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Abstract

With the advance of computing technology in the past decades,
structural optimization has been in the focus of attention of the re-
search community and lately integrated in the automotive industry
design process. Naturally, industrial functional requirements im-
pose constraints on the admissible optimal shapes. Herein, the focus
is on reducing the existing disparity between numerically optimized
designs and those which satisfy such industrial constraints.

In this work, three different methods for the incorporation of indus-
trial constraints in node-based structural optimization with Vertex
Morphing, an explicit kernel-based parametrization method, are
presented. It is an attempt to highlight that different components
of an optimization problem’s formulation can be modified in order
to satisfy requirements and inspire the implementation of more
constraints with novel approaches. Firstly, a constraint that pro-
hibits undercuts from developing in the geometry is proposed. The
local point-wise problem is converted into an aggregate under-
cut volume minimization problem with improved computational
efficiency. Secondly, reflection symmetry of optimal designs is in-
vestigated. Instead of formulating a constraint function and adding
it to the mathematical optimization problem, the Vertex Morphing
parametrization is enhanced to yield symmetric geometry updates.
Finally, a four-dimensional extension of Vertex Morphing is pro-
posed with the inclusion of nodal thickness design variables. The
simultaneous optimization of thickness and nodal coordinates de-
sign variables facilitates mass-constrained shape optimization. The
industrial constraint of constant thickness sheet metals was solved
by introducing a reparametrization of the thickness variables based
on an s-shaped function. In addition, a root-finding algorithm is
utilized to tackle the problem of proportionality of the step length
ratio of shape to thickness design updates during optimization.

All methods were successfully implemented in a solver-agnostic
node-based structural optimization workflow in order to be inte-
grated in the car body design process at BMW. Several industrial
applications were optimized to test and prove the robustness of the
methods for complex engineering problems.
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Chapter 1

Introduction

Structural numerical optimization techniques have been applied with dif-
ferent forms in the automotive industry during the past forty years. With
the advance of computing technology and numerical methods, lowering
of computational effort became feasible during the ’90s. To this end,
software vendors have been forced under the pressure of competition for
lightweight and performance-optimal designs to include such methods
in their products. At the same time, manufacturing engineering imposes
certain hard geometric constraints on the optimal shapes which cannot
be neglected and need to be carefully treated. Thus, considerable effort
in the last two decades has been devoted to including such constraints
in the structural optimization methods, both in topology and shape opti-
mization, so that the advantages in optimality can be harvested from
the industry.

Any sheet metal vehicle component must fulfill specifications in three
distinct areas: it must withstand the static and dynamic loads that ‘‘de-
scribe’’ its structural purpose, it should be as light as possible, and it must
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1 Introduction

be manufacturable with the intended manufacturing method. Numeri-
cal structural optimization suggests a design with respect to structural
optimality of the former conditions. A disparity between the numbers of
numerically optimized designs and those who satisfy the manufacturing
constraints persists even though optimization techniques are constantly
refined. As expected, manual design changes on the optimal geometry so
that it complies to the manufacturing process can have adverse effects on
the optimality of the component. This thesis aims to reduce this existing
chasm in the framework of node-based shape optimization.

1.1 Node-based parameterization for shape
optimization

Numerical shape and topology optimization have been growing inde-
pendently as research fields in the past decades, each of them attracting
supporting groups in academia. Maximizing performance of an existing
component with respect to material cost is particularly relevant for the
automotive industry. One of the most well-researched areas in shape op-
timization is that of shape parametrization techniques or, in other words,
the question of how to describe the geometry and its shape variation dur-
ing optimization. The two most common approaches are the CAD-based,
where design variables are CAD parameters, and the parameter-free
or node-based approach, where design variables are the nodal coordi-
nates of the computational model. A more comprehensive report on the
parametrization techniques is found in [20, 79, 80]. The main advan-
tages of a node-based approach are that it offers a large design space that
does not impose strong assumptions on the optimal geometry shape as
is the case with CAD-based techniques. This work builds on an existing
node-based parametrization technique named Vertex Morphing. The
development of the adjoint method by Lions and Pironneau [61, 73] in
the ’70s has enabled the extensive combination of gradient-based opti-
mization algorithms and node-based shape parametrization since the
computational cost to calculate the derivatives of the objective function
with respect to the design variables is independent of the number of
design variables.
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1.2 Inclusion of constraints in structural optimization

Various node-based formulations have been proposed for the handling of
large-scale shape optimization problems, as are usually encountered in
the industry. The main challenge in node-based shape optimization is the
elimination of high frequency noise from the shape derivatives and the
extraction of dominant information. Both explicit methods, like kernel-
based filtering of the sensitivities, and implicit ones, where the numerical
solution of a partial differential equation represents the smoothed shape
update, have been proposed. However, to the author’s knowledge, the
first effort to consistently incorporate a filtering technique formulation in
optimization theory has been done in [20, 49] with the Vertex Morphing
method.

In Vertex Morphing [20, 49], the simulation model can be used directly
for shape optimization since the design variables are automatically gen-
erated from the discretized geometry. In addition to the geometry field, a
control field and a map that relates it to the geometry field are defined, in
which the mathematical optimization problem is formulated and solved.
The mapping between geometry field and design control field is achieved
through convolution of a kernel function with the design surface. In its
discretized form, the convolution integral transforms into a weighted
summation of a matrix vector multiplication. Surface smoothness and
mesh regularity criteria in the geometry field are satisfied through this
filtering. Some industrial applications of the method can be found in
[14, 36, 49, 66, 70].

1.2 Inclusion of constraints in structural optimization

Naturally, the next step after the success of node-based shape optimiza-
tion in the industry is the incorporation of geometric constraints to steer
the shape optimization towards desired resultant designs. Herein, the
terms ‘‘geometric’’ and ‘‘manufacturing’’ are used interchangeably. In
node-based shape optimization geometric constraints are, more often
than not, point-wise, in that they are applied on the nodal coordinates
design variables and must be satisfied for all of them. Introducing a
constraint for every design variable increases dramatically the adjoint
sensitivity analysis computation time. Thus, the topic of constraint ag-
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1 Introduction

gregation in order to reduce this time cost has been well discussed in
literature [12, 54, 74].

One of the first geometric constraints that attracted research interest
was that of length scale control of structural members in discretized
topology optimization, since it is tied to the existence of solutions and
obtaining mesh-independent results [42, 43, 75, 100]. As a remedy to
the same problem, global total perimeter constraints have also been pro-
posed [8, 46]. In similar spirit are the research publications in thickness
control with a level-set based approach to ensure manufacturability and
structural robustness [6, 27, 29, 44].

With regard to geometric constraints arising directly from manufacturing
limitations, contributions on demolding constraints for cast parts have
been made, wherein no undercut regions in optimal designs are allowed
to permit the removal of casting molds [2, 59, 60, 92, 95, 96]. Recent
developments in additive manufacturing have facilitated the exploitation
of topology optimization design complexity and initiated the research on
a new range of manufacturing constraints tied to the process. Namely,
surface angle, with respect to the build direction, of structural parts
overhanging over void should be constrained to a permitted value [1,
39].

Shape optimization with geometric and manufacturing constraints has
attracted less attention than topology optimization. In the framework of
node-based shape optimization, point-wise [55] packaging constraints
have been recently successfully included in the Vertex Morphing formu-
lation [66]. A minimum thickness constraint in Vertex Morphing and a
comparison of different aggregation functions for point-wise geometric
constraints have been investigated in [40]. Moreover, a series of manu-
facturing constraints—namely different types of symmetry, demolding,
curvature and minimum member size constraints—were formulated in
terms of the finite element node coordinates in a parameter-free shape
optimization [81–83].

One of the biggest challenges the automotive industry faces today is
weight reduction (lightweighting). Topology optimization essentially
answers the question of optimal distribution of material in a domain
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1.3 Goal of thesis

under a mass constraint [18]. The two most widely applied topology
optimization methods are the density-based [16], wherein a Lagrangian
approach is utilized, and the level-set-based, wherein mostly an Eulerian
approach is used [3, 7, 69, 84, 93]. For a detailed comparative review
of the methods, which is out of the scope of this thesis, the reader is
referred to the literature [34, 78, 88]. In shape optimization, on the other
hand, mass change is trivial since the topology of the structure cannot
be changed. Hence, volume-constrained shape optimization has been
researched in the form of simultaneous shape and topology optimization.
Several attempts have been made to combine these two optimization
approaches. In the bubble method [37] hole nucleation steps are inter-
laced with shape optimization steps to achieve optimal shape of the holes
and Lagrangian mesh surface. In similar spirit is the, also Lagrangian-
based, approach of Christiansen et al. [31]. The topological gradient
method, first introduced in the aforementioned bubble method, [26, 37,
45, 90] was also incorporated into level-set based formulations to ac-
commodate Eulerian-based staggered shape and topology optimization
approaches [5, 9, 25, 67, 94]. Combined approaches in a consecutive
manner wherein a topology optimized design is subsequently the start-
ing point of a shape optimization, or vice versa, have been also proposed
in the literature [22, 62, 68, 72]. Ansola et al. proposed a staggered
approach where shape and topology optimization steps are alternated
during the process and shape and density design variables are optimized
sequentially [10, 11]. Hassani et al. combined CAD-based shape and
density-based topology design variables to optimize shell structures with
a Method of Moving Asymptotes (MMA) algorithm [47]. To the author’s
knowledge, to date there is no thorough investigation on the combina-
tion of topology optimization with parameter-free shape optimization
approaches.

1.3 Goal of thesis

As explored above, although geometric and manufacturing constraints
have found their way into structural optimization—admittedly mostly
into topology optimization—in node-base shaped optimization there
has been less effort to explore methods of constraint incorporation other
than directly adding mathematically formulated constraint functions to
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1 Introduction

the problem. At the same time, volume constraints in node-based shape
optimization are still to be tackled sufficiently. As such, this thesis deals
with the inclusion of geometric constraints in node-based structural
optimization with the Vertex Morphing parameterization, which are
imposed by manufacturing and physical limitations in the automotive
industry. The focus was kept on computational efficiency of the methods
and ease of use for the engineer since the goal was to incoroporate the
methods in an in-house structural node-based optimization software
used during the design process. To this end, different approaches of
incorporating geometric constraints were explored with the wish to work
as inspiration for the implementation of further geometric constraints.
Specifically, reparameterization of the design variables by enhancing
the existing mapping or by introducing a new one is explored in this
thesis. Moreover, reduction methods of point-wise geometric constraints
to a sole global constraint simplify the optimization problem.

As an example of the reduction approach discussed above, the case of a
sheet metal forming or casting constraint is presented. Undercut regions
are strictly prohibited in optimal designs so that they are manufacturable
with the intended manufacturing method. Instead of imposing pointwise
constraints on the finite element model nodes and subsequently aggre-
gating them with formulations such as the Kreisselmeier-Steinhauser
function, we propose a single constraint equal to a domain integral rep-
resenting the imaginary volume ‘‘trapped’’ in the undercut regions. A fast
ray tracing-like technique was utilized for the discrete approximation
of the constraint continuous integral. As such, the original undercut
constraint is reduced to a volume minimization problem. Shape sensi-
tivities of the undercut constraint are then easily derived. In addition,
the maximum allowable surface angle is defined by the user and can be
either positive or negative, allowing both undercut and slab regions, by
introducing a buffer zone and modifying the direction of the ray tracing.

Secondly, a new method for a reflection-symmetry constraint is pre-
sented. Avoiding the addition of one more mathematical constraint on
the optimization problem, the method is based on a reparametrization of
the design variables. This reparametrization is implemented by directly
enhancing the Vertex Morphing mapping to utilize a variable discontin-
uous kernel for the mapping convolution, which has a filtering effect on
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1.3 Goal of thesis

the field. The modified kernel is composed by the original Gaussian ker-
nel of Vertex Morphing and Gaussian kernel placed symmetrically with
respect to the user defined symmetry plane. As the kernel shifts over the
field during convolution, at any point, the mapping operator averages
the shape sensitivity and the shape update field across both sides of the
symmetry plane. As the convolution approaches the symmetry plane,
the kernel transforms to an overlapping of the two Gaussian functions,
fulfilling the field continuity and smoothness criteria.

Finally, the problem of weight reduction and optimal material distri-
bution in sheet metal structures with Vertex Morphing was tackled.
Node-based shape optimization, wherein optimization shape updates
are normal to the surface, has trouble reducing the mass of a structure
to a meaningful order of magnitude. The Vertex Morphing parameteriza-
tion was extended from 3D to 4D space by introducing nodal thickness
design variables in the formulation. At the same time, the geometric con-
straint of a constant thickness in blanks during production with stamping
was dealt with a reparametrization of the thickness design variables
by use of an s-shaped function to push optimized values towards the
desired binary 0 or 1, indicating material and void respectively, for the
thickness of the part. The reparametrization is consistent with the Vertex
Morphing mapping and can be viewed as an additional control field for
the nodal thickness design variables. Borrowing from the SIMP (Solid
Isotropic Material with Penalization) [89] topology optimization ap-
proach, the original topology problem is transformed to a geometric
one by using thickness instead of density as a design variable. It is a
point-wise constraint in the sense that it is applied on all nodes of the
design. Shape and thickness sensitivities are obtained from commercial
solvers independent to each other. Their maximum norms, which are
responsible for the step size of the shape and thickness updates, when
left untreated are disproportionate to each other leading to either in-
significant shape update or unnaturally large thickness update. A root
finding algorithm is used to determine the suitable multiplier for the
unfiltered sensitivities such that the desired shape to thickness update
ratio is achieved while respecting the gradient projection method [76,
77].
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1 Introduction

1.4 Outline

This thesis is structured as follows: In chapter 2, the foundation of the
current work is laid. First, the mathematical formulation of the general
optimization problem, along with explanation of its different aspects,
is described. The gradient-based algorithms for constrained and uncon-
strained optimization that were used are then briefly explained. Finally,
the main aspects of shape and topology optimization are presented,
which will be useful for the thorough understanding of the the upcoming
chapters.

In chapter 3, a reflection symmetry and an undercut constraint are
presented. To further understand their implementation and inclusion in
shape optimization, 2D test cases are presented therein. Moreover, it
deals with the simultaneous shape and topology optimization of shell
structures. The coupled 4D mathematical problem is described, where
shape and thickness design variables work in synergy, and compared
to a staggered approach, where shape and topology optimization act
independently on the same geometry.

In chapter 4, large-scale car-body components from different BMW mod-
els are optimized with the algorithms from chapter 3.

Finally, conclusions of this work and an outlook are presented in chapter
5.

8



Chapter 2

Structural optimization
foundation

In this chapter, the foundation material needed to understand the frame-
work of this work is presented. As is common practice in most text books
or dissertations on structural optimization, the optimization problem
and a brief classification of solution algorithms are described in section
2.1. Subsequently, since gradient-based algorithms have been applied
in this thesis, the extraction of sensitivities with the most common nu-
merical methods is discussed in section 2.2. Finally, common shape and
topology optimization methods are presented in sections 2.3 and 2.4,
respectively.
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2 Structural optimization foundation

2.1 The optimization problem

2.1.1 Mathematical formulation
In its most general form, the following discretized optimization problem
is considered:

min
X

F (X , u (X )) X ∈Rn , u ∈Rm

hi (X ) = 0 hi ∈R, i = 1, ..., p

g j (X )≤ 0 g j ∈R, j = 1, ..., q

rk (X , u (X )) = 0, k = 1, ..., m

(2.1)

where F is the objective function and hi and g j are the equality and
inequality constraints, respectively. X and u are the design variables
and state variables, respectively. In node-based shape optimization X is
the vector of the discretized mesh nodal coordinates, whereas in density-
based topology optimization X denotes the vector of the discretizedmesh
element or nodal densities. rk are the residuals of the state governing
equations, which act as physical constraints on the problem.

2.1.2 Solution strategies
There exist many ways to classify optimization techniques. Analytic
solutions in structural problems are unattainable due to the high number
of design variables and the complexity of the state equations describing
the problem. Thus, iterative techniques, wherein the optimal solution
is approached in several iterations, are favored. Herein, optimization
algorithms are classified on the basis of the information they require in
this iterative scheme in order to find the next intermediate step:

Zero-order methods Zero-order or direct search methods use only
objective and constraint function values to compute the optimal solution.
They can be in turn divided into search methods and population-based
methods. The former make several trial steps by evaluating the objective
function at these points and then choose the best one to proceed to
the next step. They typically have good convergence characteristics and
low memory requirements but lack generality, in that by changing the
initial step size and starting point the optimum and number of iterations
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2.2 Sensitivity Analysis

vary. The latter are comprised of evolutionary strategies [13], genetic
algorithms [41], and simulated annealing techniques [56]. The selec-
tion is based on natural principles of evolution and genetic inheritance
notions extrapolated in engineering. An initial population of agents is
assigned fitness values that represent their proximity to the optimal so-
lution. After randomly mutating the agents or combining them to create
new ones in each iteration, the next generation is chosen by evaluating
their fitness values. Evolutionary algorithms are probabilistic methods.
Generally, non-gradient methods become inefficient for many design
variables since the computational effort scales with them. They are better
for non-repeatable stochastic problems.

Gradient-based methods Gradient methods require derivative infor-
mation of the objective and constraints with respect to the design vari-
ables. The derivatives can be of first order (first ordermethods) or second
order (second order methods). They are more appropriate for rich design
space problems, when combined with the adjoint method, but can be
stuck in local extrema. The most basic gradient method is the steepest
descent. The premise of descent methods, for the k th optimization it-
eration, is that the objective F is guaranteed to improve in every step:

F (s k )< F (s k +∆s k ) (2.2)
where

∆s k = a k d k (2.3)
is the design update. d k = −∇Fs k is the objective function negative
gradient with respect to the design variables s and a k the step size, either
constant throughout the optimization or derived from a line search. In
steepest descent, subsequent search directions are orthogonal to each
other:

s k s k+1 = 0 (2.4)

2.2 Sensitivity Analysis

In the previous section, gradient-based methods for structural optimiza-
tion were briefly discussed. What remains to be shown is how the gradi-
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2 Structural optimization foundation

ent information is computed. That lies within the scope of the sensitivity
analysis. It consists of computing the response functions’ gradients with
respect to the design variables. It highlights how much a system’s output
varies, subjected to a perturbation in the input.

Accuracy is defined as the difference between the derivatives we obtain
and the derivatives obtained by an exact analytic solution. Consistency
is the difference between the derivatives we obtain and the exact deriva-
tives of the numerical model. It becomes apparent that there exist two
different errors while computing the gradient: a) the error emanating
from the inexact approximation of the real life problem through our
chosen structural model and b) the error that relates to the differences in
exactness between the sensitivity methods applied on that chosen model.
The main concern in sensitivity analysis is consistency, since accuracy
is a subjective measure. Computational cost and implementation effort
are two other criteria for the selection of a sensitivity analysis method.

2.2.1 Direct vs adjoint sensitivities
In this subsection, the two most widespread methods for sensitivity
analysis are presented. Discrete derivatives of state variable constraints,
also known as analytic methods, are the most consistent and efficient
techniques but require knowledge of the state equations and the finite
element method. They are derived by differentiating the discretized
governing system of equations, denoted by rk . There are two ways of
calculating the discrete analytic sensitivities that differ only in the order
of the calculations and are explained in the following paragraph.

Goal of sensitivity analysis is to calculate the gradients of the objective
function F with respect to the design variables Xn . Generally, F depends
both on the design variables and the physical state variables yi , e.g.
displacement vector u in the case of a structural system:

F = F (Xn , ui ) (2.5)

The dependency of the governing equations can be written as:

rk (Xn , ui (Xn )) = 0 (2.6)
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2.2 Sensitivity Analysis

since the state equations when fed with an independent design variable
vector yield a dependent state variable vector.

Using the chain rules to obtain the gradient of F , we get:
d F

d Xn
=
∂ F

∂ Xn
+
∂ F

∂ ui

d yi

d Xn
(2.7)

The total derivative in the right hand side of the equation requires the
solution of the governing equations:

d rk

d Xn
=
∂ rk

∂ Xn
+
∂ rk

d ui

d ui

d Xn
= 0 (2.8)

since the residuals rk need to be zero, their derivatives with respect to
the design variables need to also be zero. By rewriting equation 2.8, it
holds:

∂ rk

∂ ui

d ui

d Xn
=−

∂ rk

∂ Xn

7→
d ui

d Xn
=−

�

∂ rk

∂ ui

�−1
∂ rk

∂ Xn

(2.9)

and substituting back to 2.7:

d F

d Xn
=
∂ F

∂ Xn
−
∂ F

∂ ui

�

∂ rk

∂ ui

�−1
∂ rk

∂ Xn
(2.10)

In the case of a structural linear system, the discretized governing equa-
tions are:

rk = Kk i ui − fk = 0 (2.11)

The inverse term in the right hand of equation 2.9, the derivative of
the system state equation with respect to the state variables, is nothing
but the stiffness matrix K . The term ∂ rk/∂ Xn is called the pseudo-load
vector P ∗ and is equal to:

P ∗ =
d Fk

d Xn
−

d Kk i

d Xn
ui (2.12)
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2 Structural optimization foundation

Equations 2.9 and 2.10 now become:

d ui

d Xn
=−K −1

P ∗
︷ ︸︸ ︷

�

d fk

d Xn
−

d Kk i

d Xn
ui

�

(2.13)

d f

d Xn
=
∂ f

∂ Xn
−
∂ f

∂ ui
K −1

�

d Fk

d Xn
−

d Kk i

d Xn
ui

�

(2.14)

We can now distinguish between two approaches: the direct and the
adjoint method for sensitivity calculation.

Direct method In the direct method the derivatives of the state variables
with respect to the design variables d ui /d Xn are first calculated by using
equation 2.9 and then substituted to equation 2.10. The easiest way to
grasp the method is by writing down the matrix multiplications and their
respective dimensions. The matrix equation has to be solved as many
times as the design variables. This can be visualized as solving the linear
system with as many loads as the pseudo load vector has columns. The
K matrix in this equation represents the governing equation equilibrium
in the form of a linear system of equations. Equation 2.13 is shown in
matrix notation as:

























d u1
d X1

d u1
d X2

· · · d u1
d Xn

d u2
d X1

d u2
d X2

· · · d u2
d Xn

d u3
d X1

d u3
d X2

· · · d u3
d Xn

...
... ... ...

d um
d X1

d um
d X2

· · · d um
d Xn

























=

























K11 K12 K13 · · · K1m

K21 K22 K23 · · · K2m

K31 K32 K33 · · · K3m

...
...

... ... ...
Km1 Km2 Km3 · · · Kmm

























−1























P ∗11 P ∗12 · · · P ∗1n

P ∗21 P ∗22 · · · P ∗2n

P ∗31 P ∗32 · · · P ∗3n

...
... ... ...

P ∗m1 P ∗m2 · · · P ∗mn

























For each column of d ui /d Xn , the system matrix governing equations
have to be solved for the corresponding column load of the pseudo load
vector. This results in solving the system for every design variable Xn .
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Or, visually:






















d u1
d X j

d u2
d X j

d u3
d X j

...
d um
d X j























=























K11 K12 K13 · · · K1m

K21 K22 K23 · · · K2m

K31 K32 K33 · · · K3m

... ... ... ... ...
Km1 Km2 Km3 · · · Kmm























−1





















P ∗1 j

P ∗2 j

P ∗3 j
...

P ∗m j























for j = 1, ..., n

(2.15)

Adjoint method In the adjoint method an auxiliary vector Ψk can be
acquired by solving the adjoint state problem:

∂Rk

d ui
Ψk =−

∂ f

∂ ui
(2.16)

or, in the case of a structural system:

Ki kΨk =−
∂ f

∂ ui

7→ Ψk =−K −1
i k

∂ f

∂ ui

(2.17)

In matrix notation, as before, this system is visualized as:
























Ψ11 Ψ12 · · · Ψ1n

Ψ21 Ψ22 · · · Ψ2n

Ψ31 Ψ32 · · · Ψ3n

...
... ... ...

Ψm1 Ψm2 · · · Ψmn

























=−

























K11 K12 K13 · · · K1m

K21 K22 K23 · · · K2m

K31 K32 K33 · · · K3m

...
...

... ... ...
Km1 Km2 Km3 · · · Kmm

























−1


















d f1
d u1

d f1
d u2

d f1
d u3

· · · d f1
d um

d f2
d u1

d f2
d u2

d f2
d u3

· · · d f2
d um

...
...

... ... ...
d fM
d u1

d fM
d u2

d fM
d u3

· · · d fM
d um



















T
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2 Structural optimization foundation

In this case, the system has to be solved for every response function
(objectives and constraints). That is, M = p +q +1 times:























Ψ1 j

Ψ2 j

Ψ3 j

...
Ψm j























=























K11 K12 K13 · · · K1m

K21 K22 K23 · · · K2m

K31 K32 K33 · · · K3m

... ... ... ... ...
Km1 Km2 Km3 · · · Kmm























−1
















d f j

d u1

d f j

d u2

...
d f j

d um

















for j = 1, ..., M

(2.18)

Then, it is substituted back into equation 2.14.

Direct vs Adjoint The sole difference between the direct and the adjoint
method is the order of operations which affect the number of back-
solving times. In the direct method the problem is tackled by firstly
giving an answer to how the design variables, through the pseudo load
vector, affect the physical system response. Once d ui /d xn is calculated
it is valid for any response function. On the other hand, in the adjoint
method an answer is initially given to how the state variables themselves,
through their influence on the response functions, affect the physical
system. After the adjoint vector Ψk is found, it is the same for all the
design variables. The final choice of which method is more appropriate
for a sensitivity analysis comes down to the dimensions of the problem.
If the design variables number n is greater than the number of responses
M then the adjoint method is computationally less demanding. If the
number of responses though is larger than the design variable number,
then the direct method is faster.

2.3 Shape optimization

Any introduction in the fundamentals of structural optimization should
start with definitions: shape optimization can be defined as the modifica-
tion of domain boundaries to establish the optimal geometric configura-
tion that minimizes an objective function, while design topology remains
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2.3 Shape optimization

rigid. In its continuous form, it is an infinite-dimensional optimization
problem since a continuous quantity, i.e., the surface of a body is sought.

As discussed in the previous section, the optimization problem’s design
variables are iteratively updated to determine the optimal shape. Hence,
design variables describe the shape variation and their definition is a
core process in shape optimization. The two most widespread shape
optimization approaches are the parametric, or CAD-based approach, and
the parameter-free, or node-based approach. In the parametric approach
design variables are a limited number of geometric parameters such as
structural member sizes, radii, distances and other CAD parameters or
even polynomial functions, e.g., NURBS [19, 23, 50, 85]. Shape variation
is thus limited to the geometric diversity of the initial parameters. On
the other hand, in parameter-free techniques geometry representation
is through nodal coordinates of the discretized finite element model
mesh. Thus, optimization and analysis model is one and the same and
no further geometric parametrization is required before optimization.
Since every nodal coordinate is updated based on a displacement vector,
such methods allow for the richest design space possible. As discussed in
section 2.2.1, the development of adjoint sensitivity methods has enabled
the application of gradient-based algorithms for large-scale node-based
shape optimization problems.

The fundamental challenge in node-based shape optimization is related
to the highly non-convex response functions that emerge due to the
rich design space and lead to mesh irregularity, mesh dependency and
non-smooth shape gradients [28, 49, 58, 64]. A common technique to
deal with this, amongst others, is the filtering of shape gradients. Mesh
regularization methods are also applied in combination with shape
gradient filtering to retain the mesh quality. The next sections presents
the Vertex Morphing method, a geometry parametrization technique
that tackles the aforementioned shortcomings.

2.3.1 Vertex Morphing
Vertex Morphing is a surface control method for node-based shape opti-
mization [20, 49]. Themethod introduces a control field for the geometry
and an explicit relationship between them in the form of a mapping
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2 Structural optimization foundation

operator. The mathematical optimization problem is solved in the con-
trol space, which is the space where the control field is defined. The
shape update is then obtained after backward mapping of the control
field update. Surface smoothness and mesh regularity constraints are
satisfied implicitly as a result of the inherent characteristics of the map-
ping matrix. Different aspects and the most important components of
the Vertex Morphing method are described in the following pages.

A volume Ω of a body and its surface Γ are defined. Material points
are introduced on Γ , based on the material surface coordinates ξ =
{ξ1, · · · ,ξd−1} ∈ Rd . For the general case of 3-dimensional geometries
d = 3. Subsequently, all surface material points can be traced through
the spatial position vector field x (ξ, t ) ∈Rd :

x (ξ, t ) =



















x1(s (ξ, t ))

x2(s (ξ, t ))

x3(s (ξ, t ))



















(2.19)

Pseudo time t represents the iterative shape evolution of the geometry
during the optimization process.

The proposed control field s (ξ, t ) ∈R3 is also dependent on the surface
coordinates and controls the geometry through a functional A(s ,ξ) =
x (ξ),A : R3 → R3. The mapping between s (ξ, t ) and x (ξ, t ) is then an
explicit kernel-based filter as follows:

x (ξ0) =A(s ,ξ0)

=
�
Γ

A(ξ−ξ0)s (ξ)dΓ
(2.20)

The nodal coordinates x at point ξ0 are obtained as a convolution of
operator A(ξ−ξ0) over the control field s (ξ). A is kernel function, most
often a linear hat or a Gaussian function. Both filters have a similar
qualitative performance; in this work the latter is used:

A(ξ−ξ0) =
1

r
p

2π
e −
∥ξ−ξ0∥2

2r 2 (2.21)
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2.3 Shape optimization

From (2.20) it follows that the derivative of the spatial vector at point
ξ0 with respect to control coordinates at point ξ1 is:

d x (ξ0)
d s (ξ1)

= A(ξ1,ξ0) (2.22)

We set aside equation 2.22 for the moment since it will help us later.

We now consider a design objective Φ with a volume density fΩ for
minimization. The optimization takes place in the control space so the
objective is a function of the control field:

Φ(s (ξ, t )) =
�
Ω

fΩ(s (ξ, t ))dΩ (2.23)

or expressed as a surface Γ problem, as is most often the case in shape
optimization:

Φ(s (ξ, t )) =
�
Γ

fΓ (s (ξ, t ))dΩ (2.24)

with the surface density fΓ obtained from volume density fΩ by integra-
tion through the thickness for the example of shell geometries:

fΓ =
�

h
fΩd n ; n (ξ, t ) ∈R3 (2.25)

To solve a continuous problem with numerical analysis it has to be dis-
cretized. In most problems solving for the continuum fields analytically
is impossible. Discretization of the geometry sets up the problem for a
numerical analysis. Therefore, the geometry field x (ξ) is discretized into
finite parts with shape functions R j and the vector of nodal coordinates
X =

�

x1, x2, ..., xn

�

withX ∈Rn :

x (ξ)≈ x h (ξ) =
∑

i

Ri (ξ)X i (2.26)

Similarly, to discretize the design control field s (ξ) we assume s j control
points and Nj shape functions:

s (ξ, t )≈ sh (ξ) =N (ξ) j s j (t ) (2.27)
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2 Structural optimization foundation

and equation 2.20 transforms to

x h (ξ0) =
�
Γ

A(ξ−ξ0)Nj (ξ)s j dΓ (2.28)

Control points s j are independent of the integral and can be taken out
of it:

x h (ξ0) =
�
Γ

A(ξ−ξ0)Nj (ξ)dΓ s j = B j (ξ0)s j (2.29)

where B j are the morphing functions. If A and Nj are chosen to be poly-
nomial functions of degree p and q respectively, B j is of degree (p+q+1)
[20]. The design control field then resembles a CAD parametrization
function, e.g. NURBS. s j are equivalent to the control points and B j

equivalent to the shape functions of the CAD function [21, 49]. Using
the same grids si , X j and shape function Ni , R j for the discretization
of geometry x (ξ) and control field s (ξ) offers an important advantage:
the same meshed design can be used for the control and the geometric
quantities. Thus, one needs to choose only the filter radius to guide the
optimization towards a desired shape, which works as a spatial low-pass
filter and eliminates wavelengths smaller than the input radius [49].
In this case, the Vertex Morphing mapping is a square matrix A and
represents simply a re-parametrization of the design variables X into s
without any dimensionality reduction.

As discussed in chapter 1, adjoint methods yield gradient information of
the design objective Φ(s (ξ)) with respect to the design variables at almost
the same computational cost as the primal solution of the problem. Thus,
in node-based optimization gradient-based methods are used for the
solution of the problem. It has become clear now that the optimization
design variables are the control points s j of the geometrical coordinates
X j . The update rule for the new design according to the steepest descent
described in section 2.1.2 is as follows:

s k+1 = s k +∆s k

= s k −a k d fΓ
d s k

(2.30)

We denote with F the approximation of the design objective Φ after
discretization of the control field s (ξ) with sh . The variation δΦ due to
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2.3 Shape optimization

an infinitesimal variation of the geometry δx at the surface Γ is:

δΦ=
�
Γ

d fΓ
d x
δx dΓ (2.31)

and is approximated by δF in the control space:

δΦ(s )≈δF (sh ) =
d F

d si
δsi =

�
Γ

d fΓ
d s

Niδsi dΓ (2.32)

The design gradient at position ξ1 is then:
d fΓ
d s
(ξ1) =

�
Γ

d fΓ
d x

d x

d s (ξ1)
dΓ

=
�
Γ

d fΓ
d x

A(ξ1−ξ)dΓ

=
�
Γ

Aa d j (ξ1−ξ)
d fΓ
d x

dΓ

(2.33)

for rectangular matrices the adjoint matrix is equal to the transpose. The
shape gradient field d fΓ

d x needs to be also discretized. By applying the
geometry discretization of equation (2.26) it yields:

d fΓ
d x h
≈
∑

i

Ri (ξ)
d fΓ
d X i

(2.34)

d fΓ
d X i

is calculated locally for every nodal coordinate by a sensitivity analy-
sis from a solver.

The discrete design derivative of F with respect to control point si is
then as follows:

d F

d si
=
�
Γ

d fΓ
d s

d s

d si
dΓ

=
�
Γ

��
Γ

d fΓ
d x

AdΓ

�

Ni dΓ

(2.35)

Finally, the control field s (ξ) is updated, as equation (2.30) shows, in
the direction of the negative gradient d fΓ

d s :

∆s =−
d fΓ
d x

d x

d s
=−

�
Γ

AT d fΓ
d x

dΓ (2.36)
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2 Structural optimization foundation

Finally, in order to update the original geometry x , the forward filter
operation is applied:

∆x =
�
Γ

A∆s dΓ =−
�
Γ

�
Γ

AAT d fΓ
d x

dΓdΓ (2.37)

An important advantage of Vertex Morphing is that the control field s
does not have to be calculated at every iteration of the optimization. In
the next section constrained optimization with Vertex Morphing will be
discussed.

2.3.2 Constrained optimization in the control space
Most engineering optimization problems in the automotive industry are
constrained, in that a series of physical, geometric or manufacturing
constraints have to be fulfilled. In this context, Rosen’s gradient projec-
tion algorithm [76, 77] is utilized, which can be seen as an extension
of the gradient descent method for constrained optimization problems.
The premise of the algorithm is that by projecting the search direction
into the subspace tangent to the active constraints and moving with a
small step size length, the design will respect the constraints. After every
projection an appropriate correction is applied to ensure that the con-
straint is not violated. The method is briefly described in the following
paragraphs with the use of matrix and vector notation for the discretized
problem, since it is the basis for the industrial constraints described in
chapter 3.

In the case of linearly constrained shape optimization with Vertex Mor-
phing in the control space, the general optimization problem of equation
2.1 can be expressed as:

min
s

F (s )

s .t . g j (s ) =
n
∑

i=1

a j i si − b j ≤ 0, j = 1, ..., ng

(2.38)

which can be written in vector form as

g j = a T
j s − b j ≤ 0 (2.39)
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2.3 Shape optimization

At every optimization iteration, relevant to the mathematical problem is
only the vector of active constraints g a

g a =C T
m s −b = 0 (2.40)

where C m is a matrix whose columns are the sensitivities of the active
constraints in the control space. To obtain C m , the sensitivities of the
active constraints in the geometry space C have to be mapped to the
control space using matrix A:

C m =
d g a

d x

d x

d s
=C A (2.41)

Using the common update rule of gradient methods:

s k+1 = s k +αp (2.42)

if both s k+1 and s k satisfy equation 2.40, the search direction p must
lie in the subspace tangent to the active constraints:

C T
m p = 0 (2.43)

and the optimization problem of equation 2.38 is transformed to the
following one:

min
p

p T∇F

s .t . C T
m p = 0

a nd p T p = 1

(2.44)

which can be interpreted as finding the direction p which is the closest
to the unconstrained search direction ∇F , while it is also perpendicular
to all the active constraint gradients in order not to violate them.

Forming the Lagrangian we get:

L(p ,λ,µ) = p T∇F −p T C mλ−µ
�

p T p −1
�

(2.45)

where λ and µ are the Lagrange multipliers of the constraints. L is
stationary when the Karush-Kuhn-Tucher (KKT) conditions are satisfied:
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2 Structural optimization foundation

∂ L
∂ p
=∇F −C mλ−2µp = 0

∂ L
∂ λ
=C m p = 0

∂ L
∂ µ
= p T p −1= 0

(2.46)

From the solution of this system of equations, we obtain the Lagrange
multiplies as:

λ=
�

C T
m C m

�−1
C T

m∇F (2.47)

and by replacing λ in equation 2.45, the direction p is calculated as

p =
1

2µ

h

I −C m

�

C T
m C m

�−1
C T

m

i

∇F =
1

2µ
P∇F (2.48)

where P is the projection matrix and the factor 1
2µ is to be neglected

since it is irrelevant to the search direction p .

Due to the high non-linearity of the constraint functions, search direction
p is corrected in the direction of the constraint gradient multiplied by a
factor β and the constraint value g a :

p̃ = p −βC m

�

C T
m C m

�−1
g a (s ) (2.49)
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Figure 2.1 : Gradient projection.

2.4 Topology optimization

Topology optimization offers maximal design flexibility in that the op-
timal material distribution in a given boundary is sought. Essentially,
the problem is the following: find the material distribution in a given
boundary that minimizes/ maximizes an objective function F , subject
to a volume constraint G0 ≤ 0 and, often, N other constraints Gi ≤ 0,
i = 1...N . In structural optimization, the state equations of the mathemat-
ical problem can be formulated as additional constraints. The material
distribution is expressed by a density function ρ(x ). Nodal or element
densities should be either 0-void or 1-material.

The general optimization problem of equation 2.1 for the case of topology
optimization is transformed to:

min
ρ

F (u (ρ),ρ) =
�
Ω

f (u (ρ),ρ)d V

G0(ρ) =
�
Ω
ρ(x )d V −V0 ≤ 0

Gi (u (ρ),ρ)≤ 0, i = 1... j

ρ(x ) = 0 o r 1, ∀x ∈Ω

(2.50)

It is well-known, that this continuous form of the so-called 0−1 problem
is ill-posed and lacks solutions. By introducing new holes while keeping
the volume constant a structure becomes stiffer. This means a lack of
closedness for the set of admissible solutions [4, 57, 89, 91]. Typically,
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2 Structural optimization foundation

in numerical topology optimization the general continuous problems is
discretized by division of domain Ω in n finite elements and assigning
a density value on each of them as a design variable. Since it is finite-
dimensional, it generally has solutions. Then, the problem becomes:

min
ρ

F (u (ρ),ρ) =
∑

i

�
Ωi

f (u (ρi ),ρi )d V

G0(ρ) =
∑

i

Viρi −V0 ≤ 0

Gi (u (ρ),ρ)≤ 0, i = 1... j

ρi = 0 o r 1, ρi = 1...n

(2.51)

However, in its discretized form, the nonexistence of solutions of the
continuous problem is manifested in the form of mesh-dependency,
where for larger n more holes develop, and numerical instabilities, i.e.
checkerboard problems [30, 42]. Existence of solutions can be achieved
by either restricting or relaxing the solution space. In the former case,
ways to restrict the admissible designs are through perimeter control,
global or local slope constraints and design sensitivity filtering [89]. In
the latter case, enlargement of the admissible designs was proposed
with the homogenization approach to topology optimization [17] by
introducing a microscale.

Since the seminal work of Bendsøe and Kikuchi, various concepts have
been proposed, i.e., the density approach [16, 99], the level set approach
[3, 7, 93], discrete and evolutionary approaches [15, 97], topological
derivatives [37, 90] and several others. In the next section a density-
based approach will be briefly presented.

2.4.1 Density approach
The design variables of the discretized problem of equation 2.51 can only
take the discrete values 0 or 1. An efficient way to solve such discrete
problems is by allowing continuous design variables with values between
0 and 1 and using gradient-based optimization methods to solve the
problem. The SIMP or power-law approach [16, 63, 99] is a material
interpolation scheme where the stiffness tensor of a density material is
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2.4 Topology optimization

given by:

C i j k l (ρ) =C 0
i j k lρ

p (2.52)

where C 0
i j k l is the stiffness tensor of the solid material and p is the

penalization parameter which forces the continuous design variables
towards 0 or 1. For p > 1, local stiffness of elements with ρ < 1 decreases,
thus making it more costly to retain intermediate thicknesses since mass
is a linear function of density but stiffness a sublinear one. For p = 1
the formulation yields the variable thickness sheet problem. A widely
accepted number for p that offers convergence to 0−1 solutions is p = 3.
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Figure 2.2 : SIMP model for p = 1, p = 2 and p = 3.
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Chapter 3

Industrial constraints for
admissible shapes

Unconstrained gradient-based shape optimization has proven its effi-
cacy in finding optimal designs. In practice, geometry adjustments take
place a posteriori by the engineer to ensure compliance with manu-
facturing and geometric constraints. Naturally, modifying the optimal
design cedes some of the optimality that was gained through the opti-
mization. By introducing these industrial limitations in the formulation
of the optimization problem, no manual adjustments are required and
the optimality is only slightly compromised.

The purpose of this chapter is to propose different approaches to include
industrial constraints in the optimization problem. The most direct way
is by adding a range of point-wise constraint functions. As will be seen
below, the desired effect on the optimal design can be achieved by
modifying other elements of the optimization formulation.
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3 Industrial constraints for admissible shapes

In the following sections, three constraint inclusion methods are de-
scribed: (a) a novel aggregation formulation for an undercut-prevention
constraint, (b) an enhancement of the Vertex Morphing parametriza-
tion for reflection-symmetry constraint and (c) the dimensional exten-
sion of the Vertex Morphing formulation along with a nonlinear re-
parametrization of a set of design variables for volume-constrained shape
optimization of surface geometries with a constant thickness constraint.

3.1 Aggregation and reduction of point-wise
constraints

Two very common manufacturing processes in the automotive industry
are deep drawing, for sheet metal, and casting, for solid components.
Both processes subject the optimal design to a set of geometric restric-
tions that influence the design concept to ensure manufacturability of
the geometry. A common limitation is the prevention of undercut regions
in the optimal shape. In casting, undercut features prevent the ejection
of the part from the molds whereas in deep drawing, undercut features
in the stamping direction are not realizable.

Point-wise constraints formulations lead to a very high number of active
constraints and thus a disproportionate increase in the computational
cost. To counterbalance this disadvantage, constraint aggregation meth-
ods have been introduced in various publication [52, 54, 74]. The most
common aggregation approaches are the p -norm and Kreisselmaier-
Steinhausser functionals, with different draw-down factors ρ, or consid-
ering only the most violated constraint.

3.1.1 Ray tracing for volume calculation
In this section, a different aggregation approach for the undercut for-
mation problem is followed. The idea is to convert the local point-wise
constraint formulation into a global problem of volume minimization,
sensitivity for which can be easily calculated. The new function is de-
fined as the ‘‘trapped’’ volume in the undercut regions and added as
an equality constraint to the optimization problem gU = 0. Figure 3.1
illustrates an undercut region in a solid body with area VU (in 2D volume
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3.1 Aggregation and reduction of point-wise constraints

naturally becomes area). The area is calculated as an integral of the
differentiable surface function f (x1) along the infeasible region depicted
with red nodes:

gU (X ) =VU =
�

D
f (x1)d x1 = 0 (3.1)

On a view plane normal to the demolding or deep drawing direction
all surfaces should be visible for a feasible geometry without undercuts.
Infeasible regions are defined as those that are invisible and those that
are covering other regions. A ray tracing technique is employed to detect
the infeasible nodes. For every geometry point i a ray is shot towards
the deep drawing direction:

r i = X i +αd (3.2)
and checked for intersections with the geometry elements. Every point
on the plane of j -th triangular element with nodes A, B and C can be
written in the form:

A+β (B − A) +γ(C − A) (3.3)
for some numbers β and γ. If the point is also on the ray, then it is also
equal to:

X i +αd (3.4)
for some number α. Setting equations equal we obtain the following
linear system:

X i +αd = A+ (B − A)β + (C − A)γ

β (A−B ) +γ(A−C ) +αd = A−X i










xA − xB xA − xC xd

yA − yB yA − yC yd

zA − zB zA − zC zd





















β

γ

α











=











xA − xi

yA − yi

zA − zi











(3.5)

which can be solved with multiple ways. If 0 < β < 1, 0 < γ < 1 and
0< 1−β −γ< 1, then the ray intersects the triangle and α is the distance
between X i and intersection point.
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3 Industrial constraints for admissible shapes

Naturally, checking for intersections with every element would be compu-
tationally ineffective. This cost can be reduced by utilizing a fixed-radius
near neighbors search on the nodes after projecting them into the tan-
gent plane normal to the deep drawing direction. This is equivalent to
using a cylinder with an axis passing through the ray ri instead of a
sphere for the search. The concept is depicted in figure 3.1.

VU

dV/dP

x1

x2

f(x1)

P

P'

|PP'|=1

Figure 3.1 : A schematic representation of the undercut formation problem. Left:
definition of undercut volume to be minimized and shape gradient calculation. Right:
Fixed-radius node search in cylinder for calculation of infeasible nodes.

In the 3D case, the boundary that is formed by axis x1 in the 2D case
becomes a surface and is harder to analytically define. For discrete
geometries, the volume integral is calculated as a sum over the infeasible
domain nodal values by utilizing again the ray tracing algorithm:

gU =
nn
∑

i=1

Niαi (3.6)
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3.1 Aggregation and reduction of point-wise constraints

where Ni the area of influence and αi the distance to the first collision
in the deep drawing direction of i -th node.

3.1.2 Derivation of constraint function sensitivities
The gradient of the undercut volume function with respect to the nodal
coordinates is calculated, for every node, as the geometry volume change
after a unit displacement of the node in the normal-to-surface direction.
Simplifying the calculation, sensitivity is equal to the volume of the
tetrahedral elements formed by the adjacent to node triangular elements
and the perturbed node, as illustrated in figure 3.2.

d gU

d X i
=

gU (X ′i )− gU (X i )
∥X ′i −X i ∥2

=
ne
∑

j=1

1

3
A j h j

=
ne
∑

j=1

1

3
A j ∥X ′i −X i ∥2

(3.7)

where the base area A j of j -th element can be calculated easily based
on the coordinates of its nodes X i , X i−1 and X i+1 as

A j = ∥(X i −X i−1)× (X i+1−X i−1)∥2 (3.8)

and the heightH j of j -th element equal to the norm of difference between
the perturbed X ′i and the original X i node. In the case of non-triangular
meshes, the volume calculation can either be generalized for polyhedra
or the surface mesh can be triangulated beforehand.

The sensitivity direction is decided based on the normal curvature κn at
every node, which is the curvature projected onto the plane containing
the normal unit vector and the projected onto the tangent plane deep
drawing vector d ′. The deep drawing direction is projected into the
tangent plane to the surface unit normal n :

d ′ = (I −
n n T

∥n∥22
)d (3.9)
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x3
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R

P

P'

P

Figure 3.2 : Undercut constraint shape gradient calculation based on finite-difference
method. Left: neighboring elements of node. Right: Perturbed node and neighboring
elements.

Figure 3.3 shows the surface tangent plane in light blue and the plane
that contains the surface normal n and the the projected drawing dire-
ction d ′ in light green. κn is then calculated as:

κn = κ1 cos2θ +κ2 sin2θ (3.10)

where κ1 and κ2 are the principal curvature values at every geometry
point, represented by the red lines in figure 3.3. They measure the
maximum and minimum that a surface bends in different directions,
the principal curvature directions t 1 and t 2. θ is the angle between
the direction d ′ in which the normal curvature is calculated and the
principal direction t 1:

d ′

∥d ′∥2
= cosθ t 1+ sinθ t 2 (3.11)

Principal curvatures are defined on differentiable surfaces so for their
calculation on discretized geometries a quadric fitting approach is uti-
lized [71]. At every node and its neighboring elements, a best-fit quadric
surface is defined and principal curvature values and directions are
analytically computed. For their efficient computation, an external com-
putational geometry library was used, libigl[51].

The idea is, that every infeasible node should move towards the feasible
domain, where it does not ‘‘hide’’ the nodes below it and is not ‘‘hid-
den’’ from other nodes. For outwards pointing surface normal vectors, a
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3.1 Aggregation and reduction of point-wise constraints

positive normal curvature means the constraint sensitivity is pointing
in the direction which maximizes the normal curvature, whereas at a
negative curvature, it is pointing in the direction which minimizes it. In
this way, the sensitivities ensure that all undercuts will be minimized,
and in their place, optimal surfaces will be ‘‘neutral’’, with surface normal
perpendicular to the deep drawing direction and a curvature as close to
zero as possible.

n

d

dφ
d'
z

θ

φ

P

P'
1/κn

n

κ1

Figure 3.3 : Curvature calculation for undercut constraint. Left: Ray tracing
direction for an infeasible node during undercut response function calculation. Right:
Normal curvature in tangent plane slicing a cylinder.

The simple shape optimization example of figure 3.4 illustrates the
concept of the constraint. The initial geometry comprises of infeasible
domains with undercuts and the undercut constraint is set as the objec-
tive function. For the optimization, the steepest descent algorithm with
a constant step size was utilized. The Vertex Morphing filter radius r
was chosen as large as five times the minimum element size. The deep
drawing direction d is co-linear to the negative z direction. As expected,
after a few optimization iterations the undercuts are eliminated and
the regions at around y =±0.4 become vertical and flat with minimal
curvature.
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Figure 3.4 : 2D example of node-based shape optimization with Vertex Morphing
under an undercut constraint. Top: Mold removing direction equal to −z . Bottom: Mold
removing direction rotated 20◦ around x direction.

3.1.3 Conical surface buffer zone
In many cases, due to mechanical limitations of the manufacturing
processes, all sloped regions of a geometry have to fulfill an angle limit,
either positive or negative. For example, overhang features of additively
manufactured components should rise at the building direction at a
‘‘shallow’’ angle to avoid support material. This angle, above which
support material is not needed, is the self-supporting angle. Another
example is the contact angle of the blank and the forming tools during
a deep drawing process. When the contact angle is too large and the
surfaces are almost parallel to the deep drawing direction, there is a
high risk of excessive thinning and, eventually, cracking. This can be
avoided by ‘‘softening’’ this angle.
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3.1 Aggregation and reduction of point-wise constraints

A simple change of the input deep drawing direction would not eliminate
the problem in symmetric geometries since the optimal design would
contain both underhang features and sloped surfaces, as illustrated in
figure 3.4 where the deep drawing direction has been rotated around
the x axis by 20◦. Technically, the design has no undercut regions in the
deep drawing direction but it still is not acceptable.

To avoid this problem, a imaginary cone-shaped buffer zone with an
axis coinciding with the deep drawing direction is defined, on which
the ray tracing directions of every node are projected. The angle φ to
the axis can be either negative, in which case overhang features can be
formed, or positive, in which case inclined surfaces are allowed. In this
way, the optimization of the 3D geometry is implicitly broken down to
a number of sub-optimizations of cutting plane sections which contain
every infeasible node, its unit normal vector and the deep drawing
direction. The ray direction is rotated by the angle φ in this plane. The
rotation axis for the ray of i -th node can be retrieved as:

z =n ×
d ′

∥d ′∥2
=n × d̃ ′ (3.12)

so that z , n and d̃ ′ form an orthonormal basis. As mentioned above,
normal curvature κn at node i is calculated in the direction of d ′. The
above basis is reminiscent of the Darboux frame [33], a concept in dif-
ferential geometry which is a natural moving frame constructed on a all
non-umbilical points of a surface.

Finally, the general formula for a rotation matrix by angle φ about the
unit vector z is as follows:

Ri j (z ,φ) = cosφδi j + (1− cosφ)zi z j − sinφεi j k zk (3.13)

where δi j the Kronecker delta and εi j k the Levi-Civita symbol:

δi j =

(

0, ifi ̸= j ,

1, ifi = j .
(3.14)
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εi j k =











+1, if (i , j , k ) is an even permutation of(1, 2, 3),
−1, if (i , j , k ) is an odd permutation of(1, 2, 3),
0, if there is a repeated index.

(3.15)

Using equation 3.13, matrix R (z ,φ) can be written explicitly:

R (z ,φ) =
�

cosφ+z 2
1 (1−cosφ) z1 z2(1−cosφ)−z3 sinφ z1 z3(1−cosφ)−z2 sinφ

z1 z2(1−cosφ)−z3 sinφ cosφ+z 2
2 (1−cosφ) z2 z3(1−cosφ)−z1 sinφ

z1 z3(1−cosφ)−z2 sinφ z2 z3(1−cosφ)−z1 sinφ cosφ+z 2
3 (1−cosφ)

� (3.16)

and the rotated ray direction is naturally,

dφ =R d (3.17)

The shape optimization example of figure 3.4 is re-run using the buffer
zone formulation, once with a negative angle φ = −20◦ and once for
a positive angle φ = 20◦. Step size and filter radius was kept constant
as for the original example. Convergence is achieved after a different
number of iterations based on how deep in the infeasible domain the
initial geometry is.

Algorithm 3.1 outlines the steps needed for a constrained shape op-
timization with Vertex Morphing parametrization under an undercut
constraint.

3.1.4 Limitations of weakly enforced constraints
There is an interesting limitation of our aggregate undercut constraint
formulation. In Vertex Morphing, as discussed in chapter 2.3.1, the
filter radius of the linear mapping acts as a low-pass filter of geometric
wavelengths. Undercuts with a size smaller than the filter radius can
therefore not be easily resolved andmight lead to oscillatory optimization
iterations around the features. This particularity holds for any weakly
enforced aggregate constraint. A similar phenomenon can be observed
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Figure 3.5 : 2D example of node-based shape optimization with Vertex Morphing
under an undercut constraint. Mold removing direction equal to −z and application of a
negative angle (top) and a positive angle (bottom) for the conical buffer zone.

in density-based SIMP topology optimization, where the length of the
grey scale transition between solid and void regions is dependent on the
applied density or sensitivity filtering.

The effect of the filter radius size is illustrated in figure 3.6. The simple
example of figure 3.4 was optimized with a filter radius of 50mm and
was optimized again for three different filter radii, 100mm, 150mm and
200mm. As can be seen, the optimizations with the two largest filter
radii do not fully resolve the undercuts. Possible solutions are the mesh
refinement around the undercut regions and the selection of a smaller
filter radius.
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Algorithm 3.1: Vertex Morphing parametrization with an undercut
constraint.
1 initialize geometry X 0

2 for optimization loop k = 1, 2, 3..., k do
3 solve state problem

r (X k , u k (X k )) = 0
4 solve adjoint problem

d fΓ
d X k

5 begin initialize undercut constraint
6 Compute unit normal vectors of nodes →n i

7 Compute surface influence domains of nodes → A
8 Compute principal curvatures → κ1,κ2

9 Compute Gaussian curvatures → K = κ1⊙κ2

10 Compute normal curvatures → κn = κ1c o s 2θ +κ2c o s 2θ

11 calculate constraint value
for node i = 1, 2, 3, ..., n do

12 calculate R i (d̂ i ,θi )
13 d̂ i =R i d i

14 ray tracing along the ray d̂ i + t∆d̂ i |t ≤ 0
15 gV += hi Ai ;
16 calculate constraint sensitivities

for node i = 1, 2, 3, ..., n do
17

d g V
d X i
= s i g n (κni

)n i Ai

18 calculate mapping matrix
Ak = d X k

d s k

19 map objective and constraint sensitivities to control space
d J

d s k = d J
d X k Ak , d g V

d s k =
d g V

d X k Ak

20 calculate search direction and design update
p k = P∇s J
∆s k =αk p k

21 calculate geometry update
∆X k = Ak∆s k

22 check convergence
23 end procedure
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Figure 3.6 : Comparison of the evolution of the undercut response function value
for the 2D optimization example for different filter radii.

3.2 Enhancement of Vertex Morphing parametrization

Bilateral reflection symmetry is an important feature of automotive
design due to a series of multifaceted reasons, i.e., manufacturing limi-
tations such as ease of production and assembly, pure aesthetic reasons
of the final product and functionality issues such as weight balance to
increase stability and control. In practical terms, any optimal design of
a symmetric car part, should also be symmetric.

The Vertex Morphing parametrization itself is an example of such an
approach. Node-based methods suffer from mesh dependency and sen-
sitivity irregularity because of the ill-posed nature of the optimization
problem [58, 64]. Common approaches for shape and mesh regulariza-
tion are the addition of a penalization term into the objective functional.
This is equal to adding a constraint to the optimization problem and
formulating it by the use of a Lagrangian multiplier. On the other hand,
Vertex Morphing introduces an explicit filter between control and geom-
etry, an elaborate scaling of the design parameters in order to fulfill the
aforementioned irregularities only through convolution of kernel with
the geometry. Naturally, depending on the kernel values and type, a
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wide range of effects are caused. The explicit linear mapping is chosen in
a way to satisfy surface smoothness and mesh regularity criteria without
burdening additional computational cost during solution.

In a similar manner, the kernel element values can be manipulated to
incorporate geometric constraints in the optimization while avoiding
adding a constraint to the mathematical problem. In this section, the
reflection symmetry problem is tackled by modifying the kernel of the
parametrization.

3.2.1 Variable convolution kernel
As discussed in section 2.3.1, the VertexMorphing filter kernel,motivated
by the Gaussian probability density function, has the following form:

A(ξ,ξ0) =
1
p

2πr
e−
∥x (ξ)−x (ξ0)∥2

2r 2 (3.18)

In 3D Vertex Morphing with implicit regularization, the regularizing
term is in included directly in the filtering operator A in the form of the
surface normal direction:

Ā(ξ−ξ0) =
1
p

2πr
e−
∥x (ξ)−x (ξ0)∥2

2r 2
g1⊗ g2

∥g1× g2∥2
(3.19)

and has an averaging effect on the surface normal direction scaled by the
shape derivative or shape update [49]. Motivated by this, the following
enhancement of the filter kernel is proposed:

As y m (ξ−ξ0) =
1
p

2πr
e−
∥x (ξ)−x (ξ0)∥2

2r 2 +
1
p

2πr
e−
∥x (ξ)−x ′(ξ0)∥2

2r 2 S (ξ, n p )

(3.20)

where the second term is an identical Gaussian kernel around the sym-
metric point x ′(ξ0) of x (ξ0) and S (ξ) the function that returns the sym-
metric position of ξ coordinates over the symmetry plane with normal
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vector n p :

S (ξ, n p ) =



















S1(ξ, n p )

S2(ξ, n p )

S3(ξ, n p )



















(3.21)

with Si ∈R.

In order to formulate the desired matrix that returns the reflected vector
p ′ of ny vector p across the plane with aforementioned unit normal n p

we start from:

p ′ = p −2p ×n p n p (3.22)

and the orthogonal matrix corresponding to the above equation is:

S i j =δi j −2np ,i np , j (3.23)

or

S (n p ) =











1−2n 2
p 1 −2np 1np 2 −2np 1np 3

−2np 2np 1 1−2n 2
p 2 −2np 2np 3

−2np 3np 1 −2np 3np 2 1−2n 2
p 3











(3.24)

Unlike other methods where for every point X a symmetric point X ′ on
the mesh has to exist, in the proposed enhanced parametrization mesh
density around the reflection plane does not have to be identical, as
also shown in figure 3.7 where Ψ1 ̸= Ψ2. This increases the robustness of
the method and avoids inaccuracies because of numerical and precision
errors.

3.2.2 Reflection-symmetric Vertex Morphing
The geometry at point X 0 is calculated based on the convolution between
the new kernel and the control field s exactly as before only with the
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Figure 3.7 : Schematic representation of the proposed filter function for reflection
symmetric node-based shape optimization with Vertex Morphing.

new convolution kernel as:

x (ξ0) =
�
Γ

As y m (ξ−ξ0)s (ξ)dΓ

=
�
Γ

A(ξ−ξ0) +As y m (ξ−ξ′0)s (ξ)dΓ

=
�
Γ

A(ξ−ξ0)s (ξ)dΓ +
�
Γ

A(ξ−ξ′0)S (ξ, n p )s (ξ)dΓ

(3.25)

Applying the proposed filter is equivalent to averaging the shape deriva-
tive or shape update along the symmetry plane. Figure 3.7 illustrates
the concept of the proposed filter. Finally, the inclusion of the surface
normal direction of equation 3.19 as a regularizing term has no effect
on the reflection symmetry and is a matter of choice.
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3.2 Enhancement of Vertex Morphing parametrization

3.2.3 Example
The modified Vertex Morphing mapping is applied on a simple 1D op-
timization, shown in figure 3.8, and is compared against the classical
Vertex Morphing. Two different filter radius sizes were applied.
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Figure 3.8 : 2D example of node-based shape optimization with Vertex Morphing
(top) and reflection symmetric Vertex Morphing with two filter radii, 6 (middle) and 12(
bottom).

It is interesting to be noted, that the proposed enhancement densifies the
mapping matrix. The level of densification also depends on the symmetry
plane orientation. When it coincides with one of the global coordinate
planes, the diagonal elements of the reflection matrix S (n p ) become
zero. Since the components of the filtered vector field are multiplied with
S (n p ) around symmetric point X ′0, the matrix densification is greater
for symmetry planes which not coincide with a global coordinate plane.
By rotating the geometry of figure 3.8 by 45◦ and calculating again the
mapping matrix, the observation becomes apparent in figure 3.9.
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Figure 3.9 : Sparsity pattern of Vertex Morphing mapping matrix without (top)
and with (middle and bottom) reflection symmetry (bottom example rotated by 45◦ for
two different radii, 6 (left row) and 12 (right column).
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3.3 Extension of Vertex Morphing parametrization

3.3 Extension of Vertex Morphing parametrization

This chapter discusses the 1-dimensional extension of Vertex Morphing
parametrization with a new set of nodal design variables to accommodate
the need for weight reduction in the automotive industry. The added
design variables are the nodal thickness values of the geometry to be
optimized. The method described in this chapter is the first approach
to use the Vertex Morphing parametrization with non-geometric design
variables other than nodal coordinates. The explicit filtering smoothing
function of Vertex Morphing replaces the common sensitivity filtering
of topology optimization. At the center of attention was the satisfaction
of the strict manufacturing (industrial) constraint of constant sheet
thickness. To this end, along with the use of a SIMP-inspired formulation,
a re-parametrization of the newly introduced thickness design variables
is suggested with the use of another mapping function, on top of the
existing Vertex Morphing mapping. Finally, the scaling of shape and
thickness updates is tackled with an appropriate scaling of the initial
objective sensitivities resulting from a root finding algorithm.

3.3.1 Industrial problem formulation
As already discussed, weight reduction is an important factor in the
design of car components. It reduces manufacturing and material costs,
as well as the ecological footprint of a structure. The most well-fitted
optimization type for weight reduction is topology optimization. The
classical topology optimization problem has already been thoroughly
described in 2.4 as the search for the topology of a sub-domain Ωs ,
which maximizes an objective function Φ, under the volume constraint
VΩs

VΩ
< 1.0. For weight reduction of solid geometries node-based shape

optimization can also be used, under the condition that the internal nodes
are updated according to the shape update of the surface (a relevant
industrial application and the implemented mesh motion framework are
presented in chapter 4).

For surface geometries specifically, weight reduction is equivalent to sur-
face minimization. Shape optimization is a rather inefficacious approach,
since the main mode of surface minimization is through geometry shrink-
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age i.e., in-plane translation of the edge nodes, and flattening of the
surface through update of non-edge nodes in the surface normal dire-
ction. Shape change of the edge nodes is often prohibited because of
geometric limitations e.g., neighboring or contact with other compo-
nents. Likewise, surface flattening is depriving sheet metal components
of invaluable stiffening beads, which are usually a result of stiffness
shape optimization. In constrained shape optimization it becomes dif-
ficult, if not impossible, to minimize the weight of a geometry and, at
the same time, increase its stiffness and/ or satisfy general industrial
constraints.

A possible solution is to sequentially shape optimize for stiffness maxi-
mization and then reduce the part thickness manually until the desired
weight reduction and compliance improvement are reached. On the
other hand, the realization of classical topology optimization in the case
of optimizing preexisting car components is more complex. Any reduc-
tion of mass because of the topology optimization leads obviously to
a reduced stiffness. This has to be counteracted with a total thickness
increase to achieve the desired stiffness. As before, this has to be con-
ducted manually and the whole process might have to be done more
than once.

Combining shape and topology optimization exploits the potential of
both methods; structural stiffening through out-of-plane shape update
and void creation to reduce mass. To this end, we propose the extension
of Vertex Morphing parametrization with a new set of design variables
that lead to a variable thickness distribution of the surface shell. The
optimization problem, with both sets of design variables, may then be
defined as:

min
X ,t

F (X , t , u (X , t )) X , t ∈Rn , u ∈Rm

hi (X , t ) = 0 hi ∈R, i = 1, ..., p

g j (X , t )≤ 0 g j ∈R, j = 1, ..., q

rk (X , t , u (X , t )) = 0 k = 1, ..., m

tmi n ≤ tl ≤ tma x l = 1, ..., n

(3.26)
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where X =
�

X 1
1 , X 2

1 , X 3
1 , ..., X 1

n , X 2
n , X 3

n

�T stands for the nodal coordinates
vector, t =

�

t1, t2, ..., tn

�T is the nodal thickness vector. u is the state vari-
ables vector and r is the residual vector of the governing equations of the
problem, usually linear in gradient-based optimization. Finally, F is the
objective function to be minimized, hi and g j the i th equality constraint
and j th inequality constraint respectively. Since Vertex Morphing is a
node-based parametrization, the initial element thickness values are
mapped on the nodes and mapped back at every optimization iteration.

In this work attention was given to develop methods that fit to the
present design development and optimization techniques. During the
automotive design process, more often than not, it is a preexisting design
that needs to be optimized in terms of weight and structural performance.
For every car component there exist a series of loading conditions and
respective structural limit i.e, a total compliance value, a maximum
allowed total displacement of a node of interest or a maximum allowed
element stress in the structure under a load case. Setting those functions
as constraints to be satisfied facilitates the problem formulation, since
the limit value are known. The objective function then becomes the
mass F =

�
ΩρdΩ to be minimized. The question to be answered by the

optimization is: ‘‘what is the maximal possible mass reduction that can
be achieved while the structural performance is not compromised?’’.

Moreover, the starting values t 0 of the thickness design variables are cho-
sen to be equal to the maximum allowed thickness tma x of the problem.
In this way, the discretized geometry of the finite element simulation is
the input, as such, of the optimization. The implication here is that the
thickness change during the optimization will be only in one direction,
towards the minimum tmi n which is usually 0 (void).

A simple approach to solve the problem is to decouple the shape from
the thickness design variables and effectively solve two optimization
problems per optimization iteration i.e., calculate one search direction
for the shape and one for the thickness design variables separately.
Consequently, we obtain a shape update ∆X and a thickness update ∆t
independently and then move on to the next iteration. The projection
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matrix is, as mentioned in chapter 2.3.2:
P = I −C m (C

T
m C m )

−1C T
m (3.27)

In the case where the optimization problem has only one constraint,
the active constraint matrix C m is equal to the vector gradient ∇g . The
term (C T

m C m )−1 = 1/∥∇g ∥22 is for normalization of the constraint gradient.
Formulating two projected directions we obtain:

p X =

�

I −
∇X g∇X g T

∥∇X g ∥22

�

∇X F =
�

I −∇X g̃∇X g̃ T
�

∇X F

pt =

�

I −
∇t g∇t g T

∥∇t g ∥22

�

∇t F =
�

I −∇t g̃∇t g̃ T
�

∇t F

(3.28)

The outer product ∇g̃∇g̃ T projects the gradient ∇F parallel to the di-
rection of ∇g̃ . Using this approach, the objective gradient with respect
to thickness variables is not projected into the subspace tangent to the
active constraint gradient with respect to shape variables, and vice versa.
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(3.29)
There is no synergy between thickness and shape sensitivities and the
optimization problem is effectively constrained twice i.e., once for the
shape and once for the thickness design variables. Shape change cannot
reduce the mass drastically and thickness change cannot increase the
stiffness without increasing the maximum allowed thickness tma x . No
surface cutting evolution since structural limit cannot be reached without
thickness increase.
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3.3 Extension of Vertex Morphing parametrization

This is illustrated schematically in the simple 2D optimization problem
of figure 3.10. Starting from design x (i ) in the graph, optimizing once
for design variable x1 and subsequently for design variable x2 violates
constraint g after the design is updated to x (x+1), even though g is not
violated after optimizing only for x1 (design x (i+1)

1 ) and x2 (design x (i+1)
2 ).

On other hand, treating the problem as whole, violation would not occur
and would only depend on the step size length.

d2
(i)

x(i)

g(x1,x2) = 0

x(i+1)

x1
(i+1)

x2

x1

x2
(i+1)

d1
(i)

Figure 3.10 : Staggered 2D function constrained optimization iteration first for
design variable x1 and then for x2.

In this work, shape and thickness design variables are optimized si-
multaneously and only one search direction and geometry update are
considered at every step as a solution to the problems of the previous
paragraph. The unified approach is presented in the next section.
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3 Industrial constraints for admissible shapes

3.3.2 4D Vertex Morphing
A new 4D design variable vector v is introduced. The optimization
problem of 3.26 is reformulated:

min
v

F (v , u (v )) v ∈Rn , u ∈Rm

hi (v ) = 0 hi ∈R i = 1, ..., p

g j (v )≤ 0 g j ∈R j = 1, ..., q

rk (v , u (v )) = 0 k = 1, ..., m

tmi n ≤ tl ≤ tma x l = 1, ..., n

(3.30)

where v =
�

s 1
x , s 1

y , s 1
z , s 1

t , ..., s n
x , s n

y , s n
z , s n

t

�T is the vector of shape and thick-
ness design variables in the Vertex Morphing control space which will be
simultaneously optimized in a unified formulation. The search direction
is now:

pv =
�

I −∇v g̃ ⊗∇v g̃
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
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(3.31)

It now becomes obvious that by calculating one search direction and
optimizing both sets of design variables in one go the objective function
is projected into the subspace tangent to the constraint function with
respect to shape and thickness variables and the objective gradient
components of thickness and shape are projected on the constraint
gradient components of shape and thickness respectively.

In Vertex Morphing the linear mapping between control and geometry
space is numerically computed as a matrix-vector-multiplication in its
discretized form. A 1D extension of the parametrization technique does
not modify the formulation since there is no distinction between shape
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3.3 Extension of Vertex Morphing parametrization

and thickness sensitivities and design variables, at least algorithmic-
wise. Unless otherwise noted, the mapping matrix A projects the 4D
geometry to a 4D control field, i.e., control and geometry field have the
same discretization, in which case the matrix is square and symmetric.
Following this approach the geometry variation at point δw (ξ0) and
control update is:

δw (ξ0) =
�
Γ

A(ξ−ξ0)δv (ξ)dΓ (3.32)

where

A(ξ−ξ0) =
1
p

2πr
e −
∥w (ξ)−w (ξ0 )∥2

2r 2 (3.33)

and w (ξ), v (ξ) the continuous geometry and control fields.

The sensitivity vector is then calculated as in equation 2.35 of section
2.3.1:

d F

d v (ξ0)
=
�
Γ

d F

d w (ξ)
A(ξ−ξ0)dΓ (3.34)

and on the discretized geometries as a sum over weighted nodal values

v =
�

s 1
x , s 1

xy
, s 1

xz
, s 1

t , · · · , s n
x , s n

xy
, s n

xz
, s n

t

�

d F

d w
=

 

d F

d x 1
x

,
d F

d x 1
y

,
d F

d x 1
z

,
d F

d t 1
, · · · ,

d F

d x n
x

,
d F

d x n
y

,
d F

d x n
z

,
d F

d t n

! (3.35)

it becomes:
d F

d vi
= A j i

d F

d w j
(3.36)

In the case of Vertex Morphing with implicit mesh regularization, the
filter kernel becomes:

A(ξ−ξ0) =
1
p

2πr
e −
∥w (ξ)−w (ξ0 )∥2

2r 2
g1⊗ g2

∥g1× g2∥2
(3.37)
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where g1⊗g2
∥g1×g2∥2 = n is the surface normal unit vector. The convolution

over shape control and thickness control fields should happen separately
with different n unit vectors, since the 3D shape vector field is projected
onto a 1D shape control scalar field and the 1D thickness scalar field is
projected onto a 1D thickness control scalar field:

n X =
g1⊗ g2

∥g1× g2∥2
; n t = [0, 0, 0, 1]T (3.38)

3.3.3 Filtering in topology optimization
Regularization schemes are also used in density-based topology opti-
mization to avoid numerical problems such as checkerboard patterns and
mesh-dependency, and to ensure manufacturability of the optimal de-
sign. One of the most widely used category of restriction methods is that
of sensitivity, or density, filtering [86]. The original density or sensitivity
fields are heuristically modified as weighted averages of the densities
or sensitivities in the neighborhood elements Ne =

�

i ∈ ∥x i −x e ∥ ≤R
	

,
respectively.

Bruns and Tortorelli [24] introduced the density filter:

ρ̃e =

∑

i∈Ne

α(x i )Viρi

ρe

∑

i∈Ne

α(x i )
(3.39)

where α is the weighing function equal to a hat or Gaussian distribution
function and Vi is the volume of ith element. Sigmund [87] presented
the original form of the sensitivity filter as:

∂ F̃

∂ ρe
=

∑

i∈Ne

α(x i )ρi
∂ f
∂ ρi

ρe

∑

i∈Ne

α(x i )
(3.40)

After a closer look, that is equivalent to the shape, forward mapping,
and sensitivity, backward mapping, filtering applied with A matrix in
Vertex Morphing. Thus, Vertex Morphing proves a fitting frame for
density-based and thickness optimization.
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3.3 Extension of Vertex Morphing parametrization

3.3.4 Manufacturing restriction-reparametrization of
thickness design variables

Geometries optimized with the 4D Vertex Morphing parametrization are
composed of mostly intermediate thickness areas. At the same time, in
Vertex Morphing the control field v does not need to be resolved and so
neither the inverse of matrix A. Therefore, the update rule for geometry
w is simplified to wk+1 = wk +∆w = wk + A∆v and without adding a
constraint the nodal thickness can attain values larger than the allowed
t ma x .

The above facts violate a crucial manufacturing-industrial constraint in
the automotive industry, in that only constant thickness metal sheets can
be mass-produced with current manufacturing methods e.g., drawing,
hot working, forging. In this work, the SIMP power law, as described in
chapter 2.4, is employed:

E = t p
e E0

ρ =ρ0

ν= ν0

m i
e =ρt i

e Ai
e

(3.41)

where p = 3, ρ the material density of the geometry, ν the Poisson’s
ratio and m i

e the mass of i th element.

The thickness variation of the geometry is represented by the scalar
function t (ξ, t ) ∈R where ξ= {ξ1, · · · ,ξd−1} ∈Rd are the surface coordi-
nates, as in the case of classical Vertex Morphing. Pseudo time t can be
neglected for the sake of simplicity in the formulations.

The desired control field τ(ξ, t ) that we are looking for should have
desirable characteristics. The thickness update is driven by the gradient
vector field. It is, thus, possible to control the desired update pattern by
manipulating the sensitivities. This has to be accomplished in a consistent
manner that does not alter the original problem, as was the case in Vertex
Morphing. Goal is to restrict thickness from attaining unfeasible and
physically meaningless values through reparametrization. Sensitivities
close to tma x , tmi n should be close to zero, whereas sensitivities of
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3 Industrial constraints for admissible shapes

intermediate thickness nodes should be magnified in order to steer the
thickness values to either the upper or the lower limit and accelerate
convergence. At the same time, any thickness values smaller than tmi n or
larger than tma x should be consistently prohibited as an innate feature of
the mapping. The new design control field τ can attain values between
0 and 1 whereas the original thickness field between tmi n and tma x .

The proposed relation between thickness and thickness-control field is a
nonlinear S-shaped mapping Π :V→V.

t (ξ) =Π(τ(ξ)) =
1

1+ e −a (bτ(ξ)−c )
(3.42)

where a , b and c are function parameters that affect the shape, steepness
and placement of the S curve. In this work, a = 0.3, b = 60 and c = 30
are used, as is attested to be the ‘‘magic numbers’’ in Yoon and Kim [98].

The calculation of the inverse function that maps the thickness field to
the control thickness field is easily retrieved as:

τ(ξ) =Π−1(t (ξ)) =
1/t̃ (ξ)−1

b s
+

1

2
(3.43)

where t̃ is the normalized thickness in range from 0 to 1:

t̃i =
ti − tmi n

tma x − tmi n
(3.44)

The simplicity of the calculation of the inverse mapping, in contrast
to Vertex Morphing where the inverse A−1 is computationally costly,
allows us to map backward and forward with ease. Therefore, instead
of mapping back only the variation δt (ξ0) as:

δt (ξ0) =
1

1+ e −a (bδτ(ξ0)−c )
(3.45)

we update the control thickness field and re-calculate the geometry
thickness based on it. Note that the variation δt (ξ0) depends exclusively
on the variation δτ(ξ0) and not that of neighboring nodal values as is
the convolution-based mapping of Vertex Morphing.

56



3.3 Extension of Vertex Morphing parametrization

Naturally, the sensitivity of the objective with respect to the design
control field is needed for our gradient-based optimizer:

d F

dτ
=
∂ Π(τ)
∂ τ

d F

d t (ξ)
(3.46)

and the sensitivity field is scaled by the mapping function derivative
of next figure. It can be noted that the design sensitivity becomes very
small as τ approaches 0 or 1 and very large when τ has a value around
0.5. The derivative of the mapping function can be retrieved easily and
is equal to:

∂ Π

∂ τ(ξ)
=

b s e −s (bτ(ξ)−a )

(e −s (bτ(ξ)−a )+1)2
(3.47)

Figure 3.11 : S-shaped mapping function for thickness design variables (left) and
its derivative with respect to new design variable τ for different values of s (right).

3.3.5 Root finding algorithm for step size scaling
The k th design update is derived, as a explained above, from the pro-
jection of the objective function into the subspace tangent to the active
constraints and subsequently the correction step. In many gradient-based
optimization algorithms a one-dimensional search is carried out in the
projected direction in order to determine the optimal step size. In this
work a constant step size is applied in every optimization iteration. In
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classical Vertex Morphing, the step size is usually chosen reasonably
small and a rule of thumb is a few times smaller than the geometry ele-
ment size. With the addition of thickness variables in the optimization
problem and by solving them simultaneously with the shape ones, we
immediately face the problem of contradicting step size magnitudes. The
step size for the thickness variables should be much smaller than that
for the shape variables. Scaling the shape variables and the thickness
variables part of the update vector with different step sizes modifies the
search direction and it not lying onto the subspace tangent space to the
active constraints anymore and updating in this direction will violate
the constraints.

Volume and compliance functions of the structure are more sensitive to
a unit thickness change than to a unit change of the coordinates. Thus,
the gradient of the objective and physical constraint with respect to
thickness variables are greater in magnitude than gradient with respect
to shape.

By scaling the objective thickness sensitivities with a scalar value µ,
we manipulate the difference in the order of magnitude between the
shape and the thickness component of the search direction after the
projection into the tangent subspace. Consequently, after scaling the
search direction with the constant step size, we can achieve the desired
shape and thickness step size ratio

Q ⋆ =
dsx

dst

(3.48)

where dsx
the shape step size and dst

the thickness step size in the control
space.

This becomes a root-finding problem at every optimization iteration k
of the function:

f (µ) =Q k
µ (µ)−Q ∗ = 0 (3.49)

where Q k
µ is the step size ratio of iteration k after scaling of thickness

sensitivities with factor µ i.e., the factor µ is sought, for which Q k
µ =Q ∗.

A closed-form expression of Q k
µ is remained to be formulated.
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3.3 Extension of Vertex Morphing parametrization

Going back to equation 2.49 of the search direction, after correction we
get:

pv =
�

I −∇v g̃ ⊗∇v g̃
�

∇v F −∇v g̃ ga (3.50)
and by setting P = I −∇v g̃ ⊗∇v g̃ as the projection matrix, the equation
is simplified to:

pv = P∇v F −∇v g̃ ga (3.51)
To obtain the shape and the thickness step sizes, the shape and thick-
ness components of the search direction vector have to be separated by
multiplication with matrices X and T where

X i j =

(

1, if i = j and i mod 4 ̸= 0

0, otherwise (3.52)

Ti j =

(

1, if i = j and i mod 4= 0

0, otherwise (3.53)

with X the matrix that after the matrix-vector multiplication X∇v F
extracts the shape sensitivity components and T the equivalent matrix
for the thickness sensitivity components.

and then normalized with their respective max-norm.

d k
sx
= lim

p→∞

 

4n
∑

i=1

∥X
�
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µ P k −C k

m (C
k ,T
m C k

m )
−1 g k

a

�

∥pi

!1/p

d k
sτ
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4n
∑

i=1

∥T
�

∇v F k
µ P k −C k

m (C
k ,T
m C k

m )
−1 g k

a

�

∥pi

!1/p
(3.54)

Finally, applying the above equations the ratio of shape to thickness step
size takes the following form:

Q k =
∥X

�

∇v F k
µ P k −C k

m (C
k ,T
m C k

m )
−1 g k

a

�

∥∞

∥T
�

∇v F k
µ P k −C k

m (C
k ,T
m C k

m )−1 g k
a

�

∥∞
(3.55)
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where

∇v F k
µ = X∇v F k +T∇v F kµ (3.56)

is the modified search direction of optimization iteration k after multi-
plication of thickness sensitivities with the factor µ. It should be noted,
that constraint thickness sensitivities are only factored with µ in the
correction term of the search direction. The reason for this is, that scaling
the constraint thickness sensitivity terms of projection matrix P would
lead to altering of the physical problem and moving in the projected
direction would be moving away from the constraint limit.

Since the problem is solved in its discretized form and no analytic ex-
pression of the rational equation is available, an effective way to find the
roots is by applying a robust closed-domain (bracketing) method. The
idea is is to start the algorithm with two guess values of µ that ‘‘bracket’’
the root, and iteratively reduce the interval between left and right guess
values while the root remains in this interval. The advantage is that if the
initial guesses indeed bracket the root, then the algorithm is guaranteed
to converge. The Illinois algorithm [35], based on the classic regular
falsi method [32], is used.

Regarding the factor µ, we are looking for positive values, so that the
physical meaning of gradients does not change. A negative value would
swap the search direction and instead of minimizing the objective func-
tion it would be maximized. The denominator of the fraction in equation
3.55 can be zero, if and only if the thickness components’ search direction
is a zero vector. This is the case when the objective thickness sensitivity
is equal to the negative of the thickness correction direction, which is
only possible when objective and constraint gradients are anti-parallel.
However, that would mean that a local minimum has been reached and
the objective function cannot further be reduced without violating the
constraint.

To obtain an upper bound µR for the bracketing interval, the largest
|(X∇v F k

µ P k )i | and the largest |(T∇v F k
µ P k ) j | are taken to solve the fol-

60



3.3 Extension of Vertex Morphing parametrization

lowing equation:

Q k
µ (µ)−Q ∗ = 0

Q k
µ (µ) =Q ∗

|X
�

(∇v F k
µ P k )i − (C̃ k

m g k
a )i

�

|=Q ∗|T
�

(∇v F k
µ P k ) j − (C̃ k

m g k
a ) j

�

|

(3.57)

as above that value the two terms in Q k
µ should not cross the horizontal

asymptote again. For the lower bound µL a very small positive value is
ascribed.

Considering again equation (3.49) and the two initial approximations
µi−1 =µL and µi =µR for which f (µi−1) f (µi )< 0, a new approximation
µi+1 is obtained from:

µi+1 =µi −
fi (µi −µi−1)

fi − fi−1
(3.58)

and fi+1 is calculated. The estimates for the next iteration according to
the Illinois method are decided based on:

• if fi+1 fi < 0, then (µi−1, fi−1) are displaced by (µi , fi ).
• if fi+1 fi > 0, then (µi−1, fi−1) are displaced by (µi−1, fi−1/2).
• (µi , fi ) are displaced by (µi+1, fi+1).

The modification of the second point above increases the asymptotic rate
of convergence from linear, in the regula falsi method, to super-linear,
in the Illinois method [38].

In the case where the estimations µL and µR at the start of the process
do not yield f (µL ) f (µR )< 0, µL and µR can be successively reduced and
increased, respectively, until the limitation holds or a pure shape or
topology optimization iteration can be implemented.
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3.3.6 Example
In order to demonstrate the particularities of our method, a simple
geometry is examined. A simultaneous shape and topology optimization
of the geometry shown in figure 3.12 is solved. The maximum shape
update length and maximum thickness update length in the control
space were chosen equal to 0.25mm and 0.025mm, respectively, with a
4mm grid size and 1mm initial thickness. A Gaussian function is used
for the filtering, as is the case for all applications in the framework of this
dissertation. Finally, the optimization was performed with the gradient
projection method until convergence. Customarily, the optimization
is stopped either after full convergence is achieved or before severe
mesh distortion occurs, which is the most common case for industrial
applications.

Figure 3.13 shows the response functions’ evolution along with a visual
illustration of the optimized design and its thickness distribution during
optimization. As it can be seen in the same figure, for approximately
the first 15 iterations the rate of mass reduction is small, then rapidly
increases for the next 50 iterations until it slows down again while
converging to a value of around 40% less mass. This phenomenon can be
explained by the nonlinearity of the introduced parametrization for the
thickness design variables. At the extremities of the admissible thickness
values, which are 0 and 1, the parametrization function slope is very
close to zero, as can be seen in figure 3.11. Thus, even a relatively large
thickness update in the control space, when mapped back amounts to
a small thickness update. From a control thickness of around 0.75, the
geometry thickness update is much larger than the control thickness
update until control thickness reaches the low-end extremity again. At
the same time, the strain energy minimization behavior is asymptotic
until the constraint limit is reached. Once a local minimum is approached
and all thickness values have reached either extremity (0 or 1), then the
material and void pattern is almost impossible to change since thickness
sensitivities very small. The slight increase in mass that is observed
around the 100th iteration is due to the shape change (deepening of the
beads etc.) needed to reach the constraint limit.
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q
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H0.5H
Figure 3.12 : 3D view of the example arch geometry (left), a front (middle) and

side (right) view.
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Figure 3.13 : Response function and design evolution of the example 3D arch
geometry with the proposed simultaneous shape and topology optimization method.
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Figure 3.14 : Simultaneous shape and topology optimization result design with a
filter radius length of 6 (left), 10 (middle) and 20 (right).

3.3.7 Simultaneous optimization design handles
The choice of the filter function andmost importantly the filter radius size
have already been identified as a design handles for shape optimization
with the Vertex Morphing method [21, 48, 65]. Operator A acts as a low-
pass filter that dictates the minimum shape wavelengths of the optimal
design giving the engineer the option to steer the design towards local
minima that satisfy functional and non-functional requirements.

The same effect is observed by varying the filter function radius size of
the thickness design variables. Choosing a larger radius size explicitly
affects the grey area phase between void and material. At the same time,
it implicitly acts as a perimeter control for the thickness design variables
evolution and limits the geometric complexity of the design. Larger and
smoother voids are favored by a larger filter size. Moreover, appropriate
selection of the filter size can also control the minimum member size
of the topology. Figure 3.14 illustrates the aforementioned remarks.
The larger the filter radius used for the thickness design variables, the
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fewer and smoother the developed voids with a greater intermediate
grey phase. The same phenomenon can be observed in the inner panel
industrial application 4.4 of chapter 4.

3.3.8 Simultaneous optimization algorithm
In this section, the algorithm that was used in the context of this dis-
sertation for the simultaneous shape and topology optimization with
Vertex Morphing is thoroughly presented.

In order to not distract the focus from the main idea of the method,
attention is not given on the optimization algorithm details. For a com-
plete account of the Rosen’s gradient projection algorithm, the reader is
referred to chapter 2.3.2. The obtained results in the framework of this
thesis can be consistently reproduced with the application of the follow-
ing algorithm since there are no ‘‘hidden’’ or trial-and-error parameters.
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Algorithm 3.2: Simultaneous shape and topology optimization algo-
rithm.
1 initialize geometry X and nodal thickness t

design variable vector → v =





X

t





2 define tmi n , tma x , dsx
, dsτ

3 calculate initial thickness control field t̃
t = T v
t̃i =

ti−tmi n
tma x−tmi n

τ=Λ−1(t̃ )→τi =−
ln
�

1
t̃i −1

�

60s +0.5
4 for optimization loop k = 1, 2, 3..., k do
5 solve state problem

r (v , u (v )) = 0
6 solve adjoint problem

d FΓ
d X i

,
d g j
Γ

d X i
, d FΓ

d t i
,

d g j
Γ

d t i

7 map thickness sensitivities to thickness control space
d F
dτ =

d F
d t

d t
dτ =

d F
d t

dΛ
dτ

d g j
Γ

dτ =
d g j
Γ

d t
dΛ
dτ

8 assemble sensitivity vector

d F
d v =





d FΓ
d X

d FΓ
dτ



, d g
d v =





d g Γ
d X

d g Γ
dτ





9 calculate mapping matrix
A = d X

d s
10 map sensitivities to Vertex Morphing control space

s =





s X

sτ





d F
d s =

d F
d v A, d g

d s =
d g
d v A

11 calculate desired step-size ratio Q ⋆ = dsx
dsτ

12 initialize µL = 10−5,µR = 105

13 evaluate Q L
k , r R

k with Qk =
∥X (∇µs F P−C m (C T

m C m )−1 g a )∥∞
∥T (∇µs F P−C m (C T

m C m )−1 g a )∥∞ for µL ,µR
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13

14 f (µ) =Q k
µ (µ)−Q ⋆

15 while Q k
µ (µ) ̸=Q ⋆ do

16 evaluate sign
s = f k

L f k
R

∥ f k
L ∥∥ f

k
R ∥

17 if s < 0 then
18 initialize i = 0
19 while f (µ) ̸= 0 do
20 evaluate c = f k

L µR− f k
R µL

f k
L − f k

R

21 evaluate f k
c which is f k for µ= c

22 if f k
c f k

R > 0 then
23 µR = c
24 f k

R = f k
c

25 if s i d e ==−1 then f k
L /= 2;

26 s i d e =−1
27 else
28 µL = c
29 f k

L = f k
c

30 if s i d e == 1 then f k
R /= 2;

31 s i d e = 1
32 end
33 f k = f k

c
34 i → i +1
35 end
36 end
37 end
38 calculate design update by applying the step-size

if ∥X p k∥∞ > ∥T p k∥∞ then
39 ∆s k = dsx

p k

∥p k ∥∞
40 else
41 ∆s k = dsτ

p k

∥p k ∥∞
42 end
43 calculate geometry and thickness update

∆v k = Ak∆s k

t =Λ(τ) =Λ(T b )
44 end
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Chapter 4

Applications

In this chapter, a variety of applications taken from the design process
of BMW are optimized with respect to different functional requirements.
In the framework of such an industrial setting, even the simplest looking
component is subject to a multitude of manufacturing, geometric and
physical constraints, which have been conceptualized and brought into
optimization with the abilities of our optimization software. The ade-
quacy of the presented methods is put to test with respect to robustness
and efficiency in the following paragraphs.

Every application conveys a different story on how optimization in the
industry can be approached and tackled. Since in all cases a geometry
already exists and has to be improved through optimization, especially
in topology optimization, the initial conditions play a significant role.
All use cases simulations are subject to implicit and explicit nonlinear
loading. The linearization of the load-cases was an important part of
the optimization, since it greatly affects the quality of the gradient infor-
mation.
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4.1 Cross member

In this industrial application, a cross member beam was optimized for
transverse stiffness capacity. An important factor was manufacturability
of the improved geometry with the deep drawing technique. To achieve
this, the proposed undercut prevention constraint for Vertex Morphing,
that is presented in chapter 3.1, was enforced to constrain the admissi-
ble shapes of the optimal design. Several aspects of the implemented
optimization are explained in the following paragraphs.

Model description

The main function of the front-end cross member beam is the protection
of the internal parts of the vehicle in low speed crash. The beam is
connected to two crash boxes on both sides that dissipate energy in high
speed front crash through deformation. A linearization of the low speed
crash load case was achieved with the application of an equivalent force
in the middle of the beam, as depicted if figure 4.1. The two crash boxes
are fixed in place by fixing the nodes of the bolt holes. Finally, the model
mesh density was refined in order to enable a higher degree of surface
smoothness of the optimized design.

Optimization setup

Objective of the optimization is the maximization of the structural stiff-
ness for the given load case. A comparison between an unconstrained
optimization and a constrained optimization with the undercut response
is made to investigate the effect of the geometric constraint on optimality.
To further evaluate the constraint, a maximal angle of 75◦ was enforced,
instead of the default 90◦, for the undercut response function. The step
size for every iteration was kept constant and relatively small at 0.5mm.
Since the mesh and loading is symmetric there was no need to use the
plane symmetric formulation of Vertex Morphing (2.3.1). Finally, the
edge nodes of the component were frozen during shape optimization
due to connectivity to other assembly parts.
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design space

F

(a) Design space, in grey, for the optimization, mesh density
of model and boundary conditions.

F
F

(b) Different views of front cross member computational
model.

Figure 4.1 : Computational model of cross member.

Optimization results

Figure 4.2 illustrates the optimized designs for each performed opti-
mization. It can be seen that the pattern and shape modes of the form
update are similar for the unconstrained and both the constrained opti-
mizations. This demonstrates the non-intrusive quality of the undercut
response function, since it does not deflect from the path followed by the
optimizer. It merely prohibits the undercuts and allows the algorithm to
explore freely the feasible solution space. As a result, the approached
local minima from the constrained and unconstrained optimizations
have similar designs.
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For greater clarity in the comparison between constrained and uncon-
strained optimizations, cross sections of the initial and improved geome-
tries are plotted against each other in figure 4.4. It is apparent from
both plots, that the undercuts of the unconstrained optimization are
prevented and the the developed surface inclination is equal or smaller
than the limit of 90◦ (top) and 75◦ (bottom).

The objective function evolution for the optimizations is illustrated in
figure 4.5. Contrary to expectations, the constrained optimization with
a 90◦ limit angle does not hinder the objective improvement when com-
pared to the unconstrained optimization. On the contrary, the optimizer
steers the geometry to a slightly stiffer design. A possible explanation is
that the formation of the undercuts in the unconstrained optimization
do not increase the stiffness of the structure and are a result of the sen-
sitivity smoothing rather than the sensitivity information itself. The fact
that a relatively large filter radius was used, larger than the bead depth
in the initial design, points in this direction. This justification seems
indeed reasonable also from an engineering perspective, since undercuts
make the design more unstable under the prescribed loading. In the
case of the constrained optimization with a 75◦ limit angle, the objective
improvement is delayed significantly and only after around 20 iterations
it begins to show signs of improvement. The bead draw angle in the
initial design is 90◦. Thus, the initial design lies in the infeasible space
and the optimizer corrects in the direction of the undercut response
gradient to push back to the feasible domain. This can be observed in
figure 4.3, where the optimized geometries with the shape update length
field are plotted. Regions 1, 2, 3 and their symmetric regions developed
significant shape changes in order to attain a surface angle of 75◦. On the
other hand, the same regions in the unconstrained optimization (top)
exhibit almost zero shape update. Therefore, this surface evolution does
not improve the objective and is a result of the undercut response.
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4.1 Cross member

Figure 4.2 : Surface geometry of the model after unconstrained stiffness optimization
(top), after optimization with the undercut constraint with a limit angle of 0◦ (middle)
and with a limit angle of15◦.
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Region 1 Region 2 Region 3

Figure 4.3 : Shape update length distribution after unconstrained stiffness
optimization (top), after optimization with the undercut constraint with a limit angle of 0◦

(middle) and with a limit angle of15◦. Blue indicates zero and red indicates the maximal
value.
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Figure 4.4 : Cross section profile comparison between initial design (grey),
unconstrained optimal design (red) and optimal design with the undercut constraint
(blue) with 0◦ (top) and 15◦ (bottom).
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Figure 4.5 : Response function evolution comparison of unconstrained optimization
and constrained optimization with 0◦ (top) and 15◦ (bottom).
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4.2 Hood hinge system bracket

In this section, the successful multi-constraint optimization of a tailgate
hinge system bracket will be presented. This application shows the
capabilities and modularity of our software to handle models with solid
elements andmultiple constraints coming from different external solvers.

Model description

The tailgate model is subject to a number of static nonlinear load cases
that ensure the structure’s integrity during construction and during the
service phase of the vehicle’s lifetime. Important assessment values are
the stiffness of the system and the maximal von Mises stress.

Due to the high computational cost of a full model simulation and its
inherent nonlinearities, i.e., contact between assembly parts, the simu-
lation model was reduced to only the hinge system bracket. In addition,
since adjoint sensitivities are available from solvers only for linear static
cases, the static nonlinear load cases were linearized in the following
way: The bracket welding points’ displacements under the nonlinear
static analysis were applied as Dirichlet boundary conditions for a linear
static linear analysis. The optimization was performed for three of those
load cases, the von Mises stress of which are shown in figure 4.13(a).
Figure 4.6 illustrates the bracket model and the surfaces where the
boundary conditions are applied. The mesh density is variable and is
higher in areas where larger shape updates are to be expected. A growth
ratio larger than one was used for the volume meshing in order to reduce
computational cost.

Optimization setup

The need for different solvers was born from the fact that not all response
function sensitivity information is provided by one solver. Goal of the
optimization was to minimize the weight of the bracket, subject to a
geometric constraint with the application of an aggregate version of the
Vertex Morphing packaging constraint, found in the literature [66], and
strain energy constraints for each of the three load cases to their initial
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(a) Boundary conditions at initial geometry with surface
mesh density and solid mesh density at selected cross section.

(b) Multiplication factor of the shape update in order to fix
movement of boundary nodes (left) and the packaging geometry of the
optimization (right).

Figure 4.6 : Computational model for the optimization of the the hinge bracket.
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value using the formula:

C =
1

2
u T f (4.1)

=
1

2
u T K u (4.2)

=
1

2

�
εTσdν (4.3)

In the case where only Dirichlet boundary conditions are applied, the
strain energy is a direct measure of the structural stiffness K . In addition,
a p-norm type black-box response function was used to constrain the
maximal allowable von Mises stress, limited again at the initial value
for each load case.

The notion of a control space in Vertex Morphing is ideally suited to
handle the challenge of multiple solvers. The objective and constraint
function gradients are mapped into the control space, as explained
in chapter 2.3.1 and thoroughly in [49]. The search direction for the
optimization is then calculated, and finally the shape update is mapped
back to all geometries. Provided that the Vertex Morphing filter radius
is larger than the minimum required for a smooth shape update, non-
matching meshes of different mesh densities are updated with minimal
geometric deviation from each other. The surface discretization of solver
1 and solver 2 is shown in figure 4.7. The geometric constraint needs to

Figure 4.7 : Surface disretization of Solver 1 (left) and Solver 2 (right).

be applied only on one of the meshes, since fulfillment of a constraint in
the control space guarantees its fulfillment in all destination geometries.
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4.2.1 Automatic solid mesh motion
When shape optimizing components modeled with a solid mesh, one has
to make sure that after every surface shape update the internal nodes of
the mesh also follow. Otherwise, after a few iterations the analysis will
fail because of collapse of the faces of the solid elements. In addition,
the mesh quality has to be preserved, especially at regions with distorted
elements. There are different approaches for the mesh motion, well
documented in literature, and the problem is especially prominent in
CFD optimization. The motion of the internal solid nodes is determined
by solving the equations of linear elasticity (without inertial terms) with
variable Young Modulus on the solid elements. This solution method
is similar to that of [53], where the solution of the Laplace equation
with variable diffusion is used. Both are second order elliptic partial
differential equations, such that although the physical interpretation
of the unknown variables differ, the mathematical problem is essen-
tially identical. The shape update of the surface nodes is applied as a
displacement boundary condition for the solution of the problem. As
observed in 4.6(a), a volume growth rate larger than one was used for
meshing the geometry in order to reduce mesh density. Mesh quality
and accuracy of the solution are more important closer to the surface.
Three different Young Modulus laws were used, all distance-based. The
Young Modulus Ei of element i is a function of the element’s centroid
P c

i nearest distance dP c
i −Γ from the surface Γ :

• Ei =
1

q

dP c
i −Γ

; sublinear dependence

• Ei =
1

dP c
i −Γ

; linear dependence

• Ei =
1

d 2
P c

i −Γ
; quadratic dependence

The comparison between the different mesh motion rules follows in the
next paragraph.

The optimization design space is input as a node set from the user
and, to their convenience, is part of the domain whose nodes are free
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4.2 Hood hinge system bracket

to move, either due to optimization shape update or automatic mesh
motion. Figure 4.8 illustrates the problem definition. Design space for
the shape optimization is the right half of the geometry in dark grey.
Γs f denotes the nodes and elements that lie on the surface of the design
space. Γb is the interface surface between design and nondesign space.
For the shape optimization problem, the nodes and elements in Γs f

are also considered surface nodes and elements, since our optimization
software only inputs information about the design space. Hence, the
equation Γ = Γs f +Γb holds. As Ωs l are defined the solid nodes and solid
elements. Sensitivity information on non-surface nodes is meaningless

Figure 4.8 : Schematic of a solid 3D geometry for shape optimization. Design
space for the optimization problem is the right half of the structure in dark grey.

since response function changes only come from updating the external
surface of the geometry. Thus, design space is reduced to only surface
nodes (Γs f ) in order to further reduce numerical cost. Naturally, integral
part of the procedure is the identification of surface nodes and creation
of surface triangle elements. The following algorithm is specific to the
case of tetrahedral-only meshes but can be easily generalized for other
solid elements such as hexahedra or pyramids. A node X i is solid when
the following condition holds:

N F
X i
=

3N E
X i

2
(4.4)

where N F
X i

is the number of faces of the tetrahedra whose vertices include
X i , and N E

X i
is the number of neighboring tetrahedra of node X i . This is
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a generalization of the surface mesh edge detection rule, where a node
X i is an internal, and not an edge, node if the following condition holds:

N N
X i
=N E

X i
(4.5)

where N N
X i

is the number of the neighboring nodes of node X i and N E
X i

defined as above. Here,N N
X i

can also be seen as number of edges attached
to X i . In turn, extrapolating from 2D to 3D, edges become faces and 2D
elements become 3D elements leading to 4.4. Figure 4.9 visually clarifies
this equation. Looking at the right graph, the faces connected to the solid
node X i are exactly 3N E

X i
(three faces for every neighboring element).

Going back to the right graph where the neighboring elements are bor-
dering with each other, every face is shared by exactly two tetrahedra.
By dividing with 2 we reach the equality of 4.4. Finally, the faces of

Figure 4.9 : Schematic visualization of the neighboring tetrahedra of a solid node
with connected faces (left) and with disconnected ones (right).

the tetrahedra that are shared by only one element are used as triangle
surface elements for the optimization model. The pseudocode of this
automatic tetrahedral mesh motion is described in algorithm 4.1.

Optimization results

The optimal shape design is shown in figure 4.11. The solution space was
explored using a filter radius smaller than the width of the bracket. This
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4.2 Hood hinge system bracket

Algorithm 4.1: Shape optimization with automatic tetrahedral mesh
motion.
1 Read geometry Ω from input file
2 //Detect element neighbors of nodes
3 foreach node X i in Ω do
4 find e X i

ng h b r = [...]
5 end
6 //Detect surface nodes
7 foreach node X i in Ω do
8 N F

X i
= 0 foreach e j in e X i

ng h b r do
9 foreach Fk in e j do

10 if not added then
11 N F

X i
+= 1

12 end
13 end
14 end
15 end
16 //Create surface elements
17 //Read boundary nodes and elements
18 //Start optimization loop
19 for i = 1, 2, ... do
20 //Solve state and adjoint problem
21 //Calculate search direction vector s
22 //Calculate shape update vector δx
23 //Calculate Young Modulus E for mesh motion
24 foreach element ei in Ωs l do
25 Ei =

1
d 2

P c
i −Γ

26 end
27 //Write input file for mesh motion
28 //Solve state problem for mesh motion and get ds l

29 //Update surface nodes with δx
30 //Update solid nodes with ds l

31 end
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was intentional in order to let the two opposite surfaces of the bracket
to develop unaffected from each other. The thickness of the bracket is
thus free to increase in some areas and decrease in others. The bottom
and top surface become much thicker in order to support the in-plane
and out-of-plane loading and the middle part of the bracket thins out in
favor of mass reduction. The optimal cross sections, as shown in figure
4.12(b), are similar to the cross section of an I-beam which is excellent
for unidirectional bending and shear loading while being cost-effective
since material is not excessively used. The cross-sectional area of slice
α increases with our shape optimization while for slice β there is a
reduction and for γ an even larger one. Material is needed closer to the
hole where the bracket is screwed with the rest of the structure and the
boundary conditions are applied.

The absolute percentile change of the response functions is shown in the
graph 4.10. The mass reduction is around 22% and the constraints of
strain energy and von Mises stress remain almost constant with minimal
violation. Figure 4.13 shows the von Misses stress distribution before and
after optimization. The maximal values for all three load cases remain
similar but the distribution has slight changes. Since the material is used
optimally after optimization, there are larger areas with greater stresses
than before.

Finally, a comparison between the three different distance-based Young
Modulus rules for the automatic mesh motion is illustrated in figure
4.14. The applied rule greatly affects the solid mesh quality during
optimization, which in turn also affects the response function values,
especially for the von Mises stress which is a measure of the observed
shearing. The chosen applied rule seems to also be case-specific. For
CFD applications where the fluid domain is very large compared to
the structure moving in it, the inverse quadratic distance rule is more
suitable since regions far away from the fluid-structure boundary are of
rather small interest and a deformed mesh there has minimal effect on
the solution. In the case of the bracket, when raising the distance to an
exponent equal or larger than −1 (such as in the second and third rule
of 4.2.1), the elements around the center of gravity get squeezed and
stretched as can be seen in the two rightmost columns of figure 4.14.
This is due to the abrupt reduction of Young Modulus in short distances
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Figure 4.10 : Absolute percentile change of objective (mass) and constraint
functions during optimization.

Figure 4.11 : Optimal design from opposing views.
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α β γ

(a) Cross sections on initial geometry (left) and cross sections
on optimal geometry (right).

(b) Cross section α (left), cross section β (middle) and cross
section γ (right).

Figure 4.12 : Initial and optimal selected cross sections.

from the surface. The first rule is more appropriate and leads to better
mesh quality and failure at a much later optimization iteration without
re-meshing.
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4.2 Hood hinge system bracket

(a) Von Mises stress component for the three loadcases of the
hood hinge-system for the initial design.

(b) Von Mises stress component for the three loadcases of the
hood hinge-system for the optimal design.

Figure 4.13 : Von Mises stress components for three loadcases (from left to right)
for initial (top) and optimal (bottom) geometry.
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(a) Cross section α for initial geometry (far left) and optimal
geometry with square root law (second from left), linear law(second
from right) and quadratic law (far right).

(b) Cross section β for initial geometry (far left) and optimal
geometry with square root law (second from left), linear law(second
from right) and quadratic law (far right).

(c) Cross section γ for initial geometry (far left) and optimal
geometry with square root law (second from left), linear law(second
from right) and quadratic law (far right).

Figure 4.14 : Influence of Young Modulus law on mesh quality for cross sections α
(top), β (middle) and γ (bottom).
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4.3 Front-end shear panel

This application is another example of mass minimization with Vertex
Morphing. This time though, the simultaneous shape and topology opti-
mization formulation was applied to verify its capabilities in industrial
cases. Important aspects of this application will be explained in the next
paragraphs.

Model description

The front-end shear panel is an aluminum shell structure that serves to
stiffen the front part of the car during the operational phase. It plays an
important role in anti-symmetric torsional loading that takes place when
the vehicle is steered to the left or to the right. The enforced design of
the front-end shear panel is illustrated in figure 4.15. It can be seen that
beads are impressed on the middle area of the shear panel. This is a
technique that aims to increase the structural stiffness of the part. In
the current design process, this technique is based on the experience
and functional understanding of the designer or engineer. As it is not a
result of some type of optimization, it is sub-optimal and a trial and error
approach is applied in order to find an acceptable design. Evidently, this
leads to many loops between design and simulation analysis, something
that can be avoided with the use of mathematical optimization.

The load cases of our computational model are the following: loading
applied during the assembling of the aluminum sheet with the rest of
the front-end components, and an anti-symmetric torsional loading of
the sheet during left turns of the vehicle. Both loads are applied in the
context of a linear static analysis of the full vehicle. Naturally, this is
a costly analysis and and optimization would take many days. In an
attempt to reduce the optimization overall time, the same method as
in the Bracket example of chapter 4.2 is applied: the model is reduced
to only the shear panel, and its displacement field after the car body
simulation is enforced as a boundary condition.
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shear panel

(a) Front-end geometry of the car including the shear panel
and the bounding geometries around it used in the optimization.

beads

(b) The current design of the shear panel with the stiffening
beads.

nondesign space

(c) Leveled shear panel geometry used as a starting point for
the optimization. In grey the design space.

Figure 4.15
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Optimization setup

For shape optimization, as opposed to topology optimization, there has
to be an initial design that is to be improved. Logically, that initial design
also affects the end result of the optimization and can have a great effect
on its optimality. So that we can minimize the influence of the beaded
design, it was decided to remove the beads and flatten the geometry out,
such that the optimization starts from a leveled geometry, as depicted
in figure 4.15(c). The existing mesh was refined by 2.5 times so that a
smaller radius can be used and smaller shape modes can be exploited.
The vertical flange and the areas around the connection points with other
geometrical parts were left out of the design space so that the optimal
design can be used for recalculation and validation in the full-body
computational model.

As mentioned in the introductory paragraph, objective of the optimiza-
tion was the reduction of mass. The solution space was constrained
in that strain energies for both load cases should be equal or better to
the strain energies of the beaded design (which is naturally stiffer than
the leveled one). In addition, the mirror symmetry Vertex Morphing
mapping of chapter 1 was applied and the internal packaging response
function of our software. The leveled shear panel offset in direction
+z and −z by 10mm was used as bounding surface for the geometric
constraint.

4.3.1 Comparison study of optimization approaches
In an attempt to investigate and study the differences between the
proposed simultaneous shape-topology optimization formulation and
the existing wide-spread optimization processes forweight-minimization,
it was decided to perform a series of optimization approaches for this
application:

• Shape optimization followed by a design thickness reduction.
• A serial optimization approach where a shape optimization of the

initial design is followed by a topology optimization.

91



4 Applications

• A serial optimization approach where a topology optimization of
the initial design is followed by a shape optimization.

• A staggered optimization approach where in every iteration a
shape and topology optimization problem are solved independent
to each other.

• A simultaneous optimization with the unified shape and topology
optimization formulation proposed in this thesis.

In order to conduct an unbiased comparison study, the structural stiff-
ness of all optimal designs was intended to be equal and was controlled
through the constraint limit. The main comparison criteria were the re-
duction in mass, the ease of use, and the overall computational efficiency
of the process.

The first approach is commonly employed in industrial environments. A
shape optimization minimizes compliance until convergence and, subse-
quently, structural thickness is reduced until compliance drops to the
desired limit. Naturally, there are manufacturing constraints regarding
minimum sheet metal thickness which make this approach often imprac-
tical. In addition, it has to be taken into account that structural thickness
influences the formability and manufacturability of the component. Even
though results are far from optimal, the approach is listed for the sake
of completeness.

In the case of the serial optimization approaches, the rationale is that
unconstrained shape optimization is a powerful tool to increase the
structural stiffness of a component, and that topology optimization is
the best way to achieve mass reduction for a given stiffness limit. It
can be argued that mass reduction could be also achieved with a shape
optimization where nodal mass sensitivities are used to steer the design
towards a direction that both minimizes the weight and increases the
stiffness. This has been observed, after all, in the bracket application
of section 4.2. For solid meshes it is indeed true. In the case of a shell
structure, shape optimization can minimize the mass through shrinking
and flattening of the surfaces. However, this is restrictive for most in-
dustrial cases where the edges of a design are neighboring with other
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parts and have to be frozen during optimization. Moreover, it prohibits
the formation of beads that increase structural stiffness.

Thus, in the first serial approach the structure is firstly shape optimized
to maximize its stiffness while its mass is kept almost constant. Shape op-
timization is stopped either when convergence of the objective function
is achieved, or when mesh quality is deteriorated by element distortion.
Subsequently, a topology optimization reduces mass as much as possi-
ble for a compliance constraint fraction equal to the ratio between the
desired and initial compliance of the shape optimized design. Similarly,
in the second serial approach mass is reduced as much as possible and
then structural stiffness is maximized until convergence or mesh quality
deterioration. A first obvious difficulty during the serial approaches is
the selection of the constraint and objective values for which to aim for
before moving on to the next optimization type.

The staggered optimization approach is similar to the proposed simulta-
neous shape topology optimization, except for the fact that shape and
topology optimization act independently from each other on the same
geometry at every iteration step.

Finally, the simultaneous approach has already been extensively pre-
sented and discussed in chapter 3.3.

Optimization results

The results of the first approach are summarized in table 4.1. The max-
imum mass reduction for which the stiffness limit is satisfied is about
11%. The objective function evolution during shape optimization can
be seen in figure 4.19. It is interesting to note that stiffness change is
almost linear to thickness change after shape optimization. This can be
explained by the fact that shape optimization changes the load-paths
so that the structure goes under tension and compression, mechanical
load-bearing modes more efficient in comparison to bending.

Starting with the first serial approach, the initial topology optimization
of the starting design was executed for 150 iterations until convergence
was achieved. The compliance constraint limit was selected so that mass
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Table 4.1 : Summary of response function percentile change for
the first two optimization approaches.

thickness decrease after shape optimization
thickness % initial mass compliance % % compliance to limit

1.0 100.0 100.0 116.4
0.91 93.1 91.2 106.1
0.875 89.7 86.6 100.8
0.83 86.2 82.0 95.5

reduction is as large as possible,while the subsequent shape optimization
can successfully converge at the desired stiffness value despite geometric
constraints. Hence, finding the correct constraint values might require a
few unsuccessful optimizations and a lot of experience, since constraint
relaxation does not affect objective improvement linearly. Fig. 4.16(a)
depicts the thickness distribution (top) and the percentile change of
the response function of the topology optimization. Subsequently, a
geometrically constrained shape optimization is executed until mesh
distortion reaches unacceptable levels, which takes about 250 iterations.
The objective evolution is shown in figure 4.16(a). Note in 4.16(b)
that the contour of the voids changes slightly both in- and out-of-plane
because of the structural shape optimization, thus marginally changing
the final mass.

In the second serial approach the order of topology and shape optimiza-
tion is reversed: shape optimization comes first with a goal of stiffening
the structure, followed by topology optimization to reduce the mass. The
idea here is to let shape optimization increase the stiffness more than the
desired value, such that when topology optimization later takes place,
the stiffness is compromised to the chosen limit. After 250 shape opti-
mization iterations an improvement of approximately 230% is observed
(fig. 4.19). Figure 4.18(a) illustrates the shape-optimized design. It can
be seen that the regions where larger shape updates are observed are
the same during shape optimization of the topology-optimized design of
the first approach. Furthermore, it is also noteworthy to highlight that
shape optimization on the initial design improves the objective func-
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4.3 Front-end shear panel

(a) Distribution of sheet-thickness after topology optimization
(top) and design after hole-cutting with a commercial pre-processing
software (bottom).

(b) Optimal design after shape optimization of the above
topology-optimized geometry.

Figure 4.16 : Resulting optimal designs of the first serial approach optimization.
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Figure 4.17 : Objective and constraint response function evolution for shape opti-
mization (left) and topology optimization (right) of the first serial optimization approach.

tion slightly more than on the topology-optimized design. Afterwards,
topology optimization is executed and yields the thickness distribution
of figure 4.18(b). Even though total mass reduction is almost the same
(Fig. 4.19) in comparison to the first serial method, the void pattern and
size are quite different. This servers as a reminder to the nonlinear and
non-convex nature of a topology optimization problem where infinite
local minima exist. During the subsequent topology optimization con-
vergence is achieved in about 150 iterations, which is the same as in the
topology optimization of the first approach.

The third approach differs in that the two types of structural optimization
are executed concurrently in every iteration of the optimization but are
uncoupled from each other. The justification here is that by updating
both the shape and thickness distribution in every optimization iteration,
the order of the optimization types will not affect the results, as we have
seen above. Since our topology optimization formulation uses a binary
starting point (all design variables start with the maximal thickness
value), the design variables can only move unidirectionally and become
smaller, forming the void areas and reducing the weight. It is therefore
infeasible to stiffen the design through our topology optimization formu-
lation and this is left merely to the shape optimization. Figure 4.20(b)
illustrates that even though both strain energy constraints are satisfied
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4.3 Front-end shear panel

(a) Optimal design after shape optimization of leveled design.

(b) Distribution of sheet-thickness after topology optimization
of the shape-optimized design of above figure (top) and design after
hole-cutting with a commercial pre-processing software (bottom).

Figure 4.18 : Resulting optimal designs of the second serial approach optimization.
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Figure 4.19 : Objective and constraint response function evolution for shape
optimization (left) and topology optimization (right) of the second serial optimization
approach.

from the shape and thickness updates, the mass is not being reduced.
The reason for this is that the uncoupled sensitivities do not work collab-
oratively and the constraints are enforced twice on the problem: once
for the shape and once for the topology optimization. Namely, while
the constraint values are zig-zagging around their limits, as expected
with the gradient projection algorithm, topology and shape optimization
are trying simultaneously and separately from each other to update the
design variables in a direction that satisfies the constraints and improves
the objective function. Thus, void areas are not formed (figure 4.20(a))
and thickness design variables oscillate aimlessly without resulting in
mass reduction. As expected, shape and thickness sensitivities have to
work synergetically in order for the optimization to be successful.

For the simultaneous shape and topology optimization formulation pro-
posed in this thesis, two different setups are investigated: one in which
the nodal shape sensitivities with respect to mass are excluded from the
optimization, and one in which they are included. In the first case, the
mass objective function is differentiated only with respect to the thick-
ness design variables. The motive here is to investigate the quantitative
and qualitative effect of the shape mass sensitivities on the optimization
outcome. Both optimizations were executed for 200 iterations with a
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4.3 Front-end shear panel

(a) Step-wise serial optimization resulting shape update and
thickness distribution.
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(b) Mass objective function and strain energy constraints
evolution for topology optimization of step-wise serial approach.
Figure 4.20 : Results of step-wise serial approach optimization.

ratio between shape and thickness update equal to 10 (maximal shape
update was 0.7mm and maximal thickness update was 0.07mm). As
expected, the inclusion of mass shape sensitivities affects the optimal
design of the converged optimization. Chosen cross-sectional surface
cuts of the initial and optimal geometries are shown in figure 4.24. Dis-
continuities in the slices of the optimal designs are due to hole openings.
It can be seen that the optimal design of the optimization with only thick-
ness sensitivities of the objective function shows a larger total shape
update that the one with both shape and thickness sensitivities. This
can be attributed to the fact that mass shape sensitivities of non-edge

99



4 Applications

(a) Simultaneous shape and topology optimization optimal
design with thickness distribution (top) and with holes cut open (bot-
tom).
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(b) Mass objective function and strain energy constraints
evolution for simultaneous shape and topology optimization.

Figure 4.21 : Results of simultaneous shape and topology optimization with mass
objective function constant with respect to thickness design variables.

100



4.3 Front-end shear panel

(a) Simultaneous shape and topology optimization optimal
design with thickness distribution (top) and with holes cut open (bot-
tom).
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(b) Mass objective function and strain energy constraints
evolution for simultaneous shape and topology optimization.

Figure 4.22 : Results of simultaneous shape and topology optimization with mass
objective function variable with respect to thickness design variables.
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nodes point towards a direction that flattens the shell structure in order
to minimize surface area. Comparing the contours of the two designs in
figure 4.23, it can also be observed that shape mass sensitivities tend
to update the shape of the edges towards the in-plane direction, with
intention to shrink the whole structure. In order to compensate for the
structural stiffness lost due to the lack of freedom for sufficient out-of-
plane shape update, the void size from topology optimization tends to
be smaller for the same number of iterations. If the optimization with
included mass shape sensitivities is executed for 10 to 30 more iterations,
the final weight reduction will be similar for both optimizations. It is
therefore interesting to be noted, that the inclusion, or not, of mass
shape sensitivities can be used as a design-handle from the engineer in
order to steer the optimization towards an optimal geometry that has
desired geometric features.

Figure 4.23 : Contour of initial shape (black) vs. optimal shape with mass shape
sensitivities (blue) and without mass shape sensitivities (red).

Last but not least, the optimal shear-panel designs from both simultane-
ous optimizations were put in place of the beaded shear-panel design in
the full car-body computational model in order to validate the results
of the sub-model optimization. Figure 4.25 compares the displacement
plots of the car-body torsional simulation analysis for the initial and
optimized designs. Finally, table 4.2 summarizes the percentile change
of the strain energy for all car-body simulation load-cases, proving that
the sub-model optimizations were successful.
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Figure 4.24 : Cross sections along the width of the structure starting from Y = 0
(top) towards Y > 0 (bottom). Initial shape (black) vs. optimal shape with mass shape
sensitivities (blue) and without mass shape sensitivities (red).
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Figure 4.25 : Displacement plot for anti-symmetric torsional loading for the initial
design (top) vs. the optimal designs from the simultaneous optimization without mass
shape sensitivities (center) and with mass shape sensitivities (bottom).

104



4.4 Hood inner panel

Table 4.2 : Summary of response function percentile change for
the full car-body analysis.

Function change %
Constrained Unconstrained

mass -20.11 -17.01
Torsion I 0.00 0.00
Torsion II 0.17 0.19
Torsion III 0.15 0.17
Torsion IV 0.62 0.66
Torsion V 0.15 0.17

4.4 Hood inner panel

The proposed simultaneous shape and topology optimization formu-
lation was put to test on another sheet metal component, the inner
panel of a car hood. The fundamental difference of this application, in
comparison to the shear panel of section 4.3, is that the void pattern is
predetermined. In the current design process simulation engineers fol-
low empirical rules of thumb based on cumulative collective experience.
Our optimizer steers the inner panel to a design that is lighter than the
initial one and stiffer for all the prescribed load cases. A summary of the
successful optimization is given below.

Model description

The inner panel is a structural component of the hood system whose
purpose is to stiffen the hood against external loading. Hood and inner
panel are connected to each other by means of flanging the edges of the
hood around the panel, and with adhesive connectors in the middle area
of the inner panel. The computational model is illustrated in figure 4.26.
Each prescribed force F1, F2, F3 and F4 represents one static nonlinear
load case. The current design of the inner panel is shown in the middle
of the figure. Reinforcing metal sheets are added to the hood system
to increase the stiffness in critical regions. The modified design for the
optimization is depicted at the bottom of the figure.
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F1

F2

F3

F4

reinforcing 
sheets

adhesive
points

Figure 4.26 : Components of the full computational model. Hood (top) with load
case forces, current hood inner panel design state (middle) and modified hood inner panel
for optimization (bottom) with boundary conditions.
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Optimization setup

The computational model of the hood system includes material and con-
tact nonlinearities. In order to maintain the accuracy of the sensitivity
output from the solver, it was decided to use the complete hood system
for the optimization. The alternative would be, as in the shear panel
application (4.3), to isolate the design space for the optimization (inner
panel) and prescribe boundary conditions on the sub-model connec-
tors. Keeping the full model leads to the requirement of a linearization:
the contacts were substituted with rigid body elements and a linear
formulation was used for the static analysis.

As was also the case with the shear panel (4.3), the optimization needs
to start from a neutral design. The holes of the current design were filled
with material so that the optimizer can suggest a novel void pattern that
can substitute the current one. Excluded from the optimization were
the regions around the welding points that connect the design space
with other components of the assembly. Those areas remain common for
both the modified and initial design. A laplacian smoothing algorithm
is applied on the rest of the design space, such that each node position
changes according to the function:

x̄i =
1

N

N
∑

j=1

x̄ j (4.6)

where N is the number of neighboring nodes of node i , x̄ j is the posi-
tion of the j -th neighboring node and x̄i is the new position for node
i . The rationale behind this is the following: the preexisting design is
a result of a type of CAD-based shape optimization. Design variables
in CAD-based optimization are geometrical features, e.g., fillet radii,
number and size of holes or number and size of beads. In node-based
shape optimization with Vertex Morphing feature lines of the geometry
are preserved, especially in the early stages of the optimization. Thus,
starting a shape optimization from this predefined configuration limits
the search space of the optimizer and, more likely than not, will con-
verge to a local minimum in the vicinity of the initial design. The more
neutral the optimization starting design is, the higher the likelihood
that the optimized design will contain features that are optimal and
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unimaginable to the designer. The initial design and the modified one
for the simultaneous optimization are depicted once again in figure 4.27.
Horizontal cross section profiles of the geometries are plotted against
each other to display the smoothing of the feature lines.

The strain energies of the four load cases were applied as constraints
to the optimization. The ratio of limit to initial constraint value was
0.75. In other words, improvement of the stiffness for all load cases by
25% was required. In addition, a packaging constraint and a maximum
length update constraint of 10mm were added to the optimization. Re-
flection symmetry was imposed by using the enhanced Vertex Morphing
formulation that was proposed in chapter 3.2. Finally, the ratio of shape
to thickness length update was set to be equal to 10.

Optimization results

Two simultaneous optimizations were executed on the inner panel,
with the the filter radius of the thickness design variables being the
only difference between them: in the first one, the filter radius was
approximately 3 times the element size of the design space, and in the
second one, it was set to 6 times the element size. The motivation behind
this was to investigate the effect of the Vertex Morphing filter radius
on the optimal hole distribution and pattern. It should be noted that
the filter radius for shape design variables was kept constant in both
optimizations at approximately 6 times the average element size in order
to avoid the formation of small scale details and features. The optimized
geometry with the thickness distribution (left) and after surface cutting
of the elements with zero thickness (right) is shown in figures 4.28 and
4.29 for the small and large filter radius optimization, respectively. The
hole distribution is similar for both optimizations. What changes is the
shape and size of the holes. The bigger the filter radius, the bigger and
rounder the holes tend to be. At the same time, the transition region
from zero to maximum thickness is larger, for the larger filter radius.
As a result, with a larger filter radius more optimization iterations are
required to achieve a similar objective function improvement compared
to a smaller filter radius, as is the case in this application.
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A A'

B B'

A A'

B B'

(a) Different views of the current hood inner panel design
state (top row) and modified hood inner panel (bottom row).

A A'

B B'

(b) Cross section profile comparison between design state
and modified state of hood inner panel. Planes shown in top figure.

Figure 4.27 : Hood inner panel current design state and modified design used as
starting point for the optimization.
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It is interesting to compare the hole distribution of the optimized ge-
ometries with that of the initial design. In all designs, holes develop
in the middle area of the part. A reasonable explanation is that, since
the middle area is the furthest away from the boundary conditions, it
contributes the least to the overall structural stiffness. However, it can
be seen that during the optimization holes also develop at the top left
and right of the geometry where the inner panel connects with the hinge
system and the rest of the car. At first this might seem unreasonable but
after a closer look it becomes clear that those regions are structurally
supported extensively from the existing reinforcing sheets. Thus, there
is excess material and it can be reduced.

At the bottom of each graph, the response function absolute change is
plotted. For roughly the first 30 to 40 iterations, mass reduction is slow
since the algorithm’s focus is to push the design towards the feasible
domain via shape update of the nodes. Afterwards, thickness update
begins to reduce the mass almost linearly with respect to the iteration
number and shape update ensures that the continuous weight reduction
does not compromise the structural stiffness. It can be seen, that, for
both optimizations, the constraint values oscillate around their limits.
This can be attributed to the fact that our optimization formulation is
based on a linear approximation of the response functions (first-order
gradients) in combination with the high nonlinearity of the response
functions.

The diagram of figure 4.30 has an interestingmessage for the understand-
ing of the proposed simultaneous optimization. The search direction is
composed of the projection move and the restoration move. The former
is the projection of the objective gradient into the subspace tangent to
the active constraints. The latter is to bring the search direction back
to the constraint boundary by moving back in the direction of the con-
straint gradient. The desired ratio between shape and thickness maximal
update is achieved mostly through correction move manipulation. As
can be observed, the projected direction ratio has a value that varies
from ∼ 0.1 to ∼ 2.0 and only after correction is the desired ratio attained.
Scaling of thickness objective and constraint sensitivities with the same
factor has a different effect on the ratio of the search direction. This
explains the importance of the correction move in the proposed simulta-
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4.4 Hood inner panel

(a) Simultaneous shape and topology optimization optimal
design with thickness distribution (left) and with holes cut open (right)
for a filter radius of 25mm .
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(b) Response function evolution for simultaneous optimization
with filter radius 25mm

Figure 4.28 : Simultaneous shape and topology optimization optimal hood inner
panel results for filter radius 25mm .
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(a) Simultaneous shape and topology optimization optimal
design with thickness distribution (left) and with holes cut open (right)
for a filter radius of 50mm .
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(b) Response function evolution for simultaneous optimization
with filter radius 50mm

Figure 4.29 : Simultaneous shape and topology optimization optimal hood inner
panel results for filter radius 50mm .
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neous optimization, where mass is the objective, and not the constraint,
function (as in traditional sensitivity-based topology optimization) and
the starting thickness is equal to the maximum possible value. Mass,
then, is reduced by the projection move and the correction move assures
that constraints are not violated.

Figure 4.30 : Shape to thickness design variable update ratio per iteration for
simultaneous optimization with a filter radius of 25mm (left) and 50mm (right). The red
line denotes a ratio of 1.

In order to validate the success of the optimizations, the improved designs
were tested in the full nonlinear model. The displacement fields, for
all four load cases, of both improved designs are plotted against those
of the initial design in figures 4.31 and 4.32 respectively. As it can
be seen, the displacement field of the hood has improved significantly,
especially for load case I , I I I and I V . Table 4.3 summarizes, for both
optimizations, the percentile change of the response functions with
respect to the initial design values. A staggering improve of the structural
stifness of up to approximately 50% in some of the load cases and a mass
reduction of almost 15%. For real life industrial applications such order
of improvement is rather generous.

Admittedly, such a design could not be included into a vehicle immedi-
ately out-of-the-box yet. The hood system and its respective components
is highly complex and more manufacturing, geometric, and physical con-
straints need to be fulfilled before it can be deployed. Nonetheless, the
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proposed simultaneous optimization shows the potential to be gained,
by leading to design suggestions and modifications, if incorporated in
the design process.

Table 4.3 : Summary of response function percentile change for
the full model analysis (mass change only for design space).

Function change %
Filter radius 25mm Filter radius 50mm

mass -14.12 -13.43
Stiffness I -51.19 -53.59
Stiffness II -14.00 -21.84
Stiffness III -40.86 -34.54
Stiffness IV -31.71 -32.38
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4.4 Hood inner panel

Figure 4.31 : Displacement field for all four load cases (row-wise) for the initial
design (left column) and the simultaneous optimization with filter radius of 25mm design
(right column).

115



4 Applications

Figure 4.32 : Displacement field for all four load cases (row-wise) for the initial
design (left column) and the simultaneous optimization with filter radius of 50mm design
(right column).
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Chapter 5

Conclusions and outlook

This thesis is the natural continuation of prior work on the topic and
deals with the integration of numerical structural optimization with the
Vertex Morphing parametrization into the design process of BMW. Novel
methods for the incorporation of three industrial constraints were pro-
posed and implemented in a numerical structural optimization workflow
within BMW. Different techniques ofmanipulating the optimization prob-
lem were identified and used as a basis to introduce these constraints,
such as direct addition of a mathematical constraint function to the opti-
mization problem, enhancement of the Vertex Morphing mapping, and
a dimensional extension of the Vertex Morphing parametrization. Fo-
cus was ease of use, consistency with the Vertex Morphing formulation,
computational efficiency, and integrability in an industrial environment.

An aggregate constraint function that prohibits formulation of undercut
regions during optimization was proposed. The point-wise problem was
transposed into a global undercut volume minimization problem. The
optimal design surface slope can be defined by an input parameter which
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controls the constraint function calculation and, in turn, the sensitivities.
This feature allows development of overhang or slab regions, such that
manufacturability with the intended process is ensured, i.e.,with additive
or subtractive manufacturing. In comparison to point-wise constraints,
the proposed method is computationally faster.

Moreover, the constraint for reflection symmetry of designs that are
described by non-symmetric boundary conditions was tackled with an
enhancement of the Vertex Morphing parametrization. Through the
utilization of an adaptive convolution kernel, which results in densifica-
tion of the mapping matrix, the sensitivity and the shape update fields
are averaged about the symmetry plane. The method’s robustness in
handling non-symmetric meshes is demonstrated through optimization
of a conceptual 1D test case.

Finally, the Vertex Morphing parametrization was extended from 3D to
4D with the addition of nodal thickness design variables. Vertex Mor-
phing has proven a consistent framework for thickness and topology
optimization. Filtering methods applied in topology optimization for
sensitivity or density field filtering can be replaced by the Vertex Morph-
ing mapping without any loss of information or generality. Additionally,
to ensure that nodal thickness values will remain in the admissible range
during optimization, an s-shaped reparametrization of the thickness
design variables, on top of the Vertex Morphing parametrization, is pro-
posed. The problem of step size length proportionality for the shape and
thickness design variables was formulated as a root finding problem
and solved with a classic bracketing method. Convergence character-
istics of the method are investigated through optimization of a simple
application.

The methods were put successfully to test through optimization of a
range of industrial automotive applications, provided by BMW, in chapter
4. In order to enable shape optimization of a hood hinge system bracket
modeled with a solid mesh, an automatic solid mesh motion was devel-
oped in our numerical framework. Moreover, for a front-end shear panel
optimization, a comparative study between the simultaneous shape and
topology optimization approach in this thesis, a staggered shape and
topology optimization approach, and serial optimization approaches
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was conducted in terms of overall optimality and computational effi-
ciency, proving the efficacy of the proposed formulation. Finally, for the
optimization of a hood inner panel, the effect of the Vertex Morphing
mapping filter radius on the topology and shape of the optimal design
was investigated.

According to the author’s perspective, further research in the direction
of optimization algorithms that would accelerate convergence of the
proposed simultaneous shape and topology optimization approach is
needed. Furthermore, this work could provide inspiration for the de-
velopment of methods to incorporate more industrial constraints in
numerical optimization.

119





Bibliography

[1] G. Allaire, C. Dapogny, R. Estevez, A. Faure, and G. Michailidis.
“Structural optimization under overhang constraints imposed
by additive manufacturing technologies.” In: Journal of
Computational Physics 351 (2017), pp. 295–328. doi:
https://doi.org/10.1016/j.jcp.2017.09.041.

[2] G. Allaire, F. Jouve, and G. Michailidis. “Casting constraints in
structural optimization via a level-set method.” In: 10th World
Congress on Structural and Multidisciplinary Optimization.
Orlando, United States, May 2013.

[3] G. Allaire, F. Jouve, and A.-M. Toader. “A level-set method for
shape optimization.” In: Comptes Rendus Mathematique 334.12
(2002), pp. 1125–1130.

[4] G. Allaire and R. V. Kohn. “Optimal design for minimum weight
and compliance in plane stress using extremal
microstructures.” In: European Journal of Mechanics A-solids 12
(1993), pp. 839–878.

[5] G. Allaire, F. de Gournay, F. Jouve, and A.-M. Toader.
“Structural optimization using topological and shape sensitivity
via a level set method.” In: Control and Cybernetics 34.1 (2005),
59–80.

121

https://doi.org/https://doi.org/10.1016/j.jcp.2017.09.041


Bibliography

[6] G. Allaire, F. Jouve, and G. Michailidis. “Thickness control in
structural optimization via a level set method.” In: Structural
and Multidisciplinary Optimization 53 (June 2016). doi:
10.1007/s00158-016-1453-y.

[7] G. Allaire, F. Jouve, and A.-M. Toader. “Structural optimization
using sensitivity analysis and a level-set method.” In: Journal of
Computational Physics 194.1 (2004), pp. 363–393. doi:
https://doi.org/10.1016/j.jcp.2003.09.032.

[8] L. Ambrosio and G. Buttazzo. “An optimal design problem with
perimeter penalization.” In: Calculus of Variations 1 (Mar.
1993), pp. 55–69. doi: 10.1007/BF02163264.

[9] C. S. Andreasen, M. O. Elingaard, and N. Aage. “Level set
topology and shape optimization by density methods using cut
elements with length scale control.” In: Structural and
Multidisciplinary Optimization (2020), pp. 1–23.

[10] R. Ansola, J. Canales, J. Tarrago, and J. Rasmussen. “On
simultaneous shape and material layout optimization of shell
structures.” In: Structural and Multidisciplinary Optimization 24
(Jan. 2002), pp. 175–184. doi:
10.1007/s00158-002-0227-x.

[11] R. Ansola, J. Canales, J. A. Tárrago, and J. Rasmussen. “An
integrated approach for shape and topology optimization of
shell structures.” In: Computers & Structures 80.5 (2002),
pp. 449–458. doi: https://doi.org/10.1016/S0045-
7949(02)00019-6.

[12] S. Arnout, M. Firl, and K.-U. Bletzinger. “Parameter free shape
and thickness optimisation considering stress response.” In:
Structural and Multidisciplinary Optimization 45 (June 2012).
doi: 10.1007/s00158-011-0742-8.

[13] D. Ashlock. Evolutionary Computation for Modeling and
Optimization. Jan. 2006. isbn: 978-0-387-22196-0. doi:
10.1007/0-387-31909-3.

122

https://doi.org/10.1007/s00158-016-1453-y
https://doi.org/https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1007/BF02163264
https://doi.org/10.1007/s00158-002-0227-x
https://doi.org/https://doi.org/10.1016/S0045-7949(02)00019-6
https://doi.org/https://doi.org/10.1016/S0045-7949(02)00019-6
https://doi.org/10.1007/s00158-011-0742-8
https://doi.org/10.1007/0-387-31909-3


Bibliography

[14] D. Baumgärtner, A. Viti, A. Dumont, G. Carrier, and
K.-U. Bletzinger. “Comparison and combination of
experience-based parametrization with Vertex Morphing in
aerodynamic shape optimization of a forward-swept wing
aircraft.” In: 17th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. doi: 10.2514/6.2016-3368.
eprint: https:
//arc.aiaa.org/doi/pdf/10.2514/6.2016-3368.

[15] M Beckers. “Topology optimization using a dual method with
discrete variables.” In: Structural optimization 17.1 (Feb. 1999),
pp. 14–24.

[16] M. Bendsøe. “Bendsoe, M.P.: Optimal Shape Design as a
Material Distribution Problem. Structural Optimization 1,
193-202.” In: Structural Optimization 1 (Jan. 1989),
pp. 193–202. doi: 10.1007/BF01650949.

[17] M. P. Bendsøe and N. Kikuchi. “Generating optimal topologies
in structural design using a homogenization method.” In:
Computer Methods in Applied Mechanics and Engineering 71.2
(1988), pp. 197–224. doi: https:
//doi.org/10.1016/0045-7825(88)90086-2.

[18] M. P. Bendsoe and O. Sigmund. Topology optimization: theory,
methods, and applications. Springer Science & Business Media,
2013.

[19] J. A. Bennett and M. E. Botkin. “Structural shape optimization
with geometric description and adaptive mesh refinement.” In:
AIAA Journal 23.3 (1985), pp. 458–464. doi:
10.2514/3.8935. eprint:
https://doi.org/10.2514/3.8935.

[20] K.-U. Bletzinger. “A consistent frame for sensitivity filtering and
the vertex assigned morphing of optimal shape.” In: Structural
and Multidisciplinary Optimization 49 (Jan. 2014). doi:
10.1007/s00158-013-1031-5.

[21] K.-U. Bletzinger. “Shape Optimization.” In: Encyclopedia of
Computational Mechanics Second Edition. American Cancer
Society, 2017, pp. 1–42. isbn: 9781119176817. doi: https:
//doi.org/10.1002/9781119176817.ecm2109.

123

https://doi.org/10.2514/6.2016-3368
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3368
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3368
https://doi.org/10.1007/BF01650949
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.2514/3.8935
https://doi.org/10.2514/3.8935
https://doi.org/10.1007/s00158-013-1031-5
https://doi.org/https://doi.org/10.1002/9781119176817.ecm2109
https://doi.org/https://doi.org/10.1002/9781119176817.ecm2109


Bibliography

eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/9781119176817.ecm2109.

[22] K.-U. Bletzinger and K. Maute. “Towards generalized shape and
topology optimization.” In: Engineering Optimization 29.1-4
(1997), pp. 201–216.

[23] V. Braibant and C. Fleury. “Shape optimal design using
B-splines.” In: Computer Methods in Applied Mechanics and
Engineering 44.3 (1984), pp. 247–267. doi: https:
//doi.org/10.1016/0045-7825(84)90132-4.

[24] T. E. Bruns and D. A. Tortorelli. “Topology optimization of
non-linear elastic structures and compliant mechanisms.” In:
Computer Methods in Applied Mechanics and Engineering 190.26
(2001), pp. 3443–3459. doi: https:
//doi.org/10.1016/S0045-7825(00)00278-4.

[25] M. Burger, B. Hackl, and W. Ring. “Incorporating topological
derivatives into level set methods.” In: Journal of
Computational Physics 194.1 (2004), pp. 344–362.

[26] J. Céa, S. Garreau, P. Guillaume, and M. Masmoudi. “The
shape and topological optimizations connection.” In: Computer
methods in applied mechanics and engineering 188.4 (2000),
pp. 713–726.

[27] S. Chen, M. Y. Wang, and A. Q. Liu. “Shape feature control in
structural topology optimization.” In: Computer-Aided Design
40.9 (2008), pp. 951–962. doi:
https://doi.org/10.1016/j.cad.2008.07.004.

[28] D. Chenais. “On the existence of a solution in a domain
identification problem.” In: Journal of Mathematical Analysis
and Applications 52.2 (1975), pp. 189–219. doi: https:
//doi.org/10.1016/0022-247X(75)90091-8.

[29] G. Cheng, Y. Mei, and X. Wang. “A Feature-Based Structural
Topology Optimization Method.” In: IUTAM Symposium on
Topological Design Optimization of Structures, Machines and
Materials. Ed. by M. P. Bendsøe, N. Olhoff, and O. Sigmund.
Dordrecht: Springer Netherlands, 2006, pp. 505–514. isbn:
978-1-4020-4752-7.

124

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2109
https://doi.org/https://doi.org/10.1016/0045-7825(84)90132-4
https://doi.org/https://doi.org/10.1016/0045-7825(84)90132-4
https://doi.org/https://doi.org/10.1016/S0045-7825(00)00278-4
https://doi.org/https://doi.org/10.1016/S0045-7825(00)00278-4
https://doi.org/https://doi.org/10.1016/j.cad.2008.07.004
https://doi.org/https://doi.org/10.1016/0022-247X(75)90091-8
https://doi.org/https://doi.org/10.1016/0022-247X(75)90091-8


Bibliography

[30] K.-T. Cheng and N. Olhoff. “An investigation concerning
optimal design of solid elastic plates.” In: International Journal
of Solids and Structures 17.3 (1981), pp. 305–323. doi:
https://doi.org/10.1016/0020-
7683(81)90065-2.

[31] A. N. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund,
and J. A. Bærentzen. “Topology optimization using an explicit
interface representation.” In: Structural and Multidisciplinary
Optimization 49.3 (2014), pp. 387–399.

[32] S. Conte and C. de Boor. “CHAPTER THREE: THE SOLUTION
OF NONLINEAR EQUATIONS.” In: Elementary Numerical
Analysis, pp. 72–127. doi:
10.1137/1.9781611975208.ch3. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.
9781611975208.ch3.

[33] G. Darboux. Lecons sur la Theorie Generale des surfaces.
Gauthier-Villars, 1946.

[34] N. P. van Dijk, K. Maute, M. Langelaar, and F. Van Keulen.
“Level-set methods for structural topology optimization: a
review.” In: Structural and Multidisciplinary Optimization 48.3
(2013), pp. 437–472.

[35] M. Dowell and P. Jarratt. “A modified regula falsi method for
computing the root of an equation.” In: BIT Numerical
Mathematics 11 (1971), pp. 168–174.

[36] F.-J. Ertl, G. Dhondt, and K.-U. Bletzinger. “Vertex assigned
morphing for parameter free shape optimization of
3-dimensional solid structures.” In: Computer Methods in
Applied Mechanics and Engineering 353 (2019), pp. 86 –106.
doi:
https://doi.org/10.1016/j.cma.2019.05.004.

[37] H. A. Eschenauer, V. V. Kobelev, and A. Schumacher. “Bubble
method for topology and shape optimization of structures.” In:
Structural optimization 8.1 (1994), pp. 42–51.

[38] J. Ford. “Improved algorithms of illinois-type for the numerical
solution of nonlinear equations.” In: University of Essex,
Department of Computer Science (1995).

125

https://doi.org/https://doi.org/10.1016/0020-7683(81)90065-2
https://doi.org/https://doi.org/10.1016/0020-7683(81)90065-2
https://doi.org/10.1137/1.9781611975208.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975208.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975208.ch3
https://doi.org/https://doi.org/10.1016/j.cma.2019.05.004


Bibliography

[39] A. Gaynor and J. Guest. “Topology optimization considering
overhang constraints: Eliminating sacrificial support material in
additive manufacturing through design.” In: Structural and
Multidisciplinary Optimization 54 (Nov. 2016). doi:
10.1007/s00158-016-1551-x.

[40] A. Geiser, I. Antonau, and K.-U. Bletzinger. “AGGREGATED
FORMULATION OF GEOMETRIC CONSTRAINTS FOR
NODE-BASED SHAPE OPTIMIZATION WITH VERTEX
MORPHING.” In: Jan. 2021, pp. 80–94. doi:
10.7712/140121.7952.18383.

[41] D. Goldberg, G. David Edward, D. Goldberg, and V. Goldberg.
Genetic Algorithms in Search, Optimization, and Machine
Learning. Artificial Intelligence. Addison-Wesley Publishing
Company, 1989. isbn: 9780201157673.

[42] J. K. Guest, J. H. Prévost, and T. Belytschko. “Achieving
minimum length scale in topology optimization using nodal
design variables and projection functions.” In: International
Journal for Numerical Methods in Engineering 61 (2 Sept. 2004),
pp. 238–254. doi: 10.1002/nme.1064.

[43] J. Guest. “Imposing maximum length scale in topology
optimization.” In: Structural and Multidisciplinary Optimization
37 (Feb. 2009), pp. 463–473. doi:
10.1007/s00158-008-0250-7.

[44] X. Guo, W. Zhang, and W. Zhong. “Explicit feature control in
structural topology optimization via level set method.” In:
Computer Methods in Applied Mechanics and Engineering 272
(2014), pp. 354 –378. doi:
https://doi.org/10.1016/j.cma.2014.01.010.

[45] X. Guo, K. Zhao, and M. Y. Wang. “A new approach for
simultaneous shape and topology optimization based on
dynamic implicit surface function.” In: Control and Cybernetics
34 (2005), pp. 255–282.

[46] R. Haber, C. Jog, and M. Bendsøe. “A new approach to
variable-topology shape design using a constraint on
perimeter.” English (US). In: Structural and Multidisciplinary

126

https://doi.org/10.1007/s00158-016-1551-x
https://doi.org/10.7712/140121.7952.18383
https://doi.org/10.1002/nme.1064
https://doi.org/10.1007/s00158-008-0250-7
https://doi.org/https://doi.org/10.1016/j.cma.2014.01.010


Bibliography

Optimization 11.1 (Jan. 1996), pp. 1–12. doi:
10.1007/BF01279647.

[47] B. Hassani, M. Tavakkoli, and H. Ghasemnejad. “Simultaneous
shape and topology optimization of shell structures.” In:
Structural and Multidisciplinary Optimization 48 (July 2013).
doi: 10.1007/s00158-013-0894-9.

[48] M. Hojjat. “Node-based parametrization for shape optimal
design.” Dissertation. München: Technische Universität
München, 2015.

[49] M. Hojjat, E. Stavropoulou, and K.-U. Bletzinger. “The Vertex
Morphing method for node-based shape optimization.” In:
Computer Methods in Applied Mechanics and Engineering 268
(2014), pp. 494 –513. doi:
https://doi.org/10.1016/j.cma.2013.10.015.

[50] M. H. Imam. “Three-dimensional shape optimization.” In:
International Journal for Numerical Methods in Engineering 18.5
(1982), pp. 661–673. doi:
https://doi.org/10.1002/nme.1620180504.
eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/nme.1620180504.

[51] A. Jacobson, D. Panozzo, et al. libigl: A simple C++ geometry
processing library. https://libigl.github.io/. 2018.

[52] K. James, J. Hansen, and J. Martins. “Structural topology
optimization for multiple load cases using a dynamic
aggregation technique.” In: Engineering Optimization 41 (Dec.
2009), pp. 1103–1118. doi:
10.1080/03052150902926827.

[53] H. Jasak and Z. Tukovic. “Automatic mesh motion for the
unstructured Finite Volume Method.” In: Transactions of
Famena (2006). doi: 10.1126/science.1247727. arXiv:
arXiv:1011.1669v3.

[54] G. Kennedy and J. Hicken. “Improved constraint-aggregation
methods.” In: Computer Methods in Applied Mechanics and
Engineering 289 (June 2015). doi:
10.1016/j.cma.2015.02.017.

127

https://doi.org/10.1007/BF01279647
https://doi.org/10.1007/s00158-013-0894-9
https://doi.org/https://doi.org/10.1016/j.cma.2013.10.015
https://doi.org/https://doi.org/10.1002/nme.1620180504
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620180504
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620180504
https://doi.org/10.1080/03052150902926827
https://doi.org/10.1126/science.1247727
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1016/j.cma.2015.02.017


Bibliography

[55] M. Keuthen and M. Ulbrich. “Moreau–Yosida regularization in
shape optimization with geometric constraints.” In:
Computational Optimization and Applications 62 (Sept. 2015),
pp. 181–216. doi: 10.1007/s10589-014-9661-0.

[56] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. “Optimization
by simulated annealing.” In: science 220.4598 (1983),
pp. 671–680.

[57] R. V. Kohn and G. Strang. “Optimal design and relaxation of
variational problems, I.” In: Communications on Pure and
Applied Mathematics 39.1 (1986), pp. 113–137. doi:
https://doi.org/10.1002/cpa.3160390107.
eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/cpa.3160390107.

[58] C. Le, T. Bruns, and D. Tortorelli. “A gradient-based,
parameter-free approach to shape optimization.” In: Computer
Methods in Applied Mechanics and Engineering 200.9 (2011),
pp. 985–996. doi:
https://doi.org/10.1016/j.cma.2010.10.004.

[59] J. Leiva, B. Watson, and I. Kosaka. “An Analytical Directional
Growth Topology Parameterization to Enforce Manufacturing
Requirements.” In: vol. 2. Apr. 2004. isbn:
978-1-62410-079-6. doi: 10.2514/6.2004-1645.

[60] J. Leiva, B. Watson, and I. Kosaka. “An Analyticall
Bi-Directional Growth Parameterization to Obtain Optimal
Castable Topology Designs.” In: vol. 5. Aug. 2004. isbn:
978-1-62410-019-2. doi: 10.2514/6.2004-4596.

[61] J. L. Lions. Optimal control of systems governed by partial
differential equations problèmes aux limites. Grundlehren der
mathematischen Wissenschaften A Series of Comprehensive
Studies in Mathematics. Berlin: Springer, 1971.

[62] K Maute and E Ramm. “Adaptive topology optimization.” In:
Structural optimization 10.2 (1995), pp. 100–112.

[63] H. P. Mlejnek. “Some aspects of the genesis of structures.” In:
Structural optimization 5.1 (Mar. 1992), pp. 64–69.

128

https://doi.org/10.1007/s10589-014-9661-0
https://doi.org/https://doi.org/10.1002/cpa.3160390107
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160390107
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160390107
https://doi.org/https://doi.org/10.1016/j.cma.2010.10.004
https://doi.org/10.2514/6.2004-1645
https://doi.org/10.2514/6.2004-4596


Bibliography

[64] B. Mohammadi and O. Pironneau. “Applied Shape
Optimization for Fluids, Second Edition.” In: Numerical
mathematics and scientific computation. 2009.

[65] R. Najian Asl. “Shape optimization and sensitivity analysis of
fluids, structures, and their interaction using Vertex Morphing
parametrization.” Dissertation. München: Technische
Universität München, 2019.

[66] R. Najian Asl, S. Shayegan, A. Geiser, M. Hojjat, and
K.-U. Bletzinger. “A Consistent Formulation for Imposing
Packaging Constraints in Shape Optimization Using Vertex
Morphing Parametrization.” In: Struct. Multidiscip. Optim. 56.6
(Dec. 2017), 1507–1519. doi:
10.1007/s00158-017-1819-9.

[67] J. A. Norato, M. P. Bendsøe, R. B. Haber, and D. A. Tortorelli.
“A topological derivative method for topology optimization.” In:
Structural and Multidisciplinary Optimization 33.4-5 (2007),
pp. 375–386.

[68] N. Olhoff, M. P. Bendsøe, and J. Rasmussen. “On
CAD-integrated structural topology and design optimization.”
In: Computer Methods in Applied Mechanics and Engineering
89.1-3 (1991), pp. 259–279.

[69] S. Osher and J. A. Sethian. “Fronts propagating with
curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations.” In: Journal of computational
physics 79.1 (1988), pp. 12–49.

[70] C. Othmer. “Adjoint methods for car aerodynamics.” In: Journal
of Mathematics in Industry 4 (Dec. 2014), p. 6. doi:
10.1186/2190-5983-4-6.

[71] D. Panozzo, E. Puppo, and L. Rocca. “Efficient multi-scale
curvature and crease estimation.” In: 2nd International
Workshop on Computer Graphics, Computer Vision and
Mathematics, GraVisMa 2010 - Workshop Proceedings (Jan.
2010), pp. 9–16.

[72] P. Y. Papalambros and M. Chirehdast. “An integrated
environment for structural configuration design.” In: Journal of
Engineering Design 1.1 (1990), pp. 73–96.

129

https://doi.org/10.1007/s00158-017-1819-9
https://doi.org/10.1186/2190-5983-4-6


Bibliography

[73] O. Pironneau. “On optimum design in fluid mechanics.” In:
Journal of Fluid Mechanics 64.1 (1974), 97–110. doi:
10.1017/S0022112074002023.

[74] N. Poon and J. Martins. “An Adaptive Approach to Constraint
Aggregation Using Adjoint Sensitivity Analysis.” In: Structural
and Multidisciplinary Optimization 34 (July 2007), pp. 61–73.
doi: 10.1007/s00158-006-0061-7.

[75] T. A. Poulsen. “A new scheme for imposing a minimum length
scale in topology optimization.” In: International Journal for
Numerical Methods in Engineering 57.6 (2003), pp. 741–760.
doi: https://doi.org/10.1002/nme.694. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.
1002/nme.694.

[76] J. B. Rosen. “The gradient projection method for nonlinear
programming. Part II. Nonlinear constraints.” In: Journal of the
society for industrial and applied mathematics 9.4 (1961),
pp. 514–532.

[77] J. B. Rosen. “The gradient projection method for nonlinear
programming. Part I. Linear constraints.” In: Journal of the
society for industrial and applied mathematics 8.1 (1960),
pp. 181–217.

[78] G. I. Rozvany. “A critical review of established methods of
structural topology optimization.” In: Structural and
multidisciplinary optimization 37.3 (2009), pp. 217–237.

[79] J. Samareh. “Survey of Shape Parameterization Techniques for
High-Fidelity Multidisciplinary Shape Optimization.” In: Aiaa
Journal - AIAA J 39 (May 2001), pp. 877–884. doi:
10.2514/2.1391.

[80] J. A. Samareh. A Survey Of Shape Parameterization Techniques.
1999.

[81] O. Schmitt, J. Friederich, S. Riehl, and P. Steinmann. “On the
formulation and implementation of geometric and
manufacturing constraints in node–based shape optimization.”
In: Structural and Multidisciplinary Optimization 53 (Apr.
2016). doi: 10.1007/s00158-015-1359-0.

130

https://doi.org/10.1017/S0022112074002023
https://doi.org/10.1007/s00158-006-0061-7
https://doi.org/https://doi.org/10.1002/nme.694
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.694
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.694
https://doi.org/10.2514/2.1391
https://doi.org/10.1007/s00158-015-1359-0


Bibliography

[82] O. Schmitt and P. Steinmann. “Control of minimum member
size in parameter-free structural shape optimization by a
medial axis approximation.” In: Computational Mechanics 61
(June 2018). doi: 10.1007/s00466-017-1477-1.

[83] O. Schmitt and P. Steinmann. “On curvature approximation in
2D and 3D parameter–free shape optimization.” In: Structural
and Multidisciplinary Optimization 55 (May 2017). doi:
10.1007/s00158-016-1595-y.

[84] J. A. Sethian. Level set methods and fast marching methods:
evolving interfaces in computational geometry, fluid mechanics,
computer vision, and materials science. Vol. 3. Cambridge
university press, 1999.

[85] A. Seyranian, E. Lund, and N. Olhoff. “Multiple eigenvalues in
structural optimization problems.” In: Structural Optimization 8
(Dec. 1994), pp. 207–227. doi: 10.1007/BF01742705.

[86] O. Sigmund. “Morphology-based black and white filters for
topology optimization.” In: Structural and Multidisciplinary
Optimization 33 (Apr. 2007), pp. 401–424. doi:
10.1007/s00158-006-0087-x.

[87] O. Sigmund. “On the Design of Compliant Mechanisms Using
Topology Optimization.” In: Mechanics of Structures and
Machines 25.4 (1997), pp. 493–524. doi:
10.1080/08905459708945415. eprint:
https://doi.org/10.1080/08905459708945415.

[88] O. Sigmund and K. Maute. “Topology optimization
approaches.” In: Structural and Multidisciplinary Optimization
48.6 (2013), pp. 1031–1055.

[89] O. Sigmund and J. Petersson. “Numerical instabilities in
topology optimization: A survey on procedures dealing with
checkerboards, mesh-dependencies and local minima.” In:
Structural Optimization 16 (Aug. 1998), pp. 68–75. doi:
10.1007/BF01214002.

[90] J. Sokolowski and A. Zochowski. “On the topological derivative
in shape optimization.” In: SIAM journal on control and
optimization 37.4 (1999), pp. 1251–1272.

131

https://doi.org/10.1007/s00466-017-1477-1
https://doi.org/10.1007/s00158-016-1595-y
https://doi.org/10.1007/BF01742705
https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1007/BF01214002


Bibliography

[91] G. Strang and R. V. Kohn. “Optimal design in elasticity and
plasticity.” In: International Journal for Numerical Methods in
Engineering 22.1 (1986), pp. 183–188. doi:
https://doi.org/10.1002/nme.1620220113.
eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/nme.1620220113.

[92] S. L. Vatanabe, T. N. Lippi, C. R. de Lima, G. H. Paulino, and
E. C. Silva. “Topology optimization with manufacturing
constraints: A unified projection-based approach.” In: Advances
in Engineering Software 100 (2016), pp. 97–112. doi: https:
//doi.org/10.1016/j.advengsoft.2016.07.002.

[93] M. Y. Wang, X. Wang, and D. Guo. “A level set method for
structural topology optimization.” In: Computer methods in
applied mechanics and engineering 192.1-2 (2003),
pp. 227–246.

[94] X. Wang, Y. Mei, and M. Wang. “Incorporating topological
derivatives into level set methods for structural topology
optimization.” In: 10Th AIAA/ISSMO multidisciplinary analysis
and optimization conference. 2004, p. 4564.

[95] Q. Xia, T. Shi, M. Wang, and S. Liu. “A level set based method
for the optimization of cast part.” In: Structural and
Multidisciplinary Optimization 41 (May 2009), pp. 735–747.
doi: 10.1007/s00158-009-0444-7.

[96] Q. Xia, T. Shi, M. Wang, and S. Liu. “Simultaneous optimization
of cast part and parting direction using level set method.” In:
Structural and Multidisciplinary Optimization 44 (Dec. 2011),
pp. 751–759. doi: 10.1007/s00158-011-0690-3.

[97] Y. Xie and G. Steven. “A simple evolutionary procedure for
structural optimization.” In: Computers & Structures 49.5
(1993), pp. 885–896. doi: https:
//doi.org/10.1016/0045-7949(93)90035-C.

[98] G. H. Yoon and Y. Y. Kim. “The role of S-Shape mapping
functions in the SIMP approach for topology optimization.” In:
KSME International Journal 17.10 (2003), pp. 1496–1506. doi:
10.1007/BF02982329.

132

https://doi.org/https://doi.org/10.1002/nme.1620220113
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620220113
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620220113
https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.07.002
https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.07.002
https://doi.org/10.1007/s00158-009-0444-7
https://doi.org/10.1007/s00158-011-0690-3
https://doi.org/https://doi.org/10.1016/0045-7949(93)90035-C
https://doi.org/https://doi.org/10.1016/0045-7949(93)90035-C
https://doi.org/10.1007/BF02982329


Bibliography

[99] M. Zhou and G. Rozvany. “The COC algorithm, Part II:
Topological, geometrical and generalized shape optimization.”
In: Computer Methods in Applied Mechanics and Engineering
89.1 (1991). Second World Congress on Computational
Mechanics, pp. 309–336. doi: https:
//doi.org/10.1016/0045-7825(91)90046-9.

[100] M. Zhou, B. S. Lazarov, F. Wang, and O. Sigmund. “Minimum
length scale in topology optimization by geometric constraints.”
In: Computer Methods in Applied Mechanics and Engineering 293
(2015), pp. 266–282. doi:
https://doi.org/10.1016/j.cma.2015.05.003.

133

https://doi.org/https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/https://doi.org/10.1016/j.cma.2015.05.003


Bisherige Titel der Schriftenreihe

Band Titel

1 Frank Koschnick, Geometrische Lockingeffekte bei Finiten El-
ementen und ein allgemeines Konzept zu ihrer Vermeidung,
2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimization
of Shells, 2004.

3 Bernhard Thomee, Physikalisch nichtlineare Berechnung von
Stahlfaserbetonkonstruktionen, 2005.

4 Fernaß Daoud, Formoptimierung von Freiformschalen - Math-
ematische Algorithmen und Filtertechniken, 2005.

5 Manfred Bischoff, Models and Finite Elements for Thin-Walled
Structures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmod-
elle auf Basis des Kraftflusses als Anwendung plattformunab-
hängiger Prozesskopplung, 2006.

7 RolandWüchner,Mechanik und Numerik der Formfindung und
Fluid-Struktur-Interaktion von Membrantragwerken, 2006.

8 Florian Jurecka, Robust Design Optimization Based on Meta-
modeling Techniques, 2007.

9 Johannes Linhard, Numerisch-mechanische Betrachtung des
Entwurfsprozesses von Membrantragwerken, 2009.

10 Alexander Kupzok,Modeling the Interaction of Wind and Mem-
brane Structures by Numerical Simulation, 2009.

11 Bin Yang, Modified Particle Swarm Optimizers and their Appli-
cation to Robust Design and Structural Optimization, 2009.



Band Titel

12 Michael Fleischer, Absicherung der virtuellen Prozesskette für
Folgeoperationen in der Umformtechnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumatic Mem-
branes - From Subgrid to Interface, 2009.

14 Alexander Michalski, Simulation leichter Flächentragwerke
in einer numerisch generierten atmosphärischen Grenzschicht,
2010.

15 Matthias Firl, Optimal Shape Design of Shell Structures, 2010.
16 Thomas Gallinger, Effiziente Algorithmen zur partition-

ierten Lösung stark gekoppelter Probleme der Fluid-Struktur-
Wechselwirkung, 2011.

17 Josef Kiendl, Isogeometric Analysis and Shape Optimal Design
of Shell Structures, 2011.

18 Joseph Jordan, Effiziente Simulation großer Mauerwerksstruk-
turen mit diskreten Rissmodellen, 2011.

19 Albrecht von Boetticher, Flexible Hangmurenbarrieren: Eine
numerische Modellierung des Tragwerks, der Hangmure und
der Fluid-Struktur-Interaktion, 2012.

20 Robert Schmidt, Trimming, Mapping, and Optimization in
Isogeometric Analysis of Shell Structures, 2013.

21 Michael Fischer, Finite Element Based Simulation, Design and
Control of Piezoelectric and Lightweight Smart Structures, 2013.

22 Falko Hartmut Dieringer, Numerical Methods for the Design
and Analysis of Tensile Structures, 2014.

23 Rupert Fisch,Code Verification of Partitioned FSI Environments
for Lightweight Structures, 2014.

24 Stefan Sicklinger, Stabilized Co-Simulation of Coupled Prob-
lems Including Fields and Signals, 2014.



Band Titel

25 Madjid Hojjat, Node-based parametrization for shape optimal
design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion -
Sensitivitätsanalyse für die Formoptimierung auf Grundlage
des partitionierten Verfahrens, 2015.

27 Electra Stavropoulou, Sensitivity analysis and regularization
for shape optimization of coupled problems, 2015.

28 Daniel Markus, Numerical and Experimental Modeling for
Shape Optimization of Offshore Structures, 2015.

29 Pablo Suárez, Design Process for the Shape Optimization of
Pressurized Bulkheads as Components of Aircraft Structures,
2015.

30 Armin Widhammer, Variation of Reference Strategy - Genera-
tion of Optimized Cutting Patterns for Textile Fabrics, 2015.

31 HelmutMasching, Parameter Free Optimization of Shape Adap-
tive Shell Structures, 2016.

32 Hao Zhang, A General Approach for Solving Inverse Problems
in Geophysical Systems by Applying Finite Element Method and
Metamodel Techniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environment
and Mapping Algorithms, 2016.

34 Michael Breitenberger, CAD-integrated Design and Analysis of
Shell Structures, 2016.

35 Önay Can, Functional Adaptation with Hyperkinematics using
Natural Element Method: Application for Articular Cartilage,
2016.

36 Benedikt Philipp, Methodological Treatment of Non-linear
Structural Behavior in the Design, Analysis and Verification of
Lightweight Structures, 2017.



Band Titel

37 Michael Sean Andre, Aeroelastic Modeling and Simulation for
the Assessment of Wind Effects on a Parabolic Trough Solar
Collector, 2018.

38 Andreas Apostolatos, Isogeometric Analysis of Thin-Walled
Structures on Multipatch Surfaces in Fluid-Structure Interac-
tion, 2019.

39 Altuğ Emiroğlu, Multiphysics Simulation and CAD Integrated
Shape Optimization in Fluid-Structure Interaction, 2019.

40 Mehran Saeedi, Multi-Fidelity Aeroelastic Analysis of Flexible
Membrane Wind Turbine Blades, 2017.

41 Reza Najian Asl, Shape optimization and sensitivity analysis of
fluids, structures, and their interaction using Vertex Morphing
parametrization, 2019.

42 AhmedAbodonya,Verification Methodology for Computational
Wind Engineering Prediction of Wind Loads on Structures,
2020.

43 Anna Maria Bauer, CAD-integrated Isogeometric Analysis and
Design of Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind-
Structure Interaction of Slender Civil Engineering Structures
Including Vibration Mitigation Systems, 2020.

45 Franz-Josef Ertl, Vertex Morphing for Constrained Shape Opti-
mization of Three-dimensional Solid Structures, 2020.

46 Daniel Baumgärtner, On the Grid-based Shape Optimization
of Structures with Internal Flow and the Feedback of Shape
Changes into a CAD Model, 2020.

47 Mohamed Khalil, Combining Physics-based models and ma-
chine learning for an Enhanced Structural Health Monitoring,
2021.

48 Long Chen, Gradient Descent Akin Method, 2021.



Band Titel

49 Aditya Ghantasala, Coupling Procedures for Fluid-Fluid and
Fluid-Structure Interaction Problems Based on Domain Decom-
position Methods, 2021.

50 Ann-Kathrin Goldbach, The CAD-Integrated Design Cycle for
Structural Membranes, 2021.

51 Iñigo Pablo López Canalejo, A Finite-Element Transonic Poten-
tial Flow Solver with an Embedded Wake Approach for Aircraft
Conceptual Design, 2022.

52 Mayu Sakuma, An Application of Multi-Fidelity Uncertainty
Quantification for Computational Wind Engineering, 2022.

53 Suneth Warnakulasuriya, Development of Methods for Finite
Element-Based Sensitivity Analysis and Goal-Directed Mesh Re-
finement Using the Adjoint Approach for Steady and Transient
Flows, 2022.

54 Klaus Bernd Sautter, Modeling and Simulation of Flexible Pro-
tective Structures by Coupling Particle and Finite Element Meth-
ods, 2022.


	Contents
	Introduction 
	Node-based parameterization for shape optimization 
	Inclusion of constraints in structural optimization 
	Goal of thesis 
	Outline 

	Structural optimization foundation
	The optimization problem
	Mathematical formulation
	Solution strategies

	Sensitivity Analysis
	Direct vs adjoint sensitivities

	Shape optimization 
	Vertex Morphing
	Constrained optimization in the control space

	Topology optimization 
	Density approach 


	Industrial constraints for admissible shapes
	Aggregation and reduction of point-wise constraints
	Ray tracing for volume calculation
	Derivation of constraint function sensitivities
	Conical surface buffer zone
	Limitations of weakly enforced constraints

	Enhancement of Vertex Morphing parametrization 
	Variable convolution kernel
	Reflection-symmetric Vertex Morphing
	Example

	Extension of Vertex Morphing parametrization 
	Industrial problem formulation
	4D Vertex Morphing
	Filtering in topology optimization
	Manufacturing restriction-reparametrization of thickness design variables
	Root finding algorithm for step size scaling
	Example
	Simultaneous optimization design handles
	Simultaneous optimization algorithm


	Applications 
	Cross member 
	Hood hinge system bracket 
	Automatic solid mesh motion

	Front-end shear panel 
	Comparison study of optimization approaches

	Hood inner panel 

	Conclusions and outlook 
	Bibliography

