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Zusammenfassung 1 

Zusammenfassung 

Die Intensivierung der Landnutzung ist die wichtigste anthropogene Ursache für den Verlust 

der biologischen Vielfalt in semi-natürlichen Grünlandhabitaten in Europa und stellt eine große 

Bedrohung für die Gesundheit und das Funktionieren der Ökosystemleistungen dar. Das 

größte Reservoir für die biologische Vielfalt ist das Habitat des Bodens, welches hauptsächlich 

aus Mikroorganismen wie Bakterien besteht. Sie spielen eine entscheidende Rolle im globalen 

Nährstoffkreislauf und bei der Zersetzung organischer Stoffe. Darüber hinaus beherbergen die 

bakteriellen Gemeinschaften im Boden viele pflanzenassoziierte Bakterien, die die Rhi-

zosphäre und das Wurzelinnere der Pflanzen besiedeln. Pflanzenassoziierte Bakterien spielen 

eine maßgebliche Rolle für die Fitness, Entwicklung, Ernährung und Widerstandsfähigkeit von 

Pflanzen gegenüber Umweltstressoren und bilden zusammen mit ihrem Wirt eine funktionelle 

Einheit, die als Pflanzenholobiont bezeichnet wird. Trotz ihrer Bedeutung für die Gesundheit 

der Pflanze ist die Auswirkung von Intensivierung der Landnutzung auf pflanzenassoziierte 

Bakterien unklar. Um zu verstehen, wie sich die Landnutzungsintensität (LUI) auf die komplexe 

Beziehung zwischen der Pflanze und den mit ihr assoziierten Bakteriengemeinschaften aus-

wirkt ist es wichtig, Einblicke in die Faktoren zu gewinnen, die die Vielfalt und Zusammenset-

zung der assoziierten Bakteriengemeinschaften beeinflussen.  

In diesem Zusammenhang zielt die aktuelle Studie darauf ab, die Vielfalt und Zusammenset-

zung der Bakterien im Boden, der Rhizosphäre und der Wurzelendosphäre des mehrjährigen 

Futtergrases Dactylis glomerata L. zu analysieren und deren Reaktion auf LUI zu beobachten. 

Die über verschiedenen Jahreszeiten verteilten Probenahmen ermöglichten die Untersuchung 

des Einflusses von LUI während verschiedener Entwicklungsstadien der Pflanze (vegetatives, 

reproduktives und Seneszenz Stadium), die Beschreibung von LUI-abhängigen Kernmikrobi-

omen und die anschließende Identifizierung potenzieller bakterieller Schlüsselakteure inner-

halb des Pflanzenholobionts.  

Die Analyse zeigte, dass sich sowohl die Vielfalt als auch die Zusammensetzung der bakteri-

ellen Gemeinschaft in der Wurzelendosphäre erheblich von den anderen Kompartimenten un-

terscheidet, was zu einer sehr unterschiedlichen bakteriellen Struktur führt. Im Gegensatz 

dazu waren die bakterielle Vielfalt und Zusammensetzung in der Rhizosphäre und im Boden 

vergleichbar. Die LUI hatte während aller Probenahmezeiten einen starken Einfluss auf die 

bakteriellen Gemeinschaften im Boden und beeinflusste sowohl das Vorhandensein oder Feh-

len als auch die Häufigkeit der bakteriellen Taxa. Das Ausmaß der Auswirkungen von LUI 

nahm jedoch in der Rhizosphäre ab, in der lediglich die An- und Abwesenheit bestimmter Bak-

terien festgestellt werden konnte. Trotz des Einflusses von LUI auf den Boden und die Rhi-

zosphäre blieben die bakteriellen Zusammensetzungen in der Wurzelendosphäre relativ stabil 
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und kongruent. Nur einige wenige, seltene Taxa waren in den verschiedenen Entwicklungs-

stadien der Pflanzen betroffen. Darüber hinaus wurde ein signifikanter Wechsel in der An- und 

Abwesenheit bestimmter Taxa während der Reproduktionsphase der Pflanzen beobachtet. 

Diese Veränderung in der Zusammensetzung der Bakterien konnte auf eine veränderte Nähr-

stoffverfügbarkeit zurückgeführt werden, die sich in der Menge an Nitrat und Ammonium im 

Boden widerspiegelt und stark mit der LUI korreliert. Somit wurde die LUI als ein Hauptfaktor 

für Veränderungen identifiziert, da eine Feedbackschleife ausgelöst wird. Dieser Effekt ist vor 

allem auf Flächen mit niedriger LUI zu beobachten. Die geringe Nährstoffverfügbarkeit übt 

Druck auf die Selektionskraft der Pflanze aus, um eine vorteilhafte Kolonisierung von endop-

hytischen Gemeinschaften zu etablieren. Dadurch kompensiert die Pflanze ihre wechselnden 

Stoffwechselbedürfnisse in verschiedenen Entwicklungsstadien. Infolgedessen konnte bei 

niedriger LUI eine verstärkte Interaktion zwischen der Pflanze und dem sie umgebenden Bo-

den festgestellt werden. Diese Ergebnisse wurden durch eine Analyse der Kernmikrobiome 

zwischen den verschiedenen LUI-Niveaus ergänzt, welche eine höhere Variabilität bei niedri-

ger LUI über die Entwicklungsstadien der Pflanze sowohl in der Rhizosphäre als auch in der 

Endosphäre ergab. Trotz dieser dynamischen Anpassung wurde eine Reihe von bakteriellen 

Taxa unabhängig von den Entwicklungsstadien der Pflanze und der LUI gefunden, die so ge-

nannten potenziellen Schlüsseltaxa, die vermutlich eine zentrale Funktion innerhalb des Pflan-

zenholobionten haben. Dazu gehörten die Gattungen Pseudomonas, Rhizobium und Bradyrhi-

zobium in der Wurzelendosphäre und Rhodoplanes, Methylibium, Kaistobacter und Bradyrhi-

zobium in der Rhizosphäre. Diese Ergebnisse liefern erste Einblicke in die Identifizierung einer 

"gesunden" pflanzenassoziierten Bakteriengemeinschaft.  

Insgesamt tragen die Ergebnisse dieser Arbeit wesentlich zum Grundwissen der Bildung von 

pflanzenassoziierten Bakteriengemeinschaften als Reaktion auf LUI in realen Landnutzungs-

szenarien bei. Die Ergebnisse könnten durch die Analyse von Netzwerken des gemeinsamen 

Vorkommens von Schlüsseltaxa mit anschließender Funktionsanalyse ergänzt werden. Diese 

Erkenntnisse würden unser Verständnis der komplexen Wechselwirkungen zwischen Pflanzen 

und ihren assoziierten Mikrobiomen sowie der Auswirkungen der Landnutzungsintensität auf 

die biologische Vielfalt und die Ökosystemprozesse erheblich verbessern. In der Folge ist die 

Entwicklung eines nachhaltigen Grünlandmanagementkonzepts möglich, das den weiteren 

Verlust der biologischen Diversität einzudämmen helfen könnte.  
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Summary 

Land use intensification is the most important anthropogenic cause of biodiversity loss in semi-

natural grasslands in Europe and poses a major threat to the health and functioning of eco-

system services. The largest reservoir for biodiversity is the soil habitat, which primarily con-

sists of microorganisms such as bacteria. They play a key role in global nutrient cycling and 

organic matter decomposition. In addition, soil bacterial communities harbor many putative 

plant-associated bacteria that colonize the rhizosphere and root interior of plants. Plant-asso-

ciated bacteria play a critical role in plant fitness, development, nutrition, and resistance to 

environmental stressors, and together with their host form a functional unit called the plant 

holobiont. However, despite the underlying significance, the response of plant-associated bac-

teria towards land use intensification remains unclear. To achieve a profound understanding 

on how land use intensity (LUI) affects the complex relationship between the plant and its 

associated bacterial communities, it is essential to gain insights into the drivers that influence 

the diversity and composition of bacterial assemblages associated with the plant holobiont.  

In this context, the current study aimed at observing the diversity and composition of bacteria 

associated with the bulk soil, rhizosphere and root endosphere of the perennial forage grass 

Dactylis glomerata L. in response to LUI. Different sampling seasons allowed the investigation 

of the influence of LUI during different plant developmental stages (vegetative, reproductive, 

and senescence stage), the description of LUI-dependent core microbiomes and the subse-

quent identification of potential key bacterial players within the plant holobiont.  

The analysis showed that both the diversity and composition of the bacterial community in the 

root endosphere differed considerably from the other compartments, resulting in a very distinct 

community pattern. In contrast, bacterial diversity and composition in the rhizosphere and soil 

were comparable. LUI had a strong impact on soil bacterial communities during all sampling 

seasons, affecting not only the presence or absence, but also the abundance of bacterial taxa. 

The degree of the impact of LUI, however, decreased in the rhizosphere, where only the pres-

ence and absence of certain bacteria was noted. In the root endosphere, however, bacterial 

assemblages remained relatively stable and congruent despite the influence of LUI on the soil 

and rhizosphere. Only a few low abundant species were affected throughout the different plant 

developmental stages. In addition, a significant change in the presence and absence of certain 

taxa during the plants reproductive stage was observed. This shift in community composition 

could be attributed to a change in nutrient availability as reflected by the amount of nitrate and 

ammonium in the bulk soil, which strongly correlated with LUI levels. Hence, LUI was identified 

as a major driver of changes by triggering a feedback loop. This effect is most evident on low 

LUI sites. The low nutrient availability imposes pressure on the plant’s selective force to estab-
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lish beneficial colonization of endophytic communities that compensate for the changing met-

abolic demands of the different developmental stages. As a result, the interaction between the 

plant and its surrounding soil was increased on low LUIs. These results were complemented 

by analysis of the core microbiomes between the different LUI levels, which showed higher 

variability at low LUI throughout the developmental stages of the plant in both the rhizosphere 

and endosphere. Despite this dynamic adaption, a set of bacterial taxa was persistently found 

irrespective of plant developmental stages and LUI, the so-called putative keystone taxa, which 

supposedly have important function within the plant holobiont. These included the genera 

Pseudomonas, Rhizobium, and Bradyrhizobium in the root endosphere and Rhodoplanes, Me-

thylibium, Kaistobacter, and Bradyrhizobium in the rhizosphere. These results provide first in-

sights into the identification of a “healthy” plant-associated bacterial community.  

Overall, the results of this work contributed significantly to the understanding of the formation 

of plant-associated bacterial assemblages in response to LUI in real management scenarios. 

The results could be complemented by analysis of co-occurrence networks of key taxa followed 

by functional analysis. These insights would greatly benefit our understanding of the complex 

interactions between plants and their associated microbiomes, as well as the effects of land 

use intensity on biodiversity and ecosystem processes, so that a sustainable grassland man-

agement approach can be developed to mitigate further biodiversity loss.  



Introduction 5 

1 Introduction 

1.1 Soil biodiversity  

1.1.4 The role of biodiversity on ecosystem services 

Biodiversity is referred to as the web of life (Morton, Steve & Hill, 2006). Soil biodiversity rep-

resents one of the main global reservoirs of biodiversity with more than 40% of living organisms 

directly associated with soil throughout their life cycle, exceeding the biodiversity of other ter-

restrial systems by orders of magnitude (Bardgett & van der Putten, 2014; Decaëns et al., 

2006; FAO, 2020), which can be attributed to the exceptional heterogeneity of soils (Sikorski, 

2015). There are more individual organisms in a teaspoon full of soil than people on this planet 

(Schoonover & Crim, 2015). The term biodiversity however, does not only refer to the variety 

of living organisms and the number of species, but also includes the functional variety of traits, 

which determine the ecological function within an ecosystem, evenness of species distribution 

(local and global), the genetic diversity, or genetic material within each species as well as their 

ecological and evolutionary processes that contribute to their functionality and adaptability to 

an ecosystem (Cardinale et al., 2012; Morton et al., 2014). An ecosystem is not only the phys-

ical environment, but it consists of intricate webs of interactions, not only between one or more 

trophic levels of organisms, but also their non-living environments, which act as a functional 

unit. The multitude of organisms produce energy and biomass, consume water and nutrients, 

and thereby alter the biological, chemical and physical properties of their surrounding environ-

ments (Morton et al., 2014; FAO, 2020). These processes are a result of living systems that 

contribute to the maintenance and replenishment of ecosystems and consequently benefit their 

members by producing a variety of goods and services, the so-called ecosystem services 

(Millennium Ecosystem Assessment, 2005). Global organisations like the Food and Agriculture 

Organization of the United Nations (FAO) recognize ecosystem services as the engine of the 

environment that are essential to life. The activity of soil organisms is crucial for soil functioning 

as it supports fundamental processes and provides key ecosystem services, directly as well 

as indirectly (FAO, 2020). The FAO delineates four functional classifications of ecosystem ser-

vices, which are comprised of the provisioning, regulating, cultural, and supporting services 

(Teeb, 2011).  

Provisioning services are described as any type of material or energy output for humans that 

can be obtained from an ecosystem. These services are food products derived from plants and 

animals, raw materials, medicinal resources, clean water and other goods, which do not only 

provide economic value but can also directly affect livelihoods and heavily depend on soil func-

tioning (Costanza et al., 1997; Kibblewhite et al., 2008).  
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Regulating services are defined as essential for the perpetuation of ecosystems through the 

maintenance of climate, quality of air, carbon sequestration and storage, waste-water treat-

ment, prevention of erosion, maintenance of soil fertility, disease control, and crop pollination 

(Pulleman et al., 2012). Even though the value of regulating services has not been directly 

captured in terms of its economic value as it is not sold on markets, it is indispensable for 

human well-being (Balasubramanian, 2019). For instance, soil organisms drive cycling of en-

ergy and nutrients, thereby enhancing soil fertility and agricultural production. Regulation is 

based on activities of living organisms and damage can result in substantial losses that are 

difficult to restore (El Mujtar et al., 2019; Pulleman et al., 2012).  

Cultural services are summarized as non-material benefits obtained from ecosystems through 

aesthetic, spiritual, and psychological value (Teeb, 2011). These include recreation and the 

restoration of physical and mental health or opportunities for tourism, which is also of signifi-

cant economic importance for many countries. Soils support a variety of vegetation throughout 

different landscapes. The value of cultural services is among the highest values associated 

with nature for human health and well-being (Costanza et al., 2014; FAO, 2020). Furthermore, 

the provisioning and regulating services are strongly interrelated with cultural services (Chan 

et al., 2012).  

The supporting services are described as fundamental for the production of all other ecosys-

tems and their services through providing habitats for living organisms and maintaining the 

biological diversity of these. Soil structure formation or cycling of nutrients within each ecosys-

tem can provide different living spaces, which can be crucial for species’ lifestyle (El Mujtar et 

al., 2019). Therefore, supporting services also maintain genetic diversity (i.e. “the variety of 

genes between, and within, species populations”) as well as the diversity of complex processes 

that contribute to the other ecosystem services.  

So-called “biodiversity hotspots” like the soil habitat are areas with exceptionally high numbers 

of species and a higher genetic diversity compared to other habitats and contribute to the 

ecosystem services mentioned above to a large extent (Millennium Ecosystem Assessment, 

2005; Teeb, 2011).  

 

1.1.5 Major threat - biodiversity is declining 

With almost 8 billion people on the planet, ecosystems experience a decline (Morton et al., 

2014). Human activities have been and are continuing to change the environment on all scales, 

from local to global range (Hooper et al., 2005). As the human population has grown and tech-

nology has become more abundant and influential, the scope and nature of this modification 

has significantly changed (Millennium Ecosystem Assessment, 2005). As a result, ecosystems 
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rapidly lose functional, taxonomic, phylogenetic, and genetic diversity, leading to a decline of 

ecosystem services, landscape and climate changes (Hooper et al., 2005; Naeem et al., 2012). 

Several studies suggested that planet Earth already has entered the sixth mass extinction 

event and moreover, that human activities accelerated the rate of species’ extinctions 

(Barnosky et al., 2011; Naeem et al., 2012). The nature of this significant human impact has 

led to the development of a term called the “Anthropocene”, which has been proposed as a 

new geological era, an epoch that is dominated by human activity (Cooper et al., 2018; Steffen 

et al., 2007). Hence, it is more topical than ever as the loss of soil biodiversity and ecosystem 

services lead to a major threat for human well-being (Cardinale et al., 2012; El Mujtar et al., 

2019). As we are facing the challenge of the growing demand for goods and services, while at 

the same time needing to counteract negative perturbations for a sustainable ecosystem-ser-

vice delivery, it is of great importance to understand how human activities affect soil biodiver-

sity (Allan et al., 2015). A major requirement to prevent biodiversity loss from a value chain 

perspective is the development of predictive models as well as recommendations for political 

decision-makers using scientifically robust metrics and indicators (Crenna et al., 2020). Thus, 

it is crucial to understand the underlying ecological processes that concatenate soil biodiversity 

and ecosystem functioning (Gonzalez et al., 2020). Loss of soil biodiversity has been demon-

strated to fundamentally change ecological processes that control fluxes of energy, cycling of 

nutrients, and organic matter composition within an environment (Beaumelle et al., 2020; 

Hooper et al., 2012) and can deplete the efficiency of an ecosystem to gain resource, produce 

biomass, and recycle nutrients (Morton et al., 2014; Weisser et al., 2017). In their report “Mak-

ing Peace with Nature” (United Nations Environment Programme, 2021), the “United Nations 

Environment Programme” (UNEP) has communicated the global impact of biodiversity loss, 

with land use intensification representing the forefront of human activities that drive global and 

regional loss of biodiversity in terms of reducing plant, animal, and microbial biodiversity (Allan 

et al., 2015; Barros-Rodríguez et al., 2021; Sala et al., 2000; United Nations Environment 

Programme, 2021).  

 

1.1.6 The showcase of grassland ecosystems  

Grasslands, defined as land that is dominated by grasses with less than 10 percent trees or 

shrubs, are the major ecosystems of the world, covering about one-third of the total land area 

(Bengtsson et al., 2019). They occur across various regions, from tropical to temperate areas, 

and based on their ecology can be categorized as meadows, prairies, rangelands, savannas, 

steppes, tundras, veldts, and pastures (Gibson, 2009). The ecological basis of these land types 

is mainly determined by climate factors, such as temperature and soil moisture (Sanderson et 

al., 2015). In general, there are three major types of agricultural grassland systems: natural, 
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semi-natural, and improved grasslands (Bengtsson et al., 2019). Natural grasslands like sa-

vannas, prairies, steppes, tundras, pampas, or veldts are characterized by natural disturb-

ances related to climate, fire, wildlife, or the potential for livestock grazing (Bengtsson et al., 

2019; Gibson, 2009). Semi-natural grasslands like meadows or pastures are a result of human 

activity, mainly altered by and for agriculture. They are grazed by livestock or maintained 

through cutting for hay or silage. Improved grasslands on the other hand are created through 

the human introduction of agricultural plants, high stocking rates, and fertilization (Bengtsson 

et al., 2019).  

In Europe, semi-natural grasslands are one of the most valuable land use forms (Isselstein, 

2005). Moreover, grassland ecosystems provide a great amount of ecosystem services. The 

European Commission reported that permanent grassland accounted for 31.2% of the utilized 

agricultural area (Eurostat, 2020). The EU livestock industry consumes around 500 million 

tonnes of feed annually. About 40% of this amount is grass [expressed in dry matter] (Lesschen 

et al., 2011). Besides the production of goods (i.e. provisioning services), grasslands provide 

other important biodiversity-based functions and services. These include regulating ecosystem 

services like carbon sequestration, pollination, regulation of erosion, water run-off, improve-

ment of water quality, and cultural ecosystem services through providing a source of aesthetic 

influence and recreation as well as supporting services like the formation of soil structure, nu-

trient cycling, and conservation of biodiversity (Allan et al., 2015; Carlier et al., 2009; Hopkins 

& Holz, 2006; Isselstein, 2005; O’Mara, 2012). The value of services provided by grasslands 

can be correlated to biodiversity and strongly depends on the goal of stakeholder communities. 

Allan et al. (2015) showed that on one hand a loss of biodiversity had negative effects on 

cultural services, but on the other hand had weak or even positive effects on provisioning ser-

vices and thus led to a trade-off between biodiversity and ecosystem functions and services. 

Zavaleta and Hulvey (2004) found that loss in diversity can lead to the reduction of grassland 

resistance against biological invaders, which can further affect other ecosystem processes. 

Other experiments and observations indicate that the diversity of different groups of organisms 

has varying effects on functions, with multiple trophic groups involved in providing a particular 

function like the diversity of composers, predators, and plants determining primary productivity 

(Felipe-Lucia et al., 2020). Thus, loss in diversity is likely to substantially impair ecosystem 

functions and services, subsequently impacting human well-being (Newbold et al., 2015).  

Soil biodiversity in particular is threatened by intensification of agriculture, which is negatively 

impacting the delivery of ecosystem goods and services (Tsiafouli et al., 2015). As grasslands 

are considered biodiversity hotspots and the most diverse ecosystem (Le Provost et al., 2021; 

Regan et al., 2014; Simons et al., 2017), they are a key ecosystem for biodiversity conservation 

through its high species richness at a small spatial scale (Raatikainen et al., 2009; Wilson et 

al., 2012). Hence, they are of major importance for biodiversity research and the understanding 
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on how to sustain soil functions under the growing pressure of climate change. Global assess-

ments have already shown that species richness is lower on intensively managed pastures 

compared to extensively managed pastures (Newbold et al., 2015). It was further estimated 

that land use and related pressures had already reduced local richness by an average of 13.6% 

and total abundance by 10.7% between 1500 and 2005 (Newbold et al., 2015). Similar num-

bers were found by Murphy and Romanuk (2014) in their global meta-analysis, who used spe-

cies richness as a measure for the magnitude of biodiversity change. They identified land use 

change as having the largest impact on biodiversity decline, leading to a decrease of 24.8% 

on average. As the transformation of the attributes of the Earth’s surface is reaching a scale 

and rate that is unprecedented, it is crucial to get an understanding of the feedback loops 

between land use intensification, change in biodiversity, and functional consequences to be 

able to evaluate the tolerance of ecosystems to human activities (M. Fischer et al., 2010; 

Weisser et al., 2017). In this context, characterizing the soil biodiversity with respect to eco-

system functioning and functional traits, and how they are responding to expeditious environ-

mental and anthropogenic change, has become a major focus of ecological research (Hooper 

et al., 2005; FAO, 2020; Van Meerbeek et al., 2021).  

 

1.1.7  The soil microbiome  

The belowground biodiversity reservoir is largely defined by the soil microbiome, which is a 

standardized term describing microorganisms that are found in soil, including archaea, bacte-

ria, viruses, fungi, protists, and invertebrates (Delgado-Baquerizo et al., 2019; Fierer, 2017). 

Soil microorganisms are critical to global nutrient cycling and contribute to greenhouse gas 

emissions, mineralization processes, organic matter decomposition, and can also promote 

plant health (Dominati et al., 2010; Fierer, 2017; Fierer & Jackson, 2006). The community 

composition in soil has been shown to directly control the rate of metabolic processes in soils 

(Bodelier et al., 2013; Strickland et al., 2009), including nitrogen fixation, methanogenesis, 

nitrification, or denitrification (Paul, 2006), which makes the soil microbiome of great ecological 

and economic importance. Soil conditions, however, can affect soil chemical properties and 

redox potential, which in turn influences the soil microbiomes that rely on these pathways for 

growth (Paul, 2006). For example, carbon and nitrogen concentration (de Vries et al., 2012), 

moisture (Brockett et al., 2012; Cruz-Martínez et al., 2009), the soil matrix and its formation of 

aggregates with clay, silt, and sand particles (Daniel, 2005) have been shown to lead to 

changes in microbiome composition and diversity. This in turn may cause a feedback loop on 

the aboveground biota. In fact, several studies have found that increased belowground species 

richness and phylogenetic diversity lead to increased biomass production in experimental 

grasslands (e.g. Bengtsson et al., 2019; Bullock et al., 2007; Tilman et al., 2001). Moreover, 
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there is growing evidence that the immense diversity of the soil microbiome contributes signif-

icantly to shaping aboveground biodiversity and grassland ecosystem functioning (Bardgett & 

van der Putten, 2014). Furthermore, ecosystem functioning has been shown to depend on 

trophic interactions between above- and belowground biota, biogeochemical cycling, and 

plant-soil feedbacks (Bakker et al., 2019). In this context, numerous studies have shown that 

plants are closely associated with microorganisms that are recruited from the surrounding soil 

(Kowalchuk et al., 2002). The majority of microbes are critical for ecosystem functioning and 

are known for their positive interactions with plants (Berg et al., 2020). Recent studies even 

suggest that plant roots can be considered soil organisms due to their close symbiotic relation-

ships with soil components and microorganisms (Bardgett et al., 2014; Caruso et al., 2019; 

Coleman et al., 2017; FAO, 2020). However, despite the underlying significance, the complex 

relationships between the different biodiversity levels of above- and belowground communities 

that contribute to the concept of ecosystem multifunctionality and stability, remain elusive. 

Therefore, it is of great importance to gain insight into the close interactions between plants 

and their associated microbes and to determine their feedbacks to anthropogenic factors. 

 

1.2 Plants and their microbiome  

1.2.1 Plants as holobiont 

Plants are inhabited by various microorganisms, including bacteria, fungi, archaea, protozoa, 

and viruses, which are commonly described as the “plant microbiota” (Trivedi et al., 2020). 

Many years of research have demonstrated that these complex co-associations with plants 

are key drivers for the plant’s health, productivity, community composition, and thus ecosystem 

functioning (Bever et al., 2010). The added ecological functions provided by the associated 

microbiota are essential for the host’s ability to adapt to various environmental changes and 

conditions (Berg et al., 2014). The nature of these interactions has given rise to the concept of 

so-called meta-organisms or holobionts (Simon et al., 2019; Zilber-Rosenberg & Rosenberg, 

2008). All multicellular organisms exist as holobionts or meta-organisms, which are comprised 

of the host and its synergistic and antagonistic interdependence with various microbial species. 

Consequently, the plant microbiota that colonizes different host compartments is viewed as an 

additional reservoir of genes and functions for their hosts (Berg et al., 2020; Zilber-Rosenberg 

& Rosenberg, 2008). Moreover, the holobiont is considered as an inseparable functional unit 

that underlies the principles of co-evolution and co-selection (Figure 1; Jones, 2013; Theis et 

al., 2016). The analysis of plant microbiomes therefore involves linking the community of as-

sociated microbiota with their hosts’ physiology and functioning as the interplay of both main-

tains the functioning and fitness of the holobiont (Berg et al., 2016). Within this holistic concept, 

diseases are correlated with dysbiosis, a result of diversity loss that consequently alters the 
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natural composition of microbes. This leads to a microbial imbalance and in turn provides an 

advantage to the emergence and spread of pathogens through cascading effects on the hosts’ 

immune system (Berg et al., 2017). Therefore, microbial diversity and their natural balance is 

a key factor in preventing diseases in plants (Berg et al., 2020). The co-evolution of the syner-

gistic host-microbe interaction has led to a specific establishment of associated microbes and 

the extent of this specificity is influenced by many factors and varies across plant individuals 

(Berg et al., 2020; Theis et al., 2016).  

 

 

Figure 1: The plant holobiont 

Illustration of the plant holobiont concept, the interplay between the plant, its associated microbiota and 

key interactions amongst each other. Within this holistic approach, the plant host and its associated 

microbiota are assumed to have co-evolved as a functional entity. While the diseased state is charac-

terized by dysbiosis, low microbial diversity, and the variability of the respective microbiota (the “patho-

biome” state), the healthy state is accompanied with eubiosis, high microbial diversity, and the uniformity 

of associated microorganisms. Microbes can act as antagonists or synergists towards pathogens and 
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depending on their phenotype may be beneficial or pathogenic (adapted from Berg et al., 2017 and 

2020). 

 

1.2.2 The rhizosphere  

The rhizosphere represents the active soil layer surrounding the roots, which is directly influ-

enced by root secretions and soil microorganisms (Berendsen et al., 2012). It is characterized 

by high bacterial abundances and activities, and is considered the most complex ecosystem 

on earth (Berg et al., 2014; Mendes et al., 2013). Microorganism-driven carbon sequestration 

in the rhizosphere allows organic material and compounds to migrate into subsoil, which is 

important for ecosystem functioning, nutrient cycling, and productivity in terrestrial environ-

ments (Berg et al., 2017). As bacteria are the predominant and most diverse form of life in soil 

that are essential for soil ecology (Sikorski, 2015), they were selected as the focus of the cur-

rent study. Bacteria residing in the rhizosphere secrete a variety of plant beneficial compounds, 

such as phytohormones (e.g. auxins, gibberellins, ethylene, indole-3-acetic acid), cellulase, 

pectinase, superoxide dismutase etc., that are essential for plant growth, as well as the pro-

tection against environmental stressors and plant pathogens (Sahoo et al., 2018). The degra-

dation of cellulose in high-organic-matter soils and the decomposition of pectin is widespread 

among bacterial communities residing in the rhizosphere (Turner et al., 2013). Therefore, the 

roots of terrestrial plants are the primary site for plant-bacterial interactions and were sug-

gested as a protective shield against soil-borne pathogens (Berg et al., 2014; Sánchez-

Cañizares et al., 2017). In addition to this, many bacteria can solubilize phosphorus-containing 

minerals, which leads to an increase of its bioavailability. Nitrogen-fixing bacteria provide a 

source of nitrogen for the host (Turner et al., 2013). 

Microbial community composition in the rhizosphere is mainly shaped through “rhizodeposits”, 

a variety of carbon- and nitrogen-rich compounds that are released by the roots into their sur-

rounding environment. These include root cells, plant cell wall polymers, such as cellulose and 

pectin, mucilage, soluble lysates, volatile compounds, and root exudates (Middleton et al., 

2021; Turner et al., 2013). Root exudates are rich in chemical metabolites like flavonoids, 

amino acids, carbohydrates, phenolic compounds, and organic acids, which have been re-

ported to be a major driving force in shaping microbial diversity and activity on plant roots 

(Chagas et al., 2017; Mendes et al., 2013). Differences in plant root exudates play a crucial 

role as they act as both chemo-attractants and repellents to which bacteria are particularly 

sensitive, which in turn causes a host species-specific bacterial colonization (Berg et al., 2017). 

Lundberg et al. (2012) revealed that bacterial composition in the rhizosphere is comprised of 

a subset of bacterial communities in the surrounding bulk soil. Biochemicals released by the 

roots are sensed through chemotaxis to initiate colonization via the use of flagella to move 
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towards the plant. As a result, some microorganisms may attach to the root surface and form 

a biofilm (Trivedi et al., 2020). In turn, some bacterial species may penetrate the roots of plants 

they are adhered to at root cracks, elongation zones, root tips, and below the root hair zone to 

become an endophyte (Mercado-Blanco & Prieto, 2012). Cracks or wounds may occur at the 

emergence points of lateral roots, or they may result from microbial or nematode activities 

(Reinhold-Hurek & Hurek, 2011).   

 

1.2.3 The endosphere  

“Endophytes” are microorganisms that colonize the plant inter- and/or intracellular tissue (en-

dosphere) for at least part of their life cycle without causing apparent disease (Schlaeppi & 

Bulgarelli, 2015). However, despite their broad presence in many ecosystems, their mode of 

action, ecology, and evolution are poorly understood. The lack of a functional definition for 

endophytes implies that in addition to commensal symbionts, endophytes may also include 

latent pathogens, latent saprotrophs, or mutualistic associations (Fesel & Zuccaro, 2016; 

Hardoim et al., 2015). Hence, Hardoim et al. (2015) suggested that endophytes are defined by 

the habitat they colonize and not by their function, which means members of the endosphere 

comprise beneficial, neutral, and pathogenic bacteria. However, the nature of plant-bacterial 

interaction depends on numerous environmental parameters and biotic interactions (Brader et 

al., 2017). Several species-specific plant endophytes do not show any harmful effects, how-

ever, when tested on other plants, they are considered pathogenic. For example, Pseudomo-

nas spp., frequently reported to have plant-beneficial effects, has been shown to be detrimental 

to leatherleaf ferns under certain conditions (Kloepper et al., 2013). Nonetheless, the capability 

of endophytes to successfully enter plant inner tissues have exposed their importance in agri-

cultural practice for biocontrol of phytopathogens, plant growth promotion, and the production 

of biotechnological or pharmacological compounds (Sharma et al., 2017). In general, endo-

phytic bacteria can have different life strategies in accordance with their intimacy degree with 

associated plant host. Whereas endophytes that require plant tissues to complete their life 

cycle are referred to as “obligate”, associated bacteria that mainly thrive outside plant tissues 

and only sporadically enter the plant endosphere are termed “opportunistic”. The intermediate 

group, the so-called “facultative” endophytes, represents the majority of endophytic microor-

ganisms (Hardoim et al., 2015). Facultative endophytes live in soil, consume nutrients provided 

by the plant, and enter plants through systemic colonization when the opportunity arises 

(Hardoim et al., 2008). Bacteria residing within the plant endosphere were found in almost all 

plants studied to date and all plant compartments including roots, stems, leaves, seeds, fruits, 

and tubers (Rosenblueth & Martínez-Romero, 2006). With the emergence of high-throughput 
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technologies, such as next-generation sequencing, cultivation-independent analyses permit-

ted the facilitation of large sample sizes and provided deep insights into microbial community 

compositions in numerous host plants. Among those were the model plant Arabidopsis thaliana 

(Bulgarelli et al., 2012; Schlaeppi et al., 2014), grapevine (Bruisson et al., 2019), barley 

(Bulgarelli et al., 2015), potato (Buchholz et al., 2019), rice (Ikeda et al., 2010), and wheat 

(Robinson et al., 2016). Even though a remarkable diversity was found within those studies, 

the plant endosphere is dominated by only a few bacterial phyla (mainly Proteobacteria, Ac-

tinobacteria, Firmicutes and Bacteroidetes), which account for 96% of the total number of en-

dophytic procaryotic sequences suggesting a very selective niche (Hardoim et al., 2015). De-

spite this taxonomic overlap, distinct bacterial compositions are found among plant species 

(Berg & Smalla, 2009).  

Though endophytes have been shown to be vertically transmitted via seeds (Barret et al., 

2015), the main source for a species-specific attraction of bacteria is the rhizosphere, as it 

represents the largest reservoir of microbial diversity. Successful endophyte colonization re-

quires compatible interactions between plant and microbe. Plant roots provide an attractive, 

nutrient-rich niche by providing easily degradable carbon, a protected environment, and phys-

ical structures for colonization (Berg et al., 2016; Kowalchuk et al., 2002). In return, root-asso-

ciated bacteria positively influence plant growth by supplying nutrients like nitrogen or phos-

phorus and protection against phytopathogens (Berg et al., 2016; Reinhold-Hurek et al., 2015). 

However, the mechanism of environmental acquisition and composition dynamics of associ-

ated bacteria is poorly understood (Middleton et al., 2021). Plant-microbe interactions, bacte-

rial abundance, and community composition are strongly susceptible to environmental condi-

tions. Therefore, understanding how they are influenced by environmental changes is crucial 

for predicting disease outbreaks, arranging effective symbiotic and biocontrol agents, and de-

signing resistant crop plants with increased resilience to current and future climate change 

(Cheng et al., 2019).  

 

1.2.4 Heterogeneity of microbial communities across plant individuals 

Numerous studies have been published over the last decade that describe the diversity of 

bacteria associated with different host plants, linking a number of important plant phenotypes 

to microbial variation (e.g. Bulgarelli et al., 2012; Fitzpatrick et al., 2018; Yang et al., 2017). 

For instance, the host identity plays a crucial role in assemblage patterns of associated micro-

biota, which can even lead to differences between plants that grow in close proximity to each 

other (Samad et al., 2017). Phylogenetically distant plants are likely to have a greater variation 

in associated microbiome compositions, suggesting that plant phylogeny plays a role in defin-

ing the plant-associated bacterial patterns (Bouffaud et al., 2014). Plant species are reported 
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to shape both the identity as well as diversity of bacterial communities (Dastogeer et al., 2018; 

Manter et al., 2010), indicating that host plant species evolved traits that determine the com-

position of its associated microbiota (Fitzpatrick et al., 2018). Another aspect influencing the 

plant-associated community composition is the genetics of the host plant. Several studies 

demonstrated that associated bacterial patterns differ between genotypes of a particular plant. 

Cultivar-specific effects on plant-associated communities have been reported for barley, sweet 

potato, wheat, pea, and oat (Bulgarelli et al., 2012; Marques et al., 2014; Turner et al., 2013; 

L. Yang et al., 2017). Bulgarelli et al. (2015) even suggested that genotype accounts for about 

6% of the variation of associated microbes in the plant-root surrounding soil, the rhizosphere. 

However, studies on genotype-dependency were mainly conducted under greenhouse condi-

tions, where key factors contributing to plant performance were kept optimal and only one 

factor was changed. This is supported by the results of Wagner et al. (2016), who found that 

under natural conditions plant genotype is only marginally relevant to the establishment of root-

associated bacteria. Furthermore, the different plant compartments contribute to the formation 

of a distinct microbiome. The root-adhering soil and the different plant tissues of a plant harbor 

different community compositions, due to different adaptation strategies, and conditions they 

are exposed to (Dastogeer et al., 2020; Edwards et al., 2015). Microbes colonizing the phyllo-

sphere (above-ground surface of the plant), for example, need to adapt to different conditions 

compared to microbes colonizing root-adhering or internal compartments, as they are exposed 

to seasonal weather fluctuations and surface tissues usually have a lower nutritional value 

(Lindow & Brandl, 2003). In contrast, root-associated bacterial assemblies are largely recruited 

from the surrounding soil. Through secretion of carbon compounds and phytochemicals, plant-

influence patterns are distinct at different plant developmental stages, with low root exudation 

at the beginning of the vegetation period, an increase during growth peaks, and a high input 

of plant litter biomass during senescence (Chaparro et al., 2013). This, in turn, imposes selec-

tive pressure on bacterial community assemblages and creates a specialized microenviron-

ment for specific bacterial groups (Chaparro et al., 2014). Investigation on the model plant 

Arabidopsis thaliana L. showed that levels of cumulative secretion of sugars and sugar alco-

hols were increased in early developmental stages and decreased throughout plant growth. In 

contrast, levels of cumulative secretion of amino acids and phenolics were reported to increase 

over time (Chaparro et al., 2014). Furthermore, root system architecture is genetically pro-

grammed throughout developmental stages leading to differences in the acquisition of soil re-

sources (Canarini et al., 2019). Other plant-age related changes of associated bacteria may 

be root growth, physiology, and morphology, as these parameters have been shown to affect 

root exudation patterns, which in turn exerts selective pressure on soil-derived bacteria 

(Dastogeer et al., 2020).   
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The interdependence between the plant and its associated microbiota has led to the assump-

tion that selective forces of evolution do not only impact the plant genome itself, but the entire 

plant holobiont and acquired heritable traits are made available through vertical transmission 

of valuable functions provided by associated microbes to their hosts (Hardoim et al., 2015). In 

this regard, factors contributing to selective enrichment of microorganisms were addressed by 

several studies. As plants heavily depend on their surrounding soil habitat, the majority of re-

search on plant health benefits focuses on the rhizosphere (Berg et al., 2014).  

 

1.3 Drivers of changes of microbial diversity at the plant-soil interface 
in grassland ecosystems 

Beyond the plant host, the associated bacteria are interconnected with their surrounding eco-

system (Berg et al., 2014). Hence, to get a better understanding of how associated bacterial 

abundances and community composition are responding to environmental changes, it is im-

portant to take a deeper look at the conditions they are exposed to. Soil environments are 

difficult to characterize microbiologically due to their complexity, as bacteria are influenced by 

a multitude of factors (Bottos et al., 2020; Fierer, 2017). Thus, identifying drivers and relation-

ships of the underlying interactions between soil and plant-associated bacteria is even more 

difficult due to their complex interplay (Cheng et al., 2019; Fierer, 2017). With regards to dif-

ferent land management regimes on grasslands, factors are generally classified as (a) abiotic, 

like climate conditions and chemical and/or soil type (non-living part), (b) biotic, which include 

above- and belowground biota (living part), and (c) anthropogenic factors (human introduced), 

such as fertilization, grazing, or mowing. In a given plant-bacteria interaction especially, it is 

expected that an environmental condition would be forced on both the plant and the associated 

bacteria (Cheng et al., 2019). Host-associated bacteria have already been shown to be able 

to mitigate biotic and abiotic stressors through their ability to adjust to changes rapidly (Berg 

et al., 2017). However, while pathogen defence mechanisms are well understood (Berg et al., 

2014), abiotic stress protection mechanisms, such as alleviating the impact of anthropogenic 

disturbances, is just at its infancy. Although poorly understood, environmental factors that in-

fluence host-microbiome interactions are vital to understanding the evolution and ecology of 

these symbiotic relationships (Fitzpatrick et al., 2018). Several individual variables are intro-

duced in the following section, although complex interactions could exist that includes modu-

lation of these variables by higher-level factors. These in turn may directly or indirectly interfere 

with above- and belowground biota and thus have an influence on plant-associated bacteria 

(Hinsinger et al., 2009). A selection of drivers that might be of relevance for the soil and plant-

associated bacterial communities in grasslands is described below and schematically depicted 

in Figure 2. 
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Figure 2: Drivers of the composition of plant-associated bacterial communities in grassland ecosystems 

Summary of a selection of environmental variables that influence the composition of plant-associated 

bacteria, divided into site-specific factors (biotic and abiotic) and anthropogenic factors. The selection 

of factors belonging to these environmental variables is exemplary. The classification is indicated by a 

color code: site-specific abiotic (blue), site-specific biotic (green), anthropogenic (red). 
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1.3.1 Site-specific factors  

Plant-associated microbes are mainly recruited from its surrounding soil (Berg et al., 2014). 

Hence, one of the most important factors for bacterial community structure is the soil they grow 

in. Various soil parameters have been reported to influence the associated bacterial commu-

nities of plants. Among those are soil type, soil pH, C:N ratio, as well as available phosphorus 

(Dastogeer et al., 2020). Several studies provided insight into effects of soil type on the bacte-

rial community composition in the rhizosphere (Bulgarelli et al., 2012; Lundberg et al., 2012; 

Schreiter et al., 2014). Dombrowski et al. (2017) reported that soil type is causing variation in 

root-associated bacteria of up to 15% and influences the composition to a higher extent than 

the host plant. Similarly, soil chemical properties influence nutrient availability and associated 

processes in soil, plant productivity, and organic matter decomposition (Ranjard et al., 2013). 

Studies at local to continental scales have found that soil properties significantly influence soil 

bacterial community structure and diversity, while plant communities and land use act as sec-

ondary correlates (Plassart et al., 2019). As there is no physical separation between bulk soil 

and the rhizosphere, these factors are of particular importance to the plant-bacterial interac-

tions in the rhizosphere compartment. 

The effects of environmental change are complex and cannot be reduced to a single factor 

such as CO2, temperature, or precipitation (Bottos et al., 2020; Fierer, 2017; Gschwendtner et 

al., 2015). Elevated temperature, for example, has been shown to influence the kinetics of 

biochemical processes in the soil (Avrahami et al., 2002), but it can also mediate changes of 

plant-immune responses, such as the suppression of effector-triggered immunity, which in-

versely has an impact on the plant-associated communities (Cheng et al., 2019). In addition to 

this, climatic conditions can contribute to alterations in soil moisture, which affects redox po-

tential of the soil. Climatic conditions fluctuate continuously and may influence the plant and 

soil processes throughout the different seasons. Balanced soil moisture is essential to numer-

ous processes. It affects nutrient availability by facilitating nutrient solubility and transport, as 

well as mineralization rate, which in turn affects enzymatic activity in the soil (Stempfhuber et 

al., 2016). As nutrient acquisition is one of the most important drivers for plant-bacteria inter-

action, nutritional state of the plant and the availability of nutrients are expected to have signif-

icant effects on the plant-bacteria interactions (Cheng et al., 2019). Additionally, soil water 

content can greatly impact numerous aspects of the plant-bacteria interactions through a direct 

effect on the plant such as the regulation of the phytohormone abscisic acid (ABA). This in turn 

has an influence on the closure of plant stomata and consequently reduces bacterial entry 

through these (Melotto et al., 2006; J. K. Zhu, 2016) or causes a shift in plant metabolites (J. 

K. Zhu, 2016), which could have an adverse effect on the associated bacteria. In fact, soil 

moisture was shown to change the bacterial diversity within the rhizosphere and root en-

dosphere (Xu et al., 2018; L. Yang et al., 2020).  
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As the diversity of organisms is tightly linked at different hierarchical levels, there are a multi-

tude of direct or indirect interactions between plant-associated bacteria and other organisms. 

On the one hand, these might be of cooperative nature, which are either mutualistic (both 

species benefit from the interaction) or commensalistic (one partner benefits from the interac-

tion whereas the other is not negatively impacted; Schlechter et al., 2019). On the other hand, 

plant-associated bacteria may also compete directly or indirectly with other microbes either 

through various competition mechanisms or predation and parasitism. Competitive relation-

ships are associated with adverse effects for at least one species, which may be due to exploi-

tative or interference competition. Exploitation or passive competition is the competition for 

certain resources through enhancing utilization of limiting nutrient resources by altering their 

metabolic regulation or restricting access to nutrients (Schlechter et al., 2019). These direct or 

indirect interactions may in turn have an effect on the composition of the plant-associated bac-

teria. 

 

1.3.2 Anthropogenic land management factors 

Land use intensification is considered one of the most important anthropogenic causes con-

tributing to changes in biodiversity and ecosystems (Allan et al., 2015). In European grass-

lands, intensification involves higher fertilization rates, increased livestock densities, and mow-

ing frequency (Manning et al., 2015). Land use management activities have been shown to 

affect the physical, chemical, and organic soil properties, which do not only alter the soil struc-

ture, amount, and quality of nutrient availability, but also affect nutrient cycling in soil causing 

a feedback loop on above- and belowground biota (Felipe-Lucia et al., 2020; Herold et al., 

2014; Sorkau et al., 2018). On intensively managed grasslands, forage quality and biomass 

are generally preferred at the expense of multitrophic diversity and other ecosystem functions, 

as it is less dependent on soil functions, but can be determined by the amount of fertilizer 

application (Felipe-Lucia et al., 2020). Extensive land use in this matter refers to unfertilized or 

unmanaged soil. Fertilization, grazing, and mowing may play an important role for the estab-

lishment of plant-associated bacteria within grassland ecosystems and were chosen as the 

major components to determine land use intensity on the sampling sites for this study.  

Removing the aboveground biomass by mowing is a globally common practice in grasslands. 

As mowing can impair the availability of light for small, subdominant species, it can disturb the 

plants’ competition for nutrient resources and change the quality and quantity of root exudates 

(Kuzyakov & Xu, 2013; Patra et al., 2006; Wolters et al., 2000; Y. Zhang et al., 2017). Following 

mowing, root exudation and ammonia levels rise, leading to the enrichment of bacterial activity 

and biomass (Hamilton & Frank, 2001; Herold et al., 2014; Kuzyakov & Xu, 2013; Le Roux et 

al., 2008). Thus, mowing in general results in beneficial changes to belowground bacterial 
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communities. Furthermore, remaining plant litter input may positively impact decomposition 

processes, as changes in plant species composition and exudation can be associated with 

mowing, which in turn may impact the root-associated bacterial communities (Patra et al., 

2006; Zhang et al., 2017).  

Numerous ecological effects on above- and belowground biota can derive from grazing 

through herbivory, physical impact, and deposition. Grazing affects aboveground plant com-

munity composition through selective herbivory or through differential tolerance of plants to 

grazing (Furbish & Albano, 1994). Continued selective grazing can reduce the competitive 

ability of grazed plants. Trampling can further injure plants indiscriminately and reduce their 

ability to compete and reproduce within the plant community (Fleischner, 1994; Huntly, 1991), 

thus affecting plant metabolism and root exudation patterns (Herz et al., 2018). Moreover, 

trampling can disturb soil bacterial communities by influencing soil compaction and destroying 

soil crusts which in turn changes soil structure, nutrient cycling, biomass production, and water 

infiltration (Bardgett & Wardle, 2003; Patra et al., 2006). In addition to this, organic components 

of faeces and urine from grazing animals can build soil organic matter reserves and increase 

phosphorus availability in soil, which enhances cycling of nitrogen and carbon (Patra et al., 

2006; Ritz et al., 2004). All these changes of chemical and physical properties of the soil and 

to plant community composition, plant metabolism, and root exudation patterns may have a 

direct influence on belowground communities and thus exerts selective pressure on plant-as-

sociated bacteria in the rhizosphere and endosphere (Steffens et al., 2009; Yang et al., 2021). 

Several studies have identified grazing-induced changes of bacterial community composition 

and diversity in soil and rhizosphere (Kohler et al., 2005; Patra et al., 2005; Xun et al., 2018), 

however, studies on changes of bacterial endophytes and their response to grazing have been 

rare (Yang et al., 2021).  

The application of mineral and organic fertilizers has become an essential component of mod-

ern agriculture as it can increase crop yield through providing nutrients such as nitrogen, phos-

phorus, and potassium (de Souza et al., 2015). Especially in unfertilized soils, plants may rely 

on nitrogen derived from bacterial transformation processes such as mineralization and nitro-

gen fixation. Thus, they play a significant role in alterations of soil chemical properties and 

affect soil functioning, quality, and improve nutrient availability for plants (Francioli et al., 2016). 

Despite the positive effects on crop productivity, contrasting effects of fertilizer application have 

been found with respect to soil microbial growth and activity. While most long-term field exper-

iments found a positive correlation between mineral fertilization and soil bacterial biomass 

(Geisseler & Scow, 2014), other studies based on short-term experiments found opposite re-

sults (Lazcano et al., 2013; Roberts et al., 2011). Moreover, contrasting effects have been 

reported in response to mineral fertilization regarding soil bacterial activities in grassland soils 

(Nannipieri et al., 2012). Comparisons between the effects of mineral and organic fertilization 
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on soil communities have shown that organic manure fertilization results in higher soil bacterial 

biomass and maintains different community patterns (Esperschütz et al., 2007; Lazcano et al., 

2013; Lentendu et al., 2014; Nõlvak et al., 2016). As soil bacterial community composition and 

enzymatic activity depend on fertilization application, it is evident that bacteria being in the 

plant-soil interface may respond differently as well (Deng et al., 2021; Li et al., 2020; Zhu et 

al., 2016). In contrast, the influence on endophytic communities remains largely unknown, alt-

hough, as plant surrounding soil has been shown to be the main source for their recruitment, 

the impact of fertilization on bacterial endophytes seems imperative (Amadou et al., 2020).  

 

1.3.3 Land use intensity 

Investigation of the relationship of land use management and diversity of plant-associated bac-

teria may deliver contradictory results depending on the different site factors and anthropo-

genic land management regimes (Deng et al., 2021; Li et al., 2020). Furthermore, a multitude 

of regimes may be used to manage land, all of which may affect community composition and 

thus may impede comparability of the effects of land use. Yet, most studies use measures of 

land use that underlie categorical classifications, such as pastures versus meadows or ferti-

lized versus unfertilized, which might be useful to certain comparisons or specific experiments. 

However, they do not account for a quantitative variation in land use intensities (Blüthgen et 

al., 2012). Furthermore, the intensity of mowing, grazing, and fertilization may vary in space 

and time, within and between years on particular grasslands, causing spatial and seasonal 

differences and thus may contribute to contradicting results (Blüthgen et al., 2012; Vogt et al., 

2019), which severely limits studies that aim to quantify land use effects across existing land-

scapes (Blüthgen et al., 2012). These factors, however, do not exclusively influence the com-

position of plant-associated bacterial community patterns, but should be considered as a com-

bination of several components of land use, as they often interact with each other, mostly 

nonlinearly and across existing heterogenous landscapes and determine the environmental 

conditions of a certain habitat (Blüthgen et al., 2012). Furthermore, biodiversity may be affected 

directly or indirectly by intensification. The mechanical force of mowing, for example, can di-

rectly impact the mortality of insects, whereas increased fertilization may have an impact on 

the plant community composition and in turn affect insect diversity (Vogt et al., 2019). Hence, 

land use can be considered a multi-layered and multi-dimensional interplay of anthropogenic 

activities and ecological processes with several influence measures, potentially interacting as 

direct and indirect impacts on biodiversity (Dullinger et al., 2021; Erb et al., 2013). In addition 

to this, little attention has been paid to long-term and in-depth assessments of management 

regimes, which altogether significantly restricts studies that aim to quantify land use effects 
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across existing landscapes (Vogt et al., 2019). The multi-dimensional nature of land use inten-

sity in grasslands is rarely captured in categorical classifications, and thus is inadequately re-

flected in the majority of biodiversity research (Blüthgen et al., 2012; Dullinger et al., 2021). To 

get a more systematic and mechanistic understanding of the relationship between land use 

intensification and biodiversity in grasslands, detailed information on management regime is 

needed, which ideally is collected over several years (Vogt et al., 2019). Hence, a continuous 

measure for land use intensity was developed, the land use intensity index (LUI index), which 

includes mowing, grazing, and fertilization as the major components of land use (Blüthgen et 

al., 2012).  

 

1.4 The Biodiversity Exploratories 

In order to advance the knowledge on a large scale, a research platform for functional biodi-

versity research was established in 2006, the Biodiversity Exploratories (www.biodiversity-ex-

ploratories.de; Fischer et al., 2010). The Biodiversity Exploratories (further referred to as BEO), 

funded by the German research foundation (Deutsche Forschungsgemeinschaft, SPP 1374 

Priority Programme), is a large-scale and long-term project to comprehensively examine the 

relationship between land use, biodiversity, and ecosystem functioning in real-world ecosys-

tems. It serves as study regions for scientific working groups covering numerous research 

fields such as microbiology, zoology, and botany, and thus allows comprehensive interdiscipli-

nary research (Fischer et al., 2010). A major aspect of this project is the thorough monitoring 

of land use on the study plots over several years to allow statistical comparisons across taxa, 

different land use types, or geographical regions across temporal variation in land manage-

ment (Vogt et al., 2019). Systemically surveyed management types and frequencies are gath-

ered as part of the design, including mowing, grazing, and fertilization on grassland sites, which 

is used as the basis of the integrated land use intensity index (LUI index; Blüthgen et al., 2012). 

As land use change is the major driver of changes of biodiversity and biological ecosystem 

processes and services, experimental plots comprising different levels of land use intensity 

have been included (Fischer et al., 2010; Sala et al., 2000). All experimental plots are within 

the three large-scale study regions: UNESCO Biosphere Reserve “Schorfheide-Chorin” (Bran-

denburg), the National Park Hainich and surrounding areas, i.e. “Hainich-Dün” (Thüringen) and 

the UNESCO Biosphere Reserve “Schwäbische Alb” (Baden-Württemberg) and distributed on 

a north-east to south-west gradient (Fischer et al., 2010). Each exploratory is subdivided into 

50 grassland experimental plots of 50 x 50 m (EPs). A subset of 9 plots is used as very inten-

sive plots (VIPs), plots where biodiversity and ecological processes are studied in detail or for 

studies that use too labor-intensive methods to be conducted on all EPs. Characteristics like 

the presence and year of the start of drainage and whether arable farming was practiced during 
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the 25 years before the project was started, i.e. between 1981 and 2006 (Vogt et al., 2019) are 

recorded. All evaluated information is made available to all participating researchers. Thus, the 

design of the BEO does not only provide a platform for the investigation of integral effects on 

biodiversity in grasslands, but it also enables a multidisciplinary data interpretation on a spatial 

scale and long-term nature. Hence, the research for this thesis was conducted as part of the 

framework of the BEO. 

 

1.5 Open questions, research aims and hypotheses 

Plant-associated bacteria have an undoubtedly significant impact on plant health, develop-

ment, nutrition, and resistance against stress factors and therefore are crucial for ecosystem 

services and processes (Middleton et al., 2021). Due to its importance to the functioning of the 

plant holobiont, the host- and site-specific establishment of bacterial assemblages in en-

dosphere and rhizosphere compartments have been vastly studied among different plant spe-

cies. Despite the amount of data available, most studies on plant-associated interactions were 

performed under controlled, short-term and optimized conditions for host-plant growth, where 

only individual aspects were changed. Investigations are rarely conducted under variable and 

field-realistic conditions (Berg et al., 2017). Plants grown under natural or less favourable con-

ditions might experience different effects attributed to their associated bacteria, as several en-

vironmental factors may interfere or vary in space and time, thus dynamically shaping the com-

position of plant-associated bacteria. Hence, there is a huge lack of knowledge regarding the 

driving forces on the establishment of bacterial assemblages within the rhizosphere and en-

dosphere and the effects of a multitude of factors on their composition in natural environments.  

Given that intensive land use management has led to an alarming decline in biodiversity over 

the last decades, understanding the processes and factors governing the dynamics of plant-

associated bacterial assemblages in response to anthropogenic factors is crucial. The ability 

to reliably predict and control associated microbes in the environment would offer significant 

opportunities to help maintain the health and functioning of ecosystems and improve resilience 

to current and future climate change (Stegen et al., 2018). Though several components, which 

account for numerous stability mechanisms and contributions to buffering the effect of envi-

ronmental fluctuations on ecosystem functioning have been identified (de Bello et al., 2021), 

the complexity of specific plant-microbe interactions represents an enormous challenge and 

needs more thorough investigations. Although different contributions and response patterns of 

plant-associated bacteria to fertilizers or specific land management regimes have been identi-

fied (Li et al., 2020; Zhu et al., 2016), real management situations are not reflected appropri-

ately due to the overlapping effects and multifactorial nature of land use intensity. No study 
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has investigated the long-term impact of land use intensity attributed to a continuous measure 

including several components and the feedback loop on plant-associated bacteria to reflect 

real world scenarios. It remains to be clarified whether LUI can be considered a general driver 

of changes in bacterial composition dynamics through shaping substrate conditions and prop-

erties. 

Numerous studies suggest that despite the assemblage dynamics of plant-associated bacterial 

communities, plants may harbor a core of bacterial taxa that are present regardless of disturb-

ing parameters, environmental conditions, and plant developmental stage (Lundberg et al., 

2012; Pfeiffer et al., 2017). Members of the core might be potentially crucial for the fitness of 

the plant holobiont by establishing a healthy community composition that supports nutrient 

uptake and mitigates stress responses (Berg et al., 2017). Loss of those keystone taxa may 

induce dysbiosis, therefore significantly reducing plant fitness and the displacement by other 

plants, which in turn may trigger shifts in biodiversity patterns. The consequences of LUI for 

the formation of a species-specific establishment of keystone taxa remains elusive.  

Hence, the main focus of this study was to identify plant-associated bacterial compositions on 

high versus low land use intensity measures (LUI). In this respect, bacterial relative abundance 

was assessed, then used to identify diversity and community composition in the endosphere, 

rhizosphere, and bulk soil from samples collected within three different plant developmental 

stages, representing the vegetative, flowering, and senescence plant developmental stage. 

Orchard grass (Dactylis glomerata L.), a perennial forage grass, was selected as a model plant 

because it is considered to be one of the most important grasses for grazing and hay produc-

tion (Costa et al., 2016) and exhibited the highest continuity at the investigated sites. The re-

search was conducted within the framework of the BEO, which allowed the investigation on a 

field-realistic environment and the effects of long-term, quantitative, and continuous LUI 

measures on the composition dynamics of associated bacteria. Different plant developmental 

stages permitted the description of core taxa (species present irrespective of the plant stage) 

on high versus low LUI and in different compartments. Moreover, I assumed that the compar-

ison of the core taxa of different LUIs would enable the identification of keystone taxa, which 

are bacteria that are found regardless of site-specific conditions, plant environmental stage, 

and anthropogenic factors. Thus, insights can be gained into how land use intensity affects the 

variability of bacterial community composition over time and identify important drivers for a 

species-specific bacterial community composition under real world conditions.  
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In this context, I hypothesized that:  

(i) The effects of LUI on bacterial diversity and community composition are most pro-

nounced within the bulk soil and the rhizosphere. In contrast, the influence on root 

endophytic communities is less pronounced and mainly mediated by the plant. It is 

expected that bacterial diversity will be higher on low compared to high LUI 

measures in all investigated compartments as multitrophic diversity is strongly fa-

vored on low LUI levels due to a higher dependence on soil functions. 

(ii) Bacterial composition within the endosphere is distinctive due to specific attraction 

and only few bacterial taxa being able to penetrate the plant roots. The community 

composition in the rhizosphere and bulk soil however is more similar due to no 

spatial delineation.  

(iii) The major driver of shifts in community composition is LUI by shaping soil proper-

ties and changing the nutrient availability, which causes a feedback loop on bacte-

rial diversity in the root endosphere.  

(iv) A set of shared core taxa will be present throughout all plant developmental stages 

but dependent on LUI measures. The structure of shared bacterial communities will 

be more complex and variable throughout the different plant developmental stages 

on low LUI levels. Conversely, a collection of bacterial keystone taxa will be present 

across all samples independent of LUI levels, plant developmental stage, or other 

disturbing parameters, which are considered as a host-specific set of microbes po-

tentially crucial for the establishment of a healthy community composition and es-

sential to the functioning of the plant holobiont. 
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2 Material and Methods 

2.1 Study site description 

The experiments for this study were performed on selected plots of the UNESCO Biosphere 

Reserve “Schwäbische Alb” within the frame of the German Biodiversity Exploratories. 

Schwäbische Alb is located in the submontane and montane plateaus in the southwest of Ger-

many (Figure 3a) and is covering an area of about 422 km2 and includes 50 grassland exper-

imental plots (EPs) with a size of 50 x 50 m.  

 

 

 

 

 

 

 

 

 

 

 

(a) Schematic representation for the location of the exploratory “Schwäbische Alb” within Germany; (b) 

Location of the selected experimental plots within the “Schwäbische Alb” and the classification into high 

LUI (black dots) and low LUI (white dots). 

 

Land use is represented by a variation of mowing regime, fertilization, and grazing manage-

ment, ranging from hardly managed grasslands to highly fertilized and intensively managed 

meadows and pastures. EPs are classified into a land use intensity index (see next chapter). 

Monitoring units are installed on each plot measuring above ground temperature, humidity, soil 

surface temperature, soil moisture, and soil temperature. To prevent damage from livestock or 

other animals, these monitoring units are fenced. However, the remaining area is neither 

fenced nor separated from the surrounding area. Hence, the measurements do not interfere 

with the management that is applied on the surrounding grassland (Fischer et al., 2010). The 

mean annual temperature for the year 2015 has been determined as 9.9 °C and the mean 

Figure 3: Overview of the study region “Schwäbische Alb” 

a b 
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annual precipitation was 730 mm. Mean temperature and precipitation during sampling collec-

tion was 12.3 – 22.7 °C and 80.6 mm. 

For this study, eight experimental sites were selected based on available data that was gener-

ated in the frame of the soil sampling campaign 2011 of the BEO using soil type, land use 

intensity index (2006 to 2010), plant available nitrogen, and phosphorus fractions in soil and 

were subsequently classified into high vs. low land use intensity (Table 1). The soil type of the 

selected experimental sites is described as Rendzic Leptosol (according to the FAO classifi-

cation system). Soil texture of the plots was determined as follows: clay content was in the 

range of 423 – 637 g/kg soil, silt content in the range of 327 – 554 g/kg soil, and sand content 

in the range of 15 – 69 g/kg soil with exception of plot AEG7, showing differing values (clay: 

385 g/kg soil, silt: 427 g/kg soil and sand: 188 g/kg soil; Table 1).  

 

2.2 Land use intensity index 

The land use intensity index (LUI index) is represented by three different management regimes 

that are weighted equally. Thus, it provides a unique design for studying bacterial communities 

and their responses to changes in management practices over time. The main components of 

land use intensity on the grassland plots of the BEO are mowing, grazing, and fertilization, 

ranging from unfertilized and extensively grazed sheep pastures over fertilized and mown cat-

tle or horse pastures to intensively fertilized three-cut meadows or cattle pastures. Land use 

and management regime are evaluated yearly by interviewing farmers and landowners. 

Whereas mowing intensity is measured as the number of mowing events, fertilization intensity 

is calculated through the amount of nitrogen that is applied per hectare using organic (slurry 

or manure) or mineral fertilizers and grazing intensity is based on the number of grazing ani-

mals (standardized as livestock units) per hectare as well as the duration of grazing periods 

(Blüthgen et al., 2012). The LUI index is then calculated from the standardized mean of the 

corresponding model region and summed into an index of overall land use intensity using the 

values of mowing (number of cuts), fertilization (quantified in kg nitrogen ha-1), and grazing 

(quantified in livestock units days of grazing ha-1 year-1) per experimental plot (Blüthgen et al., 

2012). The resulting values of LUI ranges used for the plot selection (based on the years from 

2006 to 2010) are between 0.58 and 3.4 (Table 1; Plot ID’s intensive LUI: AEG6, AEG19, 

AEG20, AEG21; Plot ID’s extensive LUI: AEG7, AEG28, AEG33, AEG34; see Figure 3b and 

Table 1). The average LUI over several years (2006 to 2014) was used for the analysis of the 

data sampled in 2015.  
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Concentrations of NaHCO3-Pi and Po (inorganic vs. organic sodium bicarbonate, labile/plant available phosphorus); NaOH-Pi and Po (inorganic vs. organic sodium 

hydroxide, moderately labile phosphorus); NH4-N (ammonium-bound nitrogen) and NO3-N (nitrate-bound nitrogen) given in mg-1 soil. Clay includes fractions <0.002 

mm, Silt fractions between 0.002 – 0.063 mm and Sand fractions are between 0,063 – 2 mm in diameter. 

PlotID LUI index  

[2006 to 2010] 

NO3-N 

[mg-1] 

NH4-N 

[mg-1] 

NaHCO3-

Pi [mg-1] 

NaHCO3-

Po [mg-1] 

NaOH-Pi 

[mg-1] 

NaOH-Po 

[mg-1] 

Clay 

[g/kg] 

Silt 

[g/kg] 

Sand 

[g/kg] 

LUI 

AEG6 2.47 5.41 3.37 25.02 21.31 240.62 653.01 588 380 32 high 

AEG19 1.76 10.11 5.54 31.03 41.8 327.08 823.73 637 327 36 high 

AEG20 1.94 3.96 0 39.53 23.77 246.07 773.21 597 334 69 high 

AEG21 3.4 10.63 1.87 11.24 24.61 123.71 692.34 587 391 22 high 

AEG7 0.58 0 3.81 1.6 1.45 18.04 166.56 385 427 188 low 

AEG28 0.78 0.79 2.41 4.84 6.43 70.31 530.97 599 385 16 low 

AEG33 1.12 0 2.44 4.52 10.18 47.7 426.83 597 388 15 low 

AEG34 1.02 0.56 7.65 6.89 15.47 92.37 657.16 423 554 23 low 

Table 1: Experimental plot characteristics 
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2.3 Sample collection 

The sampling campaigns were carried out in May, June, and October 2015, which represented 

seasonal variations of the plant developmental stages. In May, Dactylis glomerata L. plants 

were in the vegetative state, in June, plants were in the reproductive state (production of 

seeds), and in October, plants were in the senescence state. In each experimental plot, sam-

ples were collected within a subplot of 1.5 x 1.5 m. Nine Dactylis glomerata L. plants without 

disease symptoms like leaf spots were excavated at a depth ranging from 10 to 15 cm with 

adherent rhizospheres and bulk soil. Soil that was shaken off the roots was defined as bulk 

soil. The remaining, closely adhering soil to the roots was defined as rhizosphere. Root sam-

ples with surrounding rhizosphere were collected separately from bulk soil, both in 5 ml tubes 

for DNA extraction. The samples were immediately frozen on dry ice and stored at -80 °C until 

further analysis. Above-ground biomass of the plant was harvested using sterilized scissors 

and immediately frozen at -20 °C. For soil carbon and nitrogen measurements, additional soil 

samples were sieved and stored at 4 °C.  

 

2.4 Soil carbon and nitrogen content  

For the determination of soil carbon and nitrogen content, an extraction protocol using 0.5 g of 

fresh soil and 0.01 M calcium chloride solution (1:2.5 soil to extractant ratio w/v) was per-

formed. The extracts were shaken on a horizontal shaker for 45 minutes followed by centrifu-

gation (2 minutes at 4500 x g) and filtered through a Millex HV Millipore filter, pore size, 

0.45 µm (Merck, Darmstadt, Germany). Afterwards, water extractable organic carbon (WEOC) 

and nitrogen (WEON) were measured on a DIMA-TOC 100 (Dima Tec, Langenhagen, Ger-

many). The same extracts were used to determine nitrate (NO3-N) and ammonium (NH4-N) 

through a continuous flow analysis with a photometric autoanalyzer (CFA-SAN Plus; Skalar 

Analytik, Germany). 

 

2.5 Plant carbon and nitrogen content  

To determine plant carbon and nitrogen content, above-ground plant material was dried at 

65 °C for 2 days and then pulverized using a Tissue LyserII (Qiagen GmbH, Germany). After-

wards, 1.5 mg of the pulverized above-ground material was weighted into 3.5 × 5 mm tin cap-

sules (HEKAtech GmbH, Wegberg, Germany) and subsequently measured for carbon and 

nitrogen contents with the Elemental-Analysator ‘Euro-EA’ (Eurovector, Milano, Italy). 
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2.6 Separation of rhizosphere compartment and surface sterilization of 
the roots 

For the removal of the rhizosphere, Dactylis glomerata L. roots with adhering rhizosphere were 

transferred to a falcon tube containing 7.5 ml of 1x PBS improved with 0.02% Silwet (PBS-S; 

AppliChem, Darmstadt; Silwet L-77) and shaken at 180 rpm for 5 minutes. The procedure was 

repeated three times by transferring the roots to a new sterile 15 ml falcon tube containing 1x 

PBS-S. Following centrifugation, the PBS-S buffer was discarded and the remaining pellet was 

frozen in liquid nitrogen and stored at -80 °C.  

After removing the rhizosphere, roots were submerged in sterile 1% Tween 20 for two minutes 

and then washed with pure autoclaved water. Subsequently, roots were incubated in 70% Eth-

anol for two minutes and then thoroughly rinsed in sterile distilled water three times. After-

wards, roots were surface sterilized in 5% sodium hypochlorite for ten minutes, washed eight 

times, frozen in liquid nitrogen and stored at -80 °C. Using the final wash water as a template, 

the efficacy of the disinfection process was confirmed by the absence of amplification of the 

16S rRNA gene. In addition to this, 200 µl of the final wash water were plated onto NB-agar 

plates, incubated for 10 days at 28 °C and tested for growth of microbial colonies. This method 

was used, because microscopic investigation on ultrasonication and mechanical treatments 

revealed that they do not efficiently reduce rhizoplane community and may even damage plant 

tissue caused by sodium hypochlorite disinfection. Furthermore, surface sterilization ade-

quately removes surface bacteria and therefore more accurately represents the community 

composition within the endosphere compartment (Reinhold-Hurek et al., 2015; Richter-

Heitmann et al., 2016).  

 

2.7 DNA extraction, library preparation and sequencing 

2.7.1 Nucleic acid extraction 

DNA was extracted using a phenol-chloroform-based method modified from Lueders et al. 

(2004). The extraction was carried out on surface sterilized roots, extracted rhizosphere, and 

collected bulk soil from all sampling sites and taken in May, June, and October. All samples 

were stored at -80 °C. To extract DNA within the root samples, they were frozen in liquid nitro-

gen and pre-homogenized in a TissueLyserII (Qiagen GmbH, Germany). 0.1 g of pulverized 

roots and 0.3 g of rhizosphere and bulk soil, respectively, were then homogenized in lysing 

matrix tubes E (MP Biomedicals, France) in a 120 mM sodium phosphate buffer (pH 8) and 

TNS solution [500 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 % SDS (wt/vol)]. Afterwards, sam-

ples were centrifuged at maximum speed (16100 × g) for 10 min at 4 °C, the supernatant 
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discarded and successively mixed with an equal amount of Phenol/Chlorophorm/Isoamylalco-

hol (25:24:1 ratio, Sigma-Aldrich) and Chloroform/Isoamylalcohol [(24:1 (vol/vol)]. The solution 

was centrifuged for 5 minutes at maximum speed (16100 × g) and the supernatant discarded. 

The DNA precipitation step was carried out using polyethylene glycol (PEG) solution (30% 

(wt/vol) [PEG 6000, NaCl] and followed by 2 hours on ice incubation. The solution was centri-

fuged for 10 min at 4 °C and the pellet subsequently washed in ice-cold Dnase/Rnase free 

70% ethanol, air-dried, and eluted in 30 µl 0.1% diethylpyrocarbonate water. Concentration 

and quality of DNA extracts were determined in duplicates using a Quant-iT™Pico Green® ds 

DNA assay Kit (Invitrogen, Carlsbad, USA) according to manufacturer’s instructions. Measure-

ments were performed with a SpectraMax Gemini EM Fluorescence Plate Reader Spectrom-

eter (Molecular Devices, Sunnyvale, California, USA). To correct for background fluorescence, 

negative controls were added. Until further use, DNA extracts were stored at -80 °C. 

 

2.7.2 In silico analyses of primer pair coverage 

Analysis of the 16S rRNA (Figure 4) is a standard approach for cultivation-independent inves-

tigation of bacterial diversity within environmental samples, as it provides valuable phyloge-

netic information for the comparison of bacterial species (Janda & Abbott, 2007). So-called 

universal primers are usually designed to bind to the conserved regions of the 16S rRNA to 

amplify the variable regions, however, parts of these conserved regions of bacterial 16S rRNA 

are very similar to the conserved region of the 18S rRNA of plant mitochondria and the 16S 

rRNA of chloroplasts (Dorn-In et al., 2015). Thus, in environmental samples that are rich of 

plant DNA, non-targeted chloroplasts or mitochondria may be amplified, causing strongly bi-

ased results. To avoid the co-amplification of non-targeted chloroplast or plant mitochondrial 

DNA when studying bacterial endophytes in Dactylis glomerata L. an in silico analysis was 

carried out.  

 

 

Figure 4: 16S rRNA 

Conserved regions (blue) are targeted by universal primers to amplify bacterial diversity within environ-

mental samples. Hypervariable regions (grey) are highly conserved regions that are used for group or 

species-specific amplification. Positions of hypervariable regions (V1 – V9) span nucleotides 69 – 99, 

137 – 242, 433 – 497, 576 – 682, 822 – 879, 986 – 1043, 1117 – 1173, 1243 – 1294 and 1435 – 1465 
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for V1 through V9 respectively and are based on the E. coli system of nomenclature (Brosius et al., 

1978). 

 

2.7.2.1 Primer pair selection and in silico evaluation 

Five sets of universal primers were used (Tables 2 and 3). Primer pairs were chosen according 

to amplicon length to perform sequencing of amplicons of the 16S rRNA gene on the Illumina 

MiSeq platform (Illumina Inc., USA) and coverage of variable regions to be able to identify 

bacterial species/genera in environmental samples by sequence analysis. The first and second 

primer pairs evaluated (No. 1 and 2; see Table 2), reportedly exclude chloroplast amplification 

in Glycine max, Secale cereal, Triticum aestivum, Zea mays, Solanum tuberosum, and Lolium 

multiflorum. In addition to this, primer pair No. 1 is also shown to exclude plant mitochondria 

of Triticum aestivum and Lolium perenne (Dorn-In et al., 2015). While primer pair No. 1, 

335F/769R, is targeting the V3 – V4 region of the 16S rRNA gene and produces a fragment 

length of approximately 431 bp, primer pair No. 2 is targeting the V4 region and generates a 

fragment length of about 270 bp. The primer pairs No. 3 – 5 are reported to exhibit a high 

percentage of matches for a given taxonomic path, however, they are not specifically excluding 

chloroplast or mitochondrial DNA of plants.  

The in silico evaluation of the primers was done with the TestPrime tool according to Quast et 

al. (2013), using the SILVA rRNA database (release SSURef 119 NR) containing 464 618 

bacterial sequences. The SILVA SSURef 119 NR is using small subunit (SSU) sequences of 

the prokaryotic ribosomes that are longer than 1200 bp. An alignment quality value better than 

50 (Pruesse et al., 2007) is required for sequences using SINA (Pruesse et al., 2012) align-

ment. Redundant sequences are removed by clustering with UCLUST (Edgar, 2010) with a 

99% identity criterion. To simulate a realistic PCR behavior and mitigate unobserved sequence 

variation or other adverse conditions, “Maximum number of mismatches” was set to “1 mis-

match” and “Length of 0-mismatch zone at 3’ end” set to “3 bases”. The resulting coverage of 

each primer pair, i.e. the percentage of matches for the taxonomic classification into bacteria 

or chloroplasts, respectively, is listed in Table 3.  
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Table 2: List of primers used for in silico analysis 

Position on 16S rRNA Primer name Direction Primer sequence [direction 5’ – 3’] Primer reference 

8 – 23 S-D-Bact-0008-a-S-16 Forward AGAGTTTGATCMTGGC Klindworth et al. 2013 

335 – 352 335F Forward CADACTCCTACGGGAGGC Dorn-In et al. 2015 

341 – 357 S-D-Bact-0341-b-S-17 Forward CCTACGGGNGGCWGCAG Klindworth et al. 2013 

519 – 536 Com1 Forward CAGCAGCCGCGGTAATAC Smalla et al. 2007 

785 – 802 S-D-Bact-0785-a-S-18 Forward GGMTTAGATACCCBDGTA Baker & Cowan 2004 

343 – 357 S-D-Bact-0343-a-A-15  Reverse CTGCTGCCTYCCGTA Klindworth et al. 2013 

769 – 788 769R Reverse ATCCTGTTTGMTMCCCVCRC Dorn-In et al. 2015 

785 – 803 S-D-Bact-0785-a-A-21 Reverse GACTACHVGGGTATCTAATCC Klindworth et al. 2013 

1100 – 1114 S-*-Univ-1100-a-A-15 Reverse GGGTYKCGCTCGTTR Klindworth et al. 2013 
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Table 3: List of primer pairs used for PCR  

Primer 

pair No. 

Forward Primer Reverse primer Ø length [bp] Ø Tm [°C] HV regions Coverage 

Bacteria [%] 

Coverage   

Chloroplast [%] 

1 335F 769R 431 60 3 – 4 70 0 

2 Com1 769R 270 60 4 88 85 

3 S-D-Bact-0008-a-S-16 S-D-Bact-0343-a-A-15 350 50 1 – 2 87 80 

4 S-D-Bact-0785-a-S-18 S-*-Univ-1100-a-A-15 330 47 5 – 6 83 90 

5 S-D-Bact-0341-b-S-17 S-D-Bact-0785-a-A-21 465 54 3 – 4 90 84 
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2.7.2.2 Optimization of polymerase chain reaction (PCR) and primer selection 

In order to construct and optimize an efficient amplification method, i.e. to minimize PCR am-

plification bias, but still retrieve qualitative PCR products and evaluate requirements for PCR 

conditions when analysing plant root samples, all primer pairs were tested using different ther-

mal profiles (Table 4). The main parameters that were changed were the number of cycles and 

the elongation time. Each primer set was tested with 2 root DNA extracts and the respective 

rhizosphere extracts as a reference for bacterial amplification, resulting in a total of 24 reac-

tions per primer set and sample extract. Each reaction mix contained 12.5 µl NEB Next High 

Fidelity Master Mix (Illumina Inc., USA), 0.5 µl of each primer (10 pmol/µl), 2.5 µl of 3% BSA, 

100 to 200 ng of template DNA, and ad DEPC water to 25 µl. The following PCR conditions 

were used: initial denaturation step at 98 °C for 5 min, followed by the listed number of cycles 

for the respective thermal patterns of denaturation, annealing, and elongation thermal patterns 

seen in Table 4. The final elongation step was carried out at 72 °C for 5 minutes. For further 

analysis, PCR conditions were used where DNA amplicons showed the weakest band on the 

respective size (based on primer pair) on a 2% agarose gel to avoid overamplification.  

 

Table 4: Thermal profiles of polymerase chain reaction optimization 

Primer 
pair No. 

Initial dena-

turation 

Denatura-

tion 

Annealing Elongation No. Of 

cycles 

Final 

elongation 

1 / 2 

98 °C, 5 min 98 °C, 10 s 

60 °C, 30 s 

72 °C, 20 s 

20 / 25 / 

28 / 30 
72 °C, 5 min 

72 °C, 30 s 

72 °C, 45 s 

3 50 °C, 30 s 

72 °C, 20 s 

72 °C, 30 s 

72 °C, 45 s 

4 47 °C, 30 s 

72 °C, 20 s 

72 °C, 30 s 

72 °C, 45 s 

5 53 °C, 30 s 

72 °C, 20 s 

72 °C, 30 s 

72 °C, 45 s 
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To evaluate the effect of primer bias on the abundance estimation of bacterial taxonomic 

groups, Illumina sequencing was performed. The PCR of the 16S rRNA region was conducted 

in triplicates with Illumina adapter sequences as described below (see chapter 2.7.3) using the 

evaluated conditions for the respective primer pair and sample extract respectively. Taxonomic 

classifications for each read were applied as described in chapter 2.8, using an abundance 

cut-off of 0.001%. The sequencing results revealed that primer pair No. 1, 335F/769R, was the 

only primer pair that amplified bacterial DNA almost exclusively in samples in which plant DNA 

prevailed (Table 3) and thus was used for further analysis in this study. 

 

2.7.3 Library preparation and sequencing of amplicons of the 16S rRNA gene 

Next generation sequencing was performed using the Illumina MiSeq platform (Illumina Inc., 

USA). Library preparation was accomplished according to the “16S Metagenomic Sequencing 

Library Preparation” protocol proposed by Illumina Inc., USA. Sequence files are deposited in 

the NCBI Sequence Read Archive under accession numbers SRP102620 and PRJNA380810.  

Briefly, PCR of the 16S rRNA region was performed in triplicates using the primers 335F and 

769R with Illumina adapter sequences. The reaction mix contained 25 µl mixture that was 

comprised of 12.5 µl NEB Next High Fidelity Master Mix (Illumina Inc., USA), 0.5 µl of each 

primer (10 pmol/µl), 2.5 µl of 3% BSA, 100 to 200 ng of template DNA, and ad DEPC water to 

25 µl. PCR conditions included an initial denaturation step at 98 °C for 5 min, followed by 20 

cycles for rhizosphere- and bulk soil samples and 28 cycles for roots samples, respectively, a 

denaturation step (98 °C; 10 s), an annealing step (60 °C; 30 s), and an elongation step (72 °C; 

30 s). The final elongation step was carried out at 72 °C for 5 minutes. Negative control sam-

ples using DEPC water instead of template DNA were treated similarly. DNA amplicons were 

analyzed for the correct size using a 2% agarose gel, triplicates were pooled, and subsequently 

purified using the Agencourt®AMPure®XP (Beckman Coulter Company, USA) extraction kit 

according to manufacturer’s instructions. However, the ratio of AMPure XP to PCR reaction 

was changed to 0.6 instead of 1. Amplicon sizes and presence of primer-dimers were checked 

using a Bioanalyzer 2100 (Agilent Technologies, USA), the DNA 7500 kit (Agilent Technolo-

gies, USA), and quantified using the Quant-iT PicoGreen kit (Life Technologies, USA). After-

wards, indexing PCR was performed using 12.5 µl NEB Next High Fidelity Master Mix, 10 ng 

DNA of the previous PCR products, and 10 pmol of each primer containing adapter overhangs. 

For each indexing PCR, annealing temperature was reduced to 55 °C and the number of cy-

cles was reduced to eight cycles. Purified PCR products were pooled in equimolar ratios to a 

final concentration of 4 nM and sequenced using the MiSeq Reagent kit v3 (600 cycles) (Illu-

mina Inc., USA) for paired end sequencing. 
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2.8 Filtering and taxonomic classification of sequencing data 

Sequences were analyzed using QIIME suite (Quantitative Insights into Microbial Ecology) 

software package version 1.9.1 (Caporaso et al., 2010) and default parameters. Raw sequenc-

ing data was filtered by removing adapter sequences and trimming terminal nucleotides with a 

minimum read length of 50 bp and a Phred quality score lower than 15 using AdapterRemoval 

(Schubert et al., 2016). PhiX decontamination was performed with DeconSeq (Schmieder & 

Edwards, 2011). Afterwards, reads were merged, filtered by amplicon size (400 – 480 bp), and 

quality (Phred quality score >2). Subsequently, sequences were clustered into operational tax-

onomic units (OTUs) with an open reference strategy at a 97% sequence similarity using the 

GreenGenes 16S rRNA as the reference database (13_5 release; DeSantis et al., 2006). Clus-

tered reads were taxonomically classified against the RDP classifier (Wang et al., 2007), which 

is retrained on the GreenGenes 16S rRNA reference database. Remaining chloroplast as-

signed sequences were removed and the output was filtered with an abundance cut-off of 

0.005% (Manuscript 1) or 0.001% (Manuscript 2), respectively. Subsequently, the data was 

rarefied to the lowest obtained read number to make results comparable. 

 

2.9 Statistical analysis and data visualization 

Prior to statistical analysis and data visualization, a core set of diversity analyses were per-

formed using QIIME implemented work packages. These include the pre-processing into rela-

tive abundances of each OTU per sample and the computation of α- and ß-diversity. The within 

sample diversity (α-diversity) was based on chao1 richness, Shannon’s diversity (Manuscript 

2) and Faith’s phylogenetic diversity (Manuscript 1). Measures were computed using the 

QIIME script “alpha_diversity.py”. Weighted and unweighted Unifrac distances as well as Bray-

Curtis dissimilarity (normalized Manhattan distance) were used for ß-diversity measures and 

computed using the QIIME script “beta_diversity.py”. 

The statistical analysis and data visualizations were performed using the R environment (ver-

sion 3.2.1; R Core Team, 2014). Significant differences in α-diversity were determined using 

unpaired t-tests (Manuscript 2), whereby p values less than 0.05 were considered statistically 

significant and calculated per compartment, LUI, and sampling season/plant developmental 

stage (Manuscript 2). The graphs were made by means of the functions ggplot in the pack-

ages “ggplot2” (Wickham, 2009), “gplots” (Warnes et al., 2016), and “sciplot” (Morales, 2011),  

respectively. Dissimilarity between samples was examined by constrained principal coordi-

nates analysis (PCoA) and based on Unifrac and Bray-Curtis distances. These were created 

using the pcoa function within the “ape” and “vegan” packages (Paradis et al., 2004). Datasets 

were then analyzed with permutational multivariate analysis of variance test (ADONIS) using 
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the function adonis within the “vegan” package. Pseudo-F ratios below 0.05 were considered 

statistically significant. Significances were determined between LUIs in the different compart-

ments (Manuscript 1) and high versus low LUI in different compartments and plant develop-

mental stage or significant differences between high versus low LUI within each plant devel-

opmental stage, respectively (Manuscript 2). The correlation of environmental factors (Man-

uscript 1) was tested by canonical analyses of principal coordinates using the measures for 

soil characteristics as constraints. The canonical correlation analysis was calculated by means 

of the functions plot_cap and capscale implemented in the “vegan” package (Paradis et al., 

2004). Significances were calculated using the ANOVA-like permutation analysis function 

anova.cca included in the “ape” and “vegan” packages (Paradis et al., 2004). P values below 

0.05 were considered statistically significant. Ternary plots (Manuscript 1) were visualized by 

means of the function ternary plot within the “vcd” package (Friendly, 2017), which were com-

puted for high versus low LUI. The computation of a bacterial core taxa was performed applying 

the QIIME script “compute_core_microbiome.py” and was based on the total relative abun-

dance of bacterial OTUs. Briefly, core OTUs were defined as OTUs that are present in at least 

90% of the samples grouped into high versus low LUI in each compartment for every plant 

developmental stage. The calculation and visualization were performed by applying VENN di-

agrams (http://bioinformatics.psb.ugent.be/webtools/Venn/).  

 

 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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3 Manuscript overview 

This thesis is based on the following publications: 

• Estendorfer, J., Stempfhuber, B., Haury, P., Vestergaard, G., Rillig, M. C., Joshi, J., 

Schröder, P., & Schloter, M. (2017). The Influence of Land Use Intensity on the Plant-

Associated Microbiome of Dactylis glomerata L. Frontiers in Plant Science, 8, 930. 

https://doi.org/10.3389/fpls.2017.00930 

(Manuscript 1, first author, published) 

 

• Estendorfer, J., Stempfhuber, B., Vestergaard, G., Schulz, S., Rillig, M. C., Joshi, J., 

Schröder, P., & Schloter, M. (2020). Definition of core bacterial taxa in different root 

compartments of Dactylis glomerata, grown in soil under different levels of land use 

intensity. MDPI - Diversity, 12(10), 392. https://doi.org/10.3390/d12100392 

(Manuscript 2, first author, published) 
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Manuscript 1 

The Influence of Land Use Intensity on the Plant-Associated Microbiome of                    

Dactylis glomerata L. 

 

Jennifer Estendorfer, Barbara Stempfhuber, Paula Haury, Gisle Vestergaard, Matthias C. Ril-

lig, Jasmin Joshi, Peter Schröder and Michael Schloter 

 

Published 2017 in Front. Plant Sci. 8:930 | https://doi.org/10.3389/fpls.2017.00930 

 

In this manuscript, we investigated the influence of different land use intensities (LUI) on the 

root-associated microbiome of Dactylis glomerata L. as well as the driving factors for bacterial 

composition within plants in the reproductive stage. For this purpose, Dactylis glomerata L. 

samples that were in its reproductive phase were collected in early summer 2015. The exper-

imental sites ranged from natural grassland to intensively managed meadows. Using sequenc-

ing of amplicons of the 16S rRNA gene, bacteria in the plant endosphere, rhizosphere, and 

bulk soil were identified. The findings suggest that roots harbor a distinctive bacterial commu-

nity compared to the rhizosphere and bulk soil, resulting in a clearly distinguishable pattern of 

bacterial communities under different LUI compared to the rhizosphere and bulk soil. While 

dominant families in the root endosphere were classified into Pseudomonadaceae, Enterobac-

teriaceae, and Comamonadaceae, irrespective of LUI, the most abundant families strongly 

differed in rhizosphere and bulk soil on different LUIs. Furthermore, the effects of LUI are more 

pronounced in rhizosphere and bulk soil compared to the root endosphere. Overall, a change 

in community structure at the plant-soil interface was observed as the number of closely related 

bacterial groups between endosphere, rhizosphere, and bulk soil increased with decreasing 

land use intensity. Hence, results suggest a stronger interaction of the plant with the surround-

ing soil at low land use intensity by selectively attracting bacteria from the surrounding soil. In 

addition, the amount and quality of available soil nitrogen was identified as a major factor for 

changes in microbiome structure in all three compartments.  

 

JE designed the experiment, carried out the field work, laboratory experiments, data analysis, 

and wrote the manuscript. MS, BS, and PS contributed to the design of the experiment. PH 

contributed to the field work and the laboratory experiments. GV provided the pipelines for 

sequencing data analysis and advised data analysis. BS, PS, GV, JJ, MR, and MS advised 

the studies and critically revised the manuscript. 

https://doi.org/10.3389/fpls.2017.00930


Manuscript overview 41 

Manuscript 2 

Definition of Core Bacterial Taxa in Different Root Compartments of                           

Dactylis glomerata, Grown in Soil under Different Levels of Land Use Intensity 

 

Jennifer Estendorfer, Barbara Stempfhuber, Gisle Vestergaard, Stefanie Schulz, Matthias C. 

Rillig, Jasmin Joshi, Peter Schröder and Michael Schloter 

 

Published 2020 in Diversity, 12(10):392 | https://doi.org/10.3390/d12100392 

 

This manuscript evaluates core bacterial assemblages in the rhizosphere and endosphere of 

Dactylis glomerata L., assesses seasonal variations, and the impact of contrasting LUIs on 

core bacterial taxa to be able to predict community responses to environmental changes. Dac-

tylis glomerata L. samples were collected from grassland sites with contrasting land use inten-

sities but comparable soil properties at three different timepoints. Bacterial community struc-

ture was identified using sequencing of amplicons of the 16S rRNA gene. A distinct composi-

tion of plant-associated core bacterial communities independent of land use intensity was iden-

tified in all compartments. Due to the frequent occurrence of plant-promoting capabilities within 

the genera found in the plant-associated core bacterial communities, this study suggests a 

“healthy” plant-associated bacterial community. Low land use intensity was associated with an 

increased variable component of the plant-associated microbiome, as indicated by the fluctu-

ation of taxa over different sampling times. Comparing samples from high and low land use 

intensity plots, we found greater compositional variation in samples obtained from low land use 

plots, suggesting a more selective recruitment of bacteria with traits important for various 

stages of plant development.  

 

JE designed the experiment, carried out the field work, laboratory experiments, data analysis, 

and wrote the manuscript. MS, BS, and PS contributed to the design of the experiment. GV 

provided the pipelines for sequencing data analysis and advised data analysis. BS, PS, GV, 

SS, JJ, MR, and MS advised the studies and critically revised the manuscript. 
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4 Discussion 

Plant-associated bacteria play an important role for plant fitness and together with its host, are 

considered as a functional unit, the plant holobiont (Berg et al., 2020). In turn, associated bac-

teria are essential for the health and functioning of ecosystem services. With land use intensi-

fication being the major anthropogenic cause for the decrease of diversity in agricultural sys-

tems, and thus threatening the amount of ecosystem services provided by agricultural habitats, 

it is crucial to gain insight into the diversity and composition of bacterial assemblages within 

different plant compartments subjected to different land use intensities in field-realistic condi-

tions to be able to mitigate further loss of biodiversity. Comprehensive studies on response 

patterns of plant-associated bacteria in “real world” land management systems, where several 

environmental and anthropogenic influence factors may cause a shift in composition and di-

versity of bacteria are missing (Berg et al., 2020). Furthermore, studies that investigate the 

impact of a continuous land use intensity measure on bulk soil, the rhizosphere, and the plant-

associated microorganisms are scarce. Yet, the mechanisms governing the structure of plant-

associated microbial communities, which influence their function, are still largely unknown.  

Hence, one of the central aims of this study was to identify plant-associated bacteria within 

different compartments and plant developmental stages of Dactylis glomerata L. with the focus 

on the response patterns of bacterial communities towards the anthropogenic factor of land 

use intensity. The experiments were conducted within the framework of the BEO, which pro-

vided a field-realistic environment and the application of a continuous measure of LUI.  

 

4.1 Diversity patterns of plant-associated bacteria in response to LUI 

In this respect, the first hypothesis (i) postulated that the impact of LUI on bacterial diversity 

and composition will be most pronounced within the rhizosphere and bulk soil compared to the 

root endosphere. Conversely, root endophytic communities are less affected by LUI as they 

are primarily mediated by the host plant. As a result, the composition of bacteria within the 

endosphere will strongly differ to the rhizosphere and bulk soil and the structure of bacterial 

assemblages will be less diverse under high compared to low land use intensities in all com-

partments.  

As expected, the α-diversity and community structure (as represented by chao1 and Shannon 

diversity index) of bacteria strongly differed between rhizosphere, bulk soil, and endosphere, 

with higher diversity in the rhizosphere and bulk soil compared to the root endosphere at all 

sampling dates. The diversity within the rhizosphere and bulk soil was comparable (Manu-

script 1 & 2). These results were expected due to no physical delineation of the bulk soil and 
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the rhizosphere. The roots, however, are a physically separated compartment from its sur-

rounding soil, thus hampering colonization not only through spatial differentiation, but through 

selective attraction and only some bacteria being able to enter the plant roots (Hardoim et al., 

2015). Successful endophyte colonization has been shown to involve compatible plant-host 

interactions. Various studies have recognized the chemotactic response of endophytes to plant 

root exudates (Bergelson et al., 2019; Brader et al., 2017; Rosenblueth & Martínez-Romero, 

2006). Upon bacteria entering the host plant, the endophyte is recognized by the plant and the 

crosstalk of signalling molecules is initiated, therefore leading to selective filtering and limiting 

bacterial colonization of the host plant and a decrease in biodiversity from rhizosphere and 

bulk soil to root endosphere. This indicates an increasing influence of host-specific factors from 

bulk soil to rhizosphere to root endosphere and the plant compartment being a major selective 

force for shaping the diversity and composition of plant-associated bacterial communities. 

When further separating the diversity measures into high versus low LUI within each plant 

developmental stage, a significant influence of LUI on α-diversity was detected for bulk soil in 

early summer. In contrast to our expectation though, diversity measures were observed to be 

increased under high LUI compared to low LUI. These differences most likely arose from the 

variable land management applications on the sampling sides, which leads to a fluctuating 

resource availability and in turn to a more variable microbial community composition and an 

uneven distribution of certain bacterial taxa. Similar results were observed by Garbeva et al. 

(2008), who suggested that the composition of microbial communities is highly variable due to 

the strong impact of the various stimulatory and destimulatory effects of management applica-

tions that promote bacterial proliferation. Impacts on the so-called r-strategists, which are bac-

teria that are characterized by high growth rates under high nutrient supply and fluctuating 

nutrient availability conditions (Garbeva et al., 2008), are most pronounced. This in turn may 

lead to a transient and discontinuous bacterial growth pattern and a high variability on inten-

sively managed sites. In contrast, bacterial diversity in undisturbed environments with low hu-

man impact are considered to be more stable in terms of nutrient availability and input and 

thus may be virtually refractory to change due to being adapted to the highly competitive envi-

ronment. Low resource availability on low LUI plots may promote so-called K-strategists, bac-

teria that are slow-growers, but have high resource-acquiring affinities and high yields 

(Pettersen et al., 2021). Hence, low LUI plots are considered more stable environments, which 

leads to a more uniform colonization and less overall diversity compared to high LUI. Although 

the studied gradient of land use intensity ranged from unfertilized meadows and pastures to 

highly fertilized meadows and mown pastures, an impact neither was detected on rhizosphere 

and endosphere inhabiting communities for all plant developmental stages nor in soil commu-

nities in May or October (Manuscript 2). These findings may be explained due to bacteria that 

may adopt different strategies during different times of the year based on local conditions, 
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which can result in co-occurrence or co-exclusion of certain bacterial taxa, which in turn result 

in no significant difference in α-diversity measures. Furthermore, some bacteria have the ca-

pability to switch between strategies to ensure the survival under a broad range of environ-

mental conditions and thus cannot always be categorized neatly into r- versus K-strategists 

(Barberán et al., 2012; Pettersen et al., 2021; Song et al., 2017). These results correspond to 

results found in other studies that could show that microbial communities are more strongly 

influenced by plant species rather than soil characteristics, as plant roots exert a species-spe-

cific variety of compounds into its surrounding soil including ethylene, sugars, proteins, phe-

nolics, amino acids, organic acids, vitamins, polysaccharides, enzymes, and other secondary 

metabolites (Chagas et al., 2017; Garbeva et al., 2008; Jones et al., 2009; Praeg et al., 2019). 

These released compounds create unique environments that, together with climatic conditions 

and edaphic factors, shape the bacterial communities within the rhizosphere and creates a 

desirable niche for microbial communities to proliferate (Trivedi et al., 2020). As the commonly 

used measures for taxonomic richness usually count the numbers of species within the re-

spective sample, phylogenetic diversity (PD), a measurement of branch length within a phylo-

genetic tree, was applied to provide an evolutionary measure. PD provided further insight into 

how much phylogeny and evolutionary history can be found on high versus low land use inten-

sity plots (Miller et al., 2018). In addition to the influence on soil communities in early summer, 

phylogenetic diversity revealed a significant impact of LUI on the root endosphere inhabiting 

bacterial communities in early summer, with low LUI exhibiting higher diversity. However, dur-

ing the other plant developmental stages phylogenetic diversity was not significantly impacted 

by LUI (unpublished data). These results indicate the co-existence of closely related bacteria 

in the plant endosphere during the plants reproductive stage, which is probably owed to the 

greater impact of the host plant on the assembly of the inhabiting microbiome due to specific 

metabolic demands during plant reproduction. 

Analysis of β-diversity (between sample diversity) was based on the computation of Unifrac 

metrics. Unifrac metrics incorporate information on the relative relatedness of community 

members based on phylogenetic distances between observed taxa to exploit different degrees 

of similarity between sequences (Lozupone & Knight, 2005). Weighted Unifrac are the quanti-

tative measure and use the abundance of each taxon. Thus, the quantitative measure of β-

diversity is used to detect changes in the number of sequences of each lineage and changes 

in the number of taxa present. The unweighted Unifrac is a qualitative measure, which only 

use the presence or absence of data as duplicate sequences do not contribute additional 

branch length to the tree (Lozupone et al., 2007). Analysis of β-diversity in the root endosphere 

revealed that a significant impact of LUI could only be detected during the reproductive stage 

(June) of Dactylis glomerata L. for the unweighted Unifrac metric, but neither during other 

stages of the plant nor for the weighted measures (Manuscript 1 & 2). This indicates that LUI 
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only has an impact on the presence and absence of certain bacterial taxa in the root en-

dosphere during the plant’s reproduction, but does not impact the relative taxon abundance, 

which in turn primarily differentiates taxa that can live under low nutrient supply. Consistent 

with α-diversity measures for the root endosphere, these results indicate a specialized com-

munity composition under low LUI during seed production that is formed by the presence of K-

strategists or taxa that are specialized to metabolize limiting resources. In contrast, high nutri-

ent availability that is introduced through high land use management does not cause a partic-

ular group of taxa to thrive in the plant endosphere, suggesting bacterial composition being 

highly regulated by the plant. Due to seed production during the reproductive stage, which 

imposes high metabolic cost on the plant through the synthesis of storage products (including 

proteins, starch, and lipids), the uptake of minerals, and the shift of nutrients from the site of 

synthesis to the seed assimilation is required (Munier-Jolain & Salon, 2005). Nitrogen is an 

essential nutrient for the growth of plants and their associated microorganisms, the conversion 

of nitrogen into organic and inorganic forms is a key process for maintaining productivity and 

relevant ecological functions and services (Urakawa et al., 2014). Thus, under low LUI, where 

nutrient deficiency is seen through reduced amounts of plant-available nitrogen, it is important 

to establish a specific microbiome, which has the ability to metabolize plant-available nitrogen 

either through mineralization of dead biomass or nitrogen fixation to achieve optimal perfor-

mance of the plant (Gao et al., 2021; Pankievicz et al., 2019). Under high LUI, specific attrac-

tion is less important due to nutrient input through fertilization, which might explain the change 

in β-diversity in June between sites with different land use intensities. While the number of 

bacterial taxa observed in high versus low LUI did not differ significantly (α-diversity) within the 

rhizosphere, rare and transient taxa dominated qualitative measures, caused by a significant 

influence of LUI that was observed for the unweighted Unifrac metric during all plant develop-

mental stages. Abundant species in the rhizosphere, however, were not impacted by LUI 

(weighted Unifrac), hence, it was concluded that high abundant taxa are similar between high 

and low LUI, and significance was attributed to the presence or absence of low abundant taxa 

(Manuscript 2). These results suggest that low abundance bacteria dominate plant species-

specific responses to LUI. Most research, however, has focused on frequently occurring and 

dominant community members rather than on less dominant taxa despite the increasing atten-

tion for rare bacterial taxa (Aanderud et al., 2015; Jousset et al., 2017). Conversely, the abun-

dance and metabolic activity are not intimately related (Hunt et al., 2013). Rare species can 

have a significant impact on biogeochemical cycles and can be essential for the functional 

potential of the microbiome, thereby driving ecosystem processes (Jousset et al., 2017). Pre-

vious studies have demonstrated that low abundance of specific taxa might be driven by 

changes in abiotic conditions, such as LUI, and are more vulnerable to environmental fluctua-

tions and more likely to become extinct (Gaston, 2008). Land use intensification can therefore 
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have a profound impact on the rare biosphere and associated ecosystem functions (Rodrigues 

et al., 2013). Jousset et al. (2017) suggested that rare microbes are likely to be overlooked 

keystone species in regulating host-associated environments in terrestrial habitats. Hence, it 

is of crucial importance to identify rare species to be able to conduct further investigations on 

changes in low abundant microbial species and their metabolic activity in response to anthro-

pogenic factors.  

In accordance with my expectations of the first hypothesis (i), the influence of LUI increased 

in bulk soil compared to the other compartments as significant differences were observed in 

both weighted and unweighted metrics throughout all plant developmental stages between 

high and low LUI. The only exception for the bulk soil was the weighted metric in October, 

which reflected the senescence stage of the plant. These results suggest that in addition to the 

presence and absence of certain taxa, species abundance in bulk soil is affected by LUI during 

the sampling dates of May and June, i.e. when the plants were in the vegetative and reproduc-

tive stage. Furthermore, the degree and direction towards shifts in the abundance as well as 

the presence/absence of single OTUs increased from root endosphere to rhizosphere and bulk 

soil in response to LUI and is dependent on the plant developmental stage, which is reflected 

by the significance level and the variance for both metrics. This underlines that the influence 

of LUI is less pronounced in the root endosphere and that the plant is the major selective force 

in shaping the diversity and composition of associated communities with an increasing im-

portance from soil to rhizosphere to the plant root endosphere.  

Interestingly, these results are only partly consistent with other studies on belowground micro-

bial communities subjected to different levels of LUI. Previous studies that were conducted at 

the same grassland sites did not find a significant effect of different management regimes on 

soil bacterial diversity and composition (Herold et al., 2014; Kaiser et al., 2016). Both studies, 

however, did not investigate differences within several sampling dates, but were rather per-

formed in early Spring, whereas samples for this thesis were collected throughout different 

time periods. Accordingly, resource availability is affected by seasonal fluctuations in soil and 

plant-associated microbial community composition, which are influenced by C allocation, nu-

trient uptake, and plant litter, as well as the specific timeframes of land management applica-

tions (Koranda et al., 2013). These changes in resource availability and edaphic parameters 

are supported by the measurements of soil parameters as well as the significant differences in 

β-diversity between the sampling seasons (Manuscript 2) within this thesis. Furthermore, both 

studies did not use the multivariate Unifrac technique for comparing microbial communities in 

a phylogenetic context, which might have led to these different outcomes. In contrast to studies 

conducted at sites of the BEO, other investigations on a management intensity gradient found 

that soil bacterial diversity was the highest on moderately managed soil (Tardy et al., 2015). 
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Results were attributed to the dominance of particularly competitive species through competi-

tive exclusion in highly stressed environments versus the dominance of particularly adapted 

species through selection in unstressed environments. As a result, moderate stress as repre-

sented within moderately managed soil environments may increase apparent diversity by low-

ering the likelihood of competitive exclusion and selection. These studies, however, are difficult 

to compare as they were not carried out at the same sites and the definition of land use and 

management, and the period of impact vary considerably between the studies. As the land use 

intensity is considered a multifactorial influence, the study of Tardy et al. (2015) does not reflect 

LUI as a continuous measure that constitutes different management components.  

 

4.2 Composition of plant-associated bacteria during different plant 
developmental stages 

The second hypothesis (ii) of this thesis postulated that the bacterial community composition 

within the root endosphere is distinctive in contrast to the rhizosphere and bulk soil, as the 

plant will selectively shape its associated bacterial microbiome throughout the different devel-

opmental stages and only few bacterial taxa being able to enter the plant inner tissue. In con-

trast, the bacterial community composition in the surrounding rhizosphere and bulk soil will be 

comparable as there is no physical obstacle to overcome.  

To verify the hypothesis (ii), 16S rRNA amplicons were taxonomically classified. Classification 

revealed Pseudomonadota (formerly Proteobacteria) as the dominating bacterial phylum in all 

compartments, followed by Bacterioidota (formerly Bacterioidetes), Actinobacteriota (formerly 

Actinobacteria), Acidobacteriota (formerly Acidobacteria), and Bacillota (formerly Firmicutes) 

in all compartments and stages of Dactylis glomerata L. The structural composition, however, 

differed between all three compartments and stages (Manuscript 1 & 2). While the root com-

partment primarily consisted of Pseudomonadota (roughly 90%), the phyla Bacterioidota, Ac-

tinobacteriota, and Acidobacteria showed a higher abundance in the rhizosphere and bulk soil 

compartments compared to the endosphere. Conversely, despite Pseudomonadota being the 

prevailing phylum in all compartments, the abundance increased with proximity to the plant 

root showing the least abundance in bulk soil compared to the other compartments. Previous 

analyses on bacterial communities in soil samples collected at the same sites are partly in line 

with these results. While Pseudomonatoda were found to be the most abundant phylum, Ac-

idobacteriota and Actinobacteriota are claimed to be highly abundant in the soil in the 

“Schwäbische Alb” (Foesel et al., 2014; Kaiser et al., 2016). However, all analyzed samples 

were taken during a single sampling campaign and included all 50 grassland plots within the 

exploratory of the “Schwäbische Alb” (Kaiser et al. 2016; Foesel et al. 2014). Hence, seasonal 

variations as well as land use management are not reflected in the abundance measurements 
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in a similar manner as in the present study. Moreover, in addition to LUI, edaphic factors and 

soil type vary throughout the different plots. Previous studies have shown that soil properties 

are a major driver of soil microbial diversity and composition (Bastida et al., 2021; de Gannes 

et al., 2015; Kaiser et al., 2016). This in turn may have a strong impact on overall soil bacterial 

composition within the exploratory and lead to skewed results. To avoid generalized results, 

plots with comparable edaphic factors were selected for the present study and therefore reflect 

soil bacteria more accurately with respect to soil type and seasonal variations.  

In consistence with our expectations, the root endosphere harbors a distinct community com-

position when comparing at lower taxonomic ranks and was largely dominated by Pseudo-

monadaceae throughout all plant developmental stages and independent of LUI. Other abun-

dant taxa were assigned to Enterobacteriaceae, Comamonadaceae, Rhizobiaceae, Xan-

thomonadaceae, and Bradyrhizobiaceae. However, abundance was influenced by the plant 

developmental stage (Manuscript 2). Seasonal changes in bacterial community patterns re-

flect the respective growth phase, changing physiology, and external temperatures changes 

(Jansson & Douglas, 2007; Shen & Fulthorpe, 2015). These affect the concentrations of solu-

ble sugars, proteins, amino acids, organic acids, and other nutrients within the plant and in turn 

influences the establishment of associated bacterial communities in the root endosphere (Li et 

al., 2004; Renaut et al., 2005; Shen & Fulthorpe, 2015). Despite Pseudomonadaceae were the 

most abundant family throughout all plant developmental stages, they were found to be en-

riched in the vegetative stage (May) compared to the reproductive (June) and senescence 

(October) plant stage, Comamonadaceae were found in slightly higher abundances during the 

vegetative (May) and flowering stage (June). The other abundant families did not show re-

markable differences across different growth stages. Pseudomonadaceae having the highest 

abundance in the root endosphere is in consistence with other studies that investigated plant 

colonizing bacteria in perennial grasses (Wemheuer et al., 2017). Species within this family, 

which were mainly assigned to Pseudomonas spp., are described as being among the most 

efficient plant growth-promoting bacteria due to their wide range of plant growth-promoting 

traits (Trivedi et al., 2020). These include the production of cytokinins and various plant hor-

mones, siderophore production, phosphorus and potassium solubilization and mineralization, 

sulfur oxidation, cellulose synthesis, and have even been observed to supress disease in sev-

eral plant-pathogen systems due to their biocontrol capabilities (Mitter et al., 2021; Roquigny 

et al., 2017). In addition to this, several members of Enterobacteriaceae, Comamonadaceae, 

Rhizobiaceae, Xanthomonadaceae, and Bradyrhizobiaceae are frequently reported to be 

found inside roots and to possess plant growth-promoting characteristics (Bulgarelli et al., 

2013; Bulgarelli et al., 2015; de Santi Ferrara et al., 2012; Erlacher et al., 2015; Mitter et al., 

2021; Ren et al., 2015). Nitrogen-fixing symbiosis in root nodules of legumes is the best studied 

symbiotic association of Rhizobiaceae and Bradyrhizobiaceae and is of major importance for 
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nitrogen input in both agricultural and natural ecosystems (De La Pena et al. 2018). Lineages 

within these taxa were described as diazotrophic bacteria, i.e. able to fix atmospheric nitrogen 

by expressing nod and nif gene clusters for nodulation and nitrogen fixation in legumes, 

thereby increasing plant performance under limited nitrogen availability (Erlacher et al., 2015; 

Wang et al., 2012). However, numerous studies indicate that they are not limited to leguminous 

plants but are also ubiquitously found within various endophytic compartments on non-legumi-

nous plants, albeit without nodule formation (Erlacher et al., 2015; Rouws et al., 2014). The 

high abundance during all plant developmental stages, that is irrespective of LUI, indicates the 

importance of biological nitrogen fixation in Dactylis glomerata L. Added to this, the members 

of all families found in high abundance are associated with numerous traits that enhance plant 

nutrition through either mobilizing or increasing nutrient availability in soils. In addition to nitro-

gen fixing abilities these include the production of phytohormones, active secondary metabo-

lites and antimicrobial compounds, the oxidation of sulfur, the chelation and solubilization of 

micronutrients, and the metabolism of vitamins and co-factors (Eid et al., 2021; Lee et al., 

2019; Mącik et al., 2020). Due to their high efficiency regarding plant growth-promotion, some 

strains within the highest abundant families found have even been proposed as environmen-

tally friendly biofertilizers for sustainable agriculture, further emphasizing their importance in 

the present study (Lally et al., 2017; Mitter et al., 2021). In contrast to the findings in the current 

study, Wemheuer et al. (2017), who investigated bacterial endophyte communities of different 

grass species and their response to different management practices, found Massilia, a genus 

within Oxalobacteraceae, to be the most abundant root endophyte in Dactylis glomerata. How-

ever, despite the family Oxalobacteraceae being found in all samples in the current study, the 

genus Massilia was only found in the root endosphere in October on both LUIs (Manuscript 1 

& 2). Interestingly, Wemheuer et al. (2017) took their samples in Autumn, when the plants 

already reached their senescence stage, which concurs with our findings. Various studies have 

shown that sampling time and developmental stage strongly influence the phenotype of the 

plant also reflecting different metabolic demand of the plant, in turn altering associated micro-

bial community patterns (Bevivino et al., 2014; Chaparro et al., 2014; Dreccer et al., 2013). 

These results further highlight the selective recruitment of the plants associated microbiome 

throughout the different plant developmental stages in response to the current metabolic re-

quirements.  

In contrast to the distinctive composition of bacterial communities within the root endosphere, 

the abundance and composition of bacteria residing in the rhizosphere and bulk soil were com-

parable. Despite Pseudomonadaceae being highly abundant in the roots, they were only found 

in very low abundances in both the rhizosphere and bulk soil. No specific taxon was as domi-

nantly found as Pseudomonadaceae or Enterobacteriaceae within the roots, which leads to a 

more uniform distribution of taxa with respect to abundances in the rhizosphere and bulk soil. 
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The microbiome found in the bulk soil was found to be very similar to the rhizosphere, which 

is attributed to the close proximity to other plant roots in grassland soils that influence their 

surrounding environment. As there is no spatial delineation, the sampled “bulk soil” might be 

the rhizosphere of neighboring plant roots. Thus, the most commonly found families in both 

compartments were Comamomadaceae, Sinobacteraceae, Hyphomicrobiaceae, Xanthomon-

adaceae, Chitinophagaceae, Bradyrhizobiaceae, Sphingomonadaceae, and not further classi-

fied taxa within the orders Myxococcales, SC-I-85, and Ellin6068. The more evenly distributed 

abundance patterns, however, show a clear difference to the diversity pattern of the root en-

dosphere. However, the overlap of taxa found in the root endosphere compared to rhizo-

sphere/bulk soil hints at the “rhizosphere effect”, i.e. the structural and phylogenetic diversifi-

cation of bacteria of the microhabitat endosphere is composed of soil biota surrounding the 

roots.  

Hence, these results provide a first indication of the plant’s selective recruitment of bacterial 

taxa from its surrounding soil throughout the different plant developmental stages, which is in 

accordance with previous studies and in line with the expectations of the second hypothesis 

(ii) that the root endosphere of Dactylis glomerata L. has a distinctive community composition 

through selective attraction. In contrast, the rhizosphere and bulk soil were comparable and 

more diverse.  

 

4.3 Land use intensity as a major driver of shifts in community 
composition 

The aim of the third hypothesis (iii) is to disentangle and determine the influence of LUI and 

the putative feedback loop on plant-associated communities at different stages of plant devel-

opment to verify that LUI is a major driver of changes in community composition through shap-

ing soil properties and thus changing the nutrient availability. This section is divided into two 

parts. The first part discusses the significant shifts in bacterial communities in response to LUI 

throughout the different plant developmental stages whereas the second part analyzes the 

major influence factors to confirm that LUI has the highest impact on communities within the 

root endosphere. 

 

4.3.1 The impact of LUI on plant-associated bacteria during different plant 

developmental stages 

In order to disentangle and determine the impact of LUI and thus verify the feedback loop on 

plant-associated communities, bacterial abundances were compared in the high and low LUI 

samples at each stage of plant development. No significant impact of LUI was detected in each 
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stage on prevailing bacterial taxa in the root endosphere. Significant differences of LUI with 

respect to the abundance of assigned families were mainly detected in a few low abundant 

taxa, which is consistent with our findings within the unweighted metrics of the β-diversity anal-

yses. Out of 130 classifications of OTUs into bacterial families in the root endosphere, only five 

families were significantly impacted by LUI in May, five in June and two in October (Manuscript 

1, unpublished data), albeit all of them in very low abundances (each less than 1% across all 

samples). During the plant’s vegetative stage (May), these were assigned to Patulibacter-

aceae, Sphingobacteriaceae, Rhodobacteraceae, Acetobacteraceae, and not further assigned 

members of IS-44 (unpublished data) and were found in lower abundances on high LUI plots. 

During the reproductive stage (June) OTUs significantly impacted by LUI were assigned to 

Bryobacteraceae, Cytophagaceae, and several unassigned members of Rhizobiales and were 

found to be more abundant under low LUI versus high LUI. In contrast, Turicibacteraceae were 

more prominent under high LUI (Manuscript 1). Sphingomonadaceae and Erythrobacter-

aceae were the only families that were impacted by LUI during the plant’s senescence stage 

(October) and showed a higher abundance on low LUI plots versus high LUI plots (un-

published data).  

 

4.3.1.1 The vegetative stage 

Members of Patulibacteraceae were previously extracted from urban tree species (Shen & 

Fulthorpe, 2015), Miscanthus seeds (Cope-Selby et al., 2017), and in the rhizosphere of 

Parastrephia quadrangularis (Zhang et al., 2022), but are not further described as plant-pro-

moting taxa. Jin et al. (2016) found that isolated members of Patulibacteraceae exhibit oxidase 

and catalase activities. Some strains show enhanced growth on agar medium that is supple-

mented with superoxide dismutase, which is known to catalyze the dismutation of superoxide 

to hydrogen peroxide and provides defence against oxidative stress (Leonowicz et al., 2018). 

Oxidative stress during the initial stages of the plant emerging can be caused in response to 

insufficient usage of excitation energy for photosynthetic photochemistry and lead to plant 

growth retardation (Leonowicz et al., 2018; Xie et al., 2019). In addition, mineral-deficiency, 

nitrogen in particular, is known to induce oxidative stress responses in plants (Matić et al., 

2021) and exhibits the lowest amount in soils sampled in May on low LUI plots, which might 

cause the higher abundance of Patulibacteraceae in low LUI samples during the plant’s vege-

tative stage (May). However, their role in promoting plant growth has yet to be confirmed.  

The Sphingobacteriaceae that were found impacted by LUI in May could be further classified 

to the genus of Pedobacter. The species of this genus are commonly described as plant 

growth-promoting endophytes in oilseed rape and some cereal crops and are known for their 

ability to produce indole-3-acetic acid (IAA) (Lay et al., 2018; Yuan et al., 2011). IAA is one of 
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the most important phytohormones of the auxin class and plays a crucial role in plant growth 

and development by regulating key processes such as tissue differentiation, fertility, cell divi-

sion, alignment, enlargement, and increase in the number of lateral roots and root hairs in-

volved in nutrient uptake (Finet & Jaillais, 2012; Keswani et al., 2020; Zhao, 2010). Due to their 

importance for plant performance, recent studies are investigating auxins of microbial origin 

for use in agriculture (Keswani et al., 2020; Tan et al., 2021). This could be the reason for the 

significant increase of Pedobacter on plots with low LUI in the vegetative stage (May) to sup-

port plant development and nutrient uptake.  

Among other not further classified Rhodobacteraceae, genera found were identified as Am-

aricoccus, Paracoccus, and Rhodobacter. All three genera are frequently reported to be ex-

tracted from plant endosphere and rhizosphere (Deng et al., 2011; Eid et al., 2021; Kobayashi 

& Aoyagi, 2019; Liu et al., 2019; Tangapo et al., 2018). Species within Rhodobacter have been 

demonstrated to fix nitrogen in resource limited environments by either a molybdenum-de-

pendent or a molybdenum-free iron-only nitrogenase and thus actively enhancing nutrient bi-

oavailability in soil and plant biomass production (Hoffmann et al., 2014; Mburu et al., 2021). 

Furthermore, Rhodobacter spp. are frequently reported as plant growth-promoting bacteria as 

they are able to mitigate environmental stress by producing IAA in early plant developmental 

stages and significantly improving root length, shoot length, as well as plant biomass (Kang et 

al., 2020; Kang et al. 2021). In addition, some Paracoccus spp. were found to promote plant 

growth in the endosphere through siderophore iron complex production to contribute to iron 

uptake in plants (Deng et al., 2011; Zhang et al., 2019) and are found within the rhizosphere 

and endosphere of numerous plants (Campisano et al., 2014; Kämpfer et al., 2012; Lin et al., 

2017). Furthermore, they have been found to be significantly correlated to organic pest man-

agement in grapevine (Campisano et al., 2014). In contrast, Amaricoccus have not been fur-

ther described as plant growth-promoting taxa despite them being frequently found as a plant-

associated genus in tomato (Grunert et al., 2020), banana (Liu et al., 2019), potato 

(Rosenzweig et al., 2012), or sweet potato (Tangapo et al., 2018). Conversely, Amaricoccus 

is associated with waste-water treatments using the activated sludge process (Maszenan et 

al., 1997; Wei et al., 2020). This process relies on microbial activities to remove oxygen-con-

suming organics and nutrients like nitrogen and phosporus (Modin et al., 2016). Many strains 

within the Amaricoccus genus have the ability to reduce nitrate to nitrite and are capable of 

improving nitrogen removal at low C:N ratios (Kondo et al., 2009; Maszenan et al., 1997; Wang 

et al., 2020; Wei et al., 2020). This, however, would imply that Amaricoccus might be compet-

ing for nitrate with the plant by removing nutrients and reactive nitrogen from the biosphere, 

which is unlikely to occur within the root endosphere without causing visible symptoms to the 

plant. On the other hand, Amaricoccus spp. have been frequently described as poly-β-hydroxy-

butyrate (PHB)-producing organisms (Falvo et al., 2001; Kondo et al., 2009; Maszenan et al., 
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1997). PHB is a polymer that can serve as an intracellular source of energy or carbon storage 

and is produced by microorganisms in response to physiological stress and limited nutrient 

conditions (Ackermann et al., 1995; Gillmaier et al., 2016; Obruca et al., 2018). Recent studies 

suggest that PHB accumulation is strongly interrelated with symbiosis initiation of nitrogen fix-

ing bacteria to appropriately respond to nitrogen limitation in highly competitive environments 

(D’Alessio et al., 2017). PHB synthesizing bacteria within the root endosphere were shown to 

significantly correlate with an increase of the root area as well as the number of lateral roots 

(Alves et al., 2019). These functions could explain the significant higher abundance of Am-

aricoccus on low LUI during the plants vegetative phase (May). In this respect, the PHB cycle 

is a useful feature for these organisms to colonize Dactylis glomerata L. to overcome unfavor-

able conditions for plant growth. Conversely, despite their presence in various plant inner tis-

sues and the rhizosphere, they have not been further analyzed with respect to plant growth-

promoting traits.  

The last group that was significantly affected by LUI in May was the family of Acetobacter-

aceae, which were, among not further classified taxa, assigned to the genera Roseococcus 

and Roseomonas. These are commonly found within plant inner tissues or rhizospheres and 

have previously been isolated from grapevines (Bruez et al., 2020), maize (Navarro-Noya et 

al., 2022; Renoud et al., 2022), poplar (Ulrich et al., 2008), rice (Chung et al., 2015), and sev-

eral other plants. Nitrogen fixing bacterial representatives of Acetobacteraceae are widely 

known for their agricultural applicability, including Roseococcus and Roseomonas (Reis & 

Teixeira, 2015). Nitrogen is the essential limiting element for plant growth (Morgan & Connolly, 

2013). It is a major component of chlorophyll, which is crucial for the conversion of light energy, 

water, and carbon dioxide into oxygen and chemical energy (i.e. photosynthesis), and of amino 

acids, which are the building blocks of proteins (Evans & Clarke, 2019; Morgan & Connolly, 

2013). Furthermore, it is found in nucleic acids and other important biomolecules like adeno-

sine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADP+), which are 

used in the light-independent reaction during photosynthesis (i.e. the Calvin Cycle; Evans, 

1989; Walker et al., 2014). The biological process of nitrogen fixation transforms atmospheric 

nitrogen into inorganic compounds that can be utilized by the plant for the biosynthesis of 

nitrogen-containing organic compounds (Morgan & Connolly, 2013), thus enhancing plant per-

formance under limited nitrogen availability. In addition to nitrogen fixation, Roseococcus and 

Roseomonas were reported to produce bacteriochlorophyll a (Sánchez-Porro et al., 2009; 

Yurkov et al., 1994). Bacteriochlorophylls are photosynthetic pigments that conduct photosyn-

thesis, which harvest wavelengths of light that are not absorbed by plants or cyanobacteria, 

thereby increasing the spectral coverage for light absorption through sequestration by the eu-

karyotic water-soluble chlorophyll protein (Hitchcock et al., 2016). This might help the plant to 
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increase photosynthetic capacity, which in turn affects plant performance under nutrient limi-

tations found in low LUI plots in May.  

 

4.3.1.2 The reproductive stage 

In June, which corresponds to the reproductive stage of the plant, not further classified Hy-

phomicrobiales (formerly Rhizobiales) were significantly increased under low LUI. It has been 

described that a large proportion of the order is highly adapted to a host-associated lifestyle, 

with many of them having important agricultural, ecological, and medical implications (Wang 

et al., 2020). Families within this order are largely associated with their biological nitrogen fix-

ation abilities (Wang et al. 2020). However, through their high adaptability, Hyphomicrobiales 

are well-known for their diverse lifestyle, enabling a wide variety of plant beneficial traits like 

the supply of nutrients, phytohormones, or precursors of essential plant metabolites (Erlacher 

et al., 2015; Wang et al., 2020). The significant increase in abundance on low LUI compared 

to high LUI during the critical growth stage of when seeds are produced and high metabolic 

demands are exhibited, is reflected in the diversity of lifestyles and plant growth enhancing 

traits of members of Hyphomicrobiales. Furthermore, the results underline that the nitrogen-

fixing abilities of members of Hyphomicrobiales also play an important role in perennial 

grasses.  

Added to this, families of Bryobacteraceae, which were largely assigned to Bryobacter spp., 

are widely described as chemoheterotrophs that utilize various sugars and polysaccharides 

(Dedysh et al., 2017; Kulichevskaya et al., 2010). Members of Cytophagaceae are described 

as chemoorganotrophs that are frequently reported to utilize cellulose and the digestion of 

polysaccharides or proteins (McBride et al., 2014). As carbohydrates, or sugars, and the re-

spective sugar signalling is essential to crucial processes required for plant growth, the metab-

olism of the plant needs tight coupling with regulatory mechanisms that control growth and 

development during flowering (Van den Ende, 2014). Sugar signals are reportedly generated 

either by carbohydrate concentration or by relative ratios to other metabolites, such as C:N 

ratio (Palenchar et al., 2004). Moreover, there is increasing evidence that sugars can crosstalk 

with phytohormone signalling networks to modulate critical growth phases and are able to reg-

ulate specific developmental processes (Eveland & Jackson, 2012). As a consequence, it is 

essential that the production, metabolism, and use of carbohydrates is carefully coordinated 

with the availability of photosynthates, i.e. the resulting products of photosynthesis, environ-

mental factors, and the timing of important developmental growth processes. Therefore, the 

modulation and recycling of the carbohydrates, proteins, as well as the utilization of cellulose 

by endophytic members of Bryobacteraceae and Cytophagaceae can have profound effects 
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on plant growth, making these particularly important under low LUI during the plants reproduc-

tive stage.  

As opposed to families significantly increased under low LUIs, Turicibacteraceae, which were 

further assigned to Turicibacter spp., were mostly found across high LUIs. Turicibacter spp. 

are commonly found in intestines of animals (Auchtung et al., 2016; Maki et al., 2020). They 

were possibly transferred through either fertilization with manure or grazing cattle or sheep on 

intensively managed sites, which is supported by the fact that they have not been reported as 

a plant growth-promoting taxon in other studies or as being extracted from plant inner tissues. 

On the other hand, Turicibacteraceae seem capable of entering the inner tissue of Dactylis 

glomerata without causing visible symptoms of disease. Considering this, the low abundance 

of this taxon suggests that they are sporadically acquired from the immediate environment 

(Santhanam et al., 2015).   

 

4.3.1.3 The senescence stage 

In October, where Dactylis glomerata plants were in the senescence stage, the phylogenet-

ically closely related families Sphingomonadaceae and Erythrobacteraceae showed a signifi-

cant increase in abundance on low LUI plots. Members of these taxa are characterized by the 

formation of glycosphingolipids in their outer cell walls, which are usually found in eukaryotes 

(Glaeser & Kämpfer, 2014; Tonon et al., 2014). In plants, sphingolipids are ubiquitous bio-

active compounds of cells that have been implicated in many processes due to their wide range 

of physical properties, including membrane organization and dynamics, apoptosis, and senes-

cence (Michaelson et al., 2016). Recent studies revealed that sphingolipids play a central role 

in signalling for programmed cell death that is an important process during plant senescence 

(Luttgeharm et al., 2015). Plant senescence is a degenerative process that occurs in a tempo-

rally coordinated manner and is the final phase of a developmental program that is linked to 

reproduction and survival (Woo et al., 2018). Unlike annual plants, which rely primarily on 

seeds as perennial structures, perennial plants survive adverse environmental conditions by 

maintaining viable storage organs such as roots and other plant organs (Sarath et al., 2014). 

Therefore, perennial plants have often developed mechanisms to recycle nutrients like nitro-

gen or photosynthates from shoots to maximize reproductive success by inducing seasonal 

dormancy and resume growth with the previously stored reserves as soon as conditions are 

favorable (Sarath et al., 2014; Yang & Udvardi, 2018). As nitrogen is the major limiting factor 

for plant productivity, it is crucial to optimize nitrogen use-efficiency through plant senescence. 

Therefore, the significant increase of the presence of sphingolipid producing families during 

the plant’s senescence state on low LUI plots may alleviate and improve the efficiency of the 

process of programmed cell death and thus support the performance of the plant.  



Discussion 56 

4.3.1.4 The rhizosphere and bulk soil 

In contrast to the few families that were impacted by LUI within the roots, the number of af-

fected taxa within the rhizosphere and bulk soil were higher, indicating a higher impact of LUI 

on the root surrounding area. In May, 16 families showed significant differences in the rhizo-

sphere on low compared to high LUI. Among mostly low abundant taxa affected by LUI, Co-

mamonadaceae, which is among the highest abundant families, were found in significantly 

higher amounts on high LUI plots. In addition, not further classified Rhizobiales were found to 

be increased under low LUI plots, which is in line with the root endosphere. In June, 23 low 

abundant families and in October, 32 families were affected by LUI. Among the latter were the 

two high abundant families Xanthomonadaceae and Comamonadaceae, both found in higher 

abundances on high LUI. Interestingly, Oxalobacteraceae were affected as well, which are 

further classified as Massilia, which is in line with the root endosphere. In the bulk soil, the 

effect of LUI was even more pronounced than in the rhizosphere, with 68 families being signif-

icantly different on high compared to low LUI plots, two of which being among the highest 

abundant families, Sinobacteraceae and Hyphomicrobiaceae. Interestingly, Pseudomona-

daceae, which actually does not belong to high abundant taxa within the bulk soil but are the 

highest abundant family within the root endosphere, were found in higher amounts on low LUI 

plots. Patulibacteraceae, which were also found to be significantly impacted in the root en-

dosphere in May, were impacted in the bulk soil as well. However, in contrast to the root en-

dosphere, where Patulibacteraceae were found in higher abundance on low LUI plots, they 

were found in higher abundances on high LUI plots in bulk soil, underlining the plant’s selective 

recruitment of beneficial taxa. In June, 59 families were affected, but not the ones that were 

found within the highest abundant families and in October, 34 families were influenced by LUI, 

with high abundant families Xanthomonadaceae and Sphingomonadaceae increased under 

low LUI plots.  

Conclusively, these results indicate that the impact of LUI decreases with proximity to the plant 

root and while the impact of the plant increases from bulk soil to rhizosphere to the root en-

dosphere. This in turn leads to a strongly distinctive bacterial community composition within 

the endosphere. The interaction of the plant and the surrounding soil is more pronounced in 

response to low nutrient availability, which in turn leads to a highly specific recruitment of ben-

eficial bacteria throughout the different plant stages and proves more important on low LUI 

plots (Figure 5). Hence, these results are consistent with our expectations of the first part of 

the third hypothesis (iii) that bacterial composition in the endosphere is distinctive and specific 

to the nutritional and developmental needs of the plant, with LUI having an impact on nutrient 

availability, causing a feedback loop on low abundance taxa. This further is supported by the 

higher proportion and more even distribution of shared taxa between the root endosphere and 
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the surrounding rhizosphere and bulk soil, which is detected in the ternary plots (Manuscript 

1).  

 

4.3.2 Influencing factors on bacterial communities in the root endosphere 

To further break down the extent of impact factors and confirm whether LUI is the strongest 

driver of changes compared to other soil properties, which was the aim of the second part of 

the third hypothesis (iii), a canonical analysis of principal coordinates was carried out. The LUI 

index is a continuous measure of land use intensity, which takes fertilization, mowing, and 

grazing into account, and has been shown to correlate with changes in soil nitrogen levels and 

soil parameters (Manuscript 1 & 2). Since differences in bacterial diversity and composition 

can be attributed to the different environmental parameters, the correlation of these was tested 

through the canonical analysis of the principal coordinates using soil characteristics as con-

straints to determine the driving forces of plant-associated bacterial assemblages. These were 

further used as explanatory constraints for the bacterial community composition within the root 

endosphere. In the present study, soil nitrate and ammonium were the strongest predictors for 

bacterial community structure (Manuscript 1). In response to nutrient deficiencies, plants 

change their root structure, attract microorganisms, and modify the chemical environment in 

the endosphere, as well as the rhizosphere (Hodges and Constable, 2010). The primary 

sources of nitrogen for plants have been suggested to be ammonium (NH4
+) and nitrate (NO3

-

; Tho et al. 2017). In dependence of the nitrogen source, plants respond differently as energy 

and reductants are required, thus, possibly causing a feedback loop on associated bacterial 

communities (Zhang et al. 2019). Ammonium, for example, is positively charged, therefore the 

plant releases a proton (H+) for every NH4
+ taken up, which leads to acidification of the rhizo-

sphere (Stitt, 1999). Chemical changes, such as tissue undersupplied with essential cations 

like potassium, calcium, and magnesium, can in turn be triggered. (Britto and Kronzucker, 

2002). Hence, if ammonium is the only source of nitrogen or is present in excessive amounts, 

this can lead to ammonium toxicity through ion disturbances in the plants, which in turn impairs 

plant growth and changes the composition of associated bacterial communities (Reference; 

Zhang et al. 2019). In contrast, nitrate is negatively charged, thus, the plant releases bicar-

bonate (HCO3
-), which leads to an alkalization in the rhizosphere (Stitt, 1999). These changes 

in pH do not only change redox conditions within the rhizosphere but can influence the availa-

bility of other plant essential micronutrients (Zhang et al. 2019). Changes in pH were previously 

shown as the driving forces in changing soil microbial communities (Kaiser et al. 2016), which 

can be attributed to changes in the amount of available nitrogen and ammonium. Thus, is in 

line with the findings of the current study. Most plants, however, grow well when both nitrate 

and ammonium are available (Zhang et al., 2019), which also is reflected in the present study 
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on both high and low LUI plots. Since these results indicate that nitrate and ammonium levels 

are closely correlated with LUI index as they alter nutrient availability and affect soil properties 

(Manuscript 1 & 2), it was possible to verify the second part of hypothesis three (iii) that LUI 

has the greatest influence by altering soil properties, which in turn triggers a feedback loop on 

plant-associated communities (Figure 5). Other factors, such as gravimetric water content, C:N 

ratio, and water extractable carbon were shown to drive community composition to some ex-

tent, which is in line with previous studies (Brockett et al., 2012; Cederlund et al., 2014). The 

extent of the influence of the mentioned factors that were discussed in chapters 4.1 to 4.3 is 

schematically depicted in figure 5. 

Figure 5: The impact on plant-associated bacterial communities and drivers of changes as identified 
within the current study.  

Grey arrows indicate the influence of the mentioned factor or the bacterial diversity with respect to the 

compartment, whereas the cogs indicate the drivers of changes. The red/green arrows indicate a less 

strong plant-soil interaction on high (red) compared to low (green) LUI.  
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4.4 The bacterial core microbiome within the endosphere and 
rhizosphere 

In this chapter, the impact of LUI on the formation of a specific plant-associated bacterial core 

composition at the root-soil interface will be discussed. Hypothesis four (iv) postulates the 

presence of a bacterial core microbiome with respect to the influence of LUI, which is the first 

part of hypothesis four, as well as a land use independent set of core bacterial keystone taxa, 

which is the second part of this hypothesis (Manuscript 2).  

With respect to the first part of hypothesis four, it is expected that there will be a set of bacterial 

taxa, that will only be found in the core microbiome on high LUI or low LUI, respectively. For 

this purpose, a core microbiome was computed throughout all plant developmental stages on 

high versus low LUI. Furthermore, the stronger interaction of the plant with its surrounding soil 

at low LUI levels noted in previous chapters (see chapters 4.2 and 4.3) is expected to disen-

tangle the close association of the plant with bacteria on high LUI in terms of their co-occur-

rence and the composition of core bacterial communities at the plant-soil interface (rhizo-

sphere). Hence, it is expected that the structure of bacterial communities that contribute to the 

shared cores is less complex and variable in terms of lower bacterial diversity than at sites with 

extensive forms of land use (low LUI). Additionally, this effect will be more pronounced in the 

rhizosphere than in the root endosphere. 

The second part of hypothesis four discusses the presence of a set of core taxa that will be 

present regardless of environmental factors and plant developmental stage, representing the 

most ecologically and functionally important bacterial associates with Dactylis glomerata L. 

Because these core taxa are persistent, ubiquitous, and are found in association with the host 

plant independently of LUI, they are classified as putative keystone species.  

 

4.4.1 Bacterial variation of the bacterial core microbiome as influenced by land use 
intensity 

In order to investigate a bacterial core assemblage with respect to the influence of LUI, which 

is the first part of hypothesis four, a core microbiome was computed throughout all plant de-

velopmental stages on high versus low LUI (Manuscript 2). Indeed, taxa were found that were 

only present within the core under high or low LUI, respectively. OTUs found exclusively in 

roots in all samples from low LUI sites included those attributed to Caulobacter. Several bac-

teria of this genus are frequently found as endophytes and have been reported to produce IAA, 

solubilize inorganic phosphate, and exhibit anti-fungal activity (Berrios, 2022; 

Chimwamurombe et al., 2016; Gao et al., 2021; Naveed et al., 2013). Some strains have also 

been described as nitrogen-fixing bacteria (Sithole et al., 2021), making them especially im-

portant under low LUI. This is supported by a study of Campisano et al. (2014), who found that 
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Caulobacter exhibited a higher abundance in grapevine cultivars under organic production 

compared to integrated pest management. On the other hand, a single OTU that was assigned 

to the genus Labrys was found in the core microbiome on high LUI. In addition to soil and 

sediment samples (Carvalho et al., 2008; Miller et al., 2005), species of this genus have also 

been isolated from rhizospheres of important crop plants (Fan et al., 2018) and Korean ginseng 

(Nguyen et al., 2015) and found as endophytes in Clerodendrum colebrookianum (Passari et 

al., 2016), Phalaris arundinacea (Węgrzyn & Felis, 2018), and legume nodules (Rangel et al., 

2017; Tapia-García et al., 2020). Despite Labrys not being widely recognized as plant growth-

promoting bacterium, it was identified to produce IAA and fix nitrogen (Tapia-García et al., 

2020). Furthermore, it was shown to possess the gene nodC, which is associated with nodule 

formation in legumes (Tapia-García et al., 2020). In addition to this, Labrys strains that were 

isolated from sediment and soil have been shown to have the ability to reduce nitrate, assimi-

late various amino acids and sugars, have catalase activity etc. (Carvalho et al., 2008; Miller 

et al., 2005), which might also support plant growth under higher amounts of nitrate found on 

high LUI plots. Another OTU that was found in the core of high LUI only was Agrobacterium. 

Members of this genus are largely known for their ability for horizontal gene transfer of plasmid 

T-DNA into plant cells, leading to genetic modification of plants and thus making it a key player 

in genetic engineering (Nester, 2015). Several species within the Agrobacterium genus are 

known for their virulence as they carry the pathogenic capacities on the Ti (tumorigenic) or Ri 

(rhizogenic) plasmids. As a result, tumor-like growth can be induced and seed production is 

diminished, for example with crown-gall or hairy root disease (Lee et al., 2009; Zambryski et 

al., 1989). On the other hand, numerous avirulent Agrobacterium species have been found 

missing these plasmids (Bosmans et al., 2017; Nester, 2015). Moreover, Agrobacterium have 

been reported being among the most efficient plant growth-promoting bacteria through their 

ability to solubilize phosphate, fix nitrogen, produce siderophore, and enhance plant root de-

velopment through phytohormone production (Pereira & Castro, 2014; Trivedi et al., 2020).  

In the rhizosphere, several differences in the composition of core bacterial communities were 

found on high versus low LUI. These include OTUs assigned to Variovorax, which were only 

found in the core of low LUI samples. Species within this genus have also been reported to be 

among the most efficient plant growth bacteria through their metabolic diversity (Trivedi et al. 

2020). Plant growth-promoting mechanisms include the production of various phytohormones, 

the reduction of plant stress, increasing nutrient availability, and providing protection from path-

ogenic infection (Han et al., 2011; Leadbetter & Greenberg, 2000; Pereira & Castro, 2014). 

The latter constitutes mechanisms related to their catabolic capacities and relies on the dis-

ruption of molecular communications of microbial communities. The best described mecha-

nism to actively disrupt microbial signalling molecules, the N-acyl-l-homoserine lactones 
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(AHL), is the so-called “quorum quenching” and thus negatively impact species and inter-spe-

cies communication that coordinates gene expression (Ghoul & Mitri, 2016). Quenching of 

bacterial cell-cell communication has been reported to act as putative biocontrol agents as 

they were shown to disrupt expression of virulence factors and biofilm formation of plant path-

ogens (Christiaen et al., 2011). Other species found exclusively in the core on low LUI were 

Sphingomonas wittichii and Bosea genosp. Numerous studies have shown that they can pro-

mote plant growth through the production of phytohormones (Khan et al., 2017; Shen & 

Fulthorpe, 2015). Furthermore, Sphingomonas wittichii was reported to metabolize a variety of 

aromatic compounds (Mydy et al., 2017), which has been shown to play an important role in 

bacterial colonization of the plant rhizosphere (Ledger et al., 2012). Moreover, other species 

belonging to the genera Sphingomonas and Bosea were shown to be diazotrophic, solubilize 

inorganic phosphorus, and can inhibit the growth of microbial pathogens, thus sustaining plant 

health and growth under scarcity of nutrients as found on low LUI plots (Correa-Galeote et al., 

2018; De Meyer & Willems, 2012; Legein et al., 2020; Rilling et al., 2018). The last taxa found 

exclusively in the rhizosphere core on low LUI is Asticcacaulis biprosthecium, which is fre-

quently found in the rhizosphere of different plants like maize (Walters et al., 2018), Populus 

(Bonito et al., 2019), or Geum aleppicum Jacq. (Zhu et al., 2014). However, it has not been 

further described in terms of plant growth-promoting traits. In contrast, on high LUI, OTUs be-

longing to Rhizobium, Mycoplana, Labrys, Adhaeribacter, Paucibacter, and Microlunatus were 

exclusively found in the core, all of which have been extracted from plant inner tissues and 

harboring plant growth-promoting traits (Egamberdieva et al., 2017; Egamberdiyeva & Höflich, 

2003; Fernández-González et al., 2017; Lin et al., 2021; Nitin Parulekar et al., 2017; Oliveira 

Silva et al., 2020; Rilling et al., 2018; Trivedi et al., 2020).  

As expected, OTUs found in the rhizosphere and soil samples differed, but all taxa detected in 

the soil core bacterial communities also occurred in the rhizosphere core under both LUIs. 

Differences in the soil core and rhizosphere may be attributed to the selective attraction of taxa 

by the plant. Interestingly, LUI influenced the proportion of OTUs contributing to the uniquely 

found OTUs (common in all plant development stages, but only at high or low LUI) and the 

number of taxa in the rhizosphere (total OTUs found in all plant development stages), as OTUs 

were assigned to more different taxa at high LUI. Although the predominant taxa specific to a 

plant stage were comparable in the rhizosphere, the amount and proportion of OTUs contrib-

uting to the core were lower under low LUI (156/19.4%) than under high LUI (235/25.35%). 

Added to this, the higher number of OTUs in the core bacterial communities associated with 

high LUI compared to those under low LUI suggests a higher variability and complexity of 

bacteria colonizing the rhizosphere throughout the different plant stages (Figure 6). Similar 

results were found for the root endosphere, albeit the numbers of OTUs that contribute to the 

core were comparable under high (12/13.64%) vs. low (14/11.4%) LUI, but a higher proportion 
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of core OTUs was found under high LUI compared to low (Figure 6). Hence, the effect of LUI 

appeared to be more pronounced in the rhizosphere compared to the root endosphere. This 

can be explained by the fact that under low nutrient availability, specific recruitment of benefi-

cial microorganisms is crucial for the plant to improve its fitness and growth (Dreccer et al., 

2013). Thus, a lower number of similar genera can be found, indicating a more selective control 

of Dactylis glomerata on soil bacterial communities at low LUI by plant exudation throughout 

the different plant developmental stages, which further underlines previous findings of the pre-

sent study. Hence, we can verify the first part of hypothesis four (iv), that there are core taxa 

that are only found under high or low LUI, respectively, and that high LUI breaks the close link 

between the plant and its associated bacteria, which is seen to a higher extent in the rhizo-

sphere compared to the root interior.  

 

4.4.2 Putative keystone taxa that are independent of land use intensity  

In order to identify putative plant-associated keystone taxa within the different plant compart-

ments of Dactylis glomerata L., which is the second part of hypothesis four, the core microbi-

omes found under high versus low LUI were compared to find plant-associated bacterial taxa 

that are shared across all plant developmental stages under both LUIs, as these are likely to 

provide critical ecological functions. Indeed, plant-associated bacterial communities that were 

independent of plant developmental stage and LUI were found (Manuscript 2). OTUs that 

were assigned to Pseudomonas veronii were found in the core of the root endosphere, which 

underlines its importance for Dactylis glomerata L. As previously mentioned, species of Pseu-

domonas belong to the most efficient plant growth-promoting taxa, as they add a wide variety 

of beneficial traits to the plant holobiont (Trivedi et al., 2020). These include the production of 

various phytohormones such as IAA, cytokinins, or gibberillins, as well as nitrogen fixation and 

the production of antimicrobial compounds (Lodwig et al., 2003). Hence, they are numerously 

found in association with different plant hosts (Kloepper et al., 2013; Lally et al., 2017; Oteino 

et al., 2015; Rezzonico et al., 2005). Pseudomonas veronii in particular was shown to exhibit 

a high potential for biocontrol through increasing the availability of phosphate and ammonium 

in soil (Montes et al., 2016) and through the synthesis of IAA, thereby stimulating cell elonga-

tion and cell division of the plant, which is of major importance for the plant (Perrot-

Rechenmann, 2010). In addition, high nematocidal activity was found for this species 

(Canchignia et al., 2016). This could be a critical attribute for Dactylis glomerata L., as it was 

reported that the abundance of plant-parasitic nematodes is significantly increased in Dactylis 

glomerata L. compared to other grasses and legumes (Viketoft et al., 2005). Furthermore, 

plant-feeding nematodes can cause a change in plant diversity and lead to spatial mosaics of 

plants in grasslands (Olff et al., 2000). Hence, high abundance of plant-feeding nematodes 



Discussion 63 

can cause negative feedback on the plant, which in turn may significantly impact the competi-

tiveness compared to other plant species. Other OTUs found to be putative keystone taxa in 

the root endosphere were assigned to Rhizobium and Bradyrhizobium, which are also known 

as being among the most important plant-beneficial bacteria (Trivedi et al., 2020). Both genera 

share a wide range of plant growth-promoting characteristics that include the production of 

phytohormones, siderophores, hydrogen cynide, exhibit antagonistic effects toward many 

plant pathogenic fungi (Chi et al., 2005; Egamberdieva et al., 2017; Taye et al., 2020), as well 

as the ability to fix nitrogen within nodules of leguminous plants (Fujita et al., 2014; Lodwig et 

al., 2003), and their ability to produce various phytohormones. Moreover, a high abundance of 

genes for nitrogen fixation of the endophytic Rhizobium spp. within inner tissues of the peren-

nial grass sugarcane was found, suggesting their particular relevance for plant-associated ni-

trogen fixation in perennial grasses (Fischer et al., 2012). Due to its high abundance in the root 

endosphere, it presumably is a key player for plant health. Trivedi et al. (2020) even suggested 

that microbial taxa belonging to Rhizobiales and Pseudomonadales, which is the case for the 

putative keystone taxa in the current study, i.e. Rhizobium and Pseudomonas veronii, repre-

sent a universal core plant microbiota, which indicates a highly conserved adaptation to plant 

environments.   

In the rhizosphere, more OTUs were found in total as well as in relative numbers as putative 

keystone taxa compared to the root endosphere. In total, 7 OTUs were classed as putative 

keystone taxa in the root, but 124 OTUs in the rhizosphere samples, indicating that these taxa 

are highly persistent and ubiquitous in agricultural soil. The higher number in the rhizosphere 

seems reasonable since there is no obstacle, such as penetrating the plant cell wall, to over-

come. Interestingly, the most prominent genus found in the bacterial communities of the root 

core, i.e. Pseudomonas, was not as ubiquitous in the rhizosphere core under either LUI. This 

could be due to higher competition in the rhizosphere and the strong adaptation of Pseudomo-

nas spp. to the specific conditions inside the root interior. Most OTUs found as putative key-

stone taxa within the rhizosphere were classified into the genera of Rhodoplanes, Methylibium, 

Kaistobacter, and Bradyrhizobium, which were also frequently isolated from other rhizosphere 

environments (Gkarmiri et al., 2017; Mao et al., 2014; Nakatsu et al., 2006; Rouws et al., 2014). 

Among those, Bradyrhizobium is the only genus that was also found as putative keystone taxa 

within the root endosphere under both LUI, which underlines its importance for the plant. Spe-

cies within Rhodoplanes have been characterized as facultative photoorganotrophs and sug-

gested to be involved in biological nitrogen fixation (Buckley et al., 2007; Hiraishi & Ueda, 

1994). Representatives of Methylibium were described as facultative methylotrophs that ac-

tively utilize root exudates and degrade aromatic hydrocarbons and methyl tert-butyl ethers 

(Mao et al., 2014; Nakatsu et al., 2006). Members of Kaistobacter are also reported to be 

involved in the degradation of aromatic compounds and exhibit a high potential for pathogenic 
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disease suppression (Liu et al., 2016). These results indicate that Dactylis glomerata L. har-

bors a number of bacterial taxa that are highly likely to be keystone taxa, thus confirming the 

second part of hypothesis four (iv), that there are putative keystone taxa present in all samples, 

regardless of LUI levels, plant developmental stage, and other disturbing parameters. Hence, 

these taxa may be considered as specific to Dactylis glomerata L., which are important for the 

establishment of a healthy community composition and potentially crucial to the functioning of 

the plant-microbiome association. A schematic representation of chapter 4.4 can be found in 

Figure 6.  

 

 

 

Figure 6: Schematic representation of components of the shared core microbiomes on high vs. low LUI 
as identified in this thesis. 

Plant-associated bacteria that are not part of the shared microbiomes are comprised of occasionally occur-

ring OTUs (dotted line). The grey boxes reflect the variable core microbiomes found specific to each plant 

developmental stage. The shared core microbiomes are depicted in red (high LUI) and green (low LUI) and 

reflect taxa that are found independent of plant developmental stage but dependent on LUI, i.e. found only 

on either high or low LUI. The size of the boxes indicates the proportion of the core microbiome among the 

total amount of shared OTUs. The putative keystone taxa, which are found independent of plant develop-

mental stage and LUI are depicted in yellow, i.e. found in the core microbiomes on both LUIs.  
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Conclusion and Outlook  

Although plant-associated bacteria play a crucial role in enhancing and promoting plant growth 

and provide resilience against environmental and anthropogenic stress factors, our knowledge 

about the impact of LUI on plant-associated bacteria is still limited. The current study provides 

first insights into the complex response of plant-associated bacterial communities of the per-

ennial grass Dactylis glomerata L. towards a continuous LUI measure during different plant 

developmental stages using 16S rRNA high-throughput metabarcoding.  

The results suggest that the influence of LUI on bacterial diversity and community composition 

is most pronounced in bulk soil and the rhizosphere. In contrast, the effect of LUI in the root 

endosphere is less pronounced, which is in line with our first hypothesis (i). In bulk soil, β-

diversity measures for both abundance and the presence/absence of certain taxa were af-

fected significantly by LUI, whereas in the rhizosphere, only presence/absence was impacted 

in all plant developmental stages. In contrast, in the root endosphere, a significant influence of 

LUI was detected only in the presence/absence of taxa with low abundance in the reproductive 

stage of the plant. In addition, the magnitude and direction of shifts in abundance and pres-

ence/absence of individual OTUs in response to LUI increased from the roots, where they were 

the lowest, to the rhizosphere to the bulk soil and are dependent on plant developmental stage, 

as reflected by the significance level and variance for both β-diversity measures.  

These results suggest that the plant is the most important selective force in shaping the diver-

sity and composition of associated communities. In turn, these findings imply that the influence 

of LUI decreases with proximity to the plant root, leading to a relatively stable, consistent, and 

very distinct composition of bacteria in the root endosphere that is mainly influenced by the 

plant. Analysis of β-diversity and the community structure confirmed these results, as the as-

semblage patterns in the root endosphere strongly differed to the rhizosphere and bulk soil, 

which verified the objective of the second hypothesis (ii).  

Despite the stable community composition within the plant endosphere, the current study iden-

tified a feedback loop on endophytic communities during the plant’s reproductive stage. Shifts 

in community composition could mainly be attributed to nitrate and ammonium, which were 

closely correlated with the LUI index in the current study, as they altered nutrient availability 

and shape soil properties. In this regard, LUI was identified as a major driver of changes in 

community composition in the root endosphere of Dactylis glomerata L., which verified the 

objective of the third hypothesis (iii). As a result, the interaction between plant and surrounding 

soil is more pronounced at low LUI than at high LUI, as nutrient availability forces the specific 

recruitment of beneficial bacteria in response to metabolic demands during the different stages 

of plant development.  
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Although the associated communities were dynamically shaped by the plant, a set of putative 

keystone taxa was identified, which were present regardless of plant developmental stage and 

LUI. Genera consistently found in the root endosphere belonged to Pseudomonas, Rhizobium, 

and Bradyrhizobium. In the rhizosphere, the majority of genera identified as keystone bacterial 

communities were assigned to Rhodoplanes, Methylibium, Kaistobacter, and Bradyrhizobium. 

Their persistent presence independent of LUI or growth stage, as well as their plant growth-

promoting properties, may provide initial insight into the composition of a vital part of the plant 

microbiome. Additionally, when comparing the shared core microbiomes under high vs. low 

LUI, a greater compositional variation across different sampling dates was observed at low LUI 

versus high LUI, underlining the greater adaptation of plant-associated bacteria under low LUI. 

These results are in line with our expectations of hypothesis four (iv), that the bacterial struc-

ture is more complex and dynamic on low LUI levels, but that there are a set of bacterial taxa 

found across all plant developmental stages and LUI levels. Moreover, these results were sig-

nificant considering the minimum cut-off of 0.001%, i.e. the required number of reads for an 

OTU was 103 after the cut-off. Given the functions associated with the discovered bacterial 

species, we could speculate that the main functions of the plant-associated shared core bac-

terial community might be related to plant growth and stress response in particular.  

Albeit the keystone taxa identified in the present study have been associated with plant growth-

promoting properties in previous studies, no conclusion can be drawn from the measured co-

existence of plant-associated bacterial communities in different LUIs as to how the discovered 

species react and interact with their host plants and other microbes. The effects of land use 

intensification on plant-associated bacterial communities requires additional consideration of 

the interrelationships between processes performed by key players. Effects include microbially 

mediated processes, metabolic pathways, and proteins associated with colonization (Trivedi 

et al., 2020). Several mechanisms are observed, ranging from cooperative to competitive in-

teractions (Schlechter et al., 2019). To take a first step towards identifying correlations, anal-

yses of the diverse and complex interactions between microorganisms necessary for the se-

lective establishment of plant-associated microbiomes in response to land use intensification 

are required (Trivedi et al. 2020). The identification of co-occuring (core) bacterial networks of 

plant-associated microorganisms should be assessed to account for the presence and contri-

bution of microorganisms to the holobiont, which may provide useful insights into the influence 

of biotic interactions with the host or with other bacterial taxa and their contribution to ecosys-

tem functions. However, co-occurrence analyses may not be sufficient to interpret species in-

teractions as they do not indicate causal relationships through relying on species abundance 

but may provide an opportunity to investigate possible causal relationships of hub species with 

other species to understand how the behaviour of keystone taxa can be validated experimen-

tally (Trivedi et al. 2020). These hub species could possibly have a regulatory effect on the co-
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occurrence network. The removal of highly connected taxa may alter the microbial composition 

significantly, which may result in the loss of interactions and is likely to collapse microbial pop-

ulations and functions (Niu et al., 2017). Therefore, the analysis of co-occurrence networks of 

plant-associated communities would provide an important baseline for possible microbe-mi-

crobe and microbe-plant interactions to further allow deeper investigation on identified positive 

or negative correlations of co-occurring taxa and their respective functional traits to reveal their 

functional potential. This could lead to a deeper understanding of how different land use gra-

dients affect the functional potential of plant-associated bacteria and will provide important 

insights for sustainable grassland management and help ensure associated ecosystem func-

tions and services. In addition, although our study revealed the existence of common plant-

associated bacterial taxa under different land use intensities, these results were specific to 

Dactylis glomerata L. in the grassland soils studied. Therefore, it would be beneficial to also 

evaluate bacterial and other microbial communities associated with different species of Dac-

tylis glomerata or to study wider biogeographic patterns of the root-associated microbiome of 

Dactylis glomerata L. or other grass species of the Poaceae. 
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16S rRNA Component of the prokaryotic ribosomal small subunit 

18S rRNA  Component of the eukaryotic ribosomal small subunit 

ATP Adenosine triphosphate 

°C  Degree Celsius 

µg  Microgram 

µM  Micromolar 

ABA Abscisic acid  

ADONIS Permutational multivariate analysis of variance test 

AHL N-acyl-l-homoserine lactones  

ANOVA Analysis of variance 
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bp Base pair 

BSA Bovine serum albumin 
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C:N  Carbon:nitrate ratio 

Ca  Calcium 

CCA Canonical correspondence analysis 

cm  Centimeter 

CO2 Carbon dioxide 

DEPC Diethyl dicarbonate 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease  

dw Dry weight 

e.g. For example 

EPs Experimental Plots 

FAO Food and Agriculture Organization of the United Nations  

Fe Iron 

g  Gram 

H+ Proton/cationic form of atomic hydrogen 

ha Hectar 

HCO3
- Bicarbonate  

i.e. This means 

IAA Indole-3-acetic acid 

K  Potassium 

kg Kilogram 
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m  Meter 

M  Molar 

Mg  Magnesium 

mg  Milligram 
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mm  Millimeter 

mRNA  Messenger RNA 

N Nitrogen 

NADP+ Nicotinamide adenine dinucleotide phosphate 

NaHCO3-Pi Inorganic bicarbonate 

NaHCO3-Po  Organic bicarbonate 
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NaOH-Po  Organic sodium hydroxide 
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NCBI National Center for Biotechnology Information 

ng  Nanogram 

NH4
+  Ammonium 

NH4-N  Ammonium-bound nitrogen 

nif  Genes encoding enzymes involved in the fixation of atmospheric nitrogen 

nM  Nanomolar 

nmol  Nanomol 

NO2
- Nitrite 

NO3
- Nitrate 

NO3-N  Nitrate-bound nitrogen 

nod  Genes encoding nodulation factors 

OTU  Operational taxonomic unit 

P  Phosphorus 

PAH Polycyclic aromatic hydrocarbons 

PBS  Phosphate-buffered saline 

PCoA Principal coordinate analysis 

PCR  Polymerase chain reaction 

PD Phylogenetic diversity  

PEG  Polyethylene glycol 

PGPB  Plant growth promoting bacteria 

pH Potential of hydrogen/measure of acidity or basicity 
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SINA  SILVA Incremental Aligner 

spp. Species pluralis 

SRA Sequence Read Archive 

SSU Small subunit  
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Ti Tumorigenic 
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UNEP United Nations Environment Programme 
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