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A B S T R A C T

The Hitchiker’s Guide to Machine Learning for Biomedical Image Analysis is
a dissertation for tackling biomedical image analysis problems with
machine learning. It covers the whole iterative workflow from dataset
curation, network training, evaluation, and interpretation of results to
refining the model in three parts.

The first part covers typical challenges in hyperparameter tuning.
It features recommendations for tuning important parameters, such
as cropping, patch shape, patch size, normalization, and data preprocessing
with a special focus on Computed Tomography (CT) and Magnetic
Resonance (MR) imaging data.

The second part illustrates methods to operationalize model perfor-
mance. It covers an overview of established metrics and remarks regard-
ing their interpretation. Therefore, the concept of peak ground truth
is introduced. This is the point at which the model starts to mimic
the errors in the (human) annotation, and an increase in similarity
metrics results in lower model performance. To provide an alternative
to established metrics, software architecture for conducting Pyschophysics
experiments with clinicians is introduced.

The third part comprises model performance optimization strate-
gies. Besides ensembling, it lays out concepts for dataset curation with
an exemplary brain tumor database. Further, guidelines for making
informed decisions regarding network architecture and loss function are
provided.

Peer-reviewed academic contributions and an outlook complete the
dissertation.
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Z U S A M M E N FA S S U N G

The Hitchiker’s Guide to Machine Learning for Biomedical Image Analysis
ist eine Dissertation zur Bearbeitung biomedizinischer Bildanalysepro-
bleme mittels maschinellem Lernen. In drei Teilen wird der gesamte
iterative Arbeitsablauf vom Kuratieren von Datensätzen, Netzwerktraining,
Evaluation und Interpretation von Ergebnissen, bis hin zum Verfeinern von
Modellen behandelt.

Der erste Teil beschreibt typische Herausforderungen beim Feinjus-
tieren von Hyperparametern. Er beinhaltet Empfehlungen zum Finden
geeigneter Einstellungen für wichtige Parameter wie Cropping, Patch
Shape, Patch Size und Normalisierung, sowie Datenpräprozessierung mit
einem speziellen Focus auf CT und MR Bilddaten.

Der zweite zweite Teil beschreibt Methoden um die Leistungsfähig-
keit von Modellen zu operationalisieren. Er inkludiert eine Übersicht
über etablierte Metriken und Hinweise zu deren Interpretation. Hier-
zu wird das Konzept von peak ground truth eingeführt. Dies ist der
Punkt an dem das Modell beginnt die Fehler in der Annotierung zu
reproduzieren und somit die Steigerung einer Ähnlichkeitsmetrik zu
einer Verschlechterung der Leistungsfähigkeit des Modells führt. Als
Alternative zu etablierten Metriken wird eine Softwarearchitektur zur
Durchführung von Psychophysics-Experimenten mit Ärzten vorgestellt.

Im Dritten Teil finden sich Strategien zur Optmierung der Leis-
tungsfähigkeit von modellen. Neben Ensembling wird ein Konzept zur
Kuratierung von Datensätzen, am Beispiel einer Gehirntumordatenbank
erläutert. Des Weiteren beinhaltet er Richtlinien um informierte Ent-
scheidungen bezüglich Netzwerkarchitektur und Lossfunktion zu treffen.

Akademische Veröffentlichen, sowie ein Ausblick komplettieren die
Dissertation.
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F O R E W O R D

The Hitchhiker’s Guide to Machine Learning for Biomedical Image Analysis?
While there are already hitchhiker’s guides to broader topics such as
the galaxy, this hitchhiker’s guide focuses on a slightly narrower topic,
namely machine learning for biomedical image analysis.

It is meant to be a compact and accessible guide for tackling biomed-
ical image analysis problems with a focus on, but not limited to, seg-
mentation projects. I summarize some of the learnings, pitfalls, and
mitigation strategies for model training, evaluation, and interpreta-
tion of results that I discovered during my doctorate at the Technical
University of Munich (TUM). The guide is written with hitchhikers
in mind, meaning individuals coming from outside bio-informatics
entering the field (like myself at the start of my doctorate). However, I
hope that it will be appealing to wider audiences, be it hitchhikers or
not, including you.
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Part I

C H A L L E N G E S I N H Y P E R PA R A M E T E R T U N I N G

When it comes to hyperparameter tuning each imaging
modality features its own challenges in biomedical image
analysis. Besides modality-specific aspects, this chapter
features some general remarks.





1
G E N E R A L C H A L L E N G E S A N D M I T I G AT I O N
S T R AT E G I E S

Especially for beginners, the process of identifying good hyperparame-
ters for model training that provide the best, potentially random, fit on
the validation - and test sets often feels completely random. However,
there are a few heuristics that often produce satisfying results. Before
diving into image-modality-specific facets of hyperparameter tun-
ing, some general strategies for selecting important hyperparameters
should be discussed.
Cropping: Modern Graphical Processing Units (GPUs) feature big
amounts of memory, enabling huge crop sizes. Sometimes it is possible
to skip cropping entirely and train on whole image volumes. Even
when cropping is not necessary to fit data into memory, it should be
considered a tuneable hyperparameter, and it might make sense to
experiment with smaller crop sizes. Also, multiple crops from the same
volume should be considered. Especially when dealing with a multi-
fragmented segmentation problem with a high variance within the
connected components, such as segmentation of Multiple sclerosis (MS)
lesions, cropping becomes a powerful augmentation strategy. When
computing the loss on the whole image volume, larger-sized instances
dominate the loss calculation. Cropping will lead to patches with only
small lesions, forcing the Convolutional Neural Network (CNN) to
pick up these small lesions to achieve a good loss, see Chapter 8 and
Figure 1.1.
Patch shape: Broader contextual information, such as anatomy, only
becomes visible in larger-sized patches. For instance, zoomed-in tis-
sue from the left and right lung is indistinguishable. Encoding such
contextual information can aid in improving performance. Cubes are
probably the most intuitive way to cut images into patches; however,
more contextual information can be captured by employing flatter
cuboid shapes. If the image resolution differs between planes, it makes
sense to align the long side of the cuboid with the high-resolution
plane. The bodies of vertebrates, such as humans, feature several sym-
metries. Human reading of imaging data often involves comparing
sides, e.g., for detecting MS lesions intensities are compared between
the left and right brain hemispheres. Therefore, images often feature
higher resolutions in the axial plane. Consequently, to enable the CNN

to pick up this information, the axial plane should resemble the long
side of the patch shape for cropping, as illustrated in Figure 1.1 for
the example of in MS lesion segmentation.
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4 general challenges and mitigation strategies

Figure 1.1: Patch shape and size. Top: The teal 4x4x4 cube and purple 8x4x2
cuboid, pictured on the top, result in the same volume. Bottom
Left: Raw FLAIR (top) T1 (bottom) image. Bottom Right: Magnified
FLAIR image with human annotation of MS lesions overlayed
on the FLAIR image. Corresponding crops to the teal cube and
purple cuboid patch are illustrated in the respective colors. The
purple cuboid allows encoding more contextual information in the
axial plane while maintaining the same memory footprint. Using
smaller crops, such as the pink one, incentivizes the network to
also pickup smaller lesions. There is a target conflict in encoding
context and learning about such micro-structures. Employing blob
loss, see Chapter 8, allows maintaining both targets.



general challenges and mitigation strategies 5

Balancing patch vs. batch size: GPU memory is a precious commodity.
Hence, patch and batch sizes need to be balanced carefully. Training
with smaller-sized crops of the whole image enables increasing batch
size, thus capturing more variance in the data. The greater the variance
between exams, the more beneficial effects can be expected from
increasing batch size. Using a patch size where humans can solve the
image analysis problem at hand is often a good starting point for
experimentation.
Normalization / thresholding: Normalization and windowing can
greatly affect model performance. Therefore, it makes sense to conduct
dedicated experiments to explore the optimal method for the problem
at hand. In some rare cases applying normalization strategies might
turn out counterproductive; thus, training a network using raw input
values is also worth a shot. 1

Scarce training data: Traditional Machine Learning (ML) splits data
into training, validation, and a test set. For instance, researchers often
use 70 percent of the data for training and distribute the remaining
30 percent equally across validation and test set. During training, the
model is continuously evaluated on the validation set. Finally, the best-
performing model on the validation set is evaluated on the test set.
In biomedical imaging, one is frequently confronted with the scarce
availability of training data due to the high data acquisition cost. Ad-
ditionally, annotation often requires, hard to come by, domain experts,
and to make it worse, images feature high variance. The combina-
tion of these effects regularly renders the formation of representative
subsets impossible. Consequently, it makes sense to experiment with
diverging from the traditional ML paradigm sketched above. In prac-
tice, skipping model selection on the validation set favoring training
with additional data often outperforms conventional approaches. An-
other field-proven mitigation strategy is ensembling. There are many
ways to implement ensembling. For instance, Isensee et al. [16] suggest
splitting the training data into five folds and building an ensemble by
training on the resulting subsets, see Chapter 8.
Multimodal imaging data: Many biomedical imaging problems, such
as glioma segmentation, require multimodal imaging to capture multi-
faceted aspects of the problem at hand. Multimodal imaging comprises
multiple challenges. As the imaging modalities are usually recorded
sequentially, they reflect changes within the subject, such as move-
ments or decay of contrast agent. Furthermore, the imaging resolution
might vary between modalities. It is advisable to co-register the im-
ages and harmonize the resolution to tackle these challenges. In this
process, it is often advisable to resample to an isotropic resolution,
enabling more straightforward volume calculations. Further, the use
of an atlas should be evaluated if available.

1 For instance, skipping normalization led to a double-digit improvement in
Sørensen–Dice coefficient (DSC) for c-Fos data [18].



6 general challenges and mitigation strategies

Registration tools: Over the years, multiple tools were established
for registration. NiftyReg NiftyReg provides a quick and easy to use
baseline [36]. While CNN-based approaches, such as as VoxelMorph
[6], promise very quick registrations in a "quasi-ballistic" manner,
Advanced Normalization Tools (ANTs) [1] and greedy [46] are worth
considering when more fine-grained control is required.

http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://github.com/ANTsX/ANTs
https://github.com/pyushkevich/greedy


2
M A G N E T I C R E S O N A N C E I M A G I N G
T E C H N I C A L I T I E S

Basic Functionality: Magnetic Resonance (MR) imaging represents a
non-invasive method enabling sophisticated insights into biological
organisms. Therefore, MR scanners generate a strong and uniform
magnetic field. Protons then align with this so-called B0 field and spin
with its frequency along their own axis. Next, a Radio Frequency (RF)
pulse orthogonal to the B0 field is generated. Its frequency matches
the frequency of the spinning protons to flip them out of orientation
with the base magnetic field. This enables the generation of an image
by recording the time the protons need for realignment with the
B0 magnetic field with sophisticated coils. Broadhouse [9] provide a
gentle introduction into the complex topic of MR physics.
Normalization / thresholding: In conventional MR imaging, the ab-
solute intensities of voxels are not interpretable. Consequently, voxel
intensities can only be interpreted in relation to each other. As the same
subject in a different scanner, even of the same kind, might generate
entirely different intensity values applying normalization is advisable.
Only experimentation can reveal whether conventional minimum /
maximum normalization or the more outlier-resistant percentile-based nor-
malization as used by Isensee et al. [16] is more suited to the problem
at hand.
Patch and batch size: Patch and batch size need to be carefully bal-
anced. MR images often feature higher axial resolution, hence training
with cuboid patches to capture anatomic contextual information is
advisable.
Image acquisition artifacts: MR images are prone to image acquisition
artifacts such as spikes, ghosting, and magnetic field inhomogeneities.
While N4 bias field correction methods can address field inhomo-
geneities [45], libraries such as TorchIo can simulate image acquisition
artifacts to achieve greater robustness [33].
Multimodal data: MR imaging problems often combine multiple imag-
ing protocols to aggregate information, while each imaging modality
is a potential source of error. The details of image protocols tend to
vary between scanners, making it difficult to curate datasets from
multiple scanners. As an MR exam usually requires several minutes
and sometimes exceeds one hour, state changes within the subject
and movement need to be corrected, also see Chapter 1. Figure 2.1
illustrates a full pipeline to tackle these problems for a multimodal
brain tumor imaging protocol.
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8 magnetic resonance imaging technicalities

raw MRI sequences in DICOM or NIFTI format

T1 T1c T2 FLAIR

co-registration to T1-space

T1 T1c T2 FLAIR

transformation into respective native spaces

T1 mask T1c T2 FLAIR BraTS atlas T1 / T1c / T2 / FLAIR

transformation into BraTS space

T1 mask

computing brain extraction / defacing mask in T1-space
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GPU + CPU modes

raw T1 dataT1 mask
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masked
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mask T1 / T1c / T2 / FLAIR

x =

masked
Text

never gonna give you up.. https://neuronflow.github.io/brats_easter ..never gonna let you down!

Figure 2.1: Preprocessing pipeline for multimodal brain tumor segmentation
based on T1, T1c, T2, and FLAIR images. The images are first
co-registered to the T1 image, which provides the best anatomic
information. Then they are skullstripped in native T1 space and
registered to the BraTS atlas. The skullstripping masks are then
morphed into the BraTS and native T1 space and multiplied with
the images. This way, the images are available in native T1 space
and BraTS space for further downstream processing, such as CNN

training. The figure appears in [19].
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C O M P U T E D T O M O G R A P H Y T E C H N I C A L I T I E S

Basic Functionality: Wilhelm Röntgen discovered the X-ray spectrum
of electromagnetic waves. In 1895 he developed X-ray imaging and
recorded the famous image of his wife’s hand by recording the ra-
diation passing through her body with a photographic plate. One
year later, X-ray found its’ way into the medical domain with the first
surgery performed in England by John Hall-Edwards. Around the
same time, the collective consciousness of the hazards of radiation
associated with X-rays began to develop. Several decades later, in
the 1970s, the first commercial CT machines became available. These
machines rotated the radiation source and receiver around the subject.
Then image reconstruction algorithms create three-dimensional repre-
sentations from the acquired data [38]. Even though modern designs
are more sophisticated, the core idea remains the same.
Comparison to MR: Both MR - and CT imaging provide non-invasive
means to derive insights regarding the internals of subjects. Both
techniques can be combined with contrast agents to obtain further
knowledge. Compared to MR images, modern CT images feature higher
temporal and spatial resolution. However, CT imaging is considered
harmful due to the hazards associated with radiation. Therefore, its
usage should be carefully evaluated. Nevertheless, it can be applied
when MR use is contraindicated due to ferromagnetic material within
the subject of interest.
Normalization / thresholding: CT images are quantitative, meaning
the values of the observed image intensities are measured on the
Hounsfield scale, and certain Hounsfield Units (HU) can be directly
attributed to specific substances [39]. Therefore, conventional normal-
ization is often counterproductive as it removes this vital information.
Instead, it is advisable to experiment with windowing. Windows
specific to the tissue of interest are good starting points for experimen-
tation. For example, for segmentation of lung lesions, a lung window
within a certain range of HU makes sense [13], compare fig. 3.1.

9



10 computed tomography technicalities

Figure 3.1: Covid-19 lung lesions in CT imaging. The images is thresholded
with a lung window from -1000 to 500 HUs for better visibility
of lung lesions. In the right column, multiple segmentation can-
didates are represented in different colors. The middle column
illustrates a fusion of these. that successfully removed the false
positive lesions. The figure appears in [20].

Patch and batch size: One of the biggest challenges in CT segmentation
are the great regions of interest combined with the high spatial resolu-
tion. With single exams regularly featuring hundreds of megabytes,
this combination results in high data loads, which need to be fed to
the neural networks. For instance, spine and multi-organ segmenta-
tion pipelines both require analysis of the whole thorax. Furthermore,
(larger) anatomical context can be relevant to distinguish between
vertebrae and organs, respectively. Due to the above-mentioned quan-
titative imaging intensities, differences between images are usually
low compared to other image modalities. Thus, bigger patch sizes
often help to improve performance and should be prioritized over
batch size. GPUs with high memory capacity are advantageous for
these processing requirements. Post-processing pipelines incorporat-
ing top-down (anatomical) knowledge can mitigate this to a certain
extent.



Part II

O P E R AT I O N A L I Z I N G M O D E L P E R F O R M A N C E

This chapter deals with methods to operationalize model
performance. Even though the chapter focuses on segmen-
tation tasks, many of the following concepts easily translate
to other machine learning problems.





4
E S TA B L I S H E D S I M I L A R I T Y M E T R I C S I N M L

Computing similarity metrics between model output and ground truth
annotations is the standard way to operationalize model performance.
There are numerous established similarity metrics for measuring seg-
mentation quality. Most metrics are based on volumetry, like the
prominent DSC. The DSC computes the relation of correctly and incor-
rectly classified voxels and is defined in eq. (4.1).

DSC =
2TP

2TP + FP + FN
. (4.1)

Where TP represents true positive voxels, FP false positive voxels,
and FN false negative voxels.

While most volumetry-based metrics, such as Jaccard coefficient can
be derived from this, distance-based metrics, such as Hausdorff dis-
tance and surface Dice similarity coefficient, [32] mark some of the
few exceptions.

Taha and Hanbury [44], as well as Reinke et al. [34], review current
metrics and nicely illustrate the particularities that come with their
usage. For training a CNN, a differentiable loss function is required.
However, for some metrics, differentiable implementations do not exist.
Ma et al. [28] provide an overview of available loss implementations
for segmentation tasks.
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5
I N T E R P R E TAT I O N O F S I M I L A R I T Y M E T R I C S

In the (biomedical) ML community, it is common practice to market
a technical innovation by claiming an improvement in segmentation
quality by demonstrating a small improvement in similarity metrics
such as DSC. Many segmentation challenges, such as BraTS, LiTS, KiTS,
etc., emerged that decorate winners based on such tiny improvements.
Newer research casts doubt on this procedure [20, 29, 34]. However,
it remains an open research question whether these improvements
translate to real-world benefits for the application of ML in clinical
workflows. Over the years challenge organizers developed conscious-
ness of this problem and started combining multiple metrics to get a
broader understanding of the models’ performance [29].

Nevertheless, for the interpretation of similarity metrics, it is nec-
essary to reflect upon the nature of the employed annotations. For
biomedical problems, often human annotations provide the gold stan-
dard to measure model performance. It is important to note the lim-
itations of human annotators. Humans and computers both learn
systematic errors. However, unlike humans, computers do not suffer
from sleepiness, laziness, and other distractions. Thus, computers
are not prone to random errors. This, combined with a computer’s
unlimited diligence, can lead to computers outperforming humans, as
reported in [22]. Therefore, human annotations should be interpreted
as such and cannot (and should not) be considered as ground truth in
the sense of classical ML. This has wide-reaching implications for CNN

training, as illustrated in Figure 5.1. 1.

1 Meanwhile, the Peak Ground Truth concept introduced here has been developed further
and is published in the proceedings of the International Symposium on Biomedical
Imaging (ISBI) [25]

15



16 interpretation of similarity metrics

Figure 5.1: Implications for CNN training. When employing a similarity met-
ric in the loss function, the network is incentivized to maximize
similarity with potentially erroneous human annotations. Con-
sequently, increasing similarity with such annotations only cor-
responds to increased real world model performance until a certain
point, nicknamed Peak Ground Truth. Increasing similarity beyond
Peak Ground Truth leads to falling off the cliff and translates to worse
real world model performance. In this exemplary sketch Peak Ground
Truth is located around .9 on the x-axis. Its real location and
shape depend on the underlying annotation quality. Researchers
are well-advised to familiarize themselves with the label quality
to get a feeling, until which point it makes sense to hunt for
improvements in similarity metrics.



6
S E G M E N TAT I O N Q UA L I T Y A C C O R D I N G T O
C L I N I C I A N S

As explained in Chapter 4, improving upon similarity metrics does not
necessarily translate to real world performance improvements. So how can
real world performance improvements be achieved? A key step towards
performance optimization is setting up performance monitoring. Doc-
tors are ultimately responsible and liable for treatment decisions in
current clinical practice. Hence, the clinicians’ quality estimate should
be the gold standard to measure, and any ML solution to a medical
problem must gain the clinicians’ trust.

6.1 psychophysics approaches

To get an understanding of clinicians’ response to model outputs, it
makes sense to dive into Psychophysics. Psychophysics systematically
and quantitatively analyzes human behavior in interaction with stim-
ulus material. Typically psychophysical experiments take place in
dark and sound-proof experimental cabins shielding the participants
from disturbing external stimuli. The stimuli are presented with the
help of Psychtoolbox Psychtoolbox [8] or similar libraries in a Matlab
environment.

In contrast, collecting the data in the clinicians’ natural habitat
makes sense to maximize external validity. Here, this means collecting
the data directly at the diagnostic workstations. As installing addi-
tional software on these machines embedded in the clinical network
is problematic, a web browser-based solution is preferable. In recent
years multiple frameworks established themselves to display stimulus
material in a web browser, such as PsyToolkit [42], jsPsych [10], lab.js
and OpenSesame [30]. These can be combined with various backends
like JATOS [26] or commercial solutions such as GORILLA to record
the data and organize the experiments.

6.2 platform for psychophysics experiments

To comply with the project-specific requirements, such as data privacy
regulation regarding clinician and patient data, a platform for run-
ning Psychophysics experiments is developed. Figure 6.1 visualizes its
software architecture.
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http://psychtoolbox.org/
https://www.mathworks.com/products/matlab.html
https://www.psytoolkit.org/
https://www.jspsych.org/
https://lab.js.org/
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https://www.jatos.org/
https://gorilla.sc/


18 segmentation quality according to clinicians

single backend

frontend n

http POST request

Figure 6.1: Software architecture for the psychophysics experiments. The
stimulus material is presented on the frontend via jsPsych [10]
embedded into a Vue.js web app. Vue.js is selected over other
frontend frameworks as it features a low memory footprint and
is heavily optimized for speed. This promises to record reaction
times most accurately. Incorporating jsPsych [10] allows to easily
follow best practices in experimental Psychology. For instance,
trial sequence, trial - and Intra-Trial Tnterval (ITI) duration can be
randomized using built-in functionality. The clinicians’ responses
are sent via http to a Express.js backend, that is protected by
Caddy acting as a reverse proxy. This way, a single backend
server is able to serve multiple studies running at the same time.
For flexibility, the deployment happens in containerized fashion
via docker compose.

Using the aforementioned software architecture comprises several
advantages. First, it allows hosting on-premise to comply with data
protection regulations. Second, the clinicians can participate in the
experiments directly from their acquainted diagnostic workstations
and do not have to adjust to a new environment. Third, it enables
detailed reaction time analysis, as it is typically done in Psychophysics
experiments, see an example illustrated in Figure 6.2.

https://www.jspsych.org/
https://vuejs.org/
https://vuejs.org/
https://www.jspsych.org/
https://expressjs.com/
https://caddyserver.com/
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Figure 6.2: Exemplary comparison of reaction times between participants
of a glioma segmentation rating quality experiment from [22].
Participants’ reaction times vary heavily, with some participants
taking more than double the time of other participants to respond.

6.3 academic impact

The platform allowed the collection of human expert ratings, compli-
menting established metrics, for several research projects. All experi-
ments followed the same scheme, illustrated in Figure 6.3.

Figure 6.3: Chronological sequence of the experiments from left to right. Ini-
tially, the participants are instructed to conduct the evaluations
in a suitable environment for reading medical exams. To begin
the experiments start with declaring consent. After this, partici-
pants answer a survey with questions regarding their age, gender,
and various items to measure their expertise. Subsequently, the
stimulus trials are presented in random sequence to account for
order effects. Following the assignment of a rating, the experi-
ment automatically progresses to the presentation of the next trial.
At the end of the experiment, participants have the opportunity
to provide feedback during a post-trial survey. This figure also
appeared in [22].
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A selection of these studies is already published:

[1] Florian Kofler, Ivan Ezhov, Fabian Isensee, Fabian Balsiger,
Christoph Berger, Maximilian Koerner, Johannes Paetzold, Hong-
wei Li, Suprosanna Shit, Richard McKinley, et al. “Are we using
appropriate segmentation metrics? Identifying correlates of hu-
man expert perception for CNN training beyond rolling the
DICE coefficient.” In: arXiv preprint arXiv:2103.06205 (2021).

[2] Florian Kofler et al. Deep Quality Estimation: Creating Surrogate
Models for Human Quality Ratings. 2022. doi: 10.48550/ARXIV.
2205.10355. url: https://arxiv.org/abs/2205.10355.

[3] Hongwei Li, Johannes C Paetzold, Anjany Sekuboyina, Florian
Kofler, Jianguo Zhang, Jan S Kirschke, Benedikt Wiestler, and
Bjoern Menze. “DiamondGAN: unified multi-modal generative
adversarial networks for MRI sequences synthesis.” In: Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer. 2019, pp. 795–803.

[4] Maximilian Möller, Matthias Kohl, Stefan Braunewell, Florian
Kofler, Benedikt Wiestler, Jan S Kirschke, Björn H Menze, and
Marie Piraud. “Reliable Saliency Maps for Weakly-Supervised
Localization of Disease Patterns.” In: Interpretable and Annotation-
Efficient Learning for Medical Image Computing. Springer, 2020,
pp. 63–72.

https://doi.org/10.48550/ARXIV.2205.10355
https://doi.org/10.48550/ARXIV.2205.10355
https://arxiv.org/abs/2205.10355


Part III

O P T I M I Z AT I O N S T R AT E G I E S

Regardless of the machine learning problem at hand, a few
optimization strategies have proven successful over the
test of time. In this chapter, we take a closer look at three
established strategies and how they can be implemented
in specific examples.
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D ATA S E T C U R AT I O N

Dataset curation is an essential strategy to optimize model perfor-
mance. While even seemingly fundamental changes to cornerstones of
CNN training such as replacing network architecture or loss function
often have negligible effect improving the dataset has an almost 100

percent success guarantee. The first step towards improvement is to
start measuring (accurately). Thus obtaining a decent test set should
be the number one priority; only then will one be able to evaluate
further measures correctly. In the following pages, we want to ex-
plore a practical example of how a dataset curation strategy could be
implemented considering a complex set of requirements.

7.1 practical example : brain tumor database

We set out to explore how an international and multi-institutional
brain tumor database could be formed. The dataset is supposed to
unite glioma data in MR imaging with demographics and clinical
metadata such as IDH methylation status [48].

7.1.1 Specific requirements

For many institutions, patient data falls under strict data protec-
tion regulations. This leads to several downstream implications. First
of all, many institutions require patient data to be anonymized or
pseudonymized on-premise. As the local workforce often lacks pro-
gramming knowledge, a Graphical User Interface (GUI) is desirable.
Hospital machines often have no internet access, feature a variety
of outdated operating systems, and lack GPU computing capabilities.
Consequently, a cross-platform solution with an elegant update solu-
tion and an option for Central Processing Unit (CPU) based processing
is mandatory.

7.1.2 Proposed Solution

We conceptualize a brain tumor database called BraTum DB. Figure 7.1
illustrates the branding of the database.

23
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Figure 7.1: Branding of the brain tumor database. The name combines the
acronym TUM for the Technical University of Munich with the first
syllables of the words brain tumor. Additionally, the two letters
DB are short for database. For the logo, we choose an elephant as
elephants are generally attributed as peaceful animals with good
long-term memory.

To harmonize the data for import into the database, we design a
preprocessing pipeline codenamed Project Elephant. The pipeline incor-
porates a front- and backend. Physicians can trigger the preprocessing
on the backend using a GUI that also serves for defining pseudonyms
and entering metadata.

The preprocessing pipeline outputs skull-stripped as well as defaced
images. These are registered to BraTS and T1 native-space. Further, a
JSON file is created that contains the metadata and overview images
in png format so the data can be quickly inspected without dedicated
software. The co-registrations are implemented via ANTs [1]. Users
can conduct brain extraction with HD-BET [17] on GPU or CPU. More-
over, Robex [15] is available as a fallback for a smaller computational
footprint.

The exams are assigned a pseudonym on-site using a lookup table
to render reconstruction of the patient data impossible. For harmoniza-
tion purposes, each exam is then assigned a second easy-to-remember
pseudonym consisting of adjectives and nouns when ingested into the
database. 1

Figure 7.2 visualizes the software architecture of the preprocessor.

1 The same naming scheme is utilized in Figure 6.2.
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Figure 7.2: Software architecture for Project Elephant. To ensure cross-platform
capabilities the frontend is written in Electron JS, while the Python
backend runs inside a docker. Because of the long computation
times, two-way communication between front- and backend is
implemented via WebSocket(s). Moreover, computation jobs are
queued using Python RQ, and workers are automatically spawned
according to the host system’s capabilities. The figure is taken
from the BraTS Toolkit manuscript [19].

7.1.3 Automated medical reporting as incentive

Additionally, we design a tool codenamed Kraken to provide physicians
with an incentive to contribute data to the brain tumor database.
Therefore, we create medical reports in a fully-automatic fashion. The
reports comprise an automatic tumor segmentation obtained from
BraTS Toolkit Kofler et al. [19] in NIfTI format, as well as a PDF file
including visualization of the tumor segmentation and volumetry
calculations. Once the report is generated, it is shipped to the user via
an email address provided during the upload. Figure 7.3 illustrates
branding and distributed software architecture of the Kraken.

https://www.electronjs.org/
https://www.docker.com/
https://python-rq.org/
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Figure 7.3: Software architecture and branding. The Kraken can be deployed
using containerization software such as docker compose or Kuber-
netes. The backend service listens to http requests via aiohttp
deployed behind Caddy acting as a reverse proxy for security.
Resumable uploads are integrated via Uppy. Similar to Project
Elephant, the computing jobs are put on a Python Redis Queue,
however, this time to enable distribution of the jobs to multiple
machines. The reports themselves can be created using web tech
and are then rendered to PDF format using a headless Chromium
browser running inside a container. The software is written agnos-
tic to the glioma use case, so it can be easily adapted to other use
cases, e.g., during the Covid-19 pandemic, it was used to create
lung lesion reports based on CT images. We chose the codename
Kraken for this project as octopi are regarded as highly intelli-
gent creatures. Further, their tentacles can work independently,
representing distributed computing capabilities. In our case, the
Kraken’s tentacles reach out to other institutions to collect data
and generate reports in a parallel fashion. As krakens are often
perceived as threatening, we try to mitigate this with a friendly
appearance.

https://docs.aiohttp.org/en/stable/web.html
https://caddyserver.com/
https://uppy.io/
https://python-rq.org/
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7.2 academic impact

As BraTum DB could not be realized due to organizational issues,
Project Elephant, meaning the preprocessing pipeline was published as
a preprocessing module for BraTS Toolkit (BTK) [19]. BTK is a holistic
tool for brain tumor segmentation consisting of three modules. Besides
the aforementioned preprocessing tool, it comprises a segmentation
module to generate glioma segmentations with algorithms collected
within the scope of the BraTS challenge [2–5, 31]. Furthermore, the
fusionator module is included to combine segmentations via majority
voting or SIMPLE fusion Langerak et al. [27].

https://github.com/neuronflow/BraTS-Toolkit
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To this date BTK generated thousands of brain tumor segmentations
for several research projects. For Technical University of Munich (TUM)
internal projects, the computations could be distributed across multi-
ple machines using the above-mentioned Kraken platform. A few of
these research projects already made it to publication:

[1] Florian Kofler, Ivan Ezhov, Lucas Fidon, Carolin M Pirkl, Jo-
hannes C Paetzold, Egon Burian, Sarthak Pati, Malek El Hus-
seini, Fernando Navarro, Suprosanna Shit, et al. “Robust, Prim-
itive, and Unsupervised Quality Estimation for Segmentation
Ensembles.” In: Frontiers in Neuroscience 15 (2021).

[2] KJ Paprottka, S Kleiner, C Preibisch, F Kofler, F Schmidt-Graf,
C Delbridge, D Bernhardt, SE Combs, J Gempt, B Meyer, et al.
“Fully automated analysis combining [18F]-FET-PET and multi-
parametric MRI including DSC perfusion and APTw imaging: a
promising tool for objective evaluation of glioma progression.”
In: European journal of nuclear medicine and molecular imaging 48.13

(2021), pp. 4445–4455.

[3] Carolin M Pirkl, Laura Nunez-Gonzalez, Florian Kofler, Se-
bastian Endt, Lioba Grundl, Mohammad Golbabaee, Pedro A
Gómez, Matteo Cencini, Guido Buonincontri, Rolf F Schulte,
et al. “Accelerated 3D whole-brain T1, T2, and proton density
mapping: feasibility for clinical glioma MR imaging.” In: Neuro-
radiology 63.11 (2021), pp. 1831–1851.

[4] Marie Franziska Thomas, Florian Kofler, Lioba Grundl, Tom
Finck, Hongwei Li, Claus Zimmer, Björn Menze, and Benedikt
Wiestler. “Improving Automated Glioma Segmentation in Rou-
tine Clinical Use Through Artificial Intelligence-Based Replace-
ment of Missing Sequences With Synthetic Magnetic Resonance
Imaging Scans.” In: Investigative Radiology 57.3 (2022), pp. 187–
193.

[5] Andrey Zhylka, Nico Sollmann, Florian Kofler, Ahmed Rad-
wan, Alberto De Luca, Jens Gempt, Benedikt Wiestler, Bjoern
Menze, Sandro M Krieg, Claus Zimmer, et al. “Tracking the Cor-
ticospinal Tract in Patients With High-Grade Glioma: Clinical
Evaluation of Multi-Level Fiber Tracking and Comparison to
Conventional Deterministic Approaches.” In: Frontiers in oncol-
ogy 11 (2021), pp. 761169–761169.
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Besides curating a better training set, researchers can advance model
performance due to technical innovation. Besides ensembling, fine-
tuning the network architecture and loss function to fit the problem at
hand are among the most promising strategies.

8.1 ensembling

Ensembling and test-time augmentations usually lead to more robust
model performance. Normally, the bigger, the better is a good rule of
thumb for building ensembles. For instance, in BraTS glioma seg-
mentation, the fusion of multiple segmentation algorithms turns out
beneficial, even though the algorithms represent ensembles themselves.
Here SIMPLE [27], a multi-iterative approach analyzing similarity be-
tween individual algorithms, outperforms a basic majority voting [19].
It is important to note that ensembling does not require developing
different network architectures. Instead, Isensee et al. [16] propose
training an ensemble of identical architectures on different subsets of
the training data. Fort, Hu, and Lakshminarayanan [12] take this one
step further and demonstrate that starting with only different random
initialization can be sufficient.

8.2 network architecture

One of the state-of-the-art network architectures for segmentation tasks
represents the U-Net [35], as illustrated in Figure 8.1. Beyond segmen-
tation tasks, adding skip connections, as featured in the U-Net, should
be considered when fine details from the input image matter.

29
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Figure 8.1: U-net network architecture. Just like in a conventional Auto En-
coder, first, the encoder part of the CNN creates increasingly abstract
representations of the input image (left part of the network). The
decoder then reconstructs the images from the latent space. The
innovation of the U-net [35] lies in adding skip connections. These
directly connect layers from the encoder to the decoder and, thus,
preserve fine details from the input image. The figure appears in
the supplementary materials of [24].

Apart from this, a suitable network architecture has to be identified
through experimentation. Bengio [7] provide practical recommenda-
tions for setting hyperparameter in CNNs training. Besides standard
parameters, such as learning rate, activation functions, number of parame-
ters, network depth, upsampling methods etc., should all be considered as
tuneable hyperparameters of the network.

Apart from grid searching for a good set of hyperparameters, re-
searchers develop new approaches to find good-performing sets of
hyperparameters. A good starting point for diving into the field of
neural architecture search is provided by Elsken, Metzen, and Hutter
[11].

8.3 loss function

Theoretical considerations might help when choosing a loss function.
For instance, for training regression networks, Mean Square Error
(MSE) loss might be preferred to Mean Absolute Error (MAE) loss
when avoiding outliers is a priority, as it penalizes heavier for higher
deviations from the ground truth. For segmentation networks, most
researchers try to optimize DSC, and therefore, default to (soft) Dice
loss. Isensee et al. [16] demonstrated that an equally weighted Dice
and Binary Cross Entropy compound loss [16] often outperforms such a
plain (soft) Dice loss.

In reinforcement learning, one of the main challenges in network
training is operationalizing the problem so that the agent is correctly
rewarded or penalized for learning meaningful behavior. In biomedical
segmentation, we are often confronted with a similar problem, as many
segmentation problems are poorly represented by optimizing DSC. MS
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lesion segmentation represents a particularly prominent example of
this, as illustrated in Figure 8.2.

Figure 8.2: Multiple sclerosis (MS) lesions vs. Sørensen–Dice coefficient (DSC).
The DSC between the segmentation with and without the MS lesion
encircled in green is 0.9806. Consequently, when computing the
soft Dice loss, the network is hardly incentivized to pick up the
highlighted lesion. Even though the lesion might be relevant from
a clinical perspective and affect treatment decisions. The figure
appears in [24].

MS lesions are largely inhomogeneous regarding the volume, texture,
and other features. In ML terminology, the instances (lesions) are highly
imbalanced. Optimizing DSC does not account for this and prioritizes
big lesions. Researchers try to solve such problems by hand-crafting
problem-specific losses.

For MS lesion segmentation, Tversky loss [37] promise to allow tun-
ing the network’s precision and sensitivity to individual preferences.
Building upon this, Hashemi et al. [14] propose assymetric loss functions.
Zhang et al. [47] introduce an auxiliary task with fixed-size spheres for
each lesion. In contrast, Shirokikh et al. [40] account for lesion volume
by using a weight map inversely to lesion size.

As can be learned from MS lesions segmentation, it is highly ad-
visable to develop an understanding of the underlying biomedical
problem to avoid framing an ill-posed ML problem. Usually, achieving
a voxel-perfect segmentation has not the highest priority in clinical
practice. 1

Another good example of this is the segmentation of tubular struc-
tures such as blood vessels or street maps. Here the accurate repre-

1 Especially when accounting for uncertainties within the annotations, see also chap-
ter 5.
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sentation of the network structure is most important. Therefore, Shit
et al. [41] propose centerlineDice to preserve these details better. They
achieve this by computing the skeleton of the structures of interest and
adding a specific term for it in the loss function.

As always, before beginning to custom-tailor a loss function it makes
sense to dive into the literature. Therefore, Ma et al. [28] provide a
broad, but not exhaustive, overview of loss functions available for
semantic segmentation tasks.

8.4 academic impact

A segmentation quality estimation method for segmentation ensem-
bles is published [20]:

[1] Florian Kofler, Ivan Ezhov, Lucas Fidon, Carolin M Pirkl, Jo-
hannes C Paetzold, Egon Burian, Sarthak Pati, Malek El Hus-
seini, Fernando Navarro, Suprosanna Shit, et al. “Robust, Prim-
itive, and Unsupervised Quality Estimation for Segmentation
Ensembles.” In: Frontiers in Neuroscience 15 (2021).

Further, blob loss tackles the problem of instance imbalance by provid-
ing existing loss functions with instance imbalance awareness. The blob
loss manuscript is published in the proceedings of the international
conference on Information Processing in Medical Imaging (IPMI 2023) and
further available on arXiv:

[1] Florian Kofler, Suprosanna Shit, Ivan Ezhov, Lucas Fidon, Iz-
abela Horvath, Rami Al-Maskari, Hongwei Bran Li, Harsharan
Bhatia, Timo Loehr, Marie Piraud, et al. “blob loss: instance
imbalance aware loss functions for semantic segmentation.”
In: International Conference on Information Processing in Medical
Imaging. Springer Nature Switzerland Cham. 2023, pp. 755–767.

Applying blob loss helped to win the first place in the segmentation of
lacunes subtask at the Where is VALDO - Vascular Lesions Detection
Challenge 2021. Further, a third place was secured in the segmentation
of cerebral microbleeds subtask [43].

https://arxiv.org/abs/2205.08209
https://valdo.grand-challenge.org/
https://valdo.grand-challenge.org/
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BraTS Toolkit: Translating BraTS Brain Tumor Segmentation
Algorithms Into Clinical and Scientific Practice

Authors: Florian Kofler, Christoph Berger, Diana Waldmannstetter,
Jana Lipkova, Ivan Ezhov, Giles Tetteh, Jan Kirschke, Claus Zimmer,
Benedikt Wiestler, Bjoern H. Menze
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Abstract: Despite great advances in brain tumor segmentation and
clear clinical need, translation of state-of-the-art computational meth-
ods into clinical routine and scientific practice remains a major chal-
lenge. Several factors impede successful implementations, including
data standardization and preprocessing. However, these steps are
pivotal for the deployment of state-of-the-art image segmentation al-
gorithms. To overcome these issues, we present BraTS Toolkit. BraTS
Toolkit is a holistic approach to brain tumor segmentation and consists
of three components: First, the BraTS Preprocessor facilitates data
standardization and preprocessing for researchers and clinicians alike.
It covers the entire image analysis workflow prior to tumor segmen-
tation, from image conversion and registration to brain extraction.
Second, BraTS Segmentor enables orchestration of BraTS brain tumor
segmentation algorithms for generation of fully-automated segmenta-
tions. Finally, Brats Fusionator can combine the resulting candidate
segmentations into consensus segmentations using fusion methods
such as majority voting and iterative SIMPLE fusion. The capabilities
of our tools are illustrated with a practical example to enable easy
translation to clinical and scientific practice.

Contribution: Project conception and coordination, implementation,
data analysis, manuscript preparation
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BraTS Toolkit: Translating BraTS
Brain Tumor Segmentation
Algorithms Into Clinical and
Scientific Practice
Florian Kofler 1,2*, Christoph Berger 1, Diana Waldmannstetter 1, Jana Lipkova 1,

Ivan Ezhov 1, Giles Tetteh 1, Jan Kirschke 2, Claus Zimmer 2, Benedikt Wiestler 2† and

Bjoern H. Menze 1†

1 Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany,
2Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany

Despite great advances in brain tumor segmentation and clear clinical need, translation

of state-of-the-art computational methods into clinical routine and scientific practice

remains amajor challenge. Several factors impede successful implementations, including

data standardization and preprocessing. However, these steps are pivotal for the

deployment of state-of-the-art image segmentation algorithms. To overcome these

issues, we present BraTS Toolkit. BraTS Toolkit is a holistic approach to brain

tumor segmentation and consists of three components: First, the BraTS Preprocessor

facilitates data standardization and preprocessing for researchers and clinicians alike.

It covers the entire image analysis workflow prior to tumor segmentation, from

image conversion and registration to brain extraction. Second, BraTS Segmentor

enables orchestration of BraTS brain tumor segmentation algorithms for generation

of fully-automated segmentations. Finally, Brats Fusionator can combine the resulting

candidate segmentations into consensus segmentations using fusion methods such as

majority voting and iterative SIMPLE fusion. The capabilities of our tools are illustrated

with a practical example to enable easy translation to clinical and scientific practice.

Keywords: brain tumor segmentation, anonymization, MRI data preprocessing, medical imaging, brain extraction,

BraTS, glioma

1. INTRODUCTION

Advances in deep learning have led to unprecedented opportunities for computer-aided image
analysis. In image segmentation, the introduction of the U-Net architecture (Ronneberger et al.,
2015) and subsequently developed variations like the V-Net (Milletari et al., 2016) or the 3D
U-Net (Çiçek et al., 2016) have yielded algorithms for brain tumor segmentation that achieve a
performance comparable to experienced human raters (Dvorak and Menze, 2015; Menze et al.,
2015a; Bakas et al., 2018). A recent retrospective analysis of a large, multi-center cohort of
glioblastoma patients convincingly demonstrated that objective assessment of tumor response via
U-Net-based segmentation outperforms the assessment by human readers in terms of predicting
patient survival (Kickingereder et al., 2019; Kofler et al., 2019), suggesting a potential benefit of
implementing these algorithms into clinical routine.
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FIGURE 1 | Illustration of a typical dataflow to get from raw MRI scans to segmented brain tumors by combining the three components of the BraTS Toolkit. After

preprocessing the raw MRI scans using the BraTS Preprocessor, the data is passed to the BraTS Segmentor, where arbitrary state-of-the-art models from the BraTS

algorithmic repository can be used for segmentation. With BraTS Fusionator, multiple candidate segmentations may then be fused to obtain a consensus

segmentation. As the Toolkit is designed to be completely modular and with clearly defined interfaces, each component can be replaced with custom solutions

if required.

Recent works present diverse approaches toward brain
tumor segmentation and analysis. Jena and Awate (2019)
introduced a Deep-Neural-Network for image segmentation
with uncertainty estimates based on Bayesian decision theory.
Shboul et al. (2019) deployed feature-guided radiomics for
glioblastoma segmentation and survival prediction. Jungo et al.
(2018) analyzed the impact of inter-rater variability and
fusion techniques for ground truth generation on uncertainty
estimation. Shah et al. (2018) combined strong and weak
supervision in training of their segmentation network to reduce
overall supervision cost. Cheplygina et al. (2019) created an
overview of Machine Learning methods in medical image
analysis employing less or unconventional kinds of supervision.

In earlier years researchers experimented with a variety of
approaches to tackle brain tumor segmentation (Prastawa et al.,
2003; Menze et al., 2010, 2015b; Geremia et al., 2012), however in
recent years the field is increasingly dominated by convolutional
neural networks (CNN). This is also reflected in the contributions
to the Multimodel Brain Tumor Segmentation Benchmark
(BraTS) challenge (Bakas et al., 2018). The BraTS challenge
(Menze et al., 2015a; Bakas et al., 2017) was introduced in 2012 at
the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), evaluating different
algorithms for automated brain tumor segmentation. Therefore,
every year the BraTS organizers provide a set of MRI scans,
consisting of T1, T1c, T2, and FLAIR images from low- and high-
grade glioma patients, coming with the corresponding ground
truth segmentations.

Nonetheless, the computational methods presented in the
BraTS challenge have not found their way into clinical and
scientific practice. While the individual reasons vary, there are
some key obstacles that impede the successful implementation
of these algorithms. First of all, the availability of data for
training, especially of high-quality, well-annotated data, is

limited. Additionally, data protection as well as ethical barriers,
complicate the development of centralized solutions, making
local solutions strongly preferable. Furthermore, there are
knowledge and skill barriers, when it comes to the conduction
of setting up necessary preprocessing of data, while time and
resources are limited.

While individual solutions for several of these problems
exist, such as containerization for simplified distribution of code
or public datasets, these are oftentimes fragmented and hence
difficult to combine. Centralizing these efforts holds promise
for making advances in image analysis easily available for
broad implementation. Here we introduce three components to
tackle these problems. First BraTS preprocessor facilitates data
standardization and preprocessing for researchers and clinicians
alike. Building upon that, varying tumor segmentations can
be obtained from multiple algorithms with BraTS Segmentor.
Finally, BraTS Fusionator can fuse these candidate segmentations
into consensus segmentations by majority voting and iterative
SIMPLE (Langerak et al., 2010) fusion. Together our tools
represent BraTS Toolkit and enable a holistic approach
integrating all the steps necessary for brain tumor image analysis.

2. METHODS

We developed BraTS Toolkit to get from raw DICOM data
to fully automatically generate tumor segmentations in NIFTI
format. The toolkit consists of three modular components.
Figure 1 visualizes how a typical brain tumor segmentation
pipeline can be realized using the toolkit. The data is first
preprocessed using the BraTS Preprocessor, then candidate
segmentations are obtained from the BraTS Segmentor and
finally fused via the BraTS Fusionator. Each component
can be replaced with custom solutions to account for local

Frontiers in Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 125
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requirements1. A key design principle of the software is that all
data processing happens locally to comply with data privacy and
protection regulations.

BraTS Toolkit comes as a python package and can be
deployed either via Python or by using the integrated command
line interface (CLI). As the software is subject to ongoing
development and improvement this work focuses on more
abstract descriptions of the software’s fundamental design
principles. To ease deployment in scientific and clinical practice
an up-to-date user guide with installation and usage instructions
can be found here: https://neuronflow.github.io/BraTS-Toolkit/.

Users that prefer an easier approach can alternatively use
the BraTS Preprocessor’s graphical user interface (GUI) to
take care of the data preprocessing2. The GUI is constantly
improved in a close feedback loop with radiologists from the
department of Neuroradiology at Klinikum Rechts der Isar
(Technical University of Munich) to address the needs of clinical
practitioners. Depending on the community’s feedback, we plan
to additionally provide graphical user interfaces for BraTS
Segmentor and BraTS Fusionator in the future. Therefore, BraTS
Toolkit features update mechanisms to ensure that users have
access to the latest features.

2.1. Component One: BraTS Preprocessor
BraTS Preprocessor provides image conversion, registration, and
anonymization functionality. The starting point to use BraTS
Preprocessor is to have T1, T1c, T2, and FLAIR imaging data in
NIFTI format. DICOM files can be converted to NIFTI format
using the embedded dcm2niix conversion software (Li et al.,
2016).

The main output of BraTS Preprocessor consists of the
anonymized image data of all four modalities in BraTS
space. Moreover, it generates the original input images
converted to BraTS space, anonymized data in native space,
defacing/skullstripping masks for anonymization, registration
matrices to convert between BraTS and native space and
overview images of the volumes’ slices in png format. Figure 2
depicts the data-processing in detail.

BraTS Preprocessor handles standardization and
preprocessing of brain MRI data using a classical front- and back
end software architecture. Figure 3 illustrates the GUI variant’s
software architecture, which enables users without programming
knowledge to handle MRI data pre-processing steps.

Advanced Normalization Tools (ANTs) (Avants et al., 2011)
are deployed for linear registration and transformation of images
into BraTS space, independent of the selected mode. In order
to achieve proper anonymization of the image data there are
four different processing modes to account for different local
requirements and hardware configurations:

1. GPU brain-extraction mode

1As an example users who do not want to generate tumor segmentations on their
own hardware using the BraTS Segmentor, can alternatively try our experimental
web technology based solution nicknamed the Kraken: https://neuronflow.github.
io/kraken/.
2For an up-to-date installation and user guide please refer to: https://neuronflow.
github.io/BraTS-Preprocessor/.

2. CPU brain-extraction mode
3. GPU defacing mode (under development)
4. CPU defacing mode

Brain extraction is implemented by means of HD-BET (Isensee
et al., 2019) using GPU or CPU, respectively. HD-BET is a
deep learning based brain extraction method, which is trained
on glioma patients and therefore particularly well-suited for
our task. In case the available RAM is not sufficient the CPU
mode automatically falls back to ROBEX (Iglesias et al., 2011).
ROBEX is another robust, but slightly less accurate, skull-
stripping method that requires less RAM than HD-BET, when
running on CPU.

Alternatively, the BraTS Preprocessor features GPU and
CPU defacing modes for users who find brain-extraction too
destructive. Defacing on the CPU is implemented via Freesurfer’s
mri-deface (Fischl, 2012), while deep-learning based defacing on
the GPU is currently under development.

2.2. Component Two: BraTS Segmentor
The Segmentor module provides a standardized control interface
for the BraTS algorithmic repository3 (Bakas et al., 2018). This
repository is a collection of Docker images, each containing
a Deep Learning model and accompanying code designed for
the BraTS challenge. Each model has a rigidly defined interface
to hand data to the model and retrieve segmentation results
from the model. This enables the application of state-of-the-
art models for brain tumor segmentation on new data without
the need to install additional software or to train a model
from scratch. However, even though the algorithmic repository
provides unified models, it is still up to the interested user to
download and run each Docker image individually as well as
manage the input and output. This final gap in the pipeline
is closed by the Segmentor, which enables less experienced
users to download, run and evaluate any model in the BraTS
algorithmic repository. It provides a front end to manage all
available containers and run them on arbitrary data, as long as the
data conforms to the BraTS format. To this end, the Segmentor
provides a command line interface to process data with any or all
of the available Docker images in the repository while ensuring
proper handling of the files. Its modular structure also allows
anyone to extend the code, include other Docker containers or
include it as a Python package.

2.3. Component Three: BraTS Fusionator
The Segmentor module can generate multiple segmentations
for a given set of images which usually vary in accuracy
and without prior knowledge, a user might be unsure which
segmentation is the most accurate. The Fusionator module
provides two methods to combine this arbitrary number of
segmentation candidates into one final fusion which represents
the consensus of all available segmentations. There are two main
methods offered: Majority voting and the selective and iterative
method for performance level estimation (SIMPLE) proposed by

3https://github.com/BraTS/Instructions/blob/master/Repository_Links.md#
brats-algorithmic-repository
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FIGURE 2 | Illustration of the data-processing. We start with a T1, T1c, T2, and FLAIR volume. In a first step we co-register all modalities to the T1 image. Depending

on the chosen mode, we then compute the brain segmentation or defacing mask in T1-space. To morph the segmented images in native space, we transform the

mask to the respective native spaces and multiply it with the volumes. For obtaining the segmented images in BraTS space, we transform the masks and volumes to

the BraTS space using a brain atlas. We then apply the masks to the volumes.

Langerak et al. (2010). Both methods take all available candidate
segmentations produced by the algorithms of the repository and
combine each label to generate a final fusion. In majority voting,
a class is assigned to a given voxel if at least half of the candidate
segmentations agree that this voxel is of a certain class. This is
repeated for each class to generate the complete segmentation.
The SIMPLE fusion works as follows: First, a majority vote fusion
with all candidate segmentations is performed. Secondly, each
candidate segmentation is compared to the current consensus
fusion and the resulting overlap score (a standard DICE measure
in the proposed method) is used as a weight for the majority
voting. This causes the candidate segmentations with higher

estimated accuracy to have a higher influence on the final result.
Lastly, each candidate segmentation with an accuracy below
a certain threshold is dropped out after each iteration. This
iterative process is stopped once the consensus fusion converges.
After repeating the processes for each label, a final segmentation
is obtained.

3. RESULTS

The broad availability of Python, Electron.js, and Docker allows
us to support all major operating systems with an easy installation
process. Users can choose to process data using the command line
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FIGURE 3 | BraTS Preprocessor software architecture (GUI variant). The front end is implemented by a Vue.js web application packaged via Electron.js. To ensure a

constant runtime environment the Python based back end resides in a Docker container (Merkel, 2014). Redis Queue allows for load balancing and parallelization of

the processing. The architecture enables two-way communication between front end and back end by implementing Socket.IO on the former and Flask-Socket.IO on

the latter. In contrast to this the python package’s front end is implemented using python-socketio.

(CLI) or through the user friendly graphical user interface (GUI).
Depending on the available hardware, multiple threads are run to
efficiently use the system’s resources.

3.1. Practicality in Clinical and Scientific
Practice
To test the practicality of BraTS Toolkit we conducted a brain
tumor segmentation experiment on 191 patients of the BraTS
2016 dataset. As a first step we generated candidate tumor
segmentations. BraTS Segmentor allowed us to rapidly obtain
tumor delineations from ten different algorithms of the BraTS
algorithmic repository (Bakas et al., 2018). The standardized
user interface of BraTS Segmentor abstracts all the required
background knowledge regarding docker and the particularities
of the algorithms. In the next step we used BraTS Fusionator to
fuse the generated segmentations by consensus voting. Figure 4
shows that fusion by iterative SIMPLE and class-wise majority
voting had a slight advantage over single algorithms. This effect
was particularly driven by removal of false positives as illustrated
for an exemplary patient in Figure 5. BraTS Toolkit enabled us
to conduct the experiment in a user-friendly way. With only a
few lines of Python code we were able to obtain segmentation
results in a fully-automated fashion. This impression was
confirmed by experiments on further in house data-sets where
we also deployed the CLI and GUI variants of all three BraTS
Toolkit components with great feedback from clinical and
scientific practitioners. Users especially appreciated the increased
robustness and precision of consensus segmentations compared
to existing single algorithm solutions.

4. DISCUSSION

Overall, the BraTS Toolkit is a step toward the democratization of
automatic brain tumor segmentation. By lowering resource and

FIGURE 4 | Evaluation of the segmentation results on the BraTS 2016 data

set for whole tumor labels on n = 191 evaluated test cases. We generated

candidate segmentations with ten different algorithms. Segmentation methods

are sorted in descending order by mean dice score. The two fusion methods,

iterative SIMPLE (sim) and class-wise majority voting displayed on the left,

outperformed individual algorithms depicted further right. The red horizontal

line shows the SIMPLE median dice score (M = 0.863) for better comparison.

knowledge barriers, users can effectively disseminate dockerized
brain tumor segmentation algorithms collected through the
BraTS challenge. Thus, it makes objective brain tumor volumetry,
which has been demonstrated to be superior to traditional image
assessment (Kickingereder et al., 2019), readily available for
scientific and clinical use.

Currently, BraTS segmentation algorithms and therefore
BraTS Segmentor require each of T1, T1c, T2, and FLAIR
sequences to be present. In practice, this can become a limiting
factor due to errors in data acquisition or incomplete protocols
leading to missing modalities. Recent efforts try to bridge this
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A B

C D

FIGURE 5 | Single algorithm vs. iterative SIMPLE consensus segmentation. T2 scans with segmented labels by exemplary candidate algorithms from (A) Pawar et al.

(2018), (B) Sedlar (2018), and (C) Isensee et al. (2017) (Green: edema; Red: necrotic region/non-enhancing tumor; Yellow: enhancing tumor). (D) Shows a

consensus segmentation obtained using the iterative SIMPLE fusion. Notice the false positives marked with white circles on the candidate segmentations. These

outliers are effectively reduced in the fusion segmentation shown in (D).

gap by using machine learning techniques to reconstruct missing
image modalities (e.g., Dorent et al., 2019; Li et al., 2019).

Other crucial aspects of data preprocessing are the lack
of standards for pulse sequences across different scanners
and manufacturers, and absence of data acquisition protocols’
harmonization in general. For the moment, we address this only
with primitive image standardization strategies as described in
Figure 2. However, in clinical and scientific practice, we already
found our application to be very robust across different data
sources. Brain extraction with HD-BET also proved to be sound
for patients from multiple institutions with different pathologies
(Isensee et al., 2019).

These limitations are in fact some of the key motivations
for our initiative. We strive to provide researchers with tools
to build comprehensive databases which capture more of the
data variability in magnetic resonance imaging. In the longterm
this will enable the development of more precise algorithms.

With BraTS Toolkit clinicians can actively contribute to
this process.

Through well-defined interfaces, the resulting output
from our software can be integrated seamlessly with further
downstream software to create new scientific and medical
applications such as but not limited to, fully-automatic MR
reporting4 or tumor growth modeling (Ezhov et al., 2019;
Lipková et al., 2019). Another promising future direction
is to focus on integration with the local PACS to enable
streamlined processing of imaging data directly from the
radiologist’s workplace.

4Our Kraken web service can be seen as an an exemplary prototype for this
(for the moment it is not for clinical use, but for research and entertainment
purposes only). The Kraken is able to send automatically generated segmentation
and volumetry reports to the user’s email address: https://neuronflow.github.io/
kraken/.
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Amultitude of image-based machine learning segmentation and classification algorithms

has recently been proposed, offering diagnostic decision support for the identification

and characterization of glioma, Covid-19 and many other diseases. Even though these

algorithms often outperform human experts in segmentation tasks, their limited reliability,

and in particular the inability to detect failure cases, has hindered translation into

clinical practice. To address this major shortcoming, we propose an unsupervised

quality estimation method for segmentation ensembles. Our primitive solution examines

discord in binary segmentation maps to automatically flag segmentation results that are

particularly error-prone and therefore require special assessment by human readers. We

validate our method both on segmentation of brain glioma in multi-modal magnetic

resonance - and of lung lesions in computer tomography images. Additionally, our

method provides an adaptive prioritization mechanism to maximize efficacy in use

of human expert time by enabling radiologists to focus on the most difficult, yet

important cases while maintaining full diagnostic autonomy. Our method offers an

intuitive and reliable uncertainty estimation from segmentation ensembles and thereby

closes an important gap toward successful translation of automatic segmentation into

clinical routine.
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1. INTRODUCTION

Advances in deep learning for segmentation have facilitated
the automated assessment of a variety of anatomies and
pathologies in medical imaging. In particular for glioma,
automatic segmentation has shown great promise as a basis for
objective assessment of tumor response (Kickingereder et al.,
2019). In segmentation challenges such as BraTS (Menze et al.,
2015), VerSe (Sekuboyina et al., 2021) and LiTS (Bilic and
et al., 2019) virtually all top-performing solutions are based
on ensembling. Recent efforts such as HD-GLIO (Kickingereder
et al., 2019; Isensee et al., 2021), GaNDLF (Pati et al., 2021),
and BraTS Toolkit (Kofler et al., 2020) have paved the way
to apply state-of-the-art deep-learning ensembles in clinical
practice. Even though algorithms often outperform human
readers (Kofler et al., 2021), algorithmic reliability remains
a major obstacle toward safe implementation of automated
segmentation (and hence volumetry) into clinical routine
(D’Amour et al., 2020). Researchers in the field of Out-of-
Distribution (OOD) detection try to address this shortcoming
by discovering systematic patterns within convolutional neural
networks (CNN) (Schölkopf et al., 2001; Jungo et al., 2018;
Mehrtash et al., 2020; Berger et al., 2021; Ruff et al., 2021). These
sophisticated anomaly detection methods have the disadvantage
of being limited to CNNs, often specific CNN architectures.

In contrast, we present a primitive, and therefore more
applicable, solution exploiting discord in binary segmentation
maps to estimate segmentation quality in an unsupervised
fashion. We evaluate our method on segmentation of brain
glioma in multi-modal magnetic resonance (MR)—and of
lung lesions in computer tomography (CT) images. Our
method allows detecting error-prone segmentation results, which
require special assessment by human readers. Working only
on binary segmentation maps enables our method to analyze
the segmentations of human readers, classical machine learning,
and modern deep learning approaches interchangeably. As
segmentations are the basis for objective disease assessment as
well as subsequent image analysis, our method addresses an
urgent need for improving the trustworthiness of automatic
segmentation methods. Furthermore, by implementing our
method healthcare providers can streamline efficient use of
human workforce, arguably the most persistent and major
bottleneck in healthcare service worldwide (Krengli et al., 2020;
Starace et al., 2020).

2. METHODS

2.1. Unsupervised Quality Estimation
Figure 1 depicts the quality estimation procedure. By aggregating
and comparing multiple candidate segmentations, cases with
large discordance, therefore a high chance of failure, can be
rapidly identified. In more detail, our method consists of the
following steps:

1. We obtain candidate segmentations from all methods
in an ensemble, and then compute a fusion from the
candidate segmentations.

2. We calculate similarity metrics between the
fused segmentation result and the individual
candidate segmentations.

3. We obtain the threshold for setting an alarm value by
subtracting the median absolute deviation (mad) of the
similarity metric times the tunable parameter α from its
median value. This happens individually for each candidate
image. We prefer the median based statistics for their better
robustness toward statistical outliers. For metrics that are
negatively correlated with segmentation performance, such as
Hausdorff distance, we propose to use the additive inverse.

4. We set an alarm flag if the individual similarity metric is below
the computed threshold. For infinite (or Nan) values, which
can for instance happen for distance-based metrics such as
Hausdorff distance, alarm flags are raised too.

5. Finally, we accumulate the alarm flags to obtain risk scores and
therefore quality estimation for each image.

The results of this procedure are illustrated in Figure 4. We
hypothesize that a higher count of alarm flags is associated with
worse segmentation quality, here measured by lower volumetric
Dice performance.

2.2. MR Experiment: Multi-Modal Brain
Tumor Segmentation
To test the validity of our approach we use BraTS Toolkit
(btk) (Kofler et al., 2020) to create a segmentation ensemble for
brain glioma in multi-modal magnetic resonance (MR) images.
Therefore, we incorporate five segmentation algorithms (Feng
et al., 2019; Isensee et al., 2019; McKinley et al., 2019, 2020; Zhao
et al., 2019) developed within the scope of the BraTS challenge
(Menze et al., 2015; Bakas et al., 2017a,b,c, 2018). We compute
alarms according to the above procedure based on Dice similarity
and Hausdorff distances.

2.2.1. Fusions and Segmentation Metrics
We fuse the segmentations with an equally weighted majority
voting using btk (Kofler et al., 2020) and compute segmentation
quality metrics with pymia (Jungo et al., 2021). Figure 2

illustrates fusions and individual segmentations with an
example exam.

2.2.2. Data
We evaluate on a dataset of 68 cases capturing the wide diversity
in glioma imaging. Our dataset consists of 15 high-grade glioma
(HGG) from the publicly available Rembrandt dataset (Gusev
et al., 2018), as well as another 25 HGG from TUM university
hospital (MRI TUM). Furthermore, we evaluate 13 low-grade
glioma (LGG) from Rembrandt and 15 from MRI TUM. Two
expert radiologists generated the ground truth segmentations
using ITK-SNAP (Yushkevich et al., 2006) and corrected each
other’s tumor delineations.

2.3. CT Experiment: COVID-19 Lung CT
Lesion Segmentation
For further validation, we compose an ensemble based on
the MONAI challenge baseline (MONAI CORE Team, 2020)
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FIGURE 1 | Quality estimation procedure. After computing fusion from the candidate segmentations, similarity metrics between the fused and the candidate

segmentations are evaluated. Using this information, we obtain threshold values by subtracting the median absolute deviation (mad) of similarity metrics times the

tunable parameter α from their median value. We set an alarm flag if the individual similarity metric is below the computed threshold, for example:

median(Dice)−mad(Dice) ∗ α.

developed for the COVID-19 Lung CT Lesion Segmentation
Challenge - 2020 (Clark et al., 2013). To segment lung lesions in
computer tomography (CT) images, the code implements a 3d-
Unet inspired by Falk et al. (2019). q2a1We first train the original
baseline for 500 epochs. Then we generate a small ensemble of
three networks by warmstarting the training with the baseline’s
model weights and replacing the following parameters for the
respective model for training another 500 epochs:

To obtain our first model (ADA) we swap the baseline’s
original Adam optimizer to AdamW (Loshchilov and
Hutter, 2019). In a similar fashion, the second model (RAN)
utilizes Ranger (Wright, 2019) to make use of Gradient
Centralization (Yong et al., 2020). Our third model (AUG)
adds an augmentation pipeline powered by batchgenerators
(Isensee et al., 2020), torchio (Pérez-García et al., 2020), and
native MONAI augmentations. In addition we switch the
optimizer to stochastic gradient descent (SGD) with momentum
(momentum= 0.95).

Our metric for training progress is the volumetric Dice
coefficient. All networks are trained with an equally weighted

Dice plus binary cross-entropy loss. The training is stopped once
we observe no further improvements for the validation set. We
conduct model selection by choosing the respective model with
the best volume Dice score on the validation set. The code for the
CNN trainings is publicly available via GitHub (***censored to
maintain the double blind review process***).

2.3.1. Fusions and Segmentation Metrics
To unify the individual outputs of our ensembles’ components
to a segmentation mask we choose SIMPLE (Langerak et al.,
2010) fusion. SIMPLE is an iterative fusion method introduced
by Langerak et al., which tends to outperform generic majority
voting across various segmentation problems. An example
segmentation for one exam is illustrated in Figure 3. We
generate SIMPLE fusions using BraTS Toolkit (Kofler et al.,
2020) and generate alarms for Dice scores calculated with pymia
(Jungo et al., 2021). Segmentation quality metrics, in particular
volumetric Dice coefficient and Hausdorff distances, for the test
set are obtained through the challenge portal (COVID Challenge
Team, 2021).
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FIGURE 2 | Exemplary glioma segmentation exam with multi-modal MR. Segmentations are overlayed on T1, T1c, T2, FLAIR images for the tumor’s center of mass,

defined by the tumor core (necrosis and enhancing tumor) of the ground truth label. The segmentation outlines represent the tumor core labels, meaning the sum of

enhancing tumor and necrosis labels. Top: the four input images without segmentation overlay; Middle: ground truth segmentation (GT ) in reddish purple vs. majority

voting fusion (mav) in bluish green; Bottom: mav fusion in bluish green vs. individual segmentation algorithms in various colors. Notice the small outliers encircled in

pink on the frontal lobe which probably contribute to the raise of 3 Dice - and 4 Hausdorff distance based alarms for this particular exam with a mediocre volumetric

Dice similarity coefficient with the ground truth data of 0.66.

2.3.2. Data
We run our experiments on the public dataset of the COVID-
19 Lung CT Lesion Segmentation Challenge - 2020 (COVID
Challenge Team, 2021), supported by the Cancer Imaging
Archive (TCIA) (Clark et al., 2013).

2.4. Calibration of Alpha (α)
The α parameter can be fine-tuned to account for different
optimization targets and adjusted dynamically depending on
workload, e.g., in an extreme triage scenario, an alarm flag could
only be raised for the strongest outliers, hence a high α should be
chosen. Once the situation has been amended, α can be reset to a
smaller value, resulting in a more sensitive failure prediction.

With the default value α = 0 the threshold is set to the
median. Therefore, approximately half of the cases will trigger an
alarm for each metric. Alternatively, alpha can be automatically
adjusted to maximize the Pearson correlation coefficient with a
segmentation quality metric or entropy, or combinations thereof.
Tables 1, 2 illustrate how the distributions of alarm counts
correlate with Dice performance and the resulting entropy in
response to variations in α.

Note that α can also be adjusted for each segmentation target
class, as well as, each of the ensemble’s components, and for
each similarity metric on an individual basis to fine-tune the
quality estimation toward specific needs. For instance, hence the
enhancing tumor label is of higher clinical relevance for glioma

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 752780



Kofler et al. Robust, Primitive, and Unsupervised Quality Estimation

FIGURE 3 | Example Covid-19 lung lesion segmentation exams with CT images. Segmentations are overlayed for the lesions’ center of mass, defined by the slice

with most lesion voxels: Left: the empty input images; Middle: SIMPLE segmentation fusion (simple) in bluish green; Right: SIMPLE fusion in bluish green vs.

individual segmentation algorithms in various colors. The volumetric Dice similarity coefficients with the ground truth and respective alarm counts are as following: Top

row: 0.81, 0; Middle row: 0.58, 2; Last row: 0.14, 3.

TABLE 1 | Distribution of alarm counts depending on α for the MR experiment: The table illustrates the number of images classified in the individual alarm count

categories (a) from 0 to 10; for different values of α.

Alpha Entropy r:dice r:hd 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

−3.00 −0.00 NA NA 0 0 0 0 0 0 0 0 0 0 68

−2.00 0.22 NA 0.04 0 0 0 0 0 0 0 0 0 4 64

−1.00 1.28 −0.27 −0.2 0 0 0 1 0 2 2 5 5 13 40

−0.75 1.80 −0.55 −0.27 0 0 1 3 4 2 10 5 4 14 25

−0.50 2.02 −0.63 −0.3 0 6 1 3 5 4 11 1 10 8 19

−0.25 2.33 −0.7 −0.38 3 5 4 5 7 4 6 7 8 7 12

−0.10 2.37 −0.73 −0.41 7 4 4 6 4 7 7 8 7 6 8

0.00 2.35 −0.76 −0.45 9 5 7 4 4 6 6 8 8 3 8

0.10 2.30 −0.77 −0.46 9 6 10 3 6 7 2 9 5 3 8

0.25 2.28 −0.77 −0.51 11 7 12 3 2 7 3 8 5 5 5

0.50 2.23 −0.78 −0.59 15 11 8 3 2 4 5 8 4 4 4

0.75 2.06 −0.73 −0.59 18 13 7 3 1 5 6 7 2 6 0

1.00 1.97 −0.72 −0.58 23 12 3 3 2 6 8 6 3 2 0

2.00 1.71 −0.66 −0.55 30 10 6 4 3 8 2 5 0 0 0

3.00 1.40 −0.65 −0.52 37 11 4 1 3 10 1 1 0 0 0

Additionally, we depict the Pearson correlation coefficients for the Dice (r:dice) - and Hausdorff distance (r:hd) based alarm counts with volumetric Dice segmentation performance, as

well as the respective alarm count distribution’s entropy. The selected value for α of 0.1 is highlighted in pink The resulting computed thresholds are depicted in Table 3.

(Weller et al., 2014), one might consider setting the associated
thresholds to more conservative values using a smaller alpha.

For simplicity, we set parameter α to 0.1 for each class,
component and metric in our analysis. This results in a slightly
less conservative failure prediction compared to the default.

3. RESULTS

Our method accurately predicts the segmentation performance
in both experiments and is able to capture segmentation
failures. Even though our code is not optimized for speed, the
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TABLE 2 | Distribution of alarm counts depending on α for the CT experiment:

The table illustrates the number of images classified in the individual alarm count

categories (a) from 0 to 3; for different values of α.

Alpha Entropy r:dice 0a 1a 2a 3a

−3.00 −0.00 NA 0 0 0 46

−2.00 −0.00 NA 0 0 0 46

−1.00 0.58 −0.45 0 3 5 38

−0.75 0.88 −0.56 5 2 6 33

−0.50 1.19 −0.67 6 7 8 25

−0.25 1.32 −0.64 10 7 10 19

−0.10 1.36 −0.73 12 8 11 15

0.00 1.37 −0.7 13 8 14 11

0.10 1.37 −0.7 15 10 11 10

0.25 1.33 −0.62 18 9 11 8

0.50 1.20 −0.61 23 6 12 5

0.75 1.17 −0.69 25 9 8 4

1.00 1.13 −0.71 26 10 6 4

2.00 0.86 −0.67 33 8 2 3

3.00 0.66 −0.62 37 6 1 2

Additionally, we depict the Pearson correlation coefficients for the Dice (r:dice) based alarm

counts with volumetric Dice segmentation performance, as well as the respective alarm

count distribution’s entropy. The selected value for α of 0.1 is highlighted in pink. The

resulting computed Dice similarity thresholds are as following: ADA: 0.9489; RAN: 0.9446;

AUG: 0.9024.

computation of the fused segmentation masks, similarity metrics
and resulting alarm counts is a matter of seconds. Quantitative
metrics for the MR and CT experiment are summarized in
Figure 4.

3.1. MR Experiment
Setting α to 0.1 leads to an even distribution across alarm
count groups, (see Tables 1, 3). Figure 4A plots the average Dice
coefficients across the tumors labels: enhancing tumor, necrosis
and edema against the alarm count. We observe a strong negative
correlation between segmentation performance and increasing
alarm count: Pearson’s r = −0.72, p = 3.874e-12. This is also
reflected in the Hausdorff distance, (see Figure 4B).

3.2. CT Experiment
Choosing an α of 0.1 leads to an even distribution across alarm
count groups, (see Table 2). Figure 4C plots Dice coefficients1

on the challenge test set against alarm count. As for the
MR experiment, we find a strong negative correlation between
segmentation performance and increasing alarm count: Pearson’s
r = -0.70, p-value = 4.785e-08. As observed before, this effect is
mirrored by the Hausdorff distance, (see Figure 4D).

1Our basic ensemble reaches a median volumetric Dice score of 0.67. We observe
a wide performance distribution with a minimum of 0, a maximum of 0.93 and a
standard deviation of 0.25 around a mean of 0.61, as displayed in Figure 4C. With
regard to volumetric Dice coefficients mainly low-performing outliers separate our
method from the top-performing methods in the challenge.

4. DISCUSSION

It is important to note that, the validity of our method is
closely tied to the chosen evaluation metrics’ representation
of segmentation performance (Kofler et al., 2021). For
our experiments, we evaluate the volumetric Dice score
and Hausdorff distance. Based on this fundamental
assumption, we provide an unsupervised quality estimation for
segmentation ensembles that does not perform any background
diagnostic decisions and fully maintains the radiologists’
diagnostic autonomy.

We demonstrate efficacy for two different use cases, namely
multi-modal glioma segmentation in brain MR and Covid-19
lesion segmentation in lung CT images. The sensitivity of our
method can be fine-tuned to specific requirements by adjusting
α for ensemble components, classes, and segmentation quality
metrics. Additionally, the low computational requirements make
it easy to integrate into existing pipelines as computing the alarms
takes only seconds and creates very little overhead.

Even though there are various efforts, such as the BraTS
algorithmic repository2, to facilitate clinical translation of
state-of-the-art segmentation algorithms, quality estimation
mechanisms represent a currently unmet, yet important
milestone on the road toward reliably deploying deep learning
segmentation pipelines in clinical practice. The proposed
solution can assist clinicians in navigating the plethora of exams,
which have to be reviewed daily. It provides a neat prioritization
mechanism, maximizing the efficient use of human expert time,
by enabling focus on the most difficult, yet important cases.

It is important to note further limitations of our method.
First of all, it can only be applied to model ensembles and
not to single algorithms. However, as most top-performing
segmentation solutions employ ensembling techniques there is a
broad field of potential application. Second, the computation of
alarms relies on discordance in the ensemble. If all components
of the ensemble converge to predicting the same errors they
cannot be detected. Notably, we did not observe such a case in
our experiments, even though our CT segmentation ensemble
featured only three models employing the same architecture and
little variation in training parameters. As ourmethod profits from
bigger ensembles and more variations in the network training,
one could argue that our experiment is probably more difficult
than most real-world scenarios. Along these lines, Roy et al.
(2019) activated dropout during inference and Fort et al. (2020)
demonstrated that it might be enough to choose different random
initialization to achieve variance in network outputs. Third, even
though the default value of α, 0 and 0.1, which we chose for
demonstration purposes, performed well in our experiments,
there might be segmentation problems for which α needs to be
manually fine-tuned.

Future research could investigate whether α how global
thresholding, instead of the proposed individual thresholding
per algorithm, affects the results. It should also be explored
whether the methodology can be improved by including further

2https://www.med.upenn.edu/sbia/brats2017/algorithms.html

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 752780



Kofler et al. Robust, Primitive, and Unsupervised Quality Estimation

FIGURE 4 | Segmentation performances vs. alarm counts. The group means are illustrated with horizontal black lines. For display purposes only the 0–95 percent

quantile is displayed for Hausdorff distances on the y-axis. In line with the performance of the volumetric Dice coefficient, Hausdorff distances increase with increasing

alarm count. Infinite values for Hausdorff distances, which can happen when ground truth or prediction are empty, are excluded from the plot. Subplots (A) + (B)

illustrate findings for the MR experiment, while subplots (C) + (D) depict results for the CT experiment.

TABLE 3 | Thresholds computed with α = 0.1 for the MR experiment per

algorithm: The columns Dice and Hausdorff depict, the respective volumetric Dice

and Hausdorff distance based thresholds for the alarm computation for each of

the segmentation algorithms.

Algorithm Citation Dice Hausdorff

micdkfz Isensee et al., 2019 0.9055 10.2277

xfeng Feng et al., 2019 0.9092 8.9835

scan2019 McKinley et al., 2020 0.9147 8.8292

scan McKinley et al., 2019 0.9084 10.4850

zyx Zhao et al., 2019 0.9293 8.4451

segmentation metrics and to which extend it generalizes to other
segmentation problems.
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Abstract. Gliomas are the most prevalent primary malignant brain tu-
mors in adults. Until now an accurate and reliable method to predict
patient survival time based on medical imaging and meta-information
has not been developed [4]. Therefore, the survival time prediction task
was introduced to the Multimodal Brain Tumor Segmentation Challenge
(BraTS) to facilitate research in survival time prediction.

Here we present our submissions to the BraTS survival challenge based
on classical statistical models to which we feed the provided metadata
as features. We intentionally ignore the available image information to
explore how patient survival can be predicted purely by metadata. We
achieve our best accuracy on the validation set using a simple median
regression model taking only patient age into account. We suggest using
our model as a baseline to benchmark the added predictive value of
sophisticated features for survival time prediction.
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1 Introduction

Accurate estimation of a patient’s prognosis is at the heart of clinical decision-
making, both for clinical trials as well as daily clinical care.

Survival time prediction and statistics are frequently requested not only by
terminally ill patients, but also by the general public. Survival time prognosis is
considered as one of the most important factors in palliative medicine for three
major reasons [23]:
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1. Necessity for medical law and insurance decisions, e.g. in the United States
of America two independent doctors have to agree on a survival prognosis
to decide on hospice eligibility.

2. Survival prognosis is critical for medical decision making, which weights the
risks of medical procedures against expected benefits. For instance, in pain
management, it can be beneficial to deliver addictive and potentially harmful
doses of antidepressants and neurolytic agents to patients with short life
expectancy.

3. Lifetime prognosis enables doctors to assist patients in making critical life
decisions [19].

Considering the relevance of reliable survival time predictions, it is particu-
larly striking how statistics reveal that clinicians are often unsuccessful in pre-
dicting patient survival [7]. Many studies have shown this issue, e.g. [18] found
that about 50 percent of survival predictions for patients with lung cancer are
erroneous. Specifically, the patients did not survive half of the predicted time
frame or survived more than double the predicted time. Most clinicians’ pre-
dictions of survival time are overly optimistic [7]. An important finding is that,
the longer the patient-doctor relationship exists, the larger the optimism bias is
within the doctor’s survival prognosis [5]. This indicates that human subjectivity
is a major source of error, besides the difficulties for clinicians to integrate prog-
nostic information from multiple sources (e.g. demographic, genomic or imaging
information).

These inconsistencies and relevant bias in clinicians survival prediction de-
mand more quantitative approaches such as statistical or learning based models
to assist in creating more realistic survival predictions. This has been empirically
studied in the literature for various terminal diseases, e.g. by Henderson et al.
for patients with lung cell cancer, using statistical models [9]. Recently, learning
based methods exploring image information have proven to outperform medical
doctors in survival time predictions for a multitude of diseases [14,11].

The Brain Tumor Segmentation Challenge (BraTS) focuses on a specific type
of brain neoplasms called gliomas. Gliomas are one of the most prevalent brain
tumors in adults and can be roughly distinguished in two major classes: aggres-
sive high-grade gliomas, and low-grade gliomas. The life expectancy of a patient
with a high-grade glioma has a median remaining life span of fewer than two
years, while for low-grade gliomas, it is more than five years [17]. The survival
prediction task was introduced to the BraTS challenge to crowd-source the de-
velopment of an accurate and generalizable prediction model [1,2,3,4,16].

The BraTS dataset was acquired at multiple clinical centers, therefore pre-
senting several real-world challenges. For instance, scans are often acquired us-
ing different imaging protocols, and follow-up scans are acquired at varying time
points. These inconsistencies, among others, pose severe problems to clinicians
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as well as automated diagnostic approaches.

In the BraTS survival challenge, the images as well as corresponding meta-
data are given to the participants to predict patient survival. Most contributions
to the challenge explore image information using learning models, e.g. U-Net [4].
However, in the BraTS2018 survival challenge, a simple linear regression consid-
ering only patient age and simple tumor region sizes as features achieved third
place [21,20]. This could be attributed to a lack of larger and diverse datasets,
which could be resolved in future challenges by extending the data across clinics
or using recently successful generative approaches [8,15]. Another methodologi-
cal reason could be the insufficient structure of extracted imaging features and
contradicting feature interpretation.

Inspired by Weninger et al. [20], we systematically explored how far one can
get using only metadata for survival time prediction. We intentionally disregard
image information and instead explore a multitude of classical statistical models
and metadata based features.

2 Methods

2.1 Models

As a baseline, we implemented simple ordinary least squares (OLS) linear models
[6]. Additionally, we fitted linear model with three orthogonal polynomials [10]
and quantile regression models [12]. We computed p-values and confidence inter-
vals for the model coefficients and evaluated the goodness of fit of the models by
adjusted R2 for the linear models and the quantile models by V, as suggested
by Koenker respectively [13].

2.2 Features

We deliberately ignored image information and instead focused on primitive
features extracted from the patients’ metadata. Besides the patients’ age we
included resection status [22] and the clinical institution (extracted from the
patient ID e.g. ”CBICA”) as predictors for our models. The clinical institu-
tion feature differentiates regional factors such as access to healthcare, different
population etc. that might affect survival time.

2.3 Dataset

As the test set includes only patients with gross total resection (GTR), we eval-
uated our models’ performance on the GTR subset. Additionally, we also took
patients with only partial tumor resections into account to find out whether we
can retrieve additional information from these cases.
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Fig. 1. Scatterplot of patient age versus survival time (Pearson r : -0.486), rep-
resenting the space we fit our models to in the spirit of this XKCD comic
[https://xkcd.com/2048/]. The dashed lines represent the thresholds to distinguish
between short, medium and long-term survivors. The solid cyan line illustrates predic-
tions of our proposed median regression model based on patient age.

3 Results

We designed our models on the training dataset considering measures of goodness
of fit and p-values for model coefficients. Promising model configurations were
evaluated on the validation dataset via the CBICA’s Image Processing Portal
(IPP).

3.1 Evaluation on the training set

The simple ordinary least squares (OLS) model outperformed the polynomial
models on the training set, as reflected by higher values of adjusted R2, see Table
1. Resection status and the clinical institution failed to add significant predictive
value. These findings were also reflected in the analysis for the quantile models.
For all models we achieved a much better fit on the subset of patients with gross
total resection.

3.2 Evaluation on the validation set

Next, we evaluated on the validation set of 29 patients using the CBICA’s Image
Processing Portal (IPP). For the BraTS survival challenge, the predicted sur-
vival times are mainly evaluated by the accuracy of the survival prediction and
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Table 1. Result table comparing the goodness of fit on the training set. We calculate
the adjusted coefficient of determination R2 for the OLS and polynomial models and
V for the median model. The quantile model cannot be directly compared to the other
models as the considered coefficients of determination (R2 and V) are not the same as
introduced by [13].

Model R2 all data R2 GTR only V all data V GTR only

OLS model age 0.129 0.229 - -

age, resec., inst. 0.147 - - -

age, inst. 0.129 0.243 - -

Polyn. model age 0.122 0.220 - -

Median model age - - 0.068 0.114

age, resec., inst. - - 0.099 0.121

age, inst. - - 0.072 0.114

secondarily by the metrics denoted in Table 2. Accuracy is defined as classifying
patients correctly in one of three survival time bins. Three bins are defined as
short-term survivors with a remaining survival time of fewer than ten months,
mid-term survivors with a remaining survival time between ten and 15 months
and long-term survivors with more than 15 months of remaining survival time.
A glance at the scatterplot 1 reveals that these bins cannot be derived intu-
itively from the data and the accuracy-based challenge scoring might potentially
lead to the paradox situation where a better fitting model performs worse in the
classification-based challenge.

On the validation set, we find that the quantile models using only age as
predictors achieve the best accuracy (0.552). We attribute this to the median
models’ decreased susceptibility to outliers, especially given the low number of
patients in the training and validation dataset. However, the metrics for the sur-
vival time predictions in days are differing, for example, the polynomial model
using age only as a predictor has the lowest mean squared error and the Spear-
man R is identical for five different solutions, see Table 2.

Given that we achieved a much better fit on the GTR subset for the training
set and because features other than age fail to add predictive value reliably, we
selected a median model trained solely on the GTR subset and taking only age
as an input for evaluation on the test set. A positive side effect of this approach
is the simple deployment in clinical and scientific practice. The predictions of
this median model are illustrated in scatterplot 1.

Comparison to other challenge participants. During the course of the
challenge, we also compared our best performing model to the other participants
on the validation set, knowing that most participating teams also consider image
information. We monitored the leader board during the validation phase and
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Table 2. Result table for the performance of our models on the validation set. Scores
as calculated in the BRATS survival challenge leader board. Here the features used are
encoded as age, resection status (resec.) and institution (inst.). The evaluation metrics
for each submission (Subm.) are the accuracy, the mean squared error (MSE), median
squared error (medianSE), standard squared error (stdSE) and SpearmanR.

Model Accuracy MSE medianSE stdSE SpearmanR

OLS model age; GTR only 0.448 90127.4 36773.6 123765.8 0.265

age, inst.; GTR only 0.345 111571.2 40332.8 175070.8 0.165

age, inst., resec.; all 0.310 105081.9 35523.3 161929.7 0.155

Polyn. model age ; all 0.448 90383.3 30953.2 131065.2 0.265

age ; GTR only 0.448 88113.3 32745.4 136508.8 0.265

Median model age; all 0.552 101877.8 26958.2 116475.5 0.265

age; GTR only 0.552 93572.3 30927.6 139847.1 0.265

age, inst., resec.; all 0.483 96845.3 44466.3 155227.5 0.263

age, inst.; GTR only 0.276 118450.0 54195.3 188132.4 0.184

found that our approach with an accuracy of 0.552 is within the best third
of submissions. When comparing the metrics for fitting days of survival time,
e.g. MSE, to the other submissions with equal accuracy, we found that our
model shows solid performance. Overall, the total accuracy of our survival time
predictions, but also of the best performing survival prediction, leaves much
room for improvement. Even the best performing algorithms fail in more than
one third of predictions. For perspective it is interesting to consider that last year
the top performing algorithm used a U-Net to extract advanced image features.
This shows that even the state-of-the-art in machine learning applied to this
problem does not achieve a reliable survival prediction [4].

3.3 Evaluation on the test set

Finally, we consider our scores on the test set of 107 patients. We find a slight
drop in performance with an accuracy of 0.486, a MSE of 419660.8, a medianSE
53177.5, a stdSE 1255102.9 and a SpearmanR of 0.358. Accuracy and medianSE
are similar to our performance on the validation set. While the accuracy and
medianSE scores remain comparable to the performance on the training and
validation set, the outlier sensitive MSE and stdSE are substantially worse. This
suggests that our drop in performance is mostly driven by statistical outliers.

4 Conclusion

We implemented simple OLS models, polynomial models and median regression
models and experimented with different metadata-based predictor variables in-
tentionally disregarding all image features. A simple median regression using
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only patient age as an input performed best to predict survival time for glioblas-
toma patients with gross total resection. Our model can serve as a baseline to
evaluate the predictive value of sophisticated features.
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C O N C L U D I N G R E M A R K S A N D O U T L O O K

This Hitchhiker’s Guide meant to provide a gentle introduction for
diving into the topic of Machine Learning for Biomedical Image Analysis.
Even though the guide’s focus is on semantic segmentation, readers
should find that many of the presented concepts easily translate to
other ML problems. The guide covers the whole workflow from dataset
curation, model training, evaluation, and interpretation of results to
refining the model. It is important to realize this not as a single waterfall
process, but as an iterative loop.

Even though CNNs are usually trained with gradient descent, it does
not mean that all training parameters need to be explored in a pure
trial and error fashion. Therefore, heuristics and pointers to derive
design decisions in a theory-driven way are provided.

Hence, the first (i) part deals with identifying a good set of hy-
perparameters for model training. Besides general aspects, it covers
particularities when dealing with MR and CT image data.

The second (ii) part covers the interpretation of network outputs.
It reveals that a pure analysis of similarity metrics is not sufficient
due to the limitations of human annotations. To circumnavigate this,
it introduces methods to collect feedback from clinical practitioners.

Finally, the third (iii) part comprises strategies for optimizing model
performance. Besides curating a better training set, researchers are
advised to consider ensembling and to derive informed decisions
regarding the network architecture and loss function.
Outlook: In the (biomedical) ML community, it is common practice
to market a technical innovation by claiming an improvement in seg-
mentation quality by demonstrating a small improvement in segmen-
tation quality metrics such as DSC. Over the years, many segmentation
challenges, such as BraTS, LiTS, KiTS, etc., emerged that decorate
winners based on tiny improvements in similarity metrics with hu-
man annotations. It remains an open research question whether such
improvements translate to real-world benefits for the application of
ML in clinical workflows. As the radiologists in our experiments prefer
network-generated over human-annotated segmentations, the pre-
sented findings indicate that this assumption might not hold up. For
a successful translation of ML algorithms towards clinical practice,
it is imperative to gain physicians’ trust in the model predictions.
Therefore, it seems necessary to iteratively involve physicians in the
model training process. There is hope that the findings presented
will stimulate debate and that researchers begin to question these
established practices in (biomedical) ML.
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