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Abstract

Increasing the accuracy of theory simulations for high-energy particle collisions is indis-
pensable to take full advantage of the vast amount of data that has been and will continue
to be collected at the LHC. Any deviation emerging from the comparison of theoretical
predictions based on the SM of particle physics and experimental measurements might
potentially be a signal of new and unexplored physics.

A simulation of a LHC collision event relies on many theoretical tools, among others
fixed-order calculations and parton showers. The former is particularly suitable for the
description of the hard core of the events, while the latter is more appropriate when
multiple soft and/or collinear emissions from hard down to non-perturbative scales are
involved. The complementary nature of the two methods makes their combination
extremely important to obtain realistic theoretical predictions. Nowadays, the frontier of
simulation accuracy is represented by the possibility to interface NNLO QCD predictions
to parton showers.

We present the MiNNLOPS method, an extension of the MiNLO′ merging algorithm,
which allows to reach NNLO QCD accuracy for physics observables inclusive over QCD
radiation. Moreover, NLO and LO accuracy can also be claimed for observables involving
one or two hard jets, respectively. All that is done without spoiling the logarithmic
accuracy of the parton shower, to which the MiNNLOPS predictions are interfaced,
thanks to the Powheg matching approach. In particular, we describe the extension of
the MiNNLOPS framework to general colour-singlet production.

We apply our algorithm to diboson production processes, which are of fundamental
importance in the LHC research programme. Predictions using the MiNNLOPS method
are reported for Zγ production, also including the effect of anomalous triple gauge
couplings. For the relevant class of massive diboson processes, we show results for
W+W− and ZZ production, where in the latter case the gluon-gluon loop-induced
channel is also included at NLO accuracy and properly interfaced to the parton shower.
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Zusammenfassung

Um die enormen Datenmengen, die am LHC bisher gesammelt wurden und weiterhin
gesammelt werden, voll auszunutzen, ist eine höhere Genauigkeit bei der Simulation
von hochenergetischen Teilchenkollisionen unentbehrlich. Selbst kleinste Abweichungen,
welche aus dem aus dem Vergleich zwischen den theoretischen Vorhersagen des Stan-
dardmodells (SM) der Teilchenphysik und den experimentellen Messungen hervorgehen,
könnte ein Anzeichen für neue und unerforschte Physik liefern.

Die Simulation von Kollisionsereignissen am LHC beruht auf verschiedensten the-
oretischen Werkzeugen, dazu gehören die Berechnungen zu fester Ordnung in der
Störungstheorie und die Modellierung durch sogenannte Partonenschauer. Erstere sind
insbesondere dafür geeignet den harten Kern der LHC Ereignisse zu beschreiben, letztere
sind dagegen notwendig, wenn mehrere energiearme und/oder kollineare Abstrahlungen
von harten bis runter zu nicht-perturbativen Energieskalen berücksichtigt werden. Die
komplementäre Natur dieser beiden Methoden macht ihre Kombination besonders wichtig
um realistische theoretische Vorhersagen zu erhalten. Das derzeitig höchste Ziel um die
Genauigkeit von LHC Simulationen zu verbessern liegt darin NNLO Vorhersagen in der
perturbativen Quantenchromodynamik mit Partonschauern zu verbinden.

In dieser Arbeit, wird die sogenannte MiNNLOPS Methode präsentiert, welche eine
Erweiterung des “MiNLO′ merging” Algorithmus darstellt. Diese Methode erlaubt
es NNLO QCD Genauigkeit für physikalische Observablen zu erreichen, die inklusiv
bezüglich zusätzlicher QCD Strahlung sind. Gleichzeitig, wird NLO bzw. LO Genauigkeit
erlangt für Observablen, die auf jeweils ein bzw. zwei harten Jets beruhen. Dank der
zugrundeliegenden Powheg Methodik zur Verbindung mit dem Partonenschauer, erfolgt
dies ohne die logarithmische Genauigkeit des Partonenschauers zu beeinträchtigen, mit
dem die MiNNLOPS Vorhersagen verbunden ist. Im Rahmen dieser Arbeit, werden wir
insbesondere darauf eingehen wie sich MiNNLOPS Methode für die Produktion von
generellen farbneutralen Endzuständen verallgemeinern lässt.

Unser Algorithmus wird auf die Vektorbosonpaarproduktion angewendet, welche von
fundamentaler Bedeutung für das LHC-Forschungsprogramm ist. Es werden Vorhersagen
mittels der MiNNLOPS Methode für die Produktion von Zγ-Endzuständen berechnet
sowohl im SM als auch unter Berücksichtigung von Effekten durch anomalen Vektor-
bosonselbstkopplungen. Bezüglich der Produktion von zwei massiven Vektorbosonen
zeigen wir Ergebnisse für die W+W−-Produktion und die ZZ-Produktion, wobei im
letzteren Fall wir ebenfalls den loop-induzierten Beitrag durch Gluonenfusion auf NLO-
QCD-Genauigkeit mitnehmen und konsistent mit dem Partonschauer verbinden.
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1 Introduction

Developed in the second-half of the twentieth century through the cooperative effort of
many physicists all over the world, the Standard Model (SM) of particle physics is one
of the most comprehensive and predictive theory that has ever been conceived. Since it
was finalized in the mid-1970s, the SM has received continuous confirmations from many
experiments and no compelling deviation from its predictions has been found so far.

1.1 Basic facts of the Standard Model

The SM describes the elementary constituents of nature and their interactions in a
Quantum field theory (QFT) language. Particles comprising the entire matter of the
known universe are associated to quanta of fermionic (spin 1/2) relativistic quantum
fields, while carriers of the three fundamental forces accounted for by the SM (the
electromagnetic, weak and strong ones) are related to bosonic (spin 1) fields. Finally,
the Higgs boson, a scalar (spin 0) field named after one of the theoretical physicists
who first proposed its existence, plays the special role of providing masses to all SM
massive particles via a spontaneous symmetry breaking mechanism. These elementary
degrees of freedom enter one Lorentz invariant, renormalizable 1 Lagrangian which is
symmetric under the SU(3)c × SU(2)L × U(1)Y gauge group. This Lagrangian, together
with ninteeen experimental inputs, which are free parameters of the theory, can be used
to describe with astounishing accuracy a vast amount of the physics we observe.

Each of the force-carrier fields belongs to the adjoint representation of one of the three
simple, compact subgroups of the full SM gauge group. The massless gluon field is the
vector field which mediates the strong force and belongs to the adjoint representation
of SU(3)c, the group of colour symmetry. We denote this field by GµA, where µ and
A = {1, . . . , 8} are a Lorentz index and the colour index of the adjoint representation,
respectively. All fermionic matter fields which transform under SU(3)c belong to its
fundamental representation and are endowed with a colour quantum number: they are
spinor fields named quarks qα (where α = {1, 2, 3} is the colour index of the fundamental
representation). Quantum chromodynamics (QCD) is that branch of the SM describing
strong interactions according to the QCD Lagrangian [1] (we adopt the choice of natural

1 For a brief recap of the concept of renormalizability in QFT, see discussion in Section 2.1.1 of this
work.
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1 Introduction

units ~ = c = 1 and the Einstein convention for repeated indices) 2:

LQCD = −1
4G

A
µνG

µν
A +

∑
q

q̄αiγµDµαβqβ + g2
S

32π2 θQCDG̃
B
µνG

µν
B . (1.1)

The first term of Eq. (1.1) describes the propagation and self-interactions of the eight
gluon fields via the gluon field strength tensor:

GAµν = ∂µG
A
ν − ∂νGAµ − gSfABCGBµGCν , (1.2)

where gS (often appearing in the combination αs = g2
S/(4π)) is the strong coupling

constant. If tA are the generators of the SU(3)c, fABC are the structure constants of the
associated Lie algebra, i.e [tA, tB] = ifABCtC . The second term of Eq. (1.1) accounts for
the propagation and interactions of the quark fields, where γµ are the four Dirac gamma
matrices, q̄ = q†γ0 is the adjoint Dirac field and Dµαβ the covariant derivative, defined as:

Dµαβ = ∂µδαβ + igSt
A
αβG

A
µ . (1.3)

In the second term of the QCD Lagrangian, the sum is carried out over the six quark species
of the SM, each of them coming in three colours. Specifically, we have q = u, d, s, c, b, t,
denoting the up, down, strange, charm, bottom and top quarks, respectively. The
generators tA obey three relevant colour-algebra relations: tAαγtAγβ = CF δαβ , fECDfBCD =
CAδEB and tAαβt

B
αβ = TRδAB, where CF = 4/3, CA = 3 and TR = 1/2 are the colour-

factors respectively associated with the emission of a gluon from a quark/antiquark,
the emission of a gluon from another gluon and the splitting of a gluon into a quark-
antiquark pair [2]. Finally, the third term of Eq. (1.1), also dubbed the θ-term Lθ, is
another gauge invariant renormalizable contribution that can be added to the QCD
Lagrangian, where G̃Aµν = εµνρδGAρδ/2 is the dual gluon field strength tensor and εµνρδ the
completely antisymmetric Levi-Civita tensor. Since it can be written in terms of a total
derivative, it has no impact on theoretical calculations based on a perturbative approach
(see Section 2.1), but it does have non-vanishing physical effects at the non-perturbative
level, due to the non-trivial topological structure of the QCD vacuum. One of these
physical effects would be the violation of the charge and parity (CP) discrete symmetry in
strong interactions by an amount dictated by the value of θQCD. Anyway, experimental
measurements on the neutron electric dipole moment constrain its value to be surprisingly
small (θQCD < 10−10 [3]), which poses serious fine-tuning issues (something usually
referred to as strong CP problem, discussed at length in the literature and more recently
in Ref. [4]).

Overall, the QCD Lagrangian of the SM comes with two free parameters, whose values
are not predicted by the theory: gS and θQCD.

2 The QCD Lagrangian in Eq. (1.1) should be completed with a mass term for the quarks. Since all
particle masses originate from the Higgs sector within the SM, we omit such a term here and we
account for this contribution in Eq. (1.15), presented later in our discussion. In this brief summary we
also refrain from explicitly including gauge-fixing or ghost terms, which are indispensable in QCD
perturbation theory and would deserve a dedicated discussion on their own.
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1.1 Basic facts of the Standard Model

Three massless vector bosons W I
µ (with I = {1, 2, 3}) belong to the adjont representa-

tion of weak isospin SU(2)L and are the force-carriers of the weak force, while a single
massless vector field Bµ is associated to the hypercharge symmetry group U(1)Y . The
SU(2)L group is chiral in the SM, since the left- and right-handed components of the
Dirac matter fields transform according to different group representations. The quark
fields are both colourful and weakly charged, and their left-handed components are
grouped in three generations which transform like SU(2)L doublets:

Q =
(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
. (1.4)

The six remaining right-handed fields qR are instead SU(2)L singlets. Together with
quarks, six lepton fields ` contribute to the matter content of the universe, where
` = e, µ, τ, νe, νµ, ντ stand for the electron, the muon, the tau and the three corresponding
neutrinos, respectively. Differently from quarks, leptons are SU(3)c singlets, but weakly
charged. As with the quark fields, their left-handed components come in three SU(2)L
doublets:

L =
(
νe, L
eL

)
,

(
νµ,L
µL

)
,

(
ντ, L
τL

)
, (1.5)

and the right-handed ones `R are weak-isospin singlets. The propagation of these degrees
of freedom and their weak/hypercharge interactions are described by the electroweak
(EW) sector of the SM Lagrangian [1]:

LEW =− 1
4W

I
µνW

µν
I −

1
4BµνB

µν +
∑
L

L̄iiγµ(∂µδij + igW τ
I
ijW

µ
I + ig′δijY

`
LB

µ)Lj

+
∑
`

¯̀
Riγµ(∂µ + ig′Y `

RB
µ)`R +

∑
Q

Q̄iiγµ(igW τ IijW
µ
I + ig′δijY

q
LB

µ)Qj

+
∑
q

q̄Riγµ(ig′Y q
RB

µ)qR . (1.6)

The first two terms of the previous equation are written using the field strength tensor
W I
µν for the weak isospin group and Bµν for the hypercharge group. They are defined as:

W I
µν = ∂µW

I
ν − ∂νW I

µ − gW εIJKW J
µW

K
ν and Bµν = ∂µBν − ∂νBµ , (1.7)

where gW is the EW gauge coupling and εIJK are the structure constants of the SU(2)L
Lie algebra with generators τ I , i.e [τ I , τJ ] = εIJKτK . We notice that, being U(1)Y an
abelian group, no self-interaction terms are generated by Bµν . The remaining terms of
Eq. (1.6) account for the lepton and quark electroweak interactions: weak interactions
are proportional to gW , while hypercharge ones are constructed using the U(1)Y coupling
g′ weighted by the different matter field hypercharges Y = {Y `

L, Y
`
R, Y

q
L , Y

q
R}. Clearly,

the indices i, j vary over the two components of the SU(2)L fundamental representation.
We stress that we have not reported the derivative term for the quark fields in Eq. (1.6),

5



1 Introduction

since it was already included in the QCD part of the Lagrangian in Eq. (1.1), so that, by
adding up the two equations the full covariant derivative for the quark fields is correctly
recovered (being the quark EW interactions colour diagonal).

Therefore, the electroweak Lagragian adds to the theory two free parameters, namely
gW and g′.

The SM Lagrangian is then completed by adding the terms involving the Higgs field,
which is given by a complex SU(2)L doublet:

φ =
(
φ+

φ0

)
, (1.8)

and enters the Higgs sector of the SM Lagrangian [1]:

LHiggs =
(
∂µφ†i + igW τ

I
kiW

µ
I φ
†
k + i

g′

2 B
µφ†i

)(
∂µφi − igW τ IijW I

µφj − i
g′

2 Bµφi
)

− V(φ†φ) + Lyuk , (1.9)

where the first line describes the propagation and the electroweak interactions of the
Higgs field. The term V(φ†φ) denotes the Higgs potential, which is quadratic in the field
φ and plays a crucial role in the spontaneous symmetry breaking mechanism [5]:

V(φ†φ) = λ(φ†φ)2 − µ2φ†φ . (1.10)

Since λ and µ2 are two positive definite parameters, the function in Eq. (1.10) has a
set of non-zero degenerate minima at classical level which are located on the circle
|φ|2 ≡ v2 = µ2/λ, where v is the Higgs vacuum expectation value (VEV). Even if LHiggs
is SU(2)L × U(1)Y invariant, the VEV of the theory:

〈φ〉 = 1√
2

(
0
v

)
(1.11)

is not, and it breaks SU(2)L × U(1)Y to the residual electromagnetic symmetry group
U(1)em, associated to the only unbroken generator Qij ≡ τ3,ij + Y δij (Gell-Mann–
Nishijima formula). This generator is identified with the electric charge operator: the
hypercharge values Y are indeed chosen in such a way to reproduce the measured electric
charges of the SM particles (eigenvalues of Qij), once the transformation under the weak
isospin gauge group is fixed (τ3,ij has zero eigenvalues on right-handed matter fields). We
can then parametrize the Higgs field fluctuations around the VEV of Eq. (1.11) as:

φ = eiτkξk/v
(

0
(v +H)/

√
2

)
(1.12)

in terms of three massless Goldstone modes ξk, which correspond to the broken generators
of SU(2)L × U(1)Y according to the Goldstone theorem [6], and a massive field H. The
latter has been identified with the neutral scalar field, first observed at the Large Hadron

6



1.1 Basic facts of the Standard Model

Collider (LHC) experiment in 2012 [7, 8]. By making use of the gauge invariance of
the SM Lagrangian, we can choose a specific gauge (unitary gauge) where the three
Goldstone modes disappear from the Lagrangian, but effectively provide longitudinal
components (and therefore masses) to three weak bosons: the two gauge bosons W 1/2

µ

(or, better said, to the electric charge eigenstates W±µ = (W 1
µ ∓ iW 2

µ)/
√

2, named W±

bosons) and the gauge boson Zµ (so called Z0 or simply Z boson). The neutral gauge
boson Z is associated to the third broken generator of SU(2)L × U(1)Y and is obtained
from the transformation:(

W 3
µ

Bµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
Zµ
Aµ

)
. (1.13)

Performing this rotation, the mass eigenstates of the theory are correctly defined. In
particular, Aµ is the massless vector field of the U(1)em group: its quanta are identified
with photons, whose propagation and interactions are described by Quantum electro-
dynamics (QED). The angle θW (Weinberg angle) is fixed by the theory and given by
sin2 θW = g′ 2/(g2

W + g′ 2). Using Eq. (1.12) and Eq. (1.13) in Eq. (1.9) with a unitary
gauge, the Higgs, W± and Z boson masses are predicted by the SM to be 3:

mH =
√

2λv , mW = v

2gW and mZ = v

2

√
g2
W + g′ 2 . (1.14)

Moreover, the Higgs trilinear and quartic self-couplings, together with its interactions
with massive gauge bosons, are also fixed. Therefore, the first two terms of Eq. (1.9)
discussed so far just require the inclusion of two more free parameters, which can be
chosen to be, for instance, λ and v.

The last part of Eq. (1.9), i.e Lyuk, contains the interactions of the Higgs field φ with
the matter fields:

Lyuk =− Y e
mnL̄

m
i φie

n
R − Y d

mnQ̄
m
i φid

n
R − Y u

mnQ̄
m
i (iσ2,ijφ

?
j )unR + h.c. (1.15)

where σ2 is the second Pauli matrix and h.c. stands for the complex conjugate of the
previous part of the equation, required to have a real Lagrangian. In Eq. (1.15), we
have also introduced the notation enR ∈ {eR, µR, τR} (right-handed charged leptons),
unR ∈ {uR, cR, tR} (right-handed up-type quarks) and dnR ∈ {dR, sR, bR} (right-handed
down-type quarks). Finally, Y e

mn, Y u
mn and Y d

mn are complex 3 × 3 matrices (named
Yukawa matrices). We notice that right-handed neutrinos have no interaction with SM
particles, so that in practise they do not enter the SM theory. Once the Higgs field
assumes a non-zero VEV, the first term of Eq. (1.15) can be diagonalized without any
consequence for the other terms of the SM Lagrangian. That provides mass terms for
the charged leptons, which depend on the three eigenvalues of Y e

mn (Yukawa couplings),
i.e ye, yµ, yτ , not predicted by the theory. Neutrinos are massless in the SM. The last

3 These mass values are clearly the tree-level ones: more accurate predictions for these parameters can
be obtained by including perturbative corrections. In this respect, the instability under perturbative
corrections of the SM prediction for the Higgs mass mH is at the root of the well-known hierarchy
problem (see Section 1.3).

7



1 Introduction

two terms of Lyuk give masses to the six quark fields, where two terms are needed to
separately provide masses to the down and up components. One needs unitary matrices
acting differently on the right- and left-handed fields and on the up- and down-type
components to move from the flavour to the mass basis of the quark fields (namely, the
complex matrices Y d

mn and Y u
mn are diagonalized by two bi-unitary transformations). The

six Yukawa eigenvalues of Y u
mn and Y d

mn resulting from this procedure are additional
free parameters which define the quark masses. But since the W± boson interactions
(see Eq. (1.6)) mix the up and down components, these interactions written in terms of
massive quark eigenstates will be modified by a 3× 3 matrix VCKM, named the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [9]: its effect is to allow for interactions that mix
quark generations of Eq. (1.4) with each others. As mentioned above, a similar term is
missing for the lepton sector, since neutrinos are massless and one has some residual
freedom to rotate a generation-mixing matrix away. Since VCKM can be parametrized by
three real angles θ12, θ13, θ23 and a complex phase δ, that brings the number of SM free
parameters to ninteen.

1.2 Experimental evidences of particle physics

The path that brought to the formulation of the SM as it is commonly accepted nowadays
is one of the most exciting example of how theory and experimental measurements can
reinforce and support each other. As it is clear from a quantum field theory perspective,
higher and higher energies need to be probed to explore the elementary constituents of
nature and, to this end, particle accelerators turned out to be fundamental tools.

Before 1974, the three fundamental forces described by the SM were postulated in order
to account for observed phenomena, such as electromagnetism, the radioactive beta decay
(first explained by Fermi in 1933 in terms of a new 4-fermion contact interaction [10])
and the existence of nuclei, i.e bound states of neutrons and protons. But at that
time, only the photon was known to exist. Among leptons, the electron and the muon
(the latter discovered by Carl D. Anderson and Seth Neddermeyer in 1936 studying
cosmic radiation [11]) were known, together with neutrinos, whose existence was first
postulated by Pauli in 1930 [12], still in the context of beta decays. The idea of quark
was first introduced by Murray Gell-Mann and George Zweig in 1964 [13] to explain the
approximate SU(3) flavour symmetry in the spectrum of low-mass hadrons (mesons and
baryons). It soon became clear that three different elementary particles (the up, down
and strange quarks) were needed, having spin 1/2 to accomodate the observed meson and
baryon spins. Moreover, quarks had to be endowed with a new quantum number, named
colour, with three possible values to reconcile Fermi-Dirac statistics with the existence
of fully symmetric baryon states like the ∆++ baryon. The introduction of the colour
hypothesis had to be supplemented by the confinement assumption, according to which
only colour-singlet states can exist as asymptotic states, to justify the limited amount of
measured hadron species.

Results from electron-proton Deep Inelastic Scattering (DIS) experiments carried
out in California at the Stanford Linear Accelerator Center (SLAC) in 1968-69 first
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supported the idea that protons comprise of point-like constituents (as confirmed by the
scaling behaviour of proton structure functions) of half-integer spin (suggested by the
experimental verification of the Callan-Gross relation [14]). An important step sheding
further light on experimental observations was the theoretical discovery of asymptotic
freedom in 1973 by David Gross, Frank Wilczek [15] and David Politzer [16]: that allowed
to explain why, despite the confinement hypothesis, quarks within the proton behaved as
free particles at very high energy. The running behaviour of the strong coupling constant,
connecting the confined and the asymptotically free regimes of QCD, was then confirmed
by many data collected at different energy scales by numerous collaborations over the
years. Once the quark masses are neglected, αs is the only free parameter of QCD and
its accurate determination is still a crucial task (see Ref. [17] for a recent review). Its
value is generally extracted by a proper combination of measurements from different
fields, such as hadronic τ and bottonium decay measurements, together with studies on
various processes recorded at DIS experiments, electron-positron and hadron colliders.
Hints of the underlying SU(3)c symmetry of QCD, with three as a number of colours,
came from different measurements, such as the one of the neutral pion decay rate into
two photons or of the ratio R, i.e the ratio of the e+e− total hadronic cross section to
the cross section for µ+µ− production. The latter originates from data collected over
the years in electron-positron colliders from various experiments operating at different
energy scales [18]. Specifically, R measurements in low energy regions were performed
from 1977 to 1999 by the DASP and PLUTO experiments of DORIS accelerator at the
Deutsches Elektronen-Synchrotron (DESY) in Hamburg, at DCI in Orsay, at Adone
in Frascati, with the SPEAR storage ring at SLAC laboratories, at Novosibirsk and at
Beijing; data within the charm and bottom thesholds were collected again at DORIS (also
by the LENA detector), by the Crystal Ball detector at SPEAR, by Mark I (also known
as SLAC-LBL magnetic detector) and CLEO and CUSB detectors at Cornell Electron
Storage Ring (CESR); above the bottom threshold measurements were done by three
more e+e− colliders, namely the Positron-Electron Project (PEP) at SLAC, the Positron-
Elektron-Tandem-Ring-Anlage (PETRA) at DESY, and the Large Electron–Positron
Collider (LEP) at CERN in Geneva. Further evidences that QCD was a meaningful
description of nature came from the three-jet event measurement [19], first achieved
by the four different collaborations at the PETRA e+e− accelerator (1978-86), which
is customarily regarded as an experimental proof of the gluon existence. Event shape
studies carried out at LEP confirmed the vectorial nature of gluons, while the non-abelian
structure of QCD resulted from evidences of the triple-gluon coupling, highlighted by
angular correlation measurements on four-jet events (for instance the ones carried out
by the L3 collaboration at LEP on the famous Bengtsson-Zerwas χBS angle [20]): these
studies were also extremely useful to extract the QCD colour factors CA and CF .

Alongside with QCD researches, the indipendent consolidation of the theory of elec-
troweak interactions completed the path towards the structuring of the SM. A decisive
step was done in 1956 by Chien-Shiung Wu with her experiment establishing the parity-
violating nature of weak interactions [21]: that made clear that weak interactions had
to be described by a chiral theory. Theoretical studies carried out from 1961 to 1967
by Sheldon Glashow [22], Abdus Salam [23] and Stephen Weinberg [24] led to the
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unified description of electromagnetic and weak interactions in the electroweak theory,
whose renormalizability was proven in 1971 by Martinus J. G. Veltman and Gerard ’t
Hooft [25, 26]. Many observations started to shed light on the correctness of the theory,
but two of them were absolutely crucial for this purpose. First, in 1973 neutral currents
were discovered at the Gargamelle detector, located at CERN, which was the first indirect
evidence of the existence of the neutral Z boson [27]. Then, in 1893 the UA1 and UA2
experiments at the CERN proton-antiproton collider (Spp̄S) detected the W± [28, 29]
and Z [30] bosons. Between these two important discoveries, the particle content of
the emerging SM kept on being enriched. In November 1974 (the so called November
revolution) the Brookhaven National Laboratory [31], in Long Island, and SLAC SPEAR
accelerator [32] discovered the J/ψ meson, the first evidence of the charm quark, whose
existence was proposed in 1970 in the context of the S. Glashow, J. Iliopoulos and L.
Maiani (GIM) mechanism [33] to explain why flavour-changing neutral currents (FCNC)
are suppressed. The observation of CP violation in the kaon system [34, 35] also re-
quired the introduction of a third quark generation: this was understood in 1973 by
M. Kobayashi and T. Maskawa as the only viable way for the CKM matrix to have a
complex CP-violating phase [9]. Shortly after, the idea was corroborated by the discovery
of the bottonium Υ (b̄b ground state) in 1977 at Fermilab in Illinois [36], precedeed by
the τ lepton discovery in 1975 at SLAC [37]. In order to have further confirmations of CP
violation, the scientific community had to wait 2001 with the B-meson decay observation
by the Belle experiment at KEK in Japan [38] and the BaBar experiment at SLAC [39],
which strongly supported the theory of Kobayashi and Maskawa. Once the bottom quark
was found, many new electron-positron machines were designed to find the top quark, as
well: PETRA at DESY, TRISTAN in Japan, PEP and SLC at SLAC, and LEP at CERN.
But due to a mass higher than the energy reach of any of these accelerators, the top
quark would have been discovered much later in 1994 at the Tevatron proton-antiproton
collider of Fermilab [40] (even if already in 1993 some indirect determinations of the
top mass were performed at LEP and at SLC). Despite that, electron-positron colliders
provided a very clean environment where more and more accurate measurements of the
electroweak parameters could be performed. The most important ones are predictions
for the number of SM neutrinos (reinforced by the discovery of the tauonic neutrino in
2000 at Fermilab with the DONUT experiment [41]) and measurements for the W± and
Z boson masses and decay width, together with the electroweak mixing angle sin2 θW .

The last missing pillar of the SM was the Higgs boson. Even though some constraints
on its mass had been obtained by some e+e− collider analysis, none of these machines
was able to really detect the Higgs boson. It was known that vector boson scatterings at
high energy would violate unitarity without the Higgs field: that knowledge allowed to
derive a bound (the Lee-Quigg-Thacker bound) on the Higgs mass, i.e mH . 1 TeV [42].
Consequently, a machine capable of reaching such energy regimes would have either
discovered the Higgs or shown that weak interactions become non-perturbative at these
energy scales. This and other arguments strongly motivated the construction of one of
the world’s largest and most powerful particle accelerator: the LHC, built at CERN
in the LEP tunnel after its shutdown. Inside a 27-kilometre ring structure two proton
beams are accelerated and made collide at four different locations around the accelerator
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ring, corresponding to the positions of four particle detectors: ATLAS, CMS, ALICE
and LHCb. In 2009 a beam collision energy

√
s of 900 GeV was reached, followed by an

energy reach of
√
s = 7 TeV in 2010 and of

√
s = 8 TeV in 2012, the year when the Higgs

boson discovery was announced. Its discovery [7, 8] was the result of a combined analysis
of the H → ZZ∗ → 4l, H → γγ and H →WW ∗ → eνeµνµ decay channels. If LHC Run
1, from 2009 to 2012, essentially allowed to probe the Higgs couplings to gauge bosons,
LHC Run 2, operating at

√
s = 13 TeV from 2015 to 2018, first made it possible to study

the Higgs Yukawa couplings to the third generation of charged fermions, namely the
top and bottom quarks and the τ lepton. Despite these important achievements, many
aspects of the SM Higgs sector still need to be established, such as the Higgs couplings
to the second and first fermion generations or the Higgs self-couplings, which would
shed light on the structure of the Higgs potential. Moreover, many cross section and
parameter measurements have been performed at the LHC, whose precision is getting
more and more competitive to previous measurements carried out at electron-positron
colliders: the most representative one is the W± mass measurement, whose accuracy
has reached the 0.02% level [2]. All that definitely changed a long-standing paradigm,
according to which e+e− colliders were considered precision machines, due to their clean
environment, as opposed to hadron colliders, mainly seen as discovery machines where
higher energies could be probed. At the LHC it soon became clear that precision physics
could be carried out, as well.

1.3 Precise phenomenology: a path towards new physics

The great amount of data collected during LHC operational time so far strongly supported
the SM field theory and did not show any significant deviation from its predictions. But
some physics beyond the SM is expected to exist, since the SM itself, as it is, is not
a complete theory. There are many phenomena that are not accounted for by the SM
Lagrangian, among which the most striking of all is the gravitational force. Moreover,
cosmological observations suggest that visible matter is only roughly 5% of the whole
energy content of our universe. As also supported by many gravitational observations
(among which one of the first dates back to Zwicky’s work of 1933 [43]), a 26% of it
should comprise of dark matter, but the SM does not contain any particle which would be
a good dark matter candidate. The remaining 69% is expected to be dark energy, whose
idea first appeared with Einstein’s cosmological constant and then seriously entered
cosmology with the first inflationary models [44]. But dark energy, which can be thought
of as the vacuum energy of a quantum field, is again difficult to accomodate within the
SM theory. Another problem that the SM can not fully explain is the matter-antimatter
asymmetry of the universe: even though all of the three Sakharov conditions [45] for
baryogenesis are satisfied by the SM, they are quantitatively insufficient.

Together with cosmological arguments, also experimental observations from particle
physics soon started to point to the fact that the SM can not be our ultimate theory.
Even if SM neutrinos are massless left-handed particles, the observation of neutrino
oscillations in different contexts made it clear that neutrinos do have masses. However,
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explaining the mechanism that provides masses to neutrinos is still an open problem.
Moreover, among many other questions in neutrino physics which remain unsolved, a
very fundamental one is whether neutrinos should be described in terms of a Dirac field
or whether they are their own antiparticles, and so Majorana-like fields, as it would
emerge from the observation of neutrinoless double-beta decays. For a review on neutrino
physics, see for instance Ref. [46]. But hints of new physics also seem to come from
esperiments on B meson decays, which might challenge the SM idea that lepton couplings
to EW gauge bosons are universal: in 2012 the BaBar experiment at PEP-II collider (at
SLAC) reported small deviations of 3.4σ [47] from SM expectations, materializing in a
small excess of the B̄ → D(?)τ−ν̄τ decay rate. Measurements going in the same direction
(even though with a smaller statistical significance) were also registered by LHCb [48] at
CERN and by the Belle experiment at KEKB collider (in Japan) [49] in 2015. Last year
(2021), some results from Fermilab on the anomalous magnetic dipole moment of the
muon seemed to show deviations from SM predictions with a 4.2σ significance [50], while
this year a CDF analysis based on Tevatron data reported a W± mass measurement
exceeding the SM value with a surprisingly high 7σ significance [51]. If only some of
these results were confirmed, that might disclose a path towards physics beyond the SM
(BSM).

Another set of arguments providing reasons for the SM not to be the final theory of
nature simply arises from theoretical considerations. For instance, the SM comes with
19 free parameters, which means it is unable to explain the origin of their values: the
strong hierarchy among fermion masses or the stringent bounds on θQCD (the already
mentioned strong CP problem) remain unexplained. Even if the anomaly cancellations,
required not to break gauge symmetries at quantum level, force the electric charge to
be quantized, no really deep explanation of why particle charges should only come in
fractions of the elementary electron charge is given in the SM. Finally, even though the
presence of the Higgs boson is a key ingredient of the SM, the Higgs mass is not stable
under radiative corrections and the m2

H parameter is quadratically sensitive to scales of
new physics. Since the measured Higgs mass is of the order of the EW scale, only large
cancellations taking place with an unnatural fine-tuning of the Lagrangian parameters
can solve this issue within the SM (the so called hierarchy problem).

This short and necessarily incomplete summary strongly motivates to look for BSM
physics. As we have briefly shown, particle colliders are extremely precious tools to
explore the elementary constituents of nature, and particularly nowadays the LHC still
has a prominent role in this context. Despite the fact that, after the Higgs discovery, no
new particle predicted by many theoretical extensions of the SM has been directly found,
new physics can still be discovered in an indirect way: any deviation from the comparison
of precise experimental measurements and accurate theoretical predictions based on the
SM can be a signal of new physics. As we have already mentioned, LHC measurements
are getting more and more accurate and they are bound to improve even further with
the high-luminosity (HL) upgrade of the LHC, which is expected to be finalized towards
the end of 2027. To avoid that the theory uncertainties become the limiting factor of
this data-theory comparison, a similar effort in improving the accuracy of the theoretical
predictions is demanded from the theory community. Unfortunately, that is by no means
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a simple task, due to the complexity involved in theoretical simulations of LHC events.
Indeed, even a single LHC collision comes with a huge amount of particles and necessarily
requires to deal with many different energy scales at the same time. Furthermore, it
is clear that the composite structure of the colliding objects, i.e the protons, and the
non-abelian nature of QCD, which leads to colour confinement at scales of the order of
ΛQCD ∼ 1 GeV, significantly complicate the pattern of a LHC event.

Due to efficiency reasons, event simulations are built around the hard event taking
place at a high-energy scale Q� ΛQCD characteristic of the process that one wants to
accurately describe. Thanks to asymptotic freedom, at such high-energy scales αs is
small enough to legitimate a perturbative approach (see Section 2.1): the cross section
of the process can be computed with a well-established machinery starting from the
Feynman rules which can be read off the QCD Lagrangian of Eq. (1.1), supplemented with
a proper gauge-fixing term and ghost contributions. These fixed-order calculations can
predict with an increasing accuracy physical observables by progressively adding one more
perturbative contribution, which is suppressed by an extra power of αs with respect to
the lower order one. At scales of the order of ΛQCD, the perturbative picture breaks down
and hadronization models are needed to describe the formation of hadrons. To evolve the
process from Q to ΛQCD scales, parton showers are nowadays the most powerful tools. As
described in Section 2.2, they can account for the increasing number of particle splittings
and for the enhanced all-order contributions that occur when considering non-trivial
observables or more realistic events involving experimental analysis cuts. After the
formation of primary hadrons described with hadronization models, their decays to a set
of hadrons which is stable enough to reach the detectors have to be correctly modelled,
as well. Since protons and not partons are made collide at the LHC, we also need to
parametrize the probability to resolve, inside the proton, a parton which can partecipate
in the hard event: that is done in terms of a non-perturbative object, named Parton
distribution function (PDF). But the remaining partons in the proton can also interact,
contributing to extra QCD activity which accompanies the hard event, commonly referred
to as underlying events (UE). In their turn, the two hadrons responsible for the hard-
scattering process are part of colliding beams comprising of many hadrons, which are
also expected to interact (pile-up), even though mainly at energies substantially lower
than Q. Indeed, for a proper LHC event simulation, all possible classes of events have
to be covered, in such a way that the total proton-proton cross section results from
the sum of their different contributions. Events described so far typically generate final
state particles covering the whole pseudorapidity 4 range: they are named non-diffractive
inelastic contributions. But 40% of the total hadronic cross section at LHC comes from
diffractive events, where a large pseudorapidity interval is devoid of hadronic activity.
They originate from exchanges of soft gluons which can not resolve the internal partonic
structure of the proton. These events are mainly described in terms of elastic pp→ pp
scatterings or of processes where one or both protons turn into a bunch of particles X
with the same proton quantum numbers. The latter are further classified into single

4 The pseudorapidity, usually denoted by η, is a kinematic quantity related to the polar angle θ between
the beam and the detection directions, and defined as η ≡ − log tan(θ/2).
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pp → p + X and double pp → X + Y dissociation processes, where here the + sign
denotes the large pseudorapidity gap characteristic of diffractive events.

All of the ingredients entering a LHC event simulation are commonly available in a
General purpose Monte Carlo (GPMC) event generator. Improving on the accuracy of
theoretical predictions for collider physics translates into a cooperative effort to improve
the many different components of the simulation itself. The fact that the various building
blocks of the process evolution from high to low scales can be treated to a large extent
indipendently is based on QCD factorization. According to the factorization assumption,
physics occuring at low energy scales is not expected to drastically affect high-energy
phenomena which take place at much earlier time in the evolution. Within this complex
picture, the proper combination of fixed-order calculations, needed for the description
of the hard event, and the parton shower, accounting for QCD radiation down to the
hadronization scales, plays a crucial role. Such a combination, which is the main focus of
this Thesis, allows to interface the best-available fixed-order results for a given process
with the flexibility of GPMC generators, which is indispensable to obtain a realistic event
description to be compared to LHC data. In Chapter 2, the basic ingredients of the
fixed-order (FO) approach and of parton shower (PS) simulations are briefly introduced
in sections 2.1 and 2.2, respectively. Available techniques to combine both strategies at
different levels of accuracy are summarized in Section 2.3. After this general overview,
in Chapter 3 we specialize the discussion to the theoretical framework that has been
used and developed in this work. Therefore, in Section 3.1 the POWHEG method,
empowered by the MiNLO′ approach (presented in Section 3.2), is discussed: its usage
allows to merge different next-to-leading order (NLO) QCD calculations and match them
with parton shower programs. Finally, the recently developed MiNNLOPS method, to
interface any colour-singlet process at next-to-next-to-leading order (NNLO) accuracy
to parton showers (so reaching NNLO+PS accuracy), is discussed in Section 3.3: the
extension of the MiNNLOPS approach to general colour-singlet production is the main
result of this work. In Chapter 4, this method is applied to an extremely relevant class
of processes for LHC search, namely diboson processes. Here we present results for Zγ
at NNLO+PS in Section 4.1 and 4.2, but also for massive diboson production such as
W+W− at NNLO+PS in Section 4.3 and ZZ at nNNLO+PS (once the loop-induced
gluon-gluon channel is also properly included) in Section 4.4. The main achievements of
this Thesis are finally summarized in the Conclusions of Chapter 5.
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phenomenology

In the previous chapter we have described the main components of a GPMC event
generator, which is indispensable for comparing theory results to hadron collider data. In
view of high-precision phenomenology, in this chapter we focus on fixed-order calculations
and parton shower techniques, which describe the evolution of the physics process within
the perturbative regime, before hadronization has occurred. After a brief review of the
two approaches, respectively in Section 2.1 and Section 2.2, in Section 2.3 we present
some of the customary techniques to consistently combine them.

2.1 Fixed-order perturbation theory
In the context of QCD, theoretical predictions for the hadronic cross section of a process
of interest rely on the parton model picture and the factorization ansatz. We can start
considering the cross section σ(h1h2 → X) for a hadron scattering process h1h2 → X,
where h1 and h2 are the incoming hadrons and X denotes a generic final state. Then,
σ(h1h2 → X) can be written as a sum of convolutions of the partonic cross sections σij,X
(where i and j label the incoming partons which contribute to the process), which enclose
the short distance physics, and some non-perturbative universal functions, named parton
distribution functions (PDFs). If K⊕ and K	 are the four-momenta of the hadrons h1
and h2 moving in opposite directions along the collision axis, and if X is a system of n
particles with momenta k1, . . . , kn, then four-momentum conservation reads:

x⊕K⊕ + x	K	 =
n∑
i=1

ki (2.1)

where x⊕, x	 ∈ [0, 1] are the momentum fractions of the hadron momenta which are
shared with the colliding partons, whose momenta are k⊕ = x⊕K⊕ and k	 = x	K	.
Hadron constituents are assumed to be massless, so that k2

⊕ = k2
	 = 0, while final-

state momenta are considered to be on-shell. If we define the total hadronic energy
S = (K⊕ + K	)2, the latter will be related to the partonic energy Q2 = (k⊕ + k	)2

(often denoted also with the symbol of the Mandelstam invariant s) via the relation
Q2 = x⊕x	S. Then, in the collinear factorization ansatz [52, 53], which is the one we
will refer to throughout this Thesis, the hadronic cross section can be written as:

σ(h1h2 → X) =
∑
ij

∫
dx⊕dx	fi/h1(x⊕, µF)fj/h2(x	, µF)σij,X(Q2, µ2

R, µ
2
F) +O

(Λ2
QCD
Q2

)
(2.2)
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where we stress how the characteristic scale of the hard process Q2 in σij,X depends on
x⊕ and x	, which are integrated over in the convolution with the PDFs of the incoming
hadrons. The non-perturbative function fi/h(x, µF) provides the probability to resolve
at the energy scale µF a parton i with momentum fraction x inside the hadron h. The
scale µF is an unphysical scale named factorization scale, which also enters the partonic
cross section, together with a second unphysical scale µR, named renormalization scale.
The need to introduce these two unphysical scales in the theory will be motivated later
in due course. Finally, the last term in Eq. (2.2) reminds us that the factorization of
long- and short-distance physics holds up to non-perturbative corrections. As clarified
for instance in Ref. [2], all high-energy QCD processes come with power-correction terms
proportional to the ratio of the non-perturbative over the perturbative scale (ΛQCD/Q)p,
with a power p which depends on the observable of interest. Since these corrections can
range from the percent to the permille level to the power of p, especially linear power
corrections (p = 1) can become comparable to the accuracy reached in the calculation
of the first part of Eq. (2.2), based on perturbation theory, as we will discuss in the
following. Therefore, gaining better control on non-perturbative power-corrections is also
important. Some recent progresses in this direction for collider observables can be found
for instance in Ref. [54, 55].

For the time being, we can just assume that the partonic cross section σij,X to produce
a final state X of n particles coincides with the partonic cross section σij, n to generate
a final state comprising of exactly n particles and nothing else. Then, σij, n can be
derived from first principles and connected to the fundamental theory enclosed in the
SM Lagrangian presented in Section 1.1 by means of the well-known Fermi’s golden rule:

σij, n = (2π)4

4k⊕ · k	

∫ n∏
m=1

d3km
(2π)32k0

m

δ4
(
k⊕ + k	 −

n∑
m=1

km

)
|Mij, n|2 . (2.3)

The kinematic ingredients of the formula comprise of a flux factor 4k⊕ · k	 and the
n-particle phase space dΦn:

dΦn(k⊕ + k	; k1, . . . , kn) = (2π)4δ4
(
k⊕ + k	 −

n∑
m=1

km

) n∏
m=1

d3km
(2π)32k0

m

. (2.4)

If Φn = {k1, . . . , kn}, it will turn out to be useful to define the set of variables Φn =
{x⊕, x	, k1, . . . , kn}, so that dΦn = dx⊕dx	dΦn(k⊕ + k	; k1, . . . , kn). On the other
hand, the theory model enters Eq. (2.3) only via the squared matrix element (or squared
amplitude) |Mij, n|2, where sums over colour and spin indices are understood. Quantum
field theory provides a recipe to compute |Mij, n|2, making use of the Wick’s theorem [56]
and the Lehman-Symanzik-Zimmermann (LSZ) reduction formula [57]. What different
models have to provide is the correct set of interaction verteces (or Feynman rules) among
the fields of the theory, which can be extracted from the Lagrangian (for QCD interactions,
for instance, directly from Eq. (1.1), once gauge-fixing and ghost terms are also accounted
for). Then,Mij, n can be calculated by accounting for all Feynman diagrams contributing
to the scattering process ij → X which can be built from this set of interactions. Each
interaction vertex is proportional to the product of some coupling constants characteristic
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of the theory. Relying on the smallness of some coupling constants, perturbation theory
allows to organize the calculation as a perturbative expansion of Mij, n, where dominant
contributions come from terms counting the lowest powers of these couplings. Within
the SM, starting from the first term contributing to a given process, named the leading
order (LO) term, different kinds of corrections can be added, depending on the coupling
used to carried out the expansion: QCD, QED or EW corrections. When simultaneously
considered, mixed terms will also appear. Anyway, QCD corrections are known to be
the dominant ones: even if the strong coupling αs ∼ 0.1 for energies within 100 GeV and
1 TeV, and so well within the perturbative regime, its value is still much larger than the
QED and EW couplings in the same energy range. That is why in the bulk of this Thesis
we will mainly focus on QCD types of corrections. By dropping the parton indices for
ease of notation (which can easily be reintroduced back where needed), we can express
the αs-perturbative expansion of Mij, n as:

Mn =
(
gS√
4π

)N (
M(0)

n +
(
gS√
4π

)2
M(1)

n +
(
gS√
4π

)4
M(2)

n +O
(

g6
S

(4π)3

))
→ |Mn|2 = αNs

(
|M(0)

n |2 + 2αsRe[M(0) ?
n · M(1)

n ] + α2
s|M(1)

n |2

+ 2α2
sRe[M(0) ?

n · M(2)
n ] +O(α3

s)
)
. (2.5)

In the previous formula, we factored out N powers of αs, which contribute to the LO
squared amplitude, |M(0)

n |2, usually referred to as Born term B.

2.1.1 Ultraviolet divergences

Starting from the next-to-leading order (NLO) term of Eq. (2.5), which is suppressed by
one extra power of αs with respect to the Born term, Feynman diagrams contributing to
the scattering process require the calculation of loop integrals, where the momentum `
associated to an inner line of the diagram and not constrained by momentum conservation
has to be integrated over the whole phase-space volume. Depending on the number of
internal lines (i.e particle propagators) forming the loop, these integrals might present non-
integrable divergences for `2 →∞, which are usually named ultraviolet (UV) divergences.
This kind of divergences, that emerge when probing high energies, is handled via a standard
machinery in QFT. First of all, divergences are isolated by means of a regularization
procedure. A very common one is dimensional regularization [58], which has the nice
virtue of preserving gauge invariance throughout the calculation. In this procedure, loop
integrals are made finite by rising the phase-space dimensionality to d = 4− 2ε, for ε > 0:
by doing that, divergences are recovered through the limit ε → 0, and they appear as
poles in the ε regulator. For a special class of theories, named renormalizable, these
divergences can be systematically removed by introducing a finite set of counterterms,
defined in such a way to compensate order by order in perturbation theory for the
UV divergences emerging from loop calculations. These counterterms can be absorbed
using proper renormalization constants into a redefinition of the original parameters and
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fields of the Lagrangian, which then becomes a function of new bare quantities. The
renormalizability condition is satisfied by any theory whose Lagrangian comprises of terms
(to be interpreted as operators after quantization) having at most mass dimension equal
to four: this requirement, met by the SM Lagrangian, ensures that all UV divergences
can be removed by simply casting the parameters of the theory in terms of bare ones,
without any need to introduce new kinds of interaction verteces. These theories can be
thought of as being to a great extent insensitive to high-energy scales, which might be
associated to new physics. Once the ε-poles are removed, there is still some arbitrariness
in the definition of the finite part of the counterterms: different choices define different
renormalization schemes. A scheme which is largely used in QCD, where confinement
does not allow to use physical quark masses to resolve the ambiguity in the counterterm
definition, is the MS scheme. Here counterterms just subtract the ε singularities, while
their finite parts are set to zero, up to a log(4π) − γE term (where γE is the Eulero-
Mascheroni constant), which is also subtracted for convenience. One extra arbitrariness in
the dimensional regularization procedure resides in the possibility to analytically continue
to d dimensions only the loop momentum ` or also other quantities, such us external
momenta and helicity vectors: different choices define different reduction schemes, which
introduce mismatches amounting to finite constants in intermediate results.

Anyway, all this machinery comes with a price: for consistency reasons, when analyti-
cally continuing to d dimensions, the dimensionless nature of the expansion parameter
(i.e gS in QCD) has to be preserved. That is done by introducing the unphysical renor-
malization scale µR, mentioned in the previous section. If Zg is the renormalization
constant associated to the strong coupling, the bare gS, 0 and physical gS couplings will
be related through:

gS, 0 = µεRZg(ε) gS . (2.6)

Since the bare Lagrangian quantities can not depend on µR, the µR derivative of Eq. (2.6)
results in an equation, named renormalization group equation (RGE), which describes
the µR dependence of gS . In terms of αs, the RGE for the strong coupling constant in
d = 4 reads:

µ2
R
∂αs(µR)
∂µ2

R
≡ β(αs) = lim

ε→0

[
−αs(µR) · µ2

R
∂

∂µ2
R

log(µ2ε
R Z

2
g (ε))

]
= −αs(µR)

∞∑
k=1

βkα
k
s(µR) ,

(2.7)

where β(αs) is the famous 4-dimensional QCD β-function, which admits a perturbative
expansion starting from order α2

s, and whose first coefficients are given by:

β0 = 11CA − 2nf
12π , β1 = 17C2

A − 5CAnf − 3CFnf
24π2 ,

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3 , (2.8)

with nf the number of active light quark flavours 1. Starting from β2, the terms of the
1 A quark flavour is referred to as active if the corresponding quark mass is lower than the probed

energy scale.
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2.1 Fixed-order perturbation theory

β-function are renormalization scheme dependent: here we reported the result for β2 in
the MS scheme. Since Eq. (2.7) describes how αs depends on an arbitrary energy scale,
it can be used to connect the values of αs at two different scales, for instance µR and Q,
provided that both αs(µR) and αs(Q) are in the perturbative regime. Solving Eq. (2.7)
at first order in αs gives [59, 60]:

αs(Q) = αs(µR)

1 + αs(µR)β0 log
(
Q2

µ2
R

) (2.9)

which encloses QCD asymptotic freedom, according to which αs(Q) → 0 for Q → ∞.
The solution of Eq. (2.7) can also be expressed in terms of an integration constant ΛQCD,
which gives the location of the Landau pole, i.e the energy at which the strong coupling
would diverge if we extrapolate the QCD RGE outside the perturbative regime. At first
order in αs we can write:

αs(Q) = 1

β0 log
(

Q2

Λ2
QCD

) . (2.10)

Despite the fact that the exact value of ΛQCD depends on the perturbative order at
which Eq. (2.7) is solved, on the number of active quark flavours and on the renormalization
scheme employed (see for instance the discussion in Ref. [1]), still its order of magnitude
gives an indication of the energy regime at which non-perturbative dynamics starts to
dominate.

Moving back to Eq. (2.5), it is now clear that αs therein and the different coefficients
of the expansions have a dependence on µR, which translates in a µR dependence of the
partonic cross section σij, n. But since the physical hadronic cross section can not depend
on an unphysical scale, this µR dependence has to cancel out when contributions from
all orders are summed up. By truncating the expansion of Eq. (2.5) at a given order
k in αs, a residual µR dependence survives for terms of order k′ > k: the higher k the
weaker the residual dependence on µR. Therefore, evaluating the cross section for values
of µR around a central scale µR, 0 can give an indication of the size of the missing higher
order contributions that have been neglected by truncating the expansion. Moreover, in
order to improve the convergence of the perturbative series, which might be jeopardized
by potentially large logarithmic terms ∼ log(Q/µR) entering Eq. (2.9), it is customary
to fix the arbitrary scale µR, 0 to energies characteristic of the hard event, i.e µR, 0 ∼ Q.
For non-trivial processes, multiple scales can characterize the hard event: as we will see
for instance in Section 4.3.4, in such cases there is no correct choice a priori, and the
dependence of the result on different µR choices can give a hint on the convergence of
the perturbative series and on the importance of higher order terms.

To summarize, when considering the matrix element Mn entering the cross section
for the production of exactly n final states making up the system X, then tree-level 2,

2 To simplify this general discussion, here we explicitly referred to processes receiving their LO
contribution from tree-level diagrams, which involve no loops. However, one should keep in mind that
some processes are loop-induced, so that the calculation of one-loop diagrams is required already at
the LO, of two-loop diagrams at the NLO and so on.
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one-loop and two-loop diagrams contribute to its perturbative expansion at order g0
S , g2

S

and g4
S , respectively. At the squared amplitude level, the LO contribution comes from the

squared tree-level amplitude or Born term B(Φn), where the phase-space dependence has
been highlighted. Once UV divergences have been subtracted, the cross section receives
NLO contirbutions of order O(αN+1

s ) from the so called bare virtual term Vb(Φn), given
by twice the real part of the tree-level and one-loop amplitude interference. Then, some
next-to-next-to-leading order (NNLO) contributions of order O(αN+2

s ) come from the
interference of the tree-level and two-loop amplitudes and from the one-loop squared
term.

2.1.2 Infrared divergences

When performing loop integrals such as the ones introduced in the previous section,
UV divergences are not the only kind of singularities that emerge. When massless
particles enter the loops (as it can be if we have a gluon or a photon propagator, or
when quark masses are neglected), the integral can diverge also in the limit where the
loop momentum ` gets soft, i.e `2 → 0, and/or collinear to an external momentum k,
i.e ` · k → 0. Divergences arising from these limits are named infrared (IR) divergences.
By making use of dimensional regularization, these integrals can be made finite by
analytic continuation with a regulator ε < 0, so that each of the two IR divergences is
recovered in terms of an ε-pole singularity (which means at one-loop level we can have
at most a 1/ε2 singularity for a simultaneously soft and collinear divergence). But the
handling of IR divergences is quite different from that of UV ones: the cancellation of IR
divergences occurs when physically sound quantities are computed. Indeed, for theories
like QED, we know that a propagating particle (for instance an electron) going through a
detector can not be experimentally distinguished from another particle emitting a certain
number of soft and/or highly collinear photons, due to the limited detector resolution.
In QCD, we can not refer to an experimental resolution cutoff, since quarks and gluons
are not asymptotic states, but a physical cutoff comes from the theory itself. Indeed, IR
singularities are associated to phase-space regions where perturbation theory breaks down.
Still, the possibility to compute physical quantites that are free of IR divergences signal
that such quantities are insensitive to the non-perturbative regime: they are usually
referred to as infrared safe observables.

According to the physical picture we have provided, it can be understood that the
partonic cross section σij, n for the production of exactly n final-state partons is not
an infrared safe observable. However, σij,X , which is the inclusive cross section giving
the probability of having n partons plus additional radiation, is infrared safe. For the
calculation of σij,X , amplitudes for different final-state multiplicities have to be included.
In what follows, we specialize the discussion to the NLO QCD case. Up to order O(αN+1

s ),
σij,X receives contributions from B(Φn) = |M(0)

n |2, Vb(Φn) = 2Re[M(0) ?
n M(1)

n ] and the
real term R(Φn+1) = |M(0)

n+1|2, so that we can write our hadronic cross section of Eq. (2.2)

20



2.1 Fixed-order perturbation theory

as:

σ(h1h2 → X) =
∫
dΦn fh1(x⊕)fh2(x	)αNs [B(Φn) + αs Vb(Φn)]

+
∫
dΦn+1 fh1(x⊕)fh2(x	)αN+1

s R(Φn+1) +O(αN+2
s ) , (2.11)

where the µF dependence has been momentarily dropped and the sum over different
partonic channels is understood. Contrary to the loop amplitude M(1)

n , the tree-level
one M(0)

n+1 is finite, but IR divergences that exactly cancel the IR loop ones appear when
|M(0)

n+1|2 is integrated over the full real phase space Φn+1. That is due to the universal
behaviour of |M(0)

n+1|2 when one of the final-state partons become soft and/or collinear
to another parton.

Specifically, if a pair of partons with momenta ki and kj gets collinear, then we
have [61]:

|M(0)
n+1(k1, ..., ki, ..., kj , ..., kn+1)|2 ~ki ‖ ~kj−−−−→

(2.12)

8παsµ2ε

2ki · kj
M(0)

s1,...,sI ,...,sn;n(k1, ..., kI , ..., kn)P̂ sI ,s
′
I

j,I (z, k⊥, ε)M
(0)?
s1,...,s′I ,...,sn;n(k1, ..., kI , ..., kn)

where the final-state momentum dependence has been made explicit at the level of the
matrix elements, together with the spin indices s. The momentum kI is simply obtained
by replacing parton momenta ki and kj with their sum, i.e kI = ki + kj . The spin index
sI is the spin of the splitting parton I in the splitting process I → i+ j. The previous
equation shows that in the collinear limit the real amplitude has a universal behaviour: a
single pole in ki · kj multiplies the spin-correlated Born amplitude, where spin correlation
is controlled by the universal d-dimensional spin-dependent Altarelli-Parisi (AP) splitting
functions P̂ sI ,s

′
I

j,I (z, k⊥, ε). They depend on the regulator ε, the energy fraction z that
the parton j takes from the splitting parton I in the emission of i, and the transverse
momentum k⊥ of the splitting pair. Clearly, both z and k⊥ have to be defined within
a proper parametrization of the kinematics of the emitted parton. The exact form of
such splitting functions can be found for instance in Ref. [61]. Here we report their
spin-averaged form at leading order in the limit ε→ 0, which are the ones we will mainly
refer to throughout this work:

P̂ (0)
qq (z) = CF

[1 + z2

1− z

]
P̂ (0)
gq (z) = CF

[1 + (1− z)2

z

]
P̂ (0)
qg (z) = TR

[
1− 2z(1− z)

]
P̂ (0)
gg (z) = 2CA

[1− z
z

+ z

1− z + z(1− z)
]
. (2.13)

We see that the splitting functions can be singular themselves in the limits z → 0 or
z → 1, where one parton of the splitting pair also gets soft. Only the function P̂qg(z) for
a gluon splitting in a quark-antiquark pair does not come with soft singularities.

21



2 Theoretical tools for precise phenomenology

On the other hand, if we consider the limit of a gluon with momentum ks getting soft,
we can write [61]:

|M(0)
n+1(k1, ..., ks, ..., kn+1)|2 ks → 0−−−−→ (2.14)

-8παsµ2ε
n∑

i,j=1
Sij(ks)M(0)

c1,...,ci,...,cj ,...,cn;n(k1, ..., kn)T aci,c′iT
a
cj ,c′j
M(0)?

c1,...,c′i,...,c′j ,...,cn;n(k1, ..., kn)

where the labels c are colour indices and T ac,c′ are the SU(3)c generators either in the
adjoint or fundamental representation according to whether the emitting parton is a gluon
or a quark, respectively. These colour matrices enter the definition of the colour-correlated
Born matrix element, multiplied by the universal soft function Sij(ks), named eikonal
factor, for the soft gluon with momentum ks which is colour-connected to the partons i
and j (clearly i 6= j):

Sij(ks) = ki · kj
2(ki · ks)(kj · ks)

, (2.15)

which contains the singular terms of the soft kinematics.
Therefore, when integrating |M(0)

n+1|2 over Φn+1, divergences arise from phase-space
regions where a parton enters the soft and/or collinear regime, where |M(0)

n+1|2 exhibits
the singular behaviours of Eq. (2.12) and Eq. (2.14). Such n+ 1 parton configurations
are kinematically degenerate with a n-parton one and compensate for the IR virtual
singularities, which indeed live in the Φn phase space. The fact that an exact cancel-
lation between the two sources of IR divergences in Vb(Φn) and R(Φn+1) takes place
is guaranteed by the Kinoshita-Lee-Nauenberg (KLN) theorem [62, 63], which states
that any unitary theory is free of IR divergences as soon as configurations involving all
possible final and initial states are summed over.

We can generalize Eq. (2.11) so as to account for the expectation value of a general
observable O at NLO accuracy:

〈O〉 =
∫
dΦn fh1(x⊕)fh2(x	)αNs [B(Φn) + αs Vb(Φn)]On(Φn)

+
∫
dΦn+1 fh1(x⊕)fh2(x	)αN+1

s R(Φn+1)On+1(Φn+1) +O(αN+2
s ) (2.16)

where On and On+1 are the expressions of the observable O in terms of n and n+ 1 final-
state particles, respectively. We can simply recover σ(h1h2 → X) by setting On(Φn) = 1
for all n. In the general case of Eq. (2.16), the cancellation of IR divergences between the
virtual and the integrated real contributions can take place only if O is infrared safe, a
condition that we can formulate as:

On+1(x⊕, x	; k1, ..., ki, ..., kj , ..., kn+1) ~ki ‖ ~kj−−−−→
On(x⊕, x	; k1, ..., ki + kj , ..., kn) (2.17)

On+1(x⊕, x	; k1, ..., ks, ..., kn+1) ~ks → 0−−−−→ On(x⊕, x	; k1, ..., ks−1, ks+1, ..., kn) (2.18)

which simply states that O is insensitive to any additional soft and/or collinear splitting.
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By now, we have just explicitly referred to final-state momenta when considering
the IR limits of |M(0)

n+1|2 in Eq. (2.12) and Eq. (2.14). Similar formulae clearly hold
also for initial-state momenta. Unfortunately, for lepton-hadron and hadron-hadron
collisions initial-state collinear singularities (i.e when a final-state parton with momenum
ki gets collinear to k⊕ or k	) do not cancel out in Eq. (2.16), but, in a dimensional
regularization picture, they survive as 1/ε poles [61]. Indeed, the KLN theorem does
not apply to processes involving initial-state hadrons, whose outgoing partons carry
a well-defined momentum. Singularities associated to identified partons can be dealt
with by treating the PDFs as bare divergent objects [64], f0, h1(x⊕) and f0, h2(x	), to
be contrasted with the measurable ones. Measurable PDFs are the ones obtained via a
renormalization procedure that, as with UV and final-state IR divergences, introduces
an additional unphysical scale µF in the theory, dubbed factorization scale. Since the
form of initial-state collinear singularities is also universal, the collinear factorization
theorem 3 guarantees that these singularities can be factored into the PDFs in a process
independent way [64]. All over the calculation, the bare PDF f0, h(x) has to be replaced
by the renormalized PDF fh(x, µF), with the additional µ2

F dependence introduced by
the renormalization procedure and the subtraction of singularities. This approach is
actually equivalent to introducing two bare collinear counterterms G⊕,b and G	,b at the
level of the cross section. These counterterms, constructed order by order in perturbation
theory, are defined on the phase-space configurations:

Φn,⊕ = {x⊕, x	, z, k1, . . . , kn} zx⊕K⊕ + x	K	 =
n∑
i=1

ki , (2.19)

Φn,	 = {x⊕, x	, z, k1, . . . , kn} x⊕K⊕ + zx	K	 =
n∑
i=1

ki , (2.20)

where z is the parton energy fraction taken away from the parton momentum k⊕ or
k	 in the initial splitting process. In the explicit form of G⊕,b and G	,b, the freedom of
subtracting some additional finite contributions defines a factorization scheme choice. It
is worth remarking that, since PDFs are non-perturbative objects, they must be provided
as an input to the theory. Even though some first attempts to derive PDFs from first
principles in the context of lattice QCD have started to appear (for the most recent
results see for instance Refs. [68–70] and references therein), they are usually extracted
from fits of data coming mainly from DIS (more sensitive to PDFs, since they only
involve one hadron), but also from many LHC processes. Depending on the accuracy of
the matrix elements used to describe the data, LO, NLO or even NNLO PDF fits can be
carried out, and the results are then stored into proper grids.

Despite their non-perturbative nature, the dependence of PDFs on the scale µF can be
described within perturbation theory. The requirement for measurable quantities (such

3 In the collinear factorization of long- and short-distance physics, bare PDFs only depend on the
parton energy fraction x: the parton coming out of the hadron and taking part in the hard process is
assumed to be collinear to the original hadron direction. A more differential approach, which relaxes
the collinear factorization assumption, is to consider transverse momentum dependent (TMD) PDFs,
where the transverse momentum of the outgoing parton with respect to the hadron direction is left
unintegrated [65–67].
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as structure functions in DIS experiments) to be independent of the unphysical scale µF

leads to evolution equations for PDFs, known as Dokshitzer, Gribov, Lipatov, Altarelli
and Parisi (DGLAP) equations [71–73]. In their most general form, DGLAP equations
are formulated as (2nf + 1)-dimensional matrix element equations in the space of quarks,
antiquarks and gluons 4:

µ2
F
∂

∂µ2
F

(
fq(x, µF)
fg(x, µF)

)
= αs(µF)

2π
∑
q′

∫ 1

x

dz

z

(
Pq′q(xz , αs(µF)) Pgq(xz , αs(µF))
Pq′g(xz , αs(µF)) Pgg(xz , αs(µF))

)(
fq′(z, µF)
fg(z, µF)

)
(2.21)

where the parton labels q and g to distinguish among quark and gluon PDFs have been
introduced. In this notation, q and q′ can take any of the 2nf flavour and antiflavour
values. Equation 2.21 shows how a PDF of a given flavour is closely connected to other
parton PDFs through the AP splitting functions Pji (where here again i and j refer
to any parton). The dependence of Pji on αs(µF) has been highlighted to stress that
AP kernels admit a perturbative expansion, starting from O(α0

s) (with the exception of
Pq′q, whose α0

s contribution is zero unless q′ = q). The splitting functions Pji entering
DGLAP equations differ from the P̂ji ones of Eq. (2.13): the former are also referred to
as regularized AP splitting functions, that at LO read

P (0)
qq (z) = CF

[ 1 + z2

[1− z]+
+ 3

2δ(1− z)
]

P (0)
gq (z) = P̂ (0)

gq (z) P (0)
qg (z) = P̂ (0)

qg (z)

P (0)
gg (z) = 2CA

[1− z
z

+ z

[1− z]+
+ z(1− z)

]
+ δ(1− z)11CA − 4nfTR

6 , (2.22)

where soft singularities associated to the limit z → 1 have been regularized by means of
the δ and plus distributions, the latter defined so that

∫ 1

0
dz

f(z)
[1− z]+

=
∫ 1

0
dz
f(z)− f(1)

1− z and 1
[1− z]+

= 1
1− z for x ∈ [0, 1[ (2.23)

for any smooth function f . By making use of regularized splitting functions, unitarity is
enforced in DGLAP equations: the cancellation of soft singularities among the virtual
and the unresolved real contributions is automatically satisfied.

When also initial-state collinear singularities have been taken into account, we can
rewrite the NLO-accurate expression for the expectation value of O of Eq. (2.16) as

4 Equation 2.21 leads to a very involved evolution for the PDFs through a system of coupled integro-
differential equations, which is very hard to solve. The situation can be significantly simplified by
expressing the DGLAP equation in the so-called evolution basis [74], instead of the flavour basis. In
this new basis the splitting matrix can be entirely diagonalized except for a 2x2 block, involving a
flavour singlet combination of the quark PDFs and the gluon PDF; the remaining basis elements do
not mix with the gluon density and with each others.
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2.1 Fixed-order perturbation theory

〈O〉 =
∫
dΦn fh1(x⊕)fh2(x	)αNs [B(Φn) + αs Vb(Φn)]On(Φn)

+
∫
dΦn+1 fh1(x⊕)fh2(x	)αN+1

s R(Φn+1)On+1(Φn+1)

+
∫
dΦn,⊕ fh1(x⊕)fh2(x	)αN+1

s G⊕,b(Φn,⊕)On(Φ̄n)

+
∫
dΦn,	 fh1(x⊕)fh2(x	)αN+1

s G	,b(Φn,⊕)On(Φ̄n) (2.24)

where:

dΦn,⊕ = dx⊕ dx	 dz dΦn(zk⊕ + k	; k1, . . . , kn)
dΦn,	 = dx⊕ dx	 dz dΦn(k⊕ + zk	; k1, . . . , kn) (2.25)

and Φ̄n = {x̄⊕, x	, k1, . . . , kn} with x̄⊕ = zx⊕ is the underlying Born configuration
associated to Φn,⊕ (with a similar definition for the one corresponding to Φn,	), on which
the observable in the last two lines of Eq. (2.24) has been evaluated, due to its infrared
safety. In Eq. (2.24) the dependence on µF entering the bare collinear counterterms is
understood. Just as with µR, physical observables can not depend on the unphysical scale
µF, which essentially separates emissions included in the PDFs (and therefore unresolved)
from the ones participating to the hard scattering. But once the perturbative series is
truncated, a residual dependence on µF survives and by varying this scale around a central
value µF,0 one can get an estimate of the size of missing higher order terms. Therefore,
what is usually done in practise is to set µR,0 = µF,0 = Q, with Q the characteristic
scale of the process, and to simultaneously vary the two scales up and down their central
values by a factor of two. If we define µR = KRµR,0 and µF = KFµF,0, the two factors
KR and KF take values in the seven-point set:

(KR,KF) = {(2, 2), (2, 1), (1, 2), (1, 1), (1, 1/2) , (1/2, 1) , (1/2, 1/2)} . (2.26)

Then, according to this 7-point scale variation approach, one obtains an estimate of
theoretical uncertainties by taking the maximum and minimum values of the cross section
over the seven combinations of scales.

With the requirement for O to be infrared safe and for its Born configuration On(Φn)
to be finite, equation 2.24 is overall finite, even though its individual terms are not.
We have described in some details how the cancellation of IR singularities occurs at
NLO in QCD. Despite the more intricate structure, the some idea also holds for NNLO
calculations. In that case, IR divergences coming from loop integrals in the one-loop
squared |M(1)

n |2 and two-loop 2Re[M(0) ?
n · M(2)

n ] contributions will cancel against the
one-loop real term 2Re[M(0) ?

n+1 ·M
(1)
n+1], integrated over Φn+1, and the double real term

|M(0)
n+2|2, integrated over Φn+2. By keeping all contributions into account, the final result

is finite, but comprises of individually divergent terms.
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2 Theoretical tools for precise phenomenology

2.1.3 Subtraction methods
Equation 2.24 can not be practically used in any computer program, since it comprises of
individually divergent integrals that only give a finite result when added up together. For
this equation to be useable, the IR cancellation of singularities has to be made manifest
and separately finite contributions need to be provided to a computer program which
performs the multidimensional phase-space integrals over Φn and Φn+1 via numerical
approaches based on Monte Carlo methods.

A first class of methods to achieve that relies on phase space slicing. An observable
τ sensitive to the kinematics of the radiation is chosen, defined such that the Born
kinematics is recovered for τ → 0. Then, τ is used as a slicing parameter to partition the
real phase space in a resolved and an unresolved radiation region:∫

dΦn+1R(Φn+1) =
∫ τcut

0
dτ ′

∫
dΦn+1

dR(Φn+1)
dτ ′

+
∫
τcut

dτ ′
∫
dΦn+1

dR(Φn+1)
dτ ′

.

(2.27)

In the previous formula, a symbolic notation is used, where PDFs and αs factors are
understood and the τ spectrum is defined as:

dR(Φn+1)
dτ ′

= R(Φn+1)δ(τ ′ − τ ′(Φn+1)) . (2.28)

The integral over the resolved region τ ′ > τcut is finite, since the singularities of the
spectrum for τ ′ → 0 have been cut away. On the other hand, the intregrand in the
unresolved region 0 < τ ′ < τcut is approximated by making use of its soft-collinear limit
(Rsing). If an expression for its integral over the radiation kinematics is known analytically
(typically from resummation approaches), it can be combined with the virtual term to
give a finite result. We might summarize all that as:∫

dΦn+1R(Φn+1) ≈
∫ τcut

0
dτ ′

∫
dΦn+1

dRsing(Φn+1)
dτ ′

+
∫
τcut

dτ ′
∫
dΦn+1

dR(Φn+1)
dτ ′

+O(τcut) =
∫
dΦnσ

sing
R (Φn, τcut) +

∫
dΦn+1R(Φn+1)θ(τ ′(Φn+1)− τcut) +O(τcut) .

(2.29)

The σsing
R (Φn, τcut) term, also known as cumulant, effectively acts a global term for the

subtraction of IR divergences, since its form does not match the singular structure of
the real contribution point-by-point in the phase space. This clearly leads to a less
efficient cancellation of divergences from a numerical point of view. Moreover, due to the
soft-collinear approximation carried out in the unresolved region, Eq. (2.29) is exact up
to power corrections O(τcut), that would be captured by the integral of the non-singular
spectrum dRreg/dτ

′ over the unresolved region. The size of these corrections has to be
monitored in order to keep the accuracy of the result under control: smaller values of
τcut reduce the size of neglected power corrections, but lead to numerical instabilities due
to the non-local nature of the subtraction approach. Therefore, despite the conceptual
simplicity, the usage of slicing methods to handle IR divergences can be quite delicate
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2.1 Fixed-order perturbation theory

and local subtraction strategies should be preferred, where available. As we will see, that
is the case for NLO calculations, but not for NNLO ones, where the complex structure of
the singular regions makes the implementation of simple and efficient local subtraction
approaches very challenging. Therefore, in the context of NNLO calculations slicing
methods to remove additional singularities not already accounted for at NLO level are
still extremely useful. The most common ones are for instance the qT subtraction [75, 76]
or the N-jettiness slicing [77–79], where the slicing parameter is set to the transverse
momentum of a given colourless system and to the N-jettiness variable [80], respectively.
The qT subtraction scheme has been fully automated in the Matrix framework [81, 82],
a parton-level Monte Carlo program where many reactions involving Higgs, vector bosons
and top quarks in the final state can be computed at NNLO in QCD (and even NLO
EW). This program has been extensively used for many of the results presented in
Chapter 4. On the other hand, N-jettiness subtraction has been widely employed in
the MCFM program to achieve NNLO accuracy for colour-singlet production [83] (with
a more recent extension to qT subtraction, as well, as discussed in Ref. [84]) or in the
Geneva framework [85].

As anticipated, numerically more reliable approaches to make the cancellation of IR
divergences explicit exist and are simply named subtraction methods. In this case a
local subtraction term C which reproduces the singular behavior of the real amplitude
is constructed to remove point-by-point in the phase space its singular poles. Despite
this obvious constraint and the requirement for C to be analytically integrable over
the radiation kinematics, the exact form of C is arbitrary and different choices define
different subtraction schemes. These methods are nowadays the standard ones for NLO
calculations, and in the remainder of this section we examine them in a bit more details.
Indeed, besides their importance, that will allow us to set up some useful notation for
the following considerations, especially for Section 3.1. To this end, we will mainly follow
the structure of the discussion of Ref. [86].

Given the real emission phase space Φn+1, different singular regions αr can be associated
to it, depending on whether a given final-state parton becomes soft (S) or collinear to a
final (FSC) or initial (ISC) parton. With {S}, {FSC} and {ISC} we denote the sets of
soft, final-state collinear and initial-state collinear singular configurations, respectively.
Φn+1 can be mapped to one of these singular configurations by means of a mapping
M (αr)

Φ̃(αr)
n+1 = M (αr)(Φn+1) , Φ̃(αr)

n+1 = {x̃(αr)
⊕ , x̃

(αr)
	 , k̃

(αr)
1 , . . . , k̃

(αr)
n+1} (2.30)

having one unresolved final-state parton: a final-state parton with zero four-momentum
if αr ∈ {S}, two final-state partons with parallel three-momenta if αr ∈ {FSC}, or a
final-state parton with a three-momentum parallel to an initial one if αr ∈ {ISC}. The
only requirements on M (αr) are to be smooth and equal to the identity in correspondence
of the singular region: except for that, the exact definition of the singular mapping
in Eq. (2.30) is to a large extent arbitrary. A subtraction term C(αr) is then associated to
each of the singular regions, defined on the remapped real phase space Φ̃(αr)

n+1 . According
to the subtraction approach, this term is added and subtracted back in Eq. (2.24), in
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2 Theoretical tools for precise phenomenology

such a way that, as far as the real contribution is concerned, we have:∫
dΦn+1 L(x⊕, x	)R(Φn+1)On+1(Φn+1) =

∑
αr

∫
dΦn+1

[
L(x⊕, x	)On(Φn+1)C(Φn+1)

]
αr

+
∫
dΦn+1

{
L(x⊕, x	)R(Φn+1)On+1(Φn+1)−

∑
αr

[
L(x⊕, x	)On(Φn+1)C(Φn+1)

]
αr

}
(2.31)

where we have introduced the luminosity function L(x⊕, x	) = fh1(x⊕)fh2(x	) and
made use of the context convention [. . . ]αr of Ref. [86] to indicate that all arguments
of the functions appearing in the bracket context are evaluated on the singular phase-
space region αr. By construction, the second line of Eq. (2.31) is IR finite, with at
most integrable singularities, provided that the definition of On suppresses any singular
Born-like configuration, as mentioned at the end of Section 2.1.2. The remaining sum
over C(αr) should be used to cancel the IR singularities of the virtual term. To make the
cancellation explicit, the subtraction terms should be analytically integrable over the
radiation kinematics. First of all, we can introduce a second mapping M ′(αr)

M ′(αr)(Φn+1) = {Φ̄(αr)
n , Φ(αr)

rad } with Φ̄(αr)
n = [{x̄⊕, x̄	, k̄1, . . . , k̄n}]αr (2.32)

which expresses the Φn+1 phase space in terms of an underlying Born Φ̄(αr)
n part and a

three-dimensional phase-space element Φ(αr)
rad , associated to the kinematics of the radiated

parton getting unresolved for αr. The Φ̄(αr)
n phase space contains n resolved final-state

partons, and it is obtained from Φn+1 by removing the zero-momentum parton for
αr ∈ {S}, by replacing the momenta of the two collinear partons with their momentum
sum for αr ∈ {FSC}, and by dropping the parton collinear to an initial-state one, where
the momentum fraction of the latter before radiation is replaced by its momentum fraction
after radiation, for αr ∈ {ISC}. Momentum conservation is enforced among underlying
Born variables:

x̄
(αr)
⊕ K⊕ + x̄

(αr)
	 K	 =

n∑
i=1

k̄
(αr)
i . (2.33)

The mapping M ′(αr) allows us to factorize the phase-space volume dΦn+1 in the first
term on the right-hand side of Eq. (2.31) as:

dΦn+1 = J(Φ̄(αr)
n )dΦ̄(αr)

n dΦ̃(αr)
rad ≡ dΦ̄

(αr)
n dΦ(αr)

rad (2.34)

up to a jacobian factor J(Φ̄(αr)
n ) conventionally included in dΦ(αr)

rad ≡ J(Φ̄(αr)
n )dΦ̃(αr)

rad .
Then, since for αr ∈ {S, FSC} we have x̄(αr)

± = x̃
(αr)
± , the luminosity function can be

easily factored out from the integral over Φrad so as to obtain:[∫
dΦn+1L(x⊕, x	)On(Φn+1)C(Φn+1)

]
αr∈{S,FSC}

=

=
∫
dΦ̄(αr)

n L(x̄(αr)
⊕ , x̄

(αr)
	 )On(Φ̄(αr)

n )
[
C̄(Φ̄n)

]
αr∈{S,FSC} (2.35)
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with

[
C̄(Φ̄n)

]
αr∈{S,FSC} ≡

[∫
dΦradC(Φn+1)

]
αr∈{S,FSC}

(2.36)

where in Eq. (2.35) we have set On(Φ̃(αr)
n+1) = On(Φ̄(αr)

n ) thanks to the infrared safety of
O. For αr ∈ {ISC}, one has to account for the fact that x̄(αr)

⊕ < x̃
(αr)
⊕ and x̄

(αr)
	 = x̃

(αr)
	

for initial-state radiation collinear to the ⊕ direction (αr ∈ {ISC⊕}) and similarly
x̄

(αr)
⊕ = x̃

(αr)
⊕ and x̄

(αr)
	 < x̃

(αr)
	 for initial-state radiation collinear to the 	 direction

(αr ∈ {ISC	}). Therefore one can write:[ ∫
dΦn+1L(x⊕, x	)On(Φn+1)C(Φn+1)

]
αr∈{ISC⊕}

=

=
∫
dΦ̄(αr)

n On(Φ̄(αr)
n )

[∫
dΦrad

dz

z
L(x⊕, x	)C(Φ̄n) z δ(z − x̄⊕/x̃⊕)

]
αr∈{ISC⊕}

=

=
∫
dΦ̄(αr)

n
dz

z
On(Φ̄(αr)

n )L(x̄(αr)
⊕ /z, x̄

(αr)
	 )

[
C̄(Φ̄n, z)

]
αr∈{ISC⊕} , (2.37)

with

[
C̄(Φ̄n, z)

]
αr∈{ISC⊕} =

[∫
dΦradC(Φ̄n) z δ(z − x̄⊕/x̃⊕)

]
αr∈{ISC⊕}

(2.38)

with a similar treatment for the case αr ∈ {ISC	}. Therefore, we get that x̃(αr)
⊕ = x̄

(αr)
⊕ /z

for αr ∈ {ISC⊕} and x̃(αr)
	 = x̄

(αr)
	 /z for αr ∈ {ISC	}. By looking at Eq. (2.25), one can

easily get convinced that the following identifications hold:

dΦn,⊕ = dΦ̄(αr)
n

dz

z
for αr ∈ {ISC⊕} dΦn,	 = dΦ̄(αr)

n
dz

z
for αr ∈ {ISC	} (2.39)

which allow us to rewrite Eq. (2.24) as

〈O〉 =
∫
dΦn L(x⊕, x	)αNs [B(Φn) + αs Vb(Φn)]On(Φn) (2.40)

+
∫
dΦn+1 α

N+1
s

{
L(x⊕, x	)R(Φn+1)On+1(Φn+1)−

∑
αr

[
L(x⊕, x	)On(Φn+1)C(Φn+1)

]
αr

}

+
∑

αr∈{S,FSC}

[∫
dΦ̄n α

N+1
s L(x̄⊕, x̄	)On(Φ̄n)C̄(Φ̄n)

]
αr

+
∫
dΦn,⊕ L

(
x̄⊕
z
, x̄	

)
αN+1
s

{
G⊕,b(Φn,⊕) +

∑
αr∈{ISC⊕}

C̄(αr)(Φ̄(αr)
n , z)

}
On(Φ̄n)

+
∫
dΦn,	 L

(
x̄⊕,

x̄	
z

)
αN+1
s

{
G	,b(Φn,	) +

∑
αr∈{ISC	}

C̄(αr)(Φ̄(αr)
n , z)

}
On(Φ̄n) .
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The bare collinear counterterms Gb,± combine with the integrated ISC counterterms to
explicitly cancel ISC singularities:

Gb,±(Φn,±) +
∑

αr∈{ISC±}
C̄(αr)(Φ̄(αr)

n , z) = G±(Φn,±) + δ(1− z)Gsoft
± (Φ̄n) (2.41)

where G±(Φn,±) are the two finite collinear remnants, while the remaining divergent piece
Gsoft
± (Φ̄n) is an endpoint singularity (i.e defined for z = 1) of soft origin. The latter

combines with the bare virtual contribution, together with the remaining integrated
counterterms, to completely account for IR loop divergences:

V(Φn) = Vb(Φn) +
[ ∑
αr∈{FSC,S}

C̄(αr)(Φ̄(αr)
n ) + Gsoft

⊕ (Φ̄n) + Gsoft
	 (Φ̄n)

]
Φ̄n=Φn

(2.42)

where the integrated counterterms have to be evaluated on an underlying Born kinematics
matching the Born one point-by-point in the phase space. We can further simplify the
notation by including all luminosity factors and αs powers in the definition of our NLO
contributions:

B(Φn) ≡ αNs L(x⊕, x	)B(Φn) V (Φn) ≡ αN+1
s L(x⊕, x	)V(Φn) (2.43)

R(Φn+1) ≡ αN+1
s L(x⊕, x	)R(Φn+1) C(αr)(Φ̃(αr)

n+1) ≡ αN+1
s L(x(αr)

⊕ , x
(αr)
	 ) C(αr)(Φ̃(αr)

n+1)

G⊕(Φn,⊕) ≡ αN+1
s L

(
x̄⊕
z
, x̄	

)
G⊕(Φn,⊕) G	(Φn,	) ≡ αN+1

s L
(
x̄⊕,

x̄	
z

)
G	(Φn,	)

so that we can finally write an expression for the expectation value of O which is NLO
accurate and which can be fed into a proper Monte Carlo integrator:

〈O〉 =
∫
dΦn [B(Φn) + V (Φn)]On(Φn)+

+
∫
dΦn+1

{
R(Φn+1)On+1(Φn+1)−

∑
αr

[
On(Φn+1)C(Φn+1)

]
αr

}
+
∫
dΦn,⊕G⊕(Φn,⊕)On(Φ̄n) +

∫
dΦn,	G	(Φn,	)On(Φ̄n) . (2.44)

The formalism that we have recalled in quite some details is common to any subtraction
method. As we said, what distinguishes one method from the other is the choice of C(αr).
In the Frixione-Kunst-Signer (FKS) method [87, 88], one rewrites the real amplitude as
a sum of contributions associated to only one singular region where one parton gets soft
and/or collinear. Then, for each term singularities are handled separately and subtracted
by making use of the formalism of plus distributions. This method is the one which is
mainly used within the POWHEG framework, and it will be discussed in more details
in Section 3.1. In the Catani-Seymour (CS) scheme [61] the counterterms, which are
named dipole functions in this approach, are built explicitly in such a way to match
the real amplitude behaviour in its soft and/or collinear limit. Each dipole function is
constructed using the momenta of three partons, named the emitted parton, which is the
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2.2 Parton showers

one getting unresolved, the emitter and the spectator. In this formalism, multiple dipoles
differing in their spectator partons can contribute to the same singular region. The FKS
and CS schemes have been the most extensively used for NLO calculations. Nevertheless,
many other scheme choices can be made and alternative subtraction schemes have been
developed, in particular in view of their extension to the NNLO case, that, as mentioned
at the beginning of this section, is a highly non-trivial issue. Just as an example, the
antenna subtraction [89–91] is a scheme which is closely related to the CS one. Here
subtraction terms are obtained from proper antenna functions, which contain all singular
configurations for a given parton getting unresolved. Also in this case, an antenna
function is defined on three parton momenta, corresponding to the one of the emitted
parton and of two hard radiators, which are the partons colour connected to the emitted
one. The two hard radiators play the role of the emitter and the spectator of the CS
scheme, which are treated symmetrically in the antenna formalism. Antenna subtraction
is the method of choice of NNLOjet [92, 93], a parton-level Monte Carlo generator
where many inclusive and jet-production cross sections can be computed at NNLO QCD
accuracy.

As evidence of the fact that the development of a local NNLO subtraction scheme is still
a very active research area, we have the many proposals that have been designed to tackle
this problem, each of which has its strengths and weaknesses. Additionally to the NNLO
antenna subtraction, we might mention the STRIPPER framework [94], the projectio-
to-Born method [95], the techniques of Nested Soft-Collinear subtractions [96, 97], the
CoLoRFulNNLO method [98–100], or new ideas which are still under development, such
as the geometric [101] and the local analytic [102] subtractions, together with many more.

2.2 Parton showers

So far we have described the FO approach to compute the expectation value of an
observable O. We have seen that a FO calculation is based on the possibility to truncate
the perturbative expansion of the amplitude in Eq. (2.5). Therefore, it is reliable provided
that the higher order contributions which are not included in the calculation are negligible.
If perturbation theory is applicable, higher order corrections are expected to become
smaller and smaller as soon as the order of the αs contributions we are accounting for
increases, as evidence that the perturbative series is starting to converge.

Unfortunately, the stability of the perturbative series can be threatened on many
fronts. First of all, in quantum field theory the perturbative expansion of an observable
O =

∑
nOnα

n
s is known to be affected by renormalon divergences [103], i.e by a factorial

growth of the coefficients On ∼ n!, which should manifest itself at sufficiently high orders.
Due to the relatively small number of terms included in current FO calculations, this
issue is not visible nowadays, but it effectively sets a limit to the accuracy that can be
reached by a simple perturbative approach.

Moreover, FO calculations can provide reasonable predictions for observables that are
sufficiently inclusive over QCD radiation: as we have seen in the previous section, in
such cases the cancellation of IR divergences between the real and virtual contributions
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is complete. Anyway, in more realistic event descriptions, we might want to look at more
exclusive observables in particular phase-space regions or we might need to compare
theory predictions with experimental measurements where kinematic cuts are applied.
Such cuts, that restrict the available phase space, are experimentally required for instance
to reduce the background to the measurement of a given process or to account for the
geometry of the detectors. All that introduces multiple physical scales Qi in the problem,
additionally to the hard scale Q characteristic of the process. On the theory side, that
results in an incomplete cancellation of the singularities between the integral of the real
emission term, which is affected by the definition of the observable, and the virtual
term, whose loop integral is unconstrained. This manifests itself with the appearence of
potentially large logarithmic terms L ≡ log(Qi/Q) of the ratio of the physical scales of
the problem. Since IR divergences can be of either soft or collinear origin, we can have
at most two powers of L multiplying one power of αs, but such combination will appear
at all orders in perturbation theory, with contributions behaving like ∼ (αsL2)n. Then,
if αsL2 ∼ 1, such terms will become equally important at any perturbative order and
the reliability of the FO approach will break down. Indeed, to obtain physically sound
predictions, these terms have to be accounted for to all orders through some resummation
techniques.

The accuracy of a resummation procedure for a given observable O can be defined in
terms of the cumulative cross section Σ(v), giving the probability for Õ to have a value
smaller than v:

Σ(v) ≡
∫ v

0
dv′

dσ

dv′
, (2.45)

where Õ is the adimensional version of O defined in such a way that the associated
large logarithmic terms can be written as L ≡ log(1/v). Then, we can express the
logarithmically enhanced part of Σ(v) for v � 1 as a double series expansion:

Σ(v) =
∞∑
n=0

2n∑
m=0

hnmα
n
sL

m +O(αsv) . (2.46)

The resummed result is said to be leading logarithmic (LL) accurate if all terms with
m = 2n are accounted for, next-to-leading logarithmic (NLL) accurate if also terms
with m = 2n − 1 are resummed, and so on. A different counting of the logarithmic
accuracy can also be obtained once the observable O admits an exponential form of the
resummation formula:

Σ(v) = exp
[ ∞∑
n=1

n+1∑
m=0

Gnmα
n
sL

m
]

+O(αsv) . (2.47)

Despite the fact that Eq. (2.47) represents a more powerful formulation of resummation
than Eq. (2.46), it is also less general, since not all known observables present loga-
rithmically enhanced terms whose coefficients are consistent with exponentiation (see
for instance Ref. [104]). Indeed, LL contributions in the language of Eq. (2.46) are all
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resummed by the first term G12 of the exponentiated double series in Eq. (2.47). So,
according to Eq. (2.47), NkLL accuracy is reached once terms with m = n+ 1− k are
included at all orders.

Analytic calculations based on factorization and on considerations on the behaviour
of the matrix element in the IR regime can achieve resummation keeping exactly track
of the logarithmic accuracy of the final result. Analytically resummed results have
been obtained for instance using the common b-space resummation, the more recent
momentum-space resummation [105] (whose applicability is restricted to transverse
observables), or approaches based on soft-collinear effective field theories (SCET) (see
for example Ref. [106] for a nice introduction). On the other hand, with these approaches
each observable requires a non-trivial dedicated calculation. Semi-analytic methods
have also been developed in the past, capable of resumming a relatively broad class of
observables meeting the requirements of continuously globalness and recursive collinear
and infrared safety. That has been done in the CAESAR framework [104], which was
then upgraded to the ARES one [107] for e+e− collisions. Despite that, fully numerical
methods based on parton shower (PS) simulations, which can be directly embedded into
a GPMC program, are nowadays still the most flexible tools to achieve resummation.
Indeed, they provide a completely exclusive event description, which is fully differential in
the kinematics of the final-state particles. Then, any observable can be evaluated on the
set of final-state momenta which are provided at the end of the event simulation. The full
generality of the approach clearly comes with the price of less control on the logarithmic
accuracy of the final result. Parton showers are known to resum LL contributions, but
whether a NLL or a higher accuracy can be claimed for some observables it is often not
clear and pretty hard to understand. Some studies to get a better analytic understanding
of PS accuracy have been carried out for instance in Ref. [108], with still some ongoing
work in trying to develop new NLL PS algorithms, especially within the PanScales
collaboration [109–111]. Due to the importance that PS simulations have in this work
and in the results presented in Chapter 4, we want to briefly recall some general concepts
of PS simulations.

The key idea of PS algorithms [112] is to start from DGLAP equations in Eq. (2.21)
for the simulation of splitting processes that lead the system to evolve from hard down
to hadronization scales. But first of all, we want to express DGLAP equations in terms
of the unregularized splitting functions of Eq. (2.13):

t
∂

∂t
fi(x, t) = αs(t)

2π
∑
j

∫ 1

x

dz

z
Pji(z, αs(t))fj

(
x

z
, t

)

= αs(t)
2π

∑
j

{∫ zmax

x

dz

z
P̂ji(z, αs(t))fj

(
x

z
, t

)
− fj(x, t)

∫ zmax

zmin
dzP̂ji(z, αs(t))

}
, (2.48)

where the last term in the second line of the previous equation originates from dropping
the plus prescription in the definition of Pji. We notice that µ2

F has been set to a generic
energy scale t, that for the time being can be thought of as the (absolute) value of
the virtuality of the splitting particle. Moreover, in order to make the integral over
P̂ji well-defined, we need to introduce some IR cutoffs zmin and zmax to regularize P̂ji
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singularities by hand 5. Then, if we define the so called Sudakov form factor ∆i(t, tc):

∆i(t, tc) ≡ exp
[
−
∑
j

∫ t

tc

dt′

t′

∫ zmax

zmin
dz
αs(t′)

2π P̂ji(z, αs(t′))
]
, (2.49)

where tc is a constant such that tc < t, we can rewrite Eq. (2.48) as:

t
∂

∂t

(
fi(x, t)
∆i(t, tc)

)
= 1

∆i(t, tc)
αs(t)
2π

∑
j

∫ zmax

x

dz

z
P̂ji(z, αs(t))fj(x/z, t) , (2.50)

or in an equivalent integral formulation of the Fredholm type:

fi(x, t) = fi(x, tc)∆i(t, tc) +
∑
j

∫ t

tc

dt′

t′
∆i(t, tc)
∆i(t′, tc)

∫ zmax

zmin

dz

z

αs(t′)
2π P̂ji(z, αs(t′))fj

(
x

z
, t′
)
.

(2.51)

Written in this form, DGLAP equations have an appealing probabilistic interpretation
which is at the heart of PS algorithms. In the first term of Eq. (2.51), where fi is evaluated
at tc, the PDF flavour i is unchanged, which means there is no evolution. On the other
hand, in the second term of Eq. (2.51) a splitting process turning the flavour i into j takes
place. That suggests to interpret ∆i(t, tc) as the probability for no splitting to occur
from scale tc to t for the parton line i, and the ratio ∆i(t, tc)/∆i(t′, tc) as the probability
of having no splitting from t′ to t. It becomes clear that the scale t can be interpreted as
an evolution (or ordering) variable. In the context of DGLAP evolution, a parton coming
out of a hadron with a probability described by a proper PDF evolves from a low scale
tc, with a virtuality t̄c = −tc, towards the hard scale t0 > tc, so participating to the hard
process with a more negative virtuality t̄0 = −t0. Evolution from lower to higher scales
is characteristic of the so called space-like showers. When considering parton evolution
from higher to lower scales, as it occurs for radiation from final states, we refer to the PS
as time-like. In what follows, we will mainly consider the time-like evolution, where it is
simpler to introduce many of PS underlying ideas and we will discuss the space-like case
further in due time. In the context of time-like evolution, ∆i(t, tc) can be read as the
probability for no splitting to take place from the scale t down to tc and ∆i(t, tc)/∆i(t′, tc)
as the probability for no splitting to happen from t to t′ (notice the direction of evolution
compared to the space-like case).

It is evident that the two constants t0 and tc define the boundaries of the PS evolution:
t0 refers to its starting scale and is typically set to the hard scale of the process, while
tc is its final (or cutoff) scale. The value of tc can either be the hadronization scale,
if the PS generates radiation for partons directly coming out of the hard production
process, or the width of an unstable particle, whose decay products are dressed with
PS radiation (in this case the period of PS radiation cannot exceed the lifetime of the
resonance particle [2]).

5 As also discussed in the fifth chapter of Ref. [113], the exact relation between regularized and
unregularized splitting functions is mathematically recovered in the limits zmax → 1 and zmin → 0.
Therefore, the second line of Eq. (2.48) is a valid alternative formulation of DGLAP evolution equations
provided that the IR cutoffs zmax and zmin do not depart too much from these limits.
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2.2 Parton showers

The evolution in DGLAP equations is based on AP functions, which emerge from
the collinear limit of the matrix element in Eq. (2.12). For the generation of multiple
splittings, one can simply iterate the formula by writing the amplitude as a product of a
squared matrix element for the generation of a given number of resolved partons and
multiple AP splitting factors accounting for all collinear emissions. This approximation
effectively neglects interference effects at the level of the squared matrix element, which
would arise from the possibility for a radiated parton to be collinear to multiple final-
state partons. These contributions are highly suppressed in the kinematic regime of
strongly ordered emissions t0 > t1 > · · · > tn > tc: each branching in the PS cascade
can be treated as an independent 1→ 2 splitting 6 just providing the starting kinematic
conditions for the subsequent splitting process (in this sense PS algorithms are Markov
chains). The strong ordering condition is a fundamental requirement for PS to work.
Moreover, strongly ordered configurations are the most singular ones responsible for the
highest power of large logarithms, therefore accounting for terms like αns logn(t0/tc) for n
splitting processes.

In the formalism described by Eq. (2.51), named parton branching method, the kine-
matics of a splitting process is controlled by the term:

dφ

2π
dt′

t′
dz∆i(t, t′)

αs(t′)
2π P̂ji(z, αs(t′)) with ∆i(t, t′) ≡

∆i(t, tc)
∆i(t′, tc)

. (2.52)

Note that, when considering time-like showers for final-state radiation, there is a missing
1/z term in the previous formula compared to Eq. (2.51): this extra factor is required
to obtain the correct splitting probability when PDFs are involved, as for initial-state
radiation (as evident from Eq. (2.53) later in this section). Since the AP splitting functions
which are commonly used in PS algorithms are spin-averaged, the azimuthal angle φ
around the direction of the splitting parton is uniformly generated 7 within the range
[0, 2π[. Then, the hardness t′ at which the splitting occurs is generated according to
the Sudakov factor ∆i(t, t′). By noticing that ∆i(t, t′) ∈]0, 1], where the extremes are
approached respectively for t′ → tc and t′ = t, we can generate a uniformly distributed
random number r ∈ [0, 1] and solve the equation r = ∆i(t, t′) for t′. A new resolvable
branching takes place at t′ if t′ > tc; otherwise the parton line i is not allowed to split
any longer 8. Finally, the parton energy fraction z is generated according to P̂ji(z, αs(t′)).
This simple parton shower algorithm was first proposed in Ref. [120], and allows to
populate the final-state phase space with an arbitrary number of QCD partons.

The factorized form of the splitting process i→ j described by P̂ji(z, αs(t)) just works
in the strictly collinear limit, where the virtuality m2

i of the splitting particle i is zero.
6 The possibility to improve parton showers by including 1 → 3 splittings, where three partons get

simultaneously collinear, has been explored in some works, like Ref. [114].
7 In more realistic branchings, a correlation between the polarization of the splitting parton and the

plane of branching exists. An algorithm to fully account for these spin correlation effects was proposed
in Ref. [115–118] and is known with the name of Collins-Knowles algorithm, which was later adopted
by the Herwig PS program [119].

8 Similarly, in a space-like shower evolving from tc to t0 (forward evolution), the splitting scale t′ is
obtained by solving the equation r = ∆i(t, t′), where now ∆i(t, t′) ≡ ∆i(t′, tc)/∆i(t, tc), and where
the splitting is accepted provided that t′ < t0.
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2 Theoretical tools for precise phenomenology

In the PS language, this means that values of t different from zero are not allowed
and that only final-state configurations with partons having zero angular separation
can be described. This fact for instance would prevent GPMC generators based on
PS algorithms to account for the momentum distribution within collimated bunches
of final-state hadrons (named jets), which is observed experimentally. To remedy this
problem, on-shell splitting particles are allowed to get a non-zero virtuality provided
that momentum conservation is enforced via a momentum reshuffling procedure. By
doing that, the recoil of the splitting process is either absorbed by a spectator parton
(local recoil) or more generally distributed among the other particles of the process
(global recoil). The exact way this is done defines different recoil schemes. The impact
of different choices is beyond the LL accuracy that PS aims to reach by numerically
resumming logarithmically enhanced terms in the Sudakov form factor of Eq. (2.65).
Nevertheless, recoil schemes are known to play an important role when trying to move to
higher logarithmic accuracy.

Different PS algorithms are defined not just by the choice of a recoil scheme, but also
by the exact definition of the ordering variable t, which might differ from the virtuality
of the splitting particle. As soon as t = h(z)m2

i , with h a quite general function of z,
the LL accuracy of the shower is preserved by different t choices, as a consequence of
the fact that the singular behaviour encoded in the factor dt/t of Eq. (2.52) will not be
affected [121]. Once t has been defined, the extremes of the z integration zmax and zmin
are fixed by kinematic constraints, if t is chosen to be the virtuality or the transverse
momentum of the splitting pair, while z remains unconstrained if t is set for instance to
the angle formed by the splitting products. In the latter case, a value for zmin has to be
manually set to prevent the PS evolution to hit the Landau pole of αs. Moreover, the
definition of z itself is to some extent arbitrary, as soon as it preserves its meaning of
momentum fraction in the collinear limit.

Finally, the exact form of the splitting kernels in different PS algorithms can also
deviate from the AP functions. This is even better understood if we consider that by now
we have only described the problem of resumming collinear radiation and built the PS
algorithm around the collinear limit of the squared matrix elements. Indeed, when trying
to account for soft radiation, the situation is more delicate. As evident from Eq. (2.14)
and Eq. (2.15), a soft emission can not be easily thought of as a 1→ 2 splitting process,
since intereference effects play a crucial role there. Therefore, different strategies are
in use to account for soft emissions, at least in an approximate way. A first class of
approaches is based on angular ordering (whose derivation is nicely presented in Ref. [1]).
A gluon emitted at an angle θa which is larger than the angular separation θb between the
two partons involved in the previous splitting step can not resolve the distance among the
two partons of the pair: upon azimuthal average, the amplitude for such a configuration
is zero. It turns out that contributions to the emission process just arise from gluons
within the cone defined by the previous pair, i.e for θa < θb. Phase-space configurations
which violate angular ordering are therefore strongly suppressed. That suggests a way
to account for large-angle soft radiation, which makes use of the angle of the splitting
process as an evolution variable t for the shower. This is the default choice of all Herwig
parton shower programs [119, 122]. In the Pythia program [123, 124], the virtuality or
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2.2 Parton showers

the transverse momentum of the splitting pair is used as t, but emissions whose angles do
not respect the angular ordering prescription are vetoed. In a second class of methods,
named dipole-based showers [125], the main idea is to build the PS algorithm around
the soft approximation of the squared matrix element and so to conceive the splitting
intrinsically as a 2→ 3 process involving colour-connected partons. Then, in an inverted
logic compared to AP-based showers, hard collinear emissions are accounted for via
correction factors. Dipole shower algorithms are implemented and used by default in
many PS programs like Vincia [126], Ariadne [127], and Sherpa [128, 129].

Even thought in our discussion so far we have referred to the generation of radiation
from final-state partons, an algorithm for initial-state radiation has also been developed
long ago in Ref. [130]. In this approach, instead of starting the PS cascade from the scale
tc at which a parton from a given PDF is resolved, and of evolving the system till it
reaches the hard scale t0, the evolution proceeds in the opposite direction. It starts from
the initial-state partons entering the hard process and then evolves them backward, by
computing the probability for a parton to have emerged from a splitting process. This
strategy, dubbed backward evolution, is preferably applied to space-like showers, since it
allows for a more efficient event generation, where the PS is built around the hard process.
Indeed, any algorithm starting the evolution from partons emerging directly from PDFs
would be extremely inefficient, since the cross section for processes which are relevant
for LHC searches are order of magnitudes smaller compared to the total hadronic cross
section and very few events with a parton having exactly the energy to contribute to the
hard process will be generated in this way (see for instance discussion in Ref. [131]). One
of the main differences when moving from a time-like to a backward-evolved space-like
shower for initial-state radiation is the appropriate modification of the Sudakov form
factor, which now reads:

∆ISR
i (t, tc;x) ≡ exp

[
−
∑
j

∫ t

tc

dt′

t′

∫ zmax

zmin

dz

z

αs(t′)
2π P̂ji(z, αs(t))

fi(x/z, t′)
fj(x, t′)

]
, (2.53)

where the PDF ratio guarantees that the backward evolution is done consistently with
DGLAP equations 9. Furthermore, the inclusion of PDFs in ∆ISR

i (t, tc;x) automatically
enforces momentum conservation and effectively leads to the contraint zmin ≥ x, with x
the momentum fraction of the parton which might have been produced from a possible
splitting at earlier times.

9 In Ref. [113] it was discussed that backward evolution as implemented in many PS programs can
potentially be inconsistent with DGLAP evolution. With some manipulations, Eq. (2.51) can be
rewritten as

∆i(t, t′) = fi(x, t′)
fi(x, t)

∆ISR
i (t, t′;x) , (2.54)

which provides a strong consistency condition for PS evolution. Indeed, the right-hand side of Eq. (2.54)
has to be x-independent. In Ref. [113], it is shown that many PS programs violate this x-independence
requirement. That is a consequence of enforcing four-momentum conservation in the shower evolution,
which leads to values of the IR cutoffs zmax and zmin significantly away from one and zero, respectively
(see discussion in the footnote 5 of this section). Some attempts in trying to incorporate this
requirement in PS programs have been pursed for instance in Ref. [132].
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As we mentioned many times, PS methods are expected to resum large logarithmic
terms at LL accuracy. Despite that, NLL accuracy might still be reached for some
observables: this is possible because some higher-order and NLL contributions are indeed
included in the PS evolution. When computing next-to-leading order corrections to the
AP functions, there are two kinds of universal contributions which arise from the soft
limit z → 1 of the NLO splitting kernel P̂ji (see for instance Ref. [133]):

αs(mi) · lim
z→1

P̂ji(z, αs(mi)) = αs(mi)
2Ci

1− z

[
1− αs(mi)

(
β0 log(1− z) + Kg

2π

)]
+O(α3

s) ,

(2.55)

with

Kg = CA

(67
18 −

π2

6

)
− TRnf

10
9 , (2.56)

and where αs has been evaluated at the virtuality mi of the splitting particle. Clearly,
Ci = CF for q → qg splittings and Ci = CA for g → gg splittings. The first O(α2

s)
term of Eq. (2.55) arises from the incomplete cancellation between the virtual and real
corrections 10 to the AP function. Since the transverse momentum of the splitting process
kT can be related to the virtuality mi via the relation k2

T ≈ z(1 − z)m2
i , this kind of

contributions can be accounted for to all orders by evaluating αs at kT instead of mi.
It is worth noting that, for z → 1, k2

T → (1 − z)m2
i , as required by the argument of

the logarithm in Eq. (2.55). But by making use of kT, the singular behaviour for z → 0
typical of the g → gg splitting is also captured. These corrections which are resummed by
a proper choice of the renormalization scale for αs are crucial for a meaningful description
of events: despite entering at higher orders, their numerical impact can be large, being
LL contributions. The second α2

s correction in Eq. (2.55) is proportional to Kg, named
the two-loop cusp anomalous dimension, and originates from the finite reminder of the
double real correction to the AP function. This class of genuinely NLL terms is usually
included by making use of the Catani-Marchesini-Webber (CMW) or Bremsstrahlung
scheme for αs, i.e α CMW

s (kT) = αs(kT) + α2
s(kT)Kg/(2π) [134].

Even though Eq. (2.50) and Eq. (2.51) already provide many of the ingredients entering
PS algorithms, we saw that PS evolution differs in many respects from the one described by
DGLAP equations. The latter are derived in the strictly collinear limit and just keep track
of one of the particles involved in the splitting process. One can actually formalized the
definition of PS, whose underlying idea we have shortly illustrated above, in terms of an
operator S acting on the space of particle configurations (see for instance Ref. [135, 136]).
A state of n particles with momenta k1, . . . , kn and quantum numbers (such as flavour,
colour and spin) ρ1, . . . , ρn can be denoted by |k1, ρ1; . . . ; kn, ρn), with a normalization:

(k1, ρ1; . . . ; kn, ρn|k′1, ρ′1; . . . ; k′n′ , ρ′n′) = δn,n′
n∏
i=1

δ3(ki − k′i)δρi,ρ′i . (2.57)

10 More precisely, this type of correction originates only from the combination of the gluon self-energy
and the double real contributions arising from the gluon splitting process [104].
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2.2 Parton showers

Then, the shower S can be seen as a sum over all possible configurations, weighted by a
probability factor S:

S =
+∞∑
n=1

∑
ρ1,...,ρn

∫
d3k1 . . . d

3knS(k1, ρ1; . . . ; kn, ρn)(k1, ρ1; . . . ; kn, ρn| . (2.58)

In this formalism, an observable O can be defined in terms of its values On over the
different particle configurations:

O =
+∞∑
n=1

∑
ρ1,...,ρn

∫
d3k1 . . . d

3knOn(k1, ρ1; . . . ; kn, ρn)(k1, ρ1; . . . ; kn, ρn| , (2.59)

in such a way that its expectation value will be simply given by 〈O〉 = S ·O. The Markov
chain nature of PS algorithms is enforced by requiring S to satisfy a recursive equation
(we just refer here to time-like showers, but all of the discussion can also be adapted to
the space-like case). If we denote by Si(t) the PS evolving the parton line i from scale t,
then the recursion relation reads:

Si(t) = ∆i(t, tc)Si(tc)+ (2.60)∑
(jl)

∫ t

tc

dt′

t′

∫ 2π

0

dφ

2π

∫ zmax

zmin
dz
αs(t′)

2π P̂i,jl(z, αs(t′))∆i(t, t′)Sj(t̃(t′, z))Sl(t̃(t′, 1− z)) .

The first term just accounts for the probability of no further splittings down to the cutoff
scale tc, leaving the initial state Si untouched. The second term describes the probability
of having no splitting till a scale t′ with the Sudakov factor ∆i(t, t′) and then a splitting
i → jl (a sum over all possible splittings (jl) is carried out) which initiates two new
sub-showers Sj and Sl. The starting scales t̃ for the two new showers Sj and Sl are
functions of the momentum fractions z and 1− z, respectively, but the exact dependence
of t̃ on t′ is clearly affected by the definition of the ordering variable. We notice that
the exclusive AP splitting functions P̂i,jl have been used in the equation: since they
keep track of both particles of the splitting pair, their definitions slighlty differ from
the inclusive AP ones (see Ref. [136]). From Eq. (2.60) one can also derive an evolution
equation for the PS operator:

t
∂Si(t)
∂t

=
∑
(jl)

∫ 2π

0

dφ

2π

∫ zmax

zmin
dz
αs(t)
2π P̂i,jl(z, αs(t))Sj(t̃(t, z))Sl(t̃(t, 1− z))

−
[∑

(jl)

∫ zmax

zmin
dz
αs(t)
2π P̂i,jl(z, αs(t))

]
Si(t) , (2.61)

which shows how increasing the evolution scale t makes it more likely for the shower to
split in two sub-showers than to remain the same. The latter behaviour is instead the
one described by the second term of the equation, originating from the derivative acting
on the Sudakov exponent.
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Moreover, from the recursive relation of Eq. (2.60) one can derive a strong formulation
of the conservation of probability (also named shower unitarity). Since the sum of
probability factors over all shower configurations has to be normalized to one, i.e:

+∞∑
n=1

∑
ρ1,...,ρn

∫
d3k1 . . . d

3knS(k1, ρ1; . . . ; kn, ρn) = 1 , (2.62)

we can apply this sum to both sides of Eq. (2.60), so as to obtain:

1 = ∆i(t, tc) +
∑
(jl)

∫ t

tc

dt′

t′

∫ 2π

0

dφ

2π

∫ zmax

zmin
dz
αs(t′)

2π P̂i,jl(z, αs(t′))∆i(t, t′) , (2.63)

which simply states how the probabilities of having no resolved splitting and one resolved
splitting have to sum up to one. As a consequence, PS algorithms do not change the total
inclusive cross section of a process, which is properly recovered when integrating over the
details of the final-state kinematics. Moreover, the unitarity principle in Eq. (2.63) encodes
the KLN theorem, which manifests itself in the requirement for the IR singularities to
cancel to all orders between the unresolved and resolved contributions. It is worth
mentioning that, in order for unitarity to work, the integrand of the second term
of Eq. (2.63) has to be an exact differential, which means that the exponent of the
Sudakov factor has to match the splitting kernel multiplying it.

2.3 Combining fixed-order and parton shower predictions

In Sec. 2.1 we have described the main ingredients entering fixed-order calculations: they
are based on the exact form of the matrix element at a given perturbative order, in such
a way that all quantum interference effects are taken into account. Their predictive
power is anyway restricted to sufficiently inclusive observables, since in exclusive event
descriptions the convergence of the perturbative series is threaten by large logarithmic
contributions. Moreover, the amount of final-state particles n that can be described
by this exact approach is limited by the rise of the calculation complexity as soon as
n increases. On the other hand, no such limitation exists for PS algorithms, whose
basics have been recalled in Sec. 2.2. PS can generate in principle an arbitrary final-state
multiplicity and can resum to all orders enhanced logarithmic contributions causing
FO predictions to fail. The flexibility of PS tools comes with the price of a lower and
hard-to-control accuracy: their applicability is limited to the soft and/or collinear regime,
due to the approximation they are based on. Moreover, despite the ongoing effort in
trying to incorporate quantum interference [109, 137–139], together with spin [140–142]
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and colour 11 [144–147] correlation, these effects are only included in an approximate way.
From these considerations, it emerges quite clearly how the FO and PS approaches

are complementary: the former should be better used to describe hard radiation, and so
the high-energy core of the process, while the latter is more suitable for the description
of additional soft and/or collinear radiation. Therefore, any realistic event simulation
of LHC processes, where disparate energy scales are probed, will benefit from the
combination of the two methods. Unfortunately, many subtleties are involved in a
possible combination procedure, which has to guarantee a smooth transition between
the FO- and PS-dominated regimes and to avoid double-counting issues, by preventing
radiation contributions from being included multiple times in the kinematic regions
where the FO and the PS descriptions overlap. Finding the best way of combining
the two approaches is a very active and broad research field by itself in the context of
high-precision phenomenology. Two main orthogonal directions for this combination
can be outlined, namely matching, described in Subsection 2.3.1, and merging, that we
present in Subsection 2.3.2. In what follows we are just recalling the main ideas and
phylosophy of these two combination strategies, without claiming to give a comprehensive
description of the vast variety of methods belonging to them.

2.3.1 Matching at NLO

The first attempt to improve the PS description of hard-kinematics regions has been
the matrix element correction (MEC) approach [148], where the hardest PS emission
is corrected by the full LO matrix element. This is essentially done by generating PS
radiation in the usual way, with a probability controlled by the PS splitting kernels, and
then by accepting the branching with a probability given by the ratio of the LO matrix
element over the PS kernel itself (a procedure known as veto algorithm, nicely described
for instance in Ref. [149]). Despite its simplicity, extending this method to any parton
multiplicity so as to correct an arbitrary number of emissions for the tree-level matrix
elements is very involved. Some attempts in this direction have been pursed in Ref. [150]
and made available in the Vincia antenna shower model [126].

Matching strategies start from a different perspective. Their main goal is trying to
improve PS methods in such a way that the inclusive cross section is recovered at NLO
accuracy. In order to reach the desired NLO normalization, the LO matrix element
has to be supplemented by the virtual and real contributions. On the other hand, the
LL accuracy of the PS has to be preserved. Therefore, one has to make sure to avoid
double-counting issues, since the real matrix element correctly reproduces the distribution
of radiation in both the hard and soft/collinear regime, the latter already accounted
11 Among other approximations, standard parton showers keep track of the colour structure of the event

by working in the large-Nc limit, where Nc refers to the number of colours. This limit is often used
also in many FO calculations, where taking Nc →∞ drastically simplifies the treatment of the QCD
colour algebra, allowing to neglect terms like O(1/Nn

c ) with n ≥ 1 (leading colour approximation). In
MC programs, making use of the large-Nc limit enables to evolve the colour flow across the parton
cascade, from parton level all the way down to the non-perturbative regime. Indeed, the colour
information is an indispensible input for all hadronization models (see for instance introductory
discussion in Ref. [143]).
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for by the PS. It is also clear that, as a spinoff of the methods, matching approaches
also correct the hardest radiation for the tree-level matrix elements, similarly to MEC
approaches.

Even though different variants of matching strategies exist, we can still describe the
main idea in a quite general way [85, 151]. We can define the quantity

B̄S(Φn) = B(Φn) + V (Φn) +
[∫

dΦrad

{
RS(Φn+1)−

∑
αr

C(αr)(Φ(αr)
n+1)

}

+
∫
dz

z
{G⊕(Φn,⊕) +G	(Φn,	)}

]
Φ̄n=Φn

, (2.64)

where RS contains all IR singular contributions of the real amplitude R, in such a way
that R−RS is IR finite. Therefore, Eq. (2.64) corresponds to the inclusive cross section
(up to the integration over the real kinematics of the R−RS contribution) at fixed Born
kinematics Φn. We can also define a modified Sudakov form factor

∆match(Φn, t) ≡ exp
{
−
∫ [dΦradRS(Φn+1) θ(t(Φn+1)− t)]Φ̄n=Φn

B(Φn)

}
, (2.65)

which exponentiates the singular real contributions. The variable t is a hardness variable,
which might or might not match the PS evolution variable, and the θ-condition in the
integrand meets the usual PS ordering condition.

With this notation, we can write a quite general expression for matching NLO and PS
calculations in terms of the fully differential cross section dσ as:

dσ =B̄S(Φn)∆match(Φn, tc)dΦn +
{∫

dΦrad(R(Φn+1)−RS(Φn+1)) θ(tc − tΦ)
}
dΦn

+ B̄S(Φn)∆match(Φn, tΦ)RS(Φn+1)
B(Φn) θ(tΦ − tc)dΦn+1

+ (R(Φn+1)−RS(Φn+1)) θ(tΦ − tc)dΦn+1 , (2.66)

where we have set tΦ ≡ t(Φn+1). The first term in Eq. (2.66) is responsible for the
generation of events with Born-like kinematics, where the Sudakov factor ∆match(Φn, tc)
suppresses any further radiation down to the cutoff scale tc. Born-like events are
distributed according to B̄S(Φn) and are usually generated by a Monte Carlo program
with the standard hit-and-miss technique. The third term of Eq. (2.66) generates the
first emission at scales tΦ > tc. The combination of the first and third terms, once the
B̄S(Φn) function is factored out, exactly reproduces the PS structure for the generation
of radiation, with the ratio RS(Φn+1)/B(Φn) replacing the PS splitting kernel. Since this
ratio exactly matches the exponent of ∆match(Φn, tΦ), the radiation kinematics can be
generated in a PS fashion, i.e relying on the veto algorithm. The second term of Eq. (2.66)
(the FO matching term) has Born-like kinematics and it is needed to compensate for the
replacement in B̄S(Φn) of R with its singular approximation RS in the region tΦ < tc,
where the IR cancellation of singularities should occur. Finally, the last term of Eq. (2.66)
generates the first radiation away from the soft/collinear limit. In this latter case, the
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2.3 Combining fixed-order and parton shower predictions

radiation kinematics is distributed according to R−RS and can be generated again by
hit-and-miss methods (this term effectively amounts to a matrix element correction).
Once the first radiation kinematics has been generated according to the matching formula,
extra radiation with hardness t lower than tΦ can be handled by the PS.

It is important to show that Eq. (2.66) correctly reproduces NLO accurate results for
sufficiently inclusive observables. We can compute the expectation value 〈O〉 as:

〈O〉 =
∫
dΦnB̄S(Φn)

{
∆match(Φn, tc)On(Φn)

+
∫
tΦ>tc

dΦrad∆match(Φn, tΦ)RS(Φn+1)
B(Φn) On+1(Φn+1)

}
+
∫
dΦn

∫
dΦrad(R(Φn+1)−RS(Φn+1)) θ(tc − tΦ)On+1(Φn+1)

+
∫
dΦn+1(R(Φn+1)−RS(Φn+1)) θ(tΦ − tc)On+1(Φn+1) . (2.67)

The last two lines in the previous expression naively combine. Then, we can rewrite the
previous equation by adding and subtracting a term proportional to On(Φn) as:

〈O〉 =
∫
dΦnB̄S(Φn)

{
∆match(Φn, tc) +

∫
tΦ>tc

dΦrad∆match(Φn, tΦ)RS(Φn+1)
B(Φn)

}
On(Φn)

+
∫
dΦn

∫
tΦ>tc

dΦradB̄S(Φn)∆match(Φn, tΦ)RS(Φn+1)
B(Φn) (On+1(Φn+1)−On(Φn))

+
∫
dΦn+1(R(Φn+1)−RS(Φn+1))On+1(Φn+1) . (2.68)

Due to shower unitarity (see Eq. (2.63)), the term in curly brackets in the first line
simply evaluates to one. Moreover, the difference On+1(Φn+1) − On(Φn) suppresses
singular contributions from RS(Φn+1) in the second line of Eq. (2.68): thanks to IR
safety, On+1(Φn+1)− On(Φn) vanishes for soft/collinear configurations and, therefore,
no logarithmically enhanced term is exponentiated by the Sudakov factor in these phase-
space regions. That means that, at NLO accuracy, we can make use of the expansion
∆match = 1 + O(αs). For the same reason, the lower integration bound in the Φrad
integration can be set to zero. With that in mind, we can write:

〈O〉 =
∫
dΦn

{
B̄S(Φn)On(Φn) +

∫
dΦradB̄S(Φn)RS(Φn+1)

B(Φn) (On+1(Φn+1)−On(Φn))
}

+
∫
dΦn+1(R(Φn+1)−RS(Φn+1))On+1(Φn+1) +O(αN+2

s ) =

=
∫
dΦn

{
B̄S(Φn)On(Φn) +

∫
dΦradRS(Φn+1)(On+1(Φn+1)−On(Φn))

}
+
∫
dΦn+1(R(Φn+1)−RS(Φn+1))On+1(Φn+1) +O(αN+2

s ) , (2.69)

where we have neglected O(αs) contributions from the ratio B̄S(Φn)/B(Φn) = 1 +O(αs)
which multiplies the RS term. At this stage, it is easy to see that from Eq. (2.69) we
simply recover the NLO accurate expression for O of Eq. (2.44).
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The matching formula in Eq. (2.66) is the master equation for accumulative (or additive)
matching schemes, where the tree-level real corrections R−RS are added as a separate
event sample to Born-like events. The first matching procedure of this kind to have been
formulated is the famous MC@NLO method of Ref. [152]. This method has the advantage
of leaving the PS untouched: not just the generation of extra radiation attached to the
(R−RS)-distributed events (dubbed hard events) is entirely left to the PS program, but
also of all radiation in the soft/collinear regime attached to B̄S(Φn)-distributed events
(named standard events). Therefore, in Eq. (2.66) the Sudakov factor ∆match coincides
with the PS one: no need to modify PS emissions is required. The latter is an appealing
property for a matching scheme, especially due to recent progresses in trying to improve
PS accuracy beyond LL (see for instance Ref. [108–111]). On the other hand, to avoid
any double-counting, PS corrections up to order O(αs) have to be subtracted back. That
prevents from spoiling the NLO accuracy of the FO calculation, but eventually makes the
matching procedure PS-dependent: the RS terms in MC@NLO (referred to as Monte
Carlo subtraction terms) are extracted from the splitting kernels used by the specific PS
algorithm (typically given by AP splitting functions times the Born amplitude). Two
main complications arise from this choice of RS. The first one is due to the fact that
the PS approximation of the real amplitude is not guaranteed to reproduce the full
IR singular structure of R, which effectively spoils the IR cancellation of singularities
occuring at NLO level in Eq. (2.64). In this case, the FO matching term of Eq. (2.66)
will generally be non-vanishing. To mitigate this issue, RS are more commonly chosen in
such a way to interpolate between the behaviour of the PS splitting kernels, reproduced
for tΦ > tc, and the subtraction counterterms Cαr , for tΦ < tc

12. A second problem
related to the choice of RS for tΦ > tc is that the PS approximation of R can overestimate
the real amplitude in some phase-space regions, with no guarantee for R − RS to be
positive. Even though the overall result will still be positive, events with negative weights
can be generated, which significantly threatens the efficiency of the event generation
procedure 13.

A second standard matching procedure is the Powheg one, introduced in Ref. [86, 135].
The Powheg method essentially differs from MC@NLO by the choice of RS, which
is now given by the exact real amplitude times a damping factor h(Φn+1). The factor
h(Φn+1) is used to separate the hard and singular regions of R, in such a way that close
12 The mismatch between the PS splitting kernels and the subtraction terms can introduce some residual

dependence on the cutoff scale tc, which might in principle deteriorate the FO accuracy of the result,
as discussed in Ref. [85].

13 As also shown in Ref. [153], if we have a sample of N events with constant weights wi = ±c, where
the fraction of negative weights is ε, the effective number of events which controls the scaling of the
accuracy in a MC integration is reduced:√∑

i
w2
i∑

i
wi

=
√
c2 N2

c (1− 2ε) N = 1√
(1− 2ε)2 N

, (2.70)

in such a way that the error of a MC integration will scale with the inverse of the squared root of
Neff = (1− 2ε)2 N, instead of N. Therefore, larger event samples are needed to obtained a statistical
accuracy comparable to samples free of negative weights. In the context of MC@NLO, the possibility
to reduce the fraction ε has been explored in the so called MC@NLO-∆ variant of the algorithm [154].
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2.3 Combining fixed-order and parton shower predictions

to a singular configuration of the real phase space h(Φn+1)→ 1 and RS exactly matches
the IR singular structure of R by definition. That said, standard and hard events in
Powheg are generated as usual with a hit-and-miss method, but MC subtraction terms
are not needed, since the kinematics of the hardest radiation attached to standard events
is also generated by the MC program. This is done in a PS-like approach, by making
use of a modified Sudakov form factor ∆match which exponentiates the singular real
contributions RS

14. In this approach the hardest PS emission is therefore corrected and
generated with a tΦ value according to the full real amplitude, with emissions having
t < tΦ still accounted for by the PS. The Powheg method has different advantages.
First of all, it can be easily interfaced to any PS algorithm, without any ad-hoc MC
subtraction term to be extracted from the specific implementation of the PS. Moreover,
the difference R − RS is by definition positive and event samples are free of negative
weights (with the clear exception of those events associated to phase-space regions where
perturbation theory becomes unreliable). On the other hand, some new complications
have to be taken into account. The first one has to do with the fact that the ratio
RS/B can become unphysically large close to resonance peaks: this issue has been faced
in a modified Powheg method, specifically designed to deal with processes involving
resonances [155]. Moreover, the Powheg approach is meant to correct the hardest PS
emission with the exact matrix element. If the PS is ordered in a variable t which can be
associated to the hardness of the radiation (typically its transverse momentum), then
the Powheg formula simply amounts to correct the first PS emission; if a different
ordering variable, such as the angle of the splitting pair, is used, the hardest emission will
generally follow a certain number of soft large-angle emissions. This set of soft emissions
is required to correctly reproduce the final-state multiplicity and the colour coherent
pattern of QCD radiation. A workaround to this problem was proposed in Ref. [135] by
letting the PS evolve from the hard scale of the process down to the scale of the hardest
emission, instead of the usual PS cutoff (a feature that gives the name to this special
PS evolution, dubbed truncated shower). Then, the kinematics of the radiation with
the largest transverse momentum pT,h can be corrected with the Powheg formalism.
Finally, extra radiation down to tc can be generated by means of vetoed showers: only
radiation having a transverse momentum pT < pT,h is accepted, while vetoed branchings
with pT > pT,h are just used to reset the shower evolution scale (in order to preserve
unitarity).

When it comes to NLO matching, the MC@NLO and Powheg methods, together
with all their variants, are still the mainstream ones, due to their high flexibility and
generality, and nowadays they can boast a huge amount of applications in many physical
contexts. Nevertheless, alternative matching approaches have also been proposed more
recently. One of those is the KrkNLO method [156], which relies on a multiplicative

14 In a previous Powheg version the entire R contribution was exponentiated without any distinction
between standard and hard events. That was corrected afterwards to better describe phase-space
regions away from the PS soft-collinear approximation.
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matching, given schematically by:

dσ =B(Φn) · (1 + δNLO) ·
{

∆match(Φn, tc)dΦn

+
[
∆match(Φn, tΦ)RS(Φn+1)

B(Φn)

]
R(Φn+1)
RS(Φn+1) θ(tΦ − tc)dΦn+1

}
, (2.71)

where, as with MC@NLO, the generation of radiation is completely left to the PS, so
that ∆match and RS coincide with the PS Sudakov and splitting kernel, respectively. The
shower is attached to events distributed according to the LO differential cross section
B(Φn). NLO accuracy over inclusive observables is then achieved with an overall weight
(1 + δNLO) and the factor R/RS, which corrects the kinematics of the hardest PS emission
in a multiplicative way. The advantages of this method are its conceptual simplicity (NLO
accuracy is achieved just with proper correction weights), the absence of negative weights
(as in Powheg) and the fact of leaving the PS evolution untouched (as in MC@NLO).
Anyway, the NLO corrections δNLO should be provided in a proper factorization scheme
for the PDFs, named Monte-Carlo scheme, introduced in Ref. [157] (which simplifies
the form of the NLO corrections by including initial-state collinear singularities in the
PDF definition). Moreover, the PS is required to properly cover the full radiation phase
space, which is not the case if for instance RS vanishes in some phase-space regions. This
requirement on the PS definitely limits the applicability of the method. Finally, since
the multiplicative matching generates weighted events by definition, the efficiency of the
method can be limited by the efficiency of a process-specific unweighting procedure 15.
All that has made concrete applications of this matching procedure quite involved, except
for simple processes like Drell-Yan or Higgs production.

Therefore, even though NLO matching is a well-understood problem, ongoing efforts
in trying to improve the accuracy of current PS algorithms require to find better ideas
and to explore new possibilities for a matching procedure combing all advantages of
existing approaches. As a proof of how this research field is still extremely active, a very
recent proposal for a new matching scheme was presented in Ref. [151] with the name of
MAcNLOPS. Its goal is to combine the MC@NLO additive scheme for the generation of
hard events and the KrkNLO multiplicative scheme in phase-space regions where the PS
overestimates the real matrix element.

15 In nature events clearly come without a weight, but the occurrence of a given kinematic configuration
is proportional to the value of the differential cross section on that phase-space point. Therefore, if
event generators provide weighted events, in order to become usable in realistic analyses, those events
first have to be unweighted. That means that a set of N events with weights wi is converted into a
set of M < N events with unit weights. If wmax = maxi{wi|i = 1, . . . ,N} and r is a random number
r ∈ [0, 1], then each event i in the sample is processed and accepted only if wi/wmax > r. In so doing,
the effective size of the sample is reduced: that is why the statistical accuracy of weighted events is
generally bound to be lower. Different ways to reduce the fraction of rejected events are available,
which should be tuned on a process-by-process basis (see for instance Ref. [158]).
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2.3.2 Multijet merging
Another direction to improve PS simulations is merging multiple event samples charac-
terized by a different jet multiplicity. If the PS is corrected by tree-level matrix elements
in each event sample, then the merged event set can describe hard and well-separated
emissions at LO accuracy, while accounting for extra soft and collinear radiation with
parton showers. Among other reasons, the interest in improving multijet simultations is
motivated by the fact that multijet events represent a relevant source of background in
many BSM searches.

The number of merging approaches is extremely vast, but, as discussed in Ref. [159],
they all share some common features. First of all, an event with a given multiplicity n
(with a maximum value nmax ∼ 6 due to computational feasibility reasons) is generated
according to the exact tree-level matrix element. The multiplicity n is selected on an
event-by-event basis with a probability Pn given by:

Pn = σn∑nmax
m=1 σm

, (2.72)

where σn is the cross section for the production of n final-state jets as obtained from
a FO calculation. All merging strategies essentially agree till this point. What can be
significantly different is instead the way the transition between the hard regime described
by the full matrix element and the PS regime is accessed. Despite that, all methods
are unavoidably required to define a merging scale QMS to separate the two kinematic
regimes.

From a historical point of view, one of the first merging approaches to have been
formulated is the Mlm one [160]. The strength of the method is its simplicity and the
fact that no constraint on the way the PS is run is required. Despite the many variants of
the method, the key idea of the original Mlm algorithm is the following. The LO partonic
events are showered starting from the hard scale of the process. Then, partons generated
by PS evolution are clustered into jets with a proper clustering algorithm, which defines
an interparton separation measurement yij between partons i and j. In this context,
this jet-resolution (or clustering) scale plays the role of a merging variable, once a value
QMS for the merging scale is chosen: two partons are considered as resolved if yij > QMS,
otherwise they are combined into the same jet. At this point, the energy-ordered list
of these jets is required to match the set of LO partons in number and in terms of
a parton-jet distance criterion (i.e in order to be identifiable, the separation between
the candidate jet and the parton can not exceed a certain separation scale). If these
conditions are not met, the showered event is discarded. The simplicity of this procedure
comes with the price of little analytic control. Indeed, a veto procedure based on a
parton-jet matching criterion does not have a simple translation into a well-defined QCD
object, even though its effect is to suppress extra radiation just like PS Sudakov form
factors. The mismatch between the Mlm veto and the PS Sudakov factor does not allow
for a smooth transition between the hard and the PS regime, which effectively results in
a residual dependence on the unphysical merging scale QMS.

A different set of approaches for LO merging is based on the Ckkw method, first
proposed in Ref. [161]. A smooth transition between the matrix elements and PS evo-
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lution is pursed by a proper reweighting of the partonic events. This is done by first
reconstructing a parton shower history for the partons generated according to the FO
matrix element. In the original Ckkw approach, such a history is obtained by iteratively
combining with a k⊥-clustering (or Durham) algorithm [162] the tree-level parton lines.
The distance measurement yij for partons i and j is computed as:

yij ≡ 2 min(E2
i , E

2
j )(1− cos θij)/Q2 , (2.73)

where Ei and Ej are the parton energies and θij their angular separation 16, while Q is
the hard scale of the process. At each step, only partons which are the closest in terms
of yij are clustered together (a history reconstruction strategy named winner-takes-all):
that corresponds to selecting the most probable configuration with which a PS evolution
would have generated the LO partons. In so doing, the recursive clustering defines a
set of ordered scales qk ≡

√
yijQ for k ∈ {1, . . . , n}, where qk corresponds to the relative

transverse momentum of the clustered pair i and j. The clustering scales {qk} are first
used to rescale matrix elements, where the αs coupling is evaluated at the hard scale Q,
by the ratio

∏n
k=1 αs(qk)/αns (Q) (for hadron-initiated processes, a similar factor involving

ratios of PDFs is also required). Such a reweighting procedure is also applied in some
implementations of the Mlm merging [164], to allow matrix elements to better mimic the
PS behaviour. What is peculiar of the Ckkw strategy is the introduction of a reweighting
term involving the product of analytic Sudakov factors ∆(qk, qk+1), one for each parton
produced at scale qk and splitting at scale qk+1 within the reconstructed parton shower
history. The reweighted event is then passed to the parton shower program. A crucial
ingredient of the Ckkw method is setting the shower starting scale t0. If the shower
ordering variable t matches the clustering variable q, which is used to define the merging
scale QMS = √ycutQ in terms of a jet-resolution value ycut, t0 can be safely set to QMS.
Even if an exact correspondence is never fulfilled in current shower algorithms, no big
issues are expected for transverse-momentum ordered showers. If the shower is instead
ordered in a different variable, such as the angle of the splitting pair, setting t0 to QMS
would result in a radiation gap, due to missing PS emissions with transverse momentum
lower than the merging scale, but shower evolution values larger than the merging scale.
This radiation gap effectively introduces an unphysical dependence on the merging scale.
This issue was already addressed in the original publication: in Ref. [161] the PS for each
parton line was invoked from the scale where the parton was first produced (instead of
from QMS), with a veto over radiation with transverse momentum larger than QMS. A
further improvement to also account for missing radiation from the intermediate states
of the reconstructed shower history was proposed in Ref. [165], which adapted the idea of
truncated showers from Ref. [135] to the Ckkw framework.

A quite different variant of the Ckkw approach, named Ckkw-l, was first introduced
in Ref. [166]. The idea is to ameliorate the problem of the mismatching between the
analytic Sudakov reweighting and the PS evolution with a clustering algorithm for
16 This is the original choice of yij used in Ref. [161], where hadronic final states for e+e− collisions

where considered. For hadron initiated events, the proper definition of the Durham jet measurement
should be used [163].
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the reconstruction of the PS history which exactly inverts the PS branchings. The
reconstructed branching kinematics and the scales qk clearly become dependent on
the specific PS that is employed, but that allows for an exact equivalence between
the clustering and the evolution scales. Moreover, when the shower history is built, a
probabilistic strategy is used, where all possible shower histories are considered and only
at the very end the one with highest probability (given by the product of the associated
splitting kernels) is chosen. Finally, when it comes to reweighting the matrix elements,
the product of Sudakov factors is not included analytically, but it is effectively accounted
for by allowing the PS to generate radiation from the reconstructed states between scales
qk and qk+1: the PS is invoked from scale qk and any radiation above qk+1 is vetoed.
Despite these adjustments, a residual dependence on QMS still survives, as it can be seen
for instance by looking at the exclusive partonic cross section σn. For simplicity, we can
consider σ3 as an illustrative example. We denote by ∆̄(qi, qj) the product of Sudakov
form factors giving the non-emission probability from scale qi to qj for the different
parton lines of the history and by Γ2→3(t) the PS splitting kernel integrated over the
momentum fraction. We can schematically write the 3-jet cross section differential in
the kinematics of the lowest multiplicity (n = 2) phase space as obtained from Ckkw-l
merging as:

dσ3
dΦ2

=
∫
dt ∆̄(Q, t) ·

{
αs(t)
αs(Q) |M

(0)
3 |

2(Q) θ(t−QMS)

+ |M(0)
2 |

2(Q) Γ2→3(t) θ(QMS − t)
}
· ∆̄(t, tc) . (2.74)

The first term of the previous equation describes the radiation kinematics using the
correct tree-level matrix element |M(0)

3 |2 for values of the radiation hardness t > QMS
(possible PDF reweighting factors for hadron-initiated processes are understood). For
t < QMS, the kinematics of the third jet is described by the PS attached to the lower
multiplicity matrix element |M(0)

2 |2. Therefore, the size of the residual QMS dependence
is related to how well the PS can describe the third emission also away from the strict
soft/collinear regime: in the limit case where Γ2→3(t) ∼ |M(0)

3 |2/|M
(0)
2 |2 the merging

scale dependence completely cancels out.
In Ref. [167] it was also pointed out that this residual QMS dependence in the Ckkw-l

algorithm potentially violates unitarity: when all exclusive jet-multiplicity samples are
combined, the inclusive cross section σincl is not exactly recovered. We consider again
a simple case where two jet samples with multiplicities n = 2 (the one with the lowest
multiplicity) and n = 3 are merged using the Ckkw-l approach. Then, σincl can be
computed by integrating over the hardness t of the emitted parton in the 3-jet sample
down to the merging scale (for radiation having t < QMS, unitarity is guaranteed by PS):

σincl =
∫
dΦ2

{
dσ2
dΦ2

+
∫ Q

QMS
dq1

dσ3
dΦ2dq1

}
=

=
∫
dΦ2

{
|M(0)

2 |
2 · ∆̄(Q,QMS) +

∫ Q

QMS
dq1

αs(q1)
αs(Q) |M

(0)
3 |

2(Q) · ∆̄(Q, q1)
}
, (2.75)
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where q1 is the reconstructed scale for the first emission within the shower history 17. As
with Eq. (2.74), when considering the kinematics of the first emission, we just highlighted
the dependence on the hardness. Then, expanding Eq. (2.75) to order αs gives:

σincl =
∫
dΦ2

{
|M(0)

2 |
2
(

1−
∫ Q

QMS
dq1Γ2→3(q1) +O(α2

s)
)

+
∫ Q

QMS
dq1

αs(q1)
αs(Q) |M

(0)
3 |

2(Q)(1 +O(αs))
}
6=
∫
dΦ2|M(0)

2 |
2 +O(α2

s) , (2.76)

where we see again that the amount of unitarity violation is related to the accuracy of
the PS in the description of the radiation kinematics. Since PS algorithms are mostly
LL accurate, the non-cancellation in Eq. (2.76) generally introduces a dependence on
the merging scale of the form ∼ αsLcut, with Lcut = log(Q/QMS). If QMS � Q, then
these contributions become sizeable, spoiling the FO accuracy of the inclusive cross
section. Even if the first PS emission is corrected using MEC approaches, the problem
will unavoidably appear again when merging higher multiplicity samples. This issue was
the main motivation for the introduction of the Unitary Matrix Element plus Parton
Shower (Umeps) merging in Ref. [167], where unitarity is restored by subtracting back
some ad-hoc events with the radiation kinematics integrated out. The price to be paid for
that is the introduction of negative-weighted events, with a considerable loss of efficiency
(see footnote 13 in this chapter).

This brief and necessarily incomplete analysis of different merging approaches has
allowed us to describe the main subtleties that are involved when trying to supplement
the PS description with matrix elements. In particular the problem of reducing the
dependence on the unphysical merging scale is common to all approaches and we will
come back to this again in Section 3.2. Other LO merging methods that we did not cover
in our summary are for instance pseudo-showers [168] or the MESS approach [169], the
latter formulated within the Vincia sector shower framework.

Despite all complications involved in merging jet samples corrected by tree-level matrix
elements, a LO accuracy in the description of jet observables is often not enough for a
precise phenomenology. The most natural line of development is trying to merge different
jet multiplicities at NLO accuracy. This can be done by improving existing NLO matching
methods with merging strategies in such a way that NLO accuracy is reached also for
the production of associated jets. Examples of NLO merging algorithms are for instance
FxFx [170], which combines MC@NLO with Mlm merging, MEPS@NLO [171], where
MC@NLO is supplemented with suitably modified truncated showers, or Unlops [172],
which is based on an extension of the unitarity paradigm of Umeps. Another relevant
framework to achieve multijet merging is the Geneva one [173], where FO calculations
for different jet multiplicities are combined together with the use of analytic resummation.
All these methods are fairly general, since multiple jet samples can be combined at NLO,
and many of their advantages/disadvantages are inherited from the matching and merging
17 The absence of the Sudakov factor ∆̄(q1, QMS) in the reweighting term for |M(0)

3 |
2 in Eq. (2.75) is

required for the highest multiplicity sample in order to allow the shower to generate more than n = 3
jets above the merging scale, as noticed in Ref. [163, 168].
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schemes they are based on. Another method that we will discuss more extensively in
Section 3.2 is MiNLO′ [174, 175], which is a Ckkw-inspired NLO merging approach
embedded in the Powheg matching framework. As we will see, it has the advantage of
preserving unitarity, since no unphysical merging scale is introduced. As a drawback, the
method is less general than previous approaches and only two jet samples (the 0- and
1-jet) can be merged, even though some attempts to extend it to three jet samples were
pursued in Ref. [176].

The NLO merging algorithms are in their turn the starting point for the formulation
of NNLO+PS generators, where NNLO accuracy is achieved for observables inclusive
over QCD radiation, on top of NLO accuracy for observables involving one jet. As we
will discuss more extensively in Section 3.3, reaching NNLO+PS accuracy is still an
open problem, since no general method is available and just few approaches with limited
applicability have been formulated so far.
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3 Matching NNLO QCD calculations with
parton showers

Armed with a general overview of the different methods to achieve precise phenomenology,
we are now ready to specialize the discussion to the theoretical framework that was used
in this work to produce the results presented in Chapter 4. In Section 3.1 we present the
Powheg method, that was already introduced in Subsection 2.3.1, and some technical
details of this NLO matching procedure. The MiNLO′ method, that we mentioned in
Subsection 2.3.2 in the context of NLO merging, is then described in Section 3.2 in some
of its basic aspects. Finally, MiNNLOPS is introduced in Section 3.3, where we illustrate
the key idea to reach NNLO accuracy for QCD calculations matched with parton showers.

3.1 The POWHEG framework
In Eq. (2.66) we reported a quite general expression to achieve NLO matching, which
allowed us to describe the two mainstream matching methods, i.e MC@NLO and
Powheg, with a uniform notation, as done in Ref. [151]. We mentioned that, in Powheg,
the singular approximation of the real amplitude RS is chosen exactly equal to R, up to a
damping factor to separate its finite and singular contributions. Since the FO matching
term of Eq. (2.66) vanishes with this choice [85], the Powheg NLO matching formula
can be simply rewritten as:

dσ =B̄S(Φn)
{

∆pow(Φn, tc)dΦn + ∆pow(Φn, kT(Φn+1))RS(Φn+1)
B(Φn) θ(kT(Φn+1)− tc)dΦn+1

}
+ (R(Φn+1)−RS(Φn+1))θ(kT(Φn+1)− tc)dΦn+1 . (3.1)

As we explicitly verified in Section 2.3.1, the previous formula guarantees a NLO accurate
description of infrared safe observables with no singularities associated to the Born phase
space Φn. The first line of Eq. (3.1) is responsible for the generation of radiation in the
singular regions starting from a Born-like kinematics and the second line describes the
hard radiation. The term in the curly bracket of Eq. (3.1) exactly mimics the PS formula,
where the Sudakov form factor is chosen to be

∆pow(Φn, pT) ≡ exp
{
−
∫ [dΦradRS(Φn+1)θ(kT(Φn+1)− pT)]Φ̄n=Φn

B(Φn)

}
, (3.2)

with a Sudakov exponent matching the choice of the splitting kernel used in Powheg,
i.e the singular part of the real amplitude RS. The hardness kT(Φn+1) of the QCD
radiation which is matched to the shower corresponds, in the soft/collinear limit, to the
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3 Matching NNLO QCD calculations with parton showers

transverse momentum of the emitted particle with respect to the emitter. If this scale is
used to set the factorization and renormalization scales in the αs coupling and the PDF
factors in the integrand of Eq. (3.2), then it was shown in Ref. [86] that ∆pow(Φn, kT)
has LL accuracy (with some small adjustments even NLL accuracy can be achieved for
some processes): this is one important ingredient which ensures that the LL accuracy of
the PS is not spoiled. The Powheg formula is used to generate the hardest radiation,
distributed according to the tree-level matrix element, under the assumption that this
radiation event has been the first one to occur in the PS cascade. If the Powheg ordering
variable equals the one of the PS, the matching procedure continues straightforwardly:
the hardness of the radiation generated by Powheg serves as a starting scale for the
PS evolution. This is the case for showers ordered in the transverse momentum of the
radiation, such as the Pythia8 shower [124]. The PS strong ordering assumption would
instead be violated by Powheg if, for instance, the shower is angular ordered. If that is
the case, the correct radiation pattern is reproduced by making use of truncated showers,
accounting for large-angle soft radiation occurring before the hardest Powheg emission
at kT, as we described in Section 2.3.1. Then, the ordering condition for the shower
starting at kT scale is enforced by a veto.

Together with the ordering variable, the choice of the cutoff tc in the Powheg and
the PS Sudakov has to agree, as well. The standard choice of Powheg is to set the
minimum allowed transverse momentum for the radiation close to the hadronization scale
(specifically t2c = p2

T,min = 0.8 GeV2).
The generation of radiation in Powheg is closely related to the NLO subtraction

procedure, that we described in Section 2.1.3. Even though a formulation with the CS
scheme can be quite easily achieved, the FKS subtraction turns out to be the most natural
choice in Powheg. Indeed, the matrix element RS is written as a sum of contributions
having just one singularity for a parton i getting soft or collinear to only one final-state
parton j (αr,ij singular configuration in the set of singular regions {αr̃}) or to an initial-
state parton (αr,i singular configuration within the sets {α	} and {α⊕}, depending on
the initial parton direction). In what follows, if needed, we will refer to a generic singular
configuration within the two sets αr̃ and α⊕/	 as αr. The aforementioned separation
of contributions to RS can be easily obtained by isolating the real-emission singular
regions by means of some FKS functions F of the real phase space Φn+1, satisfying a
partition-of-unity condition:∑

αr,i∈{α⊕}
F⊕i +

∑
αr,i∈{α	}

F	i +
∑

αr,ij∈{αr̃}
Fij = 1 (3.3)

with the sums ranging over all possible singular configurations, and fulfilling the limits

lim
k0
m→0

(
F⊕i + F	i +

∑
j

Fij
)

= δim lim
~km‖~kl

(Fij + Fji) = δimδjl + δilδjm

lim
~km‖~k⊕/	

F⊕/	i = δim lim
~km‖~k⊕/	

Fij = 0 lim
~km‖~k⊕/	

F	/⊕i = 0 , (3.4)

which guarantee that each FKS function isolates one singular region.
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3.1 The POWHEG framework

By means of the FKS functions, the real amplitude can be separated into a sum of
contributions Rα⊕i , Rα	i and Rαr̃ij which are divergent in only one singular region:

RS =
∑

αr,i∈{α⊕}
R
α⊕
i +

∑
αr,i∈{α	}

R
α	
i +

∑
αr,ij∈{αr̃}

Rαr̃ij

≡
∑

αr,i∈{α⊕}
F⊕i RS +

∑
αr,i∈{α	}

F	i RS +
∑

αr,ij∈{αr̃}
FijRS . (3.5)

As soon as the FKS functions allow to separate the different singular regions, their
exact definition is arbitrary. One can introduce some objects{

d
⊕/	
i = 0 ⇐⇒ k0

i = 0 or ~ki ‖ ~k⊕/	
dij = 0 ⇐⇒ k0

i = 0 or k0
j = 0 or ~ki ‖ ~kj

(3.6)

where the energies k0
i and vector components ~ki are computed in the center of mass (CM)

frame of the incoming partons. Then, by defining:

D =
∑
k

1
d⊕k

+
∑
k

1
d	k

+
∑
kl

1
dkl

(3.7)

we can write:

F⊕/	i = 1
Dd⊕/	k

Fij = 1
Ddij

g

(
k0
i

k0
i + k0

j

)
(3.8)

where the extra function g, satisfying the conditions

lim
k→0

g(k) = 1 lim
k→1

g(k) = 0 g(k) + g(1− k) = 1 , (3.9)

is required to avoid double countings of singular regions if both Fij and Fji exist (which
is the case if i and j are gluons arising from a gluon splitting).

To get even closer to the actual Powheg implementation of Eq. (3.1), it is important to
remember that in a GPMC event generator one has to keep track of the flavour structure
of the NLO event: different flavours effectively describe different events and give rise to
different shower evolutions. We define as `B the list of particle flavours of the Born event
and `R that of the real event. Once a real flavour structure is given, the different singular
regions {αr|`R} ≡ {α⊕/	|`R} ∪ {αr̃|`R} associated to it can be identified. We also define
as {αr|`B} ≡ {α⊕/	|`B} ∪ {αr̃|`B} the set of singular regions whose underlying Born has
`B as a flavour structure. If the flavour `R can not develop any singular configuration,
we define its contribution to the real amplitude as a regular one; otherwise `R simply
contributes to the singular part of R. Therefore, the set of real flavour structures can be
divided into a regular Rg(`R) and singular Sg(`R) set as {`R} = Rg(`R) ∪ Sg(`R). Then,
within each singular region, we can further identify a strictly singular contribution RS
(or also Rsing in what follows), which is the only one to be exponentiated in ∆pow, and
a remnant one Rremn. The separation between singular and remnant contributions is
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achieved by means of a damping factor h(αr) = h(Φ̄(αr)
n , Φ(αr)

rad ) (that we have already
introduced in Section 2.3.1), which depends on the details of the mapping of Eq. (2.32)
in each singular region. Therefore, we can decompose the real amplitude as:

R =
∑
{`R}

R`R =
∑

`R∈Sg(`R)
R`R +

∑
`R∈Rg(`R)

Rreg
`R

=

=
∑

`R∈Sg(`R)

{ ∑
αr̃∈{αr̃|`R}

Rαr̃`R +
∑

α⊕/	∈{α⊕/	|`R}
R
α⊕/	
`R

}
+

∑
`R∈Rg(`R)

Rreg
`R

=

=
∑

`R∈Sg(`R)

{ ∑
αr̃∈{αr̃|`R}

hαr̃Rαr̃`R +
∑

α⊕/	∈{α⊕/	|`R}
hα⊕/	R

α⊕/	
`R

+

+
∑

αr̃∈{αr̃|`R}
(1− hαr̃)Rαr̃`R +

∑
α⊕/	∈{α⊕/	|`R}

(1− hα⊕/	)Rα⊕/	`R

}
+

∑
`R∈Rg(`R)

Rreg
`R

=

≡
∑

`R∈Sg(`R)

{ ∑
αr̃∈{αr̃|`R}

Rsing, αr̃
`R

+
∑

α⊕/	∈{α⊕/	|`R}
R

sing, α⊕/	
`R

}
+

+
∑

`R∈Sg(`R)

{ ∑
αr̃∈{αr̃|`R}

Rremn, αr̃
`R

+
∑

α⊕/	∈{α⊕/	|`R}
R

remn, α⊕/	
`R

}
+

∑
`R∈Rg(`R)

Rreg
`R

(3.10)

where we have defined

Rsing, αr
`R

= hαrRαr`R Rremn, αr
`R

= (1− hαr)Rαr`R . (3.11)

Despite being formally correct, the organization of the sum of the singular and remnant
contributions in Eq. (3.10) is slighlty different from its actual implementation. In Powheg
the generation of the real kinematics starts from the generation of Born-like variables,
which are interpreted as the underlying Born variables of a given singular real flavour
structure in the set Sg(`R). Since an underlying Born configuration can be associated to
multiple singular real flavour structures, different radiation patterns are possible. In this
reverted logic, we can rewrite Eq. (2.64) for B̄S (that we rename here as B̄ for simplicity)
for a fixed Born flavour structure `B as:

B̄`B(Φn) = B`B(Φn) + V`B(Φn) +
∑

αr∈{αr|`B}

[∫
dΦrad{Rsing

`R
(Φn+1)− C(Φn+1)}

]Φ̄(αr)
n =Φn

αr

+
∑

α⊕∈{α⊕|`B}

∫
dz

z
G
α⊕
⊕ (Φn,⊕) +

∑
α	∈{α	|`B}

∫
dz

z
G
α	
	 (Φn,	) . (3.12)

If we define a flavour-aware Sudakov form factor ∆`Bpow as:

∆`B
pow(Φn, pT) ≡ exp

{
−

∑
αr∈{αr|`B}

∫ [
dΦradR

sing
`R

(Φn+1)θ(kT(Φn+1)− pT)
]Φ̄(αr)

n =Φn
αr

B`B(Φn)

}
,

(3.13)
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we can expand the flavour sum of Eq. (3.1) and rewrite it as:

dσ =
∑
`B

B̄`B(Φn) dΦn

{
∆`B

pow(Φn, pT,min)

+
∑

αr∈{αr|`B}

[
dΦrad∆`Bpow(Φn, kT(Φn+1))Rsing

`R
(Φn+1)θ(kT(Φn+1)− pT,min)

]Φ̄(αr)
n =Φn

αr

B`B(Φn)

}

+
∑
`B

∑
αr∈{αr|`B}

[
Rremn
`R (Φn+1)θ(kT(Φn+1)− pT,min)dΦndΦrad

]Φ̄(αr)
n =Φn

αr

+
∑

`R∈Rg(`R)
Rreg
`R

(Φn+1)θ(kT(Φn+1)− pT,min)dΦn+1 . (3.14)

To summarize, according to the previous equation, the regular contributions are obtained
by adding up all real flavour structures `R ∈ Rg(`R): the corresponding real kinematics is
generated with a distribution Rreg

`R
using a hit-and-miss technique and then directly passed

to the shower program. Each flavour channel is selected with a probability proportional
to its contribution to the overall sum. For flavours in the list Sg(`R), when generating
a remnant contribution, the real kinematics is obtained in pretty much the same way
as with the regular part. Otherwise, Powheg starts by generating an underlying Born
kinematics with a probability B̄`B , where again a flavour channel is chosen according
to its contribution to B̄. Then, the kinematics of the extra radiation with respect
to the Born phase space its accounted for by the Powheg Sudakov. Notice that `R

in Eq. (3.12), Eq. (3.13) and Eq. (3.14), used for Rsing
`R

and Rremn
`R

when summing over
αr ∈ {αr|`B}, refers to the real flavour structure having αr as a singular region.

In order not to spoil the strong ordering condition, the k(αr)
T generated by Powheg in

each singular region αr is required not to be harder than any other radiation which might
be part of the underlying Born kinematics (which is obtained from the mapping shown
in Eq. (2.32)). With the separation of regions of Eq. (3.5), each contribution to the sum
is strongly suppressed away from its specific singular configuration. Therefore, Rsing, αr is
used to generate radiation with a transverse momentum k

(αr)
T which is the smallest within

the corresponding real kinematics, with unordered configurations suppressed. That can
be enforced by a specific choice of dij and d⊕/	i in Eq. (3.6), which can be defined in such
a way that the separation of singular contributions is done according to the transverse
momentum of the radiation. Therefore, we can write:

d
⊕/	
i = (k0

i )2b 2b (1∓ cos θi)b

dij =
(

k0
i k

0
j

k0
i+k0

j

)2b
2b (1− cos θij)b

(3.15)

with θi and θij the angles that the radiated parton forms with the beam axis and
the emitter, respectively. Again, all quantities are computed in the CM frame of the
incoming partons. The parameter b can be used in Powheg to control the strength of
the separation of regions.
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3 Matching NNLO QCD calculations with parton showers

All of the features that we have described in this section have been fully automatized
in a general framework, named Powheg-Box [177], which is a Fortran-based code
to handle NLO calcultations and match them to a GPMC program with the Powheg
method.

3.1.1 Treatment of resonances

When resonance particles are involved in the process, the procedure that we have outlined
above can be jeopardized on different levels. First of all, the convergence of the subtraction
procedure can be spoilt for these processes. As we discussed in Section 2.1.3, the definition
of the counterterms for the subtration of IR singularities is strictly related to the mapping
of Eq. (2.32), where the real phase-space kinematics is factored into an underlying Born
and a radiation kinematics. Such remappings are usually not designed to preserve the
virtuality of the resonance lines. Since the real term is defined on the real phase space
Φn+1 and the counterterms on the factorized one, the virtualities of the resonances on
which the two contributions are computed might differ. This mismatch can potentially
affect the efficiency of the subtraction procedure in the cancellation of singularities.

When considering the matching of the NLO calculation with the parton shower, further
subtleties arise. The Powheg algorithm relies on the fact that Rsing correctly approaches
its soft and/or collinear approximation in the relevant singular regions, getting close to
the Born amplitude B up to a splitting kernel factor. If the two terms are not computed
on the same resonance virtuality, Rsing might significantly departs from its soft/collinear
approximation and the ratio Rsing/B in the Sudakov factor ∆pow can become large
enough to induce distorsions in the radiation pattern.

Moreover, since at FO interference contributions among partons radiated from different
resonances are present (in a finite-width calculation), no information on the resonance
assignment of partons for a given flavour configuration can be passed to the shower
program, which consequently does not preserve the invariant mass of the resonance,
leading to further shape distorsions.

Solutions to account for these problems were first discussed in Ref. [178], where reso-
nances were treated in the zero-width approximation. The extension to the finite-width
case was first proposed in Ref. [155], with the introduction of substancial modifications
to the Powheg algorithm which have been then implemented in a dedicated framework,
dubbed Powheg-Box-Res. In the latter approach, given a Born flavour structure `B

(named bare flavour structure), which just contains the information on the initial- and
final-state flavours, all possible tree-level graphs (or resonance histories) are identified 1:
the nodes of these graphs coincide with the lines of the resonant particles. Therefore,
given a bare flavour structure, different full flavour structures ˆ̀

B are possible. They

1 As described in details in Appendix A.1 of Ref. [179], the automatic identification of resonance histories
is based on the richer-resonance-structure criterion. If a resonance history involves a fermion line
emitting two EW bosons (namely a W , a Z or a Higgs) that could directly couple to each other (for
instance through a triple coupling), that resonance structure is discarded. Indeed, the same resonance
structure can be described by a richer topology, where the two electroweak bosons arise from the
decay of a single electroweak boson.
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embody the details of the entire resonance history: the flavours of the intermediate
resonances are made explicit, together with the information on the resonance of origin
(sometimes dubbed mother) for all final states (sometimes siblings of a given mother
resonance). The full flavour information is used in the Powheg-Box-Res framework to
improve the Powheg-Box code on many respects.

First of all, that is used to perform a resonance-aware phase space sampling, which is
employed, in the context of MC integration, to evaluate an integral more frequently in
the regions of phase space that give the larger contribution to the overall result (where
the integrand is predominantly localized, e.g close to a resonace peak). Moreover, when
radiation from resonance decay products is considered, the efficiency of the infrared
subtraction is improved by means of a resonance-aware subtraction algorithm, where
the mapping from a real to its underlying Born configuration preserves the virtuality of
intermediate resonances. Finally, in a parton-shower context, the distortion of resonances
through recoil effects is avoided by supplying the PS with details on the resonance cascade
chain.

The key idea behind the algorithm used in the Powheg-Box-Res framework is to
decompose the cross section into contributions associated to a well-defined resonance
structure, which are enhanced on that particular cascade chain. We have already exploited
the fact that the Born cross section B can be written as the sum over all bare flavour
structures B`B . After introducing the set T (`B) of all ˆ̀

B having `B as a bare flavour
structure (which essentially means they share the same initial- and final-state flavour
configurations), we can go one step further and break down B`B into a weighted sum
over ˆ̀

B using weight functions Pˆ̀B :

B`B =
∑

ˆ̀B∈T (`B)

Pˆ̀BB`B , with
∑

ˆ̀B∈T (`B)

Pˆ̀B = 1 . (3.16)

The weight functions Pˆ̀B are chosen such that Eq. (3.16) expresses B`B as a sum over
resonance-peaked terms Pˆ̀BBˆ̀B , which develop the expected resonance enhancement of ˆ̀

B.
Clearly, there is a certain freedom in their explicit expression. In the Powheg-Box-Res
code, the quantities Pˆ̀B are introduced:

Pˆ̀B =
∏

i∈Nd(ˆ̀B)

m4
i

(si −m2
i )2 + Γ2

im
2
i

, (3.17)

where the product is performed over all nodes i in the set Nd(ˆ̀
B) associated to the graph

described by ˆ̀
B, and where si, mi and Γi are the invariant mass of the decay product

system, the resonance mass and width, respectively. Once Pˆ̀B are defined, the following
choice of Pˆ̀B is made:

Pˆ̀B =
Pˆ̀B∑

ˆ̀′
B∈T (`B(ˆ̀B)) Pˆ̀′

B

, (3.18)

where the sum in the denominator runs over all configurations in the set of graphs
T (`B(ˆ̀

B)) having a bare flavour structure `B(ˆ̀
B) consistent with the initial and final
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flavours of ˆ̀
B. The same discussion done for the Born term also applies to the virtual

correction V`B of Eq. (3.12).
For the real contribution, as detailed in Ref. [155], the decomposition into resonance

enhanced regions has to be combined with the separation of singularities. After introduc-
ing a similar notation for the bare `R and full ˆ̀

R real flavour structures, this problem
is faced in Powheg-Box-Res by considering only singular regions αr within the set
Sr(ˆ̀

R) of those which are compatible with a given resonance history ˆ̀
R: the two particles

becoming collinear should originate from the decay products of the same resonance or
they should have both been generated at production level 2. If we denote by `R(αr) and
ˆ̀
R(αr) the full and bare flavours associated to the singular region αr, we can define the

FKS decomposition of the real amplitude as:

Rαr =
Pˆ̀R(αr)d

−1
ˆ̀R

(αr)∑
ˆ̀′
R∈T (`R(ˆ̀R)) Pˆ̀′

R

∑
α′r∈Sr(ˆ̀′

R) d
−1
ˆ̀′
R

(α′r)
R`R(αr) , (3.19)

where the Pˆ̀R(αr) weights are constructed like the corresponding Born weights. With
this choice, in the soft and collinear limits Pˆ̀R(αr) reproduces the corresponding weight
factor Pˆ̀B , with ˆ̀

B the associated underlying Born structure of ˆ̀
R(αr). The terms dˆ̀R(αr)

have the same form presented in Eq. (3.15) (by choosing the appropriate definition for
initial and final state singularities), but they also enclose a dependence on the full flavour
structure ˆ̀

R. Indeed, consistently with a resonance-aware remapping that preserves
the invariant mass of the resonance, in Powheg-Box-Res not all of the dˆ̀R(αr) are
computed in the CM frame: for final-state singularities at the level of the decay products
of a resonance, they are evaluated in the rest frame of the corresponding resonance.

3.1.2 Event generation
Since we will refer to it on different occasions, in this section we want to briefly sketch the
general Powheg procedure. The output of a run for a process implemented within the
Powheg-Box framework is a text file containing the set of events distributed according
to the master formula in Eq. (3.14). This file is written in a standardized form suitable
for being passed to the Les Houches Interface for User Processes (LHIUP) [180], which
allows for a simple interface to any GPMC program. Indeed, once the Les Houches Event
(LHE) file is available, extra radiation beyond the hardest one provided by Powheg can
be generated by using that file as an input for the desired parton shower program.

In order to generate the LHE output, the Powheg workflow can be described as
consisting of four different stages, which have much in common with standard Monte
Carlo programs. Anyway, as described in detail in Ref. [177], the expression in Eq. (3.12)
is still not suitable for generating Born-like events distributed according to B̄`B . Indeed,

2 The impact of considering only singular structures compatible with the resonance history is discussed
in Ref. [155]. Indeed, such a restriction does not properly account for all soft non-collinear singularities
and consequently, upon integration, some logarithmic terms log Γ of the resonance decay width arise.
Anyway, the effect of these soft terms is claimed to be negligible in Ref. [155] within the Powheg
framework.
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any hit-and-miss technique would require the evaluation of the B̄`B function several times
and, for each evaluation, an integration over the radiation variables is needed, making
the algorithm extremely inefficient. Therefore, for each singular region the radiation
kinematics in Φ(αr)

rad is parametrized in terms of three variables Xrad = {X(1)
rad, X

(2)
rad, X

(3)
rad}

ranging in the unit cube C, so that one can introduce

B̃`B(Φn, Xrad) = B`B(Φn) + V`B(Φn)

+
∑

αr∈{αr|`B}

[∣∣∣∣ ∂Φrad
∂Xrad

∣∣∣∣{Rsing
`R

(Φn+1)− C(Φn+1)}
]Φ̄(αr)

n =Φn

αr

(3.20)

+
∑

α⊕∈{α⊕|`B}

1
z

∣∣∣∣ ∂z

∂X
(1)
rad

∣∣∣∣Gα⊕⊕ (Φn,⊕) +
∑

α	∈{α	|`B}

1
z

∣∣∣∣ ∂z

∂X
(1)
rad

∣∣∣∣Gα		 (Φn,	) .

Moreover, in order to make use of Monte Carlo integration techniques (which are the
standard ones when several integration dimensions are involved), the Born phase space
Φn is also parametrized in terms of a set Xborn of 3n − 2 variables X(i)

born in a unit
hypercube, in such a way that

B̄`B(Φn) =
∣∣∣∣ ∂Φn
∂Xborn

∣∣∣∣ · B̄`B(Xborn) =
∣∣∣∣ ∂Φn
∂Xborn

∣∣∣∣ · ∫
C
d3Xrad B̃`B(Xborn, Xrad) . (3.21)

By trading B̄`B(Φn) for B̃`B(Xborn, Xrad), points (Xborn, Xrad) are generated: only at
this stage the Xrad variables are discarded, which amounts to integrating over them,
but in a computationally more efficient way. Then, the corresponding phase-space point
in Φn is computed from Xborn. A similar discussion holds for the remnant and regular
contributions of Eq. (3.14), where the real phase space Φn+1 is also expressed using a set
Xreal of (3n− 2) + 3 variables, but where all of them are kept once they are generated.

By rewriting B̄`B as fully defined on a unit hypercube of dimension (3n− 2) + 3, the
integration and generation of events can be handled via the MINT program [181], built in
the Powheg-Box framework. MINT is a modification of the SPRING-BASES package [182],
which reduces the storage requirement and has a special handle for non-positive valued
functions. When a program for a process implemented in Powheg-Box is started, an
importance sampling grid for the computation of the inclusive cross section is created and
stored with MINT using a standard VEGAS algorithm [183]: that is done in the so-called
Powheg stage 1. Three separate grids are generated for the Born, remnant and regular
contributions. An integration grid can be simply defined as a partition into smaller
hypercubes (or cells) of the integration volume: in a MC approach, random points for the
evaluation of the integrand are generated, which are distributed so that on average the
number of points falling inside any hypercube is the same. By starting from an equally
spaced partition (named rectangular grid), importance sampling grids are obtained by
iteratively adjusting the cell dimensions in a way that minimizes the uncertainty of the
integral evaluation: that results in having a finer partition in regions of phase space
where the integral receives its larger contributions.

Monte Carlo techniques are the methods of choice when it comes to performing
integrations over several dimensions (as we have already mentioned), but also when the
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3 Matching NNLO QCD calculations with parton showers

integration phase space is particularly involved. This is often the case for processes
whose Born phase space has a non-trivial structure, as we will explicitly encounter
for instance in Section 4.1.1. Indeed, in order for Eq. (2.24) to be infrared finite after
that the subtraction procedure has been applied, On(Φn) has to be finite as well. If
some singularities associated to the Born phase space are still present, some minimal
phase-space restrictions (named generation cuts) are required to obtain a finite result
(see for instance Ref. [184]). Generation cuts should be carefully used and their values
should be chosen to be much smaller than possible cuts (often analyisis or fiducial cuts)
defining the fiducial volume, i.e the region of phase space which is eventually considered
when inspecting the event sample. This precaution is needed, because choosing cuts
of comparable size at generation and fiducial level can cause phase-space points which
might have passed the fiducial cuts thanks to shower recoil effects to be cut away at
generation level. A different (or sometimes complementary) approach to handle Born
singularities is introducing a suppression factor F , which multiplies the differential cross
section during integration (and which should be multiplied away at event generation
level to recover the physical result). The analytic expression of F should be chosen in
such a way to suppress the value of the integrand close to singular regions, so as to
redirect the numerical sampling where the result of the integral is finite. Moreover, a
proper form of F can have the further benefit of avoiding sampling large statistics in
phase-space regions which are eventually removed by the fiducial cuts at analysis level.
A drawback of this approach is that suppressed events will be very rare (since F → 0 for
singular configurations), but they will contribute with very large 1/F weights, appearing
in distributions as undesired spikes which should be properly removed.

Another issue that was pointed out in Ref. [184] is that the function B̃`B(Φn, Xrad)
in Eq. (3.20) can become negative for some values of Xrad, even if the value of B̄`B(Φn) is
positive over the whole phase-space Φn. That generates spurious negative-weighted events,
which can be mostly removed by the MINT folding procedure, introduced in Ref. [181].
In essence, folding the integrand B̃`B(Φn, Xrad) nX(1)

rad
times along the X(1)

rad direction, for
instance, amounts to replacing it with the function

B̃folded
`B (Φn, X

(1)
rad, X

(2)
rad, X

(3)
rad) = 1

nX(1)
rad

nX(1)
rad
−1∑

i=0
B̃`B

(
Φn,

X
(1)
rad + i

nX(1)
rad

, X
(2)
rad, X

(3)
rad

)
, (3.22)

which integrates to the same result of the unfolded function, but where negative and
positive values combine together. Therefore, if nX(1)

rad
(or folding number) is large enough,

the desired positive result is restored and B̃`B becomes a smoother function of X(1)
rad.

In Ref. [185] another advantage of this procedure was highlighted. If the folding is
restricted to the variables Xrad, with folding numbers (nX(1)

rad
, nX(2)

rad
, nX(3)

rad
), applying the

folding equation 3.22 independently along the three radiation axes corresponds to evaluate
the real contribution nX(1)

rad
· nX(2)

rad
· nX(3)

rad
times more than the virtual part. The integral

over the virtual contribution converges faster than the one over the real part, due to
the simpler phase-space structure, but its computation is generally more demanding.
Therefore, it is clear that more efficient codes can be obtained by properly tuning the
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3.1 The POWHEG framework

number of points used for the MC evaluation of the integral and the values of the folding
numbers.

Once the importance sampling grids are available, the value of the inclusive cross
section is effectively computed at Powheg stage 2. During this integration stage, the
MINT program also computes the upper bound of the integrand in each cell of the grids.
Only this set of values is stored, differently from the SPRING-BASES algorithm, where
the value of the integral in each cell is computed and saved. The stored upper bounds
are used by MINT to compute an upper bounding envelope B̃env for B̃ (summed over the
flavour components) in the form of a multidimensional step function. In order to reduce
the memory requirement, such function is computed as a product of one-dimensional
step functions f (i) along each integration direction i, as

B̃(Xborn, Xrad) ≤ B̃env(Xborn, Xrad) =
3n−2∏
i=1

f (i)(X(i)
born)

3∏
i=1

f (i)(X(i)
real) . (3.23)

Similar upper bounding envelopes are computed for the remnant and regular contributions,
as well. These functions are used in Powheg stage 4 in a hit-and-miss algorithm to
generate Born-like events (where the Xrad variables are ignored) or events where the
radiation is not associated to a singular region, distributed according to Rremn and Rreg.
As a first step, the point X = (Xborn, Xrad) is easily generated according to the envelope,
together with a uniform random number r in the interval 0 ≤ r ≤ B̃env(X). Only at
this level the program computes, for instance, B̃(X) and the event X is accepted only
if r ≤ B̃(X), otherwise the configuration is discarded. By doing so, the kinematics of
the events is correctly generated according to the desired distribution B̃. The efficiency
of the hit-and-miss generation is strictly related to the number of configurations that
have to be discarded before an event is accepted: the larger this number, the smaller the
efficiency. Improvements in this direction can be achieved by choosing a better form for
the envelope compared to the one of Eq. (3.23), as first proposed in Ref. [185]. Finally, a
specific flavour structure is selected with a probability proportional to its contribution to
the cross section. In the Powheg-Box-Res framework, the MINT program also handles
a discrete summation index to label the different resonance histories, which are also
selected accordingly at event generation level and provided as an extra information to
the shower program.

If we end up with a Born kinematics Φn and a Born flavour structure `B, the radiation
kinematics has to be generated according to the term in curly brackets of Eq. (3.14).
That is done in a way that is closely related to the generation of radiation in common
PS programs. Specifically, the probability distribution of radiation in a given singular
region αr ∈ {αr|`B} is given by[

∆`B
pow(Φn, kT(Φn+1))

Rsing
`R

(Φn+1)
B`B(Φn) θ(kT(Φn+1)− pT,min)

]Φ̄(αr)
n =Φn

αr

dΦ(αr)
rad . (3.24)

By noticing that the Sudakov form factor of Eq. (3.13) can be written as:

∆`B
pow(Φn, kT) =

∏
αr∈{αr|`B}

∆`B
pow, αr(Φn, kT) , (3.25)
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with

∆`B
pow, αr(Φn, kT) ≡ exp

{
−
∫ [

dΦradR
sing
`R

(Φn+1)θ(kT
′(Φn+1)− kT)

]Φ̄(αr)
n =Φn

αr

B`B(Φn)

}
, (3.26)

we can generate radiation distributed according to Eq. (3.24) using the highest-kT bid
procedure. In Ref. [86] it is shown that choosing the singular region αr having the largest
k

(αr)
T (Φn+1) correctly reproduces Eq. (3.24) 3. Therefore, the problem boils down to

generating radiation for each αr according to[
∆`B

pow, αr(Φn, kT(Φn+1))
Rsing
`R

(Φn+1)
B`B(Φn) θ(kT(Φn+1)− pT,min)

]Φ̄(αr)
n =Φn

αr

dΦ(αr)
rad , (3.27)

which is achieved in Powheg with a proper variant of the veto algorithm, illustrated in
details in Ref. [177]. In essence, a uniform random number r ∈ [0, 1] is generated, and
the equation

∆̃`Bpow, αr(Φn, k
(αr)
T (Φn+1))

∆̃`Bpow, αr(Φn, pT,max)
= r (3.28)

is solved for k(αr)
T . Here, ∆̃`Bpow, αr is obtained from ∆`Bpow, αr by replacing the ratio

Rsing
`R

/B`B under the integration sign by a proper upper bounding function U(Φn,Φ(αr)
rad )

satisfying

K(Φn,Φ(αr)
rad ) ≡

[
J(Φ̄n)

Rsing
`R

(Φn+1)
B`B(Φn)

]Φ̄(αr)
n =Φn

αr

≤ U(Φn,Φ(αr)
rad ) , (3.29)

which has to be chosen such that Eq. (3.28) can be easily solved. In Eq. (3.29), J(Φ̄(αr)
n )

is the jacobian factor that we encountered in Eq. (2.34). Moreover, in Eq. (3.28) pT,max

refers to the maximally-allowed transverse momentum, which is set to a value such that
∆̃`Bpow, αr(Φn, pT,max) = 1 at the beginning of the veto procedure. A proper expression for
U(Φn,Φ(αr)

rad ) can be obtained from the soft/collinear limit of Rsing
`R

up to a normalization
N (Φ(αr)

rad ), whose value is computed during Powheg stage 3 and stored.
Once a k̄

(αr)
T is found, the veto algorithm continues by generating Φ(αr)

rad variables
according to U(Φn,Φ(αr)

rad )θ(k(αr)
T (Φn+1)− k̄(αr)

T ). Then, a second uniform random number
r′ is used in such a way that if r′ > K(Φn,Φ(αr)

rad )/U(Φn,Φ(αr)
rad ) the radiation is discarded,

pT,max is set to k̄(αr)
T and the veto procedure starts again from Eq. (3.28). The algorithm

stops once the radiation is accepted or when the constraint k̄(αr)
T > pT,min is violated: in

the latter case, an event with no radiation is generated.
3 More precisely, generation of radiation is obtained in Powheg by further grouping the singular regions
αr into sets sharing the same emitter. The highest-kT bid procedure is therefore applied in order to
select a specific emitter and then a singular configuration αr within that emitter region is chosen
with a probability proportional to Rsing, αr

`R
. See Ref. [177] for the detailed steps of the algorithm

implemented in the code.
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3.2 The MiNLO′ formalism

We have already discussed in Section 2.3.2 how different tree-level accurate jet multiplici-
ties can be combined together to improve the PS description of hard radiation. On the
other hand, we have also mentioned that precise phenomenology demands to go beyond
a simple tree-level merging, requiring the accuracy for different jet samples to be pushed
to NLO or higher perturbative orders. In this section we address the minimal problem of
NLO merging, which serves as a basis for what is presented in Section 3.3. Moreover, we
further specialize the discussion to event generators for colour-singlet production: we
start by considering a single colourless particle B, where B could be a Higgs, a Z or W
gauge boson, and in due course we generalize the discussion to any colour-singlet state F.
That will allow us to introduce the theoretical framework used for the results presented
in Chapter 4.

We can rephrase our NLO merging problem in the following way. We start from
different event generators BnJ, which are NLO+PS accurate in the description of a
colourless particle in association with n jets. Since a BnJ generator is based on a NLO
calculation for pp → B + n jets, it is NLO accurate in the description of observables
involving n hard jets (and inclusive over additional radiation), LO accurate for quantities
requiring m hard jets, with m = n+ 1 (since the n+ 1 jet process is just described at
tree-level by the real contribution entering the full NLO result), and LL (or at most
NLL) accurate when m > n+ 1, since all extra radiation is handled by the PS program
to which the generator is interfaced. A BnJ generator can not describe regions of the
phase space where one or more jets of the n starting ones become unresolved: unphysical
predictions are returned for more inclusive observables requiring only B + n′ jets, with
n′ < n. That is clear from the fact that BnJ generators are based on NLO calculations
whose tree-level Born processes involve n jets, so that no virtual corrections for lower
multiplicity processes are included to cancel divergences that appear when one or more
of the n starting partons become soft or collinear. Such corrections are instead part
of a B(n-1)J generator or, more generally, of BmJ generators with m < n. Conversely,
to improve the description of radiation beyond n jets, BmJ generators with m = n + 1
or higher are required. From this discussion, it clearly emerges that having one event
generator that can reach NLO accuracy simultaneously for different jet multiplicities can
be extremely useful.

Despite the different theoretical frameworks, the vast majority of merging approaches
starts from the generation of independent event samples, that, in all practical cases, are
obtained from the generators B, BJ and BJJ. For the first two generators B and BJ not
corresponding to the highest-considered multiplicity, only events where a NLO accurate
description is achieved (namely involving 0 or 1 jet respectively) are kept, while the
others are discarded. That is done by making use of a jet resolution variable or merging
scale QMS, which discriminates the jet multiplicity of an event. Finally, the different
exclusive event samples are joined together, so as to recover an inclusive description.
If dσMC

n /dΦn is the fully differential Monte Carlo sample describing exactly n jets and
dσMC
≥n /dΦn the inclusive sample for n or more jets, an inclusive sample for B production
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can be obtained as:

dσMC
≥0

dΦ0
= dσMC

0
dΦ0

+
dσMC

0+1
dΦ0+1

+
dσMC
≥0+2

dΦ0+2
(3.30)

where, in essence, each generator contributes to a different jet bin, whose size if controlled
by the merging scale. As we have already commented in Section 2.3.2, the presence of
the unphysical scale QMS is one of the main source of issues in all merging algorithms.

First of all, the choice of a value for QMS can be quite delicate. Too large values of
QMS would force describing relatively hard radiation only with tree-level accuracy, losing
the benefit of merging. On the other hand, if the value of QMS is too low, the inclusive
event sample is dominated by higher multiplicity events. The latter situation is also
known to lead to unitarity violation problems, where the NLO accuracy of the inclusive
cross section is lost. That can be easily understood by considering that for QMS → 0
higher multiplicity generators like BJ and BJJ are forced to approach singular regions
of phase space. When integrating over the radiation kinematics from the hard scale Q
down to the merging scale to compute the inclusive cross section, the contribution of
these regions manifests in large logarithmic terms of the form L ≡ log(Q/QMS). As we
also mentioned in Section 2.2, when αsL

2 ∼ 1, then perturbative predictions become
completely unreliable.

Besides using a properly tuned value of QMS to avoid the two extreme cases described
above, as done in Ref. [170] in the context of the FxFx method, other merging solutions
have been proposed to circumvent the problem. In the Unlops method [171], as we
have already discussed, unitarity is enforced at the level of the inclusive cross section
with the ‘subtract-what-you-have-added’ phylosophy. That allows to preserve unitarity
for sufficiently inclusive quantities, but does not completely remove the merging scale
dependence from all observables. Moreover, one relevant drawback of the subtraction
approach used to restore unitarity is the introduction of a large amount of negative-
weighted events. Alternatively, within the Geneva framework [85, 173], unitarity
is obtained for free by accounting for enhanced logarithmic terms with a sufficiently
accurate resummation, which is used for merging different multiplicity samples. Despite
the potential of this approach, technical issues are for instance related to the missing
inclusion of power corrections (coming from the non-singular part of the resummation
formula), or to the PS matching, which should not spoil the accuracy of the resummation
itself.

In Ref. [174] a different merging approach was proposed, dubbed MiNLO, for ‘multi-
scale improved NLO’. By starting from the Ckkw method for tree-level merging [161], that
we presented in Section 2.3.2, NLO merging can be obtained with just few adjustments.
Therefore, if we want to merge the two generators B and BJ, the MiNLO prescrition just
requires to adapt the NLO accurate fixed-order cross section of BJ obtained from Eq. (2.64)
as

B̄(ΦBJ) = αs(q)
αs(Q)∆2

MiNLO(Q, q)
[
B(ΦBJ) (1− 2∆(1)

MiNLO(Q, q)) + V (ΦBJ) +
∫
dΦradRS(ΦBJJ)

]
(3.31)
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where we assume here for simplicity that the subtraction terms Cαr have already been
accounted for, and where the collinear remnant terms Gα		 and Gα⊕⊕ , which just marginally
enter our discussion, are understood. The strong coupling and Sudakov reweighting
factors in front of the squared brackets are standard Ckkw ingredients: once a shower
history for the fixed-order configuration is reconstructed with a proper jet clustering
algorithm, the clustering scale q of the first emission is used for evaluating the strong
coupling. The same clustering scale is also chosen to fix the factorization scale in the
PDFs and the collinear remnant terms. The analytic Sudakov factors associated to
parton lines in the history allow for a smooth transition between the matrix element
and the PS regimes in the Ckkw approach. Specifically, here ∆MiNLO refers to the NLL
accurate Sudakov factor associated to a quark line:

∆MiNLO(Q, q) = exp
{
−
∫ Q

q

dt

t

[(
A(1)αs(t)

2π +A(2)α
2
s(t)

4π2

)
log Q

2

t2
+B(1)αs(t)

2π

]}
(3.32)

where A(1), A(2) and B(1) are the NLL resummation coefficients arising from the integra-
tion of the Altarelli-Parisi kernels:

A(1) = 2CF , A(2) = 2CFKg, B(1) = −3CF , (3.33)

with Kg given by Eq. (2.56). A key observation is that the presence of Sudakov reweighting
terms in Eq. (3.31) suppresses the singular behaviour in the jet unresolved region of the
BJ generator, providing a physical picture for arbitrary low values of q, as soon as the
QCD cutoff ΛQCD is met. That in principle allows to merge the two NLO B and BJ
generators without relying on any unphysical merging scale.

In MiNLO the NLO accuracy of BJ, which is spoilt by the Sudakov reweighting, is
restored by subtracting back the first order expansion ∆(1)

MiNLO of the Sudakov form factor
(with extra terms introduced by the reweighting being beyond the generator accuracy,
i.e O(α3

s)). For the same reason, the renormalization scale explicitly appearing in the
virtual term is set to q, which ensures NLO scale compensation after the inclusion of the
reweighting factor modifying the scale of αs associated to the primary emission. But
in order to guarantee NLO accuracy also for observables inclusive over QCD radiation,
arbitrary Sudakov damping factors regulating the singularity of BJ are not necessarily
sufficient. They have to be chosen in such a way not to violate unitarity, i.e to recover
the NLO inclusive cross section when the radiation kinematics is integrated out. It was
shown in Ref. [175] that Eq. (3.32) does actually violate unitary by terms of order O(α3/2

s ).
Despite that, with very small but relevant modifications, unitarity can be restored, so as
to promote the MiNLO prescription into a proper NLO merging algorithm, commonly
referred to as MiNLO′. In order to have a better understanding of the missing ingredients
to move from MiNLO to MiNLO′, we introduce in the next section some basic ideas of
resummation for a specific observable, namely the transverse momentum of the colourless
particle B. Actually, the formalism is more general and valid for a generic colour-singlet
system of particles, as we will remark again later.
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3.2.1 Ingredients for transverse-momentum resummation

We start by considering a hadronic scattering process like h1 h2 → B + X, where X
refers to an arbitrary amount of QCD radiation accompanying the process. If B is a
colour-singlet particle, there are just two relevant processes to be considered within the
SM: the Higgs production, which is initiated at LO by a gluon fusion channel gg → H,
and the Drell-Yan process, with B either a Z or W boson (that we assume to be on-shell
at the beginning of this discussion) produced via q̄′q annihilation. In view of the results
presented in Chapter 4, we specialize the notation in our discussion to the second case in
what follows. The Born kinematics ΦB of such processes is trivial and it is parametrized
by just one variable (e.g the total invariant mass or the boson rapidity). If we want
to access the transverse momentum pT of the boson, we already know that, as soon
as pT → 0, only soft or collinear QCD radiation is kinematically allowed to contribute
to the observable. Consequently, a FO description fails in such regions of phase space
due to the appearance of large logarithmic contributions log(p2

T/Q
2) which spoil the

convergence of the perturbative series. Close to these regions, all-order resummation is
needed. Specifically, we can first write the cross section differential in the Born kinematics
and in pT as:

dσ

dΦBdpT
≡ dσsing

dΦBdpT
+ dσreg

dΦBdpT
(3.34)

with a separation between the singular part of the spectrum, encoded in the first term, and
the regular part of it. The Born phase-space kinematics in ΦB should be defined by fixing
a proper mapping ΦB,res to project the full phase space with multiple emissions into the
non-emission phase space. The singular contribution contains all logarithmically-enhanced
terms αms logn(p2

T/Q
2):

dσsing

dΦBdpT
= D−1(ΦB, αs)δ(pT) +

∑
n≥0

Dn(ΦB, αs) θ(pT)
( log p2

T

p2
T

)n
+

(3.35)

where the coefficients Dn admit a perturbative expansion in αs. The Born term, together
with all loop corrections, contributes to the first divergent part of Eq. (3.35), proportional
to the δ distribution, since no radiation is present and the boson can only have a null pT.
The second term of Eq. (3.35) accounts for the logarithmic contributions to be resummed,
where the plus prescription, defined as in Eq. (2.23), encodes as usual the cancellation of
IR divergences between the real and virtual terms.

The regular part of the spectrum in Eq. (3.34) just contains terms which are finite
for pT → 0 to all orders and therefore it can be safely described within a perturbative
framework.

A standard approach to account for the logarithmic terms in the singular part of the
spectrum to all orders is to carry out the resummation in the impact parameter or b space:
in this formalism, also known as Collins-Soper-Sterman (CSS) resummation [65, 186], the
two-component vector ~b usually denotes the Fourier conjugate variable of the projection
of the transverse momentum over the plane perpendicular to the beam axis. Moving
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to the b space through a Fourier transformation has the advantage of simplifying the
handling of the momentum conservation constraint. In this approach, the resummed pT

spectrum can be written in a physically meaningful way as [187] (assuming MS both as
a factorization and renormalization scheme)

dσsing

dΦBdpT
=
∑
q,q′

∫ 1

0
dx1

∫ 1

0
dx2

∫ +∞

0
db
b

2J0(bpT)σ(LO)
q̄′q (ΦB)Hq̄′q(ΦB, αs(Q))

· [Cq̄′a(αs)⊗ fa/h1 ](x1, b0/b) [Cqb(αs)⊗ fb/h2 ](x2, b0/b) expS(Q, b) , (3.36)

where b = |~b|. The Bessel function J0 and the constant b0 ≡ 2e−γE (with γE = 0.5772 . . .
the Euler constant) originate from the integration over the polar angle θ formed by the
transverse momentum and impact parameter vectors, i.e ~b · ~pT = |~b|| ~pT| cos θ. In b space,
the large logarithms log(p2

T/Q
2) for pT � 1 turn into log(Q2b2) contributions, which are

enhanced for b� 1.
The differential LO cross section for the partonic process is encoded in σ

(LO)
q̄′q (ΦB),

which can also be written in terms of the Born matrix element squared |MB|2q̄′q as
σ

(LO)
q̄′q (ΦB) = d|MB|2q̄′q/dΦB. Higher order QCD corrections are enclosed in the hard

function Hq̄′q(ΦB, αs(Q)), which has the perturbative expansion

Hq̄′q(ΦB, αs) = 1 +
+∞∑
n=1

(
αs
2π

)n
H

(n)
q̄′q (ΦB) . (3.37)

As usual, we have denoted by ΦB the Born phase space also including the parton energy
fraction dependence, i.e ΦB = {x1, x2, ΦB}. Then, the integration over x1 and x2 is
weighted by the hadronic PDFs, in line with collinear factorization. Together with the so
called coefficient functions Cab(αs, x), having the expansion

Cab(αs, x) = δabδ(1− x) +
+∞∑
n=1

(
αs
2π

)n
C

(n)
ab (x) , (3.38)

PDFs enter the convolution

[Cqc(αs)⊗ fc/h](x, b0/b) ≡
∑
c

∫ 1

x

dz

z
Cqc(αs(b0/b), z)fc/h(x/z, b0/b) , (3.39)

where a sum over the flavours c is also carried out. Finally, logarithmic terms are
resummed via exponentiation in the Sudakov form factor

expS(Q, b) = exp
{
−
∫ Q

b0/b

dt

t

[
A(αs(t)) log Q

2

t2
+B(αs(t))

]}
, (3.40)

with resummation coefficients

A(αs) =
+∞∑
n=1

(
αs
2π

)n
A(n) B(αs) =

+∞∑
n=1

(
αs
2π

)n
B(n) . (3.41)
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It can be easily seen that LL accuracy can simply be achieved with the inclusion of the
A(1) coefficient, while A(2), B(1), C(1) and H(1) are required to reach NLL resummation,
A(3), B(2), C(2) and H(2) for NNLL and so on.

The benefit from expressing resummation in the form of Eq. (3.36) is that all process
dependence can be enclosed in the hard function, while the collinear functions and the
Sudakov factor are process independent, since they only originate from the universal
structure of QCD radiation in the IR regime. That also suggests a pretty intuitive
physical picture, as described in Ref. [187]. The hard function accounts for contributions
to the transverse-momentum spectrum of the boson at hard scales pT ∼ Q via virtual
corrections: the function Hq̄′q can be obtained by the ratio of the loop contributions
at a given perturbative order over the Born term. For pT ranging from hard Q to b0/b
scales, the incomplete cancellation between real and virtual corrections giving rise to
large logarithms is described by the Sudakov exponent. For even lower scales pT < b0/b,
the cancellation between real and virtual terms is exact for initial-state soft radiation
(due to infrared safety), while incomplete for initial-state collinear radiation, which is
indeed accounted for by the coefficient functions.

Therefore, despite the physical understanding provided by Eq. (3.36), Ref. [187] makes
clear that the decomposition in hard, collinear and Sudakov contributions is to some
extent ambiguous, due to the fact that the transverse-momentum spectrum is not a
collinear safe observable. The exact definition of the coefficient functions depends on
how initial-state singularities are subtracted, and this freedom propagates to Hq̄′q and S.
This ambiguity manifests in the renormalization group symmetry of Eq. (3.36), which is
expressed by the set of transformations:

H̃q̄′q(αs(Q)) = Hq̄′q(αs(Q)) · [g(αs(Q))]−1 (3.42)

exp S̃(Q, b) = expS(Q, b) exp
{
−
∫ Q

b0/b

dt

t
β(αs(t))

d log g(αs(t))
d log(αs(t))

}
(3.43)

C̃ab(αs(b0/b), z) = Cab(αs(b0/b), z) · [g(αs(b0/b))]1/2 (3.44)

with g an arbitrary function and where β(αs) is the QCD β-function introduced
in Eq. (2.7).

A first key observation for the following discussion is that by setting g = Hq̄′q, the hard
function contribution disappears and can be absorbed into a redefinition of the collinear
functions and the Sudakov exponent. By looking at Eq. (3.44) it is clear that such a
transformation is intimately related to the precise choice of the renormalization scale
µR entering the strong coupling constant, which is set to b0/b, i.e the Fourier conjugate
of the pT of the colour singlet. This is the same choice also done for the factorization
scale µF (see Eq. (3.39)). It is worth noticing that, by exponentiating the hard function
contribution with Eq. (3.43), the definition of the A(n) coefficients is unchanged. Moreover,
since the β-function expansion starts at O(α2

s), the coefficient B(1) is also not affected by
the symmetry transformation, while B(n) with n > 1 are changed according to:

B̃(αs) = B(αs)− β(αs)
d logHq̄′q(αs)

d logαs
. (3.45)
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3.2 The MiNLO′ formalism

Despite the exact control on the logarithmic accuracy provided by the resummation
formula of Eq. (3.36) in its b space formulation, for any practical usage the transverse-
momentum spectrum should be recovered by performing the inverse Fourier transforma-
tion, which is in general computationally very expensive 4. Nevertheless, Eq. (3.36) is still
extremely informative if we are not interested in the exact logarithmic accuracy of the pT

spectrum, but we just want to access its singular structure to a given perturbative order,
which is precisely what we will need for the discussion of the following subsection. In this
sense, a resummation formula in transverse-momentum space can be obtained, evaluating
the b integral through an expansion of b0/b around pT at the level of the integrand:

dσsing

dΦBdpT
=
∑
q,q′

d|MB|2q̄′q
dΦB

d

dpT

{
[Cq̄′a(αs)⊗ fa/h1 ](x1, pT) [Cqb(αs)⊗ fb/h2 ](x2, pT)

·Hq̄′q(ΦB, αs(pT))eS(Q,pT)
}

(3.46)

where some of the resummation coefficients are properly redefined to retain the relevant
perturbative accuracy (for the detailed derivation of the above equation see Ref. [175]).

As a final remark, it should be noted that for basic Drell-Yan processes as the ones
considered in this section loop corrections have a particularly simple structure. All
kinematic dependence simplifies in the virtual over Born ratio, which means that, once a
particular renormalization scale choice is done, the coefficients H(n)

q̄′q evaluate to constant
factors. Moreover, no dependence on the flavour of the partonic channel survives in the
ratio, which means that flavour indices can be safely dropped for these simple processes.
Therefore, for the time being we will set Hq̄′q(ΦB, αs(pT)) = H(αs(pT)). The same
simplified structure holds also when dropping the on-shell assumption for the gauge
bosons and including the full kinematics of their decay products, as discussed in Ref. [175].

3.2.2 Merging with no merging scale

As we mentioned at the beginning of this section, the original MiNLO merging was proven
not to preserve unitarity. That can also be shown following the reasoning of Ref. [175],
which allows to identify the missing ingredients to reach NLO accuracy in the context of
a B generator for observables inclusive over QCD radiation. The key idea is to connect
the MiNLO formalism with transverse-momentum resummation.

By construction, Eq. (3.31) for B̄(ΦBJ) provides the fully differential cross section
which is NLO accurate for BJ, when the kinematics of the radiation is resolved. When
integrating over the full ΦBJ phase space, but keeping fixed the Born ΦB kinematics
and the boson pT, the singular structure of the process for pT → 0 is captured. But the
singular part of pp→ B + j is also encoded in the resummation formula of Eq. (3.34),

4 The ResBos2 code [188], successor of the ResBos code [189, 190] (which has recently received
particular attention due to the CDF W mass measurement [191, 192]) can achieve N3LL+NNLO
accuracy in the transverse momentum of colour-singlet particles by making use of CSS resummation.
In that case, for instance, an efficient Fourier transformation is achieved via sophisticated numerical
integration methods [193].
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3 Matching NNLO QCD calculations with parton showers

with the singular spectrum given by Eq. (3.46). The singular contributions accounted for
by the resummed spectrum are given in Eq. (3.35). Therefore, if the singular spectrum at
a sufficient logarithmic accuracy is matched with the LO results for pp→ B+ j (encoded
in the regular part of the spectrum), then NLO accurate results for inclusive observables
can be obtained when the integration over pT is performed. Since Eq. (3.31) already
accounts for the non-singular part of the process at NLO, we just need to compare the
MiNLO formula with the singular part of the resummed spectrum to see which terms
are missing in order to achieve NLO accuracy in the jet-unresolved phase space.

We can define the luminosity L and rename the regular part of the resummed spectrum
as follows:

L(pT) ≡
∑
q̄′q

d|MB|2q̄′q
dΦB

[Cq̄′a(αs)⊗ fa/h1 ](x1, pT) [Cqb(αs)⊗ fb/h2 ](x2, pT)H(αs(pT)) (3.47)

Rf (pT) ≡ dσreg

dΦBdpT
, (3.48)

where the dependence on ΦB in the luminosity is understood. Then, if we perform the pT

integration over the spectrum in Eq. (3.34) down to the hadronization scale, we clearly
obtain:

dσ

dΦB
=
∫ Q

ΛQCD
dpT

d

dpT

{
L(pT)eS(Q,pT)

}
+
∫ Q

ΛQCD
dpTRf (pT) ≈ L(Q) +

∫ Q

ΛQCD
dpTRf (pT)

(3.49)

where we have used expS(Q,ΛQCD) ≈ 0, since the non-emission probability is highly
suppressed over such a large energy range. Therefore, NLO accuracy for inclusive
observables is retained if we have NLO accuracy on the luminosity L(Q), which means
the C(1)

ab coefficients are included, and if we just have LO control on the regular part of
the spectrum (contributing from order O(αs) with respect to the Born).

In order to make contact with the MiNLO formalism, we have to rewrite Eq. (3.46) by
expanding the total pT derivative. We can start by writing

dσsing

dΦBdpT
= eS(Q,pT)D(pT) with D(pT) ≡ dS(Q, pT)

dpT
L(pT) + dL(pT)

dpT
, (3.50)

where

dS(Q, pT)
dpT

= − 1
pT

(
A(αs(pT)) log Q

2

p2
T

+B(αs(pT))
)
. (3.51)

Then, Eq. (3.34) can be recast as

dσ

dΦBdpT
= eS(Q,pT)

{
D(pT) + Rf (pT)

eS(Q,pT)

}
. (3.52)

The term in curly brackets can now be expanded just by keeping the perturbative
contributions that are needed to preserve NLO accuracy also after an integration over
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3.2 The MiNLO′ formalism

the pT of the boson, or, to say that differently, in such a way that the total pT derivative
can still be reconstructed to the desire perturbative accuracy. We know that for small
transverse momenta pT ∼ ΛQCD we have large logarithmic contributions that invalidate
the perturbative convergence. The dominant contributions are double logarithmic terms
of order one like αsL2 ∼ O(1), so that, each logarithmic power parametrically counts as
L ∼ α

−1/2
s . The modification of the αs power counting close to the so called Sudakov

region has to be taken into account in the expasion of Eq. (3.52): missing terms that
would have been neglected by naive power counting might spoil the desired accuracy upon
integration. More precisely, the following counting rule (proven in details in Appendix C
of Ref. [175]) holds:∫ Q

ΛQCD

dpT

pT
αns (pT) logm Q

pT
eS(Q,pT) ≈ [αs(Q)]n−

m+1
2 , (3.53)

which precisely applies to our case, where only one inverse power of pT can appear,
specifically in the derivative of the Sudakov in Eq. (3.50). According to Eq. (3.53), to
preserve the NLO accuracy of the integral, i.e to account for all terms up to order αs, the
integrand involving the Sudakov derivative should contain all terms up to order α2

s. Since
powers m accompanying each logarithmic term can just take values in the finite set {0, 1},
that is sufficient to guarantee that neglected contributions are genuinely O(α2

s) after
integration. On the other hand, since no logarithmically-enhanced contribution is present
in the derivative of the luminosity and in Rf , in these cases the αs counting proceeds
as usual and NLO accuracy of the integral is maintained just by keeping all αs terms.
Therefore, in Eq. (3.50) the Sudakov factor should include the resummation coefficients
A(1), A(2), B(1) and B(2), the perturbative expansions of the coefficient functions and
the hard function should account for the coefficients C(1) and H(1), respectively, and Rf
should be at least LO accurate.

The previous observation is crucial, since it tells us that the resummed expression of the
singular spectrum in transverse-momentum space of Eq. (3.46) can be obtained from the
corresponding b-space formulation at a starting logarithmic accuracy by keeping all terms
up to order α2

s. Before moving to transverse-momentum space, the b-space resummation
formula has to be NNLL accurate, since the NNLL B(2) coefficient is required. Then,
when moving from b to transverse-momentum space, the α2

s contributions emerging from
the truncation of the resummed expression can be simply incorporated in a redefinition
of some resummation coefficients. Within the set of coefficients relevant at this level, the
only one that gets redefined is B(2):

B(2) ′ = B(2) + 2ζ3(A(1))2 (3.54)

where ζ3 = 1.2020569 . . . is the Riemann zeta function ζ(z) evaluated at z = 3.
To make contact with MiNLO, it is crucial for the renormalization scale of the αs

coupling to be evaluated at pT, so that, only upon integrating over it, the FO value
µR = Q is recovered. As we have shown in the previous section, that corresponds to a
precise resummation scheme choice. Indeed, by setting µR = pT in H(αs(pT)) entering
the luminosity, the hard function contribution can be entirely included in the Sudakov
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3 Matching NNLO QCD calculations with parton showers

exponent and in the coefficient function definitions, according to the transformations
in Eq. (3.42) and Eq. (3.43). At the perturbative order we are considering, that amounts
to a further redefinition of the B(2) ′ in Eq. (3.54) and C(1)

B̃(2) = B(2) ′ + 2πβ0H
(1) ,

C̃
(1)
ab (z) = C

(1)
ab + δabδ(1− z)

1
2H

(1) , (3.55)

where we used Eq. (3.45). Clearly, the factorization scale in the PDFs should also be
set to pT, which is required by the exact resummation formula in Eq. (3.36) in b-space.
As emerging from the running coupling equation in Eq. (2.9) and the DGLAP evolution
formula of Eq. (2.21), different values for µR and µF induce differences with respect to the
correct scale choice behaving as ∼ α2

s(µR/F) log(µR/F/pT), which would spoil the NLO
accuracy of the inclusive cross section after integration.

Even though Rf should just be known at LO to get NLO accuracy like in a B generator,
MiNLO is a NLO merging approach based on a NLO BJ generator. So, we can identify
the regular spectrum at second order with the NLO-accurate fixed-order result

Rf (pT) = dσ(NLO)
BJ

dΦBdpT
− αs(pT)

2π

[
dσsing

dΦBdpT

](1)
−
(
αs(pT)

2π

)2[ dσsing

dΦBdpT

](2)
, (3.56)

where the FO expansion up to O(α2
s) of the singular spectrum has been subtracted to

avoid double counting in the matching with the resummed calculation. Indeed, [X](i)
denotes the coefficient of the ith term in the perturbative expansion of the quantity X.
For the NLO differential cross section, we clearly have:

dσ(NLO)
BJ

dΦBdpT
= αs(pT)

2π

[
dσ

dΦBdpT

](1)
+
(
αs(pT)

2π

)2[ dσ

dΦBdpT

](2)
. (3.57)

Then, we can expand up to second order the D(pT) term in Eq. (3.52) and write

dσ

dΦBdpT
= eS(Q,pT)

{
D(1)(pT) +D(2)(pT) + 1

eS(Q,pT)

(
dσ(NLO)

BJ

dΦBdpT
− αs(pT)

2π

[
dσsing

dΦBdpT

](1)

−
(
αs(pT)

2π

)2[ dσsing

dΦBdpT

](2))}
= (3.58)

= eS(Q,pT)
{ 1
eS(Q,pT)

(
αs(pT)

2π

[
dσ

dΦBdpT

](1)
+
(
αs(pT)

2π

)2[ dσ

dΦBdpT

](2))}
=

≈ eS(Q,pT)
{
αs(pT)

2π

[
dσ

dΦBdpT

](1)(
1− αs(pT)

2π S(1)(Q, pT)
)

+
(
αs(pT)

2π

)2[ dσ

dΦBdpT

](2))}
,

where in the last line again only terms up to O(α2
s) have been retained. If we use MiNLO

for the calculation of an observable, as described by Eq. (2.44), we obtain

〈O〉 =
∫
dΦBJ ∆2

MiNLO(Q, q)[B(ΦBJ)(1− 2∆(1)
MiNLO(Q, q)) + V (ΦBJ)]O(ΦBJ)+

+
∫
dΦBJJ∆2

MiNLO(Q, q)R(ΦBJJ)O(ΦBJJ) , (3.59)
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3.2 The MiNLO′ formalism

with the reweighting factor αs(q)/αs(Q) understood. Then, we recover the cross section
differential in the variables {ΦB, pT} simply by choosing

O(Φ) = δ(ΦB,res(Φ)−ΦB)δ(pT(Φ)− pT) . (3.60)

In Eq. (3.60), we made use of the mapping ΦB,res introduced in the previous section
to project the phase space with resolved radiation such as Φ = {ΦBJ, ΦBJJ} into the
underlying Born phase space ΦB. With the notation pT(Φ) we also make clear that the
boson transverse momentum defined in the initial phase space should be projected to a
value pT which depends on the treatment of radiation recoil.

By finally identifying expS(Q, q) ≡ ∆2
MiNLO(Q, q), we can effectively say that the last line

of Eq. (3.58) is equivalent to the MiNLO formalism, where the resummation coefficients
in the MiNLO Sudakov of Eq. (3.32) compare to the ones in expS(Q, q) up to a rescaling
by a factor of two 5.

At this level of the discussion, it is clear that, in order for MiNLO to respect unitarity,
two main adjustments to Eq. (3.31) should be done. The factorization and renormalization
scales should be set to the transverse momentum pT of the boson rather than the scale
of the first clustering. Moreover, the NNLL resummation coefficient B(2), which was
missing in Eq. (3.32), should also be included. In Ref. [175], these modifications allowed
to correctly account for the terms of order α3/2

s , which were not correctly included in
MiNLO. The modified algorithm, often dubbed MiNLO′, allows to reach NLO accuracy
for observables inclusive over QCD radiation by starting from a NLO BJ generator
involving one resolved radiation, and to easily match to PS programs the second-to-
hardest radiation via the Powheg method. Indeed, MiNLO′ is naturally embedded
into the Powheg framework: making use of MiNLO′ in the context of Powheg simply
amounts to modifying the B̄ function of Eq. (3.12) as

B̄(ΦBJ) = eS̃(pT(ΦBJ))(B(ΦBJ) (1− S̃(1)(pT)) + V (ΦBJ)) +
∫
dΦrade

S̃(pT(ΦBJJ))RS(ΦBJ,Φrad)

(3.61)

where the subtraction counterterms and the collinear remnants are still understood,
together with the choice of µR = µF = pT. In the previous equation, we used S̃ to denote
the new MiNLO′ Sudakov, where the first argument referring to the upper integration
extreme Q has been dropped. It is important to stress that the transverse momentum of
the boson entering the Sudakov factor multiplying the real term should be computed from
the real phase space ΦBJJ, rather than ΦBJ, used for the Born and virtual contributions.
It is also worth noticing that the mismatch in the two Sudakov factors does not spoil
the IR cancellation of singularities, since the two definitions of pT computed in ΦBJ and
ΦBJJ agree in the singular regions of the secondary emission.

The benefit of this approach is that the accuracy of the NLO B generator is recovered
without any need to combine B and BJ samples with an unphysical merging scale. Indeed,

5 Notice that, for ease of reference and for consistency with the upcoming discussion carried out in
Section 3.3, the correct MiNLO′ normalization for the resummation coefficients has already been
implicitly assumed in Eq. (3.54), as well as in Eq. (3.55).
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3 Matching NNLO QCD calculations with parton showers

the presence of the MiNLO′ Sudakov allows to regulate the BJ divergences in the
unresolved regions of the primary emission and, therefore, to push the merging scale
down to the hadronization scale. In this respect, MiNLO′ differs from all other merging
approaches. But to properly achieve merging, the resummation ingredients for the
resolution variable are required as an input. In principle, any observable X such that
X → 0 in the IR singular region of the radiation can be used as a resolution variable to
separate different jet multiplicities, as soon as an accurate enough resummation for X
is available. In our discussion we employed the pT of the colour-singlet as a resolution
variable, while in Ref. [194] the three-jet resolution parameter was used (with some of the
resummation ingredients provided numerically within the CAESAR framework [104]).
Anyway, contrary to other merging methods, where arbitrary jet muplitplicities can in
principle be combined, MiNLO′ is applicable just to the case of 0- and 1-jet merging. An
extension of the MiNLO method to more complex situations was suggested in Ref. [176],
and it was used to merge up to three jet samples obtained from the generators H, HJ
and HJJ. In such an extension, no analytic control on resummation is demanded, but
unitarity is used to estimate the required resummation ingredients.

In order to introduce the main idea on which MiNLO′ is based, we restricted our
discussion to the case of merging event generators where only one colourless particle is
involved. In Ref. [195], the first application of MiNLO′ to a more general colour-singlet
process was presented, where the single boson was replaced by a system of colourless
particles (specifically a pair of W bosons). We will describe in the next section, in a
slightly different context, the modifications that are needed to move to this more general
case, which is extremely relevant for the results that we are going to present in Chapter 4.

3.3 The MiNNLOPS method

To improve the accuracy of their predictions, event generators should rely on NNLO
calculations for processes where they are available. The improvement in the normalization
of the inclusive cross section is one important ingredient which is required to match
the increasing accuracy of the experimental measurements. That poses the problem
of reaching NNLO+PS accuracy, which means to match a NNLO calculation to PS. A
NNLO+PS event generator should meet at least the following requirements: NNLO
accuracy is recovered for observables inclusive over QCD radiation, NLO and LO accuracy
is reached for quantities involving one or two resolved jets, respectively, and, finally, a
proper shower matching which does not spoil the logarithmic accuracy of the PS itself
has to be guaranteed. If NLO matching is nowadays standard and different NLO merging
schemes are available, no general approach to reach NNLO+PS has been formulated yet.
Just very few methods have been proposed in the last decades, which mainly address the
issue for colour-singlet processes.

One of these methods is Unnlops, which has by now been applied to simple processes
like Drell-Yan [196] or single Higgs production [197]. Starting from a BJ generator
matched to PS with the MC@NLO approach, divergences associated to the primary
emission are regulated putting a cutoff on the boson transverse momentum pT. Then,
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3.3 The MiNNLOPS method

the NNLO calculation is added to the zero-pT bin. In order to preserve unitarity and
the desired accuracy for the different jet samples, the Unlops ‘subtract-what-you-have-
added’ philosophy is invoked. This approach was the only one to be further extended to
N3LO+PS accuracy in Ref. [198] in the Un3lops method. One of the main drawback
of this family of approaches resides in the fact that they only include the two-loop
virtual corrections in the zero-jet bin, contrary to the physical behaviour dictated by
resummation.

In the Geneva framework [85, 173], NNLO+PS accuracy has already been obtained
for many colour-singlet processes, like Drell-Yan [199], Higgs-strahlung [200], photon
pair production [201], hadronic Higgs decays [202], ZZ production [203], and Wγ pro-
duction [204]. As already mentioned, merging is achieved by separating different jet
samples using appropriate jet resolution variables, which are resummed to a logarithmic
accuracy consistent with the fixed-order calculation. As soon as the required resumma-
tion ingredients are available, different observables can be used to partition the phase
space. Therefore, even though the 0-jettiness τ0, resummed in the SCET formalism, was
mainly employed for hadronic processes, more recently [205] results using the pT of the
color-singlet system were presented. To obtain NNLO accuracy for the inclusive sample,
the two-loop contributions are provided by increasing the accuracy of the resummation
for the 0-jet resolution variable to NNLL′ (where the prime here indicates how the NNLL
resummation also includes some N3LL terms in such a way to incorporate the full singular
structure in the resolution variable of the NNLO calculation). Similarly to Unnlops,
divergences for the primary emission are regulated by a τ0,cut cutoff, with a non-local
counterterm used to compensate the divergent behaviour of the real emission term (in
line with phase space slicing subtraction, presented in Section 2.1.3). Therefore, contrary
to the MiNLO′ approach, the merging scale τ0,cut can not be made arbitrary small
without introducing large numerical instabilities. On the other hand, moving the τ0,cut
scale to smaller and smaller values has the benefit of reducing the impact of missing
power corrections arising from the region τ0 < τ0,cut, which are not captured by the
resummation. Indeed, as commented in Ref. [201], their correct inclusion into a term
that matches resummation with the full NNLO calculation would require a fully-local
NNLO subtraction procedure. Therefore, despite the fact that the usage of resummation
correctly spreads two-loop terms also for τ0 6= 0 and so cures the unphysical Unnlops
behaviour, NNLO accuracy can just be claimed up to power corrections.

Very recently, a NNLO+PS matching scheme was proposed in the context of the
Vincia antenna-sector shower, where for the first time NNLO divergences are handled
with the fully local antenna subtraction scheme [206]. Despite the novelty of the approach,
its applicability is currently limited to leptonic collisions.

As we have already discussed, in MiNLO′ the problems with the merging scale
are circumvented by using a Sudakov suppression factor. As proposed in Ref. [175],
the MiNLO′ method can be easily upgraded into a NNLO+PS generator. Once the
BJ-MiNLO output is available as a set of events which are NLO accurate both in presence
of one resolved final-state parton and for unresolved radiation, a reweighting factor can
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be applied to correct the normalization of the sample:

w(ΦB) =
(
dσ
dΦB

)
NNLO(

dσ
dΦB

)
MiNLO′

. (3.62)

By reweighting each event for w(ΦB), which is fully differential in the Born phase-space
kinematics, NNLO accuracy can be correctly reached for inclusive observables. It is easy
to show that the NLO accuracy of the original BJ generator is not spoilt. Indeed we can
write:(

dσ
dΦB

)
NNLO(

dσ
dΦB

)
MiNLO′

= c0(ΦB) + c1(ΦB)αs + c2(ΦB)α2
s

c0(ΦB) + c1(ΦB)αs + d2(ΦB)α2
s

≈ 1 + c2(ΦB)− d2(ΦB)
c0(ΦB) α2

s +O(α3
s)

(3.63)

since MiNLO′ agrees with the NNLO result up to αs terms. The wrong α2
s term d2(ΦB)

is then subtracted by the reweighting procedure and corrected with the right NNLO
coefficient c2(ΦB). Since events with resolved radiation are correct up to order O(α2

s),
with dominant contributions starting at order αs, the reweighting of these events includes
at worse spurious terms of order α3

s or higher, which are beyond the original accuracy.
This method has the advantage of being conceptually very simple, and it has been applied
to many 2→ 1 LHC processes, such as Higgs-boson production [207], Drell-Yan [208],
Higgs-strahlung [209, 210], which in terms of QCD corrections is still a 2→ 1 process,
and to the 1→ 2 process H → bb̄ decay [194]. Anyway, when moving to more complex
processes, the method becomes quickly unpractical. The main issue with this approach is
that the reweighting factor of Eq. (3.63) has to be fully differential in the Born kinematics,
so that the more complex the final state structure of the event is, the more computationally
challenging the reweighting procedure becomes. In particular, in Ref. [211] this approach
had been taken to its extreme by applying it to a genuine 2 → 2 process like W+W−.
To this end, a number of features of the W-boson decays had to be resorted, in order to
simplify the parametrization of the nine dimensional W+W− → e+e−µ−ν̄µ Born phase
space, such as the fact that the full angular dependence of each vector-boson decay can
be parametrized through eight spherical harmonic functions [212] or the fact that QCD
corrections are largely independent of the off-shellness of the vector bosons. Moreover,
the discretization of the residual variables in the parametrization of the Born phase space
for the reweighting limits the numerical accuracy in phase-space regions sensitive to
coarse bins. Not rarely, such regions can be relevant for BSM searches, especially when
situated in the tails of kinematic distributions.

More recently, the latter method has been superseeded by a new extension of MiNLO′,
dubbed MiNNLOPS. The MiNNLOPS method is a very powerful approach that inherits
all of MiNLO′ positive features and allows to reach NNLO+PS accuracy. The general
idea was first introduced in Ref. [213] for 2 → 1 processes, with some optimizations
presented in Ref. [214]. But the underlying idea of the approach applies even beyond
Higgs or Drell-Yan production. By now, this method has been validated against many
processes. In Ref. [215], NNLO+PS accuracy was achieved for the first time both in
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production and decay for the Higgs-strahlung process, with the Higgs boson decaying
into a bottom pair, where effects of SM effective field theory (EFT) operators have also
been included in a more recent work [216]. In Ref. [217], the MiNNLOPS methods was
generalized to any colour-singlet process, paving the way for NNLO+PS simulations for
all diboson processes. Indeed, the approach has already been successfully applied to
Zγ production [217], also including the effect of anomalous triple gauge couplings [218],
W+W− [219] and ZZ [220] processes. An even more recent application to γγ production
has been presented in Ref. [221]. It is worth mentioning that MiNNLOPS has been the
first method which allowed to reach NNLO+PS accuracy even for colourful final states
in Ref. [222, 223], with the relevant application to hadronic tt̄ production. That has been
achieved by properly extending the core idea of the method in order to account for QCD
radiation from the final states, as well.

Despite the wide variety of applications, all MiNNLOPS-based methods share the
following important features:

• NNLO corrections are calculated directly during the generation of the events, with
no need for further reweighting or event post-processing: that allows to reach NNLO
accuracy in a more efficient way compared to the MiNLO′ approach corrected by
a NNLO reweighting factor;

• no merging scale is required to separate different jet multiplicities in the generated
event samples, just as with MiNLO′: the absence of any slicing cutoff bypasses the
problem of missing power corrections, which can threaten the NNLO accuracy of
the inclusive cross section, and removes any dependence on unphysical parameters
from the final results;

• when combined with transverse-momentum ordered parton showers, the matching
preserves the leading logarithmic structure of the shower simulation 6: this feature
is a natural consequence of the fact that MiNNLOPS ordering variable is the
pT of the colour-singlet system, which agrees, at LL level, with the pT of the
leading jet of Powheg, which is employed for the PS matching. As mentioned in
different occasions, if the PS is ordered in a variable different than the transverse
momentum of the radiation, preserving the LL accuracy of the latter can require
the introduction of vetos to the shower radiation and of additional contributions,
such as truncated showers [135].

The main goal of this section is to introduce the MiNNLOPS method, with a special
focus on its extension to any colur-singlet process, as presented in Ref. [217]. To this end,
we will resume the discussion done for MiNLO′ starting from a more general perspective
and then we will introduce the missing ingredients that are needed to promote MiNLO′
to a NNLO+PS generator.

6 As explicitly mentioned in Ref. [223], the class of NLL corrections captured by the CMW scheme
(see discussion in the Section 2.2) should also be preserved by the matching procedure. This is
simply achieved in MiNLO′ by correctly including the terms α2

s log2(Q2/p2
T) in the Sudakov exponent

of Eq. (3.32), with q = pT.
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3.3.1 Reaching NNLO+PS for colour-singlet processes
Similarly to MiNLO′, the key idea of MiNNLOPS is to reach NNLO accuracy for inclusive
observables by a careful comparison with the resummation formalism. Then, the B̄
function of Eq. (3.61) is modified in such a way to account for all logarithmically-enhanced
contributions at low transverse momentum to the desired perturbative accuracy. Finally,
just as with MiNLO′, MiNNLOPS is naturally embedded into the Powheg framework,
which makes it straightforward to match with PS. In the following discussion, we will
refer from the very beginning to a general colour-singlet system, denoted by F, with
invariant mass Q.

Therefore, the starting point of MiNNLOPS is a Powheg implementation of colour-
singlet production in association with one jet within a FJ generator, with phase space ΦFJ.
We can specialize to our case the Powheg master equation in Eq. (3.14) in a simplified
notation as follows:

dσFJ =
∑
`FJ

B̄`FJ(ΦFJ) dΦFJ

{
∆`F

pow(ΦFJ, pT,min) + (3.64)

∑
αr∈{αr|`FJ}

[
dΦrad∆`Fpow(ΦFJ, kT(ΦFJJ))Rsing

`FJJ
(ΦFJJ)θ(kT(ΦFJJ)− pT,min)

]Φ̄(αr)
FJ =ΦFJ

αr

B`FJ(ΦFJ)

}
,

where the remnant and regular contributions have been dropped, since they do not have
an active role in this discussion. As usual, B̄`FJ describes the FJ process, which includes
the first radiation, using the full NLO cross section. On the other hand, the content of the
curly brackets accounts for the second QCD emission through the Powheg mechanism.
In this context, kT(ΦFJJ) refers to the transverse momentum of the second radiation,
computed in the full real phase space. Radiation beyond the second one is generated by
the parton shower, which adds corrections of order O(α3

s(Q)) and higher at all orders in
perturbation theory. The shower cutoff pT,min is set to the non-perturbative scale ΛQCD.

The derivation of the B̄`FJ(ΦFJ) function in MiNNLOPS [213] has once again as a
starting point Eq. (3.46), just as with MiNLO′. In this context, the same equation is
required to describe the singular part of the cumulative transverse-momentum spectrum
pT of a colour-singlet system up to NNLO (see coming discussion in this subsection),
fully differentially in the Born phase space ΦF. Here, we report the same formula in a
flavour-aware notation [217]:

dσ
dΦFdpT

= d
dpT

{∑
`F

exp[S̃`F(pT)]L`F(pT)
}

+Rf (pT) (3.65)

=
∑
`F

exp[S̃`F(pT)]D`F(pT) +Rf (pT) ,

with `F referring to the flavour structure of the underlying process q̄′q → F and where
now

D`F(pT) ≡ dS̃`F(pT)
dpT

L`F(pT) + dL`F(pT)
dpT

. (3.66)
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Introducing the flavour sum in Eq. (3.66) becomes necessary for a general colour-singlet
process. Indeed, depending on the choice of resummation scheme, not only the luminosity
function L`F , but also the Sudakov form factor S̃`F(pT) can become in general flavour
dependent. Therefore, we can write:

L`F=q̄′q(pT) =
(
C̃q̄′a ⊗ fa/h1

)
(x1, pT)

d
[
|MF|2q̄′q H̃`F=q̄′q(pT)

]
dΦF

(
C̃qb ⊗ fb/h2

)
(x2, pT) (3.67)

S̃`F(pT) = −2
∫ Q

pT

dq
q

(
A(αs(q)) ln Q

2

q2 + B̃`F(αs(q))
)
, (3.68)

where in Eq. (3.67) the sum over the a and b indices is understood. In Eq. (3.68), a factor
of two has been made explicit compared to Eq. (3.40) to match the standard MiNNLOPS
convention for the definition of the resummation coefficients. With the notation `F = q̄′q
we indicate the Born flavour structure `F having q̄′q as initial-state partons. We clearly
see from this equation that the main difference compared to 2→ 1 hadronic processes,
such as Higgs and Drell-Yan production, is that the hard function H`F=q̄′q(pT) for a
general process can not be written as a simple form factor times the Born amplitude, and
thereby it inherits a dependence on the respective flavour and phase-space configuration:

H`F(ΦF, pT) = 1 +
(
αs(pT)

2π

)
H

(1)
`F

(ΦF) +
(
αs(pT)

2π

)2
H

(2)
`F

(ΦF) +O(α3
s(pT)) . (3.69)

This dependence propagates throughout the formalism by means of the transformations
in Eq. (3.43) and Eq. (3.44), which define a specific resummation scheme. We have
already discussed that the MiNLO′ formalism is recovered by setting µR = pT, which is
equivalent to a resummation scheme where the hard function contribution is absorbed
in the Sudakov exponent and in the coefficient functions. This scheme choice has been
signaled from the beginning of this section by redefining S`F → S̃`F , C`F → C̃`F , and
H`F → H̃`F . In particular, Eq. (3.45) tells us that the flavour and kinematic dependence
in the Sudakov of Eq. (3.68) is entirely encoded in the B coefficient:

B̃`F(αs) =
(
αs
2π

)
B(1) +

(
αs
2π

)2
B̃

(2)
`F

+O(α3
s) . (3.70)

Following now the same reasoning outlined in the Subsection 3.2.2, we can rewrite Eq. (3.65)
in a form where the Sudakov exponent is factored out:

dσ
dΦFdpT

=
∑
`F

exp[S̃`F(pT)]
{
D`F(pT) + Rf (pT)

eS̃`F (pT)

}
(3.71)

making clear that, if we want to reach NNLO accuracy and so to account for all α2
s terms

after a pT integration, all α3
s contributions in the curly brackets of Eq. (3.71) should be

retained, according to the power counting rule of Eq. (3.53). Therefore, all required terms
come from a N3LL accurate resummation formula, which is properly expanded about
small pT values to just retain the full singular structure of the integrated spectrum at
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order α2
s. The ingredients that we need in this case are the coefficients {A(1), A(2), A(3)}

and {B(1), B(2)} for the Sudakov exponent, together with the knowledge of the hard
and coefficient functions up to second order. The expansion of the b-space resummation
formula up to O(α3

s) (or to O(α2
s) at the level of the cumulative spectrum, where the pT

integration is carried out) leads to the redefinition in Eq. (3.54), accompanied by

H(2) ′ = H(2) − 2ζ3A
(1)B(1) (3.72)

C
(2) ′
ab (z) = C

(2)
ab (z)− 2ζ3A

(1)P
(0)
ab (z) (3.73)

with P (0) the leading order term of the regularized AP splitting function. When the
required resummation scheme change is performed, we further have to apply the scheme
conversion described in Eq. (3.55), supplemented by

C̃
(2)
ab (z) = C

(2) ′
ab (z) + 1

2H
(1)C

(1)
ab + δabδ(1− z)

1
2

[
H(2) ′ − 1

4(H(1))2
]
, (3.74)

where we see that the coefficients B̃(2), C̃(1)
ab , and C̃

(2)
ab get a phase-space and kinematic

dependence through H(1).
Writing also the differential NLO cross section for FJ production as a sum over its

flavour structures `FJ

dσ(NLO)
FJ

dΦFdpT
=
∑
`FJ

{
αs(pT)

2π

[ dσFJ

dΦFdpT

](1)

`FJ

+
(
αs(pT)

2π

)2 [ dσFJ

dΦFdpT

](2)

`FJ

}
(3.75)

allows us to recast our starting formula in Eq. (3.71) in a form similar to Eq. (3.58), where
terms up to order α3

s are properly included:

dσ
dΦFdpT

=
∑
`FJ

{
exp[S̃`F←`FJ(pT)]

{
αs(pT)

2π

[ dσFJ

dΦFdpT

](1)

`FJ

(
1− αs(pT)

2π [S̃`F←`FJ(pT)](1)
)

+
(
αs(pT)

2π

)2 [ dσFJ

dΦFdpT

](2)

`FJ

}}
+
∑
`F

exp[S̃`F(pT)]D`F(pT) + regular terms of O(α3
s) .

(3.76)

In the previous expression `F ← `FJ denotes the projection from the flavour structure of FJ
production to the one of the Born process F. Note that the evaluation of exp[S̃`F←`FJ(pT)]
also requires a projection for ΦFJ → ΦF as discussed below. The regular terms originate
from the expansion of Rf (pT)/eS̃`F (pT), which can be safely omitted. Indeed, the latter
terms are of order α3

s but they do not contain any singular contribution: after a pT

integration, they contribute beyond NNLO accuracy. The terms containing the relevant
logarithmically-enhanced behaviour for low pT values are contained in D`F(pT). A minimal
choice of D`F(pT) is such that it includes all α3

s terms of the D`F(pT) perturbative
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expansion [213] (therefore neglecting contributions of order O(α4
s)):

D`F(pT) ≡
(
αs(pT)

2π

)3
[D`F(pT)](3) =

(
αs(pT)

2π

)3 {[dS̃`F←`FJ(pT)
dpT

](1)
[L`F(pT)](2)

+
[
dS̃`F←`FJ(pT)

dpT

](2)
[L`F(pT)](1) +

[
dS̃`F←`FJ(pT)

dpT

](3)
[L`F(pT)](0) +

[
dL`F←`FJ(pT)

dpT

](3)}
=
(
αs(pT)

2π

)3 { 2
pT

(
A(1) log Q

2

p2
T

+B(1)
)

[L`F(pT)](2) + 2
pT

(
A(2) log Q

2

p2
T

+ B̃
(2)
`F

)
[L`F(pT)](1)

+ 2
pT
A(3) log Q

2

p2
T

[L`F(pT)](0) +
[
dL`F←`FJ(pT)

dpT

](3)}
. (3.77)

We refer to appendix C and D of Ref. [213] and appendix A of Ref. [214] for explicit
expressions relevant to the evaluation of the previous equation, where the flavour depen-
dence can be simply included through the replacements H(1) → H

(1)
`F

, H(2) → H
(2)
`F

, and
B̃(2) → B̃

(2)
`F

.
To connect the MiNNLOPS master equation in Eq. (3.76) to a Powheg FJ generator

as described by Eq. (3.64), there is still one missing ingredient. Indeed, the B̄`FJ(ΦFJ)
contains information of the full ΦFJ and ΦFJJ kinematics, while in the D`F(pT) term,
which comes from a resummation formalism, only carries information of the underlying
Born kinematics ΦF and of the pT of the colourless system: all extra details on the
kinematics of the radiation have been integrated out in Eq. (3.76). Therefore, in order
to embed the D`F(pT) term into a FJ generator, the {ΦF, pT} kinematics should be
completed to the full ΦFJ one via a proper mapping. The exact details of how that
is done are beyond the formal generator accuracy, since at high pT the D`F(pT) term
adds contributions which are of α3

s order. Consequently, we just need the remapping to
smoothly project ΦFJ to ΦF for pT → 0. Once a projection ΦFJ → ΦF is provided, we
have to distribute the NNLO corrections of D`F(pT) in the full ΦFJ phase space with a
proper spreading factor F corr(ΦFJ), defined as:

F corr
`FJ (ΦFJ) = J`FJ(ΦFJ)∑

`′F

∫
dΦ′FJJ`′FJ

(Φ′FJ)δ(pT − pT
′)δ(ΦF −Φ′F) , (3.78)

where ΦF and Φ′F result from the projection we mentioned (a possible mapping preserving
the invariant mass and the rapidity of the colour-singlet system is described in Ref. [213]).
In Eq. (3.78), the pT is computed in the full space space ΦFJ. The arbitrariness in the
spreading of the NNLO corrections is encoded in the choice of the function J`FJ(ΦFJ).
Indeed, the only requirement that F corr

`FJ
(ΦFJ) should satisfy is that its integral over ΦFJ

in combination with a function that just depends on ΦF and pT has to reproduce the
integral of that function over ΦF and pT, consistently with the resummation formula
encoded in Eq. (3.76). This requirement is trivially met by Eq. (3.78).

We are now in the position to connect Powheg and the parton shower matching
formula in Eq. (3.64) with the MiNNLOPS formalism. By making use of the spreading
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factor F corr
`FJ

(ΦFJ), we can write the MiNNLOPS B̄(ΦFJ) function as

B̄(ΦFJ) ≡
∑
`FJ

{
exp[S̃`F←`FJ(pT)]

{
αs(pT)

2π

[ dσFJ

dΦFJ

](1)

`FJ

(
1− αs(pT)

2π [S̃`F←`FJ(pT)](1)
)

+
(
αs(pT)

2π

)2 [ dσFJ

dΦFJ

](2)

`FJ

}
+
{∑

`F

exp[S̃`F(pT)]D`F(pT)
}
F corr
`FJ (ΦFJ)

}
. (3.79)

One should bear in mind that there is an implicit dependence on ΦF for all quantities
that depend on `F. Therefore, obtaining the respective kinematics requires once again to
make use of the projection ΦFJ → ΦF.

To go one step further and embed the MiNNLOPS corrections within the Powheg-
Box-Res framework, one needs some extra care to properly handle its resonance-aware
features. Since the B̄(ΦFJ) function is modified in an additive way in Eq. (3.79), such
that the NNLO corrections are treated on the same footing as all other contributions
with ΦFJ kinematics, we can simply decompose the term involving D`F(pT) as a weighted
sum over ˆ̀

FJ using the weight functions Pˆ̀FJ
of Eq. (3.18) just like in Eq. (3.16). With

this simple adjustment, the resonance-aware MiNNLOPS master formula reads

B̄(ΦFJ) ≡
∑
`FJ

{
exp[S̃`F←`FJ(pT)]

{
αs(pT)

2π

[ dσFJ

dΦFJ

](1)

`FJ

(
1− αs(pT)

2π [S̃`F←`FJ(pT)](1)
)

+
(
αs(pT)

2π

)2 [ dσFJ

dΦFJ

](2)

`FJ

}
+

∑
ˆ̀FJ∈T (`FJ)

Pˆ̀FJ

{∑
`F

exp[S̃`F(pT)]D`F(pT)
}
F corr
`FJ (ΦFJ)

}
,

(3.80)

where we have just highlighted the resonance decomposition of the NNLO corrections,
which are the new ingredients of this subsection.

3.3.2 Some practical details

In this last subsection we present some details that are relevant for the actual imple-
mentation of MiNNLOPS. The MiNNLOPS algorithm is nowadays available for many
processes within the Powheg-Box and the Powheg-Box-Res [217] framework as a
fully automatized feature. In order to use MiNNLOPS for a process implemented in
Powheg-Box(-Res), one just needs to set the input card of the process, which contains
the details on how to run the event simulation, in such a way to include the input line
minnlo 1. The following discussion is important to better understand the setup used for
the results presented in the next chapter.

As commented in the previous subsection, MiNNLOPS formula offers some flexibility
in the precise choice of the spreading factor of Eq. (3.78) through the definition of
J`FJ(ΦFJ). A uniform spreading of the NNLO corrections in the ΦFJ phase space with
J`F(ΦFJ) = 1, despite being formally correct, would introduce spurious contributions
in the high transverse-momentum regions of the leading jet. To have a more physical
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spreading, one could choose J`FJ(ΦFJ) = |M`FJ(ΦFJ)|2(fh1fh2)`FJ , that is the Born matrix
element for the FJ process weighted by the product of the PDFs corresponding to
the initial-state flavour configuration in `FJ. With such a choice, NNLO corrections
are correctly spread according to the pseudorapidity of the radiation. Clearly, the
evaluation of the integral in the denominator of Eq. (3.78) for every phase-space point
can easily become a bottleneck for complex processes. As described in Ref. [213], a
suitable compromise between computational speed and physically sound results is to
make use of the collinear approximation of |M`FJ(ΦFJ)|2, which effectively amounts
to setting J`FJ(ΦFJ) = P`FJ(Φrad)(fh1fh2)`FJ , being P`FJ the appropriate AP splitting
function. With this choice the numerical convergence of the integral in the denominator
of Eq. (3.78) does not scale with the complexity of the process, which is a crucial
requirement for multi-leg processes, such as diboson ones.

The Sudakov factor S̃`F(pT) (together with its first order expansion S̃(1)
`F

(pT)) and the
NNLO D`F(pT) term modify the NLO accurate matching formula for the FJ generator
by introducing contributions at high pT which are beyond its formal accuracy. To reduce
the impact of these spurious contributions in regions of phase space which are described
at NLO accuracy, it is important to switch off the higher-order logarithmic terms for
pT ≥ Q. A standard choice (first presented in Ref. [213]) is to introduce some modified
logarithms via the replacement

log
(
Q

pT

)
→ L ≡ 1

p
log

(
1 +

(
Q

pT

)p)
, (3.81)

with p > 0 (usually set to p = 6) controlling how fast the logarithms tend to zero for
high pT values. In Ref. [223] a more sophisticated choice was presented. Indeed, the
details on how these logarithms 7 are turned off at high pT do not impact on the accuracy
of the simulation, as soon as the correct logarithmic structure is maintained at low
pT. Moreover, as pointed out in Ref. [214], in order to preserve the total derivative of
Eq. (3.65), regardless of the exact choice of the modified logarithms, that replacement
requires three further adjustments. First of all, the lower integration bound of the
Sudakov has to be replaced by pT → Qe−L. Secondly, D`F(pT) needs to be multiplied by
a proper jacobian factor JQ, that depends on the exact form of L. For instance, with
the choice done in Eq. (3.81) this jacobian factor reads

JQ = (Q/pT)p

1 + (Q/pT)p , (3.82)

7 In practise, the form of the modified logarithms can be selected from the input card of the process by
properly setting the input keyword modlog_p. By choosing a positive value, one selects the power
of p entering Eq. (3.81). The values -1d0 and -2d0 trigger the usage of a piecewise-defined modified
logarithm [223], which is the standard logarithm below Q/2 and exactly zero above Q. In-between
those values two different functional forms may be chosen to smoothly interpolate between Q/2
and Q, keeping the modified logarithms and its derivative continuous. By setting modlog_p 0, the
standard logarithm with a theta function is used, setting both the logarithmic contribution and the
jacobian factor JQ to zero for pT > Q. For a thourough discussion of this and other MiNNLOPS
input keywords necessary to run the algorithm, see also discussion in Appendix B.4.
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which further switches off the effect of the 1/pT singularities. Finally, the perturbative
scales need to be set consistently with the scale of the modified logarithms at small
transverse momenta, i.e

µR,0 = Qe−L µF,0 = Qe−L . (3.83)

In Eq. (3.83), µR,0 and µF,0 refer to the central scale choices. Then, as standard, the size
of missing higher order corrections is estimated by the 7-point scale variation approach
of Eq. (2.26), by setting µR = KRµR,0 and µF = KFµF,0. But, as clarified in appendix D
of Ref. [213], MiNNLOPS formula includes extra sources of scale variations compared
to a standard FO calculation, that arise from the Sudakov form factor. Scale variations
within the Sudakov should be included for internal consistency of the approach, since the
D`F(pT) term, which contains the derivative of S̃`F(pT), is evaluated at µR. Due to this
feature, it is expected that MiNNLOPS uncertainty bands arising from scale variation
are generally wider that the corresponding ones from a NNLO calculation, despite the
same formal accuracy for inclusive observables.

Moreover, MiNNLOPS offers one extra possibility to further control the scale at which
resummation effects are switched off, as first documented in Ref. [223]. In a way similar
in spirit to resummation, the resummation scale Q can be rescaled by a factor KQ by
choosing the value of the input keyword kappaq accordingly.

In Ref. [214], a set of optimizations was introduced, going in the direction of reducing
the sources of differences between a NNLO calculation and MiNNLOPS. Despite the
NNLO accuracy reached by MiNNLOPS for inclusive observables, the different treatment
of higher-order corrections O(α3

s) can still have a sizable numerical impact when compared
to FO results. Ref. [214] suggested three main adjustments to ameliorate the comparison.
The first of them consists in the replacement of the expression for D`F(pT) of Eq. (3.77),
which just included terms up to O(α3

s), with

D`F(pT) ≡ D`F(pT)− αs(pT)
2π [D`F(pT)](1) −

(
αs(pT)

2π

)2
[D`F(pT)](2) . (3.84)

Indeed, with the truncation carried out in Eq. (3.77) at the differential level, Eq. (3.76)
does not reproduce anymore the exact total derivative of Eq. (3.65). With the new form
of Eq. (3.84) (which is now the default choice within MiNNLOPS), the total derivative
can be preserved, keeping into account also additional terms beyond accuracy of order
O(α4

s) and higher. The better agreement between NNLO and MiNNLOPS results, once
the prescription of Eq. (3.84) is used, can be explained by keeping in mind that the
impact of these subleading terms, which nonetheless include logarithmically enhanced
contributions, can indeed be numerically important.

A second technical issue raised in Ref. [214] concerns the ability of Eq. (3.79) (or
of Eq. (3.80)) to properly reproduce a NNLO result once the integration over pT is carried
out. In order for that to be the case, the pT integration should be performed using a lower
integration bound starting from sufficiently low values, where the integrand becomes
vanishing due to the Sudakov suppression. This can be easily observed in Eq. (3.49),
where the contribution to the integral of the total derivative evaluated at the lower bound
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of integration is required to vanish. The success of this integration can be threaten by
potentially too high internal PDF cutoff ΛPDF > ΛQCD. As discussed in Section 2.1.2,
PDFs are non-perturbative objects whose values are obtained by appropriate fits of
experimental measurements, whose results are saved into grids. Each set has its own
infrared cutoff ΛPDF, which represents the lower scale at which the grids end due to
lack of data points to carry out the fit procedure. That means that usual packages
like lhapdf [224], used to interface computer programs with PDF grids, would simply
evaluate PDF functions to zero for scales pT < ΛPDF. To correctly perform the integration
to even lower scales, Ref. [214] proposed to use a hybrid PDF set obtained as follows.
As a first step, the PDF values read by lhapdf are copied into hoppet [225] grids.
Indeed, the hoppet package allows for an efficient manipulation of many operations
involving PDFs. Up to this point, hoppet grids exactly correspond to lhapdf ones for
scales µF > ΛPDF. Then, the hoppet package is used to evolve PDFs for µF < ΛPDF
down to ΛQCD according to DGLAP evolution equations. The possibility to perform
the integration close to non-perturbative scales might require to smoothly approach the
non-perturbative regime at small pT. That can be done by introducing a non-perturbative
parameter Q0 (whose value can be controlled from the input setting Q0) to regularize the
Landau singularity. The introduction of this new parameter further modify Eq. (3.83),
which now reads

µR,0 = Qe−L +Q0 g(pT) , µF,0 = Qe−L +Q0 g(pT) , (3.85)

where g(pT) is chosen such that it suppresses the Q0 shift at large values of pT. The
analytic form of g(pT) is again to a large extend arbitrary. Once a choice is done, the
scale setting of Eq. (3.85) should also be adopted in S̃`F(pT) at the integrand level, and
a jacobian factor JQ0 (whose exact expression depends on g(pT)) should multiply the
derivative of the luminosity in Eq. (3.66).

The scale setting of Eq. (3.85) provides a consistent treatment in the small pT region and
preserves the total derivative of Eq. (3.65). However, at large pT it yields µR,0 ∼ µF,0 ∼ Q,
while a scale setting such that µR,0 ∼ µF,0 ∼ pT might be preferred in that region. To
this end, the scales entering the NLO F+jet cross section in Eq. (3.80) can be chosen
from the input card (setting largeptscales 1) so that

µR,0 = pT +Q0 g(pT) , µF,0 = pT +Q0 g(pT) . (3.86)

It is important that Eq. (3.86) matches the scales of the Sudakov form factor and the
D`F(pT) term at small pT. At the same time it ensures a dynamical scale choice of
µR,0 = µF,0 ∼ pT at large pT.

One final observation done in Ref. [214] is strictly related to the PS matching of
MiNNLOPS formula. In order to reduce the effects of the shower on the kinematics of the
colour-singlet system, a different shower recoil scheme was suggested. For the Pythia8
shower [124], that is activated by the flag SpaceShower:dipoleRecoil 1 (see Ref. [226]).
Its effect is to enable a local recoil scheme (i.e. one that does not affect the colour-singlet
system) for initial-final colour dipole emissions, while keeping a global recoil (i.e. one
that affects all final state particles including the colour-singlet system) for initial-initial
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3 Matching NNLO QCD calculations with parton showers

ones. As pointed out in Ref. [214], specific choices of different shower recoil schemes
formally contribute beyond NNLO accuracy: the prescription adopted in that work had
the benefit to reduce differences between the NNLO and the MiNNLOPS descriptions
of inclusive observables, especially in the colour-singlet high-rapidity tails. Nonetheless,
a less global recoil can potentially affect the treatment of NLL terms entering the PS
evolution and this fact should be kept in mind in view of future developments.
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In this chapter we present results for some relevant diboson processes obtained with the
MiNNLOPS method. Colour-singlet processes are among the LHC reactions which are
measured at the most remarkable accuracy, with some measurements hitting percent-
level uncertainties even for differential observables. Therefore, they offer a unique test
to validate the MiNNLOPS framework, which allows to interface the best available
fixed-order predictions with full-fledged Monte Carlo event generators. In particular,
vector-boson pair production processes have become an integral part of the rich precision
programme at the LHC. Being measured by reconstructing the vector bosons from their
leptonic decay products, those processes offer among the cleanest experimental signatures
with rather small experimental uncertainties, so as to be considered SM candle processes.
But their precise measurement is extremely relevant also in view of direct and indirect
BSM searches. Indeed, small deviations of data from theory predictions in the shape
of kinematic distributions might be a signal of new physics. Moreover, accurate theory
predictions for vector-boson pair production are of great importance for improving the
description of the background for other LHC measurements, like Higgs boson production.

Encouraged by all these strong motivations, we report in what follows a selection of
results for accurate diboson simulations. We start from Section 4.1 with the description
of Zγ production, including some dedicated BSM studies in Section 4.2. Then, we discuss
event generators for two massive diboson processes like W+W− and ZZ, respectively in
Section 4.3 and 4.4.

4.1 Processes with hard photons: Zγ production

Among vector-boson pair production processes, Zγ is an extremely interesting LHC
reaction. Indeed, especially in the Z → `+`− decay channel, it provides a particularly pure
experimental signature as the final state can be fully reconstructed. In combination with
its relatively large cross section, this process is well-suited for precision phenomenology.
That explains the great interest in the measurement of this process at the LHC, which
was performed at 7 TeV [227–232], 8 TeV [233–236], and even 13 TeV [237, 238], where
Ref. [238] was the first diboson analysis to include the full Run II data set. On top of that,
Zγ has been extensively used as a probe for BSM physics. As we discuss in Section 4.2,
measurements on anomalous triple and quartic gauge couplings are a strong test of the
gauge structure of electroweak (EW) interactions and of the EW symmetry breaking
mechanism. Furthermore, Zγ final states are also relevant in direct searches for BSM
resonances and in Higgs boson measurements (see for instance Refs. [239, 240]), with the
SM production being an irreducible background. Although the Higgs decay into a Zγ
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Figure 4.1: Sample LO diagrams for `+`−γ production with two different resonance
stuctures.

pair is rare, since it is loop induced in the SM, effects from new physics may significantly
enhance this decay channel.

In this section we discuss the implementation of a Zγ and ZγJ generators as presented
in Ref. [217]. Both generators have been implemented for the first time within the
Powheg-Box-Res framework, introduced in Section 3.1.1. In particular, the ZγJ
generator serves as starting point to reach NNLO accuracy for Zγ production through
the MiNNLOPS method.

We start by considering the production processes

pp→ `+`−γ and pp→ `+`−γ + jet , (4.1)

where ` ∈ {e, µ} is a massless charged lepton, which are relevant for Zγ and Zγ+jet
production, respectively.

As illustrated in Figure 4.11, Zγ production is initiated by quark-antiquark annihilation
at LO. The photon can be emitted either by the quark line (q-type diagrams) or by the
lepton line (`-type diagrams), each of which yields a different resonance structure of
the respective amplitudes. Sample LO diagrams for Zγ+jet production are shown in
Figure 4.2, with the same classification into q-type and `-type diagrams. The distinction
between those two resonance structures is relevant when treating them as two different
resonance histories within the Powheg-Box-Res framework. In terms of the nomencla-
ture introduced in Section 3.1.1, we can say that any bare flavour structure for Zγ at
Born level, for instance `B = {uū→ `+`−γ}, is associated to two full flavour structures
ˆ̀
B, like ˆ̀

B = {uū→ Z → `+`−γ} and ˆ̀
B = {uū→ Zγ → `+`−γ}. The latters are used

to construct the weights Pˆ̀B of Eq. (3.17), which in this specific case assume two different
functional forms depending on whether ˆ̀

B refers to q-type or `-type diagrams, and they
read

Pˆ̀B =


m2

Z
(s``−m2

Z)2+Γ2
Zm

2
Z

ˆ̀
B is of q-type ,

m2
Z

(s``γ−m2
Z)2+Γ2

Zm
2
Z

ˆ̀
B is of `-type ,

(4.2)

where s`` is the invariant mass of the lepton pair and s``γ that of the Zγ system.
In addition to the tree-level amplitudes at LO, the NLO calculation of the Zγ (Zγ+jet)

process requires the respective one-loop contributions as well as the tree-level real emission
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Figure 4.2: Sample LO diagrams for `+`−γ+jet production including q-type diagrams
(a-c) and `-type diagrams (d-e).

Zγ+jet (Zγ+2-jet) amplitudes. The NLO corrections to Zγ and Zγ+jet production
have been implemented within the Powheg-Box-Res framework. For the Zγ generator
the relevant amplitudes have been extracted from MCFM 1 [242], while for the Zγ+jet
generator they have been implemented both using MCFM and via an interface to
OpenLoops 2 2 [245–247]. The helicity amplitudes of MCFM are implemented from the
analytic expressions computed in Refs. [248, 249] for Zγ production and in Ref. [250] for
Zγ+jet production. For the MCFM amplitudes of Zγ+jet production the contribution
from third generation quarks inside the loops has been entirely removed for those diagrams

1 MCFM, that we have already recalled in Section 2.1.3, is a standalone framework for the computation
of cross sections for many processes at NLO QCD, with some of them available at NNLO QCD or
NLO EW. From version 10.0, N3LL+NNLO can be achieved for single boson and diboson processes,
as well, in the context of CuTe-MCFM [241].

2 OpenLoops is a program for the fast evaluation of tree and one-loop amplitudes within the SM,
allowing for predictions up to NLO in QCD and EW. Recent developments towards a two-loop
automation have also been pursued in Ref. [243, 244].
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where the Z boson is attached to a fermion loop through an axial vector coupling, while the
massless bottom loop has been retained for those contributions where the corresponding
top effects decouple as 1/m4

top [251]. The impact of this approximation is expected to be
rather small as shown in Ref. [252], where the leading heavy-quark loop contribution has
been evaluated in the 1/m2

top expansion in the context of Z+jet and Z+2-jet production.
We further note that, in view of the NNLO calculation for Zγ production discussed in
Section 4.1.2, omitting the contribution of third generation quarks is in line with the
fact that the heavy-quark loop contributions at two loops are currently not known, and
therefore not included throughout our NNLO+PS results.

When using the OpenLoops interface for the NLO amplitudes of the Zγ+jet compu-
tation, the complex-mass scheme 3 [254] can be exploited and the full top-mass effects
can be accounted for, while in the MCFM amplitudes the width is implemented only in
a fixed-width scheme and heavy-quark loop effects are included only approximately, as
described above. Since QED effects are included just at LO, the difference between the
complex-mass and the fixed-width scheme amounts to an overall normalization, whose
impact is below 0.1%. When comparing results with full top-mass effects as available
in OpenLoops to approximate results as implemented in MCFM we find per mille
effects for quantities inclusive over QCD radiation. This is expected, since heavy-quark
effects at one loop are non-vanishing only in the presence of final-state radiation. For
jet-related quantities, the differences between the results, as shown in Appendix A.3,
are negligible at low transverse momentum and can range up to several tens of percent
in the boosted region (pT & mtop). This is not surprising, since the process at hand
involves s-channel fermion-loop contributions, which become more important in these
phase-space regions. But for observables involving a jet our results are NLO accurate
only, hence characterized by larger theoretical uncertainties. In summary, we find that
mass effects are always much smaller than our quoted theoretical uncertainties and for
the numerical studies performed in this work, which are not devoted to boosted regions,
using approximate results for the heavy-quark mass effects is justified. Hence, because of
the better numerical performance of MCFM, we use the MCFM amplitudes to obtain all
results presented in what follows. Specifically, we find that the MCFM virtual Zγ+jet
amplitudes are about ten times faster than the OpenLoops ones. On the other hand,
by making use of the folding option in Powheg, that we have presented in Section 3.1.2,
where the real contribution is evaluated multiple times for each virtual one, we could
improve the numerical performance of the code using OpenLoops amplitudes. In fact,
this is always the case when the virtual amplitudes constitute the bottleneck in the
numerical evaluation. For greater flexibility, the release of the numerical code includes
the option to choose between the OpenLoops and the MCFM implementations of the
amplitudes, by swithing the input parameter useOL on or off, respectively.

3 Compared to the fixed-width scheme, the complex-mass scheme makes use of complex masses for the
vector bosons not just in their propagators, but also in the calculation of the Weinberg angle θW ,
defined by Eq. (1.13), which becomes a complex parameter in its turn. This scheme choice has the
relevant theoretical feature of preserving gauge invariace in calculations involving resonances, which
guarantees that matrix elements respect unitarity at high energies [253].
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4.1.1 Treatment of the isolated photon

The emission of a soft or collinear photon from a quark or a charged lepton induces
QED singularities. Therefore, processes with final-state photons, as the one considered
here, require not only suitable criteria to isolate photons in the experimental analyses,
but they also call for an IR-safe isolation procedure on the theory side. Since in the
Powheg-Box framework fiducial cuts are usually applied at analysis level after parton
showering, which modifies the kinematics of the final states, we discuss how to include
photon-isolation requirements already at the event generation level in this framework to
obtain IR-safe predictions.

To produce isolated photons in the final state there are two relevant mechanisms: the
direct production in the hard process, which can be described perturbatively, and the
production through fragmentation of a quark or a gluon, which is non-perturbative. The
separation between the two production mechanisms in theoretical predictions is quite
delicate, as sharply isolating the photon from the partons would spoil infrared (IR) safety.
So-called fragmentation functions are required to absorb singularities related to collinear
photon emissions in the latter production mechanism. Those functions are determined
from data with relatively large uncertainties. On the other hand, Frixione’s smooth-
cone isolation of the photons [255] offers an IR-safe alternative that completely removes
the fragmentation component. This substantially simplifies theoretical calculations of
processes with isolated photons at higher orders in perturbation theory. Although the
direct usage of smooth-cone isolation in experimental analyses is not possible due to the
finite granularity of the calorimeters, data–theory comparisons are facilitated by tuning
the smooth-cone parameters to mimic the fixed-cone isolation used by the experiments,
as discussed for instance in Ref. [256].

So far, only few processes involving final-state photons have been implemented in the
Powheg-Box framework: Wγ production [257] and direct photon production [258, 259].
These two generators make use of the photon fragmentation component 4. In particular
in Ref. [257] the hadron fragmentation into photons is modelled within POWHEG in
combination with a QCD+QED shower. In this case the theoretical prediction can apply
directly the photon isolation criteria imposed by the experiments to distinguish prompt
photons taking part in the hard scattering process from possible background sources
(such as photons from decay of π0 mesons or from quark fragmentation). Those isolation
criteria limit the hadronic activity in the vicinity of the photon by imposing

∑
had∈R0

Ehad
T < Emax

T with R0 =
√

∆η2 + ∆φ2 , (4.3)

where the sum of the transverse energy Ehad
T of the hadrons inside a fixed cone of radius

R0 around the photon is constrained to be less than Emax
T .

In view of the NNLO extension of our calculation, introduced in Section 4.1.2, we
instead rely on smooth-cone isolation [255] to turn off the fragmentation component

4 Some recent results for photon pair production have been presented in Ref. [221], where the Frixione
isolation prescription is used, just as in our approach.
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and to deal with QED collinear singularities perturbatively in an IR-safe manner. In
this case, phase-space configurations where the photon becomes collinear to a quark are
removed while preserving IR safety by allowing arbitrarily soft QCD radiation within
smoothly decreasing cones around the photon direction. In practice, this means that
the smooth-cone isolation is implemented by restricting the hadronic (partonic) activity
within every cone of radius δ =

√
(∆η)2 + (∆φ)2 < δ0 around a final-state photon, where

δ0 sets the maximal cone size, by imposing the following condition

∑
had/part∈δ

E
had/part
T ≤ E max

T (δ) = Eref
T

( 1− cos δ
1− cos δ0

)n
, ∀ δ ≤ δ0 , (4.4)

such that the total hadronic (partonic) transverse energy inside the cone is smaller than
E max

T (δ). The parameter n controls the smoothness of the isolation function and Eref
T is

a reference transverse-momentum scale that can be chosen to be either a fraction εγ of
the transverse momentum of the respective photon (pT,γ) or a fixed value (p0

T),

Eref
T = εγ pT,γ or Eref

T = p0
T . (4.5)

In our calculations we impose smooth-cone isolation on the phase space of all Zγ+jet
and Zγ+2-jet configurations. Furthermore, various technical phase-space cuts at event-
generation level are necessary in order to obtain IR safe results. Those generation cuts
and parameters of the smooth-cone isolation are given in Appendix A.1. They are chosen
to be much looser than the ones eventually applied at analysis level after parton showering.
We stress that, since we also employ suppression factors for the NLO squared amplitudes
(as discussed in detail below), the resulting differential cross section times suppression
factors vanishes in the singular regions, which will not pass fiducial cuts.

As commonly used in many Powheg-Box generators, we exploit the possibility to split
the real squared matrix element R into a singular and a finite (remnant) contribution,
that we discussed in Section 3.1. Such splitting improves the numerical performance
of the code, especially as far as the efficiency of the event generation is concerned, in
cases where the ratio R/B departs from its corresponding soft/collinear approximation,
for instance in presence of Born zeros [260]. According to the definition of singular and
remnant contributions of Eq. (3.11) for each singular region αr of the real amplitude, we
can write:

R =
∑
αr

Rαr(ΦR) =
∑
αr

[
Rsing, αr(ΦR) +Rremn, αr(ΦR)

]
, with

Rsing, αr = hαrRαr(ΦR) and Rremn, αr(ΦR) = (1− hαr)Rαr(ΦR) ,
(4.6)

where ΦR is the real phase space and hαr is the already introduced damping factor.
Compared to Eq. (3.11), the full flavour index has been understood. Only the singular
contribution

∑
αr R

sing, αr(ΦR) is then exponentiated in the Powheg Sudakov ∆pwg and
used to generate the first emission according to the Powheg method in Eq. (3.14), while
the finite remnant contribution

∑
αR

remn, αr(ΦR) can be treated separately, by generating
it with standard techniques and feeding it directly into the parton shower.
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A standard damping factor [177] is used in both Zγ and Zγ+jet generators, where
hαr = 0 when the real squared amplitude in a singular region is greater than five times
its soft/collinear approximation, and hαr = 1 otherwise. Additionally, to improve the
numerical convergence, the Zγ+jet generator requires a special setting of the damping
factor, which ensures that QED singularities appearing in the real squared matrix
element are moved into the remnant contribution. Indeed, not all of the QED singular
regions appearing in the real matrix elements have a singularity in their underlying Born
amplitude. Accordingly, the associated real singularity is not mitigated by an overall
Born suppression factor (as described in more detail below). To deal with this issue, we
define, in each singular region αr, the invariant mass mαr of the emitter-emitted pair of
that singular region, which is the quantity that becomes small close to QCD singularities,
and we use as a damping factor

h̃αr =
(m2

αr)
−1

(m2
αr)−1 + c

∑
i∈(q,q̄) d

−1
iγ

hαr , (4.7)

where c ∈ [0, 1] is a free parameter that we choose below, and the sum runs over all
(initial- and final-state) quarks with

diγ = p2
T,γ when i is a quark in the initial state ,

diγ = pi · pγ when i is a quark in the final state .
(4.8)

The splitting induced by the suppression factor in Eq. (4.7) is such that, when a QED
singularity dominates, the event is included in Rremn, αr(ΦR) (h̃αr → 0), and, when the
QCD singularity is dominant, the event is moved into Rsing, αr(ΦR) (h̃αr → 1). The
numerical constant c controls the transition region between QED singularities in diγ and
QCD singularities in m2

αr . Since the QED over QCD coupling ratio αQED/α s ∼ 0.1, we
use the value c = 0.1, which we have checked to be suitable for an efficient generation of
events.

Finally, we exploit another feature of the Powheg-Box framework that allows us
to improve the numerical convergence in the relevant phase-space regions, namely the
suppression factors (that we briefly presented in Section 3.1.2). The usage of suppression
factors is in a sense mandatory for processes having singularities at Born level, such as
the QED singularities in Zγ and Zγ+jet production, to avoid sampling large statistics
in phase-space regions which are eventually removed by the fiducial cuts at analysis level.
In order to obtain suitable integration grids that give more weight to the phase-space
regions selected by the fiducial cuts, we have introduced a Born suppression factor that
vanishes in singular regions related both to QCD and QED emissions. Its precise form
is given in Appendix A.1. Since the real phase space is generated directly from the
Born one in the Powheg-Box, the same factor is also applied to Rsing, αr(ΦR). For the
remnant contribution Rremn, αr(ΦR), on the other hand, which is QCD regular, but is in
our case QED singular, an analogous suppression factor has been chosen, that is given in
Appendix A.1, as well.
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Figure 4.3: Sample Feynman diagrams entering the `+`−γ process at NNLO: (a) q-type
and (b) `-type two-loop diagrams; (c) loop-induced gluon-fusion contribution.

4.1.2 Ingredients for NNLO+PS accuracy

The discussion so far allows to properly build a Zγ and a ZγJ generators to match a
NLO calculation to PS within the Powheg-Box-Res framework. Moreover, the second
generator can be used as a starting point to reach NNLO accuracy for observables
inclusive over the primary emission by means of MiNNLOPS [213], and in particular
the MiNNLOPS extension to genuine 2→ 2 hard-scattering of Ref. [217], presented in
Section 3.3.1. Once the required resummation ingredients are provided to the desired
perturbative accuracy, the whole formalism presented for MiNNLOPS applies here by
simply keeping in mind that F=Zγ (or more precisely F=e+e−γ) in this context.

In the introduction to this section we have discussed the contributions relevant to
evaluate NLO corrections to Zγ and Zγ+jet production. Those involve tree-level and
one-loop amplitudes for the processes pp→ Zγ and pp→ Zγ+jet as well as the tree-level
amplitude for pp → Zγ+2-jet. The same amplitudes enter the NNLO calculation for
Zγ production, i.e. at the Born level and as real, virtual one-loop, real-virtual and
double-real corrections. The only missing ingredients for the NNLO calculation are the
two-loop corrections in the qq̄ channel, with sample diagrams shown in Figure 4.3 (a-b),
and the loop-induced contribution in the gluon-fusion channel, with a sample diagram
shown in Figure 4.3 (c). The latter is effectively only LO accurate and it can be separated
from the others in a gauge-invariant way. Its size is rather small, being less than 10% of
the NNLO corrections and below 1% of the full Zγ cross section at NNLO [81]. We thus
refrain from including the loop-induced gluon-fusion contribution in the calculation of
this process: we will perform this excercise for a different process in Section 4.4.

For the two-loop corrections we use the qq̄ → ``γ helicity amplitudes calculated in
Ref. [261], which have been fully implemented into the Matrix framework [81, 82],
which we have already recalled in the first part of Section 2.1.3. In order to exploit this
implementation and evaluate the two-loop helicity amplitudes within our MiNNLOPS
calculation we have compiled Matrix as a C++ library and linked it to our Powheg-
Box-Res Zγ+jet generator.

The one-loop and two-loop corrections to Zγ directly enter the perturbative coefficients
of the hard function of Eq. (3.69). The first and second order hard-virtual functions
as provided by Matrix are given in a subraction scheme where IR singularities have
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been subtracted according to the qT-scheme (more precisely, choosing the hard-scheme
of Ref. [262] as a resummation scheme). Those coefficients, that we denote as HqT(1)

`F

and H
qT(2)
`F

, are unambiguously defined in eqs. (12) and (62) of Ref. [262] and can be
extracted from the one-loop and two-loop virtual amplitudes using the expressions of
that paper. To use them within MiNNLOPS, we just need to perform a simple scheme
conversion, which follows directly from the fact that the hard-scheme is defined such that
the collinear coefficient functions do not contain δ(1− z) terms, which are absorbed into
HqT
`F

instead. That said, to match the MiNNLOPS resummation scheme we just have to
write

H
(1)
`F=cc′ = 2HqT(1)

`F=cc′ − 4C(1),δ
cc ,

H
(2)
`F=cc′ = 4HqT(2)

`F=cc′ − 4(C(1),δ
cc )2 + 8C(2),δ

cc − 8C(1),δ
cc (HqT(1)

`F=cc′ − 2C(1),δ
cc ) , (4.9)

where C(1),δ
cc and C(2),δ

cc are the terms proportional to δ(1−z) of the first and second order
coefficients of the collinear coefficient functions, which in the case of a quark-induced
process (cc′ = qq̄) are given by

C̃(1),δ
qq = −CF

π2

24 , (4.10)

C̃(2),δ
qq = 9C2

Fπ
4 + 2CACF(4856− 603π2 + 18π4 − 2772ζ3) + 4nfCF(−328 + 45π2 + 252ζ3)

10368 ,

where CF = 4/3 and CA = 3, and nf is the number of light quark flavours. Note that
C̃

(1/2)
qq in the MiNNLOPS convention can be obtained from the ones of Ref. [262] by

simply adding C̃(1/2),δ
qq × δ(1− z).

Once the D`F(pT), which contains the NNLO corrections for Zγ, are available, a proper
spreading factor F corr(ΦZγJ) is required to distribute the Born-like NNLO corrections
in the ΦZγJ kinematics. As we already mentioned, a key ingredient of F corr(ΦZγJ) is
the definition of a phase-space projection ΦZγJ → ΦZγ. For a process involving a final
state photon, such mapping should be carefully defined. One should notice that the
projection usually employed within MiNNLOPS (see for instance appendix A of Ref. [213])
does not preserve the full Born kinematics: while it keeps all invariant masses and the
rapidity of the Zγ system unchanged, it does alter for instance the transverse momentum
of the photon. As a result, the photon transverse momentum after the ΦZγJ → ΦZγ

projection is neither bounded from below by the technical generation cuts nor controlled
by the phase-space suppression factor introduced for the ΦZγJ kinematics in Section 4.1.1.
This induces a singular behaviour through the Born and virtual amplitudes in both the
Sudakov form factor and the luminosity factor. We have therefore added the requirement
pT,γ ≥ 10 GeV in the projected ΦZγ kinematics. This technical cut is below the pT,γ

threshold used at analysis level and it can be controlled through the input card. Its effect
is strictly beyond accuracy, affecting only regular contributions at large pT,``γ . In fact, as
discussed in Appendix A.2, our projection can lead to configurations with pT,γ → 0 only
for events where the jet is back to back to the Zγ system, and the Z and the photon are
aligned with each other. It is then clear that pT,j > pT,γ for such events and that there
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are no large logarithms associated to pT,j. Indeed, we have varied the cutoff down by a
factor of ten, finding changes at the level of the numerical precision of less than a 1%.

For the treatment of higher-order terms and the details on the scale settings, we made
use of some standard MiNNLOPS features that we discussed in Section 3.3.2. The effect
of the large logarithmic terms in the high transverse-momentum regions has been handled
by making use of the modified logarithms of Eq. (3.81), with p = 6. Landau singularities
have been regulated according to Eq. (3.85), with a choice of the non-perturbative scale
Q0 = 0.5 GeV. Moreover, we made use of the possibility to set the renormalization and
factorization scales at large Zγ transverse momentum according to the prescription
of Eq. (3.86).

Finally, we conclude this section by reporting two further non-standard settings related
to the showering of the Zγ MiNNLOPS events. First, we turn on by default the Powheg-
Box doublefsr option, which was introduced and discussed in detail in Ref. [263]. When
this option is turned on, both q → qg splittings and g → qq̄ splittings are treated
symmetrically for the definition of the starting scale of the shower. This considerably
reduces the appearance of spikes in distributions due to events with large weights that
pass fiducial cuts after showering, and it ensures a proper treatment of observables
sensitive to radiation off such configurations. Furthermore, for the Pythia8 shower [124],
we set the flag SpaceShower:dipoleRecoil 1, in order to make use of a less global recoil
scheme, which mildly affects the kinematics of the Zγ system.

4.1.3 Phenomenological results: input and settings
In this section, we present NNLO+PS accurate predictions for Zγ production for 13 TeV
collisions at the LHC. Our results have been obtained by using the Gµ-scheme, where
the electroweak coupling is defined as

αGµ =
√

2Gµm2
W sin2 θW
π

, (4.11)

where cos2 θW = m2
W/m

2
Z and the input parameters are set to

mW = 80.385 GeV , mZ = 91.1876 GeV , Gµ = 1.16637× 10−5 GeV−2 ,

ΓW = 2.085 GeV , ΓZ = 2.4952 GeV . (4.12)

We use nf = 5 massless quark flavours, and we choose the corresponding NNLO PDF set
of NNPDF3.0 [264] with a strong coupling constant of αs(mZ) = 0.118. For the fixed-order
predictions we use the PDF set at the respective order in QCD perturbation theory. To
be precise, in the case of MiNLO′ and MiNNLOPS the PDF grids are handled according
to what described in Section 3.3.2: the grids are read using the lhapdf interface [224]
and copied into hoppet grids [225]. Then, for scales below the internal PDF infrared
cutoff the hoppet package consistently performs the DGLAP evolution of the PDFs
keeping the number of active flavours fixed to the one at the internal PDF infrared
cutoff. The calculation of D`F(pT) in Eq. (3.84) requires the evaluation of different PDF
convolutions and the computation of polylogarithms. For the latter we made use of the
hplog package [265].
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4.1 Processes with hard photons: Zγ production

Our setting of the central renormalization and factorization scales (µR,0, µF,0) is
in line with the MiNNLOPS (MiNLO′) prescriptions, as we also summarized in the
previous section. In order to validate the FO accuracy reached by MiNNLOPS for
inclusive observables, we also generate fixed-order NNLO results by exploiting the
Matrix framework, where the loop-induced gluon-fusion contribution has been dropped.
For all fixed-order results we adopt the following setting of the central renormalization
and factorization scales:

µR,0 = µF,0 = m``γ , (4.13)

where m``γ is the invariant mass of the Zγ system. The different scale choice between a
NLO/NNLO fixed-order and a MiNLO′/MiNNLOPS calculation induces effects beyond
the nominal accuracy, in addition to the different treatment of higher-order terms. As a
result, minor differences between the fixed-order and matched predictions are expected
even for more inclusive observables. Nevertheless, the results should largely agree within
scale uncertainties, at least in cases where scale uncertainties are expected to be a
reliable estimate of missing higher-order corrections. For that, we employed the standard
7-point scale variations. We reiterate that, when performing scale variations for MiNLO′
and MiNNLOPS, additional sources of uncertainties, which are absent in a fixed-order
calculation, are included through a scale dependence in the Sudakov form factor.

We have already discussed many of the technical details for the implementation of a
Zγ+jet generator in previous sections, where we stressed that the usage of generation
cuts and individual suppression factors at Born level for the singular real contributions
and the remnant contributions is essential to get a good convergence of the Monte Carlo
integration and an efficient event generation. In addition, folding of the radiation variables
(ξ, y, φ) 5 has been used, with a choice of (1, 5, 1) for the folding parameters, to evaluate
the double-real correction (Zγ+2-jet) more often, which further improves the numerical
convergence. Despite all those efforts to achieve a better numerical performance, we
had to produce ∼ 100 million Zγ events with our MiNNLOPS generator to obtain
acceptable statistical uncertainties and predict integrated cross sections in the fiducial
setups considered here at the level of a few permille. Still, our comparison of differential
distributions to NNLO predictions suffers from some fluctuations. That reflects the fact
that Zγ production is probably one of the most involved diboson process, featuring
various complications, in particular considering its substantial complexity with respect
to the QED singularity structure.

We employ the Pythia8 parton shower [124] with one of the A14 tunes [266] (specifically
py8tune 21) to dress the hard event with further soft/collinear QCD radiation and use
the default Powheg setting for the parton-shower starting scale. Hadronization effects
are studied in Section 4.1.7 when comparing against data. Otherwise, the showered results

5 These are the standard variables used within Powheg to parametrize the radiation phase space:

ξ = 2Erad/
√
s y = cos θ φ (4.14)

where Erad is the radiation energy, s = (k⊕ + k	)2 the initial-state partonic energy, and finally θ and
φ the emission and azimuthal angles with respect to a reference direction, respectively.
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4 Accurate diboson phenomenology

ATLAS-setup-1 [232] ATLAS-setup-2 [238]
Lepton cuts pT,` > 25 GeV |η`| < 2.47 pT,`1 > 30 GeV pT,`2 > 25 GeV

m`` > 40 GeV |η`| < 2.47 m`` > 40 GeV
– m`` +m``γ > 182 GeV

Photon cut pT,γ > 15 GeV |ηγ| < 2.37 pT,γ > 30 GeV |ηγ| < 2.37
Separation cuts ∆R`γ > 0.7 ∆R`γ > 0.4

∆R`, j > 0.3 ∆Rγj > 0.3 –
Jet definition anti-kT algorithm with R = 0.4 –

pT,j > 30 GeV |ηj| < 4.4 –
Photon Isolation Frixione isolation with Frixione isolation with

n = 1 εγ = 0.5 δ0 = 0.4 n = 2 εγ = 0.1 δ0 = 0.1
+ Econe0.2

T /pT,γ < 0.07

Table 4.1: Fiducial cuts in two different ATLAS setups denoted as ATLAS-setup-1 and
ATLAS-setup-2. See text for details.

do not include any effects from hadronization or underlying event models. Moreover, the
photon is required to be generated only at the hard scattering level: contributions from a
QED shower or the decay of unstable particles is not included. Finally, we keep photons
stable by preventing any photon conversion effect, i.e. no γ → `+`− or γ → q̄q splittings.

We present results for two sets of fiducial cuts, which are summarized in Table 4.1. The
first one is identical to that used in Refs. [81, 267] and motivated by an earlier ATLAS
analysis [232]. We refer to it as ATLAS-setup-1 in the following. The second one was
instead used in the most recent ATLAS 13 TeV measurement of Ref. [238] using the full
Run-2 data and named ATLAS-setup-2 in the following. We make use of ATLAS-setup-1
only for validation purposes and to show the importance of NNLO+PS matching, while
ATLAS-setup-2 is also used to compare MiNNLOPS predictions with the most updated
experimental measurement available for Zγ production. Both setups in Table 4.1 involve
standard transverse-momentum and pseudorapidity thresholds to identify leptons and
photons, as well as a lower invariant-mass cut on the lepton pair. ATLAS-setup-2
places an additional requirement on the sum of the invariant masses of the Zγ system
and of the lepton pair. This cut suppresses the contribution from `-type diagrams,
where the photon is emitted from the final state leptons (cf. Figure 4.1(b)), enhancing
t-channel production through q-type diagrams (cf. Figure 4.1(a)). Moreover, separation
cuts between two particles (i, j) are applied in ∆Rij =

√
∆η2

ij + ∆φ2
ij , where ∆ηij and

∆φij are their differences in the pseudorapidity and the azimuthal angle, respectively. In
both setups leptons are separated from the isolated photon, while only ATLAS-setup-1
imposes an additional separation of jets from leptons and from the isolated photon,
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4.1 Processes with hard photons: Zγ production

ATLAS-setup-1 [232] ATLAS-setup-2 [238]
σinclusive [pb] σ/σNNLO σinclusive [fb] σ/σNNLO

LO 1.5032(1)+11.2%
−11.9% 0.656 271.83(2)+6.8%

−7.8% 0.508
NLO 2.1170(5)+2.8%

−4.3% 0.924 456.6(1)+3.6%
−3.0% 0.853

NNLO 2.290(3)+0.9%
−1.0% 1.000 535.3(6)+2.7%

−2.5% 1.000
MiNLO′ 2.222(8)+8.8%

−11.0% 0.970 516(4)+8.8%
−6.5% 0.964

MiNNLOPS 2.299(5)+1.6%
−1.4% 1.004 529(2)+4.0%

−3.2% 0.988
ATLAS – 533.7± 2.1(stat)± 12.4(syst)± 9.1(lumi)

Table 4.2: Predictions for fiducial cross sections of Zγ production at LO, NLO, and
NNLO, as well as using the MiNLO′ and MiNNLOPS calculations, in the
two ATLAS setups. For comparison, a column with the ratio to the NNLO
cross section is shown. In the last row the ATLAS measurement of Ref. [238]
is reported.

which in turn requires a jet definition 6. As a consequence, we employ ATLAS-setup-1
to study jet observables and show NLO/LO accuracy of MiNNLOPS predictions for
Zγ+jet/Zγ+2-jet configurations. Finally, isolation criteria for the photon are needed, as
detailed in Section 4.1.1, which is done by means of Frixione isolation in both setups. In
ATLAS-setup-2, Frixione isolation is applied within a smaller cone and a second isolation
criterium is added by requiring the scalar sum of the transverse energy of all stable
particles (except neutrinos and muons) within a cone around the photon of size R = 0.2
(Econe0.2

T ) to be less than 7% of the photon transverse momentum (see Ref. [238] for more
details). Note that we apply the latter isolation criterium only when analyzing events
after parton showering, but not at Les-Houches-Event (LHE) or fixed-order level.

4.1.4 Fiducial cross sections
In Table 4.2 we report predictions for the Zγ cross section in the two fiducial setups at
LO, NLO and NNLO, and for MiNLO′ and MiNNLOPS matched to Pythia8. The
fixed-order results have been obtained with Matrix [81, 82]. Although MiNNLOPS and
NNLO calculations entail a different treatment of terms beyond accuracy, in both setups
the agreement of their predicted cross sections is remarkably good. One should bear in
mind, however, that in ATLAS-setup-2 there is a slight difference in the treatment of
the isolated photon at fixed order, which does not include the Econe0.2

T /pT,γ < 0.07 cut,
as discussed in the previous section. We further notice from Table 4.2 that the scale

6 For these and the other results presented in this work, jets are constructed using the standard
anti-kT algorithm [268] with a jet radius of R = 0.4 as implemented in the FastJet package [269]
(see Table 4.1). Indeed, FastJet is nowadays the standard program when it comes to performing jet
manipulations. We want to take this opportunity to also stress that ATLAS-setup-1 is inclusive over
jets and that jet-separation cuts are only applied when a jet is present.
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4 Accurate diboson phenomenology

uncertainties of the NNLO and MiNNLOPS predictions are larger in ATLAS-setup-2.
This is caused by the additional m`` + m``γ cut and the stronger cut on the photon
transverse momentum in that fiducial setup, rendering the predictions more sensitive to
additional QCD radiation, that is effectively described at a lower perturbative accuracy.

Comparing MiNNLOPS and MiNLO′ predictions, the inclusion of NNLO corrections
through MiNNLOPS has a relatively moderate effect for the fiducial cross section of
+3.5% in ATLAS-setup-1 and +2.5% in ATLAS-setup-2. In fact, in both cases (and
particularly evident for the latter setup) MiNLO′ predictions are actually closer to the
NNLO results than to the NLO ones. After all, the Sudakov form factor in Eq. (3.68)
is essentially the same for MiNNLOPS and MiNLO′, and MiNLO′ predictions already
contain various contributions beyond NLO accuracy, including all real corrections at
NNLO through the merging of NLO corrections to Zγ+jet production. Still, by reaching
NNLO accuracy through the MiNNLOPS procedure the predictions get even closer to
the NNLO results and the uncertainty bands substantially decrease, by almost a factor of
ten in ATLAS-setup-1 and by more than a factor of two in ATLAS-setup-2. Indeed, the
MiNNLOPS scale uncertainties are comparable with the NNLO ones. The fact that they
are slightly larger is expected since the MiNNLOPS procedure probes lower scales both
in the PDFs and in αs, and it includes scale variations also for the Sudakov form factor.

Finally, we find an excellent agreement of our NNLO+PS accurate MiNNLOPS
predictions with the cross section measured by ATLAS in Ref. [238], which are perfectly
compatible within the quoted experimental errors.

4.1.5 Comparison against MiNLO′ and NNLO
We now turn to discussing differential distributions in the fiducial phase space. In this
section we compare our MiNNLOPS predictions with MiNLO′ and NNLO results. This
serves two purposes. On the one hand, MiNNLOPS distributions are validated for one-jet
and two-jet observables against the ones obtained with MiNLO′ and for Born-level
observables (inclusive over QCD radiation) against NNLO predictions. On the other
hand, this allows us to show the importance of NNLO+PS matching with respect to less
accurate results. To these ends, we discuss selected distributions which are particularly
significant to show the performance of MiNNLOPS predictions. The figures of this
subsection, together with those of Subsections 4.1.6 and 4.1.7 are organized as follows:
the main frame shows the predictions from MiNNLOPS matched to Pythia8 (blue, solid
line), together with all other results relevant for the given comparison. In an inset we
display the bin-by-bin ratio of all the histograms that appear in the main frame to the
MiNNLOPS one. The bands indicate the theoretical uncertainties that are computed
from scale variations.

102



4.1 Processes with hard photons: Zγ production
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Figure 4.4: Distribution in the pseudorapidity difference of the colour-singlet and the
hardest jet (left plot) and in the invariant mass of the photon and the hardest
jet (right plot) for MiNNLOPS (blue, solid line) and MiNLO′ (black, dotted
line).
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Figure 4.5: Distribution in the ∆R separation between the photon and hardest jet (left
plot), and between the photon and the second-hardest jet (right plot) for
MiNNLOPS (blue, solid line) and MiNLO′ (black, dotted line).
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We start by discussing quantities that involve jets in the final state in Figure 4.4 and
Figure 4.5, where MiNNLOPS (blue, solid line) and MiNLO′ (black, dotted line) matched
to Pythia8 are compared in ATLAS-setup-1. Since for these observables MiNLO′ and
MiNNLOPS have the same formal accuracy, the two predictions are expected not to
differ from each other significantly (i.e. not beyond uncertainties), both in terms of shapes
and size of scale uncertainty bands. In particular, such agreement serves as a validation
that NNLO corrections are properly spread by the factor in Eq. (3.78) in the jet-resolved
phase space of Zγ+jet production without altering its NLO accuracy. As a matter of
fact, the left plot of Figure 4.4 shows that MiNNLOPS and MiNLO′ predictions agree
well within uncertainties for the pseudorapidity difference between the Zγ system and
the hardest jet (∆η``γ, j1). Furthermore, the size of the uncertainty bands are comparable
over the whole pseudorapidity range. In a similar manner, the ratio between MiNNLOPS
and MiNLO′ is nearly flat for the invariant mass of the photon and the hardest jet (mγj1)
in the right plot of Figure 4.4. Here, we further observe the effect of the Frixione isolation,
which dampens the distribution in the photon-jet collinear limit. Also, in Figure 4.5
MiNNLOPS and MiNLO′ predictions agree well for the distance between the photon and
the leading and subleading jet in the η-φ plane (∆Rγj1 and ∆Rγj2). As ∆Rγj2 involves
the second-hardest jet, both MiNNLOPS and MiNLO′ are only LO accurate, which is
also evident from the broadening of the uncertainty bands. We have examined a large
number of other quantities involving jets (not shown here) observing a similar behaviour
in all cases.

Next, in Figure 4.6, Figure 4.7 and Figure 4.8, we compare MiNNLOPS (blue, solid
line) against MiNLO′ (black, dotted line) and NNLO predictions from Matrix [81, 82]
(red, dashed line) for Born-level observables (inclusive over QCD radiation). By and large,
we observe a very good agreement of MiNNLOPS and NNLO predictions, especially
considering the fact that they differ from each other in the choice of the renormalization
and factorization scales, and in the treatment of higher-order contributions. What can be
appreciated is the clear reduction of the scale uncertainties of MiNNLOPS predictions
with respect to the MiNLO′ ones up to a size which is comparable to the NNLO ones.
In particular, Figure 4.6 displays the pseudorapidity distribution of the Zγ system (η``γ)
in each of the two fiducial setups. The ratio of NNLO over MiNNLOPS is close to
one in both cases, with uncertainty bands of one to two percent in ATLAS-setup-1. In
ATLAS-setup-2, on the other hand, the bands are roughly twice as large, as already
observed for the integrated cross section, which is due to the higher sensitivity to
phase-space regions related to real QCD radiation.

Then, in Figure 4.7 we show the distributions in the invariant mass (m``) and transverse
momentum (pT,``) of the lepton pair in ATLAS-setup-1. The qualitative behaviour of
MiNNLOPS with respect to MiNLO′ and NNLO predictions in the ratio inset is relatively
similar to the one of the Zγ rapidity distribution. We can appreciate the Z-boson
resonance in the m`` distribution as well as a broader, but smaller, enhancement around
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Figure 4.6: Distribution in the pseudorapidity of the Zγ system in ATLAS-setup-1 (left
plot) and in ATLAS-setup-2 (right plot) for MiNNLOPS (blue, solid line),
MiNLO′ (black, dotted line) and NNLO (red, dashed line).
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Figure 4.7: Distribution in the invariant mass (left plot) and in the transverse momentum
(right plot) of the lepton pair for MiNNLOPS (blue, solid line), MiNLO′
(black, dotted line) and NNLO (red, dashed line).
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Figure 4.8: Distribution in the transverse momentum (left plot) and in the pseudorapidity
(right plot) of the second-hardest lepton for MiNNLOPS (blue, solid line),
MiNLO′ (black, dotted line) and NNLO (red, dashed line).

m`` ∼ 70 GeV, caused by the Z-boson resonance in m``γ
7. Close to the latter resonance,

we observe that the MiNNLOPS prediction is ∼ 4% below the NNLO prediction, without
overlapping uncertainty bands. The same effect has been observed in correspondence
of the enhanced region of the distribution in the m``γ invariant mass (not reported
here). We have checked that in this region of phase space the Zγ system tends to be
softer. Therefore, all-order terms related to pT,``γ have a larger impact. Moreover, in
the pT,`` distribution we observe another interesting behaviour, this time related to
the NNLO prediction. The NNLO result develops a perturbative instability (Sudakov
shoulder) [271] around pT,`` ∼ 15 GeV caused by an incomplete cancellation of virtual
and real contributions from soft-gluon emissions, which is logarithmically divergent, but
integrable. The reason is that the fiducial cut pT,γ > 15 GeV (see Table 4.1) for LO
kinematics implies pT,`` = pT,γ > 15 GeV, so that the pT,`` distribution is not filled below
15 GeV at LO. Thus, the fixed-order result is NNLO accurate only for pT,`` > 15 GeV,
while for pT,`` < 15 GeV at least one QCD emission is necessary, which is described
only at NLO accuracy. At the same time, the prediction becomes sensitive to soft-gluon
effects at threshold, resulting in an instability at fixed order. Indeed, the parton shower
cures this behaviour and yields a physical prediction at threshold for both MiNLO′
and MiNNLOPS. This is one example where a NNLO calculation is insufficient and

7 The peak at m`` ∼ 70 GeV is caused by the resonance in the `+`−γ invariant mass, where the photon
emission from the final state leptons is responsible for the downward shift of the peak (see Figure 4.1(b)).
As commented for instance in Ref. [270], this peak is highly dependent on the fiducial cut on the photon
transverse momentum: by gradually decreasing this cut, the smaller peak in the m`` distribution
moves towards the larger peak to the point where the two eventually merge.

106



4.1 Processes with hard photons: Zγ production

NNLO+PS matching is required.
Finally, in Figure 4.8 we consider distributions in the second-hardest lepton, showing

its transverse momentum (pT,`2) on the left and its rapidity (η`2) in the right plot. Similar
conclusions as made before for m`` and η``γ apply also for these observables, so no
further comments are needed. We reiterate however that, while the central predictions
of MiNLO′ and MiNNLOPS are generally close to each other, since MiNLO′ already
includes many terms beyond NLO accuracy for Zγ production, scale uncertainties are
substantially reduced in case of MiNNLOPS, down to the level of the NNLO ones.

4.1.6 Zγ transverse-momentum spectrum against NNLO+N3LL
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Figure 4.9: Distribution in the transverse momentum of the Zγ system in a wider range
(left plot) and at small pT,``γ (right plot) for MiNNLOPS (blue, solid line),
NNLO (red, dashed line) and NNLO+N3LL (green, double-dash-dotted line).

We continue our discussion of differential distributions with the transverse-momentum
spectrum of the Zγ system (pT,``γ). In Figure 4.9 we compare the pT,``γ distribution
in ATLAS-setup-2 obtained with MiNNLOPS against a more accurate prediction at
NNLO+N3LL (green, double-dash-dotted line), using the analytic resummation of large
logarithmic contributions within Matrix+RadISH [272, 273]. The latter framework
allows to match NNLO results with high-accuracy resummation through the RadISH
formalism [105, 274, 275] for different transverse observables. For comparison we also
show the NNLO result, which is effectively only NLO accurate for this distribution.
One should bear in mind that those two predictions include the full heavy-quark mass
dependence, which has an impact at large values of pT,``γ (see discussion in Appendix A.3).
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The NNLO+N3LL prediction uses [273]

µR,0 = µF,0 =
√
m``

2 + pT,γ
2 and Qres,0 = 1

2m``γ (4.15)

as central scales, where Qres,0 is the central resummation scale. Qres,0 is varied by a factor
of two up and down, while taking the envelope together with the 7-point µR and µF

variation for the total scale uncertainty.
The pT,``γ spectrum is shown in two different ranges in Figure 4.9. From the wider range

in the left plot we notice that despite the different scale settings in the three calculations
their predictions are in reasonable agreement at large pT,``γ values. The fact that for
pT,``γ & 150 GeV the NNLO and NNLO+N3LL predictions become successively harder
than the MiNNLOPS one is related to the heavy-quark mass effects (see Appendix A.3).
At large pT,``γ all predictions are effectively NLO accurate, which is indicated by the
enlarged scale-uncertainty bands. At small pT,``γ the fixed-order result becomes un-
physical, as the distribution is logarithmically divergent in the pT → 0 limit, which is
visible already in the left plot of Figure 4.9, but can be better appreciated in the zoomed
version on the right. In this region, only the calculations that properly account for the
resummation of soft QCD radiation by means of an analytic procedure (NNLO+N3LL)
or through parton-shower simulations (MiNNLOPS) provide a meaningful description.
Even though at small pT,``γ the Matrix+RadISH computation is N3LL accurate, while
the parton shower has a lower logarithmic accuracy, MiNNLOPS and NNLO+N3LL
predictions are in excellent agreement down to transverse-momentum values (almost) in
the non-perturbative regime.

4.1.7 Comparison of differential distributions against ATLAS data

Finally, we employ our MiNNLOPS generator to compare NNLO+PS accurate predictions
directly to ATLAS results from the most recent 13 TeV measurement of Ref. [238], which
relies on the full 139 fb−1 Run-2 data. The comparison, carried out in ATLAS-setup-2,
is presented in Figure 4.10. The experimental data are given as green points with
error bars that refer to the experimental uncertainty. Six observables are shown: the
transverse momentum (pT,γ) and the pseudorapidity (ηγ) of the photon, the transverse
momentum (pT,``γ) and the invariant mass (m``γ) of the Zγ system, together with their
ratio pT,``γ/m``γ and the difference in the azimuthal angle between the lepton pair and
the photon (∆φ``, γ).

To assess effects from hadronization, in addition to our partonic MiNNLOPS result
(blue, solid) we also show a curve where the hadronization of the partonic events is
modelled through Pythia8 (magenta, dash-dotted). The hadronic final states are kept
stable and multi-parton interactions are turned off to avoid secondary photons and
maintain a sufficiently simple analysis. By and large, we find minor contributions from
hadronization for the observables considered here. They are at the level of the statistical
uncertainties and well within scale variations.

Overall, we observe a remarkably good agreement with data both in the predicted
shapes of the distributions and in the normalization, especially given the fact that the
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Figure 4.10: MiNNLOPS predictions at parton level (blue, solid line) and including
hadronization (magenta, dash-dotted) compared to ATLAS 13 TeV data
(green points with error bars). For pT,``γ also NNLO+N3LL (green, double-
dash-dotted line) is shown. 109
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theoretical and the experimental uncertainties are at the few-percent level only. All data
points agree with our predictions within the experimental error bars, with the exception
of only very few bins, where the agreement is reached within twice the experimental error.
This is a clear improvement over the NLO-accurate event simulations employed in the
data-theory comparison in figure 6 of Ref. [238], both in terms of accuracy (i.e. to describe
the data) and in terms of precision (i.e. regarding theoretical uncertainties). Moreover,
looking at the comparison of NNLO predictions to data in figure 7 of Ref. [238], it is clear
that some (more inclusive) observables are equally well described at fixed order, while
for observables sensitive to QCD radiation, such as pT,``γ and ∆φ``, γ , NNLO predictions
are not sufficient, and the matching to a parton shower is essential. In conclusion, our
MiNNLOPS calculation combines the two most important aspects (NNLO and parton-
shower effects) to provide the most accurate and most precise Zγ predictions to date,
which will be essential to find potential deviations from the SM for this process in future.

It is worth discuss in more detail the pT,``γ distribution in Figure 4.10. In this plot we
have also added the more accurate NNLO+N3LL prediction, as introduced in Section 4.1.6
with the scale setting of Eq. (4.15) and including heavy-quark mass effects. We recall
that the latter, studied in Appendix A.3, induce differences at large pT,``γ which are
visible in the last bin. Despite the good agreement of MiNNLOPS with data, the
analytically resummed result is performing even better, especially in the first few bins,
where the higher accuracy in the resummation of large logarithmic contributions is
important. Although MiNNLOPS and NNLO+N3LL agree quite well (cf. the discussion
in Section 4.1.6), this shows that for an observable like pT,``γ it can be very useful to resort
to tools that predict a single distribution more accurately, if available. Nevertheless, it is
reassuring that our accurate multi-purpose MiNNLOPS simulation, with all its flexibility
to predict essentially any IR-safe observable, provides a very good description of such
distributions as well.

We further notice that the deviation at small m``γ is due to missing QED corrections
as shown in Ref. [238]. Indeed, it is a well-known effect that the emission of additional
QED radiation by final state leptons subtracts some energy, which causes the peak of
invariant mass distributions involving leptons to shift to lower values. Our MiNNLOPS
computation renders the inclusion of such effects into NNLO-accurate predictions feasible
by using a QED shower as implemented for instance within Pythia8, which could be
very useful in an experimental analysis. Despite its feasibility, we decided not to focus on
QED effects at all in this work. Further considerations on missing QED and EW effects
on top of NNLO QCD corrections are presented in Section 4.4.

4.2 Some BSM studies in the Z(→ νν̄)γ channel
As we have already discussed in the previous section quite at length, the production of
a Z boson in association with a photon is an important vector-boson pair production
process in various respects. In the current section we want to put special emphasis on its
importance in search for new physics by considering the same process when the Z boson
decay into a pair of neutrinos.

Different reasons make this process interesting in the context of searches for new
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Figure 4.11: Sample Feynman diagrams for νν̄γ production entering at (a) LO and (b)
NNLO.

physics. First of all, the measurement of non-zero ZZγ or Zγγ couplings, which are
absent in the SM, would be direct evidence of BSM physics. Moreover, Zγ final states
are relevant in direct searches for BSM particles. Additionally, in the Z → νν̄ decay
channel Zγ production constitutes an irreducible background to dark-matter searches
in the photon plus missing energy final state. The low accuracy of available νν̄γ event
simulations is actually one of the limiting factors in current dark-matter analyses [276],
despite the fact that a substantial effort has been made to improve the perturbative
accuracy of Zγ production.

Due to the relevance that improved theoretical predictions can have in supporting
experimental analyses, we present here results for Zγ production in the Z → νν̄ decay
channel, where NNLO+PS accuracy is achieved with MiNNLOPS. To this end, the Zγ
MiNNLOPS generator for `+`−γ production, that we presented in the previous section,
was extended in Ref. [218] to deal with the νν̄γ final state and to include in the event
generation the effects of anomalous triple gauge couplings (aTGCs), specifically the ZZγ
and Zγγ verteces.

We start our discussion by considering the process

pp→ νν̄γ +X , (4.16)

with ν ∈ {νe, νµ, ντ} and X any additional QCD radiation. In our calculation, we account
for all relevant topologies leading to this final state, and we include interferences, off-shell
effects and spin correlations. At leading order the process is quark–anti-quark (qq̄)
induced in the SM and proceeds only via a t-channel quark exchange with both the
isolated photon and the Z boson coupling to the quark line. This is different from the
`+`−γ final state, where Drell-Yan-like s-channel topologies are allowed as well, since the
charged leptons can emit an isolated photon, while the neutrinos can not. A representative
LO Feynman diagram is shown in Figure 4.11(a). At NNLO in QCD perturbation theory
the loop-induced gluon-fusion contribution enters the cross section, see Figure 4.11(b).
However, as already discussed in the previous section, this contribution is very small – at
the (sub-)percent level – and, therefore, we neglect its effect in our results.

All ingredients necessary to reach NNLO+PS predictions for the process in Eq. (4.16)
within MiNNLOPS have been obtained as described in details in the previous section,
relying on MCFM [242] or through OpenLoops [245–247] for the tree-level and one-loop
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Figure 4.12: Anomalous couplings between three gauge bosons that are relevant for Zγ
production.

amplitudes, while the two-loop contributions have been extracted from the Matrix
framework [81, 82] that is based on the calculation of Ref. [261]. This calculation allows
us to retain NNLO QCD accuracy in the event generation for νν̄γ production interfaced
to a parton shower, which is necessary for a complete and realistic event simulation. In
particular, that offers the possibility to include multiple photon emissions through a QED
shower, as well as non-perturbative QCD effects using hadronization and underlying
event models. It is well known that these corrections can have a substantial impact
on the lepton momenta, jet-binned cross sections and other more exclusive observables
measured at the LHC.

In addition to the SM simulation, we have implemented the leading contributions from
aTGCs in the Zγ MiNNLOPS generator for both the `+`−γ and the νν̄γ final states,
but we will focus on the latter when presenting phenomenological results below. Since
couplings between three charge-neutral weak bosons are forbidden by the SM gauge
symmetry, their contributions can arise only from BSM theories. This is one of the reasons
why they provide a powerful way of searching for new physics. Extensions of the standard
model gauge structure through aTGC can be described by means of two equivalent
approaches [249, 277–279]: the vertex-function and the Lagrangian approach. Both
descriptions can be embedded in a self-consistent effective-field-theory (EFT) framework,
as presented in Refs. [280, 281]. Here, we follow the vertex-function approach, as this is
usually employed by the experimental analyses (see for instance Ref. [282]).

For Zγ production, two different neutral aTGCs enter the cross section, namely ZγV
with V = Z∗, γ∗, which are shown in Fig 4.12. The form of these effective interactions
can be constraint by imposing Lorentz and electromagnetic gauge invariance, as well as
Bose statistics. The latter for instance forbids vertices such as ZγZ∗ or Zγγ∗ with all
gauge bosons being on-shell, since in either case two identical particles are involved in
the interaction. Note that, since the virtual photon and Z boson essentially couple to
massless fermions, one has ∂µV µ = 0 with V µ being either the photon or the Z boson
vector field. Moreover, we include only terms of dimension less than or equal to eight for
practical reasons, as discussed in Ref. [249]. This choice, which avoids the proliferation of
couplings that are in principle allowed by symmetry, is justified from an EFT perspective,
where only a limited amount of higher-dimensional operators is expected to contribute
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to the physical process at a given energy scale. With these minimal requirements, the
effective interaction can be parametrized as [278] 8:

ΓαβµZγV (q1, q2, p) = i(p2 −m2
V )

Λ2

(
hV1
(
qµ2 g

αβ − qα2 gµβ
)

+ hV2
Λ2 p

α
(
p · q2 g

µβ − qµ2 p
β
)
− hV3 εµαβνq2 ν −

hV4
Λ2 ε

µβνσpαpνq2σ

)
, (4.17)

where q1 and q2 are the momenta of the on-shell Z and γ gauge bosons, respectively, and
p is the momentum of the off-shell boson V . One should bear in mind that in principle
additional terms arise when all gauge bosons are considered to be off shell [284]. However,
since the Zγ analyses select isolated photons and measure predominantly contributions
from Z bosons close to their mass shell, Eq. (4.17) provides the dominant effects also
when including the leptonic decay of the final-state Z boson. The two anomalous vertices
ZγZ∗ and Zγγ∗ are obtained by choosing the V = Z∗, γ∗ and setting m2

V accordingly.
We remark here that the overall factor (p2 −m2

V ) causes the interaction to vanish for
p2 = m2

V , which is required by Bose symmetry for V = Z and by electromagnetic gauge
invariance for V = γ. The effective couplings parametrizing the interaction are given by
hVi with i ∈ {1 . . . 4} in Eq. (4.17) and Λ is a mass scale conventionally chosen to be the
Z boson mass mZ . Note that a different scale choice for Λ just amounts to a rescaling of
all hVi couplings [277].

The hV1 and hV2 anomalous couplings are CP-violating, and would only appear in a
UV completion of the SM allowing for new particles with CP-violating interactions with
the SM ones. Being CP odd, these terms can not interfere with the SM sector and
they can just contribute to the cross section at quadratic level. On the contrary, the
CP-preserving couplings hV3 and hV4 enter the cross section also with linear terms through
interference with the SM amplitudes. In principle one may think that this fact renders the
CP-violating couplings more difficult to constrain [279]; however, the linear term involves
an interference between the t-channel and s-channel diagrams (of the SM and BSM
contribution, respectively), which is strongly suppressed. Note also that the experimental
sensitivity is affected by the dimensionality of the coupling itself. In particular, hV2/4
induce dimension eight terms, which grow with two extra powers of the energy scale with
respect to the dimension six couplings hV1/3. Thus better limits can be obtained for hV2/4
[279]. There are many explicit new-physics models that introduce such aTGCs (see for
instance Ref. [285] for a more detailed discussion). Indeed, any new fermionic particle
can generate hV3 at one-loop through a triangle diagram, while hV4 arises only at a higher
loop level or from non-perturbative effects as in certain technicolour models.

Our implementation of aTGCs within the Zγ MiNNLOPS generator follows closely
the one in Ref. [251]. All relevant diagrams involve qq̄-initiated topologies where an
(off-shell) Z boson or a photon is produced in the s-channel and splits into a Z boson
and a photon through the anomalous vertices in Figure 4.12, with a subsequent decay of

8 Very recently Ref. [283] pointed out that the CP-even part of the effective interaction in Eq. (4.17)
is not consistent with an EFT formulation incorporating the full spontaneously-broken EW gauge
invariance, and that a new anomalous coupling, dubbed hV5 , should be included.
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the Z boson (into charged leptons or neutrinos). We stress again that using Eq. (4.17)
and considering the (off-shell) decay of the Z boson assumes that the experiments mostly
measure Z bosons close to their mass shell, which is indeed a reasonable assumption. The
relevant tree-level and one-loop amplitudes have been taken from MCFM [242], while we
extended the calculation of the qq̄ → `+`−γ and qq̄ → νν̄γ two-loop helicity amplitudes
of Ref. [261] with the relevant anomalous contributions directly within Matrix [245–247],
using the qq̄V ∗ form factor [286–288] for the loop corrections to the tree-level amplitudes
with aTGCs.

4.2.1 Results within the SM and beyond
We now turn to presenting phenomenological results for pp → νν̄γ production at the
LHC with

√
s = 13 TeV centre-of-mass energy for ν ∈ {νe, νµ, ντ}. All results have

been obtained with nf = 5 massless quark flavours and the corresponding NNLO set
of the NNPDF3.0 [264] parton distribution functions with a strong coupling αs(mZ) =
0.118. The electroweak parameters are evaluated in the Gµ scheme with the electroweak
coupling αGµ =

√
2Gµm2

W sin2 θW /π and the mixing angle cos2 θW = m2
W/m

2
Z. The input

parameters are set to Gµ = 1.16637× 10−5 GeV−2, mZ = 91.1876 GeV, mW = 80.385 GeV,
ΓZ = 2.4952 GeV, and ΓW = 2.085 GeV. We note that predictions for MiNLO′ are
obtained by setting to zero the D`Zγ terms in Eq. (3.76). The scale setting for MiNNLOPS
(MiNLO′) is fixed by the method itself and it is the same that we presented in Section 4.1.3.
In the fixed-order results we set the central renormalization and factorization scales to
the transverse mass of the Zγ system. In all cases we use 7-point scale variations to
estimate the uncertainties related to missing higher-order contributions.

For the results discussed in this section, we consider three sets of fiducial cuts, which
are summarized in Table 4.3. The first one (fiducial-setup-1) corresponds to an earlier
ATLAS analysis [232] and is used for validation purposes. To study the effects of aTGCs
we use fiducial-setup-2, which is also employed to compare MiNNLOPS predictions to
a recent νν̄γ measurement by ATLAS [282]. The last setup (DM-setup) has instead been
chosen to study the importance of NNLO+PS predictions for reducing the uncertainties
of the νν̄γ background in dark-matter searches in the photon plus missing energy channel
and it is inspired by a recent dark-matter search [276]. All three setups include standard
cuts on the identified photon and the missing transverse energy, a jet definition and
Frixione smooth-cone isolation [255] for the photon (for the notation, see Section 4.1.1).
In fiducial-setup-2 one category inclusive over QCD radiation and one with a jet
veto is considered. The DM-setup, on the other hand, considers a quite special choice
for the smooth-cone parameters as it combines a fixed (lower) threshold with a fraction
of the photon transverse momentum. Note also that in the DM-setup various inclusive
and exclusive categories in pT,miss are considered, as discussed below, where the pT,miss

cut given in Table 4.3 is just the loosest one.

Validation of the event generator
In Figure 4.21 we start by comparing MiNNLOPS (blue, solid line), MiNLO′ (black,
dotted line), and fixed-order NNLO predictions (red, dashed line). For reference we
also show matched NLO (brown, dash-double-dotted line) and fixed-order NLO (green,
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fiducial-setup-1 fiducial-setup-2 DM-setup

Photon
cuts

pT,γ > 150 GeV
pT,γ > 100 GeV pT,γ > 150 GeV |ηγ| < 1.37 or
|ηγ| < 2.37 |ηγ| < 2.37 1.52 < |ηγ| < 2.37

∆φγ,~pT,miss > 0.4
Neutrino

cuts pT,miss > 90 GeV pT,miss > 150 GeV pT,miss > 200 GeV

Jet cuts —
Inclusive: Njet ≥ 0

Njet ≤ 1
Exclusive: Njet = 0

Jet
definition

anti-kT with R = 0.4 anti-kT with R = 0.4 anti-kT with R = 0.4
pT,j > 30 GeV pT,j > 50 GeV pT,j > 30 GeV
|ηj| < 4.4 |ηj| < 4.5 |ηj| < 4.5

∆Rγj > 0.3 ∆Rγj > 0.3 ∆φj,~pT,miss > 0.4

Photon
Isolation

Frixione isolation Frixione isolation Frixione isolation
n = 1 n = 1 n = 1
εγ = 0.5 εγ = 0.1 Eref

T = 2.45 GeV+0.022 pT,γ

δ0 = 0.4 δ0 = 0.1 δ0 = 0.4

Table 4.3: Definition of fiducial cuts of two ATLAS measurements,
fiducial-setup-1 [232] and fiducial-setup-2 [282], and of the DM-setup
that is inspired by the dark-matter search of Ref. [276].

double-dash-dotted line) predictions in the ratio panel. This comparison is done at the
LHE level and it serves the purpose of numerically validating the NNLO accuracy of
the MiNNLOPS predictions as well as indicating the importance of NNLO corrections
and matching to the parton shower. The left plot shows the rapidity distribution of the
photon. The agreement between MiNNLOPS and NNLO predictions is excellent, with
fully overlapping uncertainty bands. In line with the discussion of previous section, we
remind that small differences (within uncertainties) between MiNNLOPS and fixed-order
results are expected due to the different scale settings and treatment of terms beyond
accuracy. Moreover, when performing scale variations for MiNLO′ and MiNNLOPS,
an additional scale dependence is kept in the Sudakov form factor [213] for a more
conservative uncertainty estimate, which is absent in fixed-order calculations. This is
reflected in the slightly larger MiNNLOPS uncertainty band. Compared to MiNLO′,
however, we observe a clear reduction of scale uncertainties from about 6% to 3% for
MiNNLOPS and roughly an effect of +3% in normalization from the inclusion of NNLO
corrections through MiNNLOPS.

Compared to the NLO LHE and fixed-order results in the ratio panel, the effect of NNLO
corrections is even at the 10% level, indicating that these lower-order calculations are
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Figure 4.13: Selected plots at LHE level for validation of MiNNLOPS against NNLO.
See text for details.

insufficient for an accurate description of this process. Moreover, the NLO uncertainty
bands appear to be unnaturally small, not even overlapping with the MiNNLOPS
prediction and much smaller than for the MiNLO′ result, which, in fact, correctly
includes some terms beyond NLO accuracy.

Also, at high values of the missing energy (pT,miss) and of the transverse momentum of
the photon (pT,γ) Figure 4.21 shows that MiNNLOPS and fixed-order NNLO predictions
are in excellent agreement. At small values of the missing transverse energy, on the
other hand, we observe that the NLO and the NNLO curves develop an interesting
feature, similarly to what we encountered in Figure 4.7 for the transverse momentum of
the charged-lepton system. This is a consequence of the fiducial cut of pT,γ > 100 GeV,
which induces a perturbative instability [271] in pT,miss at the threshold, as the region
pT,miss ≤ 100 GeV becomes sensitive to soft-gluon effects and is effectively filled only
starting from NLO. This behaviour of fixed-order results is unphysical and cured in the
matched predictions (already at LHE level), as can be seen for instance for MiNNLOPS.
We have further checked that the impact of including additional emissions through the
parton shower is very moderate for the rather inclusive observables under consideration,
with (positive) effects at the few-percent level.
Anomalous coupling effects
We continue by studying the effects of aTGCs on differential distributions. The search
for aTGCs in Zγ production has received great attention in the past, at LEP [289], at
the Tevatron [191, 290], and at the LHC at 7 TeV and 8 TeV [227, 229–232, 234–236].
We stress that, the Z → ν̄ν decay channel has a higher sensitivity to aTGCs due to
a higher branching ratio compared to the Z → `+`− decay channel. Indeed, the most
recent 13 TeV ATLAS analysis [282] uses the νν̄γ final state to set the most stringent
limits on the aTGCs under consideration thus far, which are of the order of ±10−4 for
hV3 and ±10−7 for hV4 (see Table 8 of Ref. [282] for the exact bounds). This ATLAS

116



4.2 Some BSM studies in the Z(→ νν̄)γ channel

analysis did not make use of any form-factor suppression, which is sometimes applied
to prevent unitarity violation at high energy, caused by the introduction of aTGCs at
the amplitude level [291]. Indeed, in an EFT perspective the terms entering the vertex
function in Eq. (4.17) would arise from a set of gauge-invariant operators of dimension
eight (or higher) [281], whose validity range is limited by the given new-physics scale.
Here, we also refrain from using any artificial form-factor suppression.

Different combinations of the aTGCs have been obtained through reweighting at
event-generation level (i.e stage 4 in Powheg), while ensuring sufficient statistics in
the relevant phase-space regions by accounting for the resonance structure of both the
t-channel SM and s-channel BSM topologies and by applying suitable suppression factors
to increase the sampling in the high-energy tails 9. Even though all eight anomalous
couplings (hVi with i ∈ {1...4} and V ∈ {Z, γ}) are consistently implemented in our
code, we limit our study to the CP-conserving ones, which do not interfere with the
CP-violating ones. Moreover, since also the V = Z and V = γ couplings have been
shown to only mildly interfere with each other [277] and to have qualitatively a very
similar impact, we focus on the pair (hZ3 , hZ4 ) here. The most relevant phase-space regions
to constrain aTGCs in νν̄γ production are the high-energy tails of the pT,miss and pT,γ

spectra. In Figure 4.14 we show MiNNLOPS predictions for each of these two observables
in fiducial-setup-2 with a jet veto (Njet = 0), which is experimentally applied to
reduce the SM background in the tails of the distributions. MiNNLOPS results include
parton shower and hadronization effects as provided by Pythia8 [124], with the A14
tune [266]. We present individual variations of hZ3 (two upper plots), individual variations
of hZ4 (two central plots), and combinations of (hZ3 , hZ4 ) (two bottom plots), all within
the currently allowed limits [282]. In all plots, the SM results (hZ3 = 0, hZ4 = 0) are
shown with a blue, solid line. As one sees from the individual variations of hZ3 and
hZ4 , both negative and positive values of the aTGCs lead to a similar positive effect
on the spectra, which is a consequence of the very small interference of the s-channel
BSM amplitudes with the t-channel SM amplitude, so that the quadratic term in the
anomalous couplings dominates. This is also the reason why the experimental limits on
the aTGCs in Zγ production are almost symmetric. For values of hZ3 at the edges of
experimentally allowed ranges, we start observing deviations of 5-10% from the SM for
transverse-momentum values of 400-500 GeV, with a steep increase afterwards, reaching
already 100% around 700-800 GeV. For hZ4 , whose constraints are at least three orders of
magnitude more stringent, 5-10% effects in the tails of transverse-momentum distributions
manifest themselves starting from 600-700 GeV, with rapidly increasing effects at larger
pT as well. Looking at the simultaneous variations of (hZ3 , hZ4 ), it is clear that different
sign combinations constructively interfere, with a mild difference between the two possible
sign combinations. On the other hand, same sign combinations of (hZ3 , hZ4 ) interfere
destructively.

9 To this end, we have added the aTGC coefficients as inputs to the Powheg reweighting information,
introduced the flag anommode 1 that enables the s-channel resonance histories associated with the
aTGCs to be included through the build_resonance_histories routines of Powheg-Box-Res, and
implemented in the code suitable suppression factors for the B̄ function and the Powheg remnant
contribution that can be activated respectively via bornsuppfact 1 and remnsuppfact 1.
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Figure 4.14: MiNNLOPS predictions for the photon transverse momentum (left column)
and the missing transverse momentum (right column) for different values of
hZ3 and hZ4 . The SM results are reported with a blue, solid line. Individual
variations of hZ3 (two upper plots), individual variations of hZ4 (two central
plots) and their combined variations (two bottom plots) are considered for
different values within the experimentally allowed ranges defined in Table 8 of
Ref. [282]. All MiNNLOPS results include parton shower and hadronization
effects, as provided by Pythia8.
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category SRI1 SRI2 SRI3 SRI4
pT,miss [GeV] > 200 > 250 > 300 > 375

MiNLO′ [fb] 27.35(18)+6.0%
−3.5% 12.95(11)+6.5%

−4.2% 6.65(8)+6.8%
−4.7% 2.77(6)+8.0%

−5.8%

MiNNLOPS [fb] 29.09(18)+2.9%
−1.9% 13.77(12)+3.2%

−2.2% 7.07(8)+3.2%
−2.4% 2.95(6)+4.2%

−3.2%

Table 4.4: Fiducial cross section in various inclusive pT,miss categories in the DM-setup.

category SRE1 SRE2 SRE3
pT,miss [GeV] 200–250 250–300 300–375

MiNLO′ [fb] 14.4(1.4)+5.4%
−3.2% 6.30(8)+6.2%

−3.7% 3.88(5)+5.8%
−3.9%

MiNNLOPS [fb] 15.32(15)+2.7%
−1.6% 6.69(7)+3.2%

−2.0% 4.12(5)+2.5%
−1.8%

Table 4.5: Fiducial cross section in various exclusive pT,miss categories in the DM-setup.

Improving background in dark matter searches

Now we turn to discussing the importance of NNLO+PS predictions for νν̄γ productions
in the context of dark-matter searches in the photon plus missing energy (γ + ET,miss)
channel, which is one of (if not the) most important signature to detect dark matter at
the LHC, see Refs. [276, 292, 293]. Other X + ET,miss signatures (where X is a visible
particle) have been extensively studied at the LHC in the past years: for a jet ([294, 295]),
for a heavy quark ([296, 297]), for a vector boson ([295, 298, 299]), and for a Higgs
boson ([300, 301]). In Ref. [276], which is the most recent dark-matter study in the
γ + ET,miss channel, the results are interpreted both in terms of simplified dark matter
models [302–304] and of effective field theories of axion-like particles (ALPs) [305]. As
one can see from Table 4 and 5 of Ref. [276], for instance, the dominant SM background
is the νν̄γ process, which also dominates the uncertainties of the expected SM events.
Depending on the category in pT,miss considered in Ref. [276], which were used to improve
the sensitivity of the analysis, the uncertainties on the expected νν̄γ events range from
4% to almost 15%. Ref. [276] based its νν̄γ predictions on a merged calculation of 0-jet
and 1-jet events at NLO+PS within the Sherpa 2.2 MC event generator [129, 306].

Here, we consider MiNLO′ predictions, which have the same formal accuracy as
the merged Sherpa 2.2 results quoted in Ref. [276], and study the reduction of scale
uncertainties when including MiNNLOPS corrections in each pT,miss category. Among the
categories in pT,miss considered in Ref. [276], four of them are of inclusive type (SRI1-SRI4)
and three of them of exclusive type (SRE1-SRE3). The different pT,miss ranges defining
each of the seven categories are summarized in Table 4.4 and 4.5. These tables also report
MiNLO′ and MiNNLOPS predictions for the cross sections in those categories with
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4 Accurate diboson phenomenology

the respective scale uncertainties. Also in this case, results have been showered using
Pythia8, with the inclusion of hadronization effects. One should bear in mind that the
experimental analysis is performed at the level of events measured in the detector, so that
an immediate comparison to Table 4 and 5 of Ref. [276] is not possible. However, both the
relative MiNNLOPS correction and the reduction of scale uncertainties from MiNLO′
to MiNNLOPS give a good indication of the expected improvements. Moreover, by and
large, relative uncertainties at detector-event level and at the fiducial level can be assumed
to be similar, so that even a direct comparison between our fiducial MiNNLOPS results
and Ref. [276] is not meaningless. We find roughly a 6% correction in the central value
for all categories by including NNLO corrections through MiNNLOPS. Moreover, even
though uncertainties are larger in categories with more stringent cuts, we still observe an
overall reduction in the uncertainty bands by roughly a factor of two. Comparing our
uncertainties to the ones of the νν̄γ backgrounds reported in Table 4 and 5 of Ref. [276],
we find smaller uncertainties of MiNNLOPS already in the SRI1 category (+2.9% and
−1.9% compared to ±4.4%), while with increasing pT,miss cut the quoted uncertainties
on the νν̄γ events in Ref. [276] increase significantly, up to ±13% in SRI4, while our
MiNNLOPS uncertainties amount to less than 5%, bearing in mind that the translation of
the uncertainties of the predictions at detector-event level to those at fiducial level is not
immediate, as explained above. Similarly, in the exclusive pT,miss categories in Table 4.5
the MiNNLOPS uncertainties stay within about 3%, while the quoted uncertainties
in Ref. [276] of the νν̄γ predictions range from 6% to 9%. In conclusion, MiNNLOPS
predictions for νν̄γ production will allow the experiments to substantially improve the
dominant background uncertainty in dark-matter searches in the photon plus missing
energy channel.

Comparing against ATLAS data

Finally, we compare in Figure 4.15 our νν̄γ MiNNLOPS predictions, including the
effects from hadronization, against 13 TeV ATLAS data with an integrated luminosity of
36.1 fb−1 [282]. The first plot shows the distribution in the number of jets. The agreement
between the MiNNLOPS results and the data points for the different jet cross sections
is reasonable, being within at most two standard deviations. Note that, starting from
NNLO accuracy for the 0-jet cross section, the accuracy of the MiNNLOPS calculation
decreases by one order for each jet multiplicity, with the > 2-jet multiplicity described
only by the shower. This is the reason why the prediction undershoots the data in this
bin. The other plots in Figure 4.15 show the pT,γ and pT,miss spectra with and without a
jet veto (Njet = 0). Also here the agreement between MiNNLOPS predictions and data is
very good, with deviations of typically one or at most two standard deviations. There is
however one exception: the measured result in the last bin in the inclusive (Njet ≥ 0) pT,γ

spectrum is many standard deviations away from the prediction. The data point seems
to be way too low, when following the trend of the distribution. Indeed, it has a very
large error and is actually compatible with zero. Moreover, looking at the Njet = 0 result,
this bin has actually a higher measured cross section than in the inclusive case, which
appears inconsistent considering the fact that the Njet = 0 cross section should be part
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Figure 4.15: Distribution in the number of jets (Njet), in the transverse momentum of the
photon (pT,γ) and in the missing transverse momentum (pT,miss) compared
to 13 TeV ATLAS data [282]. The latter two are shown both inclusively
(Njet ≥ 0) and with a jet veto (Njet = 0).

of the Njet ≥ 0 one. A possible explanation could be that, because of the additional jet
activity, some events are discarded, for instance due to the photon isolation requirements.
Indeed, looking at the pT,miss spectrum no such behaviour is observed.
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4 Accurate diboson phenomenology

4.3 A NNLO+PS W+W− generator

Having the largest cross section among massive diboson processes, W+W− production
is one of the most important signature at the LHC. Moreover, unlike Zγ production,
it provides direct access to triple-gauge couplings, which appear already in the leading
perturbative contribution to the cross section. Therefore, the measurement of this process
at the LHC is a direct probe of the gauge symmetry structure of electroweak interactions
and of the mechanism of EW symmetry breaking in the SM. Moreover, W+W− final
states are an irreducible background to Higgs measurements in the H →W+W− decay
channel and to direct searches for BSM particles decaying into two leptons, missing
energy, and/or jets. On the other hand, an accurate theoretical modelling of this signal is
even more important if one considers that its final state can not be fully reconstructed by
experiments, due to the presence of neutrinos. Additionally, the theoretical description
of the W+W− cross section is challenged by the correct modelling of the jet veto, which
is applied by the experimental analyses to suppress backgrounds involving top-quarks
(tt̄ and tW ) and essentially consists in requiring the transverse momentum of jets to
be below a given threshold. A strict veto against jets in the final state increases the
sensitivity to higher-order QCD effects due to potentially large logarithms of the ratio
of the small jet-veto scale over the large invariant mass of the system. Such terms
challenge the reliability of fixed-order predictions and induce large uncertainties in theory
predictions that are typically not covered by scale-variation procedures, especially when
extrapolating cross sections measured in the fiducial region to the total phase space.
This makes clear that the inclusion of higher perturbative orders in the expansion of the
W+W− cross section is not sufficient, and such calculations should be supplemented by
all-order resummation.

With our NNLO+PS W+W− generator, introduced in Ref. [219], the most accurate
FO predictions for this process can be interfaced to a transverse-momentum ordered PS.
In a previous version of the W+W− generator [211], NNLO+PS accuracy was obtained
by an a-posteriori reweighting of MiNLO′ results by the NNLO calculation, according
to Eq. (3.63); in Ref. [219] this target accuracy is achieved via MiNNLOPS, where NNLO
corrections are included in a more efficient way, directly at event generation level without
any approximation.

As a starting point, we consider the process

pp→ `+ν` `
′−ν̄`′ +X , (4.18)

for any combination of massless leptons `, `′ ∈ {e, µ, τ} with different flavours ` 6= `′.
Again, X refers here to any additional QCD activity. For simplicity and without loss
of generality we consider only the process pp→ e+νeµ

−ν̄µ +X here, which we will refer
to as W+W− production in the following. By including all resonant and non-resonant
topologies leading to this process, off-shell effects, interferences and spin correlations are
taken into account. Sample LO diagrams are shown in Figure 4.16, including

(a) double-resonant t-channel W+W− production;
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Figure 4.16: Sample LO diagrams in the different-flavour channel `+ν``′−ν̄`′ for (a)
t-channel W+W− production, (b) s-channel Z/γ? → W+W− production,
and (c) DY-type production.

(b) double-resonant s-channel Z/γ? →W+W− topologies via a triple-gauge coupling,
with either the W+W− pair, or the Z boson and one W boson being resonant;

(c) double-resonant DY-type production, where both the Z boson and the W boson
can become simultaneously resonant.

As usual, the appropriate identification of these topologies is also employed within the
resonance-aware Powheg-Box-Res framework, to correctly identify 10 the relevant
resonance histories according to the richer-resonance-history criterium (see footnote 1 of
Section 3.1.1 and reference therein).

The corresponding production of opposite-charge same-flavour leptons pp→ `+ν``
−ν̄`+

X involves the same type of W+W− diagrams as shown in Figure 4.16, but also additional
ZZ diagrams as shown in Figure 4.28. By focusing on the different-flavour case (` 6= `′)
we avoid the complications originating from the mixing of the W+W− and ZZ topologies.
In fact, as shown in Refs. [307–309], W+W− and ZZ interference effects can be largely
neglected and, to a very good approximation, predictions for the two processes can be
added incoherently.

An important aspect of W+W− production is that its cross section is subject to a severe
contamination from top-quark contributions. As anticipated at the beginning of this
section, not only does this affect W+W− measurements at the LHC, which usually employ
a jet veto, a b-jet veto, or both to suppress top-quark backgrounds, but it also renders the
10 To this end, we had to adapt the Powheg-Box-Res code (specifically the build_resonance_histories

routine) to automatically find all relevant resonance histories for W+W−+jet production. This was
required, because the automatic generation of resonance histories is not fully functional for processes
with a jet in the final state.
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Figure 4.17: Sample additional LO diagrams appearing in the same-flavour channel
`+ν``

−ν̄` for (a) t-channel ZZ production, and (b) DY-type production.

theoretical definition of theW+W− cross section cumbersome. Indeed, resonant top-quark
contributions enter radiative corrections to W+W− production through interference with
real-emission diagrams involving two bottom quarks in the final state. Those interference
terms are numerically so large that they easily provide the dominant contribution to the
cross section. Specifically, in the inclusive phase space genuine W+W− contributions
are more than one order of magnitude smaller. Therefore, the consistent removal of the
top-quark contamination is mandatory to define a top-free W+W− cross section. To this
end, we exploit the four-flavour scheme (4FS), where bottom quarks are treated as being
massive, do not enter in the initial state and diagrams with real bottom-quark radiation
are separately finite. This allows us to drop all contributions with final-state bottom
quarks, thereby cancelling the top-quark contamination and obtaining top-free W+W−

results. We note that there exists an alternative approach to define a top-free W+W−

cross section that can be used in the five-flavour scheme (5FS). However, this approach
is much less practical as it requires the repeated evaluation of the cross section (and
distributions) with increasingly small values of the top-quark width Γt to extract the
top-free W+W− cross section as the contribution that is not enhanced by 1/Γt. Indeed,
it was shown in Ref. [310] at the inclusive level and in Ref. [311] for the fully-differential
case that the 4FS and the 5FS definitions of the W+W− cross section agree at the level
of ∼1-2%. For the sake of simplicity, we make use of the easier 4FS approach throughout
our calculation.

Many of the ingredients entering our W+W−+jet generator have been recycled from
the previous implementation of a W+W−+jet generator, mentioned at the beginning of
this discussion, developed in Ref. [195] for Powheg-Box-V2 [177]. Using that one as a
starting point, we have integrated it into the Powheg-Box-Res framework, in order
to take advantage of its efficient phase-space sampling. Then, we have upgraded the
generator to achieve NNLO accuracy for W+W− production by means of the MiNNLOPS
method, that has been adapted in such a way to consistently work in a 4FS.

As far as the physical amplitudes are concerned, all tree-level real and double-real matrix
elements (i.e. for `+ν``′−ν̄`′+1,2-jet production) are evaluated through the Powheg-
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4.3 A NNLO+PS W+W− generator

Box interface to Madgraph 4 11 [312] developed in Ref. [313]. The `+ν``
′−ν̄`′+jet

one-loop amplitude is obtained from GoSam 2.0 12 [314], neglecting one-loop fermion
box diagrams, which have been shown to give a negligibly contribution, but also to slow
down the code substantially 13(cf. Ref. [195]). The Born-level and one-loop amplitudes
for `+ν``′−ν̄`′ production have been extracted from MCFM [242]. The (one-loop and)
two-loop qq̄ → `+ν``

′−ν̄`′ helicity amplitudes that were derived in Ref. [315] are obtained
through their implementation in Matrix by suitably adapting the interface created in
Ref. [217]. Those amplitudes are known only in the massless approximation, but the effect
of including massive quark loops is expected to be negligible because of the smallness of
closed fermion-loop contributions. For a fast evaluation of the two-loop amplitudes, we
have generated interpolation grids, as discussed in detail in the next section.

The calculation of D`F(pT) in Eq. (3.84) involves the evaluation of several convolutions
with the parton distribution functions, which are performed through hoppet [225],
as standard within the MiNNLOPS code. Moreover, the collinear coefficient functions
require the computation of polylogarithms, for which we employ the hplog package [265].

Finally, we report some of the most relevant (non-standard) settings we have used
to produce W+W− events. Many of them are identically to the ones discussed in
Section 4.1.2, and we just recall some of them here for completeness. In particular,
to avoid spurious contributions from higher-order logarithmic terms at large pT we
consistently introduce modified logarithms with the choice of p = 6, as defined in eq. (10)
of Ref. [214]. At small pT, we use the standard MiNNLOPS scale setting in eq. (14) of
Ref. [214], while we activate the option largeptscales 1 to set the scales entering the
NLO W+W−+jet cross section at large pT as in eq. (19) of Ref. [214]. We use those scale
settings with the parameter Q0 = 0 GeV, and instead regularize the Landau singularity
by freezing the strong coupling and the PDFs for scales below 0.8 GeV. We turn on the
Powheg-Box option doublefsr 1, which was introduced and discussed in detail in
Ref. [263]. As far as the parton-shower settings are concerned, we have used the standard
ones and we also employed the more conservative global recoil scheme for these studies.

4.3.1 Fast evaluation of the two-loop amplitude

As discussed before, the two-loop helicity amplitudes for the production of a pair of off-
shell vector bosons were computed in Ref. [315] and the relevant coefficients functions to
construct the amplitudes can be obtained from the publicly available code VVAMP 14 [316].
Using those results all qq̄ → 4 leptons amplitudes have been implemented in the Matrix
11 The Madgraph program efficiently generates all tree-level amplitudes for a given process. The

growing complexity of the problem with the increasing number of external states is handled by working
at the helicity-amplitude level, instead of the squared-amplitude level (as done by more traditional
trace techniques).

12 The GoSam program can generate and compute one-loop amplitudes in a fully automated way
including QCD and EW corrections within the SM and even for some BSM theories.

13 Note that there is an option in the Makefile of our code to include the one-loop fermion box diagrams.
14 The VVAMP package provides the one-loop and two-loop helicity amplitudes for EW vector boson pair

production, including the decay into 4 leptons, for the quark-antiquark and the gluon-gluon fusion
channels.
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4 Accurate diboson phenomenology

framework [81, 82]. To exploit this implementation for our calculation, we have compiled
Matrix as a C++ library and linked it to our MiNNLOPS generator using the interface
created in Ref. [217].

The evaluation of these two-loop amplitudes turns out to be the bottleneck of the
calculation. In fact, it takes on average t̄VVAMP ≈ 1.9 s to evaluate a single phase-space
point, while the evaluation of the tree- and one-loop amplitudes is orders of magnitude
faster. Therefore, even though we provide the option to run the code using the exact
two-loop amplitudes (by setting to zero the input card parameter use_interpolator 15),
all of the results of this paper have been obtained using a four-dimensional cubic spline
interpolation procedure for the set of independent two-loop coefficient functions that
are required for the evaluation of the two-loop helicity amplitudes. In the following, we
present this procedure in detail.

Coefficient functions of the qq̄ → `+ν``
′−ν̄`′ helicity amplitudes

We start by recalling some relevant formulae of Ref. [315] for the helicity amplitudes.
Specifically, the physical process is denoted by:

q(p1) + q̄(p2)→W+(p3) +W−(p4)→ `+(p5) + ν`(p6) + `′−(p7) + ν̄`′(p8) , (4.19)

where pi are the momenta of the corresponding particles and each of the two off-shell W
bosons decays into a neutrino–lepton pair, such that p3 = p5 + p6 and p4 = p7 + p8. We
denote by Mλλ1λ2 the bare helicity amplitudes of a general vector-boson pair production
process, where λ represents the handedness of the partonic current, while λ1 and λ2 stand
for the helicities of the two leptonic currents. There are in general just two independent
helicity amplitudes MLLL and MRLL, since all the other helicity configurations can be
recovered by permutations of external legs [315]. The bare helicity amplitudes are the
building blocks of the dressed helicity amplitudes MλLL, which are process specific and
for W+W− production read

MW+W−
λLL (p1, p2; p5, p6, p7, p8) = (4παEW)2

2 sin2 θW

MλLL(p1, p2; p5, p6, p7, p8)
(p2

3 −m2
W + iΓWmW)(p2

4 −m2
W + iΓWmW)

,

(4.20)

where λ = L,R. In the previous expression, αEW refers to the EW coupling constant, θW
to the mixing angle, and mW and ΓW to the W -boson mass and decay width, respectively.
Since a W boson can just couple to left-handed lepton currents (see discussion in
Section 1.1), it is clear that MλRL =MλLR =MλRR = 0. As shown in Ref. [315], for
four-dimensional external states the expression of the bare helicity amplitudes can be
written in a compact form using the spinor-helicity formalism (whose basics can be found

15 More information on the practical usage of the interpolator as well as of the whole W+W− code is
provided in Appendix B.
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4.3 A NNLO+PS W+W− generator

in many references, see for instance Ref. [317]):

MλLL(p1, p2; p5, p6, p7, p8) = ([i5]〈5j〉+ [i6]〈6j〉)
{
Eλ1 〈15〉〈17〉[16][18]

+ Eλ2 〈15〉〈27〉[16][28] + Eλ3 〈25〉〈17〉[26][18]

+ Eλ4 〈25〉〈27〉[26][28] + Eλ5 〈57〉[68]
}

+ Eλ6 〈15〉〈j7〉[16][i8] + Eλ7 〈25〉〈j7〉[26][i8]
+ Eλ8 〈j5〉〈17〉[i6][18] + Eλ9 〈j5〉〈27〉[i6][28] , (4.21)

where the two indices i and j are determined by the handedness of the partonic current:
(i, j) = (1, 2) for λ = L and (i, j) = (2, 1) for λ = R. Eq. (4.21) depends on nine complex
scalar coefficients Eλj , which are functions of the invariant masses p2

3 and p2
4 of the two

vector bosons and of the two Mandelstam invariants s̃ and t̃, defined as

s̃ = (p1 + p2)2 , t̃ = (p1 − p3)2 . (4.22)

Each coefficient Eλj receives a contribution from four different classes of diagrams C

Eλj = δi1i2
∑
C
Qλ,W

+W−,[C]
q q E

[C]
j , j = 1, . . . , 9 , (4.23)

where i1, i2 represent the colours of the incoming quark and anti-quark, respectively,
and Q

λ,W+W−,[C]
q q denotes a coupling factor, which is the only process specific ingredient

entering Eq. (4.23). Following the labeling introduced in Ref. [315] for the diagram classes,
we have for W+W− production:

• class A and B, including all diagrams where the two vector bosons are attached to
the fermion line, with the W+ boson adjacent to the incoming quark or antiquark,
respectively, whose coupling factors read

QL,W
+W−,[A]

q q = QL,W
+W−,[B]

q q = 1
2 sin2 θW

, (4.24)

which are identical to zero for λ = R;

• class C, containing diagrams where both vector bosons are attached to a fermion
loop, where

Qλ,W
+W−,[C]

q q = ng
4 sin2 θW

, for λ = L,R , (4.25)

with ng being the number of massless quark generations running in the loop;

• class FV , collecting form-factor diagrams where the production of the two W bosons
is mediated either by a virtual photon (V = γ∗) or a Z boson (V = Z), as shown
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in Figure 4.16(b) 16. In that case we have

QL,W
±W∓,[FZ ]

q q = ∓1
sin2 θW

(I3
q − eq sin2 θW )

s̃−m2
Z − iΓZmZ

, QR,W
±W∓,[FZ ]

q q = ±eq
s̃−m2

Z − iΓZmZ
,

Q
λ,W±W∓,[Fγ∗ ]
q q =∓eq

s̃
, for λ = L,R , (4.26)

where eq and I3
q are the electric charge and isospin number of the incoming quark

q, and mZ and ΓZ the Z-boson mass and decay width, respectively.

Since the functions Eλj admit a perturbative expansion as

Eλj = E
λ, (0)
j +

(
αs
2π

)
E
λ, (1)
j +

(
αs
2π

)2
E
λ, (2)
j +O(α3

s) , (4.27)

the two-loop contribution to the helicity amplitude MλLL is fully determined once the
45 complex coefficients E[C],(2)

j are known. In contrast with the helicity amplitude itself,
which is a complex-valued function of the full kinematics, the coefficients E[C],(2)

j just
depend on four Lorentz scalars. Therefore, an interpolation procedure that approximates
the E[C],(2)

j coefficients is clearly more feasible. This choice considerably reduces the
complexity of the interpolation problem, since it decreases the dimensionality of the
space on which the functions are interpolated, at the minor cost of increasing the number
of functions to approximate. In essence, this turns our problem into a four-dimensional
interpolation of 90 real-valued functions.

However, one should bear in mind that E[FV ],(2)
j does not depend on the type of the

vector boson V , so that in our case E[Fγ∗ ],(2)
j = E

[FZ ],(2)
j = E

[F ],(2)
j . Moreover, any loop

correction to the corresponding form-factor diagrams just amounts to a function F(s̃)
which multiplies the tree-level structure, so that at two loops

E
[F ],(2)
j = F (2)(s̃)E[F ],(0)

j . (4.28)

The tree-level coefficients evaluate to constants:

E
[F ],(0)
j = 0 , j = 1, ..., 4 ,

E
[F ],(0)
6 = E

[F ],(0)
7 = +4 , E

[F ],(0)
5 = E

[F ],(0)
8 = E

[F ],(0)
9 = −4 . (4.29)

The dependence on s̃ in F (2)(s̃) just enters through the ratio of s̃ with the squared of
the renormalization scale µR. By setting µR =

√
s̃, the non-vanishing E[F ],(2)

j coefficients
also become constants, which have been computed in the literature long ago [318–321].
Note that the correct renormalization scale dependence will be recovered through the
16 Note that another class of form-factor diagrams exists, containing two-loop corrections to DY-type

production (see Figure 4.16(c)). This class is evaluated by Matrix using the corresponding form
factor returned by VVAMP, as well. Since those form factors are constants, as discussed below, their
contribution is handled without interpolation.
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4.3 A NNLO+PS W+W− generator

MiNNLOPS formulae (cf. appendix D of Ref. [213]). Therefore, only the coefficient
functions belonging to families C = {A,B,C} need to be interpolated, reducing the
number of real-valued functions that require interpolation from 90 to 54.

Finally, as discussed in Ref. [315] (see eqs.(4.8) to (4.12)), the functions E[C],(2)
j with

C = {A,B,C} are not completely independent from each other, but they can be related
via crossings of external legs, either permuting the quark and the anti-quark or the two
vector bosons. If we stick to the first permutation, which is the one we exploit here, one
can show that the bare helicity amplitudes can be related by exchanging the quark and
the anti-quark as

M[A]
LLL = − M[B]

RLL(p1 ↔ p2), M[C]
LLL = − M[C]

RLL(p1 ↔ p2) , (4.30)

from which one can derive thirteen equations that express all of the E[A],(2)
j functions

through E[B],(2)
j and the four E[C],(2)

j coefficients with j = {1, 2, 6, 8} through the remain-
ing ones of the same family. This symmetry property allows us to explicitly generate
precomputed grids (according to the procedure outlined in next subsection), which are
needed for the interpolation, only for 28 real-valued functions out of 54, while evaluating
the remaining ones through crossing symmetry. Note that, in principle, relations similar
to Eq. (4.30) can be derived by exploiting the crossing relation of the two vector-boson
lines. This second set of relations can be used to further reduce to 20 the number of
precomputed grids storing the real-valued functions. We have not made use of this option
for the results presented in this work, but the latter is available in the public version of
the MiNNLOPS W

+W− generator as a further way of reducing the memory requirement
for the code at running time.

Generation of interpolation grids

As a first step, we have generated rectilinear grids (i.e comprised of congruent paral-
lelotopes) for each of the 28 non-constant independent two-loop coefficient functions
E

[C],(2)
j defined in eqs. (4.23) and (4.27), whose exact values have been computed through

VVAMP on a set of given phase-space points (p2
3, p

2
4, s̃, t̃) and stored. All results have been

obtained by fixing the centre-of-mass energy to
√
s = 13 TeV.

As it turns out, a suitable parametrization of the four-dimensional phase-space points
(p2

3, p
2
4, s̃, t̃) is crucial to obtain a good interpolation performance. Moreover, a finer

binning is required in those phase-space regions that give a large contribution to the
overall integral of the multi-differential cross section, such as resonance-enhanced regions
in p2

3 and p2
4 around the two W -boson masses. To this end, our grids are defined on a

four-dimensional unit hypercube [0, 1]4 with fifty equally spaced bins, where each element
(x1, x2, x3, x4) ∈ [0, 1]4 is uniquely mapped to a physical phase-space point. The first two
axes x1 and x2 are related to the invariant masses p2

3 and p2
4 through the transformations

p2
3 = mWΓW tan(z1(x1)) +m2

W , with z1,min < z1(x1) < z1,max ,

p2
4 = mWΓW tan(z2(x2)) +m2

W , with z2,min(p2
3) < z2(x2) < z2,max(p2

3) , (4.31)
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where z1 and z2 are continuous functions of x1 and x2, respectively. The lower and
upper bounds on z1 and z2 have been chosen in such a way that the physical range of
invariant-mass values is covered. Specifically, z1,min and z1,max are fixed by the choice
40 GeV2 < p2

3 < s/100. Through energy conservation z2,min and z2,max depend directly on
p2

3, as it has been made explicit in Eq. (4.31). However, their exact expressions, which we
omit here, have been tuned such that the physical mass range of p2

4 is covered efficiently.
The two functions z1(x1) and z2(x2) are defined piecewise on three subranges of the two
intervals in Eq. (4.31). In the central subrange, z1 and z2 correspond to a linear mapping,
which guarantees that p2

3 and p2
4 follow a Breit-Wigner distribution. For the other two

subranges of z1 and z2, polynomial functions are used such that the off-shell regions are
covered by a sufficient number of grid points.

The variables x3 and x4 also have a physical interpretation, since they are related
to the relativistic velocity βW+ and the cosine of the scattering angle θW+ of one of the
vector bosons in the center-of-mass frame. In particular, we define

βW+ = as + (bs − as)x3 , cos θW+ = 1− 2 (at + (bt − at)x4) , (4.32)

where as/t and bs/t determine the range of values allowed for the two physical quantities.
Instead of setting as/t = 0 and bs/t = 1, we use small cutoffs to avoid numerical instabilities
at the kinematic edges. βW+ and cos θW+ can be expressed in terms of s̃ and t̃ as

βW+ = κ
(
s̃, p2

3, p
2
4
)

s̃+ p2
3 − p2

4
, cos θW+ = 2t̃+ s̃− p2

3 − p2
4

κ
(
s̃, p2

3, p
2
4
) , (4.33)

with the Källén function

κ
(
s̃, p2

3, p
2
4

)
≡
√
s̃2 + p4

3 + p4
4 − 2(s̃ p2

3 + p2
3 p

2
4 + p2

4 s̃) . (4.34)

By inverting Eq. (4.33) in the physical region of the process, which is defined by

s̃ ≥
(√

p2
3 +

√
p2

4

)2
,

1
2
(
p2

3 + p2
4 − s̃− κ

)
≤ t̃ ≤ 1

2
(
p2

3 + p2
4 − s̃+ κ

)
, (4.35)

we can express s̃ and t̃ in terms of the hypercube variables x3 and x4.
As illustrated in Ref. [315], the behaviour of the coefficients E[C],(2)

j is not always
smooth over the two-dimensional phase space (βW+ , cos θW+) and it can even be divergent
close to the highly relativistic (βW+ → 1) or highly collinear (| cos θW+ | → 1) regions.
One possibility to improve the description of this rapidly changing functional behaviour
is to combine different grids to cover the whole phase space (p2

3, p
2
3, s̃, t̃), instead of

simply increasing the number of bins for selected axes. For the case at hand, using four
precomputed grids for each of the 28 real-valued (non-constant, independent) functions
has proven to significantly improve the performance of the interpolator in some phase-
space regions. Even though the definition of the grids is unchanged for x1 and x2, by
adjusting the values of as/t and bs/t in Eq. (4.32) we defined four slightly overlapping
grids in the (βW+ , cos θW+) phase space, to properly cover the above-mentioned singular
regions.
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Figure 4.18: Results for the ε`F accuracy parameter in one sample flavour channel
(specifically the ūu one) using either one (orange histogram) or four (blue
histogram) precomputed grids. The same distribution is shown both in
linear (left plot) and logarithmic (right plot) scale, where the bins at the
edges account for overflow (|ε`F | > 100%).

Interpolation and validation

At the beginning of each run the grids just need to be read and loaded into memory.
Then, for each E

[C],(2)
j any value can be computed by properly interpolating between

the values stored in the precomputed grids. To perform this task, we make use of the
N -dimensional interpolation library Btwxt [322], which just requires the input grids to
be rectilinear. The interpolation is achieved through N -dimensional cubic splines [323],
which are multivariate piecewise polynomials of degree three. Specifically, Btwxt employs
cubic Hermite splines, where each polynomial in a given N -dimensional interval is specified
by its values and its first derivatives at the corners of the interval itself. The values of
the first derivatives are computed according to the Catmull-Rom implementation [324].

In order to quantify the accuracy of our four-dimensional interpolation strategy we use
an adimensional parameter ε, which describes the deviation of the interpolated result for
the two-loop contribution from its exact expression on a given phase-space point and is
defined as

ε`F [%] =
H
qT(2)
(int)`F −H

qT(2)
(ex)`F

H
qT(2)
(ex)`F

· 100 , (4.36)

where the four independent Born flavour configurations `F = {qq̄, q̄q; for q=u-type or q=
d-type} have been considered separately. In Eq. (4.36), HqT(2)

(ex)`F refers to the hard function
in the qT-scheme [262] returned by Matrix using the evaluation of the exact two-loop
coefficients through VVAMP, while HqT(2)

(int)`F stands for its value obtained by Matrix using
the interpolation of the two-loop coefficients from the precomputed grid results. For the
conversion between the qT-scheme HqT(2)

(int)`F and the MiNNLOPS H
(2)
`F

we have used the
expressions in Eq. (4.9).
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Figure 4.19: Distribution of the values of the two-loop hard function computed using
the interpolator without rescue system for the ūu channel. In the legend
the mean (µ), the median, the standard deviation (σ) and the skewness (γ1)
are reported. The edge bins account for overflow.

In Figure 4.18, the distribution of the values of ε`F is displayed for a selected flavour
channel (namely the ūu one). All the other flavour channels have the same qualitative
behaviour. The figure shows the impact on the ε`F parameter of increasing the number
of precomputed grids from one (orange histogram) to four (blue histogram). Besides
being essential for a simultaneously accurate description of physical observables over a
wide phase-space region, our choice of covering the phase space with four separate grids
improves the accuracy of the predictions for the two-loop contribution and yields a more
symmetric ε`F distribution.

We further notice that the bulk of the interpolator predictions (roughly & 80%) has
an accuracy greater than 5% (i.e |ε`F | ≤ 5%), while almost 95% lie inside the interval
|ε`F | ≤ 100%. The remaining fraction of ε`F values consists of phase-space points where
the interpolator poorly reproduces the correct two-loop result. In Figure 4.18, where the
ε`F distribution is reported both in linear and in logarithmic scale, this fraction is clearly
visible in the overflow bins at the edges of the histograms. In most cases, these poorly
predicted values are associated to phase-space points falling outside the grid boundaries
and thus requiring extrapolation of the two-loop coefficient functions E[C],(2)

j outside the
grid edges. However, this also means that most of these points lie in kinematic regions
where the cross section is strongly suppressed.

To deal with instabilities, a basic rescue-system is introduced. This mechanism takes
care of computing the exact E[C],(2)

j coefficient functions with VVAMP in all cases where
H
qT(2)
(int)`F falls outside a process-specific range, where the bulk of the HqT(2)

(ex)`F values lies.
Specifically, we have required −100 < H

qT(2)
(int)`F < 500 as an acceptance interval, where

roughly 99.8% of the HqT(2)
(ex)`F distribution is concentrated. In Figure 4.19 this distribution

is shown together with the median and the value of the first three moments of the
distribution. As it can be inferred from the positive skewness value (or from the fact that
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Figure 4.20: Distributions in the evaluation time tVVAMP (blue histogram) and t′int (orange
histogram). The last bin accounts for overflow (tVVAMP, t

′
int > 20 s). The left

plot resolves the peak of the t′int distribution in double logarithmic scale.

the mean and median do not coincide), the distribution is asymmetric, which is why our
acceptance interval for HqT(2)

(ex)`F is not centered around the mean, but rather it extends
to higher values to partially account for the long distribution tail on the right of the
peak. This simple criterium suffices to catch the small fraction of ε`F outliers that would
compromise the stability of the results. Some phase-space points remain that elude the
rescue-system and where the two-loop coefficients are not computed accurately, but we
have checked that they have a negligible impact on the physical results, as it will be
discussed below (see Figure 4.21).

Clearly, the advantage of using the interpolation approach compared to the full
evaluation of the two-loop coefficients is the gain in time performance. Indeed, the
average time required by VVAMP (t̄VVAMP) and the interpolator (t̄int) to evaluate the two-
loop contribution turns out to differ by three orders of magnitude, while the improvement
is still roughly a factor forty if one uses the rescue-system (t̄′int):

t̄VVAMP ≈ 1.9 s , t̄int ≈ 0.9× 10−3 s , t̄′int ≈ 4.5× 10−2 s . (4.37)

As complementary information, Figure 4.20 shows the time distributions of tVVAMP (blue
histogram) and t′int (orange histogram). The bulk of the VVAMP evaluation times (roughly
80%) is located in the time interval 0.5s < tVVAMP < 2.0 s, with a small, but not negligible
fraction of phase-space points requiring a CPU time between 5.0s < tVVAMP < 7.5 s, and
about 0.1% exceeding 20 s (visible from the overflow bin). When using the interpolator,
more than 99% of the evaluations just require some hundredths of a second. The small
number of phase-space points with a CPU time t′int > 0.5 s are associated to the values
catched by the rescue-system. Those timings have been obtained on machines with Intel
Haswell Xeon E5-2698 processors with 2.3 GHz per core.

Our implementation of a faster evaluation of the two-loop amplitudes through inter-
polation is tested by looking at its impact on physical predictions, especially on some
relevant differential distributions in the inclusive phase space. All results have been
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Figure 4.21: Powheg stage 2 distributions (from left to right and top to bottom) in
yWW , ∆yW−,W+ , yW+ , m exp

T,WW , pT,W− and pT,miss for the VVAMP (blue, solid
line), the interpolator (black, dotted line) and the H(2)

`F
= 0 (red, dotted

line) results.134



4.3 A NNLO+PS W+W− generator

obtained at the level of the Monte Carlo integration of the cross section (i.e Powheg
stage 2), so that no parton shower radiation or hadronization effects, which would not be
relevant for the validation, have been included.

First, it is worth mentioning that the code with the interpolation of the two-loop
amplitudes reproduces accurately the exact inclusive cross section, with discrepancies of
the order of about 0.4 permille, which are well within statistical uncertainties. Then, in
Figure 4.21 we show representative plots that compare the exact VVAMP predictions (blue,
solid line) against the results with interpolation (black, dotted line) for the rapidity of
the W+W− pair (yWW ), the rapidity difference between the two W -bosons (∆yW−,W+),
the rapidity of positively-charged W boson (yW+), the experimental definition of the
transverse mass of the W+W− pair

m exp
T,WW =

√
(ET,`1 + ET,`2 + pT,miss)2 −

(
pT,`1

+ pT,`2
+ pT,miss

)2
, (4.38)

the transverse momentum of the negatively-charged W boson (pT,W−) and the missing
transverse momentum (pT,miss). We stress that many more distributions than those
included in this section have been carefully examined and verified to show a very good
agreement between the analytic and interpolated results. Moreover, in order to highlight
the phase-space regions where the two-loop corrections provide a large contribution to
the cross section, a third curve (red, dotted line) has been included in all plots, obtained
by setting the MiNNLOPS H

(2)
`F

= 0. The lower panel of the plots displays the bin-by-bin
ratio using the VVAMP curve as a reference.

From all plots, it is evident that the interpolator reproduces correctly the differential
distributions in all kinematic regimes, with only small fluctuations at very high values of
∆yW−,W+ (at most of the order of 2%) or high values of m exp

T,WW or pT,W− (where differences
are well below one percent). These are the regions where the two-loop contribution
has the largest impact on the cross section. Indeed, from the yWW distribution it is
evident that H(2)

`F
has a 5-6% effect on the cross section, and contributes uniformly to this

observable, while for instance for |∆yW−,W+ | > 4.5 and |yW+ | > 4 it induces a positive
correction that reaches more than 30% and 10%, respectively. For transverse-momentum
distributions, such as pT,W− or pT,miss, the two-loop contribution has a positive impact
for relatively low transverse momenta (roughly for pT < 100 GeV) of at most 10%, while
it yields an increasingly negative correction for very large transverse momenta.

4.3.2 Validation settings

In this section, as well as in Section 4.3.3, 4.3.4 and 4.3.5, we present a detailed comparison
of our MiNNLOPS W

+W−+jet generator against other theory predictions, which serves
the purpose of robustly validating our code. We do not include the loop-induced
gluon-fusion contribution in all our NNLO results, since our focus is to study the
genuine NNLO corrections to the qq̄ initiated process. The leading-order gluon-gluon
initiated contribution enters at NNLO: NLO QCD corrections to it are known and can
be incoherently added to the predictions presented here through a dedicated calculation.
We perform such a calculation for another diboson process in Section 4.4. In this
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context, since the loop-induced gluon-fusion channel is known to have a sizable effect for
W+W− production, our choice not to include it prevents us to directly compare against
experimental data, except for a few cases.

In what follows, we consider
√
s = 13 TeV proton–proton collisions at the LHC and

present predictions for pp→ `+ν` `
′−ν̄`′ +X production with ` = e and `′ = µ. The EW

parameters are determined in the Gµ scheme, therefore computing the EW coupling as
αGµ =

√
2Gµm2

W (1−m2
W /m

2
Z)/π and the mixing angle as cos2 θW = m2

W /m
2
Z . We use

the following PDG [325] values as inputs: GF = 1.16639×10−5 GeV−2, mW = 80.385 GeV,
ΓW = 2.0854 GeV, mZ = 91.1876 GeV, and ΓZ = 2.4952 GeV. We set the CKM matrix to
unity, which, because of unitarity and the fact that we consider only massless external
quarks, is a very good approximation, as explained in Ref. [211]. As described at the
beginning of Section 4.3, the four-flavour scheme with nf = 4 massless quark flavours
and massive bottom and top quarks is used to define a top-free W+W− cross section by
removing all contributions with final-state bottom quarks. Consistently with this choice,
we use the nf = 4 NNLO set of the NNPDF3.0 [264] parton densities. More precisely, we
make use of the standard MiNNLOPS hybrid grid approach, described in Section 3.3.2.
For the central renormalization and factorization scales, we also stick to the usual settings
for MiNNLOPS and MiNLO′ discussed in Section 3.3.2. Perturbative uncertainties
are estimated from customary 7-point variations, i.e. by varying µR and µF around the
central scale by a factor of two while respecting the constraint 0.5 ≤ µR/µF ≤ 2.

We compare our MiNNLOPS (and MiNLO′) predictions to NNLOPS results from a
previous implementation of the W+W−+jet generator, that we have already mentioned
at the beginning of this discussion. Results for the latter generator, presented in Ref. [211],
are based on a MiNLO′ calculation with µR = µF = pT,WW , but use NNLO predictions
for the reweighting with

µR = µF = µ0 ≡
1
2 (mT,W+ +mT,W−) , mT,W± =

√
m2
`(′)ν

`(′)
+ p2

T,`(′)ν
`(′)

, (4.39)

where m`ν` and pT,`ν` (m`′ν`′
and pT,`′ν`′ ) are the invariant masses and the transverse

momenta of the reconstructed W bosons. The setting in Eq. (4.39) is therefore the effective
scale used in the NNLOPS calculation of Ref. [211], where the perturbative uncertainties
are obtained from 7-point scale variations that are assumed correlated in the reweighting.
For the pT,WW spectrum and the jet-vetoed cross section we also compare against
more accurate analytically resummed predictions obtained with Matrix+RadISH
[272, 273, 326], where we have chosen

µR = µF = µ0 ≡ mT,WW , Qres = mWW , mT,WW =
√
m2
WW + p2

T,WW , (4.40)

with mWW the invariant mass of the W+W− pair. Here, scale uncertainties are obtained
not just from customary 7-point variations, but also by varying the resummation scale
Qres by a factor of two around its central value, while keeping µR and µF fixed to µ0. For
some observables it is instructive to also compare to fixed-order NNLO predictions with
both the scale settings in Eq. (4.39) and the ones in Eq. (4.40), which we have obtained
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fiducial-1-JV [328] fiducial-2-JV [329]

Lepton cuts
pT,` > 25 GeV |η`| < 2.4 pT,` > 27 GeV |η`| < 2.5

m`` > 10 GeV pT,`` > 30 GeV m`` > 55 GeV
Neutrino cuts pT,miss > 20 GeV pT,miss,rel > 15 GeV pT,miss > 20 GeV

anti-kT algorithm with R = 0.4 anti-kT algorithm with R = 0.4
Njet = 0 for pT,j > 25 GeV Njet = 0 for pT,j > 35 GeV

Jet cuts |ηj| < 2.5 ∆Rej > 0.3
Njet = 0 for pT,j > 30 GeV
|ηj| < 4.5 ∆Rej > 0.3

Table 4.6: Fiducial cuts used in two different setups, see text for details.

with Matrix [81, 82]. In this case, perturbative uncertainties are again estimated from
7-point scale variations.

Finally, for the matching to the parton shower we employ Pythia8 [124] with the
Monash 2013 tune [327] (specifically setting py8tune 14 in the input card of the process).
Since in this study our focus is on the comparison with other theory predictions, we do
not include any effect from hadronization, underlying-event models, or a QED shower.
Such effects can, however, be directly included and studied by any user of our program
through the Pythia8 interface of Powheg-Box-Res.

Since the W+W− cross section is finite at the LO without any cuts, we present results
in the fully inclusive W+W− phase space, referred to as setup-inclusive. Additionally,
we consider two sets of fiducial cuts, which are summarized in Table 4.6. The first
one corresponds to an earlier ATLAS 13 TeV analysis [328] and it is identical to that
used in the NNLOPS calculation of Ref. [211], which allows us to compare directly our
MiNNLOPS predictions with the fiducial NNLOPS results of Ref. [211]. We refer to it
as fiducial-1-JV in the following. We note that fiducial-1-JV involves a two-fold
jet-veto requirement, vetoing all jets in the rapidity region |ηj| < 2.5 and separated
from the leptons by ∆Rej > 0.3 with pT,j > 25 GeV and all jets in the rapidity region
|ηj| < 4.5 and separated from the leptons by ∆Rej > 0.3 with pT,j > 30 GeV. The second
setup instead corresponds to the most recent ATLAS 13 TeV measurement of Ref. [329],
and it was used to study high-accuracy resummed predictions for W+W− production
in Ref. [272]. This setup, referred to as fiducial-2-JV in the following, is useful for
two reasons. First, at variance with fiducial-1-JV, it includes a single jet-veto cut for
jets with pT,j > 35 GeV. This allows us to directly compare against the NNLO+NNLL
resummed predictions for the pT,WW spectrum with a jet veto [272]. Note that to facilitate
this comparison, we have removed the jet rapidity (ηj) requirement from fiducial-2-JV
[329], which has a numerically tiny effect. Second, fiducial-2-JV is used to compare
against data, since Ref. [329] measured the fiducial cross section as a function of the
jet-veto cut to validate theory predictions for the jet-vetoed W+W− cross section. It is
worth recalling here once again that jet-veto requirements are crucial for experimental
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W+W− analyses in order to suppress the large top-quark backgrounds. In addition, we
introduce fiducial-1-noJV and fiducial-2-noJV for the same fiducial setups as given
in Table 4.6, but without any restriction on the jet activity. Those are relevant to study
the pT,WW distribution inclusive over jet radiation as well as the cross section as a function
of the jet-veto cut. Besides jet-veto requirements, the two setups in Table 4.6 involve
standard cuts on the transverse momentum (pT,`) and pseudorapidity (η`) of the charged
leptons as well as a lower cut on the invariant mass of the dilepton pair (m``) and on the
missing transverse momentum (pT,miss). Setup fiducial-2-JV includes also a lower cut
on the transverse momentum of the dilepton pair (pT,``), while setup fiducial-1-JV cuts
on the so-called relative missing transverse momentum (pT,miss,rel). The latter denotes the
component of the missing transverse-momentum vector perpendicular to the direction of
the closest lepton in the azimuthal plane, and is defined as

pT,miss,rel =
{
pT,miss · sin |∆φ| for ∆φ < π/2 ,
pT,miss for ∆φ > π/2 , (4.41)

where ∆φ denotes the azimuthal angle between the missing transverse-momentum vector
vector and the nearest lepton.

4.3.3 Integrated cross sections

We start the presentation of phenomenological results by discussing integrated cross
sections in Table 4.7. In particular, we report predictions in the fully inclusive and the two
fiducial phase spaces introduced in Section 4.3.2 for MiNLO′, MiNNLOPS, NNLOPS
[211] as well as two fixed-order NNLO predictions obtained with Matrix [81, 82] using
the scale settings of Eq. (4.39) and Eq. (4.40). We summarize our main observations in
the following:

• It is clear that NNLO accuracy is crucial for an accurate prediction of the W+W−

cross section, since the MiNLO′ result is about 14% lower than the MiNNLOPS
one not only for setup-inclusive, but also after including the fiducial-1-JV
and fiducial-2-JV cuts. In fact, in all cases the MiNNLOPS prediction is outside
the upper uncertainty boundary of the MiNLO′ one. This is not surprising since
for W+W− production also at fixed order the NLO uncertainty band does typically
not include the central value of the NNLO prediction [211, 311]. Additionally, the
precision at NNLO is substantially improved, with scale uncertainties reduced by
more than a factor of three.

• The NNLO-accurate predictions compare well against one another. They are
compatible within their respective scale uncertainties and the central predictions
are all within less than 3%. Indeed, small differences are expected from the fact that
those predictions differ by terms beyond NNLO accuracy. Note that the NNLOPS
and the NNLO calculations with µ0 = 1

2 (mT,W+ +mT,W−) are very close, both in
terms of central values and uncertainties, since the former is actually reweighted
to the latter prediction in the inclusive phase space. The fact that the inclusive
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σ(pp→ `+ν` `
′−ν`′) [fb] setup-inclusive fiducial-1-JV fiducial-2-JV

MiNLO′ 1146.4(3)+4.7%
−5.6% 182.8(1)+5.7%

−9.4% 141.3(1)+4.9%
−8.1%

MiNNLOPS 1299.8(8)+2.0%
−1.2% 211.7(3)+1.5%

−1.5% 161.9(3)+1.1%
−1.1%

NNLO+PS [211] 1308.9(3)+1.7%
−1.6% 206.4(1)+2.2%

−2.3% 159.0(1)+1.7%
−1.8%

NNLO µ0 = (m2
T,W+ +m2

T,W− )0.5/2 1306.5(5)+1.6%
−1.6% 206.5(1)+1.0%

−0.7% 158.9(5)+0.8%
−0.6%

NNLO µ0 = mT,WW 1284.9(10)+1.4%
−1.3% — 160.8(3)+1.0%

−0.8%

ATLAS−gg [328]
1481± 59(stat) 236.5± 10(stat)

—
±154(syst)± 108(lumi) ±25(syst)± 5.5(lumi)

ATLAS−gg [329] — —
178.5± 2.5(stat)

±12.7(syst)± 4(lumi)

CMS−gg [330]
1289± 68(stat)

— —±67(exp. syst)

±76(th. syst) ± 42(lumi)

CMS−gg [331]
1316± 65(stat)

— —
±23(syst)± 38(lumi)

Table 4.7: W+W− cross sections in the fully inclusive phase space and in the fiducial
phase spaces defined in Table 4.6. We compare our MiNLO′ and MiNNLOPS
predictions to the NNLOPS results of Ref. [211] and to the NNLO cross section
obtained with different settings of µR and µF. All NNLO corrections to qq̄-
induced W+W− production are taken into account, while the loop-induced gg
contribution is excluded. In the last rows, the comparison to CMS and ATLAS
data is shown. For the measured inclusive cross sections we have assumed
a branching fraction of BR(W± → `±ν`) = 0.108987, consistently evaluated
with our inputs, and applied one factor for each of the two W bosons. The
measured fiducial cross sections have been divided by a factor two so that
they correspond to pp → `+ν` `

′−ν`′ production with ` = e and `′ = µ. In
addition, we have subtracted the loop-induced gluon-fusion contribution from
the central value of the data. For the inclusive results and the fiducial-1-JV
result we used the prediction for gg (non-resonant) cross section quoted in
table 5 of the ATLAS analysis in Ref. [328]. For the fiducial-2-JV result we
used the ggLO result in table 2 of Ref. [332]. The ATLAS measurement of
Ref. [328] includes resonant Higgs contributions, which have been subtracted
from that data as well, using the corresponding prediction quoted in table 5
of that paper.

MiNNLOPS result is about 0.7% below the NNLOPS one is due to the different
scale choice and treatment of terms beyond accuracy. Indeed, the second NNLO
prediction with a scale choice of µ0 = mT,WW is even lower than the MiNNLOPS
one.
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• In the fiducial phase space MiNNLOPS and NNLOPS predictions differ by up to
2.5%, with only a moderate overlap of the uncertainty bands. The main effect here
is related to the applied jet veto cuts. Indeed, the actual uncertainties related to
jet vetos are generally underestimated, as discussed below.

• Some caution is advised regarding the quoted scale uncertainties. First of all, the
quoted uncertainties generally appear to be quite small, and potentially at the
edge of providing a realistic estimate of the true uncertainty. Clearly, the MiNLO′
uncertainty does not cover the inclusion of NNLO corrections through MiNNLOPS.
For MiNNLOPS and fixed-order the NNLO uncertainties further decrease when the
jet-veto requirements are imposed. Such behaviour is not new [333] and especially
for the jet-vetoed predictions one may consider more conservative approaches to
estimate the perturbative uncertainties (see for instance Refs. [333, 334]).

• Finally, there is a good agreement of MiNNLOPS results with data from ATLAS
and CMS in both inclusive and fiducial phase-space regions. The measured cross
sections agree mostly within one and at most within two standard deviations.

4.3.4 Some differential distributions

We now turn to discussing results for some differential distributions, which mainly have
validation purposes. Specifically, we compare our MiNNLOPS to MiNLO′ and NNLOPS
predictions in the inclusive and the fiducial phase space. This allows us, on the one hand,
to study the effect of NNLO corrections through MiNNLOPS with respect to MiNLO′
and, on the other hand, to assess the compatibility of the MiNNLOPS predictions with
the known NNLOPS results.

Unless indicated otherwise, the plots in this section and in Section 4.3.5 are organized as
follows: there is a main frame, which shows differential distributions for the MiNNLOPS
(blue, solid), MiNLO′ (black, dotted), and NNLOPS (magenta, dash-dotted) predictions.
In a lower frame we show bin-by-bin ratios of all curves to the central MiNNLOPS
result. In some cases, where it is instructive to compare to the fixed-order results, we
show fixed-order NNLO distributions for µ0 = 1

2 (mT,W+ +mT,W−) (green, long-dashed)
and/or for µ0 = mT,WW (red, dashed). We note that we refrain from showing fixed-order
NNLO predictions for most observables as the NNLOPS results correspond to a scale
setting of µ0 = 1

2 (mT,W+ +mT,W−) and are, in general, numerically very close to the
respective fixed-order NNLO cross section.

Inclusive phase space

We start by discussing distributions in the inclusive phase space. We have considered a
large number of relevant distributions both of the leptonic final states and of the recon-
structed W -bosons. A selection of those which reflect some general features is presented
in Figure 4.22. Since experimentally the W bosons can not be directly reconstructed
and the fully inclusive phase space can not be covered by the detectors in any case, we
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Figure 4.22: Differential distributions in the setup-inclusive.

follow here a more theoretical motivation and study observables related to the recon-
structed W bosons rather than their decay products. In particular, Figure 4.22 shows the
transverse-momentum spectrum of the W+ boson (pT,W+), the rapidity distribution of
the W -boson pair (yWW ), the rapidity difference between the two W bosons (∆yW−,W+),
and the invariant-mass distribution of the W -boson pair (mWW).

For the pT,W+ spectrum, the MiNNLOPS prediction is in full agreement with the
NNLOPS result, which is particularly striking in the low-pT,W+ region since scale uncer-
tainties are only at the level of ±1%. At larger values of pT,W+ , the uncertainty bands
of the NNLOPS accurate predictions widen and reach about ±5%. This indicates that
this region is predominantly filled by higher-order (real) radiative corrections with at
least one jet, and that the formal accuracy is somewhat decreased by one order. Indeed,
in the region pT,W+ & 100 GeV the NNLOPS predictions become fully compatible with
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the MiNLO′ result, also in terms of the size of the uncertainty bands. By contrast, for
smaller pT,W+ we observe large NNLO corrections with respect to MiNLO′ that reach
almost 20% and substantially reduced scale uncertainties.

Also for the yWW and ∆yW−,W+ distributions we find fully compatible results with
overlapping uncertainty bands when comparing MiNNLOPS and NNLOPS predictions.
While the NNLO corrections compared to MiNLO′ are relatively flat for yWW , we find
that the corrections increase substantially at larger values of ∆yW−,W+ , reaching ∼ +30%
for ∆yW−,W+ & 3. This behaviour was observed already in Ref. [211], and our result
confirms that this large effect is not a remnant of the scale setting in the NNLOPS
calculation, but a genuine NNLO correction.

Similarly sizeable NNLO corrections are observed also at large values of mWW. This is
also one of the few regions of phase space that we found where MiNNLOPS and NNLOPS
predictions do not agree at the level of a few percent. While up to mWW . 1 TeV the
MiNNLOPS and NNLOPS results are fully compatible, they start deviating at larger
invariant masses, reaching differences of about 20% at mWW = 1.7 TeV. Those differences
can be traced back to the different scale settings in the MiNNLOPS and NNLOPS
calculations. Indeed, comparing the additional NNLO results shown for the mWW

distribution, we notice a relatively large spread between the green long-dashed curve
with central scale µ0 = 1

2 (mT,W+ +mT,W−) and the red dashed curve with µ0 = mT,WW ,
which is of the same size as (or even slightly larger than) the observed differences between
MiNNLOPS and NNLOPS. As expected, the NNLOPS result is close to the NNLO one
with µ0 = 1

2 (mT,W+ +mT,W−), while the MiNNLOPS prediction is somewhat in-between
the two NNLO results, but slightly closer to the one with µ0 = mT,WW . Thus, the origin
of the observed differences are terms beyond NNLO accuracy. Although the uncertainty
bands increase to about 10% towards large mWW, the two NNLO+PS accurate predictions
do not (or only barely) overlap for mWW & 1 TeV, indicating that plain 7-point scale
variations do not represent a realistic estimate of the actual size of uncertainties in that
region of phase space. One may ask the question whether one of the two scale choices
can be preferred. Although one might assume that mWW would be the natural scale of
the mWW distribution, the situation is actually not that clear. This was discussed in
some detail in Ref. [211], and it boils down to the fact that for s-channel topologies mWW

would be the more natural scale, while for t-channel topologies the transverse masses of
the W bosons reflect better the natural scale of the process. Since both topologies appear
in W+W− production already at the LO and they interfere, it is hard to argue in favour
of any of the two scale choices. As a result, and since now there are two NNLO+PS
accurate predictions available, the difference between the two should be regarded as an
uncertainty induced by terms beyond NNLO accuracy. Moreover, one could introduce
a different setting of the hard scales at high transverse momenta in the MiNNLOPS
calculation (i.e. in the W+W−+jet part) as a further probe of missing higher-order terms.

In summary, we find that MiNNLOPS and NNLOPS predictions are in excellent
agreement for essentially all observables we considered in the inclusive phase space that
are genuinely NNLO accurate. This indicates the robustness of NNLO+PS predictions
for such observables. For the few exceptions, like large mWW, we could trace back the
origin of the differences to terms beyond accuracy that are induced by the different scale
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settings. Moreover, in all cases the NNLO corrections substantially reduce the scale
uncertainties with respect to the MiNLO′ prediction. Notice, however, that in the bulk
region of the inclusive phase space the MiNNLOPS uncertainty bands are a bit smaller
than the NNLOPS ones, as already observed for the fully inclusive cross section.

Fiducial phase space

We continue our comparison by considering differential distributions in the fiducial-1-JV
phase space. Here, we have selected a set of leptonic observables that are directly measured
by the experimental analyses, cf. Refs. [328, 329], and which represent well the general
features of all observables we considered. To this end, Figure 4.23 shows the distributions
in the transverse momentum of the leading lepton (pT,`1), in the invariant mass (m``),
transverse momentum (pT,``), rapidity (y``) and azimuthal difference (∆φ``) of the dilepton
pair, and in an observable particularly sensitive to new physics effects [335], defined
through the separation in η of the two leptons:

|cos(θ?)| = |tanh (∆η``/2)| . (4.42)

Similar to the setup-inclusive in the previous section, we find that MiNNLOPS and
NNLOPS predictions are compatible with each other. However, as already observed for
the fiducial cross section, there is a ∼ 2.5% shift in the central value that is related to the
applied jet veto. While this shift is covered by the nominal scale uncertainties with just
touching bands, we stress again that a more realistic assessment of the actual uncertainties
related to the jet veto would further improve the compatibility between MiNNLOPS
and NNLOPS results. Indeed, in terms of shapes of the distributions they are already
remarkably close. Also in the case with fiducial cuts, an important observation is that the
inclusion of NNLO corrections on top of the MiNLO′ is crucial not only for the correct
normalization, but for many observables to capture relevant shape effects. Moreover, the
NNLO-accurate predictions are substantially more precise due to their strongly reduced
uncertainty bands with respect to MiNLO′. We further notice that the impact of parton-
shower emissions on observables with NNLO accuracy is quite moderate. Nevertheless, at
phase-space boundaries where the fixed-order accuracy is reduced and the perturbative
expansion breaks down due to effects from soft QCD radiation, the parton shower is
absolutely crucial for a physical description. For instance, this can observed in the pT,``

distribution, where we have added the fixed-order NNLO prediction for comparison.
Since the pT,miss > 20 GeV requirement in fiducial-1-JV setup translates directly into a
pT,`` > 20 GeV cut at LO, where the two leptons are back-to-back with the two neutrinos,
the region pT,`` ≤ 20 GeV is filled only upon inclusion of higher-order corrections and is
effectively only NLO accurate. As a result, the boundary region pT,`` ∼ 20 GeV becomes
sensitive to soft-gluon effects that induce large logarithmic corrections and a perturbative
instability [271] at pT,`` = 20 GeV in the fixed-order NNLO prediction. This unphysical
behaviour is cured through the matching to the parton shower in the MiNNLOPS and
NNLOPS calculations.

It is clear that our new MiNNLOPS predictions compare very well with the previous
NNLOPS results, and that the two tools can be used equivalently to produce W+W−
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Figure 4.23: Differential distributions in the fiducial-1-JV phase space.
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cross sections and distributions at NNLO accuracy matched to parton showers. This is
also an indication of the robustness of NNLO+PS predictions for observables that are
genuinely NNLO accurate. Given the limitation of the NNLOPS calculation regarding the
necessity of multi-dimensional reweighting, the advantage of the MiNNLOPS generator is
that those results can be obtained directly at the level of the event generation. However,
in the few phase-space regions where differences between the two calculations can be
observed, those differences indicate relevant corrections beyond NNLO accuracy. Since
plain 7-point scale variations do not always cover those discrepancies, they should be
regarded as a perturbative uncertainty.

In the next section we will move to observables that are subject to large logarithmic
corrections and where differences between the MiNNLOPS and NNLOPS generator are
larger. Thus, their assessment as an uncertainty becomes particularly important.

4.3.5 Observables sensitive to soft-gluon effects

In this section, we study distributions sensitive to soft-gluon radiation that require the
inclusion of large logarithmic corrections to all orders in QCD perturbation theory either
through a parton shower or through analytic resummation. In order to compare parton
shower numerical resummation against the analytic one, we additionally include in some
plots of this section curves for FO predictions matched to analytic resummation.

We begin the discussion with the results of Figure 4.24, where we study the transverse-
momentum spectrum of the W+W− pair (pT,WW ) in the fiducial-1-noJV phase space.
For these plots, predictions for NNLO+N3LL and NNLO+NNLL are reported with
a green, double-dash dotted and a brown, dash-double dotted line, respectively. We
refrain from showing the corresponding distribution in setup-inclusive and within the
fiducial-2-noJV phase space, as we found them to be almost identical concerning the
relative behaviour of the various predictions. At small values of pT,WW , large logarithmic
contributions break the validity of the expansion in the strong coupling constant at a
given fixed order, which requires their inclusion at all orders in perturbation theory either
through a parton shower or through an analytic resummation. The left figure displays
the region 0 ≤ pT,WW ≤ 50 GeV and, indeed, the NNLO prediction, which is shown
in the main frame only, becomes unphysical for small values of pT,WW . If we compare
MiNNLOPS and NNLOPS results in that region, we observe differences of about −10%
to +5%. By and large, those are covered by the respective uncertainty bands. However,
it is clear (and expected) that for such an observable, which is sensitive to infrared
physics, the differences between the two calculations become larger. In particular, both
predictions are only NLO accurate in the tail of the pT,WW distribution and at small
transverse momenta the parton shower limits the accuracy of the calculation effectively
to leading-logarithmic (LL) or partial (i.e. at leading colour) NLL accuracy. Therefore,
differences of the order of those that we observe between MiNNLOPS and NNLOPS are
understood. Also, the comparison against the high-accuracy analytic resummation results
at NNLO+N3LL and NNLO+NNLL is quite good, which also agree within −10% to
+5% with the MiNNLOPS prediction for pT,WW < 20 GeV and are even fully compatible
in the intermediate region up to 50 GeV. The resummed predictions do not favour either
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Figure 4.24: Distribution in the transverse momentum of the W+W− pair in the
fiducial-1-noJV phase space, showing a smaller (left plot) and a wider
range (right plot).

MiNNLOPS or NNLOPS results, but rather show similar differences from the two.
On the other hand, the agreement is actually quite remarkable considering the fact
that the region pT,WW < 20 GeV is entirely described by the substantially less accurate
parton shower. Given the fact that for some bins the NNLO+N3LL and NNLO+NNLL
predictions are outside the uncertainty bands of the NNLO+PS accurate predictions
though, the estimated uncertainties from µR and µF variations appear insufficient to
reflect the actual size of uncertainties and one should consider additional handles to
better assess the uncertainties of the parton shower at small pT,WW . Indeed, the NNLL
prediction has a much larger uncertainty band in this region (induced by the variation of
Qres) even though it is more accurate.

In the right plot of Figure 4.24, we show the range 0 ≤ pT,WW ≤ 250 GeV. In the tail
of the distribution, MiNNLOPS and NNLOPS (as well as MiNLO′) predictions are in
perfect agreement with fully overlapping uncertainty bands. In the lower frame we show
an additional curve given by the ratio of the central fixed-order NNLO prediction with
µ0 = 1

2 (mT,W+ +mT,W−) to the one with µ0 = mT,WW . It is very interesting to observe
that the ratio corresponds almost exactly to the NNLOPS/MiNNLOPS ratio at smaller
pT,WW . We recall that µ0 = 1

2 (mT,W+ +mT,W−) is the scale used in the reweighting of the
NNLOPS prediction, while µ0 = mT,WW is somewhat more similar to the one within the
MiNNLOPS approach. This suggests that the differences originating from terms beyond
accuracy at small pT,WW between the MiNNLOPS and NNLOPS are predominantly
induced by the different scale settings in the two calculations. In fact, for any distribution
(of the various ones we considered) where the NNLOPS/MiNNLOPS ratio becomes larger
than a couple of percent, we observe that the corresponding ratio of fixed-order NNLO
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Figure 4.25: Distribution in the transverse momentum of the W+W− pair in the presence
of a jet veto (fiducial-2-JV phase space), showing a smaller (left plot) and
a wider range (right plot).

predictions is either very similar or even larger.
In Figure 4.25 we consider the W+W− transverse-momentum spectrum in the presence

of a jet veto of p veto
T,j1

= 35 GeV using the fiducial-2-JV setup. Here we have also
included curves for NNLO+NNLL (green, double-dash dotted) and NLO+NLL (brown,
dash-double dotted) calculation. The relative behaviour between the MiNNLOPS,
NNLOPS, NNLO+NNLL and NLO+NLL results at small transverse momenta is rela-
tively similar to the one observed for the pT,WW distribution without jet veto in setup
fiducial-1-noJV. One main difference is that for this observable, which requires double
differential resummation in pT,WW and pT,j1 , the analytically resummed results are less
accurate and therefore feature larger uncertainty bands, rendering them more compatible
with the showered results. Indeed, the NLL uncertainty band is strongly increased at
small pT,WW and much larger than the NNLO+PS ones, which, as argued before, also
points to the fact that the scale uncertainties of the latter are somewhat underestimated,
given that the parton shower is less accurate than the NLL calculation in that region.
Another interesting region for this observable is around pT,WW values of 35 GeV, i.e. of
the order of the jet-veto cut. The region pT,WW ≥ p veto

T,j1
is filled for the first time at

NNLO, which is effectively only LO accurate, since at LO one has pT,WW = 0 and at
NLO pT,WW = pT,j1 . Therefore, large logarithmic contributions challenge the perturba-
tive expansion around pT,WW = p veto

T,j1
and the fixed-order NNLO prediction develops

a perturbative instability, as visible in the main frame of the left plot in Figure 4.25.
This instability is partially cured by the analytic resummation approach, which resums
Sudakov logarithms in the limit where pT,WW and pT,j1 are much smaller than the hard
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Figure 4.26: Jet-vetoed cross section (left plot) and jet-veto efficiency (right plot) in the
fiducial-1-noJV phase space.

scale, but not all logarithmic contributions of the form log(pT,WW − p veto
T,j1

), which would
require additional resummation when one or more hard jets are present. By contrast, the
NNLO+PS calculations cure this instability entirely as they resum all relevant classes of
logarithms (although with limited accuracy). Therefore, the MiNNLOPS and NNLOPS
calculations provide a more physical prediction at and above threshold, while below
the threshold they are in good agreement with the analytically resummed predictions.
If we look at the region above threshold in the right plot of Figure 4.25, we notice
that the NNLO result drops substantially for pT,WW values above p veto

T,j1
, and also the

NNLO+NNLL prediction is only slightly larger. Hence, this region of phase space is
almost exclusively filled by the parton shower. Consequently, the transverse-momentum
spectrum of a colour singlet in presence of a jet veto could be a good observable to tune
the parton shower in experimental analyses.

In Figure 4.26 we study the jet-vetoed cross section as a function of the jet-veto cut
p veto

T,j1
, which is defined as

σ(pT,j1 < p veto
T,j1

) =
∫ p veto

T,j1

0
dpT,j1

dσ
dpT,j1

, (4.43)

and the jet-veto efficiency given by

ε(p veto
T,j1

) = σ(pT,j1 < p veto
T,j1

)/σint , (4.44)

where σint is the integrated cross section in the fiducial-1-noJV phase space. Again the
results for setup-inclusive and fiducial-2-noJV are very similar and are not shown.
The interesting region is at small jet-veto cuts, where the validity of the perturbative
expansion is broken by large logarithmic contributions in p veto

T,j1
, while for larger values
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Figure 4.27: Jet-vetoed cross section in the fiducial-2-noJV phase space compared to
data. As described in the caption of Table 4.7 the data has been adjusted
by subtracting the ggLO contribution quoted in table 2 of Ref. [332] and by
dividing out a factor of two.

the results tend towards their respective integrated cross sections. As it can be seen
from the main frame, in the low p veto

T,j1
region the pure fixed-order result at NNLO

becomes indeed unphysical and turns actually negative. When comparing MiNNLOPS
and NNLOPS predictions, we find them to be in reasonable agreement within their
respective uncertainties, with the NNLOPS one tending a bit faster towards zero for
p veto

T,j1
. 20 GeV. In that region, the resummed NNLO+NNLL and NLO+NLL results

tend even faster towards zero, with the NNLO+NNLL curve being about 20% below the
MiNNLOPS one at p veto

T,j1
= 5 GeV. This region is dominated by the parton shower, which

resums only the LL (partial NLL) contributions. Clearly, the actual uncertainties in the
NNLO+PS calculations are not covered by plain µR and µF variations. As argued for
the pT,WW spectrum, additional handles would need to be considered to better assess the
parton-shower uncertainties for very small p veto

T,j1
cuts. Indeed, the NLL result features

much wider uncertainties, despite being more (similarly) accurate in that region of
phase space. However, we stress that such small p veto

T,j1
cuts are usually not relevant

for experimental W+W− analyses. Moreover, as pointed out before, there have been
suggestions to include more conservative uncertainty estimates for jet-vetoed predictions
[333, 334]. Since those effects are currently not accessed by any W+W− measurement,
we have not performed further studies in that direction here. For instance, looking at
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the fiducial phase-space definitions of Refs. [328, 329] that have been considered in this
work, jet-veto cuts of p veto

T,j1
= 25 GeV, 30 GeV and 35 GeV are used. For those values,

MiNNLOPS predictions are in good agreement with the NNLO+NNLL resummation, and
even down to p veto

T,j1
∼ 20 GeV they differ by less than 5% with overlapping uncertainties.

When comparing the predicted jet-vetoed cross section as a function of p veto
T,j1

in the
fiducial-2-noJV setup against data in Figure 4.27, it is clear that the MiNNLOPS and
the NNLO+NNLL predictions are compatible in the relevant region. The agreement with
data is good in either case, with the data points either marginally overlapping within one
standard deviation or being just outside this range. One should bear in mind however
that the normalization of the theory predictions can be increased by ∼ 5% just by using
a different PDF set, which yields even better agreement with data, as shown in Ref. [272].
Apart from that, it is clear that the inclusion of NNLO corrections brings the theory
predictions closer to data.

4.4 Reaching nNNLO+PS accuracy for ZZ production
Despite the fact that the cross section for ZZ production is smaller than the one for W±Z
or W+W− production, the decay to four charged leptons experimentally provides the
cleanest signature among massive diboson processes, since the final state does not involve
any particle eluding the detectors. Accordingly, experimental measurements for this
signal have already reached a remarkable level of precision. In particular, both ATLAS
and CMS collaborations have performed many measurements of ZZ production, the
latest of which at 13 TeV discussed in Ref. [336–341]. Those measurements are extremely
important, as for the other vector-boson pair production processes, to test the SM and
to constrain triple-gauge couplings. Moreover, ZZ is also an irreducible background to
on- and off-shell Higgs cross-section measurements, when the Higgs boson decays to four
charged leptons. These latter measurements are particularly relevant for the extraction
of the Higgs couplings and for constraining the Higgs width (see for instance [342, 343]
for some recent analyses). But the interest in these measurements is also motivated by
the possibility to disclose new physics scenarios (see for instance Ref. [344]).

In this section we describe how we include NNLO QCD corrections for ZZ production
in the quark-initiated channel using the MiNNLOPS method. Additionally, we also
present a NLO+PS Powheg calculation for the loop-induced gg → ZZ process. Despite
the fact that the latter channel starts contributing only at O(α2

s), so that its leading
order contribution formally enters only at NNLO, it is enhanced by the gluon PDFs.
Indeed, we have already commented in the previous section how the missing inclusion
of this contribution prevented us to compare the prediction of our W+W− generator
against data. Also for ZZ production, a fair data-theory comparison requires to account
for this channel. When the two contributions are combined, as presented in Ref. [220],
these results become the most advanced theoretical predictions for ZZ production at the
LHC, since they include the highest perturbative accuracy in QCD available to date.

Our discussion starts from considering the process

pp→ `+`−`(′)+`(′)− (4.45)
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for any combination of charged leptons `, `′ ∈ {e, µ, τ}. While at the matrix-element level
our calculation is based on the different-flavour channel ` 6= `′, at the event-generation
level arbitrary combinations of charged leptons can be considered, both with different
flavours ` 6= `′ and with same flavours ` = `′ (in the latter case interference effects when
exchanging the charged leptons, which are typically at the 1-2% level [345], are neglected).
Moreover, lepton masses are accomodated via reshuffling of the momenta in the event
generation. For simplicity and without loss of generality we consider only the process
pp→ e+e−µ+µ− here, which we will refer to as ZZ production in the following. By
including all resonant and non-resonant topologies leading to this process, off-shell effects,
interferences and spin correlations are taken into account. Sample diagrams are shown in
Figure 4.28 and they include:

(a) tree-level double-resonant t-channel ZZ production in the qq̄ channel;

(b) tree-level single-resonant s-channel Drell–Yan topologies in the qq̄ channel;

(c) loop-induced ZZ production in the gg channel.

The loop-induced gg contribution, including also the single-resonant Higgs mediated
diagrams, proceeds through a quark loop and, as we said, enters the cross section at
O(α2

s), i.e. it is part of the NNLO QCD corrections. Since this contribution is enhanced
by the large gluon-gluon luminosity at LHC energies, it yields a relatively large fraction
of the NNLO corrections [310, 311]. Moreover, it is known that at NLO QCD [346, 347],
i.e. O(α3

s), its relative correction is very sizable (about a factor of two). It is likely that
these corrections constitute the most significant contribution to ZZ production at O(α3

s),
since the O(α3

s) corrections to the qq̄ channel are not expected to be of the same size as
those at the previous perturbative order.

For our results we include the most accurate currently available information in QCD
perturbation theory for both the qq̄-initiated and the loop-induced gg-initiated processes,
and match them consistently with a parton shower. Thus, we calculate NNLO+PS predic-
tions in the qq̄ channel by means of the MiNNLOPS method, described in Section 4.4.1,
and NLO+PS predictions in the loop-induced gg channel using the Powheg approach, as

q
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q
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Figure 4.28: Sample Feynman diagrams for ZZ production with four charged leptons
in the final state. Panels (a) and (b): tree-level diagrams of the quark
annihilation (qq̄) channel; Panel (c): loop-induced diagram in the gluon-
fusion (gg) channel.
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presented in Section 4.4.2. Full top-quark mass effects are included everywhere, except for
the two-loop amplitudes. For the qq̄ channel they are expected to be small in the relevant
phase-space regions, while for the loop-induced gg contribution we have included them
approximately via reweighting in the two-loop correction (cf. section 4.4.2). We stress
that to avoid any overlap, our MiNNLOPS implementation of the NNLO+PS calculation
in the qq̄ channel does not include the loop-induced gg-initiated contribution. In this
way, all loop-induced gg contributions are correctly accounted for when combining the
former with our NLO+PS predictions for the gg channel. The possibility to incoherently
combine the two calculations relies on the fact that NLO corrections to the loop-induced
gluon-fusion channel can be formulated as a gauge-invariant set of contributions. We
dubbed the level of accuracy reached by our results nNNLO+PS, as the NLO corrections
to the gg channel are of O(α3

s). These corrections constitute the most significant part of
the N3LO calculation, as pointed out before.

4.4.1 MiNNLOPS for qq̄ → ZZ production

In this section we present the implementation of a NNLO+PS generator within the
Powheg-Box-Res framework for ZZ production in the qq̄ channel by means of the
MiNNLOPS method. Our NLO+PS generator for the loop-induced gg channel is
discussed in the next section. We stress that, while we distinguish these processes as qq̄
and gg, in their higher-order corrections of course all the relevant partonic initial states
are consistently included, with the exception of the gg loop-induced partonic channel in
the NNLO corrections to the qq̄ process, since this contribution is already accounted for
by our NLO+PS generator for the loop-induced gg channel.

Since no implementation for ZZ+jet production was available in Powheg-Box to
date, the first step was to implement this process in the Powheg-Box-Res framework.
We have implemented all relevant flavour channels and, in addition, adapted the routine
build_resonance_histories of Powheg-Box-Res such that it is capable of automat-
ically constructing the correct resonance histories. The tree-level single and double
real matrix elements for e+e−µ+µ−+1, 2-jet production and the one-loop amplitude for
e+e−µ+µ−+1-jet production are evaluated through OpenLoops [245–247].

In a second step, we have employed the MiNNLOPS method to obtain NNLO+PS
predictions for ZZ production in the qq̄ channel. In particular, we made use of the
implementation of the MiNNLOPS method that was developed for the first time for Zγ
production, as described in Sections 3.3.1 and 4.1. The respective tree-level and one-loop
qq̄ → e+e−µ+µ− amplitudes are also evaluated through OpenLoops, while the two-
loop helicity amplitudes have been obtained by extending the interface to Matrix [81]
developed in Ref. [217] to ZZ production. The evaluation of the two-loop coefficients in
this implementation relies on the code VVamp [316] and is based on the calculation of
Ref. [315].

As discussed in Section 4.3.1 for W+W− production, the evaluation of the two-loop
helicity amplitudes for massive diboson processes is particularly demanding from a com-
putational point of view. In Section 4.3.1 we circumvented the problem by constructing
a set of interpolation grids for the two-loop coefficients that achieves their fast on-the-fly
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evaluation. For ZZ production we pursue a different strategy: we exploit the possibility
of reweighting the events at the generation level (i.e. stage 4 in Powheg-Box) to
include the two-loop contribution. In combination with a suitable caching system of
the two-loop amplitude that we implemented, that allows us to omit the evaluation of
the two-loop contribution entirely in the calculation up to stage 4, where it needs to be
evaluated only once per event 17. To be more precise, we have implemented a new flag
(run_mode), which is accessible from the Powheg input file, and allows the user to switch
between four different ways of running the code (see also description in Appendix B.5).
Either the full calculation is performed including the two-loop contributions throughout
(run_mode 1), or one completely drops the NNLO corrections provided by MiNNLOPS,
specifically the terms D`F(pT) in Eq. (3.79), thus effectively reproducing MiNLO′ pre-
dictions (run_mode 2). Alternatively, the evaluation of the two-loop amplitude can be
omitted only in the grid setup, i.e. stage 1 in Powheg-Box, (run_mode 3), or completely
(run_mode 4). For all results presented in this work we run the code with the last option
run_mode 4, i.e. without evaluating the computationally expensive two-loop amplitude.
In this way, also the generation of the events is faster. However, once an event has been
accepted, it is reweighted such that the two-loop contribution is included by resetting
the run_mode keyword in the event reweight information of the Powheg input file. As a
result the two-loop amplitude is evaluated only once for each event, considerably improv-
ing the efficiency of the code. Moreover, following the same logic we can also compute
MiNLO′ weights in parallel to the generation of MiNNLOPS ones using the appropriate
setting for run_mode in the event reweight information. We have first validated our
implementation in an inclusive setup, requiring only a suitable Z-mass window for the
opposite-charge same-flavour dilepton pairs. Here we compared the inclusive cross section
at the LHE level obtained at stage 4 with the one computed at stage 2 when including the
two-loop contribution, finding excellent agreement. Another very robust cross-check of
the reweighting procedure is provided by the comparison of the MiNLO′ results obtained
directly or through reweighting, which also agree perfectly.

For the evaluation of the several convolutions with the PDFs entering the calculation
of D`F(pT), we employ hoppet [225]. This is the standard package used in MiNNLOPS,
as we have already discussed several times, together with the hplog package [265], for
the computation of the polylogarithms entering the collinear coefficient functions.

Many of the MiNNLOPS settings used to produce NNLO+PS accurate ZZ events are
similar to what discussed for W+W− in Section 4.3. In this context, to avoid spurious
contributions from higher-order logarithmic terms at large pT, we replace the logarithm
L = lnQ/pT, where we set Q = m4`, with a modified logarithm L̃ which is identical to L
below pT = Q/2 and smoothly vanishes at pT equal or larger than Q, as it was introduced
in Ref. [223]. As far as the renormalization and factorization scales are concerned, we
use the standard MiNNLOPS scale setting at small pT, while in the NLO ZZ+jet cross
section at large pT the scale setting is changed by activating the option largeptscales 1.

17 Note that in order for the caching to work properly and not having to reevaluate the two-loop amplitude
for every scale variation during the event reweighting, we have set the parameter rwl_group_events 1
in the input file, which ensures that the events are reweighted one-by-one instead of in batches.
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Figure 4.29: Sample Feynman diagram for a qq̄-initiated regular contribution to the
loop-induced gg channel at O(α3

s).

As done in Section 4.3, the Landau singularity is regulated by freezing the strong coupling
and the PDFs for scales below 0.8 GeV. Finally, as recommended for processes with jets in
the final state already at the LO, we turn on the option doublefsr 1 of the Powheg-Box
(see Ref. [263] for details). For the parton shower we have used the standard settings,
also for the recoil scheme (namely a global recoil scheme for initial state radiation, with
SpaceShower:dipoleRecoil 0).

4.4.2 NLO+PS for gg → ZZ production

As discussed before, the leading-order contribution to the loop-induced gluon-fusion
process enters the ZZ cross section at O(α2

s). Thus, it constitutes a NNLO correction
relative to the LO part of the qq̄ channel, but it is significantly enhanced by the large
gluon-gluon luminosities. It is therefore mandatory to include also the NLO corrections
to the loop-induced gluon-fusion contribution in any precision study of ZZ production
that compares theory and data.

We have implemented a NLO+PS generator for loop-induced ZZ production in the gg
channel within the Powheg-Box-Res framework. Note that in addition to continuum
ZZ production as shown in Figure 4.28 (c) we also include the contribution mediated by
a Higgs boson (or a single Z boson). The calculation of these loop-induced processes is
effectively of similar complexity as a NNLO calculation, as far as the amplitude evaluation
is concerned. Despite that, the matching to the parton shower through the Powheg
method, which is essentially automated in Powheg-Box-Res, can be applied to loop-
induced processes as well, without any further conceptual issue. However, such a NLO
calculation requires the evaluation of both one-loop and two-loop helicity amplitudes and
the process at hand is numerically substantially more demanding than a tree-level one,
since the evaluation time of the one-loop and two-loop amplitudes is much slower and
the stability of the one-loop matrix elements with one emitted real parton is challenged
in the infrared regions. To cope with these numerical issues, we have implemented and
exploited a number of handles within Powheg-Box-Res, which will be discussed below.

For the implementation in Powheg-Box-Res, we have specified the relevant flavour
channels and hard-coded also the resonance channels of the process, as the automatic de-
termination of the latter via the already mentioned routine build_resonance_histories
is not available yet for loop-induced processes. At NLO, all relevant partonic channels,
namely gg, gq, qg, qq̄ and the charge-conjugated ones, are included. To unambiguously
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define the NLO corrections to the loop-induced gluon-fusion process for each of those ini-
tial states, we follow the criterium introduced in Ref. [347], which consists in including all
diagrams that involve a closed fermion loop with at least one vector boson attached to it.
The one-loop amplitudes with zero and one jet are evaluated through OpenLoops [245–
247]. For this purpose, we have adapted the OpenLoops interface in Powheg-Box-Res
developed in Ref. [179] to deal with loop-induced processes. As a cross-check, we have also
interfaced Recola 18 [348, 349] to Powheg-Box-Res and found full agreement for all
one-loop amplitudes. For the two-loop helicity gg → `+`−`(′)+`(′)− amplitudes we exploit
their implementation within Matrix [81], which is based on the evaluation of the two-loop
coefficients through VVamp [315] from their calculation in Ref. [350]. To this end, we
have extended the interface of Powheg-Box-Res to Matrix developed in Ref. [217] to
include the gg → `+`−`(′)+`(′)− two-loop amplitudes. When it comes to evaluating these
two-loop coefficients through VVamp, the code can become once again very slow, with an
average time evaluation per phase-space point lasting from a few seconds to several tens
of seconds. Since this leads to a severe bottleneck in the calculation and especially in the
event generation, we have implemented a caching system for the two-loop corrections
and we include them only through event reweighting. This is very similar in spirit to
the way the two-loop hard function is included in the MiNNLOPS generator in the qq̄
channel, as described in the previous section. Our calculation includes the full top-quark
mass effects, except for the two-loop gg → `+`−`(′)+`(′)− amplitudes, where they are not
known to date 19. Instead, we follow the same approach as Ref. [347] and include them
approximately through a reweighting of the massless two-loop amplitude with the ratio
of the one-loop result including massive loops to the one with only massless loops. Since
here we are interested in the ZZ signal region, such reweighting is expected to work
extremely well. In fact, Ref. [353] recently confirmed that using an asymptotic expansion
in the top-quark mass leads to practically identical results as using such reweighting, as
long as one sticks to the validity range of the expansion itself.

During the course of the preparation of this work, Ref. [353] presented a completely
independent implementation of a NLO+PS generator for loop-induced ZZ production
in the gg channel within the Powheg-Box-Res framework. We have compared our
calculation to theirs both at the level of individual phase-space points and of the
integrated cross sections, and we have found perfect agreement when applying the
same approximation for the two-loop virtual corrections. Since, although developed
independently, the two calculations are essentially interchangeable (both developed in
Powheg-Box-Res using OpenLoops and VVamp), we advocate that it is equivalent
to use either code and combine the results subsequently with our MiNNLOPS generator
18 Recola is one more computer program for the evaluation of tree- and one-loop amplitudes at NLO

QCD and EW using SM Feynman rules, but also supporting different SM extensions, including
aTGC, EFT-operator contributions and so on. Different softwares for the automated generation
and evaluation of one-loop amplitudes have been encountered so far in addition to Recola, such as
OpenLoops (see foonote 2) or GoSam (see footnote 12): what distinguishes the various packages are
the actual algorithms and the ideas on which they are based on in order to render the entire workflow
as efficient and stable as possible.

19 For the case of on-shell gg → ZZ production the full top-quark mass dependence was recently
calculated in Refs. [351, 352].
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Figure 4.30: Predictions for ZZ production in the loop-induced gg channel at LO+PS

and NLO+PS. For reference also the LHE-level central result at NLO is
plotted. Shown are the distributions in the invariant mass and rapidity.

in the qq̄ channel to obtain nNNLO+PS accurate results.
To better control the numerical stability of the calculation we have implemented

settings similar to those reported in Ref. [353]: in particular we apply small (0.5 GeV)
generation cuts on the transverse momentum of the four-lepton system and of each Z
boson. Moreover, we exploit the stability system of OpenLoops and set the parameter
stability_kill2 0.01 to remove the remaining unstable points. We have further
modified the code in such a way that, whenever the real-emission contribution is set to
zero by one of the previous stability checks, also the respective counterterms entering
the FKS subtraction are set to zero. Finally, we use withdamp 0 in the input card of
the process in order not to split the real cross section into a singular and a remnant
contribution (as defined in Eq. (3.11)) as the considerably small value of the latter leads
to numerical issues when generating events. The same is true for the regular contribution
(introduced in Section 3.1) that contains only the qq̄ channel (see Figure 4.29 for a sample
diagram): after verifying that it is completely negligible, we have turned it off for all
results presented in this work.

Since in the upcoming section we study phenomenological results for the full pp →
e+e−µ+µ− process, we show some plots for the loop-induced gg channel separately in
Figure 4.30 and Figure 4.31, both at LO and at NLO. The settings and inputs that
we use here correspond to those introduced in Section 4.4.3 in the inclusive setup
(setup-inclusive) with just a Z-mass window applied between 60 GeV and 120 GeV.
The renormalization and factorization scales are set to µR = µF =

√
m2

4` + p2
T,4`, where
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Figure 4.31: Predictions for ZZ production in the loop-induced gg channel at LO+PS
and NLO+PS. For reference also the LHE-level central result at NLO is
plotted. Shown are the distributions in the transverse momentum of the
four-lepton system and in the transverse momentum of the leading jet.

m4` and pT,4` are the invariant mass and the transverse momentum of the four-lepton
system, respectively. Furthermore, the uncertainty bands are obtained through a standard
seven-point scale variation, and we employ the Pythia8 parton shower [124] with the
A14 tune [266] (see Section 4.4.3 for further details) to obtain the showered results
presented in Figure 4.30 and Figure 4.31. For the genuine NLO-accurate quantities shown
in Figure 4.30, namely m4` and the rapidity of the four-lepton system (y4`), we find
results that are completely in line with the findings of previous fixed-order calculations
[346, 347]: this is totally expected, since shower effects are negligible for those observables,
as one can see from the LHE results. In particular, NLO corrections are sizable and
increase the value of the inclusive cross section by almost a factor of two, with scale
uncertainties at the level of 10-15%. In certain phase-space regions, like in the tail of
the m4` distribution, the NLO corrections can even become significantly larger than
a factor of two. However, in those regions the relative impact of the loop-induced gg
contribution is reduced. When looking at the transverse-momentum spectrum of the
four-lepton system (pT,4`) and of the leading jet (pT,j1) in Figure 4.31, the importance
of matching to the parton shower becomes clear 20: at LO only the parton shower fills
those distributions and at NLO it still provides a substantial correction. In fact, in a
fixed-order calculation both observables would diverge, and therefore be unphysical, at
small transverse momenta. It is interesting to notice that the LO+PS result is actually
20 Note that, compared to the LO+PS results quoted for gg → ZZ, predictions at higher accuracy in

the presence of an additional radiated jet, possibly including zero- and one-jet merging, have been
presented in Refs. [354–356].
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higher than the NLO+PS one in the intermediate pT,4` region before it falls off steeply.
This region is completely filled by the shower, whose starting scale by default is set to
m4` in the LO calculation. The fact that m4` is on average relatively large explains why
the shower fills the spectrum even at such high transverse momenta.

4.4.3 Setup and cross section results

We now turn to presenting phenomenological results derived in the framework that we
have described so far for ZZ production. We start discussing the setup that we used for
the predictions reported in this section for integrated cross sections; the same setup is
also employed for the other differential predictions of the following section.

We consider proton–proton collisions at the LHC with a center-of-mass energy of
13 TeV and we specifically present predictions for pp→ e+e−µ+µ− production. We use
the complex-mass scheme [254] throughout and set EW inputs to their PDG [2] values:
GF = 1.16639× 10−5 GeV−2, mW = 80.385 GeV, ΓW = 2.0854 GeV, mZ = 91.1876 GeV,
ΓZ = 2.4952 GeV, mH = 125 GeV and ΓH = 0.00407 GeV. We set the on-shell top-
quark mass to mt = 173.2 GeV, and Γt = 1.347878 GeV is used. We determine the
other EW parameters in the Gµ scheme with the EW coupling αGµ =

√
2/πGµ|(m2

W −
iΓWmW ) sin2 θW | and the EW mixing angle cos2 θW = (m2

W − iΓWmW )/(m2
Z − iΓZmZ).

We use the NNPDF3.1 [357] NNLO set with αs = 0.118 via the lhapdf interface [224]
for all our predictions. For MiNLO′ and MiNNLOPS, the PDFs are read by lhapdf
and evolved internally by hoppet [225], as we already described for the other diboson
processes presented in previous sections. The central factorization and renormalization
scales are set as discussed in Section 3.3.2 for the MiNNLOPS ZZ generator in the qq̄
channel and as given in Section 4.4.2 for the loop-induced gg channel. Scale uncertainties
are estimated by varying µF and µR around their central values by a factor of two
in each direction, while keeping the minimal and maximal values with the constraint
0.5 ≤ µR/µF ≤ 2, according to the usual seven-point scale variation.

By combining the MiNNLOPS qq̄ results and loop-induced gg results at (N)LO+PS, we
obtain predictions for ZZ production at (n)NNLO accuracy matched to parton showers.
For all (n)NNLO+PS predictions presented in what follows we make use of the Pythia8
parton shower [124] with the A14 tune [266] (py8tune 21 in the input card). To validate

setup-inclusive setup-fiducial

Z-mass window 60 GeV< mZ1 ,mZ2 < 120 GeV 60 GeV< mZ1 ,mZ2 < 120 GeV

lepton cuts m`+`− > 4 GeV
pT,`1 > 20 GeV, pT,`2 > 10 GeV,
pT,`3,4 > 5 GeV, |η`| < 2.5,

m`+`− > 4 GeV

Table 4.8: Inclusive and fiducial cuts used to the define the setup-inclusive and
setup-fiducial phase-space regions [341]. See text for more details.
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our calculation and to show where shower effects are crucial, we compare (n)NNLO+PS
predictions obtained with MiNNLOPS and (n)NNLO fixed-order predictions obtained
with Matrix [81]. Additionally, we consider the inclusion of NLO EW effects. In the
Matrix predictions we set µR = µF = m4`, and we construct the scale-uncertainty
bands with the same canonical seven-point scale variation used for our MiNLO′ and
MiNNLOPS results.

Moreover, we compare our predictions with the most recent results by the CMS collab-
oration [341] within the fiducial volume defined in Table 4.8, denoted as setup-fiducial.
The reconstructed Z-bosons Z1 and Z2 are identified as follows: Z1 corresponds to the
opposite-sign same-flavour (OSSF) lepton pair with an invariant mass being the closest
to the Z-boson mass, while Z2 is the remaining OSSF lepton pair. Since here we only
consider the different-flavour channel (e+e−µ+µ−), the two Z bosons are unambiguously
reconstructed and this procedure only amounts to selecting which lepton pair is called Z1
and which Z2. Note that in the different-flavour channel the additional m`+`− > 4 GeV
cut in Table 4.8 has no effect, and just plays a role when considering a same-flavour
channel for the process (for instance e+e−e+e− or µ+µ−µ+µ−). Besides the fiducial
setup, we also consider an inclusive setup (dubbed setup-inclusive), where we only
require a Z-mass window between 60 GeV and 120 GeV for the two resonances.

In order to provide the most realistic comparison to experimental data, our final
predictions include effects from hadronization and multi-particle interactions (MPI). We
also include QED showering effects as provided by Pythia8. In order to prevent charged
resonances to radiate photons and photons to branch into lepton- or quark-pairs, we
set the two flags TimeShower:QEDshowerByOther and TimeShower:QEDshowerByGamma
to off.

Finally, we define dressed leptons by adding to the four-momentum of a lepton the
four-momenta of all photons within a distance ∆Rγ` =

√
∆φ2

γ` + ∆η2
γ` < 0.1.

Integrated cross section

We start the discussion of our results by first considering integrated cross sections. In
Table 4.9 we report predictions both in the inclusive and in the fiducial setup introduced
above for various perturbative calculations. Specifically, we consider MiNLO′ predictions,
and a number of predictions including NNLO corrections, both at fixed order and matched
to parton showers through MiNNLOPS: besides the complete NNLO predictions (that
include the LO loop-induced gg contribution), we provide the NNLO corrections to
the qq̄ channel (dubbed NNLOqq̄) and nNNLO cross sections (as defined before). For
completeness, we also quote nNNLO predictions combined with NLO EW corrections,
computed at fixed order with Matrix, either using an additive or multiplicative scheme
(see discussion at the end of this section). In the latter predictions we also take into
account the photon-induced contribution at LO and beyond 21. In order to compare our
predictions to fixed-order results, all MiNNLOPS (and MiNLO′) results of Table 4.9
21 We used the NNPDF31_nnlo_as_0118_luxqed [358–360] PDF set to compute fixed-order predictions

which include EW corrections, and verified that the (n)NNLO prediction is modified at the few
permille level with respect to the prediction obtained with NNPDF31_nnlo_as_0118.
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are obtained at parton level, without including hadronization, MPI or photon radiation
effects. We have checked explicitly that those effects have a negligible impact on the
integrated cross sections.

The MiNNLOPS prediction and the NNLO result are in excellent agreement with
each other both in the inclusive and in the fiducial setup. The perturbative uncertainty
at (n)NNLO(+PS) is at the 2-3% level. In particular, despite the fact that the loop-
induced gg process at LO (NLO) contributes only ∼ 6-8% (∼ 10-15%) to the NNLO
(nNNLO) cross section, the uncertainties of the (n)NNLO results are dominated by the
gluon-initiated contribution. The NLO correction for the loop-induced gg channel is
particularly sizable, almost doubling the LO contribution entering at α2

s, as discussed in
Section 4.4.2. Accordingly, the nNNLO central prediction is not included in the NNLO
uncertainty band.

The MiNLO′ result is 8-10% smaller than the MiNNLOPS result. Its uncertainty
band, which is considerably larger than the MiNNLOPS one, does not contain the central
(n)NNLO+PS prediction, because scale variations cannot account for the additional
loop-induced gg process entering at NNLO. We also note that the MiNLO′ uncertainty
band is larger than the NLO one, and it includes the NLO result. On the contrary, the
NLO uncertainty band is very small and neither MiNLO′ nor the NNLO central results
lie inside it.

Notwithstanding the excellent agreement between the nNNLO(+PS) result and the fidu-
cial cross section measured by CMS, the theoretical predictions should be supplemented
with EW corrections. Even though the main focus of this work has been to improve the
QCD accuracy of our predictions in such a way to reach a precision competitive with the
one of experimental measurements, when NNLO accuracy in QCD is achieved, the size
of NLO EW corrections can become comparably important. Therefore, here and in the
last part of the following section, we also perform a few studies on the impact of EW
effects on some of the observables that we consider.

As described in Ref. [361], NNLO QCD and NLO EW corrections can be combined
in an additive or multiplicative scheme 22. If we neglect the loop-induced channel for a
moment, we can enclose the higher-order perturbative corrections to the differential LO
cross section dσLO in the factors δQCD and δEW as follows:

dσNNLOQCD = dσLO(1 + δQCD) dσNLOEW = dσLO(1 + δEW) . (4.46)

Then, the two combination schemes can be written as:{
dσNNLOQCD+NLOEW = dσLO(1 + δQCD + δEW) additive scheme,
dσNNLOQCD×NLOEW = dσLO(1 + δQCD)(1 + δEW) multiplicative scheme.

(4.47)

22 As discussed in Ref. [361], if we denote by α the EW coupling, the multiplicative scheme presented
in Eq. (4.47) introduces extra terms of order O(αsα) and O(α2

sα) compared to the additive one. These
terms provide an estimate of mixed QCD-EW corrections, which can become sizeable when both
QCD and EW effects are relevant. Such an estimate is particularly reasonable when QCD and EW
corrections factorize, which is generally the case when both of them can be regarded as soft corrections
to the same hard underlying process. Anyway, one should bare in mind that factorization can be
spoilt in peculiar phase-space regions, where for instance giant QCD K-factors arise.
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σ(pp→ e+e−µ+µ−) [fb] setup-inclusive setup-fiducial

NLO (Matrix) 32.50(1)+1.9%
−1.6% 16.49(1)+1.9%

−1.6%

MiNLO′ 31.42(3)+6.3%
−5.0% 16.38(2)+6.0%

−5.0%

NNLOqq̄ (Matrix) 34.42(4)+1.0%
−1.0% 17.45(3)+1.0%

−1.0%

NNLO (Matrix) 36.57(4)+2.4%
−2.1% 18.84(3)+2.5%

−2.1%

nNNLO (Matrix) 38.31(4)+2.2%
−2.0% 19.96(3)+2.6%

−2.3%

nNNLO+NLOEW (Matrix) 36.43(7)+2.6%
−2.4% 19.00(4)+2.7%

−2.4%

nNNLO×NLOEW (Matrix) 35.63(7)+2.5%
−2.3% 18.58(4)+2.6%

−2.3%

NNLOqq̄+PS (MiNNLOPS) 34.36(3)+0.8%
−1.0% 17.45(3)+0.9%

−1.0%

NNLO+PS (MiNNLOPS) 36.50(3)+1.9%
−2.0% 18.90(3)+2.5%

−2.0%

nNNLO+PS (MiNNLOPS) 38.35(3)+2.1%
−2.0% 20.04(3)+2.5%

−2.0%

Extracted from CMS 13 TeV [341] 39.4± 0.7(stat)

±1.1(syst)± 0.9(theo)± 0.7(lumi)

20.3± 0.4(stat)

±0.6(syst)± 0.4(lumi)

Table 4.9: Integrated cross sections at various perturbative orders in both the
setup-inclusive and setup-fiducial region. In brackets we report the
statistical uncertainties, while scale uncertainties are reported in percentages.
We also report the inclusive and fiducial cross sections measured by the CMS
experiment in Ref. [341]. Since the measured inclusive cross section corre-
sponds to on-shell pp → ZZ production, we have multiplied the measured
cross section by a branching fraction of BR(Z → `+`−) = 0.03366, as quoted
in Ref. [341], for each Z boson and by a factor of two to compare with our
predictions for pp→ e+e−µ+µ− production. For the measured fiducial cross
section the CMS analysis includes both different-flavour (e+e−µ+µ−) and
same-flavour (e+e−e+e−, µ+µ−µ+µ−) decay channels of the two Z bosons.
We have therefore divided the measured fiducial cross section by a factor of
two to compare with our pp→ e+e−µ+µ− predictions.
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We notice that the inclusion of NLO EW corrections in the two different schemes has
a non-negligible impact on the nNNLO result and reduces the cross section by about
4-6% in the fiducial region, slightly deteriorating the agreement with the experimental
measurement. We note that EW effects include photon-initiated processes. These have
a negligible impact in the fiducial setup, where the leading lepton has a transverse
momentum larger than 20 GeV, and all leptons have a transverse momentum larger than
5 GeV. On the contrary, in the inclusive setup, without a minimal transverse momentum,
the photon-initiated contribution features a collinear divergence. To avoid this divergence,
the CMS analysis [341] imposed a transverse-momentum cut of 5 GeV on the leptons
in the evaluation of the photon-induced component. With this cut, they showed that
the photon-induced contribution is less than 1% of the total cross section. For this
reason, we set the photon-induced component to zero for the nNNLO+NLOEW and
nNNLO×NLOEW results in the inclusive case.

4.4.4 Differential distributions and comparison with CMS data
In this section we present our results for differential distributions. We start by comparing
the nNNLO+PS predictions obtained with MiNNLOPS against MiNLO′ and fixed-order
nNNLO predictions in the setup-inclusive. Then, in the last part of this section we
move on to consider the setup-fiducial and we compare our MiNNLOPS predictions
at nNNLO+PS with the data collected and analyzed by the CMS experiment [341].

Comparison against theoretical predictions

In Figure 4.32 we compare nNNLO+PS predictions for MiNNLOPS with MiNLO′ and
nNNLO predictions at fixed order for four different distributions which are non-zero at
LO. In particular, we consider the invariant mass of the e+e− pair (me+e−), the invariant
mass (m4`) and the rapidity (y4`) of the diboson system, and the rapidity (yZ1) of the
Z boson whose invariant mass is closer to mZ . As we have already clarified, due to
the nature of the comparison, both the MiNNLOPS and the MiNLO′ predictions are
obtained at parton level, without including hadronization, MPI or photon radiation
effects. We observe a very good agreement between the nNNLO+PS and the nNNLO
predictions, both for the central values and for the scale-variation bands. The latter
are at the few-percent level across the whole range shown in the plots, becoming larger
(about ±5%) at high m4`. Minor differences are visible in the tails of the distributions,
in particular at large m4`, where the nNNLO-accurate MiNNLOPS and fixed-order
predictions however still overlap. Indeed, in the large invariant-mass region scale choices
and terms beyond accuracy become increasingly important, as we pointed out for W+W−

production in Section 4.3.4 and as it was also extensively discussed for tt̄ production in
Ref. [362, 363]. The MiNLO′ result is in all cases about 15-20% smaller than the nNNLO
results, which provide mostly flat corrections to the distributions under consideration,
increasing slightly only at large m4`. We stress that the relatively flat QCD corrections
are a feature of the chosen distributions (in the inclusive setup) that does not apply in
general, as we shall see below. Although the MiNLO′ uncertainty is a factor of 3 larger
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Figure 4.32: Comparison between selected distributions computed with Matrix,
MiNNLOPS and MiNLO′. Upper panel: invariant mass of the e+e− pair
(left) and of the ZZ pair (right); lower panel: rapidity of Z1 (left) and of
the ZZ pair (right).
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Figure 4.33: Same as Figure 4.32, for the transverse momentum of the µ+µ− pair (left)
and of the leading jet (right).

than the MiNNLOPS and nNNLO ones, the MiNLO′ predictions do not overlap with
the nNNLO-accurate results. This is not unexpected since a large part of the difference
is caused by the loop-induced gg contribution. Since the latter is missing in the MiNLO′
predictions, the MiNLO′ scale variation can not account for this new production process,
which instead enters the nNNLO results. From the second ratio panel we can appreciate
the effect of the loop-induced gg contribution both at LO (comparing NNLO+PS to
NNLOqq̄+PS) and at NLO (comparing nNNLO+PS to NNLOqq̄+PS). It is clear from
the plots that due to the gluon flux the impact of the loop-induced gg process is more
prominent in certain phase-space regions. The LO (NLO) corrections, which inclusively
amount to ∼ 6-8% (∼ 10-15%) as pointed out before, contribute more significantly in the
bulk regions of the distributions, i.e. at the Z resonance in me+e− as well as for small
m4` and central rapidities.

In Figure 4.33 we show the same comparison for the transverse momentum of the µ+µ−

pair (pT,µ+µ−) and the transverse momentum of the leading jet (pT,j1) above 30 GeV. The
latter was constructed using the anti-kT algorithm [268] with a jet radius of R = 0.4 as
implemented in FastJet [269]. While pT,µ+µ− is already defined at LO, pT,j1 receives
its first contribution only at NLO and its accuracy is thus effectively reduced by one
perturbative order. The MiNNLOPS and the nNNLO results for pT,µ+µ− are in good
agreement with each other in the whole range shown here. The MiNLO′ result is more
than 20% smaller at low values of the transverse momentum, while it agrees with the other
two predictions at large values of pT,µ+µ− . Hence, this distribution shows that in general
QCD corrections are not uniformly distributed in phase space. By and large, the three
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Figure 4.34: Same as Figure 4.32, for the transverse momentum of the electron (left) and
of the leading lepton (right).

predictions for the transverse momentum of the leading jet display a good agreement,
especially in the tail of the distribution. The level of agreement between nNNLO and
MiNNLOPS is expected as both predictions are effectively nNLO accurate at large pT,j1 .
The residual scale uncertainties are at the 5-10% level and they are larger than those
in the other distributions, which is a direct consequence of the lower accuracy of the
predictions for this observable. Looking at the effect of loop-induced gg contribution in
the second ratio panel, we observe a rather peculiar behaviour with the nNNLO+PS
corrections being negative with respect to NNLO+PS for pT,j1& 80 GeV. However, this
is completely in line with the results presented in Figure 4.31 and it is a consequence
of the fact that the NNLO+PS predictions include only a LO+PS calculation for the
loop-induced gg process, which is not expected to accurately describe the high pT,j1 range
since it is filled entirely by the parton shower, which has no accuracy in this region.
This further underlines the need for including NLO corrections to the loop-induced gg
process. Indeed, after including the NLO corrections, the loop-induced gg contribution
reduces to 5% (and less) at high pT,j1 (comparing nNNLO to NNLOqq̄+PS), which is
more reasonable.

In figure 4.34 we show an analogous comparison for the transverse-momentum spectrum
of the electron (pT,e−) and of the leading lepton (pT,`1). For the pT,e− distribution we
observe excellent agreement over the whole range between the MiNNLOPS and the
nNNLO results, which is fully expected since this distribution should be affected very
mildly by resummation/shower effects. We have explicitly checked that a similar level
of agreement is obtained when considering the same comparison at NNLOqq̄ accuracy,
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as opposed to a calculation presented in Ref. [203] in the Geneva framework (that we
have already recalled on different occasions in Chapter 3), where differences between the
Geneva and fixed-order results are observed for pT,e− > 40 GeV. When comparing the
MiNNLOPS and the MiNLO′ predictions for the pT,e− spectrum we observe that the
effect of both the NNLOqq̄ corrections and the loop-induced gg contribution is particularly
pronounced in the bulk region of the distribution, where the MiNLO′ result is more
than 20% smaller than the nNNLO result. On the other hand, the transverse momentum
of the leading lepton is subject to shower effects, especially at low pT,`1 , and indeed
we observe a difference between the Matrix results and the MiNNLOPS predictions
below 40 GeV, which becomes increasingly larger the more steeply the MiNNLOPS
distribution falls when pT,`1 approaches zero. Above this value, the shower effects are
less pronounced and the two predictions are in good agreement. By comparing the
nNNLO+PS predictions to the NNLO+PS and NNLOqq̄+PS results we can see that
the impact of the loop-induced gg contribution is particularly relevant below 40 GeV,
and it is also predominantly responsible for the relatively large shower effects that we
observe. In fact, we have checked that for the NNLOqq̄+PS result the relative impact of
the shower is smaller than for the NLO+PS result in the gg channel, which is expected
considering the higher perturbative accuracy (and thereby logarithmic terms) already
included at fixed order in the qq̄ channel.

Finally, in Figure 4.35 we show predictions for the transverse momentum of the
diboson pair (pT,4`). In this case, we also show the NNLO+N3LL result obtained with
Matrix+RadISH [272], which interfaces Matrix [81] to the RadISH resummation
formalism [105, 274], using µR = µF = m4` and Qres = m4`/2 for the resummation
scale. Since Matrix+RadISH does not include the contribution stemming from the
loop-induced gg channel, we perform this comparison by considering only the qq̄-initiated
process, i.e. at the NNLOqq̄(+PS) level. At small values of the ZZ transverse momentum
we observe an excellent agreement between the NNLO+N3LL and the MiNNLOPS result,
especially considering the lower accuracy of the parton shower in that region; MiNNLOPS
is between 5% and 8% larger than the NNLO+N3LL prediction below 10 GeV and has a
larger uncertainty band reflecting its lower accuracy. On the other hand, the MiNLO′
result is O(10%) smaller than the NNLO+N3LL and the MiNNLOPS predictions and
its uncertainty band does not overlap with either of the more accurate results below
40 GeV. Fixed-order calculations actually lead to unphysical results in the small-pT,4`
region due to large logarithmic corrections, which need to be resummed to all orders.
Indeed, the NNLO result diverges at low transverse momentum, and its prediction differs
significantly from the ones including resummation effects. At larger values of pT,4` the
NNLO result is instead in agreement with the NNLO+N3LL, MiNLO′ and MiNNLOPS
predictions, as one may expect since all of them have the same formal accuracy in the
tail of the distribution.

In conclusion, we observe overall a very good agreement between MiNNLOPS, fixed-
order, and analytically resummed results across a variety of distributions, which provides
a robust validation of our calculation. The MiNLO′ result, despite the considerably
larger uncertainty bands, rarely overlaps with the (n)NNLO(+PS) predictions, thus
highlighting the importance of higher-order corrections to this process. Moreover, certain
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Figure 4.35: Same as Figure 4.32, for the transverse momentum of the ZZ pair for two
different ranges of pT,4`. In both plots, we also show the NNLO+N3LL result
computed with Matrix+RadISH [272].

observables require the resummation of large logarithmic contributions, which renders
the matching to the parton shower mandatory.

Comparison against data

In this section we compare our MiNNLOPS predictions at nNNLO+PS to the CMS
measurement presented in Ref. [341] in the setup-fiducial defined in Table 4.8. We
have generated the events and estimated the theoretical uncertainties as described in
Section 4.4.3. We note that in order to compare against data our predictions include
MPI and hadronization effects, as well as QED corrections in the shower approximation.

The comparison between MiNNLOPS predictions and experimental data is presented
in Figure 4.36. Altogether, we show predictions for six observables: the invariant mass
and the transverse momentum of the diboson pair (m4` and pT,4`), the sum of the
four individual transverse-momentum distributions of each final-state lepton (which
corresponds to the average of the lepton transverse-momentum distributions), the sum of
the two distributions of the transverse momentum of the reconstructed Z bosons (which
analogously corresponds to the average of the Z transverse-momentum distributions),
and the separation between the two Z bosons in the azimuthal angle (∆φZ1,Z2) and in the
η–φ plane (∆RZ1,Z2). In all cases, except for ∆φZ1,Z2 that has a kinematical endpoint at
∆φ = π, the last bin shown in the figures also includes the contribution of the overflow.

By and large, we observe a quite remarkable agreement between our predictions and
the experimental data. The invariant mass is well described at low m4`, but there is a
tendency of the data to undershoot the prediction at large m4`, with the last bin being
almost two standard deviations away. In this region EW corrections are known to be
important and they are only partly included here through the QED shower. Below,
we discuss how the inclusion of the NLO EW corrections at fixed order improves the
agreement with data in this region. The transverse-momentum distribution of the ZZ
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pair is also well described, except for a two-sigma deviation in the last bin, with a
remarkable agreement for pT,4` values below ∼ 100 GeV, where the all-order corrections
provided by the shower are particularly important. The two averaged distributions of pT,`i
and pT,Zi also compare very well to MiNNLOPS, with only deviations in the tail of the
distributions. In the last bins the experimental data are about two standard deviations
away from the theoretical predictions, which can again be related to the missing EW
corrections, as discussed below. The ∆φZ1,Z2 and the ∆RZ1,Z2 distributions are also very
well described by MiNNLOPS, with the data fluctuating (within one sigma, except for
one bin with a two-sigma deviation) around the central theoretical prediction across the
whole plotted range.

The comparison at the level of integrated cross section in Section 4.4.3 showed that the
inclusion of NLO EW effects has a small, but non-negligible impact in the fiducial setup.
Since in our comparison with data we include QED effects via parton-shower matching,
one may wonder whether the proper inclusion of NLO EW effects in a Monte Carlo
context, see e.g. Refs. [364, 365], would further improve the agreement with the data,
especially in the tails of distributions where EW logarithms are important. A possible
way to assess the impact of the EW corrections beyond the parton shower approximation
is to apply to the MiNNLOPS predictions a differential K-factor accounting for the NLO
EW corrections, that are computed at fixed-order accuracy.

We have done this exercise turning off the QED shower in the MiNNLOPS predictions
to avoid double counting. The central rescaled prediction is shown in the lower ratio
panels in Figure 4.36. We adopt as our default a factor K(×)

NLO EW, defined using the
multiplicative scheme nNNLO×NLOEW [361], which includes an estimate of mixed higher-
order corrections, divided by the nNNLO result. Note that for distributions starting
at NLO QCD we do not perform this additional comparison, since one would need to
compute the EW corrections to the ZZ+1-jet process. We find that the inclusion of NLO
EW corrections within this approximation improves the agreement with the experimental
data for the tails of the m4` and the averaged pT,Zi distributions, where the effects of EW
Sudakov logarithms 23 are expected to be visible. For the averaged pT,`i distribution their
impact is a bit milder, also because the distribution extends to lower values, and there is
no significant improvement compared to data. Furthermore, we would like to add some
comments on the effects of the QED shower below the m4` ∼ 2mZ threshold (where
QED effects are expected to be sizable) in light of its limited accuracy. First of all, we
verified that its effect is below 10% in the first bin of the m4` distribution in Figure 4.36,

23 As also described in a pretty recent review [366], the physical origin of large EW Sudakov correc-
tions as a peculiar EW effect can be easily understood as follows. Large logarithmic terms like
(α/s2

W ) log2(s/m2
W ) and (α/s2

W ) log(s/m2
W ) (with α the EW coupling and sW = sin θW ) arise from

the exchange of soft/collinear virtual massive gauge bosons at very high energy s. In QED and
QCD these terms cancel once the real-emission corrections are integrated out, with at most single
logarithmic terms from initial state radiation to be absorbed into bare PDFs (see our discussion in
Section 2.1.2). In the context of EW calculations, since the finite gauge boson masses put a physical
cutoff on the real integration and since EW gauge bosons are not protected by confinement, they
can be experimentally measured (or, to be more precise, reconstructed from their decay products).
Therefore, only a small fraction of EW bosons is unresolved and can be integrated out to compensate
for the large logarithms arising from virtual corrections.
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but it can become instead as large as 35% when considering the setup-inclusive for
the same bin. Moreover, we notice from Figure 4.36 that the approximation of the QED
shower in that region is in good agreement with the result including NLO EW effects.
This is not unexpected, because logarithmic contributions due to EW Sudakov effects are
small in that region and the first photon emission is the most relevant one for dressed
leptons.

The approximate inclusion of NLO EW corrections via a differential K-factor is
already enough to show the relevance of moving beyond QCD corrections for an accurate
description of LHC observables. Therefore, this simple exercise paves the way for a
consistent inclusion of NLO EW effects in our MiNNLOPS predictions with a complete
and consistent matching to QCD and QED showers.
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Figure 4.36: Comparison between the MiNNLOPS predictions and the CMS data of
Ref. [341] based on a 137 fb−1 13 TeV analysis for various observables. The
MiNNLOPS predictions include hadronization and MPI effects, as well as
QED effects as provided by the Pythia8 parton shower. See text for more
details.
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5 Conclusions

The leitmovif of this Thesis has been the high-level accuracy of theoretical predictions as
an indispensable ingredient for any potential progress in particle physics. In order to
benefit as much as possible from the LHC data and to catch up with the precision of
the experimental measurements, a realistic and accurate description of particle collisions
is required to the theory community. Due to the complexity of a collision event, which
is spread over different orders of magnitude in energy, many building blocks enter
its simulation: improving the theoretical description of each of them is an extremely
important task.

In this work we focused on the consistent combination of two of these constituent
blocks: fixed-order calculations and parton showers. In Chapter 2 we have recalled
the underlying ideas of the two approaches and we have presented different techniques
to simultaneously get the best out of them, namely merging and matching. Despite
the vast amount of available methods, event generators capable of reaching NNLO+PS
accuracy are by no means standard nowadays. Such a level of accuracy is obtained by
matching a NNLO QCD calculation with parton shower, in such a way that NNLO QCD
accuracy can be claimed for observables inclusive over QCD radiation, while preserving
the logarithmic precision of the parton shower itself.

The results presented in this manuscript paved the way toward NNLO+PS generators
for any colour-singlet production process. That has been achieved using the MiNNLOPS
method, that we presented in Chapter 3. The MiNNLOPS approach has various positive
features. First, NNLO corrections are calculated on-the-fly during the generation of the
events, with no need for further re-processing or reweighting of the events. Second, no
unphysical merging scale needs to be introduced to separate event samples of different
jet multiplicities. Moreover, when combined with transverse-momentum ordered parton
showers, the Powheg matching on which MiNNLOPS relies guarantees that the (leading)
logarithmic accuracy of the parton shower simulation is preserved.

As a validation of our MiNNLOPS method applied to non-trivial colour-singlet final
states, we reported results for diboson production processes in Chapter 4. In Section 4.1,
we have presented a novel calculation of NNLO+PS accurate predictions for Zγ production
at the LHC. That had been the first calculation of a genuine 2→ 2 process at this accuracy
that does not require an a-posteriori multi-differential reweighting. As a starting point
we have implemented NLO+PS generators for both Zγ and Zγ+jet production within
the Powheg-Box-Res framework. Then, the Zγ+jet generator has been extended to
include NNLO corrections to Zγ production by means of the MiNNLOPS method. The
two-loop virtual corrections were obtained from their implementation within the Matrix
framework, which has been treated as an external library properly linked to our code. A
substantial amount of work has been devoted to render the resulting generator numerically
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efficient, due to the complex singular structure of the phase space for processes involving
identified final state photons. The results obtained for Zγ effectively prepared the stage
for all NNLO+PS accurate diboson simulations.

In Section 4.2, we have described an extension of the Zγ generator including the
effects of anomalous triple gauge couplings at NNLO level. Although our implementation
applies also to the `+`−γ process, we focused on the νν̄γ final state, due to its particular
relevance for BSM searches. We followed the vertex-function approach for a consistent
inclusion of the anomalous couplings, in order to directly compare against experimental
results, but one should bear in mind that a direct translation from the anomalous coupling
to the EFT framework is possible. Reaching NNLO+PS accuracy in this context can be
highly relevant to improve the experimental bounds on anomalous triple gauge couplings.
Moreover, we showed that increasing the accuracy of νν̄γ simulations is also crucial
to reduce the uncertainty on the dominant background in dark-matter searches in the
photon plus missing energy channel.

In the remaining part of this work, we moved on to considering applications of the
MiNNLOPS method to production processes for a pair of massive gauge bosons. Results
for W+W− production have been presented in Section 4.3. We have performed the
calculation consistently in the four-flavour scheme with massive bottom quarks. By
dropping contributions with final-state bottom quarks, which are regulated by the finite
bottom mass, we have generated top-free W+W− events, as required to compare against
experiments, which apply jet-veto cuts to suppress the top-quark background. Our
new MiNNLOPS-based W+W− generator superseeds the NNLOPS results of Ref. [211],
where NNLO accuracy was achieved by a computationally expensive event reweighting:
MiNNLOPS includes NNLO corrections directly at event generation level, making the
simulation way more efficient. We found that the major bottleneck in our computation
was the evaluation of the two-loop amplitude. To improve the speed, we have constructed
four-dimensional grids of the coefficients that encode all the information required to
reproduce the full two-loop contribution. We have then used those grids to obtain the
coefficients at any given phase-space configuration through a four-dimensional cubic
spline interpolation, so as to reconstruct the two-loop amplitude on-the-fly. As a result,
the evaluation time of the two-loop contribution has been reduced by a factor of forty,
rendering it subleading with respect to the other parts of the calculation.

Since our W+W− generator does not include the luminosity-enhanced contribution
coming from the loop-induced gluon-gluon channel, a direct comparison against ex-
periments has not been possible. We accounted for this contribution in the results of
Section 4.4, where we presented a Monte Carlo event generator for Z-boson pair produc-
tion at the LHC. For the qq̄-initiated process we have matched NNLO QCD predictions to
parton showers using the MiNNLOPS method. Then, we have included the loop-induced
gg-initiated process, which contributes starting from O(α2

s), in the Powheg-Box-Res
framework at NLO QCD accuracy matched to parton showers. When combined, the
ensuing nNNLO+PS results constitute the most accurate theoretical predictions for this
process to date. Just as with W+W−, the evaluation of the two-loop contributions turned
out to be numerically highly demanding. In this case we made full use of the reweighting
facility of Powheg and introduced the possibility to evaluate the two-loop contributions

172



only at the very end of the event generation, considerably speeding up the calculation.
Our MiNNLOPS predictions have been extensively validated in many respects. For

observables inclusive over QCD radiation, MiNNLOPS results compare extremely well
against fixed-order NNLO calculations, despite the different treatment of terms beyond the
accuracy. But the matching to the shower is crucial for observables sensitive to soft-gluon
effects, where NNLO results fail to provide a suitable description. For these observables,
we also compared MiNNLOPS simulations with high-accurate analytically resummed
results for the transverse momentum of the colour-singlet system: despite the lower
logarithmic accuracy of the shower, MiNNLOPS results still provide a very reasonable
description. Moreover, they can automatically describe in a physically sound way even
those observables where multiple classes of enhanced logarithms simultaneously appear,
and which are hard to tackle analytically. Finally, we performed various comparisons of
our results with experimental data. For Zγ production in the `+`−γ channel, we found an
excellent agreement between our MiNNLOPS predictions and the latest ATLAS 13 TeV
data of Ref. [238]. We remind that the few discrepancies emerging for some observables
can be easily washed out by including QED effects, and especially photon radiation from
the final state leptons. For our nNNLO+PS predictions for ZZ production, we compared
against 13 TeV CMS data of Ref. [341]. In this case we also observed a remarkable
agreement both at the level of production rates and shapes of kinematical distributions,
with nNNLO+PS predictions and CMS data agreeing on almost all bins within one sigma.
In the few bins where the differences are at the two-sigma level we have shown that
the inclusion of NLO EW corrections removes those differences in most instances. That
suggests how consistently accounting for QED and NLO EW effects within MiNNLOPS
is a required step to further improve the description of LHC observables in some relevant
kinematic regions.

Therefore, from the results of this work it emerges quite clearly that our extension
of the MiNNLOPS method to any colour-singlet process is an essential reach on the
way to improve current Monte Carlo event simulations. From a theoretical perspective,
the achievements presented in this Thesis will represent a starting point for further
progresses in this research field. Moreover, we believe that our new event generators,
which are already available on http://powhegbox.mib.infn.it within the Powheg-Box-
Res framework (see also Appendix B for technical details on the download and usage of
the codes), will definitely be valuable tools for upcoming experimental analyses involving
gauge-boson pair production processes.
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Appendix A

Technical details of the Zγ generator

In this Appendix we collect some non-standard settings that we have implemented in
order to build our MiNNLOPS Zγ generator. In Section A.1 we explicitly present how
we handled the non-trivial singular structure of the Zγ phase space. In Section A.2
we report some subtleties involved in the projection from the Zγ+jet to the Zγ phase
space. Finally, in Section A.3 we comment on the impact of the inclusion of heavy-quark
loops. Even though these considerations were originally done for the `+`−γ channel,
presented in Section 4.1, they are also valid when running our generator in the νν̄γ
channel of Section 4.2. Clearly, in the latter case the discussion presented in Section A.1
simplifies, since no generation cuts or related suppression factors are required to avoid
the photon-pole divergence or the final-state collinear singularities of the photon with
the Z-boson decay products.

A.1 Improving the phase space sampling
Since the Born process for Zγ production, especially in the `+`−γ channel, involves a
number of QED and QCD singularities, we make use of Born and remnant suppression
factors to sample the phase space. Additionally, we introduce a number of small technical
cuts in the phase-space generation. In this Appendix we give all details about the
generation cuts and suppression factors that we have used to obtain the results presented
in Section 4.1 and partially also in Section 4.2.

We start by outlining the generation cuts that we employ. First, we introduce a
lower cut p cut

T,γ = 5 GeV on the photon transverse momentum, which is required to avoid
QED singularities related to collinear photon emissions from the initial states. We also
impose a similar cut of p cut

T,j = 1 GeV on the transverse momentum of the outgoing QCD
partons. A lower cut mcut

`` = 40 GeV on the invariant mass of the lepton pair is imposed
to avoid singular configurations in γ∗ → `+`− splittings. Note that, since the invariant
mass of the resonances are preserved when radiation is generated (both within Powheg
and the shower), any value mcut

`` equal or below the cut used in the analysis is allowed.
Furthermore, we require that the photon is isolated from leptons and QCD partons in
the final state. For this purpose, we introduce a cut m2

`γ = 0.1 GeV2, and we define a
smooth isolation as in Eq. (4.4) using Eref

T = εγpT,γ with δ0 = 0.05, εγ = 0.5 and n = 1.
All these generation cuts can be modified via the input card, but for consistency reasons
their values should be much smaller than the values used in the fiducial phase-space
definition at analysis level. Note that we have explicitly checked that removing the
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aforementioned generation cuts (once proper suppression factors are included) does not
have any impact beyond the numerical uncertainties for the Zγ observables considered
in Section 4.1 and 4.2. Nevertheless, we have kept them to avoid potential instabilities in
the generation of events 1.

The Born suppression factor that we adopt is constructed in factorized form

Bsupp = Fsupp(pT,γ) ·Gsupp(∆Rγ, `+) ·Gsupp(∆Rγ, `−) ·Hsupp(∆Rγ, j) , (A.1)

with

Fsupp(pT,γ) = (pT,γ)2

(pT,γ)2 + (p0
T,γ)2 , with p0

T,γ = 10 GeV , (A.2)

Gsupp(∆R) = (∆R)2

(∆R)2 + (∆R0)2 , with ∆R0 = 0.5 , (A.3)

and

Hsupp(∆R) = (∆R)2

(∆R)2 + (∆R0)2 , with ∆R0 = 0.2 . (A.4)

Since we apply an overall Sudakov form factor through MiNLO′/MiNNLOPS, we do
not need any suppression related to the outgoing parton for Zγ+jet production. It is
clear that, whenever a singularity is approached, the Born suppression factor in Eq. (A.1)
vanishes in such a way that the cross section times Born suppression factor itself remains
finite.

As discussed in Section 4.1.1, we have to deal with a remnant contribution which is
QCD regular, but QED singular. Accordingly, we introduce a remnant suppression factor
of the form

Rsupp = F supp(pT,γ) ·Gsupp(∆Rγ,`+) ·Gsupp(∆Rγ,`−) ·Hsupp(∆Rγ,j1)
· Hsupp(∆Rγ,j2) ·Hsupp(∆Rj1,j2) · Lsupp(pT,j2) , (A.5)

with

Lsupp(pT,j2) = (pT,j2)2

(pT,j2)2 + (p0
T,j2

)2 , with p0
T,j2

= 20 GeV . (A.6)

As usual in Powheg, the Born suppression is evaluated using the Born kinematics, while
the remnant suppression is evaluated using the kinematics of the real phase space. We
note that in our case it is not necessary to introduce the additional suppression factor
Lsupp(pT,j2), but we found that results converged more quickly if this additional factor is
also included.

1 Note that in the release of the code of the Zγ event generator these generation cuts are absent by
default, since they might induce effects in other fiducial setups and their values should be chosen
accordingly.
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A.2 Projection from the Zγ+jet to the Zγ phase space
The evaluation of the last term in Eq. (3.80) requires a projection from the Zγ+jet to
the Zγ kinematics. In this Appendix, we give details about this projection and comment
on configurations which after projection have pT,γ close to zero.

We denote by p1 and p2 the two incoming momenta, and by pγ , pZ and pj the momenta
of the photon, the Z boson and the jet in the final state. We define ptot = p1 + p2 − pj =
pγ + pZ . Our projection to the respective Zγ configuration is the one adopted for initial-
state radiation in POWHEG, which is described in Section 5.1.1 of Ref. [86] (cf. also
Appendix A of Ref. [213]). It consists of a longitudinal boost (by βL), such that, after
boosting, ptot has no z component (no component along the direction of the collision axis).
Then, a second boost (by ~βT) in the transverse plane, such that ptot has no transverse
component, is applied, followed by a final boost back in the longitudinal direction (by
−βL). We add a prime to all quantities after the first longitudinal boost and a double
prime to those after the second one. The boost vector of the transverse boost is then
given by

~βT = ~pT,j

E′tot
. (A.7)

After the second boost, the transverse momentum of the photon becomes

~p ′′T,γ = γT

(
~pT,γ + ~βTE

′
γ

)
, with γT = 1√

1− β2
T

. (A.8)

Therefore, after this boost, the condition ~p ′′T,γ = 0 is met if

~βT = −~pT,γ

E′γ
. (A.9)

By comparing Eq. (A.7) and (A.9) we see that ~pT,γ and ~pT,j must be anti-aligned.
Furthermore, since E′tot = E′γ + E′Z > E′γ it follows that pT,j > pT,γ. Accordingly,
any boost that leads to a vanishing transverse momentum of the photon in the Zγ
configuration has a jet that is harder than the photon in the Zγ+jet configuration. Since
for the photon we impose a transverse-momentum cut, these configurations are free of
any large logarithms, and the corrections from D`F(pT) of Eq. (3.84) entering Eq. (3.79)
in this region of phase space are strictly beyond our accuracy and can be safely dropped.

A.3 OpenLoops vs. MCFM implementation: heavy-quark mass
effects

In this Appendix, we provide additional information regarding the limitation of the
MiNNLOPS generator when using MCFM amplitudes by comparing the results presented
in Sections 4.1.4, 4.1.5, 4.1.6 and 4.1.7 against our alternative implementation that uses
OpenLoops amplitudes. As described in detail in Section 4.1, OpenLoops includes
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Figure A.1: Comparison of MiNNLOPS predictions using MCFM (blue, solid) and
using OpenLoops (brown, dash-dotted) for the distribution in the transverse
momentum of the leading jet (left plot) and of the Zγ system (right plot) at
Powheg stage 2 in ATLAS-setup-2 (see Section 4.1.3).

the full dependence on heavy-quark masses in the one-loop amplitudes, while in the
MCFM ones bottom-quark loops are included only partially and top-quark loops are
omitted entirely. To assess the validity of the approximations done within the MCFM
implementation with respect to including the full heavy-quark mass dependence, we
consider MiNNLOPS predictions at Powheg stage 2 using MCFM and OpenLoops. We
have compared all distributions that we produced in ATLAS-setup-1 and ATLAS-setup-2
(defined in Section 4.1.3) and found that for observables inclusive over QCD radiation
heavy-quark mass effects are at the level of the numerical uncertainties and can be safely
neglected. At variance, as far as observables that require hard/boosted jets are concerned,
heavy-quark mass effects become important and the MCFM and OpenLoops results
can differ substantially. For illustration and to provide relevant examples, Figure A.1
compares our MCFM (blue, solid) and OpenLoops (brown, dash-dotted) implementation
of MiNNLOPS for the transverse-momentum spectrum of the leading jet and of the Zγ
system in ATLAS-setup-2 at Powheg stage 2. Indeed, in the bulk of the cross section
at low transverse momentum heavy-quark mass effects are negligible. For pT & 150 GeV,
however, we can appreciate the increase of the OpenLoops result with respect to MCFM,
indicating the importance of heavy-quark mass effects and the limitation of the MCFM
implementation.
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Appendix B

Usage of the MiNNLOPS code for diboson
processes

In this appendix we present some practical details that are required to correctly access
to the diboson codes that have been used for the results described in Chapter 4. All
processes have been implemented within the Powheg-Box-Res framework and are
available as sub-folders inside the main POWHEG-BOX-RES directory. To keep the discussion
as general as possible, we refer to a general colour-singlet final state as F , where F
can be Zγ, W+W− or ZZ; accordingly, the corresponding process folder is denoted by
FJ. All technical details reported in this appendix can be found in the corresponding
folders of the processes, at the path POWHEG-BOX-RES/FJ/Docs/manual F-MiNNLO.pdf.
We start in Section B.1 with the description of the instructions of how to download and
compile the process code correctly. Then, in Section B.2, we briefly recall how to run
a process within the Powheg-Box framework. Section B.3 includes the description of
some process-specific parameters that can be adjusted from the input card of the process.
Finally, some general features on how to run the MiNNLOPS machinery are reported in
Sections B.4 and B.5.

B.1 Compiling the process
To obtain the desired code do

$ svn checkout --username anonymous --password anonymous
svn :// powhegbox .mib.infn.it/trunk/User -Processes -RES/FJ

inside the POWHEG-BOX-RES directory.
To use MiNNLOPS, Matrix [81] is required since it is used by MiNNLOPS as a

library. Therefore, one first needs to initialize Matrix (and compile OpenLoops, Ginac,
and CLN, or use a compiled version of them 1) in order for the code to be able to compute
the two-loop contributions needed to reach NNLO accuracy for inclusive colour-singlet
production. We recall that for W+W− and ZZ production the two-loop coefficients are
obtained from the public code VVAMP [316]. To initialize Matrix, you have to execute
from the POWHEG-BOX-RES folder 2:

1 The Matrix code makes use of OpenLoops for the generation of tree-level and one-loop amplitudes,
of Ginac, a C++ library for symbolic algebraic manipulation, and of CLN, a C++ library for arbitrary
precision arithmetic.

2 Note that you need to use Python version 2.
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$ cd MATRIXStuff
$ ./ matrix --minnlo_interface

which installs OpenLoops 2 [246], Ginac [367] and CLN [368] packages. If you would
like to use existing local installations of any of those programs, you need to set the correct
paths both in the file config/MATRIX configuration inside the MATRIXStuff folder, and
later also in the Makefile inside the FJ folder. If there the automatic installation (through
the matrix script) of Ginac or CLN fails you may check inside the external folder
for ginac-install and cln-install, respectively, and try to complete the compilation
inside those folders manually. Note that for Zγ production the installation of Ginac
and CLN is actually not strictly necessary, but it is done by default also for that process
for completeness, since needed by other diboson processes. If the user really wants to
avoid the installation of the two packages, one can also initialize Matrix as follows:

$ ./ matrix --minnlo_interface --no_cln --no_ginac

To compile the specific FJ code, one can now move to the FJ directory and run

$ make -j

For the code to correctly run, LHAPDF [224] and FastJet [269] need to be installed
and both lhapdf-config and fastjet-config should be recognized by the terminal, or
the corresponding variables inside the Makefile have to be set appropriately. Note that
the first compilation might take several hours to days (especially when running only on a
single core) due to the many files compiled for the two-loop amplitudes within VVamp.
Thus compiling on several cores is strongly recommended.

As described in Section 4.3, for the WWJ process the additional possibility to evaluate
the two-loop contribution with an interpolation strategy is available. In order to use the
interpolator the user shall download the interpolation grids and unpack them. Depending
on the interpolator running mode specified in the Makefile, a different set of interpolation
grids has to be downloaded. If the variable INTERPOLATOR in the Makefile is set to V0,
the interpolator will upload into memory the full set of grids for the two-loop coefficient
functions. In this case, the grids should be downloaded and unpacked using:

$ wget https :// wwwth.mpp.mpg.de/ members / wieseman / download / codes/
WW_MiNNLO / VVamp_interpolation_grids /
WW_MiNNLO_2loop_grids_full .tar.gz

$ tar xfz WW_MiNNLO_2loop_grids_full .tar.gz

(in case of protocol issues, you can try to download the grids from the same link using
curl -LO). If INTERPOLATOR=V1 (this is the default setting), the interpolator makes
partial use of a set of crossing relations among the two-loop coefficient functions to reduce
the number of grids to be loaded into memory. When compiling the code in this mode, a
smaller set of grids can be obtained doing

$ wget https :// wwwth.mpp.mpg.de/ members / wieseman / download / codes/
WW_MiNNLO / VVamp_interpolation_grids /
WW_MiNNLO_2loop_grids_reduced1 .tar.gz

$ tar xfz WW_MiNNLO_2loop_grids_reduced1 .tar.gz
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Finally, with INTERPOLATOR=V2 the interpolator takes full advantage of the crossing
relations mentioned above to reduce the needed grids even further. For this specific case,
a dedicated set of grids can be downloaded:

$ wget https :// wwwth.mpp.mpg.de/ members / wieseman / download /codes/
WW_MiNNLO / VVamp_interpolation_grids /
WW_MiNNLO_2loop_grids_reduced2 .tar.gz

$ tar xfz WW_MiNNLO_2loop_grids_reduced2 .tar.gz

The option INTERPOLATOR=V1 is recommended to get the best compromise between
memory usage and accuracy of the interpolation procedure. Once the grids are available,
in order to be used they have to be unpacked either into the WWJ directory or into the
current run directory, otherwise the program will abort with a proper error message.

B.2 Generation of events

The running of the code and the generation of diboson events is standard (as for a usual
Powheg process) and we summarize here the main points. First, to perform a full run
one can for example do

$ cd testrun -lhc
$ ../ pwhg_main

where testrun-lhc can be any directory containing a proper powheg.input card.
We provide a powheg.input-save card inside the suggested-minnlo-run folder for
a MiNNLOPS run; for Zγ production, specific input cards to run MiNNLOPS for `+`−γ
and ν`ν̄`γ final states can be found in the dedicated folders suggested-minnlo-run_llgam
and suggested-minnlo-run_nunugam, respectively. At the end of the run, the file
pwgevents.lhe will contain events for F production in association with one jet in the
LHE format. In order to shower them with Pythia8 [124] you need to have a separate
Pythia8 installation, and then simply execute:

$ make main -PYTHIA8 -lhef

from the FJ directory. Then, similarly to the generation of events, move to the directory
containing the input card and the generated event file to launch the shower program:

$ cd testrun -lhc
$ ../ main -PYTHIA8 -lhef

Note that without parallelization any diboson code will run for several hours/days
and still not get very accurate results, since these programs are numerically intensive.
Therefore, we do not recommend to run them without the Powheg parallel feature
(described in detail in POWHEG-BOX-V2/Docs/V2-paper.pdf). It allows to parallelize
different steps of the calculation and to recombine intermediate integration grids and
results. Indeed, it is turned on by default in the template input cards inside the
suggested-minnlo-run directories.
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B.3 Process-specific input parameters
We now comment on some important process-specific input settings in the powheg.input
file. We start from the description of the most relevant Zγ inputs in the subsection B.3.1,
together with the presentation of specific inputs to include the contribution of aTGCs
in subsection B.3.2. Then, we continue with inputs for W+W− and ZZ, respectively in
subsections B.3.3 and B.3.4.

B.3.1 Zγ–MiNNLOPS input parameters
The Zγ code can be run for a Z boson decaying either into charged leptons (`+`−γ) or
neutrinos (ν`ν̄`γ). The user can switch between the two decay modes by choosing the
proper value for the input parameter vdecaymode:

vdecaymode 1 ! Z decay products ( default 1): 0 for neutrino decay ,
# ! 1 for charged lepton decay

For vdecaymode 1 different decay modes for the Z boson can be selected:
e+e- 1 ! ( default 1) if 1, Z decays into electrons (only if
# ! vdecaymode 1)
mu+mu - 0 ! ( default 0) if 1, Z decays into muons (only if
# ! vdecaymode 1)
tau+tau - 0 ! ( default 0) if 1, Z decays into taus (only if
# ! vdecaymode 1)
leptonic_notau 0 ! ( default 0) if 1, Z decays into electrons and muons
# ! (only if vdecaymode 1)
leptonic 0 ! ( default 0) if 1, Z decays into electrons , muons and
# ! taus (only if vdecaymode 1)

Moreover, if massive_leptons 1, the charged lepton momenta are reshuffled according
to their physical masses at event generation level (while they are customarily set to zero
in Powheg stage 1 and 2):

massive_leptons 0 ! ( default 0) if 1, lepton momenta are reshuffled at
# ! event generation level to their mass values
e_mass 0.511d -3 ! ( default 0.511d -3) electron mass for reshuffling
# ! momentum at event generation level (used if
# ! massive_leptons =1)
mu_mass 0.1057 d0 ! ( default 0.1057 d0) muon mass for reshuffling momentum
# ! at event generation level (used if massive_leptons =1)
tau_mass 1.777 d0 ! ( default 1.777 d0) tau mass for reshuffling momentum
# ! at event generation level (used if massive_leptons =1)

For vdecaymode 0 all neutrino flavours are included at event generation level. If one
wants to account for all three neutrino families already from Powheg stage 1, you can
simply set sum_over_families 1:
sum_over_families 0 ! ( default 0) if 0, a factor of 3 accounting for all
# ! neutrino families is included only in the
# ! rad_branching variable at event - generation
# ! level ( otherwise it is included throughout the
# ! calculation )

When doing a Zγ+jet NLO+PS calculation (turning off MiNNLOPS and MiNLO′)
one may set the renormalization and factorization scales by changing
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fixedscale 0 ! ( default 1) if 0, use dynamical scale below (set
# ! by whichscale ); if 1, scale is fixed to Z- boson mass
# ! ( leave this to 0 when MiN(N)LO is used)
whichscale 1 ! ( default 0) only used if fixedscale =0:
# ! 0 = sqrt(M_Z ˆ2+ pt_gamma ˆ2) , 1 = M_llgamma
# ! ( leave this to 1 when MiN(N)LO is used)

By switching on or off the fixedscale input parameter, you can choose between a fixed
or dynamical scale, respectively. In the latter case, a specific dynamical scale can be
selected by changing the value of whichscale. When MiNLO′ or MiNNLOPS is turned
on, this scale setting is not used and instead the scales are set as described in Section 3.2
and 3.3.

Since already at LO the Zγ+1 jet phase space contains both QCD and QED singularities,
redirecting the numerical sampling of events into certain regions in phase space through
proper suppression factors can significantly improve the convergence of the numerical
integration (namely Powheg stage 1 and 2). Moreover, the event generation can be
made more efficient by splitting the squared real matrix element into a singular and
remnant contribution. These features can be controlled by the following set of input
parameters:

withdamp 1 ! ( default 1) if 1, split real amplitude into a singular
# ! and remnant contribution
suppmodel 1 ! ( default 1) if 1, the QED divergences are moved into
# ! the remnant
bornsuppfact 1 ! ( default 1) if 1, the Born suppression factor is
# ! included . Weighted events are generated . If 0 no
# ! suppression factor is included , and events are
# ! unweighted . A generation cut pt_j1_cut >0 must be
# ! supplied in the latter case
remnsuppfact 1 ! ( default 1) if 1, the remnant suppression factor is
# ! included

As standard in the POWHEG-BOX-RES code, by setting withdamp 1, the real amplitude is
split into a QCD singular and remnant contribution. If suppmodel is set to 1, the QED
divergences of the real amplitude are also included as part of the remnant definition (see
discussion in Section 4.1.1). Then, a born and a remnant suppression factor multiplying
the cross section during integration and a posteriori divided out again can be used to
suppress the event sampling in the QCD and QED singular phase-space regions. These
two factors are separately controlled by bornsuppfact and remnsuppfact, respectively.
The exact form of the suppression factors can also be tuned from the input by modifying
the parameters (as a reference, see also formulae reported in Appendix A.1):

ptj_suppfact 20 d0 ! ( default 20 d0) suppression of regions with jet(s) pt
# ! lower than ptj_suppfact -> if anommode is on , the
# ! default value is 50 d0
powj_suppfact 2 ! ( default 2) power controlling the ptj_suppfact term
pta_suppfact 10 d0 ! ( default 10 d0 /80 d0 for charged lepton / neutrino decay
# ! mode) suppression of regions with photon pt lower
# ! than pta_suppfact -> if anommode is on , the default
# ! value is 600 d0
ptnunu_suppfact 150 d0 ! ( default 150 d0) suppression of regions with pt of
# ! neutrino couple lower than ptnunu_suppfact -> only
# ! used if anommode is on
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powa_suppfact 2 ! ( default 2) power controlling the pta_suppfact term
DRal_suppfact 0.5 d0 ! ( default 0.5 d0) suppression of regions with charged
# ! lepton - photon DR distance lower than DRal_suppfact
# ! (not used for vdecaymode 0)
DRj_suppfact 0.2 d0 ! ( default 0.2 d0) suppression of regions with jet - photon
# ! (and jet -jet for remnant ) DR distance lower than
# ! DRj_suppfact
powdr_suppfact 2 ! ( default 2) power controlling the DRal_suppfact and
# ! DRj_suppfact terms

Each parameter can be used to suppress a specific singular region both in the born
and the remnant contribution. Notice that some default values can vary depending on
the selected Z decay channel via vdecaymode or on the value of the input parameter
anommode (see Section B.3.2).

To remove the phase-space regions associated with a QCD or a QED singularity of the
matrix element, a set of generation cuts can be applied and controlled from the input
(again, see discussion in Appendix A.1):

pt_j1_cut 1d0 ! ( default =1 d0) cut on the transverse momentum of the
# ! first jet ( equivalent to bornktmin )
pt_a_cut 5d0 ! ( default =5 d0) cut on the transverse momentum of the
# ! photon
m_lepg_cut 0.1 d0 ! ( default =0.1 d0 /0 d0 for charged lepton / neutrino decay
# ! mode) cut on lepton - photon invariant mass
invmass_min 40 d0 ! ( default =40 d0 /1d -3 for charged lepton / neutrino decay
# ! mode) cut on the charged lepton invariant mass to
# ! avoid photon pole (not needed in neutrino decay
# ! mode , unless for numerical stability )
# Frixione isolation parameters applied at generation level
smooth_dyn 1 ! ( default =1) 1: use Frixione isolation as in ATLAS
# ! -> Eˆ{ ref}_T= smooth_eps * pT_gamma
# ! 2: use Frixione isolation as in CMS
# ! -> Eˆ{ ref}_T= smooth_pt0 , uncomment
# ! smooth_pt0 below
smooth_eps 0.5 d0 ! ( default =0.5 d0) photon momentum fraction (used when
# ! smooth_dyn =1)
# smooth_pt0 1d0 ! ( default =1 d0) fixed maximal pT inside the photon
# ! cone (used when smooth_dyn =2)
smooth_R 0.05 d0 ! ( default =0.05 d0) maximal photon cone size
smooth_n 1d0 ! ( default =1 d0) exponent of the delta term in Frixione
# ! isolation formula

Note that the generation cuts are in principle not needed when the suppression factors are
used, but they allow for a faster convergence by avoiding potential numerical instabilities.
Anyway, it is worth reminding that, with the exception of the invariant-mass cut on
the dilepton system invmass_min (which is preserved by the born-to-real phase-space
remapping and exactly corresponds to an experimental analysis cut), their values need
to be much smaller than the cuts applied at analysis level.

The code can be run by computing all relevant matrix elements (with the exception
of the two-loop contribution, only available through the Matrix interface) either using
MCFM or OpenLoops 2. The relevant lines of the powheg.input file are

useOL 0 ! if 1, OpenLoops is used for computing the matrix
# ! elements , otherwise MCFM is selected
OL_CMS 1 ! ( default 1) if 1, use complex -mass scheme in OpenLoops
# ! (to compute EW couplings and internal masses )

184



B.3 Process-specific input parameters

OL_nf 6 ! ( default 6) number of flavours to use in virtual
# ! amplitude computation ( available values 5 and 6)
OL_onshellphoton 0 ! ( default 1) if 1, alpha (0)=1/137.036 is used for the
# ! coupling of on - shell photons ( default of OpenLoops 2)

By setting useOL 1, OpenLoops is used throughout the code. That allows the user
to choose the complex-mass scheme (if OL_CMS 1), to include exactly the effects of the
top mass in the one-loop contributions (if OL_nf 6), and to set the electroweak coupling
for the on-shell photon to its low energy limit α(0) ∼ 1/137.036 (if OL_onshellphoton
1). Note that, despite the higher flexibility, using OpenLoops can significantly reduce
the performance of the code (we noticed that the evaluation of the virtual contribution
is about a factor of 10 faster when using MCFM). Therefore, OpenLoops should be
used instead of MCFM only if any of the extra features (such as top-quark mass effects)
offered by OpenLoops are relevant.

It is possible to obtain directly events with multiple weights associated to scale variation
without the need to reweight a posteriori. For instance, if the powheg.input file contains
the following lines:

rwl_file ’-’
<initrwgt >
<weightgroup name=’First -Weights ’>
<weight id=’11’> renscfact =1.0 facscfact =1.0 </weight >
<weight id=’12’> renscfact =1.0 facscfact =2.0 </weight >
<weight id=’21’> renscfact =2.0 facscfact =1.0 </weight >
<weight id=’22’> renscfact =2.0 facscfact =2.0 </weight >
<weight id=’1H’> renscfact =1.0 facscfact =0.5 </weight >
<weight id=’H1 ’> renscfact =0.5 facscfact =1.0 </weight >
<weight id=’HH ’> renscfact =0.5 facscfact =0.5 </weight >
</initrwgt >

then the usual 7-point scale variation weights are produced. This feature is standard in
POWHEG-BOX-RES and is also available for the code of all other diboson processes presented
in this work.

B.3.2 Anomalous coupling specific parameters for Zγ–MiNNLOPS

The effects of anomalous triple gauge couplings (aTGCs) have been included for Zγ
production. Their impact can be studied using the following set of input parameters (see
Section 4.2 for further details):

anomcoup 1 ! ( default 0) if 1, compute aTGC contributions
hZ1 0 ! ( default 0) effective ZgZ CP -odd anomalous coupling
hZ2 0 ! ( default 0) effective ZgZ CP -odd anomalous coupling
hZ3 0 ! ( default 0) effective ZgZ CP -even anomalous coupling
hZ4 0 ! ( default 0) effective ZgZ CP -even anomalous coupling
hg1 0 ! ( default 0) effective Zgg CP -odd anomalous coupling
hg2 0 ! ( default 0) effective Zgg CP -odd anomalous coupling
hg3 0 ! ( default 0) effective Zgg CP -even anomalous coupling
hg4 0 ! ( default 0) effective Zgg CP -even anomalous coupling
anommode 0 ! ( default 0) activate resonance aware sampling
# ! accounting for extra resonance structure allowed
# ! by aTGCs
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If anomcoup 1, the contributions of the aTGCs are turned on in the computation of the
amplitudes up to NNLO QCD. The specific values of the aTGCs can be directly set from
the input card, as well. Moreover, the dedicated flag anommode for aTGC studies can be
used to improve the integration convergence in regions of phase space where aTGCs are
important, i.e typically in the tails of distributions. By setting anommode 1, the s-channel
resonance histories associated with the aTGCs are included and accounted for in the
resonance-aware sampling. Moreover, some default choices for the generation cuts or the
suppression factors are used (see Section B.3.1), unless a different choice is specified from
the input. We do not recommend to run without anommode 1 when including aTGCs.

The possibility to reweight events for different combinations of aTGCs is also allowed.
That can be obtained by adding to the standard reweighting list the keyword anomcoup=1,
followed by the values of the anomalous couplings for which the amplitudes should be
recomputed. In the following example the events are reweighted for different CP even
Z∗Zγ aTGCs for the central scale value (the first line simply computes the SM value by
setting anomcoup=0):

rwl_file ’-’
<initrwgt >
<weightgroup name=’First -Weights ’>
<weight id=’ aTGChZ30hZ40 ’> anomcoup =0 hZ3 =0.0 hZ4 =0.0 </weight >
<weight id=’ aTGChZ3mhZ40 ’> anomcoup =1 hZ3 =-5e -4 hZ4 =0.0 </weight >
<weight id=’ aTGChZ3phZ40 ’> anomcoup =1 hZ3 =+5e -4 hZ4 =0.0 </weight >
<weight id=’ aTGChZ30hZ4m ’> anomcoup =1 hZ3 =0.0 hZ4 =-5e -7 </weight >
<weight id=’ aTGChZ30hZ4p ’> anomcoup =1 hZ3 =0.0 hZ4 =+5e -7 </weight >
<weight id=’ aTGChZ3mhZ4m ’> anomcoup =1 hZ3 =-5e -4 hZ4 =-5e -7 </weight >
<weight id=’ aTGChZ3phZ4p ’> anomcoup =1 hZ3 =+5e -4 hZ4 =+5e -7 </weight >
</initrwgt >

In order to achieve a proper convergence of the code in the phase-space regions where
the effect of aTGCs is expected to be more relevant (i.e in the tails of transverse-
momentum distributions), the reweighting by different aTGCs at Powheg stage 4 should
be performed only if the code has been run with anommode 1 in all stages.

B.3.3 W+W−–MiNNLOPS input parameters

When doing a WW+jet NLO+PS calculation (turning off MiNNLOPS and MiNLO′)
one may set the renormalization and factorization scales by changing

runningscales 0 ! 0 = fixed scale 2* m_W ( leave this to 0 when MiN(N)LO
# ! is used. All scale settings is taken care of
# ! internally )
# ! 1 = M_WW , 2 = M_{T,W+}+ M_{T,W -}

When MiNLO′ or MiNNLOPS is turned on, the scale is not used and set as described
in Section 3.2 and 3.3.

Several decay modes can be selected by an appropriate flag in the powheg.input file:
e+e- 0 ! ( default 0) if 1, both Ws decay into electrons
mu+mu - 0 ! ( default 0) if 1, both Ws decay into muons
tau+tau - 0 ! ( default 0) if 1, both Ws decay into taus
e+mu - 1 ! ( default 1) if 1, W+ decays into a positron and W-
# ! into a muon
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mu+e- 0 ! ( default 0) if 1, W+ decays into an anti -muon and W-
# ! into an electron
leptonic 0 ! ( default 0) if 1, both Ws will decay into all
# ! combinations of leptons (e+e-,mu+mu -,e+mu -,mu+e-,
# ! tau+tau -,tau+e-,e+tau -,tau+mu -,mu+tau -)
leptonic_notau 0 ! ( default 0) if 1, both Ws will decay into all
# ! combinations of muons and electrons (e+e-,mu+mu -,
# ! e+mu -,mu+e -)
hadronic 0 ! ( default 0) if 1, both Ws will decay into all
# ! combinations of light quarks (u,d,s,c)
semileptonic 0 ! ( default 0) if 1, one W decays into leptons and the
# ! other W into light quarks
semileptonic_notau 0 ! ( default 0) if 1, one W decays into muons and
# ! electrons , and the other W into light quarks

If no condition is specified in the input card, the default decay channel is assumed, namely
e+mu-.

We note that in ref. [195] it was found that closed fermion loops slow down the
calculation considerably, yet provide no sizable effect in any considered distribution
(within the numerical accuracy considered). Hence, as a default (GOSAMDIR set to
GoSamlib nofboxes in the Makefile) the code runs without including closed fermion
loops, but we also provide the possibility to run with fermion loops by setting the variable
GOSAMDIR to GoSamlib in the Makefile, and recompiling the code from scratch.

B.3.4 ZZ–MiNNLOPS input parameters

The ZZ-MiNNLOPS code can be run for different leptonic and hadronic final states
(`+`−`′+`′−, `+`−`+`−, `+`−ν`′ν`′ , `+`−ν`ν`, qq̄q′q̄′, qq̄qq̄, `+`−qq̄). You can switch
between the different Z-boson decays choosing among the following settings:

###
# Decay channels of the two Z bosons (turn only one of the following to 1)
#
# 4l-DF -ZZ - each Z boson decays to a pair of leptons of different flavour (DF)
e+e-mu+mu - 1 ! ( default 0) if 1, one Z to electrons , one Z to muons
e+e-tau+tau - 0 ! ( default 0) if 1, one Z to electrons , one Z to taus
mu+mu -tau+tau - 0 ! ( default 0) if 1, one Z to muons , one Z to taus
4l_DF 0 ! ( default 0) if 1, ZZ decay to all combinations of
# ! leptons of DF (e-e+mu -mu+, e-e+tau -tau+,
# ! mu -mu+tau -tau +; e-e+mu -mu+ up to stage 3)

# 4l-SF -ZZ - both Z boson decay to a pair of leptons of same flavour (SF)
e+e-e+e- 0 ! ( default 0) if 1, both Zs decay to electrons
mu+mu -mu+mu - 0 ! ( default 0) if 1, both Zs decay to muons
tau+tau -tau+tau - 0 ! ( default 0) if 1, both Zs decay to taus
4l_SF 0 ! ( default 0) if 1, ZZ decay to four electrons , four
# ! muons or four taus (e-e+e-e+, mu -mu+mu -mu+,
# ! tau -tau+tau -tau +; uses e-e+e-e+ up to stage 3)
4 l_notau_SF 0 ! ( default 0) if 1, ZZ decay to four electrons or four
# ! muons (e-e+e-e+, mu -mu+mu -mu +; note: uses
# ! e-e+e-e+ up to stage 3)

# 2l2nu -DF -ZZ - one Z boson decays to leptons the other to neutrinos (only ZZ
# contributions )
e+e- nunu_DF 0 ! ( default 0) if 1, one Z to electrons , one Z to
# ! neutrinos
mu+mu - nunu_DF 0 ! ( default 0) if 1, one Z to muons , one Z to neutrinos
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tau+tau - nunu_DF 0 ! ( default 0) if 1, one Z to taus , one Z to neutrinos
2 l2nu_DF 0 ! ( default 0) if 1, one Z to all leptons , one Z to
# ! neutrinos (uses e-e+ nunu_DF up to stage 3)
2 l2nu_notau_DF 0 ! ( default 0) if 1, one Z to electrons or muons , one Z
# ! to neutrinos (uses e-e+ nunu_DF up to stage 3)
n_neutrinos_DF 3 ! ( default 3) sets the number of considered neutrino
# ! flavours : if 2 only neutrinos with flavour different
# ! of the leptons ; if 3 all three neutrinos included ,
# ! but the neutrino with SF as the lepton treated as
# ! DF , i.e. ZZ only

# 2l2nu -SF -ZZWW - one Z boson decays to leptons the other to neutrinos with same
# flavour (ZZ & WW)
e+e- nunu_SF 0 ! ( default 0) if 1, one Z to electrons , one Z to
# ! electron neutrinos
mu+mu - nunu_SF 0 ! ( default 0) if 1, one Z to muons , one Z to muon
# ! neutrinos
tau+tau - nunu_SF 0 ! ( default 0) if 1, one Z to taus , one Z to tau
# ! neutrinos
2 l2nu_SF 0 ! ( default 0) if 1, one Z to all leptons , one Z to
# ! corresponding neutrinos (it uses e-e+ nunu_SF
# ! up to stage 3)
2 l2nu_notau_SF 0 ! ( default 0) if 1, one Z to electrons or muons , one Z
# ! to corresponding neutrinos (it uses e-e+ nunu_SF
# ! up to stage 3)

# 4q-DF -ZZ , 4q-SF -ZZ , 2l2q -ZZ and 2q2nu -ZZ - final states including hadronic Z
# boson decays
4q_DF 0 ! ( default 0) if 1, ZZ decay to all combinations of
# ! light quarks of DF (uses e-e+mu -mu+ up to stage 3)
4q_SF 0 ! ( default 0) if 1, ZZ decay to all combinations of
# ! light quarks of SF (uses e-e+e-e+ up to stage 3)
2l2q 0 ! ( default 0) if 1, one Z to all charged leptons , one Z
# ! to all light quarks (uses e-e+mu -mu+ up to stage 3)
2q2nu 0 ! ( default 0) if 1, one Z to all neutrinos , one Z to
# ! all light quarks (uses e-e+ nunu_DF up to stage 3)

Moreover, if massive_leptons 1, the charged lepton momenta are reshuffled according
to their physical masses at event generation level, as already presented for Zγ in the
subsection B.3.1. The same holds for the charm and bottom quarks, whose momenta are
reshuffled at event generation level according to the mass values set from the input:

c_mass 1.40 d0 ! ( default 1.40 d0) charm mass for reshuffling momentum
# ! at event generation level
b_mass 4.92 d0 ! ( default 4.92 d0) bottom mass for reshuffling momentum
# ! at event generation level

As for the other diboson codes, when doing a ZZ+jet NLO+PS calculation (turning
off MiNNLOPS and MiNLO′) you may set the renormalization and factorization scales
by changing

fixedscale 0 ! ( default 1), if 0, use dynamical scale below (set by
# ! whichscale ); if 1, scale is fixed to Z- boson mass
# ! ( leave this to 0 when MiN(N)LO is used)
whichscale 1 ! ( default 0), only used if fixedscale =0
# ! 0 = sqrt(M_ZZ ˆ2+ pt_ZZ ˆ2) , 1 = M_ZZ ( leave this to 1
# ! when MiN(N)LO is used)

The code computes all relevant matrix elements using OpenLoops 2 (with the exception
of the two-loop contribution, which is obtained through the Matrix interface, using
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VVamp). The settings are hard-coded to the default values. In particular, the complex-mass
scheme is used (use_cms 1 in the OpenLoops 2 interface).

As far as the electroweak (EW) and other input parameters of the calculation are
concerned, the user can set them directly from the input file. In particular, the scheme
for evaluating the EW parameters can be chosen, where the Gµ scheme (ewscheme 1) is
the preferred choice.

ewscheme 1 ! ( default 1) if 1, ( complex ) Gmu scheme used , if 2
# ! alpha scheme used
gfermi 1.16639d -5 ! Fermi constant used as input for Gmu scheme
# alpha 0.00756246890 d0 ! alpha used as input for alpha scheme (used only
# ! when ewscheme =2)
zmass 91.1876 d0 ! Z- boson mass (also input for Gmu scheme )
wmass 80.385 d0 ! W- boson mass (also input for Gmu scheme )
hmass 125 d0 ! Higgs mass
tmass 173.2 d0 ! top - quark mass
bmass 0d0 ! bottom - quark mass ( should not be changed , since
# ! 5- flavour computation )
zwidth 2.4952 d0 ! Z- boson width
wwidth 2.0854 d0 ! W- boson width
twidth 1.44262 d0 ! Top - quark width
hwidth 0.00407 d0 ! Higgs width

The Gµ scheme (ewscheme 1) takes as inputs the complex masses mZ (computed from
zmass and zwidth) and mW (computed from wmass and wwidth) as well as the constant
Gµ (gfermi) to compute the EW coupling and the mixing angle, while in the α(0) scheme
the value of the input keyword alpha is used as input instead of Gµ.

B.4 MiNNLOPS-specific inputs
In this section we present the parameters in the powheg.input specifically related to
the MiNNLOPS implementation and so valid for all processes presented in this work
(and even the other MiNNLOPS processes implemented so far). One can activate
independently MiNLO′ or MiNNLOPS by setting the proper parameters in the input
card:

minlo 1 ! ( default 1) if 1, activate MiNLO ’
minnlo 1 ! ( default 0) if 1, activate MiNNLO_PS

Note that, if minnlo is switched on, minlo will be turned on by default as well.
The MiNNLOPS method achieves NNLO accuracy in the regions inclusive over QCD

radiation, while it is only NLO accurate in the regions of high transverse momentum
pT of the colour-singlet F . As already explained in Section 3.3.2, to avoid spurious
contributions one would like to switch off the genuine NNLO terms in regions where
pT is higher than a scale Q ∼ M , where M is the invariant mass of F . This results in
switching off the logarithms of the ratio of the two scales pT and Q and the jacobian
factor multiplying the NNLO corrections in the MiNNLOPS formula. To do that, one is
free to choose different prescriptions for modified logarithms. Those can be selected by
setting modlog_p in the input card:

modlog_p -1d0 ! ( default -1d0; only works when minlo and/or minnlo is

189



Appendix B Usage of the MiNNLOPS code for diboson processes

# ! set to 1)
# ! if >0d0 , activate modified logs and set the exponent
# ! if -1d0 , activate piecewise modified log version 1
# ! if -2d0 , activate piecewise modified log version 2
# ! piecewise modified log: log(Q/pT) for pT <Q/2;
# ! zero for pT >Q; smoothly interpolated in - between
# ! if 0d0 , -log(Q/pT) * theta (Q-pT) (not recommended )

By choosing a positive value for modlog_p, one selects the power of the ratio of pT

and Q entering the modified logarithms and the jacobian factor: the higher the power,
the faster the spurious NNLO contributions will go to zero at high pT. The values
-1d0 and -2d0 trigger the usage of a piecewise-defined modified logarithm, which is the
standard logarithm below Q/2 and exactly zero above Q. In-between those values, two
different functional forms may be chosen to smoothly interpolate between Q/2 and Q,
keeping the modified logarithms and its derivative continuous, by setting modlog_p -1d0
or modlog_p -2d0 (see code and Ref. [223] for further details). By setting modlog_p 0
(not recommended), the standard logarithm with a theta function is used, that sets both
the logarithms and the jacobian factor to zero for pT > Q. The setting modlog_p -1d0 is
the currently recommended choice.

To further suppress these spurious NNLO contributions in regions of high transverse
momentum pT, the hard scale Q entering logarithms in the MiNNLOPS procedure can be
chosen different from the invariant mass M of the colour-singlet final state by multiplying
it by an integer factor whose value can be fixed by changing kappaQ in the input card:

kappaQ 1d0 ! ( default 1d0) integer factor multiplying the hard
# ! scale Q entering the minnlo procedure

Notice that the default value is kappaQ 1d0. While setting kappaQ to values less than
one reduces the effect of NNLO contributions at high pT of the colour-singlet system, it
is not advisable to use any values above one.

In order for the renormalization and factorization scales to smoothly approach the
non-perturbative region at low pT, as described in Section 3.3.2 (see Eq. (3.85)), one may
set Q0 different from zero:

Q0 0d0 ! ( default 0.) cutoff of profiled scales

The higher Q0 is set the higher is the damping effect. Note that scales above about 2 GeV
should not be used, and our current recommendation is to keep the damping off, unless
there are instabilities related to the Sudakov, which have not been observed for any qq̄
initiated process so far.

Finally, at high pT, where predictions are only NLO accurate, one can decide to use
factorization and renormalization scales equal to the invariant mass of the colour singlet
or to the pT of the colour singlet. The latter would be more appropriate for energetic F
production. One can choose between the two options by setting largeptscales:

largeptscales 1 ! ( default 1) if 0, at large pt , use muR=muF =˜Q in
# ! fixed - order part; if 1, at large pt , use muR=muF=pt
# ! in the fixed - order part
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B.5 Running modes for MiNNLOPS

We provide different ways of running the MiNNLOPS code for a diboson process. This
code optimization has been first developed for ZZ production in Ref. [220], and then
made available to all processes. The user can decide whether the two-loop amplitudes,
needed to achieve NNLO accurate predictions for inclusive F observables, should be
included at different Powheg stages or just via event reweighting, but also whether
to compute MiNLO′ via event reweighting. These optimization options are crucial
for the computation of the two-loop contribution for massive diboson processes. On
the other hand, since the two-loop amplitudes for Zγ production are not particularly
time-consuming, such optimization for the two-loop amplitudes are not really needed in
that case, but it might still be useful to obtain MiNLO′ via event reweighting, instead of
doing a separate run. These options can be selected via run_mode in the powheg.input:

run_mode 1 ! ( default 1) Select running mode for treatment of
# ! 2-loop and D- terms . This provides the possibility to
# ! speed up the code by either including 2-loop through
# ! reweighting at event generation level , or evaluating
# ! 2-loop *only* from stage 2 on , or computing MiNLO
# ! through reweighting !
# ! 1 - standard running mode (2- loop fully included )
# ! 2 - compute MiNLO by turning off D- terms
# ! 3 - skip 2-loop computation at stage 1 only
# ! 4 - switch off 2-loop computation entirely (and
# ! include it via reweighting , see below )

By setting run_mode 1, the code will run normally and the two-loop contribution will
be included in all stages of the calculation. With option 2, the NNLO corrections of
the MiNNLOPS formula are set to zero, so that the code effectively generates MiNLO′
results, i.e. it runs exactly as if the minlo parameter but not the minnlo parameter was
on. In run mode 3, the Powheg integration grids are generated without the evaluation
of the 2-loop amplitudes, which are included only starting from Powheg stage 2. Finally,
run mode 4 turns off the 2-loop contributions entering the NNLO terms of MiNNLOPS,
which allows the user to include them only at the very last Powheg stage through event
reweighting. In particular, besides setting the input flag run_mode 4, this is obtained by
resetting the keyword run_mode to 1 in the reweighting list, for instance:

<initrwgt >
<weightgroup name=’First -Weights ’>
<weight id=’11’> renscfact =1.0 facscfact =1.0 run_mode =1 </weight >
<weight id=’12’> renscfact =1.0 facscfact =2.0 run_mode =1 </weight >
<weight id=’21’> renscfact =2.0 facscfact =1.0 run_mode =1 </weight >
<weight id=’22’> renscfact =2.0 facscfact =2.0 run_mode =1 </weight >
<weight id=’1H’> renscfact =1.0 facscfact =0.5 run_mode =1 </weight >
<weight id=’H1 ’> renscfact =0.5 facscfact =1.0 run_mode =1 </weight >
<weight id=’HH ’> renscfact =0.5 facscfact =0.5 run_mode =1 </weight >
</initrwgt >

In addition (or alternatively) one can obtain MiNLO′ via reweighting by resetting
run_mode to 2 in the reweighting block; for instance add:

<weight id=’11- MiNLO ’> renscfact =1.0 facscfact =1.0 run_mode =2 </weight >
<weight id=’12- MiNLO ’> renscfact =1.0 facscfact =2.0 run_mode =2 </weight >
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<weight id=’21- MiNLO ’> renscfact =2.0 facscfact =1.0 run_mode =2 </weight >
<weight id=’22- MiNLO ’> renscfact =2.0 facscfact =2.0 run_mode =2 </weight >
<weight id=’1H-MiNLO ’> renscfact =1.0 facscfact =0.5 run_mode =2 </weight >
<weight id=’H1 -MiNLO ’> renscfact =0.5 facscfact =1.0 run_mode =2 </weight >
<weight id=’HH -MiNLO ’> renscfact =0.5 facscfact =0.5 run_mode =2 </weight >

As described in Section 4.3.1, for the W+W− code a further optimization option
is available to the user, that can decide whether the two-loop amplitudes should be
computed using their time-consuming, but exact expressions, which rely on the public code
VVAMP, or making use of the interpolation approach, which is recommend to substantially
speed up the runtime. The two possibilities are controlled by the input parameter
use interpolator:

use_interpolator 1 ! ( default 0) if 1, activates interpolator instead
# ! of MATRIX + VVamp

In case the user wants to make use of the interpolator, the set of precomputed grids
required for this approach need to be separately downloaded and unpacked, as described
at the end of Section B.1.
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209

http://dx.doi.org/10.1007/JHEP01(2018)126
https://arxiv.org/abs/1711.03301
http://dx.doi.org/10.1103/PhysRevD.97.092005
https://arxiv.org/abs/1712.02345
http://dx.doi.org/10.1140/epjc/s10052-017-5486-1
http://dx.doi.org/10.1140/epjc/s10052-017-5486-1
https://arxiv.org/abs/1710.11412
http://dx.doi.org/10.1007/JHEP06(2018)027
https://arxiv.org/abs/1801.08427
http://dx.doi.org/10.1007/JHEP03(2017)061
https://arxiv.org/abs/1701.02042
http://dx.doi.org/10.1007/JHEP10(2018)180
https://arxiv.org/abs/1807.11471
http://dx.doi.org/10.1103/PhysRevD.96.112004
http://dx.doi.org/10.1103/PhysRevD.96.112004
https://arxiv.org/abs/1706.03948
http://dx.doi.org/10.1007/JHEP10(2017)180
https://arxiv.org/abs/1703.05236
http://dx.doi.org/10.1016/j.dark.2015.08.001
http://dx.doi.org/10.1016/j.dark.2015.08.001
https://arxiv.org/abs/1506.03116
http://dx.doi.org/10.1007/JHEP01(2015)037
http://dx.doi.org/10.1007/JHEP01(2015)037
https://arxiv.org/abs/1407.8257
http://dx.doi.org/10.1016/j.dark.2019.100371
https://arxiv.org/abs/1507.00966
http://dx.doi.org/10.1140/epjc/s10052-017-5111-3
https://arxiv.org/abs/1701.05379
http://dx.doi.org/10.21468/SciPostPhys.7.3.034
http://dx.doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
http://dx.doi.org/10.1007/JHEP11(2011)078
https://arxiv.org/abs/1107.5051
http://dx.doi.org/10.1016/j.physletb.2018.10.016
https://arxiv.org/abs/1806.05941
http://dx.doi.org/10.1007/JHEP11(2017)120
https://arxiv.org/abs/1705.00598


Bibliography

D. Rathlev and L. Tancredi, W+W− Production at Hadron Colliders in Next to Next to
Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001, [1408.5243].

[311] M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W+W−

production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08
(2016) 140, [1605.02716].

[312] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L.
Rainwater and T. Stelzer, MadGraph/MadEvent v4: The New Web Generation, JHEP 09
(2007) 028, [0706.2334].

[313] J. M. Campbell, R. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs
Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and
MCFM, JHEP 07 (2012) 092, [1202.5475].

[314] G. Cullen et al., GOSAM -2.0: a tool for automated one-loop calculations within the
Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001, [1404.7096].

[315] T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for
qq′ → V1V2 → 4 leptons, JHEP 09 (2015) 128, [1503.04812].

[316] The VVamp project, by T. Gehrmann, A. von Manteuffel, and L. Tancredi, is publicly
available, http://vvamp.hepforge.org.

[317] L. J. Dixon, A brief introduction to modern amplitude methods, in Theoretical Advanced
Study Institute in Elementary Particle Physics: Particle Physics: The Higgs Boson and
Beyond, pp. 31–67, 2014. 1310.5353. DOI.

[318] T. Gehrmann, T. Huber and D. Maitre, Two-loop quark and gluon form-factors in
dimensional regularisation, Phys. Lett. B622 (2005) 295–302, [hep-ph/0507061].

[319] R. J. Gonsalves, Dimensionally Regularized Two Loop On-shell Quark Form Factor, Phys.
Rev. D 28 (1983) 1542.

[320] W. van Neerven, Dimensional Regularization of Mass and Infrared Singularities in Two
Loop On-shell Vertex Functions, Nucl. Phys. B 268 (1986) 453–488.

[321] G. Kramer and B. Lampe, Integrals for Two Loop Calculations in Massless QCD, J. Math.
Phys. 28 (1987) 945.

[322] The Btwxt general-purpose, N-dimensional interpolation library, by N. Kruis,
T. Scimone and P. Sullivan, https://github.com/bigladder/btwxt.

[323] G. Birkhoff and H. L. Garabedian, Smooth surface interpolation, Journal of Mathematics
and Physics 39 (1960) 258–268.

[324] E. Catmull and R. Rom, A class of local interpolating splines, in Computer Aided
Geometric Design (R. E. Barnhill and R. F. Riesenfiled, eds.), pp. 317 – 326. Academic
Press, 1974. DOI.

[325] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics,
Chin. Phys. C40 (2016) 100001.

[326] Matrix+RadISH is an interface to RadISH within Matrix by S. Kallweit, E. Re, L.
Rottoli, M. Wiesemann, https://matrix.hepforge.org/matrix+radish.html.

[327] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur.
Phys. J. C 74 (2014) 3024, [1404.5630].

[328] ATLAS collaboration, M. Aaboud et al., Measurement of the W+W− production cross

210

http://dx.doi.org/10.1103/PhysRevLett.113.212001
https://arxiv.org/abs/1408.5243
http://dx.doi.org/10.1007/JHEP08(2016)140
http://dx.doi.org/10.1007/JHEP08(2016)140
https://arxiv.org/abs/1605.02716
http://dx.doi.org/10.1088/1126-6708/2007/09/028
http://dx.doi.org/10.1088/1126-6708/2007/09/028
https://arxiv.org/abs/0706.2334
http://dx.doi.org/10.1007/JHEP07(2012)092
https://arxiv.org/abs/1202.5475
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
https://arxiv.org/abs/1404.7096
http://dx.doi.org/10.1007/JHEP09(2015)128
https://arxiv.org/abs/1503.04812
https://arxiv.org/abs/http://vvamp.hepforge.org
https://arxiv.org/abs/1310.5353
http://dx.doi.org/10.5170/CERN-2014-008.31
http://dx.doi.org/10.1016/j.physletb.2005.07.019
https://arxiv.org/abs/hep-ph/0507061
http://dx.doi.org/10.1103/PhysRevD.28.1542
http://dx.doi.org/10.1103/PhysRevD.28.1542
http://dx.doi.org/10.1016/0550-3213(86)90165-3
http://dx.doi.org/10.1063/1.527586
http://dx.doi.org/10.1063/1.527586
https://arxiv.org/abs/https://github.com/bigladder/btwxt
http://dx.doi.org/10.1002/sapm1960391258
http://dx.doi.org/10.1002/sapm1960391258
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-079050-0.50020-5
http://dx.doi.org/10.1088/1674-1137/40/10/100001
https://arxiv.org/abs/https://matrix.hepforge.org/matrix+radish.html
http://dx.doi.org/10.1140/epjc/s10052-014-3024-y
http://dx.doi.org/10.1140/epjc/s10052-014-3024-y
https://arxiv.org/abs/1404.5630


Bibliography

section in pp collisions at a centre-of-mass energy of
√
s = 13 TeV with the ATLAS

experiment, Phys. Lett. B773 (2017) 354–374, [1702.04519].
[329] ATLAS collaboration, M. Aaboud et al., Measurement of fiducial and differential W+W−

production cross-sections at
√
s = 13 TeV with the ATLAS detector, Eur. Phys. J. C79

(2019) 884, [1905.04242].
[330] CMS collaboration, Measurement of the WW cross section pp collisions at sqrt(s)=13

TeV, https://cds.cern.ch/record/2160868.
[331] CMS collaboration, A. M. Sirunyan et al., W+W− boson pair production in

proton-proton collisions at
√
s = 13 TeV, Phys. Rev. D 102 (2020) 092001, [2009.00119].

[332] M. Grazzini, S. Kallweit, M. Wiesemann and J. Y. Yook, W+W− production at the LHC:
NLO QCD corrections to the loop-induced gluon fusion channel, Phys. Lett. B 804 (2020)
135399, [2002.01877].

[333] I. W. Stewart and F. J. Tackmann, Theory Uncertainties for Higgs and Other Searches
Using Jet Bins, Phys. Rev. D 85 (2012) 034011, [1107.2117].

[334] A. Banfi, P. F. Monni, G. P. Salam and G. Zanderighi, Higgs and Z-boson production with
a jet veto, Phys. Rev. Lett. 109 (2012) 202001, [1206.4998].

[335] A. J. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042, [hep-ph/0511115].
[336] CMS collaboration, V. Khachatryan et al., Measurement of the ZZ production cross

section and Z → `+`−`′+`′− branching fraction in pp collisions at
√
s=13 TeV, Phys. Lett.

B 763 (2016) 280–303, [1607.08834].
[337] ATLAS collaboration, M. Aaboud et al., ZZ → `+`−`′+`′− cross-section measurements

and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS
detector, Phys. Rev. D97 (2018) 032005, [1709.07703].

[338] CMS collaboration, A. M. Sirunyan et al., Measurements of the pp→ ZZ production cross
section and the Z→ 4` branching fraction, and constraints on anomalous triple gauge
couplings at

√
s = 13 TeV, Eur. Phys. J. C 78 (2018) 165, [1709.08601].

[339] CMS collaboration, A. M. Sirunyan et al., Measurement of differential cross sections for Z
boson pair production in association with jets at

√
s = 8 and 13 TeV, Phys. Lett. B 789

(2019) 19–44, [1806.11073].
[340] ATLAS collaboration, M. Aaboud et al., Measurement of ZZ production in the ``νν final

state with the ATLAS detector in pp collisions at
√
s = 13 TeV, JHEP 10 (2019) 127,

[1905.07163].
[341] CMS collaboration, A. M. Sirunyan et al., Measurements of pp→ ZZ production cross

sections and constraints on anomalous triple gauge couplings at
√
s = 13 TeV, Eur. Phys.

J. C 81 (2021) 200, [2009.01186].
[342] ATLAS collaboration, M. Aaboud et al., Constraints on off-shell Higgs boson production

and the Higgs boson total width in ZZ → 4` and ZZ → 2`2ν final states with the ATLAS
detector, Phys. Lett. B786 (2018) 223–244, [1808.01191].

[343] CMS collaboration, A. M. Sirunyan et al., Measurements of the Higgs boson width and
anomalous HV V couplings from on-shell and off-shell production in the four-lepton final
state, Phys. Rev. D 99 (2019) 112003, [1901.00174].

[344] U. Haisch and G. Koole, Probing Higgs portals with matrix-element based kinematic
discriminants in ZZ → 4` production, JHEP 04 (2022) 166, [2201.09711].

211

http://dx.doi.org/10.1016/j.physletb.2017.08.047
https://arxiv.org/abs/1702.04519
http://dx.doi.org/10.1140/epjc/s10052-019-7371-6
http://dx.doi.org/10.1140/epjc/s10052-019-7371-6
https://arxiv.org/abs/1905.04242
https://arxiv.org/abs/https://cds.cern.ch/record/2160868
http://dx.doi.org/10.1103/PhysRevD.102.092001
https://arxiv.org/abs/2009.00119
http://dx.doi.org/10.1016/j.physletb.2020.135399
http://dx.doi.org/10.1016/j.physletb.2020.135399
https://arxiv.org/abs/2002.01877
http://dx.doi.org/10.1103/PhysRevD.85.034011
https://arxiv.org/abs/1107.2117
http://dx.doi.org/10.1103/PhysRevLett.109.202001
https://arxiv.org/abs/1206.4998
http://dx.doi.org/10.1088/1126-6708/2006/02/042
https://arxiv.org/abs/hep-ph/0511115
http://dx.doi.org/10.1016/j.physletb.2016.10.054
http://dx.doi.org/10.1016/j.physletb.2016.10.054
https://arxiv.org/abs/1607.08834
http://dx.doi.org/10.1103/PhysRevD.97.032005
https://arxiv.org/abs/1709.07703
http://dx.doi.org/10.1140/epjc/s10052-018-5567-9
https://arxiv.org/abs/1709.08601
http://dx.doi.org/10.1016/j.physletb.2018.11.007
http://dx.doi.org/10.1016/j.physletb.2018.11.007
https://arxiv.org/abs/1806.11073
http://dx.doi.org/10.1007/JHEP10(2019)127
https://arxiv.org/abs/1905.07163
http://dx.doi.org/10.1140/epjc/s10052-020-08817-8
http://dx.doi.org/10.1140/epjc/s10052-020-08817-8
https://arxiv.org/abs/2009.01186
http://dx.doi.org/10.1016/j.physletb.2018.09.048
https://arxiv.org/abs/1808.01191
http://dx.doi.org/10.1103/PhysRevD.99.112003
https://arxiv.org/abs/1901.00174
http://dx.doi.org/10.1007/JHEP04(2022)166
https://arxiv.org/abs/2201.09711


Bibliography

[345] M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections
and distributions in NNLO QCD, Phys. Lett. B750 (2015) 407–410, [1507.06257].

[346] F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in
gluon fusion at the LHC, Phys. Rev. D92 (2015) 094028, [1509.06734].

[347] M. Grazzini, S. Kallweit, M. Wiesemann and J. Y. Yook, ZZ production at the LHC:
NLO QCD corrections to the loop-induced gluon fusion channel, JHEP 03 (2019) 070,
[1811.09593].

[348] A. Denner, J.-N. Lang and S. Uccirati, NLO electroweak corrections in extended Higgs
Sectors with RECOLA2, JHEP 07 (2017) 087, [1705.06053].

[349] A. Denner, J.-N. Lang and S. Uccirati, Recola2: REcursive Computation of One-Loop
Amplitudes 2, Comput. Phys. Commun. 224 (2018) 346–361, [1711.07388].

[350] A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for
gg → V1V2 → 4 leptons, JHEP 1506 (2015) 197, [1503.08835].

[351] B. Agarwal, S. P. Jones and A. von Manteuffel, Two-loop helicity amplitudes for gg → ZZ
with full top-quark mass effects, JHEP 05 (2021) 256, [2011.15113].

[352] C. Brønnum-Hansen and C.-Y. Wang, Top quark contribution to two-loop helicity
amplitudes for Z boson pair production in gluon fusion, JHEP 05 (2021) 244,
[2101.12095].

[353] S. Alioli, S. Ferrario Ravasio, J. M. Lindert and R. Röntsch, Four-lepton production in
gluon fusion at NLO matched to parton showers, Eur. Phys. J. C 81 (2021) 687,
[2102.07783].
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