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Abstract: The prediction of charging point occupancy enables electric vehicle users to better plan their
charging processes and thus promotes the acceptance of electromobility. The study uses Adaptive
Charging Network data to investigate a public and a workplace site for predicting individual charging
station occupancy as well as overall site occupancy. Predicting individual charging point occupancy is
formulated as a classification problem, while predicting total occupancy is formulated as a regression
problem. The effects of different feature sets on the predictions are investigated, as well as whether
a model trained on data of all charging points per site performs better than one trained on the
data of a specific charging point. Reviewed studies so far, however, have failed to compare these
two approaches to benchmarks, to use more than one algorithm, or to consider more than one site.
Therefore, the following supervised machine-learning algorithms were applied for both tasks: linear
and logistic regression, k-nearest neighbor, random forest, and XGBoost. Further, the model results
are compared to three different naïve approaches which provide a robust benchmark, and the two
training approaches were applied to two different sites. By adding features, the prediction quality
can be increased considerably, which resulted in some models performing better than the naïve
approaches. In general, models trained on data of all charging points of a site perform slightly better
on median than models trained on individual charging points. In certain cases, however, individually
trained models achieve the best results, while charging points with very low relative charging point
occupancy can benefit from a model that has been trained on all data.

Keywords: electric vehicles; charging points; occupancy; supervised learning; forecasting

1. Introduction

The European Union (EU) aims to become climate neutral by 2050 to fulfill its commit-
ment to the Paris Agreement, keeping global warming well below 2 ◦C and making efforts
to limit it to 1.5 ◦C [1]. Even though the emissions of the European electricity sector were
39% lower in 2019 compared to their 1990 levels, even completely converting the generation
of electricity to renewable sources will not be sufficient to achieve the goal of net-zero
greenhouse gas (GHG) emissions [2]. To achieve climate neutrality, both a strong increase
in energy efficiency and far-reaching electrification in the energy-consuming sectors of
industry, buildings (heating and cooling), and transport need to be realized, in addition to
exclusively climate-neutral electricity generation [3–5]. As opposed to the other sectors,
GHG emissions from the transport sector increased between 2013 and 2019 [6]. In 2018,
more than 12% of EU GHG emissions were caused by passenger cars [6]. All previous
emission reductions (achieved via, e.g., more efficient engines, or new fuels such as E10)
have been negated by an increased volume of traffic and growing numbers of vehicles
with comparatively high fuel consumption, which makes climate neutrality in transport
seem particularly challenging to achieve. One of the most promising means of reducing
emissions in the transport sector is the adoption of electric vehicles (EV), provided that the
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electricity consumed is generated from renewable energy sources [7]. Market penetration of
EVs, however, is faced with the ‘chicken-and-egg’ problem: while the absence of charging
infrastructure limits the proliferation of EVs, investments in infrastructure require higher
charging demand from EVs to become attractive [8]. While the EU has neither passed a
law requiring certain numbers or market shares of EVs, nor committed to non-binding
targets, the European Commission’s current revised proposal for the Fit for 55 package
strengthens the current 2030 average fleet-wide emissions from newly registered vehicles
from −37,5% to −55% relative to a 2021 benchmark. In addition, the proposal calls for a
complete phase-out of internal combustion engine vehicles by 2035, with a 100% reduction
in greenhouse gas emissions from new cars and vans sold from 2035 onwards [9]. Mean-
while at the national level, the German government has set a target of ten million registered
EVs and one million publicly accessible charging points by 2030 as part of the Climate
Protection Program 2030 (German: Klimaschutzprogramm 2030) [10]. This goal aligns with
the European Alternative Fuels Infrastructure Directive (AFID), which calls for a 10:1 ratio
of EVs to publicly accessible charging points [11].

However, further obstacles also must be addressed to ensure the ramp-up of electro-
mobility and thus to ultimately achieve the climate targets in the transport sector. Several
studies on EV adoption [12–15] highlight that one of the main barriers to purchasing an EV
is insufficient or unavailable charging infrastructure. Further, due to the sparsely developed
infrastructure, EV users must plan their charging processes more deliberately than users
of conventional vehicles. This circumstance is accompanied by another frequently cited
barrier to EV adoption [16–18]: range anxiety, i.e., the fear of running out of power before
reaching an available charging station. Webpages and apps such as those in [19–21] help EV
users plan their route by either displaying accessible charging points or taking the vehicle
range and possible necessary charging stops into account. The webpage Go-TO-U [22] even
shows current occupancy status, although this is only helpful for users actively looking for
a free charging station at the given moment. Only 1 out of 9 charging points in the EU is
fast-charging (>22 kW). Consequently, with normal charging points (≤22 kW) being domi-
nant in the EU, charging typically takes several hours [23]. In order for EV users to plan
their next charging session, forecasting charging point occupancy is essential. Predicting
charging point occupancy is also advantageous for scheduling charging point maintenance
tasks during times of low usage.

EV users heavily rely on the precise prediction of the battery range. Therefore, proper
battery models predicting battery states, e.g., state-of-health remaining useful life, state-
of-charge or state-of-energy are crucial. Many existing studies in the literature examined
different battery modeling methods [24–27]. The models include physics-based electro-
chemical models, analytical models, stochastic models, and electrical-circuit based models.
However, according to Tomasov et al. electrochemical-based models as well as equivalent
circuit ones are best suited for usage in transport applications [24]. Tremblay’s battery
model is specifically designed for EV application and can accurately represent the dy-
namic behavior of the battery [28]. Tremblay et al. obtained battery model parameters
by evaluating just three points from the manufacturer’s discharge curve in steady state.
The study by Zhang et al. was conducted on optimization of Tremblay’s battery model
parameters for plug-in hybrid EV applications [29]. Since the original method by Tremblay
et al. is error prone, Zhang et al. proposed to use a novel quantum-behaved particle
swarm optimization (QPSO) parameter-estimation technique to estimate the model pa-
rameters [28,29]. Another model employed by [30–32] is the Volterra model, which can
be used to approximate complex nonlinear dynamics inherent to the battery. Hu et al.
proposed to integrate a linear double-capacitor model, an equivalent circuit model, with a
data-based Volterra model to build a physics-informed data-driven model for lithium-ion
batteries, called Volterra double-capacitor model [30]. They demonstrated this new model’s
high accuracy via experimental validation. Sidorov et al. presented both an example for
battery modeling for renewable energy applications and an adaptive approach to solve
load leveling problem with storage [32]. In both cases, they used a dynamic evolutionary
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model based on the first kind Volterra integral equation. They came to the conclusion
that the systems of Volterra equations can model energy storage systems combining the
different energy storage technologies.

In addition to the research on modeling energy storage systems in the aforementioned
studies, there are a number of studies addressing optimized planning of the charging
infrastructure and selection of the appropriate location. Pagany et al. [33] provide a
broad range of charging infrastructure planning methods and give an extensive review of
various methods regarding the required input data, theoretical approaches, and maturity.
Metais et al. [34] reviewed different model options for planning EV charging infrastructure,
which can be divided into two categories depending on the objective: minimizing the
cost of charging infrastructure for a given level of service, or maximizing the service
provided for a given cost. Additionally, node, path, and tour-based approaches can be
distinguished. For instance, Micari et al. [35] proposed a methodology to calculate the
required number of charging stations for EVs and find their optimal location in a road
network. The methodology consists of a two-level model using the demand (i.e., the flow of
EVs) and the supply (i.e., the road network where the charging stations will be positioned).
It was validated on a test road network and subsequently applied to the Italian highway
network. Guo et al. [36] used the fuzzy technique for order preference by similarity to
ideal solution (TOPSIS) method to select the optimal EV charging station site and built an
evaluation index system as a selection criterion.

Other studies focus on the existing charging infrastructure and their usage. Viswanathan
et al. [37] analyzed the charging infrastructure in San Diego and developed an assessment
model to calculate the demand of public charging points. One finding of the study is that
even though San Diego had enough chargers for the charging demand of existing EV’s,
the public charging distribution network was neither well-designed nor effectively used.
Flammini et al. [38] used a dataset from the Dutch research center ElaadNL containing
2900 public charging points with more than 400,000 charging transactions from the year
2015. They analyzed the charging behavior on weekdays, Saturday, and Sunday and
derived probability density functions describing the plug-in and -out events. One finding
is that 50% of the charging times were less than 4 h, while the idle time of a charging point
depends on the geographic location of the charging point and lasts on average for 4 h. By
collecting empirical data from almost 27,000 charging points in Germany, Hecht et al. [39]
investigated the usage intensity of the charging infrastructure: With 15% to 25%, the overall
usage intensity of the stations in Germany is relatively low but is strongly dependent on
the weekday and time of day. They further demonstrated that a high share of charging
events last 8 to 10 h, indicating that EVs are parked significantly longer at charging stations
than the actual charging duration.

Another widely addressed field is charging demand and flexibility. Almaghrebi
et al. [40] aimed to predict session charging demand at public charging stations using
supervised machine-learning regression algorithms on a dataset from Nebraska, USA.
They used four different models (linear regression, gradient boosting, random forest, and
support vector machine), which only provided moderate accuracy, accounting for roughly
50% of the variance in user behavior. They showed that for this dataset, the primary
statistic of predictive value is the user’s average demand for past sessions. However,
they stated that using the same framework for a smaller area or a single charging station,
where input features have a higher correlation to the energy demand, could result in better
predictions. Xiong et al. [41] modelled EV user behavior based on EV user charging records
collected in public charging facilities by combining statistical analysis and machine-learning
approaches to predict day-ahead EV load on the UCLA campus. This was carried out by
applying unsupervised clustering in combination with a multilayer perceptron to historical
charging records. Their results show that their model achieves good performance for
charging control scheduling and EV load forecasting. Lucas et al. [42] performed supervised
machine-learning regression on a public charging station dataset from The Netherlands to
estimate idle time of an EV after charging. They compared the performance of gradient
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boosting, random forests, and XGBoost using most of the available features in the dataset,
and showed that idle time can be estimated with a fair degree of accuracy for the studied
dataset. Sørensen et al. [43] used field data from Norway from more than 6800 charging
sessions to describe charging behavior and to estimate charging and flexibility potential for
residential EVs. The results were validated using data from installed advanced metering
systems. Considerably good results in residential EV charging flexibility estimation were
achieved when private parking spaces were equipped with their own charging point.
Gerritsma et al. [44] and Sadeghianpourhamami et al. [45] analyzed the flexibility of EV
charging demand using charging sessions from The Netherlands. Gerritsma et al. [44] found
that 59% of the aggregated EV charging demand can be deferred by more than 8 h and
16% by more than 24 h. Sadeghianpourhamami et al. [45] grouped the charging sessions
into three behavioral clusters based on arrival and departure time (1) “park to charge”,
(2) “charge near home” and (3) “charge near work”, and quantified the flexibility for a load-
flattening and load-balancing scenario. They further found that the flexibility of all clusters
was influenced by seasonal changes and weekends and that the sessions in the “charging
near home” cluster were better suited to shifting charging demand into nighttime.

In the field of predicting charging point occupancy, the following studies have been
published [37–40]. Bikcora et al. [46] used a dataset from ElaadNL representing public
charging stations and performed a general linear model, namely logistic regression (LogR),
to forecast the availability of each charging point. The researchers found that simple model
structures, possibly consisting of hourly indicator variables, day-lagged and week-lagged
measured variables, were shown to be sufficient for the disaggregated level of charging
points. However, the study only focused on public charging stations and does not describe
data preparation, perform any parameter optimization, or apply and compare other linear
or non-linear models. Tian et al. [47] combined real-time GPS data from electric taxis in
Shenzhen with historic charging events for each taxi to develop a real-time charging-station-
recommendation system. First, they predicted the current operational state of each taxi and
recharge intention. When an electric taxi driver sends a recharge request to the system, the
driver is recommended a charging station where the total cost of charging is most likely to
be minimal. One disadvantage of this method is that the charging behavior and the current
GPS data of the vehicle are necessary. Furthermore, the charging intentions of other drivers
must be known to the system in order to calculate the waiting time. Majidpour et al. [48]
used data from the UCLA campus and performed four time-series models: historical
average (naïve approach), k-nearest neighbor (KNN), weighted KNN and lazy learning.
They further proposed a time-weighted dot-product-based nearest neighbor to improve
their results. Like the work presented herein, Motz et al. [49] used the Adaptive Charging
Network (ACN) data and investigated the influence of different feature sets and whether it
is better to use data of the individual charging points or of all charging points. The ACN
project provides access to real electric vehicle charging sessions from different sites. Motz
et al., however, only considered the workplace site from the can data. Further, they only
used a linear model (LogR) and omitted a comparison to a benchmark model.

Our contribution to this topic is that we compare workplace and public charging sites
and apply different classification models (linear and non-linear) to predict charging point
occupancy, and compare them to three benchmark models. Therefore, we first describe
the used data and the data preparation in detail. After this, we perform hyperparameter
optimization to find the optimal model configuration. This is carried out for models trained
on individual charging points and models trained on all charging point data for each site.
We compare two different feature sets and their influence on the prediction, as well as the
different training modes. Finally, we implement four different regression models (linear
and non-linear) to predict the total number of occupied charging points at each site.

2. Materials

For our analysis, we use the publicly available Adaptive Charging Network (ACN)
dataset [50]. This dataset consists of two different sites: Caltech and JPL. The Caltech
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University site has 54 charging points, or electric vehicle supply equipment (EVSE), in
one campus garage, which is located next to the university gym. The charging points are
open to the public and are often used by non-Caltech drivers. We consider Caltech a public
charging site. The JPL site is a national research lab with 50 EVSEs and is only open to
employees with a key card, and therefore is characterized as a workplace charging location.
Lee et al. [50] describe the dataset and how it is collected, while Lee et al. [51] and Lee
et al. [52] give more details on the charging facility and adaptive algorithm. In addition
to charging station data, the dataset also contains user data (scheduled departure time
and requested energy), which users can enter via an app. In total, the dataset contains
15 features, including the “userInputs” which contains a list of eight more features. Like
Motz et al. [49], we use the same three features: station ID, connection time, and disconnect
time, because most of the excluded features are either redundant or do not have any
information for our purpose. These three features are the minimum requirements for
charging event datasets. Limiting our analyses to these three features therefore allows the
presented method to be applied and the results compared to other datasets.

Figure 1 shows the distribution of the number of recorded sessions per day from the
beginning of available data at Caltech (top) and JPL (bottom). Both Caltech and JPL have
more than 25,000 registered charging sessions. The start date of the available data for the
Caltech site is 4 April 2018, while for JPL it is 9 September 2018. The data were collected on
12 December 2020, representing the end date.
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As seen in Figure 1, Caltech (top) shows three and JPL (bottom) two different usage
periods. As stated by Lee et al. [50], parking was completely free at the beginning at Caltech
and, due to an issue with site configuration, for approximately half of the EVSEs at JPL
until 1 November 2018. This change is reflected in the significant reduction in the recorded
sessions per day at the Caltech site, while at JPL there is no pattern change, likely due to
the demand for charging overshadowing any price sensitivity, according to Lee et al. [50].
After 1 November 2018, the recorded number of sessions at Caltech is around half the
amount compared to JPL. The winter recess lasted from 15 December 2018 to 6 January
2019, and from 14 December 2019 to 5 January 2020. Both periods are observable in the
data due to drops in recorded sessions. Caltech shows a stronger decrease in recorded
sessions during these periods. This suggests that the site is mostly dominated by students,
who leave the campus for holidays, while JPL is still used by the employees. However, we
still consider Caltech a public site since no key card is needed nor is any other restriction
to use the charging points present. The next notable pattern change at both sites is at the
beginning of March 2020, marking the beginning of the COVID-19 pandemic. In order to
consider a comparable period in each case, we use the data for JPL from 5 September 2018
to 29 February 2020, and from 1 December 2018 to 29 February 2020 for Caltech, excluding
the COVID-19 period at both sites. After the paid parking switch, it took about one month
for the charging behavior to normalize, which is why we exclude this period as well.

Figure 2 shows the relative occupancy for each charging point per number of charging
sessions for Caltech (a) and JPL (b). The relative occupancy is calculated for each charging
point by the total occupation time divided by the time period. Therefore, the relative
occupancy rate provides information on how frequently a charging point is used during
the examined period. Some stations at Caltech (a) have a relative occupancy below 0.05
with less than 200 charging sessions, while with increasing number of charging sessions,
the relative occupancy rises. To put this into perspective, over the considered period of
456 days or 10,944 h, these charging points were only used for a total of around 23 days,
or 547 h. Based on 200 charging sessions, this results in an average session length of 2.7 h.
Caltech shows a more heterogeneous distribution across the EVSEs compared to JPL (b)
and has an overall occupancy rate of 0.14. Almost all EVSEs at JPL are as frequently used
as the highest at Caltech, with an overall relative occupancy of 0.27. All EVSEs at JPL have
more than 350 charging sessions and mean relative occupancy of 0.27.
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3. Methods

In this chapter, we first describe the methodology for the two predictive models we
developed. One performs regression analysis to predict the amount of occupied charging
stations at each site and time interval. To predict the occupancy status of individual charg-
ing stations at the two sites (Caltech, JPL) for a specified time interval, the second model
uses a classification method. The classification algorithm further employs two different
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approaches. The first approach was designed to predict the occupancy of individual charg-
ing points. A separate model for each individual charging point is trained and tested on
point-specific data. For the second approach, the models are trained and tested with the
data from all charging points of the corresponding site, leading to a single predictive model
for each site. In the following, we refer to the first approach as mode ‘individual’ and to the
second one as mode ‘all’. In this way, we aim to answer the question of whether it is more
beneficial to use all available data of one site or not.

3.1. Data Preparation

To begin with, we present the process of data preparation, give a short overview of
the utilized classification and regression models, discuss the hyperparameter tuning, and
complete this chapter with an outline of the utilized metrics in this work for evaluating
and comparing the results.

As described in Section 2, data were excluded from the original datasets due to external
events that had a significant impact on the distribution of charging sessions. Since these
events are not represented within the input data, negative consequences regarding the
learning effect can be assumed, which is why the affected time periods were removed
entirely. In the end, the dataset of the Caltech site consists of 456 days, while the JPL dataset
contains 543 days of charging data. The original dataset holds timestamps of the connection
and disconnection time for respective EVSEs. However, to predict the occupancy status of
individual charging points, the exact timestamp of a future charging session is irrelevant
(and not feasible to predict). Rather, the focus is on the time frame in which a charging
session is expected. Therefore, we first grouped the data by EVSE-ids and defined time
intervals of 15 min, hence converting the data into time series. For each time interval, we
then defined the dependent (target) variable. In case of the classification, the dependent
variable is a Boolean value ‘occupancy’, which is set to true if a charging session occurs
within the interval. For the regression task, the dependent variable refers to the number of
occupied EVSE within the respective site.

As mentioned in Section 2, we did not use additional features that the ACN dataset
holds due to reasons of comparability. Rather, we split and extended the time interval
feature, i.e., the timestamp, into multiple separate features: ‘month’, ‘day of month’,
‘weekday’, ‘holiday’, ‘bridging day’ (a single workday between a public holiday and
weekend), and ‘interval’. The features ‘holiday’ and ‘bridging day’ were determined based
on the public holidays of the state of California (where the respective charging stations are
located), whereas ‘interval’ describes the number of quarter hours since the beginning of
the day, hence an integer value between 0 and 95.

Moreover, we analyzed the impact of including two additional features describing the
occupancy status of a respective EVSE for a specific interval on the previous day and the
previous week (24 h before, 7 days before). We refer to this feature set as ‘augmented’. For
mode ‘individual’, we created one instance of time series per site and for each charging
point ordered over time. For mode ‘all’, we combined all individual charging point time
series into one per site ordered over time. Therefore, using the mode ‘all’ dataset, the
models were trained on one single dataset containing the time series of all charging points.
In the next step, the JPL and Caltech datasets were split into a training, validation, and test
set. Thus, overfitting can be detected, and the generalization capabilities of the predictive
models can be analyzed. Since the datasets consist of time series data, we split the data into
temporally contiguous parts with the validation and the test sets comprising the two recent
months of data.

In the final step of the data preparation, we used cyclic feature encoding to account
for periodic patterns in time-based features. The problems with cyclical data for machine-
learning algorithms are the jump discontinuities. Mahajan et al. found that LogR and
Linear regression (LinR) benefit from using cyclic feature encoding and suffer when ordinal
encoding was used [53]. Further, they found that classification and regression trees suffer
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from the choice of one-hot encoding, and might be more robust towards raw cyclical
features. Distance-based models such as KNN also profit from this encoding method.

A simple approach defined by [54] involves dividing a feature into a sine and cosine
part, for a feature x ∈ [0, xmax] (e.g., weekday ∈ [0, 6]), this results in:

xsin = sin
(

2× π × x
xmax

)
(1)

xcos = cos
(

2× π × x
xmax

)
(2)

After applying these transformations to all corresponding features, the standard
feature set for classification and regression looks as shown in Table 1.

Table 1. Feature description for standard feature set.

Feature Name Value Range Cyclic Feature Encoding

Month [0, 11] yes
Day of month [0, 31] yes

Weekday [0, 6] yes
Interval [0, 95] yes
Holiday {0, 1} no

Bridging day {0, 1} no

The additional features for the augmented feature set are listed in Table 2.

Table 2. Feature description for additional features in augmented feature set.

Use-Case Feature Name Value Range Cyclic Feature Encoding

Classification
Previous week {0, 1} no
Previous day {0, 1} no

Regression Previous week [0, max(num_evse)] no
Previous day [0, max(num_evse)] no

3.2. Supervised Learning Algorithms

Supervised learning algorithms learn from a training set of labeled examples, where
for each observation of the predictor measurement(s) xi, i = 1, . . . , n there is an associated
response measurement yi, [55]. The algorithm or model developed then aims to map
the response to the predictors by optimizing a given objective function to make accurate
predictions [55]. After training, the quality of the prediction is evaluated to subsequently
apply the learned patterns to unknown data with the same characteristics as the training
set. Two different types of supervised learning can be distinguished depending on the type
of response: classification and regression. Classification refers to predicting a qualitative
response or categorical classes of new instances based on previous observations. The labels
of these classes are unique values that can be understood as the group membership of the
instances. According to the number of classes, one differentiates between binary classifi-
cation when the response measurement takes only two values or multiclass classification
for more than two. If the predictor(s) is continuous or quantitative, regression models are
used [55]. The following sections describe the models underlying this research.

3.2.1. Naïve Model

For benchmarking our machine-learning-based models, we evaluate three naïve mod-
els. For two of them, we use a target value from a previous time interval as prediction. The
first naïve approach uses the feature ‘previous week’, the second one the feature ‘previous
day’, as prediction.

y(t) = y(t− t∆) (3)
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For the third naïve model, we calculate the average for each interval per day of the
training data. For classification, the target value is either 0 or 1. If the average value for the
naïve model ‘average’ is below 0.5 for a specific time interval, the target value is set to 0.
For regression, the naïve model ‘average’ gives the number of average occupied charging
points for the specific time interval.

3.2.2. Linear Regression

The LinR model is a simple supervised learning algorithm that predicts continuous response
variables. It captures the linear relationship between the independent variable x and the dependent
variable y. The linear model f is a linear function of input x = (x1, x2, . . . , xp) ∈ Rp [56]:

f (x) = w0 + w1x1 + . . . + wpxp (4)

where w0, w1, . . . , wp are weight parameters. The standard choice for the loss function is
least squares, which is given by

L =
1
2

N

∑
i=1

( f (xi)− yi)
2 =

1
2
(XW −Y)T(XW −Y) (5)

where X ∈ RN*(p+1), W ∈ Rp+1 and Y ∈ RN. A regularization term is often added to the loss
function to avoid overfitting. Common choices are L1 or L2 regularization. These regression
models are called Lasso regression and Ridge regression, respectively. By taking the partial
derivative of L with respect to W, we obtain the estimation W* of the parameter W [56].

W∗ =
(

XTX
)−1

XTY (6)

LinR is a simple algorithm and is easy to interpret. However, it is sensitive to outliers and
does not perform well if the relationship between independent and dependent variables
is nonlinear. It also assumes that the input features are independent. Multicollinearity in
input features should be carefully handled to obtain a reliable model [56].

3.2.3. Logistic Regression

LogR is a supervised learning algorithm which predicts a probability of given data
being classified as a binary class 0 or 1 [57]. Despite its name, LogR is an algorithm for
classification rather than regression. While a LinR model predicts a continuous outcome,
a LogR model uses a function called sigmoid to scale the output of a linear model into
a probability. The sigmoid function σ → (0, 1), which is also called logistic function, is
defined as

σ(x) =
1

1 + exp(−x)
(7)

Given an output of a linear model z = wTx + b where w is weight vector and b is bias, a
sigmoid function σ is applied to z. Therefore, the probability of input x being classified as 1 is

P(y = 1|x) = σ(z) = σ
(

wTx + b
)
=

1
1 + exp(−(wTx + b))

(8)

3.2.4. K-Nearest Neighbors

K-nearest neighbors (KNN) is a nonparametric algorithm which does not require
any assumption for the underlying data distribution [58]. KNN can be used for both
classification and regression tasks. By using a local average, KNN regression predicts the
value of the output variable. KNN classification aims to predict the class to which the
output variable belongs by computing the local probability. Given an input data and a
hyperparameter k, the model computes its class probability using class distribution of k
nearest neighbors. Distance measures such as Euclidean distance or Mahalanobis distance



Energies 2022, 15, 3409 10 of 23

can be used to find nearest neighbors. The probability of an input data x belonging to class
c is given by

p(y = c|x, k) =
1
k ∑

i∈Nk(x)
I(yi = c) (9)

where I is an indicator function which outputs 1 if the given condition is satisfied and 0 if
otherwise. To achieve a good performance in KNN, it is important to find a good k. A small
value of k means that noise will have a higher influence on the results of the classification,
and respectively, regression. With larger value of k, noise can be reduced; however, the class
prediction tends to be the majority class when the class distribution of the dataset is skewed.
An optimal k can be chosen by hyperparameter-tuning methods such as cross-validation.
Although KNN is a simple and intuitive algorithm, it has some limitations. KNN starts
computation only with new input data, hence it is called a lazy learner. Additionally, the
algorithm is not effective for high-dimensional data since the computational complexity
grows exponentially as the number of dimensions increases [58].

3.2.5. Random Forest

Random forest (RF) is a supervised learning algorithm which uses an ensemble learn-
ing method for classification and regression [59]. Bagging, also known as bootstrap aggre-
gating, is a method to train multiple classifiers on different data samples and decision-tree
algorithms. The reason for this is to separate data in a way that achieves the largest in-
formation gain or reduces impurity in data. In RFs, the bagging method is used to train
multiple decision trees. Data are randomly sampled with replacement from the entire
dataset. Therefore, each decision tree has its own dataset for training. There is an additional
bagging step called feature bagging. While features are selected by computing entropy or
Gini index in decision trees, the features are randomly selected with feature bagging in RFs.
Given n features, usually

√
n features are randomly chosen for classification tasks and n/3

for regression tasks [59]. For one decision tree, multiple feature sets can be created and
the best feature set could be chosen by cross validation using the dataset for the specific
decision tree. The final prediction f using RF is the aggregation of outputs from all decision
trees, given by

f =
1
B

B

∑
n=1

fn(x) (10)

where B is the number of decision trees, fn is the output of the nth decision tree, and x is the
unseen data.

RF shows good performance for unseen data, since it performs well at generalization
and does not overfit. However, disadvantages of RFs are difficulties in interpretation and
incremental learning [59].

3.2.6. XGBoost

XGBoost (eXtreme Gradient Boosting) is an ensemble model with boosting that can be
used for regression and classification. Boosting is a method to train several classifiers in
sequence by giving higher weight to hard samples which are misclassified by the previous
classifier. The final prediction is given by a weighted sum of outputs of all the classifiers.
There are different boosting algorithms such as AdaBoost and Gradient Boosting. XGBoost
is an extension of Gradient Boosting which makes use of a gradient descent algorithm to
minimize errors in the previous tree model [60]. XGBoost made improvements in speed and
performance compared to Gradient Boosting. Parallelization of tree construction is a key
feature of XGBoost which enables faster computation. XGBoost also prevents overfitting
by introducing a regularization term in its objective function, and thus penalizes complex
models. Other features such as tree pruning, cache, and sparse awareness facilitate efficient
learning by XGBoost. XGBoost is one of the best tree-based models at present, thus it can
be a good choice for many real-world tasks [60].
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3.3. Evaluation Metrics

The following section describes the metrics used to evaluate the classification and
regression models.

3.3.1. Classification Metrics

One of the most common methods to evaluate classification models’ performance is to
create a confusion matrix. A confusion matrix is a table that shows the number of samples
which are correctly classified or misclassified, as shown in Table 3 [61,62].

Table 3. Confusion matrix.

Predicted

1 0

Actual
1 True Positive (TP) False Negative (FN)
0 False Positive (FP) True Negative (TN)

Several evaluation metrics can be derived from the confusion matrix. The most widely
used metric is accuracy, which is defined by

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

This is the proportion of correctly classified cases among all cases. However, accuracy
is not appropriate if the data class distribution is skewed. Other metrics, such as recall
and precision, can be used to evaluate performance of a model on imbalanced datasets.
Recall is the proportion of actual positive cases that are correctly classified. It is also called
sensitivity or true positive rate (TPR).

Recall =
TP

TP + FN
(12)

This is useful for tasks such as cancer detection, i.e., when the cost of false-negative
samples is high. Precision, which is also called positive predictive value (PPV), is the
proportion of predicted positive cases that are actually positive.

Precision =
TP

TP + FP
(13)

Precision is useful when the cost of false positive samples is high, for example, email
spam detection. F1-score takes into account both precision and recall. It is defined by the
harmonic mean of recall and precision.

F1 = 2× precision · recall
precision + recall

(14)

A receiver operating characteristic (ROC) curve shows the performance of a classifica-
tion model at different thresholds. It is a plot of true positive rate (TPR), which is recall,
and false-positive rate (FPR), which is 1-specificity. Specificity is the proportion of actual
negative cases that are correctly classified to be negative. Thus, FPR is the proportion
of predicted negative cases that are misclassified as negative cases. If a classifier has a
threshold τ = 1, it predicts all the samples as negative and has specificity = 1 and recall = 0.
If a classifier has τ = 0, it predicts all the samples as positive and has specificity = 0 and
recall = 1. If the curve reaches the point (0, 1), which means specificity = 1 and recall = 1, it
is a perfect classifier. The ROC curve of a random classifier is a diagonal line where TPR is
equal to FPR.
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The area under the curve (AUC) is a measure of model performance described by an
ROC curve. The higher the AUC is, the better the model performance is. Since the range of
an ROC curve is a unit square, a perfect classifier has an AUC of 1.

3.3.2. The Regression Metrics

LinR model tries to make the smallest difference between the predicted value and the
observed value. The difference between these two values is called the residual. Therefore,
the metric to evaluate the performance of the regression model uses the residual. The most
common metric is root-mean-squared error (RMSE) [55]. RMSE is the square root of mean
squared error, which is the average of squared residuals. It is defined by

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

where yi is the observed value of ith data and ŷi is the predicted value for yi. The model fits
better if RMSE is smaller.

R-squared (R2), also called the coefficient of determination, measures how much
variance of the dependent variable is explained by the independent variables [63]. R2 is
given by

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (16)

The maximum value of R2 is 1, which means the model prediction is perfect.

4. Results

The following section highlights the results of the hyperparameter tuning for the dif-
ferent classification and regression models, and compares the obtained evaluation metrics
for the different feature sets, modes and sites. The results were obtained from a single run
of each algorithm with the respective optimal hyperparameter set.

4.1. Results Classification

To obtain the optimal hyperparameters, we used a grid-search algorithm, choosing the
hyperparameters where the model performs best on the validation set. The models were
retrained before being validated against the validation set. Therefore, a different model was
validated each time. After finding the optimal parameters, training was repeated on the
entire training set with optimal parameters. In Table 4, an overview of the hyperparameter
search for the classification task is given. For each parameter with a continuous value range,
a linearly spaced vector of five elements was created as parameter grid. The four rightmost
columns represent the corresponding values that performed best on the validation set when
trained on all EVSE distinguished by standard and augmented feature sets as well as at site
JPL and Caltech.

Table 4. Overview of classification hyperparameters used for grid search.

Model Parameter Values Range Value Caltech
(All, Stand.)

Value Caltech
(All, Augm.)

Value JPL
(All, Stand.)

Value JPL
(All, Augm.)

KNN n neighbors [50, 300] 300 237 300 237

LogR C [0.1, 20] 0.1 0.1 10.005 5.075

RF
criterion {gini, entropy} entropy gini entropy gini

n estimators [50, 300] 300 50 300 175
max_depth [2, 10] 10 10 10 8

XGBoost
n estimators [50, 300] 300 50 50 50
max_depth [2, 10] 10 4 4 4



Energies 2022, 15, 3409 13 of 23

Figure 3 shows the distribution for the AUC (top) and F1 (bottom) scores of each charging
point for the Caltech site. On the left-hand side, the standard feature set is used, and on the
right-hand side, the augmented one. Each of the four models performed better on the AUC
score than the naïve approaches. Using the augmented feature set, AUC score for both modes
was increased. LogR in mode ‘individual’ benefits from the additional features. Overall
XGBoost performed best on AUC score for mode ‘all’ on the augmented set with a median
of 0.89, but LogR is only slightly worse for mode ‘individual’ with a median of 0.88. The
application of the naïve approach ‘average’ for mode ‘all’ resulted in an AUC score of 0.5 and
a F1 score of 0. This indicates that the model did not distinguish between class points. Rather,
the naïve approach ‘average’ for mode ‘all’ predicts 0 for all data points. Considering median
F1 score, XGBoost performs slightly better than the naïve approaches ‘previous week’ and
‘previous day’ on mode ‘individual’, whereas the naïve approach ‘average’ reaches the highest
F1 score. By using the augmented feature set, an improvement of the F1 score is noticeable,
especially for mode ‘all’ where the median for XGBoost increases by 0.23 and for RF by 0.42.
While XGBoost has the highest median F1 score with 0.49, it is hardly higher than the one
from the naïve approach ‘average’. It is noticeable that the mode ‘individual’ has a greater
dispersion of F1 scores, but also higher values are achieved for individual charging points
compared to mode ‘all’. Except for LogR, mode ‘all’ achieves generally slightly better median
results for the augmented feature set at Caltech.
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To further investigate which mode is favorable, we examined all predictions of the
four models: LogR, KNN, RF and XGBoost with a F1 score equal to 0. On the left, Figure 4
shows the F1 and AUC score for all charging points with a F1 score of 0 for the mode
‘individual’ and the corresponding pair for the same charging point for mode ‘all’. On the
right, the mode ‘all’ and F1 scores equal to 0 are displayed with the corresponding score
pair for mode ‘individual’.



Energies 2022, 15, 3409 14 of 23

Energies 2022, 15, x FOR PEER REVIEW 14 of 24 
 

 

  
(a) (b) 

Figure 3. (a) AUC and F1 score for the different models and modes at Caltech for standard feature 
set; (b) AUC and F1 score for the different models and modes at Caltech for augmented feature set. 

To further investigate which mode is favorable, we examined all predictions of the 
four models: LogR, KNN, RF and XGBoost with a F1 score equal to 0. On the left, Figure 
4 shows the F1 and AUC score for all charging points with a F1 score of 0 for the mode 
‘individual’ and the corresponding pair for the same charging point for mode ‘all’. On the 
right, the mode ‘all’ and F1 scores equal to 0 are displayed with the corresponding score 
pair for mode ‘individual’. 

  
(a) (b) 

Figure 4. (a) F1 score equal to 0 for mode ‘individual’ and corresponding scores of mode ‘all’; (b) F1 
score equal to 0 for mode ‘all’ and corresponding scores of mode ‘individual’. 

The left graph in Figure 4 displays few cases where using mode ‘all’ leads to F1 scores 
from around 0.1 up to 0.4 higher than the ones for mode ‘individual’. Comparing the two 
graphs shows that there are more model predictions where the mode ‘all’ achieves F1 
scores higher than 0 than the other way round. To determine when F1 score is low, Figure 
5 shows the datapoints of occupancy in the test data against the datapoints of occupancy 
in the training data, colored by their corresponding F1 score for mode ‘individual’. 
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The left graph in Figure 4 displays few cases where using mode ‘all’ leads to F1 scores
from around 0.1 up to 0.4 higher than the ones for mode ‘individual’. Comparing the two
graphs shows that there are more model predictions where the mode ‘all’ achieves F1 scores
higher than 0 than the other way round. To determine when F1 score is low, Figure 5 shows
the datapoints of occupancy in the test data against the datapoints of occupancy in the
training data, colored by their corresponding F1 score for mode ‘individual’.
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Figure 5. Occupancy count in training and test data and corresponding F1 score.

The figure illustrates that charging points have a higher F1 score if they have higher
occupancy and a lower one if they are rarely occupied. For charging points with a low
relative occupancy, a model that has been trained on all charging points can therefore
achieve better results in some cases. This is reflected in the lower scatter of the F1 score for
the augmented feature set and mode ‘all’ compared to mode ‘individual’ in Figure 3.

Figure 6 shows the distribution for the AUC (top) and F1 (bottom) scores for each
feature set and mode for the JPL site.
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Figure 6. (a) AUC and F1 score for the different models and modes at JPL for standard feature set;
(b) AUC and F1 score for the different models and modes at JPL for augmented feature set.

Each of the four models performs better on the median AUC score than the naïve
approaches, except for LogR and mode ‘individual’ as well as KNN and mode ‘all’. As with
Caltech, the AUC score is noticeably higher when using the augmented feature set, and in
total, XGBoost achieves the best median AUC score for mode ‘all’ on the augmented set.
The advantage of the augmented feature set is particularly evident concerning the F1 score.
For the standard feature set, none of the models perform better than the naïve approach
‘average’. Using the augmented feature set RF for mode ‘individual’ and XGBoost results in
higher F1 scores than the naïve approach ‘average’, and XGBoost again obtains the highest
score. Since JPL does not have any charging points with very low relative occupancies
compared to Caltech, the comparison of the individual and all modes shows more similar
performance metrics. Using the augmented feature set, the mode ‘individual’ achieves the
best results for XGBoost in specific cases, evident from the longer boxplot whiskers, while
the mode ‘all’ is slightly better when considering the median.

Figure 7 shows actual occupancy (ground truth), predicted probability, and resulting
prediction for the four models for the last week of January 2020 and a sample charging
point at the JPL site based on mode ‘all’ and standard feature set. If the ground truth
is 1, the charging point is occupied, and available when 0. Considering the first day,
26 January 2020, LogR and KNN falsely predict the charging point will be occupied for a
short amount of time in the afternoon, while RF and XGBoost forecasts are correct, with
XGBoost’s probability being close to 0. This day was a Sunday, so the probability that a
charging point at a workplace is occupied can be assumed to be near 0. On the second day,
LogR and RF fail to predict the occupancy of the charging point, in contrast to KNN and
XGBoost, which make a correct prediction for most of the day. All in all, for this sample
week, XGBoost performs best, although the probability is worse on the last day compared
to the other algorithms.
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Figure 7. Forecasted occupancy probability for last week of January 2020 for one charging point at
JPL based on mode ‘all’ and standard feature set.

The comparison of the two sites shows that the addition of features can improve
performance, and that, in the case of Caltech for mode ‘individual’, even the comparatively
simple linear model LogR performs better than the advanced models. In addition, for the
augmented feature set, all four models outperform the naïve approaches in terms of AUC
score. For Caltech, the heterogeneous distribution of the average charging point occupancy
is reflected in the scatter of the F1 score, whereby the mode ‘all’ leads to a reduction in this.
With JPL, a narrower distribution can be seen and considerably better results are achieved
overall. For the augmented feature set, the mode ‘individual’ achieves better results in the
individual case both at Caltech and at JPL, while the mode ‘all’ performs better in terms of
the median. For locations with a large discrepancy in the relative charging point occupancy,
using a model trained on all data for charging points with a low relative occupancy can lead
to better predictions. For certain charging points, an individually trained model achieves
better performance. Overall, both approaches achieve very good results for the JPL site
using the augmented feature set.
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4.2. Results Regression

The following section shows the results of the hyperparameter optimization and
discusses the obtained metrics of the different regression models. As in Section 4.1, for
each parameter with a range of continuous values we used a linearly spaced vector of five
elements for the parameter grid. Table 5 shows the corresponding values that performed
best on the validation set distinguished by standard and augmented feature set and site
JPL and Caltech.

Table 5. Overview of regression hyperparameters used for grid search.

Model Parameter Values Range Value Caltech
(All, Stand.)

Value Caltech
(All, Augm.)

Value JPL
(All, Stand.)

Value JPL
(All, Augm.)

KNN n_neighbors [20, 200] 110 20 110 20

LinR alpha [1 × 10−5, 1] 1 1 × 10−5 1 × 10−5 1 × 10−5

RF
n_estimators [50, 300] 112 175 50 175
max_depth [2, 10] 10 10 6 8

XGBoost
n_estimators [50, 300] 50 300 112 300
max_depth [2, 10] 6 2 4 2

Figure 8 shows R2 (top) and RMSE (bottom) for all models differentiated by the
standard and augmented feature set.

Energies 2022, 15, x FOR PEER REVIEW 18 of 24 
 

 

Figure 8 shows R2 (top) and RMSE (bottom) for all models differentiated by the stand-
ard and augmented feature set. 

  
(a) (b) 

Figure 8. (a) R2 and RMSE for regression models at Caltech for standard and augmented feature set; 
(b) R2 and RMSE for regression models at JPL for standard and augmented feature set. 

The left part represents Caltech, and on the right, JPL is displayed. The naïve ap-
proach ‘previous day’ performs worst in all cases. Considering Caltech and the standard 
feature set, only XGBoost has better scores than the naïve approach ‘previous week’, while 
the approach ‘average’ has the highest R2 score. The results of the naïve approach ‘aver-
age’ are similar to those achieved by RF for JPL and augmented feature set. Over both 
sites, XGBoost is better than the naïve approaches when using the augmented feature set, 
and using XGBoost gave the best scores both for R2 and RMSE metrics. Like the classifica-
tion task, using additional features yields higher performance rates. In contrast to the clas-
sification task, the models perform better for Caltech in regard to the RMSE. One of the 
reasons for this is the lower maximum occupancy number compared to JPL. Caltech has 
54 charging points, but for the test set, a maximum occupancy number of 34 and average 
occupancy of 7, while JPL has a maximum of 52 out of 52 and an average of 14.4. Figure 9 
displays the actual number of occupied charging points (ground truth) and the predicted 
number for both feature sets (standard = ds_, augmented = ds_augmented) for the four 
models for the last week of January 2020. KNN, for example, shows a noticeable deviation 
on Monday 27 January in relation to the augmented feature set forecast. The model treats 
the day similarly to the day before, which was not a working day. One possible reason 
why the model behaves this way is that Monday of the previous week (20 January) was a 
holiday in California, which is reflected in the augmented feature set. Looking at the re-
sults for KNN and the standard feature set, the prediction is not affected by this as much, 
but still shows a high deviation from the ground truth. 

Figure 8. (a) R2 and RMSE for regression models at Caltech for standard and augmented feature set;
(b) R2 and RMSE for regression models at JPL for standard and augmented feature set.

The left part represents Caltech, and on the right, JPL is displayed. The naïve approach
‘previous day’ performs worst in all cases. Considering Caltech and the standard feature set,
only XGBoost has better scores than the naïve approach ‘previous week’, while the approach
‘average’ has the highest R2 score. The results of the naïve approach ‘average’ are similar to
those achieved by RF for JPL and augmented feature set. Over both sites, XGBoost is better
than the naïve approaches when using the augmented feature set, and using XGBoost gave
the best scores both for R2 and RMSE metrics. Like the classification task, using additional
features yields higher performance rates. In contrast to the classification task, the models
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perform better for Caltech in regard to the RMSE. One of the reasons for this is the lower
maximum occupancy number compared to JPL. Caltech has 54 charging points, but for the
test set, a maximum occupancy number of 34 and average occupancy of 7, while JPL has a
maximum of 52 out of 52 and an average of 14.4. Figure 9 displays the actual number of
occupied charging points (ground truth) and the predicted number for both feature sets
(standard = ds_, augmented = ds_augmented) for the four models for the last week of
January 2020. KNN, for example, shows a noticeable deviation on Monday 27 January in
relation to the augmented feature set forecast. The model treats the day similarly to the day
before, which was not a working day. One possible reason why the model behaves this
way is that Monday of the previous week (20 January) was a holiday in California, which is
reflected in the augmented feature set. Looking at the results for KNN and the standard
feature set, the prediction is not affected by this as much, but still shows a high deviation
from the ground truth.
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5. Discussion

Our results demonstrate that using supervised learning algorithms are an appropriate
method to predict specific and overall charging station occupancy. The applied models
were chosen in such a way that they represent a wide variety of supervised learning
algorithms. LogR and LinR depict rather simple linear models, while KNN is considered
a simple non-linear method. RF and XGBoost represent nonlinear tree-based ensemble
learning methods. Additionally, XGboost is an advanced implementation of the gradient
boosting algorithm and is widely used due to its tendency to yield highly accurate results.
Regarding the limitations of using only these algorithms, it could be argued that using
different models such as support vector machines or neural networks might achieve better
results. We used three different naïve approaches, which provide a robust benchmark to
compare the results of the applied supervised learning algorithms. Planned comparisons
revealed that the naïve approach ‘average’ provides good results despite its simplicity. The
analysis supports the findings of Motz et al., that adding features leads to substantiallly
better results [49]. In line with the previously mentioned study, we find that higher relative
charging occupancy of a charging point leads to better predictability of charging point
occupancy [49]. Contrary to the findings of Motz et al., we did not find that using individual
charging point data is generally superior to using all data, especially considering the F1
score [49]. By using the F1 score as optimization metric for the hyperparameter tuning,
better results might be achieved. Another limitation of this work are ranges that were set
for the hyperparameter tuning. Referring to the optimal hyperparameters presented in
Tables 4 and 5 for the standard feature set, the parameters are sometimes at the limit of the
grid search. Consequently, there may be room for improvement by extending these ranges.
Another limitation is that we conducted a single run for each algorithm. Using different
seeds and presenting the average of multiple runs might decrease performance. Since in
some cases, e.g., for Caltech, the results are quite close, results from multiple runs might
have led to the naïve approach ‘average’ exceeding the other algorithms. Considering
the regression task, the naïve approach ‘average’ yields comparatively good results. One
could argue that small improvements on the forecast do not match the additional overhead
and complexity accompanied by the implementation of supervised learning algorithms
such as XGBoost. For a real-word scenario, where an app or webpage would use the
predictions to inform users on which charging point will be occupied, data are most likely
received over time in streams of instances or batches. In this case, models use all the
information to a specific time step t to predict the new target variable arriving at time
step t + 1, which is known as incremental learning [64]. However, changes caused by
dynamic environments or events such as COVID-19 bear the risk of concept drift. Concept
drift means that the relationship between the input and target variable changes over time.
Therefore, this evolution would most likely negatively impact the model’s prediction. To
overcome concept drift, Hoens et al. discussed several options classified by three main
categories: adaptive base learners, learners which modify the training set and ensemble
techniques [64]. Zukov et al. further proposed a proximity-driven streaming random
forest, which exploits combinations of the aforementioned [65]. Therefore, an apparent
limitation of this study is that we used a static dataset for training and testing our models
and excluded the COVID-19 period. It remains unclear how well the applied models could
process incremental learning and the change in the underlying data.

6. Conclusions

This research applies four classification and four regression models to charging session
data to predict charging point occupancy for a public and a workplace site using the ACN-
data. As a benchmark, we compare our models to three naïve models with different metrics.
Hyperparameter tuning was performed using a grid-search algorithm to find the optimal
model configurations for both classification and regression using two different feature sets
for both sites. Considering additional features improved the models’ predictions. Two
training modes were compared for the classification task. Models were trained either on all
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data, leading to a single model for each site, or on individual charging point data, resulting
in one model per charging point. Overall, both approaches lead to high scores for the
workplace site, while charging points with a higher relative occupancy rate had higher F1
scores. Which mode is more preferable depends on the relative charging point occupancy.
All in all, using mode ‘all’ achieved slightly better results considering the median. For both
classification and regression tasks, the model XGBoost showed the best results. Future work
should consider implementing incremental learning and using all available data, including
data from the COVID-19 period, to investigate the effects of concept drift. The possibility of
comparing deep-learning methods with machine-learning algorithms to predict charging
point occupancy warrants further investigation. Furthermore, future studies should aim
to replicate results using different datasets. On top of that, integrating charging point
occupancy prediction into an app or webpage is desirable in future work.
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GHG Green House Gas
KNN k-Nearest Neighbor
LinR Linear Regression
LogR Logistic Regression
RF Random Forest
RMSE Root Mean Square Error
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TN True Negative
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