this limit, the scalars ¥ and T become very small,
and the contributigns ofAthe terms fENE{, and fENEJE in
the expressions of R and T, respectively, are damped. In the
asymptotic theory, these terms are neglected for m > 0, in
which case, (226) and (227) simplifies to

R=Ro — O moTknky,
T=08motknkl,.

(231)
(232)

Thus, the diffusion exponent k and the constant 1 in (193)
and (194) correspond to the azimuthal mode m = 0. As a fi-
nal step, we compute the discrete approximations of the re-
flection and transmission functions given by (193) and (194),
respectively, by means of (117) and (118), respectively. The
remainder functions and constants that occur in the asymp-
totic theory can be obtained by following strictly the deriva-
tion of Nakajima and King [27]. Their expressions are given in
Appendix 1.

As an application of the discrete ordinate model of the
asymptotic theory we derive parameterizations of the escape
function K and the asymptotic constants m, 1, n, r¢, and k.
Such kind of parameterizations, which speed up the compu-
tations, are used in the MODIS algorithm for the retrieval of
cloud optical thickness and the droplet/crystal size [44], and
in the SemiAnalytical CloUd Retrieval Algorithm (SACURA)
for the retrieval of cloud top height and cloud geometrical
thickness from measurements in the oxygen A band [45, 46].
For the EPIC instrument, we consider a discrete set of water-
cloud models characterized by a Gamma size distribution of
parameter a = 6 and different modal radii ayoq. The phase
functions for dmeq = 8 um and apeq = 16 um are illustrated
in Figure 1.

For the escape function, the parameterization parame-
ters are w and apyg. We look for polynomial parameteri-
zations of the form K(u,w, anod) = Px (U, 0, Anod) Ko (1) with
Pr(, 0, amoa) = X% Hi (@, moa) ¥, and Ko(p) = £ 3% HOpk,
where Kj is the escape function for conservative scattering
(w = 1), and Nx is the order of the approximation polyno-
mial. The parameterizations of K(u,w, ameq) do not change
significantly with apeqg; the coefficients Hy(w, apog), which
are stored in a look-up table, are illustrated in Figure 2 for



Table 3: Coefficients Hg

k 0 1 2 3 4

H](g 0.362 1.196 -0.5352 0.349 -0.09368

mod = 8 pum, and apoq = 16 um, while the coefficients Hg
are given in Table 3. The approximations error is smaller than
1073 for K(u, w, apoq), and smaller than 1073 for Ko (). Com-
ing to the asymptotic constants m, 1, n, ry and k, we note
that for a Henyey-Greenstein phase function, King [47] de-
rived parameterizations of these quantities in terms of the
similarity parameter

l-w
1-wg’

where g is the asymmetry parameter. In this regard, we take
s and apoq as parameterization parameters (s reproduces the
variability in w for a given ayoq). As for the escape function,
we found that the parameterizations of the asymptotic con-
stant are almost insensitive to ayoq, but are slightly different
from those of King [47], especially for m, n, and k. The results
in Figure 3, corresponding to amoq = 8 um (g = 0.853) and
Amod = 16 um (g = 0.867), certify this statement. For @;,oq = 8
pm, the parameterizations read as

1+1.315—5.6945% +3.73s3

m(s) = (1+1.268s)In (1-1.0705)(1 - 5)2

)

(1-0.76165)(1— s)
1(s) = ,
1+0.5897s

)

\/(1 +0.00315)(1 - s)
n(s) =
1+1.4267s

(1-0.12395)(1-9)

T'soo(S) = ,
s00(8) 1+1.1867s

1+8.49245
(1+7.25435)(1 —1.02655) |

k(s)
1

=(1+0.3977s)In

5.4.2. Higher-order corrections

The azimuthal independent parts of R and T have been
derived by neglecting the azimuthal modes m > 0, and the
contributions of the terms corresponding to the eigenvalues
larger than 1. Higher-order corrections can be obtained by
considering all azimuthal modes, and by approximating

0 - 0 0 0
+
m, ~ | ° TN-K o0 (233)
+
0 0 TN_1 )
0 - 0 0 a%
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Figure 2: Coefficients H (w, dpeoq) for apyoq = 8 pm and ay,gq = 16 pm.
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S S

Figure 3: Constants m and n, and the diffusion exponent k. The curves corre-
spond to ay,oq =8 pm, aneq = 16 pm, and King's parametrization.

where n;; and 7 are given by (212) and (223), respectively,
and the integer K = 0 (not to be confused with the escape
function K(u)) gives the order of the approximation. For II,
of (233), the inverse (I - I1.BA)~! cannot be computed ana-
Iytically, and an additional assumption has to be met. Setting

I-M.BA=C)-C.,

where Cg are the matrices I - IT.BA of the asymptotic model
(with IT; and II_ given by (217) and (224), respectively), we
approximate the Neumann series of the inverse up to the first
order as follows:

I-TLBA) ' =l -Co) =€) T+C D™

In this context, the reflection and transmission matrices
can be written as

(234)
(235)

R =Ry + Ry,
T=Tyg+ Tk,



where Ry and T correspond to K = 0 and are the reflection
and transmission matrices of the asymptotic model as given
by (231) and (232), respectively. The higher-order correction
matrices Rg and Tg correspond to K = 1, and are expressed
in terms of the scaled matrices

~ _1 —/IN?( 1 N 1 _ )
RK_ZANe 1+1e‘7LN?[EN_K 1-1le-Mn7 N-K
1, K . = 1 1
T S N
ZAngle 1+e vt N7k ] _ oAy 7 Nk
(236)
PO DR 1 N _
T =5 Ane (1+1e—lN?[EN*K+1—1e—AN? N‘K)
1. K = 1 1
+ = - N*’CT(—,[FJr +—F, ),
ZAIngle 1+e_AN’kT N-k 1—8_/11\/*” N-k
(237)
as follows:
1 1. 1. 11
[RK=5M2W 2RgkW 2M2, (238)
1 1. 1. _1 1
TK:EMZW ITxW 2Mz, (239)

The derivation of (236) and (237) is lengthy but straightfor-
ward. Here, we give only the final expressions. The matrices
Ey_x andFy,_,, corresponding to IT,, are computed as

K
Ex_x = Efnknky + Y Ex_pvkn-iky (240)
k=1
and
o~ o7 K ~ =T

+ _ ot +
Frnok = Fynoikvky_ g + l; Fy_in-ikn-i1Ky_p (241)
respectively, with
ky-k=A""qn_p, (242)
for k = 1,...,K. The scalars Ey,_,\, Exn Fa_ v p @nd

+
Fyn_i are

+ + +
En v =INEN-kXN_in

K
Exy =/ kz XN XNk (243)
=1

and

+ _ +
Fnoinek = 8N-1XN_ v

K
+ _ + +

Fyn-r= Zl N1 XN_IN- k0 (244)
respectively, where
XN-kn-1 = ON-kN-1+ YN _pn_p

XN-kn = ON—kN+ YN gy (245)
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and

+ + v+

Yy_inv-1= ”N_kbN—kN—l/lel + xN_lnN_kbekNAN;
+

Ty _ibN-kNAN

I '

fork,1=1,...,K. In (243)-(246), ”X/—k are given by (212), and

Y+

N-kN ~ (246)

o T NbNN-kAN-k
N-k fﬁ ’
f& = ]'_n]-t/'bNN/lNr
AN-k
gN-k = /I{IN : (247)

for k=1,...,K. The matrices Ej;_, and F,_,, corresponding
to II_, are computed by using (240)-(247), but with Tk of
(223) in place of ﬂ;rv_k.

Although the discrete ordinate model of the asymptotic
theory is still based on an eigendecomposition method, the
computation of the reflection and transmission matrices by
means of (226), (227), (236), and (237) avoids the matrix in-
versions and matrix multiplications of (97) and (98).

5.4.3. Waterman's approximation

In [21], Waterman derived analytical solutions for the
transmission and reflection matrices in the limiting case 7 >
1. The starting point of Waterman'’s derivation are (108) and
(109), which we will write as

T=Toa-V,IV.V_ 'TV-H, (248)
R=V, IV -V_IVOT, (249)
with

o o-T o1

To=V_ TV_". (250)

Considering the Neuman series for the inverse in (248), we
obtain

T=Toll+V,IV.V TV 4., 251)

R=V, IV -V_IVHT. (252)

Accounting of (50), we set (not to be confused with A of (209))

—T—-T ~_ 1

A=V, V_ =V_'V, (253)
and use the identity (cf. (50))

o o1 ~ ——T

V+V_ V+ = V_ _V_ y (254)

to obtain the zeroth- and first-order approximations, namely

To=V_'TV"L,
Ry=V, V",

(255)
(256)
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Figure 4: Relative errors in the discrete approximations to the reflection and
transmission functions computed by using (234)-(237) with K =5, K =1,
and K = 0 (asymptotic model), and the first-order Waterman’s approxima-
tion (WA) given by (257)-(258).

and

T, =V v +V_ (TATAD)V "}, 257)

=)

L =V. V' -V " rAn)V-! —V_(TATATAD)V_}, (258)

respectively. Note that in Waterman’s derivation, the last
term in the expression of f(l is not present. In (255)-(258),
I includes all exponential terms exp(—A;7) and not only the
dominant one exp(-AnT). For large 7, relations (257) and
(258) are similar to (227) and (226), respectively. To show this,
we use the relation V_ = V_S, where S is a diagonal matrix
of plus and minus ones, set V- = [¥,..., Vx|, approximate
I’ = diag|O0,...,0,exp(-AnT)], and neglect the second term in
the expression of T, as well as the third term in the expres-
sion of Ry. We obtain

T) = sye WToNVE, (259)
R =Ry — sNaNNeile?va{p (260)

where sy = [SInn, anvn = [Alyn, and Ry = V, V-1, Compar-
ing (259) and (260) with (227) and (226) under the assump-
tions T =~ klexp(—2kT) and T = kexp(—k7) for 7 > 1 (the Tay-
lor expansions in x = exp(—k7) of (229) and (230) for small x),
we see that for the azimuthal mode m = 0, we must have that
sy =1, Ay =k, vy = vVkky, and ayy = 1. Thus, by using
Waterman'’s technique we were able to derive new represen-
tations for Ry, ﬁN and 1.

In Figure 4 we show the relative errors in the discrete ap-
proximations to the reflection and transmission functions
computed by using (234)-(237) with K =5, K=1,and K =0
(asymptotic model), and the first-order Waterman’s approx-
imation (257)-(258). Obviously, Waterman'’s approximation
yields the smallest errors in the transmission matrix, and suf-
ficiently small errors in the reflection matrix.
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6. Matrix Riccati equations

Bellman et al. [20] formulated the radiative transfer prob-
lem as an initial value problem via a pair of nonlinear ma-
trix differential equations (matrix Riccati equations) which
describe the reflection and transmission matrices in a plane-
parallel geometry. The derivation of Bellman et al. [20] is
based on the invariant imbedding technique, and for this rea-
son, the invariant imbedding is usually a synonym for the
matrix Riccati equations method.

Flatau and Stephens [22], showed that for an inhomoge-
neous atmosphere, the matrix Riccati equations can be de-
rived by means of an approach based on the propagator op-
erator, that is, by an approach which is close related to the
matrix exponential method. The main problem which arises

in the case of an inhomogeneous atmosphere is that in view
of

d
o €X) £ X' (1)eX®, (261)
T

the homogeneous solution of radiative transfer equation

% (1)

5, 0= ~A(D)in(1),

(262)

with the initial condition ?h(O) and a continuous matrix A(t)
on 0 < 7 <7, cannot be expressed in terms of the matrix ex-
ponential, i.e.,

Tn(r) # e Jo AT, (). (263)
This fact should not be discouraged because in the matrix

Riccati equation method we need only a formal solution rep-
resentation of (262). The formal solution is [22]

in(1) = P_(7,00i(0), (264)
where the downward propagator P_(7,0) is a generalization
of the propagator P(7) = exp(—Ar) in the case of an inhomo-
geneous atmosphere. Inserting (264) in (262), we find that the
downward propagator solves the differential equation

dp_ ~
—(7,0) = -A(1)P_(7,0), (265)
dr
with the initial condition P_(0,0) = Iy. The subscript -
means that the propagation of the solution occurs from
the level 0 (second argument of P_) downward to the level
T (first argument of P_). The propagation of the solu-
tion from the bottom to the top of the atmosphere is de-
scribed by the upward propagator P, (7,7) which is defined
by i (1)=P, (1,DiL(7), and solve (265) with the initial condi-
tion P, (7,7) = Ly.

In an inhomogeneous atmosphere, the radiation com-
ing from above will be reflected and transmitted differently



than the radiation incident from below, so that in the down-
ward scheme, the interaction principle for an inhomoge-
neous layer extending from the level 0 downward to the level
7, reads as

The notation R_ (t,79) stands for the reflection matrix of
a layer of optical thickness 7 illuminated from above, and
whose top is placed at 7o. Note that in the upward scheme,
the interaction principle equation relates the outcoming ra-
diances f;; (1) and f}‘l (7) to the incoming radiances f}‘l (1) and
Tﬁ (7) through the reflection and transmission matrices f{i T-
7,7) and Ti (T —1,71), respectively. From (264) and (266), we
find

T+ (Ty 0)

i o T
R.(1,0)

i@

7,0)

R_ 0)]
~ h
T (0 [ ) (266)

i

(
(

P_(7,0)

_ T;'(7,0) -T;'(z,0)R_(,0)

T | Re@, 0T (1,00 T_(7,00-Ri(1,0T;' (z,0R_(7,0) |’
(267)

which is an extension of the matrix exponential representa-
tion (102) to the inhomogeneous case.

Taking the derivative of (267) and accounting of (265), that
is,

dr T ~-T;'R_

dr | RRT;! T_-R,T7'R_

_ KH 312 T;l —T;lﬁ_

= [ ‘A -Any || RTY T_-RR | @69

gives

d. . PO PO

ER+ =A;2 +An Ry +RiApn + Ry ARRS, (269)
d. - o 4 4 4

d—T_ =AT- +R AT, (270)
T

and

do e

ER_=T+A T, 271)
do = 211, & 2l2p

d—T+ =T,A" +T,A“°R,, (272)
T

From P_(0,0) = I, and (267), we find the initial conditions

R.(0,0)=R_(0,0)=0,
T_(0,0) =T, (0,0) =I.

(273)
(274)

By inspection of (269)-(272), it is apparent that equation (269)
can be solved independently for R,, equation (270) as well
as equation (272), must be solved along with (269) to find T_
and T}, respectively, while equation (271) must be solved to-
gether with (269), (270) and (272) to find R_. In summary,
for an inhomogeneous atmosphere we started with the in-
teraction principle equation (266), used relation (267) con-
necting the downward propagator and the extinction matrix,
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and then, by making use on the differential equation solved
by the downward propagator (265), derived the matrix Ric-
cati equations (269)-(272). Essentially, we replaced the prob-
lem of computing the downward propagator by the problem
of computing the reflection and transmission matrices.

6.1. Reflection and transmission matrices of a homogeneous
layer

For a homogeneous layer, the propagator P_(7,0) = P(7) =
exp(—]i‘r) solves the differential equation

d e—?\r T
) _ —Ae ™7, (275)
dr
and (269)-(272) simplify to
d. . PO PO
d—R=A12 +A11R+RA11+RA12R, (276)
T
d. . o s A
—T=AT+RALT, 277)
dr
and
d .. . .
—R=TA;,T, (278)
dr
d. . PO
d_T =TA;; +TA;2R. (279)
T

where R, (1,0) = R_(7,0) = R(r) and T, (,0) = T_(1,0) = T(1)
. From (276)-(279), we see that the following identities must
hold

TAIZT = KIZ +Kllﬁ+ ﬁgll + ﬁﬁlzﬁ, (280)
Tl/ill +T§12ﬁ2311T+ﬁ312T. (281)

It should perhaps be pointed out that (276)-(279) may follow
directly from (102) and (275).

The solutions of the matrix Riccati equations for a homo-
geneous layer must be identical with the representations of
the reflection and transmission matrices derived by the ma-
trix exponential method of Section 5. Let us prove this result.
The initial value problem for the reflection matrix (276) and
(273) is equivalent with the following 2nth order linear initial
value problem

dl2®n]_ [ An A ] 2(1)
dr | 2@ | [ -A2 -Ap 20 |’ (282)
20 |_| In
20 || o |
where
RD =202 (). (283)
Making the change of variable
— M
2@ __‘% V_‘T 2@ ] (284)
2(7) V. -V, 2(7)




the linear differential equation (282) becomes

d[{Zm ] [A 0 P(1)
@l e |0 Al 30 | (285)
with the initial condition
Zwo | | -Vi
[ 20 || V' (260)

In terms of 2 and 2, the expression of the reflection matrix
reads as

RO = V. 202 ') +V V.20 2 '(n)+ V.17 (287)

The solution of the differential equation (285) is given by
P (1) = [e 712 (0) and 2(1) = [eM*7]2 (0), so that the ma-
trix product P(1)27 (1) in (287) can be expressed as

FNI 1) =TMZ0) 2 O)I(1)=-T@OV.V_ T{).
(288)

Then, employing the identity (cf. (48) V.V_' = V-1V,, in
(288), and inserting the resulting expression in (287), we ob-
tain

R() = [V, -V_T@V'V, T(DI[V- -V, T @)V 'V, T(1)] 7,
(289)

which is exactly the reflection matrix representation (94) for
T=T.

6.2. Approximations based on matrix Riccati equations

A benefit of the matrix Riccati equation formalism is that
for small values of the optical thickness and/or single scatter-
ing albedo, several approximation methods can be derived.
These methods are summarized below.

6.2.1. Successive orders of scattering
In the matrix Riccati equations for a homogeneous layer

d. o < 4 a0 A
d—R =A12+A;1R+RA;; +RA 2R, (290)
T

d. + 4o ax 4
—T=A1T+RA LT, (291)
dr

we separate the attenuation terms from the multiple-
scattering terms, by defining the matrix A(l)l through the re-
lation

A% =A; +M, (292)
and indicate explicitly the dependency of the matrices ﬁ‘fl
and A, on the single scattering albedo w by writing

K(l]l = wK?l and Klg = wf\lg. (293)
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The resulting matrix Riccati equations, namely

dae o o . 0w A SN
7R+ MR+RM = A2 + wA),R+wRAY, +wRA R, (294)
T

ST MT= AL T+ 0RALT, (295)
endowed with the initial conditions R(0) = 0 and T (0) = I, are
usually referred to as the discrete invariant imbedding equa-
tions. As pointed out by Waterman, the “Padé and Taylor
series expansions are fundamentally different from those in-
volving successive orders of scattering; in the later, w is em-
ployed as the expansion parameter”. Along this line, we as-
sume the nth-order approximations

n
R,(r,0) = Y ofHi(1),
k=0

(296)

n
Tn(r,w) = Z wk(}k(r).
k=0
Inserting (296) and (297) into (294) and (295) and equating
the coefficients of w", yields the iterative schemes

(297)

d .. ~ . .

EHO (t) +MHy(1) +Ho(t)M =0, Hy (0) =0, (298)
d . ~ ~ ~ —n o~

7 B @)+ MA, () + B, (DM = 50 Ar +AY) Hy- 1 (7)

n—1
+H,o1 (@A) + Y, Hi(MARH, 1 (0), H,(0)=0,n21,

k=0
(299)
and
d ~ .
EGO (1) +MGo(1) =0 Go (0) =1, (300)
d ~ o A
77 Gn (M + MG, () = A}, G (1)
n-1 N L .
+ ) Hi (ARG, (11, G, (0)=0,n=1. (301)
k=0

For n = 1, the solutions of the initial value problems (299) and
(301) are

~ T Y O S !
[Hn(ﬂlkz=/ e (”k+“1)” ”[ﬂ-ﬂn(r’)]kldr’, (302)
0
Hyu (1) = 6 Arz +A% Hyoy (1) + H,oy (DAY, (303)
n—1
+ Y He@ARH,—1(1),
k=0
and
A ! -L -1 / /
G.(Dkr=[ e # [Gn(T)] g dT, (304)
0
Gn(1) =AY,Gpo1 (1) + Y H(DA12Gy_p—1 (1), (305)

k=0

respectively, with Ho(7) = 0 and [Go(D)]; = Ox1exp(—t/ ).
Accordingly, the zeroth- and first-order scattering solutions
are

. _ 1=
Ro(™) =0, [To@)g;=b6re ', (306)



and

o 1 1 ()T -
Ri@l=(—+—)"[1-e (“kJr’”)T][AlZ]kl, (307)
He M
~ -1l7 1 1 ., -1z _Ll3
Ti@Mkr=0re & +(———)""(e # —e * )[A] ]k,
He M
(308)

respectively. Analytical formulas for the first three orders of
scattering, which for most applications are sufficient, have
been derived by Kawabata and Ueno [48]. However, the re-
sulting expressions are too complex, so that even in the case
n = 2, it is more efficient to use the Gaussian quadrature
method to compute ﬁz and Gz by means of (302) and (304),
respectively. It should be pointed out that the errors in R,
are considerably smaller than the errors in T,. For example,
we found that for 7 = 20 and w = 0.2, the relative errors in
the second-order reflection and transmission functions are
8.14-1073 and 6.07 - 1072, respectively. This can be explained
by the fact that in the case of strong absorption, the refection
is determined by the (relatively thin) skin layer, while trans-
mission is determined by the whole layer and requires more
scattering.

Alternative recurrence relations for H, (7) and G, (1), which
do not involve an integration over the optical depth, can be
obtained by considering the identities (280) and (281) which,
by means of (292) and (293), can be written as

MR + RM = wA;, + A}, R+ wRAY, (309)
+ wﬁf\uﬁ — a)TAuT,
MT - TM = wA)| T - wTA), + 0RA;,T - wTA 2R (310)

Substituting (296) and (297) into (309) and (310), and equat-
ing the coefficients of w" gives for n > 1,

MH, (1) + H,(1)M = § n A1 + A H, -1 (1) + Hpyy (1)AY

n-1 n-1
+ Y H@ARH, 1D - Y. G(A12G 1 (1)

(311)
k=0 k=0
and
MG, (1) - G,(®M =A),G,1 (1) + G, 1 (DAY,
n—1 N IR n—1 . N
+ Y Hi@ARG,—1(1) = Y Gr(D)AH, k-1 (1), (312)

k=0 k=0

with Ho(7) = 0 and [Go(1)]x; = 64 exp(—7/ug). Equations
(311) and (312) have been derived by Hansen and Travis [3]
using the invariance principle. Note that (312) is indetermi-
nate for yi = u;, and that approximate results for that special
case can be obtained by interpolation.

6.2.2. Iterative approximation

For thin layers, the Taylor series approximations to the
transmission and reflection matrices (175) and (176), can be
rediscover by using the matrix Riccati equation method. In
this regard, we mention that Chang and Wu [49] solved (290)
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and (291) with the initial conditions R(0) =0 and T(0) = I by
means of the iterative scheme

T

Ri(1) = / A dr, (313)

0
~ T o~ o~ o~
Rn(T):/ A2 +A11 R, (7)

0

+R,-1 (M)A + Ry 1 (THARR,1 (T)]dT, n=2,  (314)
and
o~ TA
Tl(r)=1+/ A d7, (315)
0

T
To(m) =1+ / AT, 1)+ Ry (THALRT -1 (T)]dT, n = 2.
0
(316)

It is not hard to see that the first-order solutions T; and
R; correspond to the infinitesimal generator initialization
scheme of Grant and Hunt [39], while the second-order solu-
tions T, and R, (excepting the terms in 7°) correspond to the
expanded diamond initialization scheme of Wiscombe [40].
To design a procedure for computing higher-order correction
terms, we assume the finite Taylor expansions (175) and (176)
for ’T‘n and ﬁn, respectively. Then, from (314) and (316) we ob-
tain forn =2,

1 PO 1=l

H,=—@AnH,—1 +H,1An) + = ) HiApH, oy, (317)
n k=0

1. nl

G, = ;Aan_l - Y HiA12Gpok-1, (318)

k=0

with ﬁo =0,H; =4}, 60 =1, and ﬁl =A;. Equations (317)
and (318) are the counterparts of (180) and (178) in the matrix
Riccati equation formalism.

For optical depths much less than unity, (290) and (291)
can be also solved numerically by using an nth-order Runge-
Kutta scheme. As shown in [49], the fourth-order Runge-
Kutta scheme has a higher computational cost than the
fourth-order iterative method but is more accurate.

7. Conclusions

This paper provides a description of the matrix exponen-
tial formalism in radiative transfer. The solution of the initial
value problem of the discrete radiative transfer is expressed
in terms of the matrix exponential. Although, the matrix ex-
ponential solution is computationally unstable it is used as
a starting point in deriving a computationally stable equa-
tion, the layer equation, which is the heart of the discrete or-
dinate method, the interaction principle equation, which is
the heart of the matrix operator method, and finally, the ma-
trix Riccati equations. Thus, the matrix exponential formal-
ism gives the framework for the unification of the discrete or-
dinate method, the matrix operator method, and the matrix
Riccati equations method. In our analysis,



1. we provided an interpretation of the matrix exponential
solution in terms of homogeneous and particular solu-
tions, as well as in terms of total and direct radiance vec-
tors,

. we used the right- and left eigenvector technique of Wa-
terman [21] to compute the matrix exponential, and de-
rived a set of matrix identities for proving the mathemat-
ical equivalence between the different solution meth-
ods,

. we established the layer equation of the discrete ordi-
nate method with matrix exponential, compared this
method with the classical discrete ordinate method, de-
rived equivalent solution representations, and estab-
lished the link between the matrix exponential solution
and the Chandrasekhar’s discrete ordinate solution,

. we derived equivalent expressions for the reflection and
transmission matrices by converting the layer equation
and the solution representations of the matrix exponen-
tial method into the interaction principle equation,

. for optically thin layers, we used the nth-order Padé and
Taylor series approximations to the matrix exponential
to compute the reflection and transmission matrices,
and to derive an nth-order approximation to the layer
equation,

. for optically thick layers, we derived the asymptotic ex-
pressions of the reflection and transmission matrices
by adapting the discrete ordinate approach of Naka-
jima and King [27] to our framework, obtained higher-
order corrections of the reflection and transmission ma-
trices for moderate values of the optical thickness, re-
considered Waterman’s approximation by including an
additional term in the expression of the reflection ma-
trix, and computed parametrizations of the asymptotic
functions and constants for a water-cloud model with a
Gamma size distribution,

. we reviewed the approach of Flatau and Stephens [22]
for obtaining the matrix Riccati equations in the case of
an inhomogeneous atmosphere, proved the equivalence
between the matrix Riccati equations method and the
eigendecomposition method in computing the reflec-
tion matrix of a homogeneous layer, and discussed the
successive order of scattering approximation for small
values of the single-scattering albedo, as well as, an nth-
order iterative approximation for small values of the op-
tical thickness.

Some additional results are given in appendices. In Appendix
1, we justify the choice of Gaussian quadrature in the discrete
ordinate method. In Appendix 2 we review several eigende-
composition methods for computing the matrix exponential
in a common framework. In this context it should be pointed
out that the direct decomposition method is preferable for
numerical implementations, while the square-root method
is an important tool for theoretical studies, e.g., conserva-
tive scattering and asymptotic theory. In Appendix 3, we ex-
tend the analytical formulas for non-conservative scattering
to conservative scattering, and prove that the system of char-
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acteristic solutions proposed by Nakajima and Tanaka [18]
can be used for both non-conservative and conservative scat-
tering.

The practical conclusion of our analysis is that the ma-
trix exponential formalism enables the design of a radiative
transfer code incorporating the discrete ordinate method, the
matrix operator method and approximate models. For each
homogeneous layer of a multi-layered atmosphere, a spec-
tral decomposition of the layer matrix is performed, and then
either the layer equation is derived and assembled into the
system matrix of the entire atmosphere (discrete ordinate
method), or the reflection and transmission matrices of the
layer are computed and the adding formula is used to obtain
the reflection matrix of the entire atmosphere (matrix oper-
ator method). Moreover, a combined model can be also de-
signed.

To speed up the computational process, approximate
models can be used. An efficient radiative transfer code
should incorporate built-in routines that automatically work
when the optical thickness of a homogeneous (sub)layer be-
comes too small or too large. On the other hand, the nth-
order Padé and Taylor series approximations and the nth-
order iterative approximation can be used for the initializa-
tion of the doubling method in radiative transfer, while the
asymptotic form of the reflection function can be used in a
cloud parameter retrieval algorithm. In the latter case, the
computational process is organized as follows [50]: (I) re-
place the atmosphere below the cloud bottom by an equiva-
lent Lambertian surface of albedo A, (II) compute the reflec-
tion function of a layer with an underlying Lambertian sur-
face of albedo A by means of the asymptotic theory, and (III)
use the cloud reflection function as a bidirectional reflection
function in a discrete ordinate model to compute the radi-
ance field of the atmosphere above the cloud top.

Appendix 1. Gauss quadrature

In radiative transfer, the phase function p is usually ex-
pressed through a finite series of normalized Legendre poly-
nomials Py, i.e.,

Nmax

2n+1
P, o—¢h =)
n=0

2

XnPn(cosO), (319)

where cos® = uu' + /1 —pu2\/1-pu?%cos(p —¢'), x, are the
expansion coefficients, and Nyax is the number of expansion
coefficients. Making use on the addition theorem for the
Legendre polynomials, we obtain an expansion in terms of
spherical harmonics

Mmax Nmax
P, o=@ =Y Y (2=8mo) xn Py (WP () cos[mep—¢)],

m=0n=m

(320)

with Mpax < Npax. We are now in the favorable situation
that the kernel of the radiative transfer integral equation is



expanded in an orthogonal and complete system of func-
tions. Further on, we argue in connection with the spheri-
cal harmonics method. On the unit sphere, the diffuse ra-
diance I4(t, ', — o, @' — @o) can be also expanded in terms
of spherical harmonics, so that after integrating the multi-
ple scattering term with respect to the azimuthal angle, we
are led to an integral of the form f_ll PRl (P (uhdy', with
n,n =0,...,Ngax. For n, n' < Nyax, P,T(p’)Pr’:,‘(u’) = P(u) is
a polynomial of degree at most 2Nyax. This can be seen by
making use on the explicit construction of the associated Leg-
endre functions in terms of Jacobi polynomials. The integral
then reduces to f_ll P(u)dy’, and the task is to find an exact
quadrature for this integral. If this is done, the mathemat-
ical equivalence between the spherical harmonics and the
discrete ordinate method is established. In general, a Gauss
quadrature using Ng nodes is an exact quadrature for polyno-
mials of degree 2Ny —1 orless [51]. In our case, this condition
translates into Nyax < Ng —1/2, and for the choice Ny = 2N, it
follows that Npax < 2N —1/2. Thus, using 2N Gaussian nodes
and weights, we need Nyax = 2N — 1 expansion terms in (319)
and Myax < 2N — 1 azimuthal modes. In [52] it is shown that

1. aGauss quadrature guarantees that the phase function is
correctly normalized, i.e., fozn f}l plu, ', p—¢"du'de' =
47, and so, that the energy is conserved in the computa-
tion,

a double Gauss quadrature, in which the Gaussian for-
mula is applied separateley to the half ranges (-1,0) and
(0,1), is preferable that a Gauss quadrature for the com-
plete range (-1,1).

It is a fact that Gauss quadrature has a factor-of-2 advan-
tage in its efficiency as compared to equidistant quadrature
methods. A method wich has almost the same performances
and can be implemented effortlessly by the fast Fourier trans-
form is the Clenshaw-Curtis scheme [53]. However, as it has
been shown in [54], when the number of nodes Ny increases,
the error of the Clenshaw-Curtis quadrature does not de-
cay to zero evenly but in two distinct stages; for Ny smaller
than a critical value, the error decreases by the rate O(p’ZN‘I),
where p > 1, and afterwards by the rate O(p~a). This means
that initially (for small Ng), Clenshaw-Curtis quadrature con-
verges about as fast as the Gauss quadrature. The outlook for
a future work is to focus on the efficiency of the Clenshaw-
Curtis quadrature in radiative transfer.

Appendix 2. Spectral decomposition of the layer matrix

Let us consider the layer matrix

~ Kll 312

a=| M \ 321
[ A —An 821)

with

—~ 1 1 -1 1 1

A =MIWE (S, —W HMIW?,

A, =M2W2S_MZW?, 322)
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and let us introduce the symmetric matrices

A, =A +A =M2W3 (S, +S_)MZW? — M,

A =A; A, =M?W2(S, —S_)M2W2 - M. (323)
Further, let us define the matrices Q. and Q_ through the fac-

torizations

A Q =Q:A, (324)
A.Q:=Q.A, (325)
yielding

A_A)Q. =Q. A% (326)
and

A,A)Q-=Q_A% (327)

for A = [A4]. If Q4, Q_ and A are known, the desired eigende-
composition is

PPN S o -1
~ [V Vo ][A o0 v, V.

A—[v_ v. || o —A] v v+] ’ (328)
where

~ 1 ~ ~

Vi=2Q:+Q),

S B

V7:5(Q -Q.). (329)

If the systems of normalized right and left eigenvectors are re-
quired, we first compute aj = ||’\7E|I2 - IIVZIIZ, and then apply
the transformation rules

[P dvE =si o
———=V; — ¥ and v} =sign(ag)vy,

|ax|

to construct the matrices V. and V..

The spectral decomposition of A can be obtained by one
of the following methods: direct decomposition of the asym-
metric matrix fL&r [14], the square-root decomposition [18],
and the Cholesky decomposition [30]. Before proceeding, we
make the change of variables

A_=-A_,
A, = _K+,

(330)
(331)

and note that by virtue of (330) and (331), the matrix A_ is
symmetric and positive definite, while the matrix A, is sym-
metric and non-negative definite.

Direct decomposition method
The direct decomposition method involves the following
steps:

1. Compute </, = A_A;, and determine the eigensystem
{pk,QZ}k:m of the matrix 7, , i.e., sz%rqz = pkﬁz.



2. If a linearization of the radiative transfer model is re-
quired, normalize the vectors QZ fork=1,..,N.

3. For the nonconservative case (uy # 0), compute the
eigenvectors of the matrix «#/_ =A,A_, i.e.,
q, = ! Aql, k=1,..,N (332)

k —l,lk +4k yeeey .

4. Set
A=[Ak], Ak = Vi, (333)
and
Q. =141, (334)
Q =gy (335)

Square-root method

The square-root method involves the following steps:

1. Compute a singular value decomposition of the sym-
metric and positive definite matrix A_, i.e.,

A_=Uz,U’, (336)
and the square root matrices
1 1o

AZ=uzzu’, (337)

_1 _1
AZZ=uz U’ (338)

2. Construct the matrix
1 1
Z=AZA A%, (339)
and compute a singular value decomposition of the
symmetric and non-negative definite matrixZ, i.e.,
Z=Vz, V' (340)
3. Set
1

A=ZZ, (341)
and compute

~ 1

Q. =A%V, (342)
~ _1
Q. l=A"%Y, (343)

Q_ =-Q;7A. (344)

To justify this algorithm we note that

1 1 1

1 1 11 1 _1 ~ ~
A A, =AZ(A2A,A%)AZ7 =A2VE,VIAZ2 =Q,A%Q Y,

which is equivalent to (326).
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Cholesky method
The Cholesky method involves the following steps:

1. Compute the Cholesky factorization of the symmetric
and non-negative definite matrixA;, i.e.,

A, =R’R. (345)
2. Construct the matrix

Z=RA_RT, (346)

and compute a singular value decomposition of the

symmetric and non-negative definite matrix Z, i.e.,

Z=Vz,V'. (347)
3. Set

1
A=32, (348)

and for the nonconservative case (A~! and R™! exist),

compute
Q_=-RTva7l, (349)
and

Q. =Ry, (350)
Q. '=-Q_A. (351)

To justify the algorithm, we note that
Q. A’=R'VZ,=R'ZV=R'RA_R'RR"'V=A_A,Q,,

which is equivalent to (326).
In summary,

1. in the direct decomposition method, only one eigen-
value problem for the asymmetric matrix A_A, is solved,
in the square-root method, two eigenvalue problems for
the symmetric and positive definite matrix A_ and the
symmetric and non-negative definite matrix A/?A,A!/2
are solved, and

in the Cholesky method, the matrix A, is first factorized
as A; = RTR, and then, an eigenvalue problem for the
symmetric and non-negative definite matrix RA_R” is
solved.

Although the computation of the eigendecomposition of A
by the square-root method is more time consuming than the
other two methods, it is computationally stable in the limit
w — 1, and even in the conservative case w = 1.

Appendix 3. Conservative scattering

In the conservative case and the azimuthal mode m = 0,
the smallest eigenvalues +Ax vanish. The two correspond-
ing eigenvectors merge into one, which is not normalizable.
The idea is to introduce two additional terms to replace those



that are lost in expansion (40) when k = N. In fact, the case
of conservative scattering is only of pure theoretical interest.
The reason is that in practical numerical simulations, a con-
servative scattering problem can be modeled by considering
the limit w — 1, i.e., by setting w = 1 — ¢, with ¢ sufficiently
small. Even in the case w = 1, the smallest computed eigen-
value is not exactly zero (due to rounding errors), and the
computation of the spectral decomposition of the layer ma-
trix be means of the square root method of Appendix 2 is a
stable process. In spite of these practical arguments we de-
cide to include this case in our analysis.

Before proceeding we make some general comments. Let A
be a matrix with n — 2 real eigenvalues 1 with the geometric
multiplicities my =1, k =1,...,n—2, and let 1,, be an eigen-
value with the geometric multiplicity m, = 2. For the eigen-
value A, the solution of the differential equation

di .
— (1) = —Ai(7) (352)
dr

is seek as a linear combination of characteristic solutions

—AnT —AnT
)

i(1) = awpe + B(wy +woT)e (353)

where wy and w) are determined by inserting each character-
istic solution into the differential equation. By doing this, we
obtain

A-Ap1)wo =0, (354)
(A—AnIwy = —wy, (355)
(A= A,L,)%w; =0. (356)

Defining the null spaces ;/Vﬂln = N/(A-2,I,) and JVAZH =
N (A - A,I,)?), and noting that </V)L1n c Jan = ), where
M), is the main space of the eigenvalue A, so that R" =
My, ® My M, , ® My, We see that (354) and (356) give

Wp € N (A- Anln),
wi €N (A= A1)\ A (A-Ap1,),

(357)
(358)

and further, ./V/lln = span{wp} and Jan = span{wg, wy}.

Basic results

In the conservative case and the azimuthal mode m = 0, we
have Ay =0, and so, Ay = 0is an eigenvalue with the geomet-
ric multiplicity my = 2. The right and left eigenvectors of the
matrix A are constructed as follows:

1. We assume that the null spaces A (A) and .4 (A%) \

N (A) are spanned by the right eigenvectors xo and
0
[ _ , respectively, i.e.,
= Wo
W(A)—span{ " ]} (359)
JV(KZ)\JV(A):span{ Wi ]} (360)
_—

and that the null-spaces A ATy and &/ (AYHT)\ ¥ @AT)
Wo

are spanned by the left eigenvectors [ _ and
Wi . .
, respectively, i.e.,
ATy _ Wo
A A7) = span{ S ]} (361)
JV((KZ)T)\,/V(KT)zspan{ Wi ]} (362)
w1
Thus, we have
W(Kz)zspan{ Wo ],[ Wi ]}, (363)
Wo —W1
ATy _ Wo wi
N (&) = span{ S ] - ]}» (364)

2. We impose that the vectors wy and w; are related
through the relation (cf. (355))

Al ]

Wo
Wo

(365)

Let us normalize the vectors wy and w; according to the
transformations

1 1
—wy —wpand —w; — wy,
ap ap

where the normalization constant ap is given by apy =
\/2w¢ wy. Then, the following results hold:

1. The right eigenvector spanning .4 (A) is orthogonal to
the right eigenvector spanning A (A%)\ A (A). The same
result is valid for the left eigenvectors spanning A4 (AT)
and A (B2)1)\ N @AT), ie,

W, T W W, T W
°] ! ]: 0 ] 1]:o. (366)

Wo -Wi —Wp wi

2. The right eigenvector spanning .4 (A) is orthogonal to
the left eigenvector spanning .4 (A7). The same re-
sult is valid for the right and left eigenvectors spanning
N A%\ N @A) and A (A%)T)\ N AT), respectively, i.e.,

W, T W, W T W
Ol 0 ]: ! ] 1]:0. (367)

Wo —Wo —W1 wi

3. The right eigenvector spanning .4 (A) is co-linear with
the left eigenvector spanning .4 (A%)7) \ A (AT). The
same result is valid for the left and right eigenvectors
spanning A ATy and ¥ A\ ¥ @A), respectively, i.e.,

T T
ol ) o

=1
Wo w1 —Wo -wi ]



wi

Wy .
Spanning
1

4. The left eigenvectors and

N ((A?)T) are orthogonal to the right eigenvectors

3+
[ .k | corresponding to A, i.e.,
k
] [Z’E]z Wl] [X’ﬁ]:o, (369)
—Wyp Vk 1 Vk
.
and to the right eigenvectors vﬂﬁ corresponding to
k
A, ie,
wo 17[ v; w; |7 v,
0 1
B ET R
—Wp V]C 1 Vk

Computation of the vectors wond w

A method for computing the vectors wy and w; uses the
equations solved by the flux H and the K integral in the case
of conservative scattering [32]:

d_H(T )=0
dT yHo) =V,

dK _ X1
E(T’M’) = (1— 7)H(T,Ll0),

/.

1
K(7, no) :27[/ I(z, 1, _NO),UZdIJ'i‘F()M(Z)e_T/“O,
-1

where

H(t,uo) =21 I(t,pu, _/‘[O)lld,U—FoyoefT/”o,

Another method is the square-root method of Appendix 2,
which we will now describe. In the conservative case and the
azimuthal mode m = 0, the singular value oy of the matrix
Z=Vz,VT is zero. Thus, we have Ay = /oy =0 and A (Z) =
span{vy}, where vy is the Nth column vector of V. From the
relation Zvy = 0 and the definition Z = AY/2A, A2, we obtain
AY2A A2y = 0. Since A_ is positive definite, it follows that
A,AY%yy = 0. Further, setting G}, = A/?vy (cf. (342)), we get
A.q}, =0, or equivalently, G € /'(A;). On the other hand,

from Q_ = —~A~'Q. A, we obtain 4y = —ANAZ'G} = 0, yield-
ing

PTG

VN =VN =598 (371

Thus, the right eigenvectors of A corresponding to Ay and
—AN merge into one, i.e.,

ot o 17 &+
[ YN ]= Iol=-| Wy ] 372)
VN VN 21 qy
From @, € A (A,), it follows that
K[ qN ] [ _A* -0, 373)
dy

27

and for the first eigenvector

Wo e ¥ @),

we infer that wy is given by

wo =G (374)
For the second eigenvector
[ "I e @)\ @),
—W1p
we compute w; such that the equation
Al M=o W ] (375)
—W1p Wy
is fullfield. Accounting of
~ W1 _ —A_Wl
Al . Aw |’ (376)

and taking into account that A_ is invertible, we deduce that
for

=A"'wo =AT'q}, (377)

equation (375) holds true. Thus, wy and w; are given by (374)
and (377), respectively.

Analytical formulas for conservative scattering

Using (365)-(370), we find that the Jordan form representa-
tion of the layer matrix is

A O
SO [ 0 -A ] Oen-2x1 OpN-2x1 |
A=V 01x2N-2) 0 -1 v (378)
01x2N-2) 0 0
with
, 379
[[ V* V+ ] —Wi ]] ( )
—V+ V_
v ’ 380
A = diagl),..,Ay—1] € RNV-DXN=D 1y, = V7, ... Vy_,] €

RNV and V. = [V, ...,
of the matrix identity

‘7;—(,_1] € RNV*IN=1 "while by virtue

0
0

-1
0

-7

) (381)

s

0 1

the Jordan form representation of the matrix exponential is

[ rmH 0 0 .
AT _ 5 0 TI(-1) 2N-2)x1  U@2N-2)x1 ’
e =V ’
01x2N-2) 1 T
01x2N-2) 0 1



(382)

with I'(7) = diagle M7, ...,e -17] ¢ RIV-D>x(N=D)
Insertion of (379) and (380) in (378) and (382), gives a reso-
lution of the layer matrix

Wo
Wo

W, T
A=- 0 ]

Vi

T
,  (383)

_Ak[

v
and of the matrix exponential
e—A‘L’ _

+7T
Vi ]
Vi

respectively. Setting T = 0 in (384) we obtain a resolution of
the identity matrix

T
w1
w1

Wo
Wo

N-1
+) e M7 [
k=1

]

Wo
Wo

v_,€+
-V

T

’

(384)

T T
Wo w1 wi Wo
Wo w1 -wi —Wp
N-1[ o+ —+ 1T o — T
v -v v v
2| o I I (385)
k=1 k k k k
which further, gives
N-1 . ’
wow] +wWiw] + Y Vv -V =1y,
k=1
N-1 , ,
wow] —wiwg + Y Vivi -vivi ! =0. (386)
k=1

Equations (378), (382), (383), and (384) are the counterparts
of (27), (30), (40) and (42), respectively, for the conservative
case. It should be pointed out that equations (383) and (384)
have been derived by Waterman by employing different argu-
ments.

By means of (382) and (384), the analytical formulas for
nonconservative scattering can be extended to conservative
scattering as follows:

1. The matrices D;, Dy and Dy, which enter in the layer
equation (56) are given by

. [Il\gl I‘??) Oon-2x1  OpeN-2)x1
01x2N-2) 1 0 ’
O1x2N-2) 0 1
[ F(()?) IO ] 0en-2)x1  O@en-2)x1
Dy = N-1 ’
01x@2N-2) 1
01x2N-2) 0 1

Wo
-Wy

28

e~k _e—THo

0
Vo= | —e-TOg+1/g) Oen-2x1  OpN-2)x1
Db — 0 1/ po+Ag . B -
01x(2N—2) 1—e~*/Ho T//Jo*1+ez 0
1o (1/H0)
01x2N-2) 0 1—{3/;0//10
(387)

2. The solution representations (65) and (69) translate into

< Wo ( w1 Wo )
i = +
a@=an . Bnl| _w T[ Wo ]
T
N-1 v v .
+) ake‘W[ k ]+ ﬁke_’lkﬁ_”[ kol +i, () (388)
v v
k=1 k k
and
< w1 Wo )
W) =« + T
d( ) N Wo ﬁN([ —Wq [ Wo ]
N-1 <o _ v
+) ak(e%” k| e M@ Tk ])
v v
k=1 k k
ot _
_ v e | V R
+ﬁk(—e *k’[ k[ pe @ ”[ ok )+1p @), (389
Vi Vi
respectively.

3. The analogues of (108) and (109) which give the ex-
pressions of the transmission and reflection matrices, respec-
tively, are

T=v 1 -v'rv.v_'n, (390)
R=V-V'IV.V. ' D -V.IV.V_ '), 391)
where now
e M7 0 0
r= 0 e AT o | (392)
0 0 1
and
\79_, = [V%,...,V?V_I,WO],
Vi =[], V5, +wi],
‘_,+ = [‘_’TP--)‘_’T\]_II_WOL
V_=[V],...,Vy_1, W1 + TWp]. (393)

A special system of characteristic solutions

We conclude this appendix by presenting a system of char-
acteristic solutions which can be used for nonconservative
and conservative scattering. It is of the form

R N
ig(1) =
k=1

aar(t) + Brby (1) +ip (1), (394)



with
e | Vi G- | Vi
ap(t)=e k| k| +e Ko, (395)
Vi Vi
by(r) = L(_e—/lkr [ V;C' + e ME-T) V; ]) (396)
Ak Vi v 1)

Obviously, (394)-(396) are equivalent to (69) if we consider the
transformation B — (1/A) ﬁk As a result, the reflection and
transmission matrices R and T are given by (97) and (98), re-
spectlvely In the conservative case, by is singular and so is
V_ - V. T together with R and T. However, these smgularl-

ties are removable if we compute the eigenvectors Vi * by the
square-root method of Appendix 2. To show this we consider
(342)-(344), set V = [v¢], Q+ = [G] and Q 2 Q+ = [q], and
write in component form G} = A”zvk, qr =AZ'q; = ATV
and q; = —Axqx-Asa result (396) becomes
ar = l[e_AkT + e—/lkﬁ—r)] qk ]
_ llk[e—/lk‘[ _ e—/‘Lk(f—T)] [ ] ,
2
1
bk — __[e Ak‘[ e—/lk(?—‘[)] k ]
2/lk qk
1 —
+o[eMT pe i@y Gk (397)
2 —qk

In the limit A — 0, we have ﬁfv, qy # 0, and Q& = 0. Account-
ing of wo =G, w; =AZ'q}, = qu, and

fim [-S e T |= z (398)
ol 2AN Ty
we get
) T w
Jim laya(@) + fuby (@) = (@n = 5 Aw) [ wo ] (399)
Wo w1
+ﬁN(T Wo ]+ —Wj ])’

which is equivalent to the first two terms in (389). Coming
to the reflection and transmission matrices, we use (329) and
(344) with Q = (A);T, to compute the matrix products which
enter in (97) and (98) as

V. +V_.D(V_+V, D) !

=[Q:+(I+D) - QAI-DIQ;A+T) +QAI-T)]! (400)
and

V,-V.DV_-v,n!

=[(V, -V_DA [V_-V,D)A]!
=[Q:I-DA ' -QUI+DIQ:I-DA +QU+D)] 1. (401)

In the limit Ay — 0, the singularity in (I—- AL is removable,

ie.,

1-e MW7 _
lim — =7,
/11\/—'0 A,N

29

so that (97), (98), (400), and (401) give the expressions of R
and T for nonconservative and conservative scattering. The
system of characteristic solutions (394)-(396), as well as the
reflection and transmission matrices of (97), (98), (400), and
(401) have been used by Nakajima and Tanaka in their matrix
formulation of the radiative transfer.

Appendix 4. Asymptotic functions and constants

We define the scaled diffusion pattern vectors by

T, = And-R%) 'ky, (402)
T =Rty (403)
and note that for

Q: =[G}, Gy, (404)
we have the representations

T = %(qjv +ANgN), (405)
T =T, - Anqy, (406)
and the orthogonality relations

kLT =1, (407)
kyi-=1. (408)

To derive the expressions of the functions that occur in the
asymptotic theory, we introduce the discrete approximation
to the escape function ky by

k 1. 1.
ky = —M:zW 2k,
2m

(409)
and the diffusion pattern vectors ¢, by
=/ = MEW (410)
Ly = ok +.

As aresult, the orthogonality relations for 7, and7_ yield
2k WM e, =1,
2k WM =1.

(411)
(412)
Essentially, the vectors ¢, and ¢_are the discrete approxima-
tions of the diffusion patterns i(u) and i(—u), p > 0, respec-

tively. The constant m in (409) and (410) is obtained by nor-
malizing the diffusion pattern (cf. (197))

1/11'( )d —llTwu ) )—1,/ 1"TwiMzgt =1,
. map=3 =0 5k qy =

2
(413)

that is,

8k

N Twirbar?
1 WZMZqN)

(414)



where 1 is the vector of all ones. Obviously, (411) and (412) are
the discrete approximations of the normalization conditions
(200) and (202), respectively.

In terms of the escape function ky, the reflection and
transmission matrices are given by

R =Roo — 8 morknky, 415)
T =8 motknky, (416)
1 .
Ro, = EM%W‘%ROOW‘%M%, 417)
where
.m_ mle® 118
P T Tz e
_gn__me 419
T e o
Moreover, for the azimuthal mode m = 0, we have
oo = 2RuoV, (420)
Fsoo = 4V RooV, 421)
and
r =ro —nrky, (422)
t=ntky, (423)
re=4v Ry, (424)

where ry, and ry are the plane albedo vector and the spher-
ical albedo of the semi-infinite atmosphere, respectively, r,
t and r are the plane albedo vector, the transmission vec-
tor, and the spherical albedo of the layer, respectively, and
v=WM 1. The u-weighted mean of the escape function is
given by

n=2k.,v, (425)

which is the discrete approximation of (206).

The reflection and transmission matrices of the homoge-
neous layer with an underlying Lambertian surface R4 and
T 4, respectively, as well as the plane albedo r 4 and the spher-
ical albedo rg4 are computed as

A
Ry=R+—— 5 mott?,

1- Arg (426)
Ta=T+—2 5, ort], 427)
1- Arg
rs=2R,WM 1 (428)
Foa = 4vIR4v. (429)

where A is the ground albedo.
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Abstract

In this paper we analyze the accuracy and efficiency of several radiative transfer models for inferring cloud parameters from radi-
ances measured by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR).
The radiative transfer models are the exact discrete ordinate and matrix operator methods with matrix exponential, and the approx-
imate asymptotic and equivalent Lambertian cloud models. To deal with the computationally expensive radiative transfer calcula-
tions, several acceleration techniques such as, for example, the telescoping technique, the method of false discrete ordinate, the
correlated k-distribution method and the principal component analysis (PCA) are used. We found that, for the EPIC oxygen A-band
absorption channel at 764 nm, the exact models using the correlated k-distribution in conjunction with PCA yield an accuracy better
than 1.5 % and a computation time of 18 s for radiance calculations at 5 viewing zenith angles.

Keywords: backscattering, PCA, correlated k-distribution, asymptotic theory, EPIC

1. Introduction

The Earth Polychromatic Imaging Camera (EPIC) on board
the Deep Space Climate Observatory (DSCOVR) was designed
to measure the atmosphere and surface properties over the
whole sunlit face of the Earth from the Lagrange point L; (a
gravity-neutral position at 1.5 x 10® km away from the Earth).
DSCOVR is placed in a Lissajous orbit around the L; point, and
provides a unique angular perspective at almost backward di-
rection with scattering angles approximately between 168° and
176° (Fig. 1). EPIC scans the entire sunlit face of the Earth at a
2048 x 2048 pixel resolution, with a pixel size of 12 x 12 km? at
the image center. The instrument has 10 spectral channels rang-
ing from the ultraviolet to the near-infrared. Four of them are
located in the oxygen A- and B- bands: two absorption chan-
nels centered at 688 nm and 764 nm with bandwidths of 0.8 nm
and 1.0 nm, respectively, and two continuum channels centered
at 680 nm and 780 nm with bandwidths of 3.0 nm and 2.0 nm
(Table 1). These channels are used for monitoring the vegeta-
tion condition [ 1], the aerosol layer height and optical depth [2],
and the cloud height [3].

The radiative transfer for retrieval of cloud parameters in-
volves, in addition to cloud scattering and absorption, gas ab-
sorption and molecular Rayleigh scattering. Usually, it is neces-
sary to consider spectral regions containing several overlapping
lines with intensities varying over many orders of magnitude.
An accurate method for computing the radiative transfer in a
molecular atmosphere relies on line-by-line (LBL) calculations.
However, LBL calculations are in most cases too computation-
ally expensive to be used directly in online and even sometimes
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Figure 1: Illustration of EPIC / DSCOVR geometry (distances are not to scale).

in offline retrieval algorithms. This prompts us to use exact or
approximate radiative transfer models endowed with accelera-
tion techniques. As approximate models, asymptotic [4-6] and
equivalent Lambertian cloud models [7-9] are frequently used.
In the category of acceleration techniques we include here the
correlated k-distribution method [10, 11], the radiance sampling
method [12], the optimal spectral mapping method [13] and di-
mensionality reduction techniques. In the latter case, principal
component analysis (PCA) is used to map the spectral radi-
ances into a lower-dimensional subspace in which the inversion
is performed [ 14, 15], or to reduce the dimensionality of the op-
tical properties [16—18]. In addition, the telescoping technique
[19, 20] and the method of false discrete ordinate [21-24] can
be used to speed up radiative transfer calculations.

For the EPIC instrument, the retrieval is more challenging
due to the singular geometry of the radiative transfer problem.
Given a particle with a certain size, the scattering phase func-
tion shows considerable structure and resonances. When aver-
aged over a size distribution of an ensemble of particles, these
features are almost smoothed out, but they are still present in
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Table 1: Description of EPIC channels, adapted from EPIC’s main website
(https://epic.gsfc.nasa.gov/epic).

Channel Central wavelength /nm Full width / nm Primary application

1 317.5+0.1 1.0+ 0.2 Ozone, sulfur dioxide

2 325.0+0.1 20+0.2 Ozone

3 340.0+0.3 3.0+0.6 Ozone, aerosols

4 388.0+0.3 3.0+0.6 Aerosols, clouds

5 443.0+1.0 3.0+ 0.6 Aerosols, clouds

6 551.0+ 1.0 3.0+0.6 Aerosols

7 680.0 £ 0.2 3.0+0.6 Aerosols, clouds, vegetation
8 687.75 £ 0.20 0.80 £0.20  Aerosols, clouds, vegetation
9 764.0 £ 0.2 1.0+£0.2 Cloud height

10 779.5 £ 0.3 20+04 Clouds, vegetation

the backward and forward glories, at scattering angles around
180° and 0°, and in the rainbow region, at around 140° [25].
For an accurate description of the specific features of the single
scattering properties in the backward direction, a large number
of discrete ordinates is required, even when the delta-M method
[26] is used.

The aim of this paper is to analyze the accuracy and effi-
ciency of several radiative transfer models in regard to their ap-
plicability to the retrieval of cloud parameters from EPIC mea-
surements. The radiative transfer models, relying on the ma-
trix exponential formalism and endowed with acceleration tech-
niques, include the exact discrete ordinate and matrix operator
methods, as well as the approximate asymptotic and equivalent
Lambertian cloud models. By “exact” methods, we mean those
models used as the starting point to design approximate models
by imposing further assumptions.

The paper is organized as follows. In Section 2 we present
the exact and approximate radiative transfer models. In Sec-
tion 3 we summarize the acceleration techniques, focusing on
the description of a combined method incorporating the corre-
lated k-distribution and PCA. In Section 4 we analyze the ac-
curacy and efficiency of the radiative transfer models for sim-
ulated EPIC measurements in the oxygen A-band absorption
channel. Conclusions are formulated in Section 5. Some spe-
cific features of the radiative transfer models are outlined in the
appendices. Here, we give the main computation formulas of
the discrete ordinate and matrix operator methods with matrix
exponential, justify the equivalent Lambertian cloud model, and
describe the telescoping technique.

2. Radiative transfer models

The radiative transfer equation for the diffuse radiance I(r, €2)
at point r and in the direction Q = (u, ¢) reads as

—(r Q)= -0yt (NI, Q) + Fy SCt( )P( [9) Qo)e—fm(lr rroal)
+ O—SL(") P(r,Q,Q')I(r,Q') dQ/, (1)
4n 4r

where oyt and osc¢ are the extinction and scattering coefhi-
cients, respectively, F is the incident solar flux, P the scatter-
ing phase function, ¢ = (—uo, o) with gy > 0 the incident
solar direction, and T(e)xt(|l‘ — rroal) the solar optical depth be-
tween a generic point r and the characteristic point at the top
of the atmosphere rros in a spherical atmosphere. The formal-
ism is pseudo-spherical, i.e. the multiple-scattering is treated
in a plane-parallel atmosphere, while the solar-beam attenua-
tion is computed in a spherical atmosphere [27]. For the phase
function P, we consider the conventional expansion in terms of
normalized Legendre polynomials Py, i.e.

(o]

P(r,Q,Q") = P(r,cos Q) = Z CoXxn(r) Py(cos®), (2)
n=0

where ¢, = V(2n+1)/2 and cos® = Q - Q. The radiative
transfer equation (1) is subject to the top-of-atmosphere bound-
ary condition (r = roa),

I(r1on, 27) = 0, 3

and the surface boundary condition (r = rs),

A
I(rs, Q%) = F = 1o p(2F, Qo) e_T(eth(lrS_rTOAl)

A
+;£1m¢rmﬂm9tQMM: @)

where A and p are the surface albedo and the normalized bi-
directional reflection function, respectively, and the notations
Q" and Q" stand for upward and downward directions, respec-
tively.

In the discrete ordinate method, we assume a cosine-
azimuthal expansion of the diffuse radiance (¢o = 0),

1, Q) = > In(r, 1) cos me, Q)
m=0

and for each azimuthal component I,,(r,u) we discretize the
radiative transfer equation in the angular domain by consid-
ering a set of Gauss-Legendre quadrature points and weights
{te, wk},i”= , in the interval (0, 1); thus, M is the number of dis-
crete ordinates per hemisphere. The atmosphere is discretized
in N levels: rj = rrop > 1, > ... > ry = s, and a layer j,
bounded above by the level r; and below by the level r;.1, has
the geometrical thickness Ar; = r; — rj,;. The extinction and
scattering coefficients as well as the phase function coefficients
are assumed to be constant within each layer; their average val-
ues in layer j are Oextj, Osctj and y,j, respectively. Also, we
must require the intensity to be continuous across the layer in-
terfaces. In layer j, we are led to the linear system of differential
equations

9&0

. -0 (r-r
Apjin(r) + e el y <<, (6)

where (the abbreviation “not” stands for a notation definition)
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Figure 2: Illustration of DOME (a), the conventional matrix operator method (b), and MOME (c).

is the radiance vector in the discrete-ordinate space, and
[iy, (Nk = Lu(r, £1), k = 1,..., M. The layer matrix A,,; has a
block structure

AH. A12_
'l ] @)

Amj = [ 112 mljl
_Amj —Amj
with entries
1" 1
[Amj]kl = 2_/11( [w; O sctj Pm,j(ﬁlk,ﬂl) — 20’extj oul, 9)
1
[A,lnzj]kl = 2—#]( Wi Osctj pmj(ﬂks —u), (10)

while the entries of the layer vector b,,; = [b:’nj; br‘,”.]T are given
by '

. 1 F
[bE 1k = +— (2= 640) = Tscr) Pt —Ho). (1)
Hi 4n

where
2M-1

i) =D X P) PG ) (12)
n=m
are the azimuthal expansion coefficients of the phase functions.
In the following we describe the exact and approximate ra-
diative transfer models for the retrieval of cloud parameters.

2.1. Discrete ordinate method with matrix exponential

The Discrete Ordinate method with Matrix Exponential
(DOME) [20, 28] is illustrated in Fig.2a. The method relies on
the layer equation, which relates the level values of the radiance
field i,,; = [i;,j; i, ;1T with [i;ij]k = L(rj, ), k= 1,..., M,
that is,

Ay i + A i = by (13)

The layer equation together with the boundary conditions at the
top and the bottom of the atmosphere, i.e. (cf. (3))

i, =0, (14)
and (cf. (4))
i,-:,N =Run ly_nN + TmN> (15)
with
[Rovli = 2 Awy g o (i, —H41), (16)

Fy I
[rmN]k =A ? /,lopm(/lk, —/10) e Text(ITs rTOAD’ (]7)

respectively, are assembled into the global matrix A,, of the

entire atmosphere, and the solution of the resulting system of

equations A, i, = b, yields the level values of the radiance

field. In (16) and (17), p,, are the azimuthal expansion coefi-

cients of the normalized bi-directional reflection function, i.e.
2M-1

pQ",Q7) = Z (2 = 0mo) P, =) coslm(ep — ¢)],  (18)

m=0
for Q = (1, ) and Q' = (=, ¢’) with , i’ > 0. The matrix A,,
of dimension 2MN X2MN has 3M — 1 sub- and super-diagonals
and it may be compressed into band-storage and then inverted
using, for example, the LU factorization.

The layer quantities A,ln P Afn i and b,,; are expressed in terms
of the exponential of the layer matrix A,,;, i.e. eXp(—=A,,; Ar)).
The matrix exponential can be computed by using the eigen-
decomposition method or the Padé approximation; the result-
ing expressions for A}n i Alzn ; and by,; are listed in Appendix A.
The Padé approximation to the matrix exponential is less time-
consuming than the eigendecomposition method, but it is only
applicable to optically thin layers, for which the condition
A, arjll < 1 is satisfied. In practice, if ||A,,; Arjlli < 1, the
matrix exponential is computed by means of the Padé approxi-
mation; otherwise, the eigendecomposition method is used. By
this procedure, the computation speed is enhanced.



2.2. Matrix operator method with matrix exponential

The Matrix Operator method with Matrix Exponential
(MOME) is a combination of the conventional matrix operator
method, e.g. [21], and the discrete ordinate method with matrix
exponential. The method is dedicated to modeling the radiative
transfer in a molecular atmosphere containing a homogeneous
cloud placed between the top level r;, and the bottom level
¥jwx+1- Note that the cloud homogeneity assumption is only re-
quired by the approximate models (in particular, by the asymp-
totic model) to be introduced in the next subsection.

Before describing MOME, we briefly review the basic con-
cepts of the conventional matrix operator method. The method,
which is illustrated in Fig. 2b, uses the interaction principle
equation

o el el
i;z Jj+1 ij ij i; j+1
where R,,; and T, are the reflection and transmission matrices
of layer j, and an y is the source vector. As in DOME, R,,;, T,,;
and X,,; are given in terms of the exponential of the layer ma-
trix A, ;; their expressions computed by using the matrix eigen-
decomposition method and the Padé approximation are given
in Appendix B. The computation process is an upward recur-
rence over the atmospheric layers, and uses the concept of a
“stack” [29]. The stack j + 1, i.e. the group of contiguous lay-
ers bounded above by the level r;,.; and below by the surface
level ry, is characterized by the reflection matrix R,,,; and the
reflection vector r,, .1, so that the interaction principle equation
for the stack j + 1 reads as

+

) 19
s 1 (19)

mj

+

et = Rujar By + T (20)
From (19) and (20), we obtain the interaction principle equation
for stack j, i.e. the group of contiguous layers bounded above
by the level r; and below by the surface level ry,

o+ .—
lmj - Rm./ lmj + Tmj, (21)

where R,,; and r,,; are computed by using the adding formulas

ij =Ry + ij ij+l I- ij ij+1)_1 ijs (22)
Tpj = 2,;]' +Tpj rimja
+ ij ij+1 (I - ij ij+1)_1 (ij Tnjr1 + zy_n]) (23)

The procedure is initialized with (15) and it is repeated until the
last layer is added to the stack. In the matrix operator method,
the dimension of the problem is small, because the dimension of
the matrices that have to be inverted is 2M X 2M. In spite of this
fact, its efficiency is reduced because of the considerable num-
ber of matrix inversions and matrix multiplications required by
the adding algorithm. Another disadvantage is that the compu-
tation of the radiance in an arbitrary viewing direction by the
source function integration method requires the storage of the
reflection and transmission matrices of all individual layers. Al-
ternatively, and to keep the memory usage low, we may inter-
polate the radiance field in the discrete ordinate space by cubic

splines, or we may use the method of false discrete ordinate
(see Section 2.3).

The combined model MOME, which is illustrated in Fig.2c,
involves two computation steps:

1. compute the reflection matrix R,, ;. and the reflection vec-
tor Ty, Of stack juin (containing all layers below the
cloud top height) in the framework of the conventional ma-
trix operator method;

2. compute the level values of the radiance i,,; for 1 < j< juin,
in the framework of the discrete ordinate method with ma-
trix exponential, by using as surface boundary condition
the interaction principle equation

ot _ ) o— i
lmjmin - Rm-/mi“ lmjmin + rmjmi“' (24)

Taking this model as a starting point, several approximate and
less time-consuming models have been designed. These are de-
scribed in the next subsection.

2.3. Approximate models

The approximate models are based on some preliminary sim-
plifications which we now describe. Firstly, the atmosphere be-
low the cloud bottom height is replaced by an equivalent Lam-
bertian surface. The resulting model corresponding to a cloud
with an underlying Lambertian surface can be summarized as
follows:

1. for the azimuthal mode m = 0, compute the reflection ma-
trix R, +1 and the reflection vector r,,;,. 1 of stack jpax
containing all layers below the cloud bottom height;

2. compute the spherical albedo at the cloud bottom

Acb =2V T Ryjpi1 1, (25)

where [Vl =wi i, k=1,...,Mand1 =11, ..., 1]7;
3. use the surface boundary condition

i:rnjmax+1 =Ry, i’;'jmax+1 +rs, for m=0, (26)
with
[Ragy lui = 2 Act, wy s, 27
F
[Taglk = Acp 70 g € onIreorroad, (28)

to initialize the adding procedure for computing the reflec-
tion matrix R,,;. and the reflection vector r,,;,;. of stack
Jmin containing all layers below the cloud top height;

4. compute the radiance field of the atmosphere above the
cloud top height using as surface boundary condition the
interaction principle equation (24).

Secondly, the atmosphere within the cloud (between the layers
Jmin and jpayx) is homogenized. The equivalent homogeneous
layer jpin is characterized by

jmax
. T i A
om ZJ =jnin XtJ J hom

eXtjmin Jumax > SCtjmin
Y AR
JZJmin =

Jmax . .
2 un scti AT

DRI
J=Jmin

. (29)
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Figure 3: Illustration of a homogeneous cloud layer with an underlying Lambertian surface (a) and of an equivalent Lambertian cloud (b).

and
ijax o X ‘AV‘
om om _ “j=jnin  SCLIAN] 1] _
o X = — . n=m,....2M~1. (30)
Z . AT
J=Jmin

The resulting model, corresponding to a homogeneous cloud
layer with an underlying Lambertian surface and being illus-
trated in Fig. 3a, requires only one adding step. The homoge-
nization accounts for the scattering and absorption in the cloud,
the Rayleigh scattering, as well as the gas absorption between
the layers jpin and jyax. Strictly speaking, the equivalent ho-
mogeneous extinction coefficient algf(’;‘jmin should be computed,
for example, by minimizing the mismatch between the radi-
ance corresponding to an inhomogeneous atmosphere within
the cloud and the radiance corresponding to a homogeneous at-
mosphere. Although the homogenization formula (29) is a po-
tential source of error (especially for strong gas absorption), it
has been adopted in our analysis because of its simplicity.

We come now to the first approximate model. When the op-
tical thickness is sufficiently large, the reflection and transmis-
sion matrices R,,,;,, and T,,; . in (22) and (23) can be expressed
by simple analytical expressions deriving from the asymptotic
theory of thick layers. In the classical asymptotic theory, the re-
flection and transmission matrices for optically thick layers are
given by (we omit the dependency on the layer index jyin) [30]

ml e—Zk‘r T
Ry = Roopn = 6mo T-12e Kum K, 0 31
m e—k‘r
’]rm = 0mo w K, k;,r,,Ma (32)

where R,,=(1/2)R, MW~ and T,,=(1/2) T,, MW~ are the
discrete-ordinate approximations of the reflection and trans-
mission functions of the homogeneous layer R, (u,u’) and
T, 1), respectively, Reop, =(1/2) Roopy MW-! is the discrete-

ordinate approximation of the reflection function of a semi-infi-
nite atmosphere R, (14, 1), [Wl =wi6, and [M]y, = (1/ )0k,
k,l =1,..., M. Furthermore, in (31) and (32), k = A, is the
diffusion exponent describing the attenuation of the radiation
in the diffusion domain, A, is the smallest eigenvalue of the
layer matrix A,,, 7 is the optical thickness of the homogeneous
layer, m and 1 are the constants defined in [30], and Kqy is a
discrete-ordinate approximation of the escape function K(u).
From (31) and (32) we see that R,, depends on the azimuthal
index m through the reflection matrix of a semi-infinite atmo-
sphere R.,,, while T,, is azimuthally independent (it depends
only on the azimuthal mode m = 0). A discrete-ordinate model
for computing R,, and T,,, and so R,, and T,,, is described
n [31]. In this model, the azimuthal independent parts of R,,
and T,, are derived by neglecting the azimuthal modes m > 0,
and the contributions of the terms corresponding to eigenvalues
larger than the smallest eigenvalue Ay, of A,,. A more accurate
asymptotic model, the so-called P-order asymptotic model, has
been introduced in [32]. This model accounts for all azimuthal
modes m, and the contributions of the terms corresponding to
eigenvalues
Apm-p = Ay—p=1) 2 -+ = Ay,

where P is the order of approximation. The case P = O corre-
sponds in some sense to the classical asymptotic model, as it
accounts for all azimuthal modes m. It should be pointed out
that, in the classical asymptotic theory, the computation of the
reflection and transmission matrices can be speeded up by us-
ing parametrizations of the constants and functions appearing in
(31) and (32) [32, 33]. In our numerical analysis we are mainly
concerned about the accuracy of the approximate models and,
for this reason, we do not use any parametrization in (31) and
(32); we simulate a P-order asymptotic model by simply setting

[y = diagl0, ..., 0, exp(—=Ay—p AT)), ..., exp(=Ay Ar))]
in place of (60) in Appendix B.



The second approximate model to be discussed is the Equiv-
alent Lambertian Cloud (ELC) model (see Fig.3b). In the ELC
model, the atmosphere below the cloud top height is replaced
by an equivalent Lambertian surface with a ground albedo equal
to the spherical albedo of the atmosphere. The mathematical
background of the ELC model is discussed in Appendix C. In
the framework of MOME, this model can be simulated as fol-
lows:

1. for the azimuthal mode m = 0, compute the reflection ma-
trix R, ;.. and the reflection vector r,,,,. of stack juin con-
taining all layers below the cloud top height;

2. compute the spherical albedo at the cloud top

ACt = ZVT ijmin 17

3. compute the radiance field of the atmosphere above the
cloud top height by using the surface boundary condition

s+

B = Rac d +1ry, form=0.

M Jmin
The ELC model ensures the conservation of radiative flux if the
plane albedo r(u) is almost constant with respect to u. Note that
in a discrete-ordinate setting, the plane albedo r(u) is modeled
by the plane albedo vector r = R,,;,. 1.

3. Acceleration techniques

In addition to the Padé approximation, the standard delta-M
method [11], which expands the original phase function into
a delta-function forward peak plus a new less anisotropic
phase function, and the truncated-plus-single-scattering (TMS)
method [34], several acceleration techniques are implemented
in the radiative transfer models. These are summarized below.

3.1. The telescoping technique

The telescoping technique relies on the following result [19,
20]: For an atmosphere consisting of gas molecules (Rayleigh
layers) and a group of contiguous cloud layers, the azimuthal
expansion coeflicients of the phase functions p,,; vanish for all
m > 2, and all Rayleigh layers j. Consequently, the layer matrix
A,,; becomes a diagonal matrix and the layer vector b,,; van-
ishes. The main idea of the telescoping technique is to solve
a reduced boundary-value problem for the cloud layers, and
to compute the radiances at the remaining levels recursively
by means of the extinction law. The telescoping technique for
DOME and MOME is outlined in Appendix D.

3.2. The method of false discrete ordinate

The method of false discrete ordinate has been discussed in
connection with the matrix operator method in [21-23] and the
discrete ordinate method with matrix exponential in [24]. For a
single viewing direction, an additional stream (directional co-
sine) is introduced as an extra Gaussian quadrature point with
zero weight. The upward radiance at the false discrete ordinate
is exactly the upward radiance in the direction of the line of
sight computed by the source function integration method. The

method of false discrete ordinate eliminates the source function
integration step, but increases the dimension of the layer equa-
tion. As a result, for applications involving one or two viewing
zenith angles, the method of false discrete ordinate does not in-
crease significantly the computation time of the forward model.

3.3. The correlated k-distribution method and the PCA tech-
nique

The correlated k-distribution method [10] involves grouping
spectral intervals according to absorption coefficient strength,
while PCA is used here as a dimensionality reduction technique
of the optical properties [ 16—18]. Although these methods have
been applied separately in the literature, they can work together.
To show this, we briefly summarize their basic concepts.

Let g(A) be the slit function of the instrument, s the slit width,
and {/lk},]:]il a discrete set of N, equally-spaced wavelengths in
the interval [1 — s/2, A + 5/2] with

AL s AL N
/1]—7—/1—5 and /1N1+7—/l+§,
where AA is the discretization step. The signal received by the
instrument is the convolution of the slit function and the mono-
chromatic radiance, and can be approximated by

A+s/2
1) = f g1 — ) I()dX
A-s/2

N
~ ) =)
k=1

As gas absorption has greater spectral variation than molecu-
lar and particulate scattering, we may write /(1) = I(0 252 (1)).
The most accurate method for computing the integral in (33)
involves a detailed line-by-line (LBL) calculation of the gas
absorption coefficient versus wavelength. On the other hand,
the correlated k-distribution method is based on the observation
that, for a homogeneous atmosphere, the transmission within a
spectral interval is independent of the LBL variation of the gas
absorption coefficient oJp- with respect to the wavelength A, but
depends only on the distribution of o-%;> within the interval [35].
In this regard, let F = F(0'%>)) be the cumulative density func-
tion of 027> () in the spectral interval [4¢—AA4/2, 4+A1/2], and
o e (F) the quantile function or the inverse distribution func-
tion. The signal received by the instrument can then be com-

puted as

A +A1/2
1) d. (33)
A—AA/2

N, 1
1) = a2 81— A) fo (0%, (F))dF
k=1

N, Nc
=281 gA=2) Y Wl (F)).,  (34)
k=1 =1

where (Fj, w;) are a set of N. quadrature points and weights
within the interval [0, 1]. The 095, (F)) can be computed by in-
verting the cumulative density functions of the LBL gas ab-

sorption coefficients or, in the case of the “exponential-sum



fitting of transmittance” method [11], by solving a nonlinear
least squares problem of dimension N. X M. Let us define

a new set of wavelengths {z,,}gi

, and weights {El,}g’; with
N7 = N, N, through the relations E,, = A and w, = Adwy,
where p =+ (k—1)N.fork=1,...,Ny, [ =1,..., N, and

set accordingly O'g;:(/_lp) = o9 (F)). Note that {/_lp}gil con-
tains N, groups of N, identical wavelengths. By this construc-

tion, (34) becomes

N7
1) =" @y g(d = 1) 0%y, (35)
p=1

and it is apparent that (35) is a quadrature rule for (33) in the
case of the correlated k-distribution method.

We come now to the PCA technique. A general approximate
model for computing the radiance / at the wavelength A is of

the form
1)

1a(2)

where [, is the radiance computed by an approximate radiative
transfer model, and f; is a correction factor. An efficient and
accurate method for computing the radiance correction factor
f1(2) has been given by Natraj et al. [16, 17]. This approach,
which increases the computational efficiency of the radiative
transfer calculations in an absorbing and scattering atmosphere,
has the following attributes:

In

= f1(), (36)

1. The exact model is the multi-stream DOME model, while
the approximate model is a two-stream version of DOME,
in which the eigenvalues and the eigenvectors of the layer
matrix are computed analytically, and the system of equa-
tions for the entire atmosphere is solved by means of a
pentadiagonal linear algebra solver.

2. The principal component analysis (PCA) is used to re-
duce the dimensionality of the optical parameters of the
atmospheric system. In particular, PCA is performed on
the logarithms of the layer values of the gas absorption
coefficient In 093%(1) and the molecular scattering coeffi-

abs

cient In 0™ (Q); for each A, k = 1,...N,, we define the

sct
(2N - 2)-dimensional vector

x(A0) 2 x¢ = [Inoe (4); In o2 (AT,
j=1,...,N — 1, so that the wavelength variability of the
optical parameters is encapsulated in x;.
3. The dependency of the correction factor on the optical pa-
rameters is modeled by a second-order Taylor expansion
about the mean value of the optical parameters.

Parenthetically, we note that in [18] the PCA-based radiative
transfer model of Natraj et al. [16, 17] has been generalized
to include several dimensionality reduction techniques as, for
example, linear embedding methods and discrete orthogonal
transforms. The PCA formalism remains valid if instead of
the set {/lk}ivil we consider the set {1,,}1\/’:71 of the correlated
k-distribution method (the wavelength variability is encapsu-
lated in x(zp)). This claim is checked in the next section.

4. Numerical simulations

In this section we analyze the accuracy and efficiency of the
exact and approximate radiative transfer models in the oxygen
(O,) A-band absorption channel at 764 nm (channel 9 of the
EPIC instrument). For this purpose, simulations are performed
for a water-cloud model with a Gamma size distribution

P (a) «< a®” exp [—a'( a )] (37)
Amod

with parameters a,,q = 8 pm and @ = 6. The droplet size ranges
between 0.02 and 50.0 wm. The cloud top height is 4, = 4 km,
and the cloud geometrical thickness A% is chosen as

1.0km, 7. <4
1.5km, 4<71.<8

AR =2 2.0km, 8<7.<14 |
25km, 14 <7.<20
3.0km, 7.>20

where 7. is the cloud optical thickness. The atmosphere is dis-
cretized with a step of 0.5 km between 0 and 16 km, a step of
2 km between 16 km and 20 km, a step of 5 km between 20 km
and 30 km, and, finally, a step of 10 km between 30 km and
50 km. The ground surface is Lambertian with albedo A = 0.06,
and, as in [3], the solar and viewing zenith angles are taken to
be equal, i.e. # = 6y, while the relative azimuthal angle be-
tween the solar and viewing directions is chosen as Ap = 176°.
The azimuthal convergence test is the standard DISORT dou-
ble convergence test [36] with a tolerance of 107°. The O, ab-
sorption cross sections are computed by using LBL calculations
[37] with optimized rational approximations for the Voigt line
profile [38]. The wavenumber grid point spacing is chosen as
a fraction (e.g. 1/4) of the minimum half-width of the Voigt
lines taken from HITRAN database [39]. The Rayleigh cross-
sections and depolarization ratios are computed as in [40],
while the pressure and temperature profiles correspond to the
US standard model atmosphere [41], and this atmosphere is
considered free of aerosols. The radiances are solar-flux nor-
malized, and are computed by means of the delta-M approx-
imation in conjunction with the TMS correction. If not stated
otherwise the simulations are based on LBL calculations. The
instrument spectral response functions (ISRF) for the different
EPIC channels are available from NASA public servers.'

4.1. Exact models

In Fig. 4 we show the DOME radiances as functions of the
cloud optical thickness 7. and for different values of the view-
ing zenith angle 6. The simulations are performed by using a
large number of discrete ordinates, namely M = 128. The plots
show that, for a fixed value of 6, the radiance is an increasing
function of 7.. The reason is that the multiple-scattering con-
tribution, which is an increasing function of 7., dominates the

'https://avdc.gsfc.nasa.gov/pub/DSCOVR/EPIC_Filter_Data/
EPIC_Filters_Original_Data.xlsx.
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Figure 4: Reference DOME radiances as functions of 7. for M = 128. In the
y-axis, [n.u.] stands for normalized units.

single-scattering contribution, which is a decreasing function
of 7.. Moreover, for a fixed value of 7., the radiances decrease
as the viewing zenith angle 6 increases (if 6 increases, the path
through the atmosphere increases, the amount of oxygen ab-
sorption increases, and so, the single-scattering contribution de-
creases). These results are taken as the “exact” reference values
for the rest of the simulations that follow.

In Fig.5 we illustrate the relative errors in DOME radiances
for different values of the number of discrete ordinates M. The
plots show that, for a fixed value of 6, the absolute values of
the relative errors decrease with 7.. The reason is that, now, the
relative error in the single-scattering contribution dominates the
relative error in the multiple-scattering contribution. The results
in Fig.5 can be summarized as follows:

1. for M = 8 and M = 16, the relative errors are smaller than
0.015 for 7. > 10, and lie roughly between 0.015 and 0.03
for 7. < 10;

2. for M = 24 and M = 32, the relative errors are smaller
than 0.008 for 7. > 10, and lie between 0.008 and 0.015
for 7. < 10;

3. for M = 48, the relative errors are smaller than 0.01 over
the entire range of 7;

4. for M = 64, the relative errors are smaller than 0.003 over
the entire range of 7..

The computation times for these simulations are given in Ta-
ble 2. Note that the simulations were performed on a server In-
tel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz using up to 56
threads, and that the computation times in Table 2 correspond
to the accumulated time over all threads. Thus, even though the
delta-M scaling is used, an accurate description of the backscat-
tering region requires M > 48, although a compromise between
speed and accuracy can be reached by the choice 24 < M < 32.
Note also that for M > 24 more than 30 azimuthal modes are
required to reach convergence with an accuracy of 107°.

Fig.6 illustrates the relative errors in MOME radiances using
DOME as a reference. Taking into account that the relative er-
rors are smaller than 5 - 10~%, and that the MOME computation
user time is 1660 minutes for M = 32, we infer that DOME and
MOME yield similar results from the point of view of accuracy
and efficiency.
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Figure 5: Relative errors in DOME radiances as functions of 7. and for differ-
ent values of M.



Table 2: Computation user times in minutes for the results in Fig.5, and speed-
up factors with respect to the case M = 128.

M t/ min Speed-up factor
8 67 2389.8
16 284 563.8
24 760 210.7
32 1711 93.6
48 5698 28.1
64 14548 11.0
128 160116 -
1074
5 T T
—=— 0 =5°
4|
3
~
~— 2 |
o
1 |
0
~1 | | | | | |

Figure 6: Relative errors in MOME radiances with respect to DOME radiances
for M = 32.

4.2. Approximate models

The relative errors of the asymptotic (fourth- and zeroth-
order) and ELC models are shown in Fig.7. A general finding is
that an increase of the number of discrete ordinates does not sig-
nificantly improve the accuracy of the results; a real improve-
ment is apparent only for the fourth-order asymptotic model.
The relative errors of the fourth-order asymptotic model are
smaller than 0.02 for 7. > 10, and smaller than 0.04 for 7. < 10.
For the zeroth-order asymptotic model, the relative errors have
a similar behaviour when 7. > 10, but they can reach 0.24 when
Te < 10.

The relative errors of the ELC model are excessively large;
they can reach 0.4 for small 7., and are 0.1 for large 7. The
main reason for this is that the plane albedo r(u) varies signifi-
cantly with y, and so, the radiative flux is not conserved (Fig.8).
Note that, even in the limit of large 7, the flux conservation
does not imply an accurate description of the radiance field
(the radiative flux description involves only the azimuthal mode
m = 0). Also note that the spherical albedo A+ changes with
T¢, a fact which contradicts the common assumption of a con-
stant cloud albedo [9]. The following result is a consequence
of the low accuracy of the ELC model. Let I(Acto, iito) be the
radiance computed by an exact model corresponding to a cloud
with top height /o and a spherical albedo Actg = Acto(Tco, Ato),
where 7 is the optical thickness. Further, let i} solve the min-
imization problem

by = argminllg c(Aceo, he) = I(Aco, heo) T,

where Igc(Acto, r) is the radiance computed by the ELC
model. The minimizer A7 that yields a small residual, and so,
an acceptable accuracy, is different from /(. Thus, the physi-
cal significance of the cloud top height is lost.

fourth-order asympt. (M = 32) zeroth-order asympt. (M = 32) ELC (M =32)
1072 1072 1072
4 T T 16 T T 40 T T
2 8 8 . 201 |
=N | g O g | s of -
w 72 [ — w 78 [ — w
—af . ~16 | . —201 il
76 | | | | | | 724 | | | | | | 740 | | | | | |
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Te Te Te
fourth-order asympt. (M = 64) zeroth-order asympt. (M = 64) ELC (M = 64)
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Figure 7: Relative errors in radiances as functions of 7. when using the approximate models. The results correspond to M = 32 (top panels) and M = 64 (bottom
panels), and are computed by using the fourth-order asymptotic model, the zeroth-order asymptotic model and the ELC model.
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spherical albedo Act as a function of 7 (right panel).
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Figure 9: Relative errors in DOME radiances as functions of 7.when the ac-
celeration techniques are used. The results correspond to M = 32, and are
computed by using LBL calculations, correlated k-distribution, PCA technique
and correlated k-distribution plus PCA. Note that the first plot is the same one
as the fourth plot of Fig.5.
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Table 3: Computation user times in minutes for the results in Fig.9, and speed-
up factors with respect to the case of LBL calculation.

Acceleration technique t/ min Speed-up factor
LBL calculation 1711 -
Correlated k-distribution 159 10.8
PCA technique 22 71.8
Corr. k-distribution plus PCA technique 5 3422

Table 4: Computation times in seconds for the approximate models using the
combined correlated k-distribution plus PCA technique. The simulations cor-
respond to the same scenario as in Fig.9.

Forward model t/s Speed-up factor
DOME 285.0 -
Fourth-order asymptotic 221.8 1.3
Zeroth-order asymptotic 222.2 1.3
ELC 188.7 1.5

4.3. Acceleration techniques

In Fig. 9 we illustrate the relative errors in DOME radian-
ces when LBL calculations are replaced with the correlated
k-distribution method, the PCA technique, and the combined
correlated k-distribution plus PCA method. The correspond-
ing computation times are given in Table 3. Note that almost
identical relative errors and computation times are obtained for
MOME (not shown here). The general observation is that the
relative error curves are practically unchanged when these ac-
celeration techniques are used. The computation time using the
combined correlated k-distribution plus PCA method is 5 times
smaller than that for the PCA technique alone, and 40 times
smaller than that for the correlated k-distribution method alone.
Taking into account that the results in Table 3 correspond to 16
values of 7., the average time to simultaneously compute the
radiances at 5 viewing zenith angles is 17.8 seconds.

In Table 4 we show the computation times of the approximate
models using the combined correlated k-distribution plus PCA
method. As in Fig.9, the radiances are computed for 16 values
of 7. and at 5 viewing zenith angles. Note that the relative error
curves are very similar to those plotted in the top panels of Fig.7
(for M = 32). The conclusion is that the computation times of
the approximate models are lower, but not significantly lower
than those of DOME.

5. Conclusions

We analyzed several radiative transfer models which can be
used for the retrieval of cloud parameters from EPIC measure-
ments. The radiative transfer models are the exact DOME and
MOME models, and the approximate asymptotic and equiva-
lent Lambertian cloud models. MOME is a combination of the
conventional matrix operator method and DOME. Essentially,
the matrix exponential formalism enabled us to combine the
two methods in a simple way and to introduce the higher-order



asymptotic and equivalent Lambertian cloud models in a natu-
ral manner. The radiative transfer models used several accelera-
tion techniques such as the Padé approximation, the telescoping
technique, the method of false discrete ordinate, the correlated
k-distribution method and the PCA technique. We computed
the radiances also by combining the correlated k-distribution
method with the PCA technique.

We analyzed the accuracy and efficiency of the radiative
transfer models when simulating radiances for the channel 9
of the EPIC instrument. In summary, the following conclusions
can be drawn:

1. The exact DOME and MOME models using correlated
k-distribution in conjunction with PCA yield an accuracy
better than 0.015 and a computation time of approximately
18 seconds for radiance calculations at 5 viewing zenith
angles.

2. The approximate models are slightly more efficient than
the exact models but their accuracy leaves much to be de-
sired. In particular, the relative errors of the zeroth-order
asymptotic model are large for cloud optical thicknesses
smaller than 10, while the relative errors of the ELC model
are large for all cloud optical thicknesses.

Thus, it appears that the exact DOME and MOME models could
fulfill the accuracy and efficiency requirements of an offline
processor for retrieval of cloud parameters from EPIC measure-
ments. For online (i.e. operational) retrieval algorithms, the in-
version is frequently performed by using look-up table (LUT)
approaches [4, 5, 42, 43]. The size of such a LUT is extremely
large, and so the time for computing a LUT by using exact ra-
diative transfer models is normally too high. Even though the
inversion is performed by neural network techniques [7, 8, 44],
the time for neural network training by using exact radiative
transfer models is high. In this regard, the above radiative trans-
fer models are an efficient tool for LUTs computation and neu-
ral network training.
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Appendix A

In this appendix we give the expressions for the layer quan-
tities A}n P Alzn ; and by, in (13) computed by the eigendecompo-
sition method and the Padé approximation.

The eigendecomposition method for computing the matrix
exponential is based on a spectral decomposition of the matrix
A,,; given by (8). This can be obtained by one of the following
methods: direct decomposition of an asymmetric matrix [45],

square-root decomposition [46], and Cholesky decomposition

11

[47]. Here, we use the direct decomposition method. Exploit-
ing the block symmetry of A,,;, we find
Apj 0 1
A,j= ij[ 0 —Ay, ]ij, (38)
with
V. V.
V= [ mi i ] (39)
Vi Vi
anj =[vi,..., vl (40)
and
Amj = diaglAy,..., Ayl "= diag[A]. 41
v+
Note that l k } are the right eigenvectors of A,,; correspond-
Y
k

\A . .

’i } are the right eigenvectors
v

k
of A,,; corresponding to the eigenvalue —A;. As a result, the
layer matrices can be expressed in compact form as

ing to the eigenvalue A, and [

A, =D, V.5 (42)
A =-D; .V, (43)

2

j Are given by

where the diagonal scaling matrices D,L ; and D

D). = diaglag(Aear,); 11, (44)

Dij = diag[1; aop(Axar))], “435)
with ag (x) = e™*. The layer vector is computed as

bmj = ij V;n; (Arj bmj)’ (46)

where, in the secant approximation of the solar beam, the diag-
onal scaling matrix B,,; is given by

B,,; = diag[b;(AxAr)); ba(Arar))], 47
with
—(1% +x) -0
e extj —e extj+1
by (x) = — . : 48)
Textj+1 - Textj - X
—(TO o +X) -0
e extj+1 — e extj
by (x) = — 5 . (49)
extj - Textj+1 - X

In (48) and (49), Tgxtj and Tgx vj+1 Ar€ the solar optical depths at
the boundary levels j and j + 1, respectively.
In the first-order Padé approximation to the matrix exponen-

tial, the layer equation reads as

A.
—1-2UA

1
Am_, D) mjs (50)
Arj
Afnjz—(1+7Amj), (51)
-0
yj = Bpj (Arjby ) e e, 62



where B,,; is now given by

1
B,,j = Io(wo) L+ |5 Io(xo) = (@) arjAnj. - (53)
with 79 = Tgxtj T jand
1-e™*
Iy(x) = s (54
1 e x
Il(x):—[l——(l—e )]. (55)
X X

Appendix B

In this appendix we give the expressions of R,,;, T,,; and
X,,; in (19) computed by the eigendecomposition method and
the Padé approximation.

The reflection and transmission matrices of layer j can be
derived by representing the layer equation (13) as

il Rm' Tm i p
[ [ ]=l . H I B } (56)
Laj1 Tnj Ruj Laj1 2
from which we find that
-1
[ Ryj Tj }: _[ Tnj Vi =V ]
Tnj Ry A VTR
vi2 _vll
tni Vi Vi } (57)
ij _rmj ij
-1
+ vt _vyl2
I ZTj }: Fm./z‘llmj ij22 } Dy js (58)
Zm J Vm Jj _ij Vm j
with
| V“. V12'
Vi=| oo (59)
mj mj
and
I',; = diaglexp(—=Ax Arj)]. (60)

By inspection of (57) and (58) it is apparent that the computa-
tion of R,;, T,,; and X,,; requires an inversion and a multipli-
cation of matrices of dimension 2M X 2M. Other methods in
which the computation of R,,; and T,,; can be halved in order
are discussed in [32].

In the first-order Padé approximation to the matrix exponen-
tial, we have

-1

l ij ij }:—[ I- %ArjArln%j —%ArjArlnzj j|
T.j R sorAL (= 3arALL)
1 12 1 11
_ElArjAmj —(11+ EArj;Amj) ] 6D
11 1 ’
I+ EAr.,-Amj EArjAmj
+ 1 11 1 12 B
l ij }:[ I- EArjAmj _EArjAmj :| bmj_ (62)
%, %ArjA}jj -I- %ArjA}nlj)
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Appendix C

In this appendix we give a justification of the ELC model.
For the azimuthal mode m, the reflection law at the cloud top
height is (we omit the ;. dependency)

1
Im(/J) = zf Rm(ﬂ,ﬂ/) Itm(_/J,)// dﬂ/s m 2= 0, (63)
0

where [,,(1) is the upward diffuse radiance in the direction y,
R, (u, 1) s the reflection function of the atmosphere below the
cloud, and /y,,,(—’) is the downward total radiance. The upward
flux is

27 1 1
ET:ffI(ﬂ,sa)ududsazzﬂf r() Lo(=) 1/ di’, (64)
0 Jo 0

where

1
) =2 fo Ro(ua i) i du’ =2 fo

is the plane albedo of the atmosphere below the cloud. Let us
assume that the plane albedo r(u) is almost constant with re-
spect to u, so that we can write r(u) = rp. Then, the spherical
albedo of the atmosphere below the cloud is

1

RoW',pop" dp” (65)

1
Act = 2[ () pdu = ro, (66)
0
and the upward flux is
1
BN = 2nec [ ha(uul ai. (67)
0

The upward flux given by (67) is that of a Lambertian surface
with a ground albedo equal to the spherical albedo Ac:. By re-
placing the atmosphere below the cloud by a Lambertian sur-
face with the reflection function R,,(u, ') = Act 0o, We try to
ensure the conservation of radiative flux. However, this is possi-
ble only when the plane albedo r(u) does not vary significantly
with p.

Appendix D

In this appendix we describe the telescoping technique for
DOME and MOME.

Let us make the assumption that for all layers j, with j < juin
and j > juax, and all azimuthal modes m > 2, the azimuthal ex-
pansion coefficients of the phase functions vanish. In this case,
A, is a diagonal matrix,

Oextj Oextj ]

; (68)

and the solar layer vector b,; vanishes. The layer equation sim-

plifies to

imj+1 — e~ Anbr; imjv (69)



which further implies that

. Textj AT j\T.
i= dlag[exp(—#)] s (70)
Oextj AFj\y._
b1 = dlag[exp( el R J)] LI (71)
Hi
In the matrix operator method, we have
Textj AT .
R,; =0, T,;=diaglexp(-——2—)|, Ei =0, (72)
and the adding formula becomes
ij = ij ij+1 ija (73)
Tomj :ijrijrl- (74

Let

T= d1ag exp

Z O ext Jj AY; j ]

J=max+1

be the transmission matrix of the layers below the cloud. The
DOME telescoping technique can be summarized as follows.

Form > 2,

1. solve the radiative transfer equation for the cloud layers
with the top and bottom boundary conditions

B =0, (75)
and
i:'—'jmaerl = ij,“ax+1 ir_njmaer] F Litjpag+1> (76)
ijmax+1 =TRun T, (77)
e+l = T TNy (78)
respectively;
2. set ir‘nj = 0 for jpin — 1 < j < 1, and compute the radi-

ances above the cloud and in the upward directions i}, ; for
Jmin — 1 < j < 1, by using recurrence (70);

3. compute the radiances below the cloud and in the down-
ward directions i_. , for jmax + 1 < j < N — 1, by using
recurrence (71);

4. compute the upward radiance at the surface i’
boundary condition (15);

5. compute the radiances below the cloud and in the upward
directions i, i for juax +2 < j < N -1, by using recurrence
(70).

The MOME telescoping technique involves the following steps.
Form > 2,

m+1

from the

1. compute the reflection matrix R, +1 and the reflection
VECHOT Ty, +1 at the cloud bottom by means of (77) and
(78), respectively;

2. compute Ry, ;... and r,,;. by using the adding algorithm;

3. set ir‘nj = 0 for jyin < j < 1, and i;l] _ = Tpjy,(boundary
condition at the cloud top);

4. compute the radiances above the cloud and in the upward
directions i;lj for juin — 1 < j < 1, by using recurrence
(70).
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Abstract

In this paper, we describe several linearized radiative transfer models which can be used for the retrieval of cloud parameters from
EPIC (Earth Polychromatic Imaging Camera) measurements. The approaches under examination are (1) the linearized forward
approach, represented in this paper by the linearized discrete ordinate and matrix operator methods with matrix exponential, and
(2) the forward-adjoint approach based on the discrete ordinate method with matrix exponential. To enhance the performance of the
radiative transfer computations, the correlated k-distribution method and the Principal Component Analysis (PCA) technique are
used. We provide a compact description of the proposed methods, as well as a numerical analysis of their accuracy and efficiency
when simulating EPIC measurements in the oxygen A-band channel at 764 nm. We found that the computation time of the forward-
adjoint approach using the correlated k-distribution method in conjunction with PCA is approximately 13 s for simultaneously

computing the derivatives with respect to cloud optical thickness and cloud top height.

Keywords: inversion, linearized models, adjoint radiative transfer, EPIC

1. Introduction

EPIC (Earth Polychromatic Imaging Camera) is a 10-channel
spectroradiometer (317-780 nm) onboard the spacecraft DS-
COVR (Deep Space Climate Observatory), and was designed to
measure the atmosphere and surface properties over the whole
sunlit half of the Earth from the Lagrange point L;. DSCOVR
provides observations of the Earth at near backward directions
with scattering angles ranging from 168° to 176°. EPIC has
two pairs of reference and absorption channels in the oxygen
A-band (780 and 764 nm) and B-band (680 and 688 nm), which
are used for monitoring the vegetation condition [1], the aerosol
layer height and optical depth [2], as well as the cloud height
and optical depth [3]. A further description of EPIC/DSCOVR
geometry and their channels can be found in [4].

In [4], we analyzed exact and approximate radiative trans-
fer models regarding their applicability to the retrieval of cloud
parameters from EPIC measurements. It has been shown that
the exact Discrete Ordinate method with Matrix Exponential
(DOME) and the Matrix Operator method with Matrix Expo-
nential (MOME) using the correlated k-distribution method [5]
in conjunction with the Principal Component Analysis (PCA)
technique [6-9] fulfill the accuracy and efficiency requirements
for such kind of application.

However, the retrieval of atmospheric constituents from
satellite measurements also requires the knowledge of weight-
ing functions, i.e. the partial derivatives of the measured ra-
diance with respect to the atmospheric parameters being re-
trieved. The process of obtaining this set of partial derivatives,
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which constitute the matrix of weighting functions or Jacobian,
is commonly referred to as linearization analysis. There are two
common linearization approaches: the linearized forward ap-
proach and the forward-adjoint approach.

1. In the linearized forward approach, the partial derivatives
are computed analytically. Such linearized radiative trans-
fer models based on the conventional discrete ordinate
method and the matrix operator method have been devel-
oped by Spurr [10-13].

2. In the forward-adjoint approach, the measured radiance is
expressed as the scalar product of the solution of the ad-
joint problem and the source function of the forward prob-
lem. Using the linearization technique to the forward and
adjoint problems (i.e. using the differentiation operator by
means of the chain rule), analytical expressions for the
weighting functions have been derived in [14-20] and al-
so compared to other methods in [21, 22]. The forward-
adjoint approach is extremely efficient because only two
radiative transfer calculations are required for computing
the derivatives.

In this paper, we discuss the linearization of these radiative
transfer models for EPIC retrieval purposes. More precisely,
we will apply the linearized forward approach to DOME and
MOME, and design a forward-adjoint approach based on
DOME. As for the radiance calculations, the performances of
the derivative calculations will be enhanced using acceleration
techniques. The accuracy and efficiency of the linearized radia-
tive transfer models will be analyzed by performing simulations
which are pertinent to the retrieval of cloud parameters from
EPIC oxygen A- and B-band measurements.
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The paper is organized as follows. In Section 2 we review the
radiative transfer models DOME and MOME, in Section 3 we
discuss the linearized radiative transfer models, and in Section 4
we present runtime and error analyses for these models. The re-
sults are summarized in Section 5. Some specific features of the
linearization procedure are outlined in the appendices.

2. Radiative transfer models

The radiative transfer equation for the total radiance I(r, £2)
at point r and in the direction Q = (u, ¢) reads as

p L 00) =~ () 1 Q)
dr

" Osct (1)

P(r,Q,Q) I(r,Q)dQ’, (1)
47T 4r

where oext and osc¢ are the extinction and scattering coefi-
cients, respectively, and P is the scattering phase function. The
phase function P is expanded in terms of normalized Legendre
polynomials P,, i.e.

(e

P(r,Q,Q") = P(r,cos Q) = Z CoXn(r) Py(cos®), (2)
n=0

where ¢, = V(2n+1) /2 and cos® = Q - Q’. The differen-
tial equation (1) is endowed with the top-of-atmosphere (TOA)
boundary condition (7 = rgoa),

I(rrop, 27) = Fo 6(2" — €2y), €)

and the surface boundary condition (r = rs),

A
1,00 = 4 f2 p@F Q) | [, @)D, (&)

where F| is the incident solar flux, Q¢ = (—uo, ¢o) with gy > 0
is the incident solar direction, and A and p are the surface albedo
and the normalized bi-directional reflection function, respec-
tively. The notations Q" and Q~ stand for an upward and a
downward direction, respectively. The total radiance is decom-
posed into the diffuse radiance I4(r, €2) and the direct solar beam
Io(r, ), i.e.

I(r, Q) = Iy(r, Q) + I(r, Q), %)

where
Io(r, Q) = Fo 6( — Q) T(r), (6)

T(r) = exp[—Text(Ir — rroal, £0)] is the solar transmission, and
Text (T — Iroal, o) is the solar optical depth between a general
point r and the specific point at the top of the atmosphere rroa
in a spherical atmosphere.

Assuming cosine-azimuthal expansions for the diffuse radi-
ance, the scattering phase function and the normalized bi-direc-
tional reflection function, we formulate a boundary-value prob-
lem for each Fourier component of the diffuse radiance Ig,,(r, 1)
by means of the discrete ordinate method. The angular varia-
tion of the phase function and radiance is discretized in M dis-
crete-ordinate directions per hemisphere, and the set of Gauss-
Legendre quadrature points and weights in the interval (0, 1) is

denoted by {uy, wk},i”: |- The atmosphere is discretized in N lev-
els: ry = rroa > 12 > ... > ry = rs, and a layer j, bounded
above by the level r; and below by the level 7,1, has the geo-
metrical thickness Ar; = r; — rj,1. The extinction and scatter-
ing coefficients, as well as the phase function coefficients, are
assumed to be constant within each layer; their average values
on layer j are oextj, Osctj and y,j, respectively.

The radiative transfer models analyzed in [4] are DOME and
MOME. In summary, these models can be characterized as fol-
lows:

1. DOME [23, 24] relies on the layer equation, which relates

the level values of the radiance field i,,; = [i, 7 i j]T with
[i,ij]k = Idm(rj, +u), k=1,..., M, thatis,
A,‘njimj+A3nji,,,j+1 = by, (7)

The layer equation together with the boundary conditions
at the top and the bottom of the atmosphere, as well as the
continuity of the radiance across layers, are assembled into
the global matrix of the entire atmosphere, and the solution
of the resulting system of equations yields the level values
of the diffuse radiance field.

2. MOME applies to a molecular atmosphere containing a
homogeneous cloud placed between the top level r;, and
the bottom level r; 1. The method is a combination of
the conventional matrix operator method and the discrete
ordinate method with matrix exponential, in the sense that
the reflection matrix and vector of the atmosphere below
the cloud top are computed in the framework of the con-
ventional matrix operator method, while the level values
of the diffuse radiance field above the cloud top are com-
puted in the framework of the discrete ordinate method
with matrix exponential. The conventional matrix operator
method, e.g. [25], uses the interaction principle equation

& 5 2lE HE) o
ir_n j+l Twj Ru,j i; j+l z, j ’
where R,,; and T,,; are the reflection and transmission
matrices of layer j, respectively, and X7 ; 1s the source
vector. The computation process is an upward recurrence
over the atmospheric layers [13]: If R,;,j,; and 1, are re-
spectively the reflection matrix and the reflection vector of
stack j+ 1 (the group of layers bounded above by the level
rj+1 and below by the surface level ry), the interaction
principle equation for stack j (the group of layers bounded
above by the level r; and below by the surface level ry)
reads as
s+

lijiji;lj+rmj, (9)

where R,,; and r,,; are computed with the adding formulas
ij = ij+Tﬂlijj+1 (I_ijij+1)_1 ij7 (10)
Tmj = 2;1]' + Toj Timjet

+ ij ij+l(I - ij ij+1)_l(ij Tmj+1 + Zy_nj) (] ])



The two methods are combined by considering the interac-
tion principle equation at the cloud top, i.e.

ir. =R i+ T, 12)

M jmin M jmin ]mjmin
as the surface boundary condition for the discrete ordinate
method with matrix exponential.

The layer quantities Arlnj, Aij and b, in (7), as well as R,,,;, T
and X ; in (8), are expressed in terms of the exponential of the

layer matrix

A”. A12'
A =[ _Amljg _AmlJl' }, (13)

mj mj

with entries
(AL = = D01 sct; Pt ) — 20exey Sl (14)
mjlkl = 21 Wlo—sctjpmj(/lk’ﬂl O extj Okll,
1

(Al = 20 W et Pt —H). (15)

Note that the product osctj pmj(u, ¢’) in (14) and (15) is com-
puted as

2M-1

Tsctj Pujts ) = D & PR PRG),  (16)

fnj = OsctjXnj» (17)

so that the optical input parameters of the radiative transfer mod-
els are oeyej and &, for j=1,...,N-landn=0,...,2M-1.
DOME and MOME rely on the same matrix exponential for-
malism. The matrix exponential can be computed by employ-
ing the eigendecomposition method or the Padé approxima-
tion. In the first case, the layer quantities depend on the in-
verse of the eigenvector matrix V,,; and the eigenvalue matrix
A,j = diag[Ady,...,Ay] of A, while, in the second case, the
layer quantities are expressed in terms of the layer matrix A,,;
[4]. In the layer j, the matrix exponential is computed by means
of the Padé approximation if ||A,,; Arjl| < 1, and by the eigende-
composition method if this is not the case. For radiance calcu-
lations in the EPIC oxygen A-band absorption channel, DOME
and MOME have been used in [4] together with the following
acceleration techniques:

1. the delta-M [26] and the truncated-plus-single-scattering
(TMS) method [27];

2. the telescoping technique [12, 23], which consists of the
solution of a (reduced) boundary-value problem for the
cloud layers and azimuthal modes m > 2;

3. the method of false discrete ordinate [25, 28-30], which
eliminates the source integration in the post-processing
step of the discrete ordinate method;

4. the correlated k-distribution method [5] and the PCA tech-
nique [6-9] (independently and together).

3. Linearized radiative transfer models

The radiance measured by the instrument is a function of var-
ious atmospheric and surface parameters of interest. In the first
category we include, for example, the layer values of the trace
gas extinction coefficient and the cloud parameters, while in the
second category we include the surface albedo and parameters
characterizing the normalized bi-directional reflection function.
In the following, we consider the computation of the partial
derivatives of the measured radiance with respect to a set of at-
mospheric parameters ¢;, i = 1,. .., Np, since the basic concepts
are fully represented in this case. Before proceeding, we men-
tion that the optical input parameters of the linearized radiative
transfer models are 00 eyt j/ds; and 0,,;/0¢g; fori = 1,..., Np,
j=1,...,N-1l,andn=0,...,2M — 1.

3.1. Linearized forward approach

A detailed description of the linearized forward approach
can be found in [10—-12]. In our case, the linearized forward ap-
proach is applied to DOME and MOME. To compute the partial
derivative with respect to the atmospheric property ¢;, we pro-
ceed as follows:

1. InDOME, we linearize the layer equation (7) and obtain [22]

ob,,; OAl. OA%
o Fijer (18)

Ol Ol
Al i g2 TImirl inj—
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As for radiance calculations, the linearized layer equations
(18) are assembled into a global system of equations for
the entire atmosphere. It is worth noticing that the system
matrix for derivative calculations coincides with the sys-
tem matrix for radiance calculations; only the right-hand
sides are different. In order to increase the efficiency of the
method we compute the partial derivatives with respect to
all atmospheric parameters ¢;, i = 1,..., Ny, that is, we
solve a system of equations with multiple right-hand sides.
2. In MOME, we linearize the interaction principle equation
in (12), and compute the partial derivatives dR,, ,,. /0s; and
0Ty /0 recursively by linearizing the adding formulas
(10)and (11). From (10) and (11), it is apparent that the re-
cursion relation involves the partial derivatives dR,,;/dg;,
dT,,;/ds; and 0%, 105
To compute (9A,1nj/0gi, 6Aij/6§,- and db,,;/ds; as wellas IR, ;/ds;,
0T,,;/0g; and ox, j /0s;, we apply the chain rule. In the case of
the Padé approximation, the derivative calculations are trivial,
but in the case of the eigendecomposition method we face the
calculation of the partial derivatives of the inverse of the eigen-
vector matrix V;ll. and of the eigenvalues A;. This computation
step is outlined in Appendix A.

3.2. Forward-adjoint approach

The steps of the adjoint radiative transfer approach consist
of the formulation of the boundary-value problem for radiative
transfer as an operator equation with homogeneous boundary
conditions, the derivation of the adjoint radiative transfer oper-
ator, and the representation of the measured radiance in terms



of the solution of the adjoint radiative transfer problem and the
forward source function. In our analysis, the forward and the
adjoint radiative transfer problem are solved by using DOME.

Essentially, the forward-adjoint approach relies on the fol-
lowing basic result: If the (total) radiance field /(r, Q) solves the
forward problem

LI(r, Q) = 0(r, Q), (19)
I(rron, Q7) = 1(r5, Q") =0, (20)

and the radiance field I'(r, ©) solves the adjoint problem
LT =0'(rn9), @1
I'(rron, @) = I'(r5,27) = 0, (22)

then the measured radiance at the top of the atmosphere and in
the direction Q, = (uy, ¢n) With uy > 0, can be computed as

L, ={Q". 1) =(I", Q). (23)

The forward radiative transfer operator £ and the forward
source function Q are given by

L1092 = T2 + ) [0, 2)

_Osct (r)

¥/

A
—;(5(r—rs)HW)#ﬁp(Q,Q’)H(—u')Iu'll(r,Q’)dQ’ (24)

P(r,Q, Q) I(r, ') dQY
4

and
O(r, ) = Fo po 6(r — rroa) 6(2 — Qp), (25)

respectively, where ¢ is the Dirac delta function and H is the
Heaviside step function. In this context, the forward problem
consisting of the operator equation (19) and the homogeneous
boundary conditions (20) is equivalent to the radiative trans-
fer equation (1) with the boundary conditions (3) and (4). The
adjoint radiative transfer operator £ is defined through the La-
grange identity

(LLT"Y =(1, LT, (26)

where the scalar product of fields /; and I, is given by

1'TOA
(D) = f f 10 Q) L(r. Q) dQ dr.
s 4r

For the homogeneous boundary conditions (20) and (22), the
expressions of the adjoint operator £ and the adjoint source
function Q' are

. drt .
LT Q) = T+ () 10, Q)

_O—SCt (r) P(r, Q’, Q) If(r’ Q’) dQ/
4 4

A
— 0= H=lul 4p(ﬂ',Q)H(ﬂ') W11, Q) dQ’ (27)

and
0" (r, Q) = 6(r — rron) 5(Q — Qy), (28)

respectively. The solution of the adjoint radiative transfer prob-
lem can be found by using the same solution method as for the
forward problem with a modified source function. Actually, it
can be shown that the conjugate adjoint radiance T' defined by

T =1r-9)

solves the conjugate adjoint problem

LI (r,Q) = 0 (r, ), (29)
T (rr0a, @7) = T (r5, Q%) = 0, (30)

where
0" (1, Q) = Fo ttn 6(r — rron) 6(Q — Q) 31

is the conjugate adjoint source function, ﬁm =—Qu = (Un, Pn) 18
the conjugate adjoint direction (uy = —py and @n = @y + 7),
and fo = 1/uy. The boundary value problems (19)-(20) and
(29)-(30) are identical excepting the source functions (25) and
(31), which, however, are of similar forms. As a result, in the
discrete ordinate method with matrix exponential, the system
matrices for the forward and conjugate adjoint problems coin-
cide, and solving a system of equations with two right-hand
sides yields the level values of the forward and (conjugate) ad-
joint radiance fields.

We come now to the derivative calculations. Taking the
variation of the measured radiance with respect to variations
of atmospheric parameters, and using (21) and (26) yields

(6Q"=0)
oI, = {(Q, 61y = {I', L&I). (32)
The variation of the forward operator equation (19) gives
L6l =60 —-6LI, (33)
and, since 6Q = 0, we obtain
6l = —(I',6LI). (34)

In the first step of the forward-adjoint approach, we separate
the total radiance I(r, Q) into a diffuse and a direct component
14(r, Q) and I5(r, ), respectively, (cf. (5)), and do the same for
the conjugate adjoint total radiance Tr(r, Q), ie.

T'(r,Q) =T,(r,Q) + I(r,Q), (35)
with
T.(r, Q) = Fo6(Q — Q) T'(r)

and Tf(r) = exp[—Text(Ir — rroal, ﬁm)]. Inserting the resulting
expressions in (34) it gives
ol

— =T, +T>, 36)
ds;
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Figure 1: Homogenization of the atmospheric layer jnin containing the cloud top height i¢. The layer juin, with the boundary levels jnin and jpin + 1, is indicated

by a circle.

where the first term 7 involves integrals of the conjugate ad-
joint diffuse radiance T,

T) = - f f 5”? (r) T,(r,—9) I4(r,2) drdQ

0
rsdm
- Fo ag?t () Ty(r,~Q0) T() dr

I's

1 I'T0A - 6
+— f]é(r,—Q)drde— [05ct(F)P(r,2,9)] I3(r,Q2")dQY’
iV 0g;
rsdm 4

F 'T0A a
JJo f f 0 e PP Q)T (- @) T(r) drdQ, (37)
4 (99-
rsdm
while the second term 7 involves integrals of the (conjugate)
adjoint transmission 7,
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As a next step, the integration over the azimuthal angle in

(37) and (38) is performed. This computation step together

with the integration over the radial coordinate is described in

Appendix B.

3.3. Derivatives with respect to cloud geometrical parameters

We must be cautious when computing the derivatives with
respect to the cloud geometrical parameters (cloud top height 4
and cloud bottom height /). In fact, this process is intimately
connected with the discretization of the atmosphere containing
an homogeneous cloud. We have two options:

1. the atmosphere above, below and in the cloud is discre-
tized, so that the cloud top and bottom heights are atmo-
spheric levels;

2. the atmosphere is discretized into a fixed grid, and the lay-
ers containing the cloud top and bottom heights are ho-
mogenized.

The first discretization method, in which the atmosphere is dis-
cretized each time when a new cloud position is considered, can
be used in conjunction with the forward-adjoint approach and
is described in Appendix C. The second discretization method,
in which a fixed altitude grid is used, can be applied for both
the linearized forward and forward-adjoint approaches and is
summarized below.

Let the optical properties of the homogeneous cloud be de-
scribed by the cloud extinction coefficient o¢,, and the expan-
sion coeflicients £5. Assume that the cloud top height A, lies
between the levels r;, .1 and rj,, , i€ 7, 41 < he < 1), as
shown in Fig. 1. In layer ju;, containing the cloud top height
hy, we perform an homogenization which consists of the com-
putation of the optical parameters oext j,;, and &,;,.. by using

Textinm = Togtjus + WO Toxes (39)
Enjun = &0 F WD &L, (40)

where the superscript “0” refers to the clear sky atmosphere,
and the weighting factor w is given by

he — 1,
Jmin+1
w(hy) = —————.
Al’j

(41)

By this procedure, 0 ext ;. and &g, are functions of A, i.e.

O ext jnin = o-ethmin(O-gxt’ hy) and &, = fnjmin(o—:xt’ h),
so that the partial derivatives 00 ext j,,, /Oht and 8&,;,;. /0hy can
be readily computed. The derivatives with respect to the cloud
bottom height Ay, are computed in an analogous manner. Note
that, for an accurate homogenization, the discretization step Ar;
should not be too large.



3.4. PCA-based methods for derivative calculations

As for radiance calculations, acceleration techniques can be
used to increase the computation speed. These include the Padé
approximation, the delta-M scaling and TMS correction meth-
ods, the telescoping technique, the method of false discrete
ordinate, the correlated k-distribution method, and the PCA
technique. For derivative calculations, two PCA-based meth-
ods can be designed. To explain these methods, we give a short
overview of dimensionality reduction techniques for optical pa-
rameters [9].

An approximate model for computing the radiance I at the
wavelength A reads as

LI _
0oy = i (“2)

where I, is the radiance computed by an approximate radiative
transfer model, and f7 is a correction factor.

The optical property dimensionality reduction is performed on
the layer values of the gas absorption coefficient Ino2p:(1)
and the molecular scattering coefficient In™k(1). For each
Ak, k=1,...N,, where N, is the number of discrete wave-
lengths, we define an N-dimensional vector (the abbreviation
“not” stands for notation)

X(A4) =% =[I 0% (4,);In 0™ AT, j=1,...,N-1, (43)

abs;j sctj

with N =2N -2, so that the wavelength variability of the optical
parameters is contained in x;. High-dimensional real data often
lie on or near a lower-dimensional manifold. The fundamental
issues in dimensionality reduction are the modeling of the ge-
ometry structure of the manifold, and the design of an appropri-
ate embedding for data projection. For the N-dimensional data
set {Xk}kNip where x; € RV, letX = (1/N)) ZkNil x; be the sam-
ple mean of the data. The goal of a linear embedding method
is to find an M-dimensional subspace (M < N) spanned by
a set of linear independent vectors {al}ﬁl, such that the cen-
tered data x; — X lie mainly on this subspace (manifold), i.e.
Xi ~ X+ XM yuay = X+ Ayi, k = 1,..., Ny Here, A = [a,]1,
is an N' X M matrix comprising the column vectors a;, and yy,
is the /th component of the vector of parameters y; € R*. The
vector of parameters yy is given by the forward mapping from
the high-dimensional space to the low-dimensional space, i.e.
yi=AT(x,—X), where AT = (ATA)~!AT is the pseudoinverse of A.
Now, let f(x;) be a scalar function, which by assumption is not
too nonlinear in X;. Setting

M
AXc= ) yaa, (44)
=1

we approximate f(X;) by a second-order Taylor expansion, ex-
pressed in finite-difference form by

1 M
FOx0) = f®) + 5 > &+ a) = &= a)lyu
=1

18
t5 ) G+ a) ~2f @ + fR-alyf.  (45)
=1

To compute the radiance correction factor we identify

J&) = fr(d) = In[I(A4) /L ()], (46)

and from (45) it is apparent that the computation of the correc-
tion factor requires 2M + 1 calls of the exact and approximate
models. As a result and taking into account that M < N,, we
are led to a substantial reduction of the computational time. A
short remark is though needed. PCA produces a global linear
model of the data and is appropriate when the manifold is em-
bedded linearly or almost linearly in the data space. The method
preserves only the global structure of the data, and may fail to
preserve the local structure if the data lies on a nonlinear mani-
fold. In contrast, the linear embedding methods presented in [9]
optimally preserve local neighbourhood information (the local
structure of the data) in a certain sense. In fact, the dimensional-
ity reduction approach used in [0, 7] is also a local linear model,
which combines PCA with the clustering of the data space. In
general, a local model implementation of PCA involves a two-
step procedure: (1) a clustering of the data space into disjoint
regions by using, for instance, the Lloyd algorithm with Eucli-
dean distances as the distortion function, and (2) the estimation
of the linear mappings within each region by PCA. Then, each
region (bin of wavelengths) is characterized by its own orthogo-
nal basis, and so, by its own set of correction factors. If P is the
number of the disjoint regions, then (2M+1)P calls of the exact
and the approximate models are required to compute all correc-
tion factors.

Two methods can be used for computing the derivatives with
respect to the atmospheric parameter g;.

1. The first method is similar to (46), and uses the identifica-
tion

F0) = fo(4) = 1n[—uk)/

2. The second method is based on the 11near1zat10n of the
restoration equation (45) for the radiance correction factor
/1, and involves the computation of the derivatives dyy;/9s;
[8]. In our framework, this technique can be summarized
as follows. Express the restoration equation as

u/a] (47)

1) = L(A) "W, (48)

and take the derivative to obtain

I a0 = L2y e 1 a0 98 . 49)
i 0s; 0g;
with
0
ﬁ( Ap) = —f(Xk)

LM
—f() 5; 6—f(_+al)——f(_ aplyu

M
Z [f&+a) - fX - a»

"3
M
0 0
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M

kl

Z [f&+a)=2/@+fE=alyu 5 (50)
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In general, from a vector x (which can be identified with X
or X + a;) we extract {092 }¥=1 and {o™°! V-1 according

absj’ j=1 sctj’ j=1
: _ gas . ol 1T
to the representation x = [In T abs > Ino3? tj] and, for these

optical parameters, we compute the exact and approximate
radiances I(x) and I,(x), respectively. Then, we have

of 1 ol oI,

5™ = T 9 0 00— 5260 1], 1
and what is left is the computation of dyy / ds;. For do-
ing this, we need to specify the mapping from the high-
dimensional space to the low-dimensional space. Let PCA
be chosen as the dimensionality reduction technique, and
let us assume that all centered data x;, — X, k = 1,...,N,,
are stacked into the columns of an N X N, matrix X, i.e.
X =[x, — i]kNil. Essentially, PCA performs a dimension-
ality reduction by projecting the original N-dimensional
data on the M-dimensional subspace spanned by the dom-
inant singular vectors of the data’s covariance matrix.
Therefore, assuming the singular value decomposition
Cx = (1/N)XXT =UXUT, where ):.nzmdiag[(rl];\zll is the
N x N diagonal matrix of the singular values appearing in
decreasing order oy > 0 > -+ > on > 0,and U= [u,];\:/1
is the N X N orthogonal (or orthonormal) matrix of the
singular vectors u;, we take A = Uy = [u,],/:‘], yielding
Al = U/TM. As in [6, 7], we consider the scaled orthogonal
vectors ;= o uy, in which case we have A=U = UpZp
and Afzﬁjv( = Zjvl[U/TW with X =diag[o ] . We then get

1 _
i = —u (X = X), (52)
ol
and, further,
aYkl 1 T 60—[ 1 (()U[ T
o = — — 4 —[— —
0s; o7 R dsi oy (55‘1') =%
1 an ox
—u'(— - —). 53
+0'lu](6§i 59') ©3)

To compute dyy,; / ds; we need do; / dg; and du; / dg;. As
Cxw; = oyu; and ulT w; = 1, these quantities can be com-
puted by solving the (N + 1) X (N + 1) system of equations
(as in Appendix A)

a0, 9C
[l(l)l O'IINT Cx ][ gi ]:[ 651011[ ] (54)

u
l as;

The disadvantage of the first method is that the second-order
Taylor approximation should be valid for both fr(1;) and
fo.(A4), while the disadvantage of the second method lies in
an increase of the computation time. However, in the second
method, if ¢; stands for the cloud optical thickness or the cloud
top height, then x; does not depend on ¢;, and so, dyy/ds; = 0.
Consequently, the system of equations (54) needs not to be
solved, and the computation time of the second method is com-
parable to that of the first method.

In [4], the correlated k-distribution method has been com-
bined with the PCA technique to speed-up the radiance calcu-
lations. The same technique is used here for the derivative cal-
culations.

4. Numerical simulations

In this section, we analyze the accuracy and efficiency of the
linearized radiative transfer models in computing the deriva-
tives of the measured radiance with respect to the cloud op-
tical thickness 7. and the cloud top height /.. The models to
be analyzed are the Linearized Discrete Ordinate method with
Matrix Exponential (LDOME), the Linearized Matrix Operator
method with Matrix Exponential (LMOME), and the Forward-
Adjoint approach using the Discrete Ordinate method with Ma-
trix Exponential (FADOME). The derivatives with respect to
the cloud geometrical parameters are computed by homogeniz-
ing the layers containing the cloud top and bottom heights. The
simulations were performed for channel 9 of the EPIC instru-
ment, which is an oxygen A-band absorption channel at 764 nm
with a bandwidth of 1.0 nm. As in [4], we consider a water-
cloud model with a Gamma size distribution

P(a) < a”exp [—a( a )] (55)
Anod

of parameters a,,q = 8 wm and @ = 6. The droplet size ranges
between 0.02 and 50.0 um, and the cloud geometrical thickness
is Ah = hy — hy = 1.5 km. The atmosphere is discretized with a
step of 0.5 km between 0 and 16 km, a step of 2 km between 16
and 20 km, a step of 5 km between 20 and 30 km, and, finally,
a step of 10 km between 30 and 50 km. The ground surface is
Lambertian with albedo A = 0.2, the solar and viewing zenith
angles are 6, = 6y = 30°, and the relative azimuthal angle is
A = pu—po = 176°. In [4], it was found that a compromise be-
tween an accurate description of the scattering in the backward
direction and computation time can be reached for a number of
discrete ordinates M in the range 24 < M < 32. For this reason,
we fix the number of discrete ordinates to 32. The radiances are
solar-flux normalized, and the delta-M scaling together with the
TMS correction is used. The simulations were performed on a
server Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz using
up to 56 threads.

In Fig. 2, we plot the derivatives with respect to 7. for
hy =4 km, and with respect to & for 7. =5. The results are com-
puted by using line-by-line (LBL) calculations for the oxygen
absorption cross sections as in [31, 32]. The agreement between
LDOME and LMOME is perfect. The results corresponding to
FADOME show small deviations from LDOME results; in gen-
eral, the relative errors are larger when the derivative values are
smaller, but they are below 10~* for dI,,/d7. and below 1073
for 0I,/0h.. Note that, in atmospheric remote sensing, due to
the general nature of the Gauss-Newton iterative method com-
monly used to solve the nonlinear inverse problem, the accu-
racies of the weighting functions up to a few percent do not
deteriorate the convergence rate of the solution, and the appli-
cation of the adjoint approach is not critical. Therefore, an ac-
curacy better than 10~ in the derivatives when using FADOME
in conjunction with LBL calculations is more than satisfactory.

In Fig.3, we show the relative errors when LBL calculations
are replaced with the correlated k-distribution method, the PCA
technique, and the correlated k-distribution plus PCA method.
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Figure 2: Upper panels: Radiance derivatives (n.u. denotes Sun-normalized units) with respect to 7. for 4y = 4 km (upper-left panel) and with respect to A, for
7. = 5 (upper-right panel). Lower panels: Relative errors in the derivatives when using the linearized DOME approach as a reference.

PCA is used with two principal components and one wave-
length bin, while the method based on the linearization of the
restoration equation (45) is used for derivative calculations. The
general observation is that the relative errors in dl,, / 7. are
smaller than 5 - 1073, and that the relative errors in 81, / Oh, are
smaller than 1072, Indeed, the relative errors of the correlated
k-distribution plus PCA method are smaller than 4 - 1073 for
0I,/d7¢ in the range 2 < 7. < 50, and smaller than 7 - 1073 for
0l /0hy in the range 2 < hy < 16 km.

In Table 1 and Table 2, we show the computation times (i.e.
the accumulated time over all threads) for the simulations with
the linearized radiative transfer models and various acceleration
techniques. It is apparent that FADOME is the fastest method,
followed by LDOME, equally whether LBL calculations or
acceleration techniques are used. The best time performance
is obtained when FADOME is combined with the correlated
k-distribution plus PCA method. In this case, and taking into
account that the results in Table | correspond to 16 values of
7., and the results in Table 2 correspond to 11 values of &, the
average time to simultaneously compute 0I,,/d7. and I,/ 0hy
at (1¢, hy)is 13 s.

5. Conclusions

Several linearized radiative transfer models have been ana-
lyzed with respect to their applicability to the retrieval of cloud

parameters from EPIC measurements. The models under con-
sideration are the linearized discrete ordinate method with ma-
trix exponential, the linearized matrix operator method with
matrix exponential, and a forward-adjoint approach based on
the discrete ordinate method with matrix exponential.

The numerical simulations show that these three models pro-
vide similar results when computing the derivatives with re-
spect to the cloud optical thickness and the cloud top height.
Furthermore, the forward-adjoint approach based on the dis-
crete ordinate method with matrix exponential, and using the
correlated k-distribution method in conjunction with the PCA
technique, is an accurate and efficient tool for the offline re-
trieval of cloud optical thickness and cloud top height from
EPIC measurements, with a speed-up factor of 2 when com-
pared to the conventional linearization approaches. This for-
ward-adjoint radiative transfer model can be combined with a
linearized Mie or T-matrix code [33] to retrieve microphysical
properties of clouds and aerosols.
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Figure 3: Relative errors in 0l /07 (left panels) and 0, /0hy (right panels) when comparing LBL-based simulations with those for correlated k-distribution, PCA

technique, and correlated k-distribution plus PCA.

Table 1: Computation times in minutes to simulate the derivatives with respect
to 7. for different models (LDOME, LMOME, FADOME) and acceleration
techniques. The speed-up factor corresponds to the ratio between LDOME and
FADOME.

Linearized models Speed-up

Acceleration techniq
LDOME LMOME FADOME factor

LBL calculation 3625 4602 1804 2.0
Correlated k-distribution 678 869 335 2.0
PCA technique 8 9.5 6 1.3

Corr. k-distribution plus PCA technique 6 7.5 3.5 1.7

Table 2: Computation times in minutes to simulate the derivatives with respect
to hy for different models (LDOME, LMOME, FADOME) and acceleration
techniques. The speed-up factor corresponds to the ratio between LDOME and
FADOME.

Linearized models Speed-up

Acceleration techniques
LDOME LMOME FADOME factor

LBL calculation 2451 3079 1240 2.0
Correlated k-distribution 456 574 224 2.0
PCA technique 5.5 6.5 4.5 1.2
Corr. k-distribution plus PCA technique 4 5 2.5 1.6




Appendix A

In this appendix we compute the partial derivatives of the
inverse of the eigenvector matrix V;n} and the eigenvalues Ay.

The steps for computing an eigensystem of the matrix A,,;
can be summarized as follows:

1. Compute
A=A A, (56)

where A, = A}nlj+A}nzj and A_ = A;fj—A,fj, and determine
M of the matrix A,.
2. Normalize the vectors w,,j fork=1,..,.M.

3. Compute the eigenvectors of the matrix A- = A A_,

an eigensystem {1, w;'}

1
- _ +
w, = —A,w,,

k=1,...,M, 57
X (57)

where A = +/uy are the positive eigenvalues of the matrix
Ayj.

4. Set v = (w; +w,) /2 and v, = (w; —w,) /2 for
k=1,...,M.

5. Construct the eigenvectors of A,,; as

. _
sz[zz}, VZ:[:E]’ k=1,...M. (58

The spectral decomposition of the matrix A,,; is then

Ay 0 -1
with
Voi = (V0 s Vi V1o Vgl (60)
and
Apj = diag[Ay, ..., Ay (61)

To compute 0V;1} /0s; and 04, /ds;, we follow the exposition
given in [11]. Considering the eigenvalue problem for the ma-
trix A,, i.e.

AW = wuewy, (62)

and taking the derivative with respect to ¢;, we obtain

+

OA, owy k
ds;

T
Wi+ ==
dg; * g

= w
0 k

+ Mk (63)
Equation (63) is a system of M equations with M + 1 unknowns:
the scalar duy/ds; and the vector BWZ/ Jg;. Since the eigenvec-
tors w,:' are normalized, we derive an additional equation

+
+T awk

: =0, (64)

iy

which yields the compatibility of the system of equations. By
(63) and (64), the resulting system of equations can be written
in matrix form as

e A, o+
wy el - A o, | —| ae Wk

It is important to observe that the we can solve the above system
of equations for all atmospheric parameters ¢;, i = 1,..., N,
that is, we can solve the matrix equation

M Ot IR oA

+ —_— e + + ... + +

| T LA A
i i 0 -~ 0

051 ” SN,
If Oux/ds; is known, the partial derivative of Ay = jux with re-
spect to g; follows immediately as

O _ 1 O

= — . 67
0s; 24 Og; (€7)

To compute the partial derivative of w;_, we use definition (57)
and apply the chain rule to obtain

ow;, 1 04 1 0A 1 ow;
k k + + o+ k
— = (- = + — +—A . (68
96 ( 5 55‘1') P R TR (%)
Further calculations give
ovi 1 (6W,j aw,;) av, 1 (c'iw,j 6w,;) 6
_— = = + — N _— = = - —),
o ~2Vas T ag ) o T2Vag T g ) )
and - .
ov; l 2l oy, l n ]
Tk _| Oa k| 9y (70)
ov ’ ov .
0si T s T
Using now the definition of V,,; we obtain
Vs _ [E Ny vy @]. (71)
iy dsi” 7 dsi T dsiT T i 1

whence, taking into account that V,,,; V-l =1, we end up with

mj

6V;13‘ - _v-! ﬁij V-l

di  Vmj di mj*

(72)

Appendix B

In this appendix, we perform the integration over the az-
imuthal angle in (37) and (38), and discuss the integration over
the radial coordinate.

We begin by considering the cosine-azimuthal expansions

2M-1
La(r, @) = ) Ln(r, 1) coslmlg — o)), (73)
m=0
and
2M-1
L@ = " T () coslmip - B, (74)
m=0
yielding
. 2M-1
Lo,-@) = Y T -pcosimip —ga)l.  (75)
m=0



Further, we write

2M-1

Osct(r) P(r, Q, Q) = Z (2=6m0)sm(r, p, 1) cos[m(p—¢")], (76)
m=0

where (cf. (16) and (17))

2M-1

Su(r 1, 1) = Tace (1) P, s 1) = ) £() PGu) PG). (T7)

Inserting (73), (75), and (76) in (36)-(38), and using the orthog-
onality relations of the Fourier cosine basis functions, we obtain

ol 2M-1
=2 = " (Tin + Tap)coslmign —go)l,  (78)
C()S',‘ m=0
where
rron 1 P
T ex 3
Tun ==+ S| [ [ 22250 T 00 1t

rs —1

T'TOA

00 ox )
~Fo| | 2000 T() dr
Si
| rroa 1 1
+ 5(1+6m0)7r [ffa(r’_,u) drdu m(rv,u,) d:u,]
rs —1 -1
F rroa 1 P
sﬂl
-1 f f " (1.t —H0) I (r. =) T(r) drdu] (79)

and

r'ToA
Ty, = FO[f

s

60—ext

(1) In(r, ) T'(r) |

'ToA 1
F = Oy , L,
+7°[fT*(r) drfa—gio,ym,ml,n(r,mdu]

rs -1

rT(m(9 . .
Q2= 6m0) f %g(r,lim,—#o)T(r)T'(r) dr|. (80)

Is

Foo

To perform the integration over the radial coordinate in (79)
and (80), we assume for simplicity that the partial derivatives
00 extj/0si and 0&, ;/ds; are nonzero for all layers j € D;, where
D;is asubsetof {1, ..., N —1}. In this case, the integration with
respect to the radial coordinate reduces to an integration over
all layers in D;; we have

T
f dr.
Tj+1

7'T0A
f dr = Z
Ts jeb;
For the azimuthal mode m, let 1,,;(p, +14) and ’Izlj(p, +4y) be,
respectively, the forward and conjugate adjoint radiances at an
internal point p in the layer j (0 < p < Ar;). Using the analytic

11

representation of the radiance at an internal layer point as given
in [23], the integrals

Tosle) = fo st T(0) dp

AT
f ©
0

- L Tt (1= 45)

oo
= (o, ) dp,  (81)

AT
Tow= [ TemTew
0 ,
AT 220 _2 0
- f o e I T (0 o, (82)

0 ,
ATj

jmjw’/l/) :f ’i;/‘(p’/l)lmj(p’ﬂ,)dp’ (83)
0 ,

for yu =y, ' =+, k,1=1,..., M, as well as the integral

T = fo T T ) dp

_ f Y T T T MU=t )] (g
0
can be computed analytically. Here, Tgxt ; and Text . are

the optical depths along the geometrical characterlstlc Qy =
(=, ¢o) at the boundary levels j and j + 1, respectively, while
Togr; and 7q., .. are the optical depths along the geometrical

extj extj+
characteristic Q, = (Um> Pu) = (—pin, ¢n + 7) at the boundary

levels j and j + 1, respectively. We end up with

=—(1 +5mo)7TZ T, = Fo Z T1m,

JjeD; jED
_ - (1 om0 ) T+ = Z T, (85
jED Je€D;
__FOZ 2mj Z 2mj
JeD; ]eD
F F
o 20w ) Th, (86)
JjeD;
where
oo
= Zwk [Fonj(~ttae 1) + T tas )], (87)
ao
by = ae:”f ni(H0), (88)

T, = Z Z Wi Wk [ —(ﬂl,ﬂk)Jm,‘(—#l,ﬂk)

mj

(,uz, 1) T mj (=1, #k)+—(—#z,#k).7mj(#l,ﬂk)

mJ

(1 =) Tonj s =1a0) | (89)
D5
TY, = zk] we| %j(“"’ —~410) T (~1)
+ Gt =1a0) Tt | (90)



and

oo
i = a‘;’“’ T (btm), 1)
Té’mj = Z Wy [ a—m_j(,um,,uk) T ()
T Si
+ 2 s —41) L1 | 92)
35'1 ms k)4 mj k

. Ospj
T2mj = — (i,

ac, o) T . (93)

The integrals fm i(to) and 7 ,,;(uy), which enter the expressions
of T{’m and T5 ., respectively, can be computed by using the
method of false discrete ordinate (i.e. the false discrete ordi-

nates o and u, with zero weights are added to the set {uk}ﬁi -

Appendix C

In this appendix, we present the first discretization method
of Section 3.3, which consists of the discretization of the at-
mosphere above, below and in the cloud. The linearization
method pertinent to this discretization scheme is the forward-
adjoint approach. Let us consider an homogeneous cloud with
top height A, and bottom height 4, and let the optical proper-
ties of the homogeneous cloud be described by the cloud ex-
tinction coefficient o§,, and the expansion coeflicients &5, so

that s5,(u. 1) = ZW L& Pr(u) PIGu). Set
Taxt () = 0%y (7 + Hhye = 1) H(r = hy) 0%y, (94)
St t') = S(ru i, ) + Hihe = r) HOr = hy) sy, 1), (95)

where the superscript “0” refers to the clear sky atmosphere, so
that from

O0H(hy —r) _
3—ht =06(hy — 1) (96)
we get
do O0 ext
ohe (r) = 6(he —=7) H(r = hy) 0 gys.» 97
sﬂl

o (ropts 1) = 6Che = 1) H(r = hy) sy, (1 ). (98)

Inserting (97) and (98) in (79) and (80), we find, for example,
that the first integral in (79) is given by

rroa 1 o
f f (rea;t(r)ﬁ(r, —H) Ln(r, 1) drdp
1 Si

.

and that the third integral in (79) is given by

frmf L (r, ,u)drdyf

= f T, =0 d f S Inlhes il (100)

T ext m(ht’ /J) Im(ht,ﬂ) d/l 99)

= (o ) L (r, 1) dpt’

For the derivatives with respect to the cloud bottom height /4y,
we use

OH(r — hb)

—h
I, —6(r — hyp)

(101)

and proceed analogously.
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