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Summary

Statistical analyses highly depend on the data quality and sample size. A common
approach to increasing the sample size in clinical trials is to include data from multiple
institutions. Additionally, for lots of hypotheses, it is not sufficient to use only one
data source. However, this approach creates new challenges since data is collected
and reported differently. Data from different sources are often on a different scale
and miss-aligned with the primary data. Treating this defiance additionally to high
missing data and rare events were investigated in this thesis and were shown in three
studies from different study areas: prostate cancer, forestry, and fatal mountain accidents.

The prostate cancer study was based on the risk factor and outcome data collected from
January 2006 to December 2019 from trans-rectal systematic ten to twelve core biopsies.
Biopsy data from ten Prostate Biopsy Collaborative Group (PBCG) cohorts spanning
North America and Europe were used for training. One European PBCG cohort was
used for validation. The study aimed to improve individualized risk predictions from
the previous PBCG tool, which a broader range of patients could apply by allowing
missing and additional risk factors at the user end. The previous risk tool included the
six common risk factors: prostate-specific antigen, digital rectal exam, age, African an-
cestry, first-degree prostate cancer family history, and history of a prior negative prostate
biopsy. The developed risk calculator additionally includes prostate volume, Hispanic
ethnicity, 5-alpha-reductase inhibitor use, second-degree prostate cancer family history,
and first-degree breast cancer family history. Four philosophically distinct approaches
were applied to combine multiple cohorts with high missingness: available case analyses,
ensembles of cohort-specific models, missing indicator methods, and imputation. Six
variations of these multivariable logistic regression approaches were compared by internal
leave-one-cohort-out cross-validation and one external cohort validation. We chose
the available cases method for implementing the online risk tool since it showed the
highest accuracy in calibration in external validation, where all six methods indicated
an equivalent area under the receiver operating characteristic curve (AUC). AUC and
calibration-in-the-large across the ten cohorts used as test sets in the internal leave-
one-cohort-out cross-validation were also similar, and the available cases method had
the lowest variability. The resulting risk calculator is published online at riskcalc.org to
facilitate its use in daily routine.

The fatal mountain accidents study combined two data sets. The first data set comprised
3,285 fatal accidents in the Austrian mountains for twelve years, from November 2006
to October 2018. These data were combined with weather information of 43 weather
stations located 900 meters above sea level to mirror regions typical for mountain sports.
Four approaches were compared to combine the two data sets and handle the incomplete
weather information and miss-alignment of locations. These approaches excluded too far
cases, weather stations with high missing data, or imputed values from the next station.
Results were similar in magnitude and significance, and the imputation approach was used



for analyses as it maximizes sample sizes. Weather information was analyzed by anomalies
and comprised temperature, air pressure, relative humidity, radiation, precipitation, wind,
cloudiness, and snow. Analyses were performed with data of all stations pooled by season,
discipline, or activity. Multivariable logistic regression with the outcome of whether one
or more fatal accidents occurred on a day versus not was used for detecting the risk of
a fatal accident as a function of weather variables. Only the most predictive of similar
weather variables was selected in the final models to avoid multi-collinearity. The weather
characteristics underlined that warmer, sunnier, and dryer days with reduced wind speed
and preferably higher air pressure were more associated with fatal accidents in summer.
Associations between weather patterns and fatal mountain accidents detected in this
observational study may be mediated by the influence of weather and its interaction with
the season on visitor numbers. Skiers are less likely to visit mountains on low-snow days
in the winter, which would reduce overall fatal accidents. Conversely, less mountain snow
may favor spring hikes, leading to more visitors and accidents due to improper equipment.

Similarly, the forestry study combined weather data with tree mortality data of Europe's
nine most common tree species (European beech, sessile oak, pedunculated oak, silver
birch, black pine, Austrian oak, Scots pine, European hornbeam, and Norway spruce).
Overall, 746,478 tree-year observations from 32 countries were analyzed. These obser-
vations came from 130,018 trees from 8,618 plots over ten years from 2011 to 2020.
Information on stand age and aspect were combined with weather from the ClimateEU
data, which adjusts for elevation at locations. Bioclimatic variables such as temperature,
precipitation, and continentality were considered for different periods up to three years
before tree death, as well as 30-year averages. Because tree death is only observed yearly,
meaning that the specific date of the death is not observed and only the cumulative
survival over the year, logistic regression can be used to approximate interval-censored
survival data analysis. Multi-collinearity among risk factors was reduced by building
variable groups according to similarity. For all species except sessile oak, higher 30-year-
temperature averages were associated with higher odds of tree mortality. The effect size
of other risk factors varied among species, with similar weather associations between
Austrian and sessile oak on the one hand and Scots pine, Norway spruce, and pedunculate
oak on the other hand. In particular, warmer winters reduced mortality for silver birch,
sessile and Austrian oaks while having the opposite association for the other species.
Sessile oak was most robust against drought effects and could serve as an important
tree species under climate change scenarios.



Zusammenfassung

Statistische Analysen hangen stark von der Datenqualitat und StichprobengroBe ab. Ein
gangiger Ansatz bei klinischen Studien zur Erhéhung der StichprobengroBe besteht darin,
Daten aus mehreren Institutionen zusammen zufassen. AuBerdem reicht es fiir viele
Hypothesen nicht, nur eine Datenquelle heran zu ziehen. Dieser Ansatz fiihrt jedoch zu
neuen Herausforderungen, da Daten unterschiedlich gesammelt und gemeldet werden.
Daten aus unterschiedlichen Quellen haben oft verschiedene Skalierungen, die nicht mit
den Hauptdaten (ibereinstimmen. Der Umgang mit diesen Unstimmigkeiten, zusatzlich
zu der Datenunvollstandigkeit und seltenen Ereignissen, wurde in dieser Arbeit unter-
sucht und an drei Studien aus verschiedenen Untersuchungsgebieten veranschaulicht:
Prostatakrebs, Forstwirtschaft und tédliche Bergunfalle.

Die Prostatakrebsstudie basiert auf Risikofaktor- und Ergebnisdaten, wurden von Januar
2006 bis Dezember 2019 aus transrektalen systematischen Zehn bis Zwolf Kern Biopsien
gesammelt. Fiir die Modellbildung wurden Zehn Kohorten der Prostate Biopsy Collabo-
rative Group (PBCG) in Nordamerika und Europa verwendet, die auf einer europaischen
Kohorte validiert wurden. Das Studienziel war, individualisierte Risikovorhersagen aus dem
vorherigen Tool zu verbessern, um eine breitere Zielgruppe von Patienten zu erreichen
indem fehlende und zusatzliche Risikofaktoren auf der Benutzerseite zugelassen wurden.
Das bisherige Risikotool umfasste die sechs Standardrisikofaktoren: Prostata-spezifisches
Antigen, rektale Abtastuntersuchung, Alter, afrikanische Abstammung, Prostatakrebs
ersten Grades in der Familienanamnese und Vorgeschichte einer fritheren negativen
Prostatabiopsie. Der entwickelte Risikorechner umfasst zusatzlich das Prostatavolumen,
die hispanische Herkunft, die Verwendung von 5-Alpha-Reduktasehemmer, die familiare
Vorgeschichte von Prostatakrebs zweiten Grades und von Brustkrebs ersten Grades. Um
mehrere Kohorten mit vielen fehlenden Werten zu kombinieren, wurden vier metho-
disch unterschiedliche Ansatze angewandt: verflighbare Falle, Ensemble von Kohorten
spezifischen Modellen, fehlende Indikatormethoden und Imputation. Sechs Variationen
dieser multivariablen logistischen Regression Ansatze wurden durch interne Lass-eine-
Kohorte-weg-Kreuzvalidierung und externe Kohorte Validierung verglichen. Wir wahlten
die Methode der verfigbaren Falle fir die Implementierung des Online-Risiko-Tools,
da sie die groBte Genauigkeit in Bezug auf Kalibrierung bei der externen Validierung
zeigte, wobei alle sechs Methoden ein dhnliche Flache unter der Operationscharakteristik
(AUC) zeigten. AUC und Kalibrierung im GroBen iiber die Zehn Kohorten hinweg, die
als Testdaten in der internen Lass-eine-Kohorte-weg-Kreuzvalidierung verwendet wurden,
waren ebenfalls dhnlich, und die Methode der verfiighbaren Falle hatte die geringste
Variabilitat. Der resultierende Risikorechner wurde online auf riskcalc.org veroffentlicht,
um die Verwendung in der taglichen Routine zu erleichtern.

Die Studie zu todlichen Bergunfallen kombinierte zwei Datensatze. Der erste Datensatz
umfasste 3.285 todliche Unfélle in den osterreichischen Bergen von November 2006
bis Oktober 2018. Um typische Bergsportregionen abzubilden, wurden diese Daten mit



Wetterinformationen von 43 Wetterstationen kombiniert, die iiber 900 Meter Seehdhe
liegen. Um die beiden Datensatze zu kombinieren, wurden vier Ansatze verglichen, die
die vielen fehlenden Wetterinformationen und nicht tbereinstimmenden Standorte be-
riicksichtigen. Diese Ansatze schlossen zu weit entfernte Falle, oder Wetterstationen
mit vielen Fehlwerten aus, oder imputierte Werte von der nachsten Station, wenn die
Informationen fehlten. Die Ergebnisse zeigten dhnliche EffektgroBen und Signifikanzen,
und fiir die Analysen wurde der Imputationsansatz verwendet, da er die Stichprobengro-
Ben maximiert. Wetterinformationen wurden durch Anomalien analysiert und umfassten
Temperatur, Luftdruck, relative Luftfeuchtigkeit, Strahlung, Niederschlag, Wind, Be-
wolkung und Schnee. Die Auswertungen erfolgten mit Daten aller Stationen gebiindelt
nach Saison, sowie getrennt nach Sportart oder Aktivitat. Zur Ermittlung des Risikos
eines todlichen Unfalls in Abhangigkeit von Wettervariablen wurde eine multivariable
logistische Regression verwendet mit dem Ergebnis, ob an einem Tag ein oder mehrere
todliche Unfalle stattfanden oder nicht. Um Multikollinearitat zu vermeiden, wurde
in den finalen Modellen nur die Signifikanteste dhnlicher Wettervariablen ausgewahlt.
Die Wettereigenschaften unterstrichen, dass warmere, sonnigere und trockenere Tage
mit geringerer Windgeschwindigkeit und hoherem Luftdruck im Sommer mit todlichen
Unfallen in Verbindung gebracht wurden. Assoziationen zwischen Wettermustern und
todlichen Bergunfallen, die in dieser Beobachtungsstudie festgestellt wurden, werden
moglicherweise mediatiert durch den Einfluss des Wetters und seiner Wechselwirkung mit
der Jahreszeit auf die Besucherzahlen. Es ist weniger wahrscheinlich, dass Skifahrer an
Tagen mit wenig Schnee im Winter die Berge besuchen, was die Zahl der tédlichen Unfalle
insgesamt verringert. Umgekehrt kann weniger Bergschnee fiir Frithlingswanderungen
glnstiger sein, was zu mehr Besuchern und Unfallen aufgrund schlechter Ausriistung
fihren kann.

Die Forststudie kombinierte in dhnlicher Weise Wetterdaten mit Baummortalitatsda-
ten der neun haufigsten Baumarten in Europa (Rotbuche, Traubeneiche, Stieleiche,
Silberbirke, Schwarzkiefer, Osterreichische Eiche, Waldkiefer, Europiaische Hainbuche
und Gemeine Fichte). Insgesamt wurden 746.478 Baum-Jahr Beobachtungen aus 32
Landern analysiert. Diese Beobachtungen stammen von 130.018 Baumen aus 8.618
Parzellen von 2011 bis 2020. Informationen zu Bestandsalter und -ausrichtung wurden
mit dem Wetter aus den ClimateEU-Daten kombiniert, die sich an die Héhe der Standorte
anpassen. Bioklimatische Variablen wie Temperatur, Niederschlag und Kontinentalitat
wurden fiir verschiedene Zeitrdume bis zu drei Jahre vor dem Absterben der Baume
beriicksichtigt, sowie 30-Jahres-Durchschnittswerte. Da der Baumtod nur jahrlich, und
somit nur das kumulative Uberleben iiber das Jahr beobachtet wird, kann die logistische
Regression verwendet werden, um die intervallzensierte Uberlebensanalyse anzunahern.
Die Multikollinearitat zwischen Risikofaktoren wurde reduziert, indem Variabelgruppen
nach Ahnlichkeit gebildet wurden. Bei allen Arten mit Ausnahme der Traubeneiche
waren hohere 30-Jahres-Temperaturmittelwerte mit einer héheren Wahrscheinlichkeit von
Baumsterblichkeit verbunden. Die EffektgroBe anderer Risikofaktoren variierte zwischen
den Arten, mit dhnlichen Wetterassoziationen zwischen Osterreichischer und Traube-
neiche einerseits und Waldkiefer, Rotfichte und Stieleiche andererseits. Insbesondere
warmere Winter reduzierten die Sterblichkeit bei Silberbirken, Trauben- und &sterreichi-
schen Eichen, wahrend es bei den anderen Arten zu einer gegenteiligen Assoziation kam.
Die Traubeneiche war am widerstandsfahigsten gegen Diirreeffekte und kénnte unter
Klimawandelszenarien als wichtige Baumart dienen.
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1 Introduction

This thesis consists of three studies from different disciplines facing similar methodological
problems. This chapter gives background to the individual topics, methodology, and an
outline of the thesis.

1.1 Prostate cancer

Prostate cancer incidence and mortality are rapidly growing worldwide, reflecting aging,
population growth, and changes in the prevalence and distribution of the main risk factors
for cancer (Sung et al. 2021). Several risk factors are associated with socioeconomic
development. In 2020, an estimated 19.3 million new cases and 10 million cancer deaths
were experienced worldwide. Overall, prostate cancer has the fourth highest incidence,
with 7.3%. Among men, with 1.4 million new cases and 375,000 deaths worldwide,
prostate cancer is the second most frequent cancer and the fifth leading cause of cancer
death in 2020. For age-standardized rates, Northern and Western Europe had the
highest incidences, and the Caribbean had the highest mortality rates. Figure 1.1 illus-
trates the location of the prostate in men and shows an example of malignant tumor cells.

bladder

prostate

tumor

urethra

enlarged prostate
with malignant tumors

Figure 1.1: Location of the prostate in men with an example of prostate cancer.

The USA, Canada, and Australia experienced rapid increases in incidence rates in the late
1980s and early 1990s due to the introduction of serum prostate-specific antigen (PSA)
testing, allowing the detection of preclinical cancers (Sung et al. 2021). Sharp reductions
within a few years followed the dramatic increases. Mortality rates for prostate cancer
have decreased in most high-income countries since the mid-1990s.



1 Introduction

1.2 International Prostate Biopsy Collaborative
Group

The Prostate Biopsy Collaborative Group (PBCG) was established in 2009 to improve the
understanding of heterogeneity in prostate biopsy outcomes across international clinical
centers (Vickers et al. 2010). To better understand the relationships between prostate
biopsy outcomes and established risk factors, the PBCG collected retrospective data from
ten screening and tertiary referral centers. To ensure high data quality for producing a
new prostate cancer risk tool based on contemporary populations and practice, the PBCG
began prospective collection from participating centers in 2014. A risk tool was modeled
after the Prostate Cancer Prevention Trial risk calculator (PCPTRC; Ankerst et al. 2012),
with the hypothesis that such a risk tool would have better external validation for con-
temporary populations. Data from eleven participating sites under local internal review
board approval were prospectively collected. Cleveland Clinic, Martini Clinic (Germany),
Mayo Clinic, San Raffaele (ltaly), Zurich (Switzerland), Memorial Sloan Kettering Cancer
Center (MSKCC), and University of California San Francisco (UCSF) were participat-
ing tertiary referral centers. Durham Veterans Affairs (VA) and VA Caribbean Center
(Puerto Rico) served a lower socioeconomic status population with a high percentage
of African Americans and Hispanics. Sunnybrook Health Systems in Canada and the
University of Texas Health Science Center at San Antonio (UT Health) were consortia
that included main hospitals, tertiary referral centers, and associated community urology
providers. Four sites also provided retrospective data for prostate biopsies performed
in 2006 or later. For developing the initial PBCG risk calculator, multiple methods for
aggregating clinical data on a small number of variables across heterogeneous centers
comprising different risk factor distributions and risk factor-outcome associations were
compared. The most straightforward approach of pooling individual-level data and fitting
a multiple logistic regression model proved to be the most accurate (Tolksdorf et al. 2019).

The first PBCG risk tool was published online in 2018 (Ankerst et al. 2018). The number
of device users was tracked, and Figure 1.2 shows the report for the year 2021. Most
usage by far can be seen in the USA, with 4,824 sessions compared to 234 in Germany
for that year. Since the tool was primarily built on patients from the USA, it is the region
the calculator represents best. Overall, user numbers increased by 56.5% compared to
the previous year.

As with all online risk tools, the online publication continues to result in published
external validation studies providing evidence for or against its generalizability to other
populations, particularly in comparison to other published tools (Amaya-Fragoso and
Garcia-Pérez 2021; Carbunaru et al. 2019; Doan et al. 2021; Jalali et al. 2020; Presti et al.
2021; van Riel et al. 2022; Yildizhan et al. 2022). The PBCG tool has been primarily
compared to the Prostate Cancer Prevention Trial Risk Calculator (Amaya-Fragoso and
Garcia-Pérez 2021; Carbunaru et al. 2019; Yildizhan et al. 2022), where it started from,
and to the European Randomized Study of Screening for Prostate Cancer (Doan et al.
2021; Wei et al. 2021). Additionally, new risk calculators have compared their results
to the PBCG risk tool, such as the Kaiser Permanente Prostate Cancer Risk Calculator
(Presti et al. 2021). Studies often do not just validate multiple risk calculators. They
also apply it to data from different countries to investigate the validity of the calculator
for those countries. The PBCG risk calculator was, for instance, applied to Turkish
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PBCG Risk Calculator Users

Users Sessions Pageviews Bounce Rate
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Figure 1.2: Google Analytics usage report for the PBCG risk calculator for 2021 from
https://riskcalc.org/PBCG/.

(Yildizhan et al. 2022), Australian (Doan et al. 2021), Mexican (Amaya-Fragoso and
Garcia-Pérez 2021), and Irish (Jalali et al. 2020) patients.

Another group of studies suggests improvements to the PBCG risk calculator. These
incorporate new methods, such as automated machine learning (Stojadinovic et al.
2020), improvement for patients with PSA less than 10 ng/ml (Stojadinovic et al. 2020),
including prostate volume (Jalali et al. 2020), or usage of Magnetic Resonance Imag-
ing (MRI) assisted biopsies (Mortezavi et al. 2021; Rubio-Briones et al. 2020; van Riel
et al. 2022; Wei et al. 2021). The more recent studies include new clinical practices that
are becoming more standard, suggesting the PBCG risk calculator has to be updated for
contemporary clinical assistance and to remain competitive with other risk calculators.
In this thesis, the PBCG data set is used to explore the impact of missing data in the
development of online risk tools (Chapter 2).



1 Introduction

1.3 Mountain sports in Austria

Mountains have always been of interest to humans. Early attempts to ascend mountain
peaks were inspired by other than sporting motives: to build altars, seek spirits, get an
overview of one's own or a neighboring countryside, or make meteorological or geological
observations (Smith and Kiesinger 2020). The first time recorded for which a few men
ran in the mountains intending to arrive first with common rules for all the runners was
in Scotland in the year 1040, when king Malcom Canmore organized a hill race to select
its postmen (Jornet 2022). Mountaineering in a contemporary sporting sense was born
when a young Genevese scientist viewed Mont Blanc (at 4,807 meters, the tallest peak
in Europe) in 1760 and determined that he would climb to the top of it or be responsible
for its being climbed (Smith and Kiesinger 2020).

After numerous accidents in the Austrian mountains, one disaster where three men died
in 1896 led to the foundation of the first alpine emergency organization in the world
in Vienna. More and more locations were added, and after World War Il they united
(Ladenbauer 2006). Today more than 13,000 volunteers work for the Austrian mountain
rescue service. In 2020, they rescued more than 8,000 people, where the largest fraction
was injured alive (Figure 1.3, Bergrettung 2022a).
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Figure 1.3: Summary of rescued people from the Austrian mountains from 2015 to 2020.
Verletzte = injured, Unverletzte = non-injured, Tote = dead, keine Angaben = no declaration
(Bergrettung 2022b).

The Austrian Alpine Safety Board was founded in 1965 after two tragic avalanche
accidents. In 1967, they started to analyze mountain accidents. From 2006 onward, a
contract to get accident information from the alpine police led to one of the biggest
data sets for alpine accidents. An annual report is published for accident prevention for
summer and winter separately, and as stated, many accidents would have been avoidable
(Osterreichisches Kuratorium fiir Alpine Sicherheit 2022).

1.4 Meteorology in Europe

Weather and its forecast have been interesting for humans for a long time. It has
always been important for farmers to know how and when the weather changes since the
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yield could vary enormously if, for example, a storm destroys the harvest. Due to the
great interest in shipping worldwide, wind forecasts were essential for navigation. Since
extreme events appear locally, they were regarded as punishments or warnings directed
at specific communities, cities, homes, or even individuals. The oldest treatise dedicated
to meteorology, Meteorologica, was written by Aristotle around 340 BC (Neves et al.
2017). The first three books described the formation of rain, clouds and fog, hail, winds,
climate change, thunder, lightning, and hurricanes. This established system remained
for around 2000 years as the standard of scientific texts. Until the early seventeenth
century, almost all books on the European continent dealing with the atmosphere were
essentially based on Aristotle’s considerations.

The tradition of weather forecasts and the view of weather as a system ordered by
physical laws built the origins of a new approach. Contributors to the emerging theory
of weather have recognized that meteoric science has to be able to identify long-term
changes, recurrent patterns, and predictive methods. Efforts to form an international
network of weather-watchers did not succeed until the mid-eighteenth century, when
the Royal Society invited all observers with training and equipment to submit their daily
observations annually. Instructions were requested, including the daily reading of the
thermometer, barometer, direction and force of the wind, amount of rain or snow, and
the appearance of the sky. The results were published annually in the Philosophical
Transactions journal (Neves et al. 2017).

Weather forecasts were discussed alongside religious and mystical issues in the nineteenth
century. Since future predictions did not succeed significant, meteorology began to look
more closely at past events, searching for repeatable patterns. This progress raised the
need for organization, coordination, and centralization of scientific work associated with
the first meteorological offices. In 1853, Robert Fitzroy began distributing instruments to
ship officers, gathering their record books, establishing a telegraphic observation network,
and publishing storm warnings and general forecasts about the weather. Synoptic maps
are one of the most striking innovations of nineteenth-century meteorology, constituting
a great effort to attribute form and structure to the invisible forces of the atmosphere.
The visual approach brought new perspectives and reflections to meteorologists (Neves
et al. 2017).

The internationalization of meteorology in the twentieth century was especially driven by
the advent of the radio, which played an essential role in information communication
between distant stations. In the 1950s and 1960s, numerical forecasting became possible
with the invention of the first computers. The most recent significant impact was the
introduction of meteorological satellites. With these satellites, it was possible to observe
atmospheric circulation as a whole, thus improving the connections between processes
from different locations and scales, especially in the oceans and desert regions (Neves
et al. 2017).

In 1851 the Austrian emperor declared a resolution founding the central institute for
meteorology and magnetic observations, which became the predecessor of the Central
Institut for Meteorology and Geodynamics (ZAMG) (Zentralanstalt fir Meteorologie
und Geodynamik 2022). Already in 1865, they began publishing a daily weather map. In
1873 the institute organized the first international meteorology congress in Vienna, where
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the International Meteorology Organization (IMO) was founded, the predecessor of the
World Meteorological Organization (WMO). Nowadays, the ZAMG is a modern service
company that provides, for instance, daily forecasts, earthquake and geomagnetic services,
climate statistics and maps, pollutant distribution, and meteorological characteristics
assisted by automated systems. From the beginning, the institute employed directors
who were also recognized scientific professors, facilitating scientific research within the
institute (Zentralanstalt fiir Meteorologie und Geodynamik 2022).

Mountains cover 25% of the earth’s land surface (Chow et al. 2013). Hills and plateaus
account for another 21% of the land surface. Thus, the weather in areas of complex
terrain affects roughly half of the world’s land surface. Although there are a variety of
forecasting styles, skillful forecasting in mountainous regions typically requires a core
understanding of simultaneous measurements over large scale and unique mountain
processes such as airflow. Further, careful evaluation of the evolving large-scale setting
and flow interaction with the terrain, knowledge of the advantages and limitations of the
objective tools of forecasting over the complex landscape, and the subjective integration
of these tools by the forecaster are needed (Chow et al. 2013). This thesis analyzed
weather information from the ZAMG to investigate weather effects on Austrian mountain
fatalities (Chapter 3).

Climate change poses a wide range of consequences for human health (IPCC 2014).
Direct effects, such as more frequent and intense heatwaves, and indirect effects, such
as higher allergenic pollen loads and altered vector-borne diseases, were among the first
to be formally attributed to warming (Rosenzweig et al. 2008). Meanwhile, other effects
on health are increasingly coming to the fore, such as injuries and mortality linked to
all kinds of accidents, be it with traffic, outdoor work in agriculture or forestry, leisure
activities in the mountains, as well as suicide, which is weather dependent (Deisen-
hammer et al. 2003). Initial studies from the USA (e.g., Leard B 2015) revealed that
traffic accidents are likely to increase with the predicted warming. Equally, outdoor
work-related injuries in Canada (Adam-Poupart et al. 2015), the USA (Spector et al.
2016), and Australia (Mclnnes et al. 2018) have been linked to heat exposure. Based on
a comprehensive review of nineteen individual studies, Zacharias (2012) concluded that
suicide rates have a prominent seasonal pattern with maximum temperature measures in
late spring. Half of these reviewed studies reported a positive correlation between suicides
and temperature or sunshine versus a negative correlation with precipitation and humidity.

Weather effects may intensify under projected climate change scenarios, where summers
may experience more intense heat and winters more severe weather. This is especially
important since appropriate preventive measures could reduce high economic costs and
burdens on the social system. Weather data providers face more challenges on a European
or even global scale. These comprise but are not limited to the available time scale,
spatial resolution, amount of variables, and data update frequency.

Several publicly available climate data sets are commonly accessed for climate change
impact research. The WorldClim data set of spatially interpolated monthly climate
data for global land areas has a spatial resolution of approximately 1 km?. It includes
monthly temperature (minimum, maximum, and average), precipitation, solar radiation,
vapor pressure, and wind speed aggregated across a target temporal range of 1970 to
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2000, using data from between 9,000 and 60,000 weather stations (Fick and Hijmans
2017). The original E-OBS data set presented European land-only daily 10 km-resolution
gridded precipitation, as well as minimum, maximum, and mean surface temperature for
the period 1950 to 2006 (Haylock et al. 2008). However, a finer resolution would be
more appropriate for studying regional or local climatic effects. A continental data set
with high resolution would allow research that is large in scale and still locally relevant.
Moreno and Hasenauer (2016) produced a downscaled version of E-OBS, applying the
delta method, which uses WorldClim climate surfaces to obtain an approximately 1 x
1 km daily climate data set covering the European Union. The downscaled data set
included minimum and maximum temperature and precipitation from 1951 to 2012.
ECLIPS provides 80 annual, seasonal, and monthly climate variables for two past and
five future periods (Chakraborty et al. 2021). A limitation of this data set is that
it is not updated regularly and is most appropriate for the past between 1961 and
2010. Even more variables are provided by Indecis (Dominguez-Castro et al. 2020); 125
climate indices mapped at a grid interval of 27 km from 1950 to 2017 were initially
uploaded and are updated annually. ClimateEU provides a database of interpolated
climate data for Europe that includes monthly, annual, decadal, and 30-year normal
climate data starting from 1901, as well as climate change projections for the 21st
century (Marchi et al. 2020). For download, 1 km grids are provided. The advantage of
this data set is that it comes with software applying dynamic algorithms to generate
scale-free climate variables for specific locations adjusted for altitude, thus improving
the accuracy. Due to this fine-scale resolution and recent years, the ClimateEU data set
is used to investigate weather and climate effects on European tree mortality (Chapter 4).

1.5 Forestry in Europe

Not only humans are affected by climate change. Plants and trees also suffer from
extreme weather, and species that are more heat resistant survive drought seasons better.
However, adjustments are slow and take multiple generations. Chapter 4, therefore,
investigates the weather and climate influence on tree mortality for the most common
European tree species to guide tree managers with risk predictions.

Data for this study comes from the International Co-operative Programme on Assessment
and Monitoring of Air Pollution Effects on Forests (ICP Forests), which was launched in
1985 under the Convention on Long-range Transboundary Air Pollution of the United
Nations Economic Commission for Europe (ICP Forests 2022). Over the past 30 years,
ICP Forests has developed into one of the world's largest biomonitoring networks, pro-
viding information on forest conditions, air pollution, climate change, and biodiversity.

The program’s objectives are to provide a periodic overview of forest conditions’ spatial
and temporal variation concerning anthropogenic and natural stress factors (particularly
air pollution) utilizing European-wide large-scale representative monitoring on a system-
atic network (Level I). And further, to better understand the cause-effect relationships
between the condition of forest ecosystems and anthropogenic and natural stress factors
using intensive monitoring on several selected permanent observation plots spread over
Europe and to study the development of forest ecosystems in Europe (Level ).
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Level | monitoring provides an annual overview of forest conditions based on a 16 x 16
km grid and covers around 6,000 plots in Europe and beyond. Besides annual tree crown
condition assessments, it also includes assessments of soil condition, the foliar nutrient
status of trees, the diversity of ground vegetation, and general information on living
trees and deadwood at irregular intervals. Intensive Level Il forest monitoring is critical
for providing insight into cause-and-effect relationships between the condition of forest
ecosystems and various stress factors, such as air pollution and drought. Around 800
plots have been established with major European forest types represented.

At present, 42 countries in Europe and beyond participate in ICP Forests. The Programme
Task Force is the highest body of ICP Forests and represents all participating countries.
National experts are organized in expert panels and working groups, ensuring continuous
development and harmonization of the monitoring methods and contributing to data
evaluations. Examples of expert panels are Ambient Air Quality, Soil and Soil Solution,
Crown Condition and Damage Causes, Meteorology, Phenology, and Leaf Area Index.

1.6 Missing data

Unobserved and hence missing data has been a pervasive problem in data analysis
since the origin of data collection (Brown and Kros 2003). Within data analysis, data
preparation is the most crucial and time-consuming task that strongly influences the
success of the research (Salgado et al. 2016). It is necessary to deal with missing data
by deleting incomplete observations or replacing any missing values with an estimated
value based on other information available, a process called imputation. Another option
is going back to the data investigator to clarify missing values. This approach is very
time-consuming and often not possible.

Missing data can appear for many reasons, such as non-applicable or questions of
no interest to the patient, computer, automation or human error, or unrealistic val-
ues. When merging data from multiple sources, more systematic reasons for missing
data arise, such as not all sources collect the same data or collect data on different scales.

All types of missing data are subject to underlying mechanisms. Salgado et al. (2016)
described three missing data mechanisms distinguishable by whether the probability
of response depends on the observed and missing values. Missing completely at ran-
dom (MCAR) means that the probability of an observation being missing does not depend
on the data. For example, imagine that a doctor forgets to record the gender of every
sixth patient. There is no hidden mechanism depending on any patient characteristic. In
contrast, for missing at random (MAR), the probability of a value being missing is related
only to the observable data. For this mechanism, it is possible to estimate the missing
values from the observed data. This case is not completely random, but it is the most
general case where we can ignore the missing mechanism, as we control the information
upon which the missingness depends, the observed data. Said otherwise, the probability
of missing data for a particular variable does not depend on the values of that variable
after adjusting for observed values. As an example for a study collecting age and prior
pneumonia as variables, older people are less likely to inform the doctor that they had
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pneumonia before. The response rate for prior pneumonia will depend on the variable age.
Missing not at random (MNAR) refers to the case when neither MCAR nor MAR holds.
The missing data depends on both missing and observed values. Determining the missing
mechanism is impossible, as it depends on unseen data. From that derives the importance
of performing sensitivity analyses and testing how the inferences hold under different
assumptions. An example of MNAR occurs in patients with low blood pressure who
are more likely to have their blood pressure measured less frequently (Salgado et al. 2016).

Methods handling missing data should be tailored to the data set of interest, the reasons
for missingness, and the proportion of missing data. Generally, a method is chosen for
its simplicity and ability to introduce as little bias as possible in the data set. When
data are MCAR or MAR, a researcher can ignore the reasons for missing data, which
simplifies the choice of the methods to apply (Salgado et al. 2016). In this case, any
method can be used. Little (1988) proposed a procedure for testing the MCAR as-
sumption. This test got further improved and implemented in statistics programs (Li
2013). As the MAR assumption is not testable, methods were suggested that test under
particular assumptions (Breunig 2019; Jaeger 2006; Potthoff et al. 2006). Further, tests
to distinguish MNAR and MAR were proposed (H. Wang et al. 2021). Nevertheless, it
is difficult to obtain empirical evidence about whether or not the data are MCAR or MAR.

Methods exist to investigate which type of missingness persists, but classifying it into
one is impossible. For example imagine a clinical survey asking about race in multiple
international clinics. This question is expected in the USA but uncommon in Germany.
Hence it will appear that German patients are overwhelmed with this question, so do not
answer. Since there is no mechanism behind the missingness, this would be MCAR. And
since this question is not common in Germany, some clinics could not ask the question at
all. The missingness depends on the variable at which clinic the patient was treated and
is MAR. Or, an African American can be offended by the question and choose not to
answer. Since the missingness depends on the missing value, it would be MNAR. In this
international study, missingness in the variable race arises due to all three types, MCAR,
MAR, and MNAR, and cannot be classified into one. Since it is hard to categorize
the type of missingness, sensitivity analyses across multiple methods accommodating
different choices are commonly preferred.

The most widely used methods fall into three main categories, deletion (including
complete-case and available-case), single imputation (including mean substitution, linear
interpolation, hot and cold deck), and model-based methods (including multiple imputa-
tion, regression, and k-nearest neighbors; Salgado et al. 2016). They are explained in
more detail in the following.

The simplest way to deal with missing data is to discard entire case records with missing
values, which only leads to valid inferences under MCAR. In a complete case analysis,
all the observations with at least one missing variable are discarded. The principal
assumption is that the remaining subsample is representative of the population and will
thus not bias the analysis towards a subgroup. Its main drawbacks are the reduced
statistical power, waste of information, and possible analysis bias, especially if the data
are not MCAR (Salgado et al. 2016).
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The available-case method discards data only in the variables needed for a specific analy-
sis. For example, if a study needs only four out of 20 variables, this method would only
discard the missing observations of the four variables. The analysis is performed using
all cases where the variables of interest are present. Even though this method can pre-
serve more information, the populations of each analysis would be different and possibly
non-comparable. Furthermore, the method is only unbiased under MCAR (Bennett 2001).

In single imputation, missing values are filled by some type of predicted values. Single
imputation ignores uncertainty and almost always underestimates the variance. The
simplest imputation method is to substitute missing values with the respective variable's
mean or median. Using the median is more robust in the presence of outliers in the
observed data. The main disadvantages of non-model-based imputation are that it
underestimates variability and disregards relationships between variables, decreasing their
correlation. While this method diminishes the bias of using a non-representative sample,
it introduces other biases (Salgado et al. 2016). These methods are unbiased under
MCAR (Bennett 2001).

A predictive model is created in model-based imputation to estimate values that will
substitute the missing data. This can be applied in single or multiple imputation. This ap-
proach’s disadvantage is that the model estimated values are usually more well-behaved
than the actual values, and the models perform poorly if the observed and missing
variables are independent. Multiple imputation overcomes the underestimated variance
problem by considering both within- and between-imputation uncertainty. Multiple
imputation is a powerful statistical technique developed by Rubin (1978), unbiased under
MCAR and MAR (Bennett 2001). It is a Monte Carlo technique that requires three
steps. The first is imputation, where missing values are filled in using any method of
choice, leading to M completed data sets. In these M multiple-imputed data sets, all
the observed values are the same, but the imputed values are different, reflecting the
uncertainty about imputation. In the second analysis step, each of the M completed
data sets are analyzed, for instance, by a logistic regression classifier for mortality, which
gives M analyses. In the third pooling step, the M analyses are integrated into a final
result, for example, by computing the mean of the M analyses.

This chapter has concerned mostly missing predictors. Similar approaches exist for
missing outcomes. Since this is not relevant to this thesis, it is not further discussed.
In this thesis, missing data appears in all forms. For Chapter 2, the clinics collected
different variables; therefore some variables are missing completely for some cohorts.
Additionally, the variables have missing values for unknown reasons. In Chapter 3, missing
data occurred in both data sets. Fatal accidents lack information as well as weather
data. For Chapter 4, some countries submit only mandatory variables even if they would
have information about the other variables. Reasons for the general mechanism for
missingness were unknown.
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1.7 Logistic regression

In this section, we introduce a model designed for binary outcomes, the logistic regression
model (Abraham and Ledolter 2006). Outcomes (y) were coded as 1 for the event of
interest and 0 for those without the event. In this thesis, the outcomes are clinically
significant prostate cancer, days with a fatal mountain accident, and tree mortality. The
explanatory variables () can be continuous (e.g., temperature) or categorical (e.g., wind
direction). This thesis's explanatory variables consist of weather characteristics, tree age
and slope, and clinical risk factors.

The outcome y; of case i with explanatory variables x; = (21, %2, . . ., Z;p)" is assumed
to a Bernoulli distribution with success and failure probabilities

P(y; = 1|z;) = w(x;) and P(y; = 0|z;) = 1 —7(x;), independently fori =1,2,...,n.

For y; ~ Ber(m(x;)) the mean of the distribution E(y;) = m(x;) and the variance
becomes var(y;) = m(x;)(1 —w(x;)). In the logistic regression model, probabilities 7(z;)
are parameterized as
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where 23 = By + S1xi1 + - - - + Bpxip. The probabilities are nonlinear functions of the
parameters 3. However, a simple transformation results in a linear model,
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This ratio compares the probability of a characteristic’s occurrence to its non-occurrence
and is referred to as the odds of occurrence Odds(z). Whereas probabilities are con-
strained to lie between zero and one, odds can take on values between zero and infinity.
For 7 = 0.8, the odds for occurrence are 0.8/0.2 = 4, implying that the probability of
occurrence is four times as large as the probability of non-occurrence.

The logarithm of the odds is referred to as the log-odds or the logit. The logistic
regression model assumes a linear model for the logit,

7(x)
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log (Odds(x)) = log (

This representation shows that the regression coefficients represent changes in the log
odds, as can be seen by the following. For a single binary explanatory variable x with
values 0 and 1,

Odds(x = 0) = exp(By + B1 - 0) = exp(Bo),
Odds(z = 1) = exp(Bo + B1 - 1) = exp(fo + B1),

and for the odds ratio,

_Odds(z =1)  exp(Bo+ 1)  exp(fo) - exp(fr)

OF = Odds(z =0)  exp(By) exp(fo)

= eXP(Bl)-
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Therefore, the regression parameters are 51 = log(OR) for the slope, and [, =
log(Odds(x = 0)) for the intercept. For example, a regression coefficient 5; = —0.2
and exp(f1) = 0.82 indicates that a change from 0 to 1 reduces the odds of occurrence
by the multiplicative factor 0.82. A value of 8; = 0 and exp(0) = 1 implies that a
change in the explanatory variable has no effect. Similar arguments hold for a continuous
variable for an increase in = by 1. And for multiple explanatory variables for the change
in odds for a unit increase in a single variable holding all others fixed. Changing an
explanatory variable by & units while keeping the values of all other variables constant
leads to an odds ratio exp(f - k).

1.8 Likelihood ratio test

Statistical software packages such as R evaluate the maximum value of the likelihood
function L([3). Likelihood ratio tests can compare the maximum likelihood under the
current "full" model versus a "restricted" model, omitting one or more of the explanatory

variables. The Likelihood ratio test statistic

2log (%) = 2(log L(full) — log L(restricted))
follows in large samples a chi-squared distribution with degrees of freedom given by the
number of independent constraints if the constraints imposed by the restricted model are
valid. Using the Likelihood ratio test, one can assess the significance of an explanatory
variable with one p-value for continuous and categorical variables. Hence, one can
determine the overall significance of a categorical variable independent of the number of
categories.

1.9 Outline of the thesis

The data analysis process involves gathering the information, processing it, exploring the
data, and using it to find patterns and other insights. Issues concerning data quality
can appear in each step. To get a greater understanding, gathering information from
multiple sources is necessary. It is a common strategy in clinical studies to reach a
wider representative population by combining data from several clinics. From the clinical
perspective, this increases the sample size, which is especially important for diseases
with rare cases. Due to different reasons, clinics collect various amounts of patient
characteristics. Patients curious about their health risk may not have results on all clinical
tests. Therefore, missing predictors appear on both the model building and the prediction
side. Chapter 2 compares logistic regression methods for combining data from multiple
heterogeneous cohorts, with an additional focus on incorporating systematic missing data.
Chapter 3 combines fatality cases in the Austrian mountains with weather information
on different scales for association analyses of weather on mountain fatalities. Chapter 4
combines individual tree mortality information across Europe with plot information from
two collection schemes, along with climate and weather adjusted for elevation. Missing
data arise in all three applications of the thesis, demanding methods to change analyses
and maximize efficiency.

12



2 Accommodating heterogeneous
missing data patterns for prostate
cancer risk prediction

A portion of this chapter is published in Neumair M., Kattan M.W., Freedland S.J., Haese
A., Guerrios-Rivera L., De Hoedt A.M., Liss M.A., Leach R.J., Boorjian S.A., Cooperberg
M.R., Poyet C., Saba K., Herkommer K., Meissner V.H., Vickers A.J., Ankerst D.P.
Accommodating heterogeneous missing data patterns for prostate cancer risk prediction.
BMC Medical Research Methodology, 2022, https://doi.org/10.1186/s12874-022-01674-
x and Ankerst D.P., Neumair M. Active Data Science for Improving Clinical Risk
Prediction. Journal of Data Science, 2022, https://doi.org/10.6339/22-JDS1078. For
the first paper, Matthias Neumair developed the statistical methodology, interpreted all
results, prepared the original draft, and designed and programmed the prostate cancer
risk calculator. All other co-authors outside of Donna P. Ankerst were hospital clinicians
and representatives who supplied data. All co-authors participated in the critical review
of the manuscript for revision by Matthias Neumair. For the second paper, Matthias
Neumair analyzed and visualized the data and interpreted the results. Donna P. Ankerst
wrote the manuscript with contributions from Matthias Neumair.

The Prostate Biopsy Collaborative Group (PBCG) was established to improve the under-
standing of heterogeneity in prostate cancer biopsy outcomes across international clinical
centers (Vickers et al. 2010). Figure 2.1 shows the range of the number of biopsies and
prevalence of clinically significant prostate cancer (csPCA), defined as Gleason grade
group > 2, across eleven PBCG cohorts. Prevalence is the percentage of the population
affected by csPCA and calculated by Prev = ﬁ where Ncaces 1S the number of csPCA
cases, and Nty is the total number of patients in the corresponding group. In 2018, the
PBCG developed an online risk tool based on a small set of common risk factors routinely
collected in practice: prostate-specific antigen (PSA), digital rectal exam (DRE), age,
African ancestry, first-degree prostate cancer family history, and history of a prior negative
prostate biopsy (Ankerst et al. 2018). For developing the prior tool, multiple methods
for aggregating clinical data on a small number of variables across heterogeneous centers
comprising different risk factor distributions and risk factor-outcome associations were
compared. The simplest approach of pooling individual-level data and fitting a multiple
logistic regression model proved to be the most accurate (Tolksdorf et al. 2019). The
resulting risk calculator was published online at riskcalc.org to facilitate its use in daily
routine. (Carbunaru et al. 2019; Jalali et al. 2020; Mortezavi et al. 2021; Rubio-Briones
et al. 2020; Stojadinovic et al. 2020).

The PBCG requested additional risk factors to those included in the current tool from its

participating cohorts. However, these were not rigorously collected, with some cohorts
not collecting some risk factors (Figure 2.2). In this thesis, we wanted to develop an

13



2 Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

adaptive tool using all the information available in Figure 2.2 that would allow the user
to enter as much (or as little) information as possible.
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Figure 2.1: Sample sizes represented by the height of rectangles and prevalence of significant
prostate cancer represented by the width of rectangles for the eleven PBCG cohorts used in
the study. The cohorts have been numbered according to their rank of csPCA prevalence. The
third cohort outlined in black was withheld to serve as an external validation cohort, with the
remaining ten cohorts used for training prediction models.

Missing data in clinical research is a ubiquitous problem, and many statistical methods
have been proposed to account for it (Donders et al. 2006; Janssen et al. 2010). Most
procedures are applied to missing values in training data sets to develop a model. But
with the emerging use of online and electronic record embedded clinical risk tools,
approaches for handling missing risk factors on the user end of a risk tool requiring the
predictor are coming into play. Recently, real-time imputation was proposed to extend
needed cardiovascular disease management for patients with missing risk factors (Nijman
et al. 2021).

This study aimed to construct a csPCA risk tool that optimizes the use of data from
heterogeneous cohorts with varying missing data patterns and allows end-users of the
tool predictions even when missing some risk factors. In terms of the development of
a risk model on multiple cohorts with varying missing data patterns, we found four
philosophically distinct approaches: available case analyses, ensembles of cohort-specific
models, missing indicator methods, and imputation (Section 2.2). We compared six vari-
ations of these approaches and selected an optimal one for this application (Section 2.3).
For the end-user side, we adopted an individual patient-tailored approach as we have
implemented in previous tools. The user inputs the available risk factors, and a resulting
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Figure 2.2: Missing risk factors. Amount of missing risk factor data by cohort on the x-axis;
all patients were required to have PSA and age, hence 0% missing for these covariates. The
3rd cohort, separated by the black vertical line, was used as an external validation set, and
leave-one-cohort-out cross-validation was applied to the other cohorts. Cohorts were sorted by
missing data pattern; PSA: prostate-specific antigen, DRE: digital rectal exam.

prediction based on those risk factors is returned (Ankerst et al. 2014, 2018).

2.1 Biopsy data

The study was based on the risk factor and outcome data collected from January 2006 to
December 2019 from trans-rectal systematic ten to twelve core biopsies. For training, ten
PBCG cohorts spanning North America and Europe were used, and for validation, one
PBCG European cohort was used (Figure 2.3). The risk factors collected (as shown in
Figure 2.2) included the standard risk factors used in clinical practice for prostate cancer
diagnosis along with other less commonly used risk factors, but with proven associations
to prostate cancer (Carbunaru et al. 2019). All PBCG data were collected following local
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2 Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

institutional review board (IRB) approval from the University of Texas Health Science
Center of San Antonio, Memorial Sloan Kettering Cancer Center (MSKCC), Mayo Clinic,
University of California San Francisco, Hamburg-Eppendorf University Clinic, Cleveland
Clinic, Sunnybrook Health Sciences Centre, Veterans Affairs (VA) Caribbean Healthcare
System, VA Durham, San Raffaele Hospital, and University Hospital Zurich. Analyses
for this retrospective study were approved by the Technical University of Munich Rechts
der Isar Hospital ethics committee, with all methods performed in accordance with
the guidelines and regulations of the committee. As collected data were anonymized
and obtained as part of standard clinical care, consent was waived by all IRBs, except
regarding second-degree prostate cancer and first-degree breast cancer family history for
the VA Durham. Written consent for these variables was obtained and documented as
part of a larger separate study at the VA Durham before the beginning of this study. All
institutional PBCG IRB approvals are maintained by the MSKCC central data coordinat-
ing center and IRB.
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Figure 2.3: World map of the eleven PBCG participating institutions collecting prostate biopsy
data.

The ten training cohorts followed the PBCG prospective protocol in data collection,
whereas the external validation cohort supplied retrospective data from a single institution
that provided a high annual number of prostate biopsies for the PBCG (Ankerst et al.
2018; Tolksdorf et al. 2019). Included data came from patients who had received a
prostate biopsy following a PSA test under local standard-of-care and may be seen as
representative of patients in North America, including Puerto Rico and Europe. For
users of the developed risk calculator, two risk factors were mandatory: PSA and age.
Ten risk factors were optional: DRE, prostate volume, prior negative biopsy, 5-alpha-
reductase-inhibitor use, prior PSA screen (yes/no), African ancestry, Hispanic ethnicity,
first- and second-degree prostate cancer- and first-degree breast cancer-family history.

To improve data quality, we first performed data exploration and cleaning to correct or
remove observations likely to be in error. We excluded patients with missing prostate
biopsy cancer status and Gleason score as csPCA was the primary outcome of the
analysis which was defined as Gleason grade group > 2 on biopsy (Zhou et al. 2019). We
removed patients with missing age or PSA as these are standard risk factors ubiquitously
assessed for prostate cancer screening and diagnosis. Because the csPCA risk modeling
was intended for patients not previously diagnosed with prostate cancer, we excluded
patients with PSA values greater than 50 ng/ml. These values were likely to have a prior
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positive cancer diagnosis not recorded in the supplied data set. The Hamburg Clinic,
a high-volume prostate biopsy referral center and not a local urologic clinic, does not
record previous prostate cancer status. Patients visiting the Hamburg clinic for prostate
biopsy could be doing so under active surveillance for their prostate cancer. We excluded
patients with PSA > 10 ng/ml to not eliminate the massive Hamburg population from
the analysis. We only used Hamburg as a hold-out test set for validation, as in the
PBCG risk tool publication by Ankerst et al. (2018). For prostate volume, we excluded
values greater than 400 cc or equal to 0 cc as these are implausible values. Furthermore,
we neglected patients who received Magnetic Resonance Imaging (MRI)-guided biopsy
as these more accurate procedures will warrant enhanced prediction models incorporating
imaging markers. To improve the model fit, we transformed PSA and prostate volume
by the log-base-2. We chose this transformation because of its interpretability for the
odds ratio, which becomes the change in odds for a doubling of the predictor.

The PBCG data set contains biopsy outcome information in addition to prostate cancer
and Gleason grade, including the number of biopsy cores extracted and the percentage of
these that are positive for prostate cancer. These allow an analysis of varying definitions
of significant prostate cancer as used in the clinical literature (Matoso and Epstein 2019).
In this study, we focused on csPCA as the outcome to evaluate whether the incorporation
of the additional risk factors leads to an improvement in the prediction compared to the
standard risk factors used in the current PBCG risk calculator.

2.2 Statistical analyses

Before the discussion of the multivariate analysis, we investigated the impact of variables
for the prediction of csPCA one at a time using univariate logistic regressions for binary
predictors. We transformed continuous predictors into binary ones by choosing relevant
cutpoints to separate high versus low values.

We performed a literature search to identify the six most commonly used approaches for
handling missing data in multivariable logistic regression modeling for either single or
multiple cohorts, as found in this study. All of the approaches could be implemented
in the R statistical package. We aimed to identify the most accurate technique for
implementation in the online tool. To increase the tool's flexibility, we tailored each
method to the specific list of risk factors available for one patient. For a validation
set, the algorithms were applied for each individual in the validation set separately. All
algorithms return logistic-regression-based expressions for the probability of csPCA; the
cohort ensemble averages these for the individual cohorts. The methods are summarized
in Table 2.1 and greater detail in Table 2.2.

The available cases algorithm pooled individual-level data from the training cohorts with
information on the end user's variables. A main effects logistic regression model was fit
for csPCA to the training data and used in a tailored prediction model for the target
patient. The iterative Bayesian information criterion (BIC) selection method added
stepwise BIC-based model selection to the available cases algorithm and allowed to
include two-way interactions. The BIC selection started with the model that consists of
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2 Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

Table 2.1: Methods for fitting individual predictor-specific risk models for members of a test
set by combining data from multiple cohorts. All individuals in the training and test cohorts
have two predictors, PSA and age, and then any subset, including none, of ten additional
predictors for a total of twelve predictors, denoted by X. The set of predictors available for
the new individual is denoted by X™*. All models use logistic regression to predict csPCA.
MICE=Multiple imputation by chained equations; BIC = Bayesian Information Criterion defined
as the log-likelihood — (number of covariates) x log(sample size).

Method Definition

Available cases Pool individual-level data with X* measured across all cohorts
and fit a model including X™* as main effects.

Iterative BIC selection Same as available cases, but with an iterative stepwise BIC-
based model selection to determine the optimal subset of X*
and interactions.

Cohort ensemble Separate models are built for each cohort using the coinciding
variables of the cohort and the patient.
Categorization All individuals in all cohorts are used. Predictors are cat-

egorized with missing as one of the categories so that the
complete list of predictors X is used.

Missing indicator Include an indicator for missing a continuous predictor value
and the interaction with the predictor as additional variables
in the analysis. Mostly similar to categorization.

Imputation Impute missing covariates in the training set following the
MICE method. Mean imputation for missing values in predic-
tion.

all variables as main effects and was hence based on a small sample size since it requires
complete records. Due to the chosen starting variables, interactions were considered from
the beginning. If a risk factor was not selected in the optimal model by the selection
process, the procedure was re-started, excluding the risk factor, allowing more individuals
from the training set to be included in model development. A patient provides a certain
amount of covariates as input to the algorithm. Since this input varies on the patient,
each combination of input variables developed its own model.

For the BIC, we follow the definition of Schwarz (1978). We consider a set of models
M,, form =1,..., M, which differ in their included covariates. We consider the inclu-
sion of twelve risk factors and all possible two-way interactions. Including an intercept
for every model, the number of parameters to be estimated, k,, for model M,,, ranges
between 1 and 1 +12 + (122) = 79. To choose a suitable model among all candidates,
given the observed outcomes of csPCA = (csPCAy,...,csPCA,,) for n patients, the
following equation is maximized: BIC(M,,) = —log (f(csPCA|§m)> + kpnlog(n),
where 0, € RP™ is the vector of parameters in the model M,,, f(csPCA|f,,) the den-
sity function of the data given parameters 6,,, also called likelihood function. O, is
the parameter set that maximizes this function. For logistic regression and assuming
independence of the individual records, this is given explicitly: log (f(csPCA|f,,)) =

» , csPCA;z}0,, — >, log(1 + exp(x}0,,)), where z; is the covariate vector of indi-
vidual i.
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2.2 Statistical analyses

Rather than pooling data across cohorts, the cohort ensemble method constructed
separate models for each cohort, restricting to risk factors available by the end-user and
collected by the training cohort. A risk factor was considered available in a training
cohort if it was measured in 40% or more participants. Otherwise, it was not included
to not prohibitively reduce the sample size for constructing a cohort-specific model.
Because models were fit to single cohorts and some of the cohorts had small sample sizes,
information from individual cohorts could be low or inadequate for robust multivariable
model construction. For example, cohort 10 had only 243 biopsies. Such cohorts
were not excluded because even though they may lack power for obtaining statistical
significance of individual coefficients, the goal was to optimize out-of-sample prediction.
Cohort-specific risks were averaged over the cohorts for the end user's result.

Table 2.2: Algorithms for the six risk modeling approaches. Starting variables are available
risk factors from the user. Used and cohort variables are subsets or all of the starting variables
corresponding to those used by the model and those with less than 40% missing rates in the
cohort.

Algorithm: Available cases

1 Subset the PBCG data set by records without missing values for starting
variables

2 Fit main effects logistic regression model with starting variables to the PBCG
subset pooled for all cohorts

Algorithm: Iterative BIC selection

1 used variables = starting variables
2 while the number of used variables reduces do

3 Subset the PBCG data set (pooled for all cohorts) by used vari-
ables

4 Use only complete records

5 Perform logistic regression BIC selection starting with main effects
up to two-way interactions

6 used variables = variables in the selected model (either as main
effect or as interaction)

7 risk = Predict csPCA risk with information in starting variables

8 end while

Algorithm: Cohort ensemble

1 cohort variables = variables of each cohort with less than 40% missing records
2  for all cohorts do

3 used variables = variables of starting variables that are in cohort
variables

4 Subset the PBCG data set by cohort and used variables

5 Use only complete records

6 Perform logistic regression BIC selection starting with main effects
up to two-way interactions

7 used variables[cohort] = variables in the selected model (either

as main effect or as interaction)
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2 Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

8 risk[cohort] = Predict csPCA risk with information in starting
variables
9 end for

10 overall risk = mean(risk)

Algorithm: Categorization

1  Categorize all predictor variables with the additional factor not available (NA).
Continuous variables with missing values are categorized.

2 Fit main effects logistic regression model with all variables to the PBCG data
set pooled for all cohorts

Algorithm: Missing indicator

1 Categorize all categorical predictor variables with the additional factor missing.
Add for continuous variables with missing values an indicator variable, whether
the variable was missing or not

2 Fit main effects logistic regression model with all variables and include the
interactions of the indicator with the corresponding variable in the model to
the PBCG data set pooled for all cohorts

Algorithm: Imputation

1 Run 30 imputations by chained equations (mice) on the training PBCG data
set
2  for all imputed data sets do
3 Fit main effects logistic regression model with all variables in the
model to the imputed PBCG data set pooled for all cohorts
4  end for
Impute missing values in the test case with means of the training set
6  Average the coefficients from mice for use in the prediction models

1

The categorization algorithm returned to pooling data across all training cohorts and
additionally transformed all continuous risk factors to categorical. Missing data could
hence be added as an extra category. For inherently categorical risk factors, such as
DRE, categories were coded as normal, abnormal, and missing. Prostate volume was
stratified to < 30, 30 to 50, and > 50 cc, as previously suggested, such that it could be
obtained by pre-biopsy DRE or transrectal ultrasound scan (TRUS) before adding the
additional category of missing (Roobol et al. 2012). The advantage of this approach was
that only one model is fit and needed by the end-user. The missing indicator algorithm
was similar to the categorization algorithm but did not require the categorization of
continuous variables (Groenwold et al. 2012). Instead, it introduced an indicator equal to
1 if the corresponding risk factor was missing versus 0 if not missing. The model included
the indicator and the interaction with the risk factor. Since prostate volume was the
only continuous risk factor that was sometimes missing, the missing indicator algorithm
differed from the categorization algorithm in only one variable. Second-degree prostate
cancer- and first-degree breast cancer family history were either both collected or not at
all by the individual cohorts. Adding a missing category to them would therefore induce
multicollinearity. To avoid this, they were combined into a single new 5-category risk
factor with second-degree prostate cancer family history only, first-degree breast cancer
family history only, both present, none present or missing.
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2.2 Statistical analyses

Multiple imputation has been recommended for fitting statistical models to training data
to handle either outcomes or risk factors missing at random (MAR) (van Buuren and
Groothuis-Oudshoorn 2011). In the case here, the outcome of csPCA was not missing for
any individuals, so imputation was applied only for missing risk factors. Data were pooled
across all ten cohorts to form the training set, and imputation was applied using the
pooled set and not by cohort. For a patient in the training set with multiple missing risk
factors, multiple imputation by chained equations (MICE) sequentially imputes missing
data according to full conditional models appropriate to the risk factor data type. There-
fore, it uses all other risk factors available as covariates along with the outcomes that
have been fit to complete cases in the training set (van Buuren and Groothuis-Oudshoorn
2011; I. R. White et al. 2011). The R mice package uses five imputations as default,
and the literature also recommended ten iterations (Bodner 2008; van Buuren and
Groothuis-Oudshoorn 2011). We implemented 30 imputations as the average percentage
of missing values across all risk factors in the training set. We averaged models built
on the 30 imputed data sets for the final training set risk model. For the end-user
or member of the validation set who is missing a risk factor, the algorithm imputed
its value using mean values from the training set only and not from other members
of a validation set, as the latter would not be available in practice (I. R. White et al. 2011).

We used internal cross-validation to compare the mean imputation approach with median
imputation and MICE applied to the test case added to the validation set. Further,
we tried two different approaches to combine the 30 imputed data sets. On each of
the imputed data sets, a model was fit. The first approach combines the 30 models
by building the average of each coefficient (pooled). The final model is used for the
prediction of the test case. The second approach uses all 30 models to predict the test
case and takes the mean of the predictions as the final prediction (average). Figure 2.4
shows no difference between averaging coefficients before prediction and averaging
predictions. Median imputation performed slightly worse than the other two approaches
in calibration in the large (CIL) but better in terms of area under the receiver operating
characteristic curve (AUC) for some cohorts. The measures are described after the
next paragraph. The other two approaches were comparable. Therefore, we choose
pooled mean prediction as it is computationally the fastest and easiest in implementation.

External validation on the European cohort, which was not used for training, was measured
by discrimination using the AUC along with its 95% confidence interval (Cl), CIL, which
evaluates the average difference between the predicted risk and binary csPCA outcome
for each patient in the validation set, and calibration-in-the-small by calibration curves of
observed versus predicted risk according to deciles of predicted risk. Internal leave-one-
cohort-out cross-validation using the same metrics was performed by alternatively holding
out one of the ten PBCG cohorts as a test set and training the models on the remaining
nine cohorts. Distributions of AUCs and ClLs from the ten test validations were visualized
by violin plots showing smoothed histograms and boxplots showing medians and interquar-
tile ranges. All analyses were performed in the R statistical package (R Core Team 2021).

Validation was evaluated by discrimination measured by the AUC (Hanley and McNeil

1982), accuracy measured by calibration curves and CIL (van Calster et al. 2019). The
AUC consists of sensitivity and specificity, which depend on a threshold ¢ that classifies
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Figure 2.4: Comparison of imputation methods for prediction by internal cross-validation of
the ten PBCG cohorts. The test patient's missing values are imputed by mean, median, and
MICE. Pooling the model coefficients is compared to averaged predictions.

the patients with predicted risks > ¢ as cases and < ¢ as controls in the validation set:

Ncontrols, predicted risk S C
Spec(c) = P

S@TLS( ) - Ncases, predicted risk > ¢
- )
Necases Ncontrols

Y

where ncases is the number of patients with csPCA and 7cases, predicted risk > < IS the number
with csPCA and predicted risk greater than c. Higher sensitivity and specificity indicate
a better model prediction. Similarly, the numbers for the controls are defined. The
receiver operating characteristic (ROC) curve plots sensitivity versus 1-specificity for all
possible thresholds ¢ € [0, 1], and the AUC is the area underneath the resulting graph.
Therefore, the higher the AUC, the better.

Calibration curves and the CIL = mean(predicted risks) — mean(observed outcome) are
used for accuracy, and they compare how well observed and predicted risks agree. For
calibration curves, individual risks are plotted on the x-axis. Since the outcomes to
be plotted on the y-axis are either zero or one, locally weighted regression was used
to get a smooth line through the binary results. To assess CIL, the average predicted
risk is compared with the overall event rate. The algorithm generally overestimates
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risk when the average predicted risk is higher than the overall event rate. Conversely,
underestimation occurs when the observed event rate is higher than the average predicted
risk.

2.3 Results

Among 12,703 biopsies from ten PBCG cohorts used for training, 3,597 (28%) had
csPCA, compared to 1,757 out of 5,540 (32%) csPCA cases in the external validation
cohort (Figure 2.1). In terms of prevalence, the cohorts seem to be almost homogeneous
around 30%, and only cohort 11 has a lower one at 15%. The sample size ranges from
243 in cohort 10 to 5,543 in cohort 3. All cohorts collected PSA and age but varied
in the collection of the other ten risk factors, with some cohorts not collecting some
risk factors at all (Figure 2.2). Differences between the cohorts in terms of distributions
of the twelve risk factors and their associations with csPCA are shown in Figures 2.5
and 2.6. PSA greater than ten showed a higher prevalence of csPCA for all cohorts.
For cohort 2, the high cases got excluded as described in Section 2.1. Cohort 11 has a
lower overall prevalence, but the trend is the same. For age, we see similar patterns for
men older than 65 years. Cohort 7 had the highest fraction of older men. For abnormal
DRE ("Yes"), all cohorts showed higher prevalences besides cohort 7, with the highest
prevalence in the missing group ("NA"). For smaller prostate volumes, higher csPCA
prevalence could be found. For the other variables, trends could be seen less strongly.

Figures 2.7 and 2.8 show each variable's univariate odds ratios (ORs). We dichotomized
continuous variables with an integer close to the median as a cutpoint. The x-axis shows
the proportion of the dichotomized risk factor.

In Figure 2.7, we see that the overall OR estimate, which pools data from all eleven
cohorts, lies in the middle of the cohort-specific ORs for PSA, age, prostate volume,
and prior negative biopsy, and that almost all of them were significant. For DRE, ORs
from cohorts 7 and 10 pull overall OR downwards. These two were the only ones not
significant. For African ancestry, the situation was more interesting since the cohorts
disagreed whether csPCA risk increases for African ancestry or not (ORs greater as well
as smaller 1). The overall OR estimate was driven downwards from the non-significant
cohort-specific ORs. Additionally, Overall included also values of cohorts that had only
non-African patients.

For prior PSA measurement, cohort 3 was outside of the cluster in terms of prevalence
(Figure 2.8). Furthermore, the cohorts were not agreeing about the influence since
they appeared both above and under an OR of one, while almost all of them were not
significant. We got a similar behavior for the first-degree prostate cancer family history.
Second-degree prostate cancer and breast cancer family history were only collected by
some cohorts. Additionally, all single cohort ORs showed no significant effect. For
Hispanic ethnicity, cohort 7, which had mostly Hispanic patients, pulls the overall OR
estimate upwards. Most of the cohort-specific ORs were insignificant, but the overall
OR was. The reason was that pooling leads to a larger sample size of Hispanic and
non-Hispanic individuals, thereby increasing the power to detect differences. This was
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Figure 2.5: Differences between the cohorts in distributions of the twelve risk factors and their
associations with csPCA (a). Continuous risk factors were split into three groups low, medium,
and high, additionally to the group missing indicated by NA. The x-axis shows the percentage
of the group within the cohorts. The y-axis shows the number of biopsies consistent between
the different subfigures. NA = missing.

why the cohort 7 OR, higher than the overall OR, was not significant. For 5-alpha-
reductase inhibitor (ARI) treatment, neither the cohort-specific ORs nor overall OR were
significant. Most cohorts cluster underneath one but cohort 4 was far above one. Since
5-ARI was a prevention measure for prostate cancer, this made the estimate from cohort
4 suspect and warranted investigation of the patients included in the 5-ARI group.
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Figure 2.6: Differences between the cohorts in distributions of the twelve risk factors and their
associations with csPCA (b). Continuous risk factors were split into three groups low, medium,
and high, additionally to the group missing indicated by NA. The x-axis shows the percentage
of the group within the cohorts. The y-axis shows the number of biopsies consistent between
the different subfigures.

Pooling seems appropriate for most of the variables, but it might be misleading for
some variables. So the pooling approach should be compared to other approaches that
accommodate the missing values and related sample size problems.
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Figure 2.7: Baseline demographics and univariate odds ratios for the association between risk
factors and csPCA by cohort. Overall indicates pooled data from all cohorts. Bold indicates
significance at the 0.05 level. Data was not shown for PSA for cohort 4 (Proportion with risk
factor (PRF) in %: 39.4, OR: 6.1, significant) and DRE for cohort 2 (PRF: 21.9, OR: 5.0,
significant) because numbers were out of the range of the plot. Not shown cohorts for African
ancestry: 2, 4, 11; for prior negative biopsy: 3, because either did not measure the variable,
had only one outcome or unstable predictions; PSA: prostate-specific antigen, DRE: digital
rectal exam.

In leave-one-cohort-out internal cross-validation across the ten PBCG cohorts to ulti-
mately be used for training the online model, the iterative BIC selection method had the
lowest median CIL (-0.2%), while the available cases method had the highest (2.6%,
Figure 2.9). All of them were minor in magnitude. CIL values ranged from -11 to
11% across the ten cohorts used as test sets. All six methods had nearly the same
median AUC at 80%, and values ranged from 74 to 84% across the ten test sets. The
categorization and missing indicator methods had larger variations in CIL and AUC than
the other methods.

In external validation, all six methods either under or over-predicted observed risks since
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Figure 2.8: Baseline demographics and univariate odds ratios for the association between risk
factors and csPCA by cohort. Overall indicates pooled data from all cohorts. Bold indicates
significance at the 0.05 level. Data was not shown for prior PSA for cohort 6 (Proportion
with risk factor in %: 88.3, OR: 5, significant) because numbers were out of the range of
the plot. Not shown cohorts for prior PSA: 8,10; for 5-ARI treatment: 6, 8, 9; for Hispanic
ethnicity: 10, 4, 6, 2, 11; for first-degree family history: 8; for second-degree and breast cancer
family history: 10, 3, 4, 6, 2, 5, 8, because either did not measured the variable, had only one
outcome or unstable predictions; PSA: prostate-specific antigen.

none of the 95% Cls for CIL, computed as the average predicted risk minus the disease
prevalence in the external validation cohort (32%), contained the value 0 (Table 2.3).
The available cases method was the most accurate, under-predicting risk on average by
2.9%. The categorization and missing indicator methods over-predicted risks by 3.5%
and 4.2%, respectively, while all other methods under-predicted risks, with imputation the
worst by 12.4%. Similar results can be seen in the important prediction range between
0 and 50% predicted risk, where available cases performed best with the closest line
to the bisector (Figure 2.10). Additionally, we can see that imputation is consistently
under-predicting and worse for higher risks. The AUCs ranged from 75.4% for the
iterative BIC selection method to 77.4% for the missing indicator method, but all 95%
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Figure 2.9: CIL and AUC performing leave-one-cohort-out cross-validation on ten PBCG
cohorts. Median values are indicated with numbers and as vertical lines in the boxes.

Cls overlapped (Table 2.3).

Comparisons of individual predictions from the six different methods for the 5,540 mem-
bers of the external validation cohort are shown in Figure 2.11. As seen on the diagonal,
for all methods, the distribution of predicted risks for csPCA cases was higher than for
non-csPCA individuals, but considerable overlap remained. Correlations of predictions by
the six methods were high, all exceeding 0.8. The iterative BIC selection, cohort ensem-
ble, and available case methods were similar methods. All use only complete cases for a
specified individual's risk factor profile and hence were highly correlated. The remaining
three methods adjusted for missing data in some manner and were less correlated with
these methods, with categorization the least correlated, though still very highly correlated.

We chose the available cases method for implementation of the risk tool online since it
showed the highest accuracy in calibration in external validation (Figure 2.10), where
all six methods showed equivalent AUCs (Table 2.3). AUCs and ClLs across the ten
cohorts used as test sets in the internal leave-one-cohort-out cross-validation were also
similar, and the available cases method had the lowest variability (Figure 2.9). The
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Table 2.3: External validation CIL and AUC values with risks as percentages along with 95%
confidence intervals.

Method L (95% Cl)  AUC  (95% CI)

Available cases 29  (-4.0,-1.8) 757 (74.4,77.1)
Iterative BIC selection -8.6  (-9.7,-7.5) 754 (74.0, 76.8)
Cohort ensemble 7.1 (-8.2,-6.0) 76.4 (75.1,77.7)
Categorization 35 (2.4, 4.6) 76.6 (75.2,77.9)
Missing indicator 4.2 (3.1,5.3) 77.4 (76.1,78.7)
Imputation -13.3 (-14.4,-12.2) 759 (74.5,77.2)

available cases method is less computationally intensive than multiple imputation and
is valid under MAR assumptions based on unobserved risk factors and outcomes. This
untestable assumption may be assumed as approximately holding when all established
risk factors for outcomes are assumed to have been collected (Mealli and Rubin 2015).

To implement the prediction tool online, we fit 1,024 models to allow for all possible
missing risk factor patterns among ten risk factors in order to use the maximum prostate
biopsies possible from the ten PBCG cohorts. The smallest model only contains PSA
and age, utilizing all 12,703 biopsies from the ten PBCG cohorts since these two risk
factors were measured for all individuals. The largest model includes all 12 risk factors
and was constructed from only 1,334 biopsies from three PBCG cohorts, as these were
the only complete cases. These two risk models are shown in Table 2.4, with all possible
models accessible online at riskcalc.org. Figure 2.12 shows boxplots of all coefficients
of the 1,024 models. The intercept had a wide range which is ok since it depends on
how many and which variables were included in the model. Age, PSA, prostate volume,
DRE, and all family history variables had consistent effects in terms of increasing or
decreasing csPCA odds. Other characteristic effects depend on the remaining variables
in the model. Hispanic ethnicity turns out to have often no effect (median OR close
1), but its OR ranges up to around 2. The comparison of risk predictions for a high
and low-risk patient depending on the combination of available risk factors is shown in
Figure 2.13. The more risk factors, the more accurate the prediction becomes. As more
predictors were missing, the risk prediction was more moderate, which means for the
high-risk patient a risk of 30% instead of 80%, and for the low-risk patient a predicted
risk of up to 10% instead of close to 0%. Further, one could observe a high prediction
variability depending on the available risk factors. Evaluated on the same validation set
of 5,540 biopsies as used for Table 2.3, the original PBCG risk tool published in 2018
(Ankerst et al. 2018) based on only six of the twelve risk factors used here obtained a
CIL of -5.9 (95% CI -7.1, -4.7), and an AUC of 66.9 (95% CI 65.4, 68.5), which is 10
points lower than any of the methods incorporating the additional risk factors. Adding
just prostate volume to these six risk factors and evaluating on the validation set yielded
a CIL of -10.1 (95% Cl -11.2, -9.0) and an AUC of 75.6 (95% Cl 74.2, 76.9; p-value <
0.0001 for test of equality of this AUC to that from the standard model). Assessment of
prostate volume, however, requires an invasive procedure that is not routinely performed
in advance of the prostate biopsy.
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Figure 2.10: Calibration plots with shaded pointwise 95% Cls for the six modeling methods
applied to ten PBCG training cohorts and validated on the external cohort. The diagonal

black line is where predicted risks equal observed risks. Lines below the diagonal indicate
over-prediction, and lines above under-prediction on the validation set.

Table 2.4: Odds ratios from the largest, standard, and smallest models in terms of the number
of 12 risk factors available from an end-user. Sample sizes were the number of individuals
in the training set with all risk factors available (complete cases) and the number of cohorts
contributing to the complete cases. In total, 1,024 models were available based on the option
of including ten risk factors, all except PSA and age. R code for all 1,024 models is available
at the Cleveland Clinic Risk Calculator library, https://riskcalc.org/ExtendedPBCG/.

Odds ratios for the full model containing twelve risk factors based on a fit to 1,334
prostate biopsies from three cohorts.

Risk factor Odds ratio 95% Cl p-value
Age 1.07 (1.05, 1.09) < 0.0001
PSA (log2) 2.38 (1.98, 2.89) < 0.0001
African ancestry

No Ref - -

Yes 0.68 (0.45, 1.03) 0.08
Prostate volume (log2) 0.25 (0.20, 0.32) < 0.0001
DRE

Normal Ref - -

Abnormal 1.95 (1.46, 2.60) < 0.0001
Prior negative biopsy

No Ref - -

Yes 032  (0.22,0.45) < 0.0001
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Hispanic ethnicity

No Ref

Yes 1.08
5-alpha-reductase-inhibitor use

No Ref

Yes 0.96
Prior PSA screen

No Ref

Yes 0.71
First-degree prostate cancer family history

No Ref

Yes 1.93
Second-degree prostate cancer family history

No Ref

Yes 1.30
First-degree breast cancer family history

No Ref

Yes 1.15

(0.78, 1.50)

(0.63, 1.44)

(0.38, 1.34)

(1.38, 2.69)

(0.86, 1.96)

(0.77, 1.70)

0.6

0.8

0.3

0.0001

0.2

0.5

Odds ratios for the model containing the six standard risk factors based on a fit to

8,432 prostate biopsies from 9 cohorts.

Age 1.05
PSA (log2) 1.99
African ancestry

No Ref

Yes 1.26
DRE

Normal Ref

Abnormal 2.57
Prior negative biopsy

No Ref

Yes 0.28
First-degree prostate cancer family history

No Ref

Yes 1.94

(1.04, 1.06)
(1.86, 2.12)

(1.11, 1.44)

(2.29, 2.88)

(0.24, 0.32)

(1.70, 2.22)

< 0.0001
< 0.0001

0.0005

< 0.0001

< 0.0001

< 0.0001

Odds ratios for the smallest model containing two risk factors based on a fit to

12,703 prostate biopsies from 10 cohorts.

Age 1.05
PSA (log2) 1.72

(1.05, 1.06)
(1.64, 1.80)

< 0.0001
< 0.0001

2.4 Discussion

Systematic missing clinical data across heterogeneous cohorts pose challenges for both
model developers and end-users. We compared six methods that have been proposed for
handling missing data with the objective to find the method most likely to perform well
in multiple external validation studies of a globally accessible online risk tool. As with
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Figure 2.11: Marginal and pairwise comparisons of predictions from the six methods for the
5543 biopsies of the external validation set, pooled and stratified by csPCA status (31.7%
with csPCA). Corr indicates Pearson correlation. Turquoise displays individuals with csPCA
and purple without.

all online risk tools, an online publication of the original PBCG continues to result in
published external validation studies providing evidence for or against its generalizability
to other populations, particularly in comparison to other published tools (Amaya-Fragoso
and Garcia-Pérez 2021; Carbunaru et al. 2019; Doan et al. 2021; Jalali et al. 2020; Presti
et al. 2021; van Riel et al. 2022; Yildizhan et al. 2022). To date, by the exclusion of
prostate volume, the original PBCG tool has competed less favorably with the other
tools incorporating this information. Publication of the expanded risk tool incorporating
prostate volume (Figure 2.14) will hopefully increase its accuracy for doctors and patients
as to be evinced by forthcoming external validation studies.

Statisticians have recommended the available case method as it is valid even when data
are MAR. This means that whether or not a risk factor is missing is independent of
the unknown value of the risk factor, conditional on the known outcome and other
available risk factors for the patient (Donders et al. 2006; Hughes et al. 2019; Mealli and
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Figure 2.12: Model coefficients of available cases method. In total, 1,024 models were
available based on the option of including ten risk factors, all except PSA and age.

Rubin 2015). The majority of risk factors collected across the PBCG are those typically
collected in urological clinics from men presenting for PSA screening or follow-up. The
most ubiquitous and predictive risk factors, PSA and age, have been collected for all
PBCG participants and are exempt from missing data assumptions. Men typically receive
multiple PSA screening tests. The PBCG used the PSA most recent but prior to the
prostate biopsy. In some cases, the assumption of MAR for the remaining risk factors may
be questionable. For example, the prostate volume may not have been reported when
the value was assessed to be too low, or csPCA was not discovered on biopsy. There
is no statistical test for MAR. Hence we relied on external and internal cohort-based
validations to compare the available case to competing methods for selecting the method
that produces optimal performance across a range of scenarios that would be encountered
in practice. The available cases method was driven by the user and has been referred
to as the 2¥ model approach (Hoogland et al. 2020) and Multiple Models for Missing
values at Time Of Prediction approach (Ma et al. 2020) in the literature.

33



2 Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

High-risk patient

80+

&,
70- %

60+
50
40+
30+

10.01

7.5

Risk prediction (%)

5.0

2.5

2 3 4 5 6 7 8 9 10 11 12

Available risk factors
Figure 2.13: Change in prostate cancer risk according to how many risk factors a patient has
available based on the 1,024 potential models. The low risk patient is 60 years old, has PSA of
1 ng/mL, non African ancestry, has prior biopsy performed, normal DRE, no first-degree family
history, no second-degree family history, no first-degree breast cancer family history, prostate
volume of 44 cm3, had 5-ARI treatment, is non-Hispanic, and had a prior PSA measurement.
The high risk patient is 75 years old, has PSA of 4 ng/mL, has African ancestry, has not
performed prior biopsy, has abnormal DRE, first-degree family history, second-degree family
history, first-degree breast cancer family history, has prostate volume of 44 cm?, had no 5-ARI
treatment, is Hispanic, and had no prior PSA measurement.

The missing indicator method has been shown to potentially result in biased odds ratios,
even when data are missing completely at random. This means no relation, conditional or
not, between whether a risk factor is missing and all other variables. This leads to strong
recommendations against its use for causal or explanatory inference (Donders et al. 2006;
Mealli and Rubin 2015; van der Heijden et al. 2006). The categorization method suffers
from the same potential biases since it changes all continuous predictors to categorical
ones before applying the missing indicator method. A recent study affirmed that such
methods could be used for randomized trials as the missingness of protocol-specified
variables would be randomized by the random treatment assignment, thus eliminating
systematic bias (Groenwold et al. 2012).

The emergence of clinical risk prediction tools embedded in electronic health records,
where missing data are large and systematic, has led to support for the missing indicator
method. It is used in model development to match the method used when the model
is deployed, and that if informative presence is potentially informative with respect
to prediction, it should be leveraged (Sisk et al. 2021; Sperrin et al. 2020). Machine
learning and other supervised learning methods follow the principle of developing pre-
diction models to optimize accuracy on internal and external validation, often with
uninterpretable models. The renowned James-Stein result shows that an estimator with
effects shrunk towards zero can be preferable to the unbiased estimator. These concepts
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Figure 2.14: Online risk calculator using all 1,024 models is available at the Cleveland Clinic
Risk Calculator library, https://riskcalc.org/ExtendedPBCG/.

are often applied in regularized regression approaches for situations with high numbers of
predictors (Stein 1956). Across the validations performed in the PBCG, the potentially
biased missing indicator and categorization methods did not perform substantially worse
than the available cases methods. We agree that caution should be exercised towards
their use when data are combined across cohorts, where some cohorts do not collect
some risk factors at all, as this was the case with extended family history in this study.
In this case, the effect of the missing category was confounded with that of the cohort.
The coefficient for missing prostate volume following the missing indicator method fit to
the ten PBCG cohort data was close to zero. Meaning a patient with missing prostate
volume had nearly 0 odds of csPCA compared to a person not missing prostate volume,
which can only be a cohort effect.

2.5 Conclusion

In addition to contributing to model development techniques for systematic missing data
across heterogeneous cohorts, we have provided helpful methods for the end-user of
online risk tools, namely the fit of multiple models for different risk factor missing data
patterns. Such work enables more users to access online risk tools. Each model was fit
to all complete cases that contained the risk factors, thus optimizing information and
accuracy for the user. Our online tool requires PSA and age for use and any collection
of up to ten additional risk factors. As consortia and available data grow in size, so does
the amount of missing data as well. A flexible modeling strategy accommodating missing
data on both the development- and user-end maximizes information by utilizing multiple
data sources and increases accessibility to a broader band of patients by including those
limited in risk factor assessment.
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3 The influence of weather on fatal
accidents in the Austrian
mountains

A portion of this chapter is published in Neumair M., Estrella N., Menzel A., Ankerst D.P.
The influence of weather on fatal accidents in Austrian mountains. Weather, Climate,
and Society, 2021, https://doi.org/10.1175/WCAS-D-21-0082.1. Matthias Neumair
analyzed the data, performed all statistical association analyses and interpreted the
results. Nicole Estrella provided the data. Matthias Neumair wrote the manuscript with
contributions from Donna P. Ankerst and Annette Menzel.

Recent studies have established the detrimental effects of non-optimal temperatures on
mortality (Martinez-Solanas et al. 2021; Urban et al. 2021) and cause-specific mortality
(Burkart et al. 2021), including COVID-19 outbreaks (Quilodran et al. 2021), acute
cardiovascular events (Saucy et al. 2021), respiratory and renal disorders (Kollanus
et al. 2021), and suicide (Deisenhammer et al. 2003; Heo et al. 2021). Identification of
temperature effects on mortality risks, whether due to small elevations above or below
normal or extreme events such as heat waves, promotes the development of health
warning systems that can mitigate risks (Issa et al. 2021).

Since hiking and climbing in summer and snow-related sports in winter have become
increasingly popular, mountain accidents and fatalities have been increasingly subject to
periodic monitoring to ensure the safety of tourists and sports enthusiasts (Faulhaber
et al. 2020; Lischke et al. 2001; Mclntosh et al. 2008; Rugg et al. 2020). Links between
temperature, weather conditions, and outdoor accidents were established, leading to a
hypothesis of potentially similar influences on fatal mountain accidents (Unguryanu et al.
2020). George (1993) identified climatic factors leading to mountain weather hazards and
highlighted the need for accurate weather forecasts. Pascual and Callado (2010) reported
the association between mountain accidents in the Pyrenees and winter storms for twelve
selected accidents with defined accident patterns. They concluded that the described
weather conditions should be communicated to visitors by suitable forecasts. Rued| et al.
(2012) showed the influence of low ambient temperatures and snowfall on knee injuries in
female skiers at five Austrian ski areas. The German Alpine Association concluded that
the extremely hot summer of 2003 increased physical problems and worsened unfavorable
terrain conditions, ultimately leading to increased mountain emergencies (DAV 2015).
Hiking routes in the Mont Blanc massif had to be changed in response to warming
during recent decades (Mourey et al. 2019).

Weather effects may intensify under projected climate change scenarios, where summers

may experience more intense heat and winters colder temperatures in mid-latitudes,
resulting in new extremes in precipitation and climate events (IPCC 2018). The objective
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of this study was to first comprehensively describe the mountain fatal accident patterns
observed in Austria during a 12-year period (Section 3.4) and then quantify the influence
of weather on these patterns (Sections 3.5 and 3.6). As one of the top tourist and
outdoor sports destinations in Europe, Austria serves as an ideal model for preventative
measures to reduce the health burden from mountain accidents imposed by projected
increases in non-optimal temperatures (Burkart et al. 2021).

3.1 Fatal mountain accidents

The Austrian Alpine Safety Board (Osterreichisches Kuratorium fiir Alpine Sicherheit)
documents all fatal accidents in mountainous terrain across Austria, excluding the flat
regions of Burgenland and Vienna. Austria lies in the center of Europe, spanning 46
to 49 degrees N in latitude and 9 to 17 degrees E in longitude. It is a worldwide
destination for mountain sports (its highest mountain is 3,797 meters) due to its natural
and accessible landscape. This study was based on data from November 2006 to October
2018, comprising 12 years and 3,466 fatal accidents related to mountain sports disciplines.
Following local traditions, the winter sports period comprised November to April, and the
summer comprised May to October. Information provided for each accident were the date,
number of fatalities, discipline, municipality, state, and geographical coordinates of the
nearest station. Text information on light and weather conditions at accident sites was
also provided but missing in 15% and 6% of records in the winter and summer seasons,
respectively. They were hence only described without formal analysis. Geographical
coordinates that were missing or erroneously fell outside of Austria were imputed using
coordinates of the respective municipality center. Since fatal accidents were combined
with the closest weather station for analysis, the small number of potential inaccuracies
did not impact the analysis. Starting with a data set of 3,466 fatal accidents, records
with missing location (41), flight (102), cave (6), and lift accidents (11), as well as
winter sports occurring during the summer season (17) and summer sports in the winter
season (4), were excluded, yielding 3,285 fatal accidents, 1,817 in summer and 1,468 in
winter, for analysis (Figure 3.1).

3.2 Weather data

Daily weather information on 36 variables from 43 climate stations with an elevation
greater than or equal to 900 meters above sea level from November 1, 2006 to October
31, 2018 was provided by the Central Institut for Meteorology and Geodynamics (ZAMG)
in Vienna. The locations are shown in Figure 3.1, and the variables are described in
Table 3.1. The threshold of 900 meters was chosen to mirror regions typical for mountain
activities as covered by the safety board.

To exclude annual and location dependencies of continuous weather variables, the World
Meteorological Organization (WMO) recommends the calculation of anomalies, which
measure differences from averages or normalized values (World Meteorological Orga-
nization 2017). Anomalies for each continuous weather variable were computed by
subtracting the station-specific median of that variable across all days of the study
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Figure 3.1: Locations of 3,285 fatal mountain accidents from November 2006 to October
2018 in Austria. Black dots show the locations of 43 climate stations, and green crosses the

fatal accidents.

period, November 1, 2006 to October 31, 2018.
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Table 3.1: Description of meteorological variables collected at 43 climate stations of the
ZAMG.

Meteorological variable Measure / Time Unit/categories
Air temperature Max, min, avg, 7 am, 2 pm, °C

and 7 pm
Air Pressure Avg, 7 am, 2 pm, and 7 pm  hPa
Relative humidity Avg, 7 am, 2 pm,and 7 pm %
Global radiation Total KWh m—2
Precipitation 7 am, 7 pm, and total (7 am mm

on measurement day — 7 am
on following day)
Precipitation type 7 am, 7 pm, and total (7 am e.g. rain, snow, hail
on measurement day — 7 am
on following day)

Wind speed 7 am, 2 pm, and 7 pm Beaufort;: m s~ !

Wind direction 7 am, 2 pm, and 7 pm 1-32, 32 = north, 16 =
south

Maximum wind speed 12 am - 11:59 pm ms!

Time maximum wind speed 12 am — 11:59 pm hh:mm

Cloudiness/coverage Avg, 7 am, 2 pm, and 7 pm  1/10ths of cover

Snow height 7 am cm

Snow type 7 am No snow cover, spots,

perforated snow cover,
and full snow cover
Fresh snow height Total (7 am previous day — 7 cm
am measurement day)

Max, min, and avg indicate the daily maximum, minimum, and average;
total indicates the daily sum. All times are in local time.

For instance, the average temperature anomaly of station 1 on 17th August 2011 is
calculated by:

Anomaly tempayg(2011-08-17) = tempayg(2011-08-17) — median(
tempayg (2007-08-17), temp,,g(2008-08-17), . . ., temp,,g(2018-08-17))

The Haversine formula (Robusto 1957) was used to map latitude and longitude coordi-
nates of the locations where fatal accidents occurred to the closest of the 43 climate
stations to match weather variables and anomalies to dates of fatal accidents. The
Haversine distance measure d for two longitude-latitude coordinates in degrees with the
average earth radius (6,371 km) and the identity sin2(§) = I_%S(é) applied, summarizes
to

1 1 ((latg — laty) - 7r> .

d=2-6371- arcsin(sqrt(§ — 5 cos 180

1 lat, - 7 laty - (long — lony) - 7
— oS - COS {1 —cos ).
2 180 180 180
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Some stations did not consistently collect all weather variables, particularly cloudiness,
radiation, precipitation amount and type, and snow height and type (Figure 3.2). When
a variable was not measured at the closest station, values from the nearest station with
the variable available were used. As a sensitivity analysis, models were fit under four
different approaches for the corresponding overall model for summer and winter. The
first method incorporated all stations and only complete cases not further than 50 km
apart from the next weather station. The second approach excluded stations with high
missingness (stations 1 to 17), and only complete cases not further than 50 km from
the next weather station were concerned. The third method excluded stations with high
missingness (stations 1 to 17) and used all cases. The fourth method included all cases
by using the weather of the nearest station to measure the missing variable.

All results were similar in magnitude and statistical significance, as shown in Table 3.2.
The last approach was used for all analyses as it maximizes the sample size and hence
the power.

Fresh snow height
Snow type 7am
Snow height 7am
Cloudiness avg
Cloudiness 7pm
Cloudiness 2pm
Cloudiness 7am
Precipitation type 7pm
Precipitation type 7am
Precipitation type total
Precipitation 7pm
Precipitation 7am
Precipitation total
Radiation
Air pressure 7pm
Air pressure 2pm
Air pressure 7am
Air pressure avg
Time max wind strength
Wind strength max
Wind direction 7pm
Wind direction 2pm
Wind direction 7am
Wind strength 7pm
Wind strength 2pm
Wind strength 7am
Humidity 7pm
Humidity 2pm
Humidity 7am
Humidity avg
Temperature 7pm
Temperature 2pm
Temperature 7am
Temperature avg
Temperature min
Temperature max
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Percent Missing
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Figure 3.2: Missing characteristics for the 43 Austrian weather stations from November 1,
2006 to October 31, 2018
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Table 3.2: Sensitivity analysis for model selection. Odds ratios and p-values for four approaches
are listed along with the corresponding sample size by season.

Meteorological variable Odds Ratio p-value

Days with fatalities included:

All stations, < 50 km, no imputation: summer 818, winter 728
Excluded station 1-17, < 50 km, no imp: summer 1,353, winter 1,109
Excluded station 1-17, no imputation: summer 1,460, winter 1,189
Nearest station imputation: summer 1,770, winter 1,441

Summer

Temperature 2 pm (by 1 °C) 1.03 0.001
1.04 <0.0001
1.03 <0.0001
1.03 <0.0001

Cloudiness (average) 0.94 <0.0001
0.94 <0.0001
0.94 <0.0001
0.95 <0.0001

Snow type, reference = none

- Spots 0.85 0.5
0.71 0.07
0.70 0.06
0.67 0.03

- Perforated snow cover 0.35 0.002
0.47 0.0004
0.43 0.0002
0.39 0.0001

- Full snow cover 0.24 <0.0001
0.35 <0.0001
0.35 <0.0001
0.27 <0.0001

Weekend 1.32 0.0002
1.32 <0.0001
1.34 <0.0001
1.35 <0.0001

Winter

Humidity 2 pm 1.00 0.07
1.00 0.05
1.00 0.01
0.99 <0.0001

Cloudiness (average) 0.94 <0.0001
0.94 <0.0001
0.95 <0.0001
0.97 0.0004

Snow type, reference = none

- Spots 1.18 0.4
1.05 0.7
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3.3 Statistical analyses

1.06 0.7
1.17 0.2
- Perforated snow cover 1.65 0.001
1.60 <0.0001
1.22 0.07
- Full snow cover 1.72 <0.0001
1.51 <0.0001
1.49 <0.0001
Weekend 1.45 <0.0001
1.50 <0.0001
1.40 <0.0001

3.3 Statistical analyses

Analyses were performed with data of all stations pooled by season (summer May to
October, winter November to April) as well as separately by discipline or activity. Before
moving to multivariate analyses, linear regressions were performed to evaluate trends
in activity-specific fatalities by year. Additionally, two-sample t-tests and Pearson chi-
square tests were calculated as appropriate to assess differences in weather phenomena
between days with versus without fatalities, analyzing one weather variable at a time
as preprocessing step without controlling for the concomitant effects of other variables.
Multivariate models were analyzed to assess independent effects of weather factors,
adjusting for all variables.

Effects of weather and climate variables on daily time series of mortality or morbidity
counts are typically modeled by Poisson distributed lag models as state of the art
(Rodrigues et al. 2020). Rare events such as those occurring in this study can lead to
parameter instability, requiring modifications or simplifications to reach efficient effects
(Krawczyk 2016). During the study period, a fatal accident was recorded for less than
2% of all days, and only 2.2% of days with fatal accidents had more than one fatal
accident at the same station. Applications of time series models with outcomes that were
0 counts for over 98% of all days led to estimates of dependence equal to 0. Treating
days as independent and using the Poisson distribution as applicable for independent
count data similarly led to instability for the same reason that most counts were zero.
Among those that were not zero, most were one. Multivariable logistic regression with
the outcome of whether one or more fatal accidents occurred on a day (day with fatal
accident) versus not (day without fatal accident) was used to obtain stable estimates
for detecting the risk of a fatal accident as a function of weather variables. Likelihood
ratio tests were performed to obtain statistical significance. For these analyses, the wind
speed was transformed from the Beaufort scale to wind speed in meters per second.
To account for potential dependence among fatal accidents associated with the same
weather station, we ran additional analyses incorporating a random effect assumed to
be normally distributed for the 43 weather stations. This model assumes that all fatal
accidents that occurred in the vicinity of the same weather station were correlated.

43



3 The influence of weather on fatal accidents in the Austrian mountains

Covariate effect sizes and statistical significance were nearly identical to those here, and
hence this model was not pursued further.

To avoid overfitting due to multicollinearity, the selection of which weather variables to
include in the logistic regression models was performed in two steps. In the first step,
Akaike's information criterion was used to select the most predictive univariate charac-
teristic of each group of weather variables (e.g., temperature as daily mean, minimum,
maximum, or measurements at 7 am, 2 pm, and 7 pm). In the second step, a more
stringent Bayesian information criterion selection process on selected variables from the
first step, along with an indicator variable for weekend effects, was performed (Figure 3.3).

Mountain rescue ZAMG weather
fatality data set information

concatenate
by date and
losest statio

Training data

/

Subset by one
meteorological variable group
at a time (complete cases)
e.g. temperature at
different times, average,
minimum, maximum

\

Perform univariate
logistic regression
and select predictor
with lowest AIC

\

Subset training data
by selected variables
and complete cases

l

Perform stepwise BIC selection
from main effects starting,
up to two-way interactions

Figure 3.3: Data preparation and modeling process.

All statistical tests were performed at the two-sided 0.05 level of statistical significance,
and along with all analyses, in the R statistical software version 4.1.1 (R Core Team 2021).
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3.4 Overview of fatalities

3.4 Overview of fatalities

Characteristics of the 3,285 Austrian alpine fatal accidents reported from November 2006
to October 2018 are summarized in Figures 3.5 and 3.6. Figure 3.4 justifies the choice
of seasons with minima between April and Mai, and November. More fatal accidents
occurred in summers (55.3% of 3,285) compared to winters (44.7%). Mountaineering,
comprising hiking and trekking, had the most fatal accidents in summer (54.4% of
1817), and skiing the most in winter (29.4% of 1,468). Two causes of fatal accidents
consistently high in summer and winter were suicides, comprising 9.4% and 8.3% of
all fatal accidents during the respective season, and forestry work accidents at 7.8%
and 9.1%, respectively. There were no significant annual trends in the total number of
fatalities or fatalities due to the six most common reasons over the decade 2007 to 2017
(Figure 3.7, all p-values > 0.05). As seen in Figure 3.6, most fatal accidents occurred
on weekends, with the highest share on Saturdays in summer and winter (18.2% and
18.3%, respectively). In most accidents, only one fatality occurred (summer 98.3%,
winter 97.7%), and the highest number of fatalities per accident was six, resulting from
an alpine tour accident in 2017 in the state Salzburg. The high-tourism region of Tyrol
experienced the most fatalities, contributing 36.1% of all fatal accidents in summer
and 37.3% in winter. According to text reports, 80.5% of fatal accidents occurred in
daylight and 5.9% in darkness in summer, while for winter, these percentages changed to
67.8% and 7.6%, respectively. The majority of fatalities occurred with sunshine reported
(summer 61.9%, winter 51.8%), followed by clouds (summer 16.3%, winter 22.1%), rain
(2.3%) in summer, and the combination of snowfall and cloudiness (2.2%) in winter.
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Figure 3.4: Austrian mountain fatal accidents by month. Years classified as outliers are
indicated by individual points labeled with the corresponding year.
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Figure 3.5: Distribution of fatal accidents by discipline and season between 1 November 2006
and 31 October 2018.

3.5 Weather conditions on days with and without
fatalities

For summer, all meteorological variables reported by the ZAMG were significantly differ-
ent between days with and without fatalities (all p-values <0.001), except for wind speed
at 2 pm (p-value 0.3), as shown in Figure 3.8. The greatest difference for temperature
measures occurred at 2 pm with 1.28 °C warmer temperatures for days with fatalities
compared to days with no fatalities, for air pressure at 7 am with 0.92 hPa higher, for
humidity at 2 pm with 3.77 percentage points lower, for global radiation with 0.42
kWh/m? higher, for total precipitation with 0.96 mm lower for days with fatalities
compared to days without fatalities. Days with fatalities were 8.8 percentage points less
cloudy at 7 am compared to days without fatalities. These characteristics underlined
that warmer, sunnier, and dryer days with reduced wind speed and higher air pressure
were associated more with fatal accidents in summer.

Figure 3.9 shows significant (p-values <0.0001) differences between precipitation condi-
tions on days with and without fatalities. For summer days when fatalities occurred, more
often no precipitation occurred (54.2% versus 44.1%), and hence on days with any kind of
precipitation there was a lower risk for fatalities. More northern and north-western wind
occurred at 2 pm on days with fatalities. For most of the proportions, wind directions
were very similar (Figure 3.10). In summer, more fatalities occurred on days with no
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Figure 3.6: Distribution of fatal accident characteristics by season between 1 November 2006
and 31 October 2018.

snow cover (95.8% versus 89.1%; Figure 3.11). All characteristics showed significant
differences with p-values less than 0.0001.

For winter seasons, several characteristics failed to be significantly different between days
with and without fatalities, such as the minimum, average, and morning temperature
measurement, wind speed, and fresh snow height (p-values 0.05 to 0.8). The greatest
respective significant differences were observed for the temperature at 2 pm (0.57 °C
warmer for days with fatalities), for air pressure at 7 am (0.79 hPa higher), for humidity
at 2 pm (3.91 percentage points lower), for global radiation (0.15 kWh/m? higher), for
total precipitation (0.48 mm lower for days with fatalities compared to days without
fatalities). Days with fatalities were 6.08 percentage points less cloudy at 7 pm compared
to days without fatalities. Overall, the climate effects in winter were more moderate
than in summer (Figure 3.8).

Figure 3.9 shows significant (p-values <0.0001) differences between precipitation on
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Figure 3.7: Annual numbers of fatal accidents in Austrian mountains for the six most common
disciplines (2,459 fatalities in total).

days with and without fatalities in winter. For days where fatalities occurred, more often
no precipitation occurred (57.5% versus 49.2%). On days with any kind of precipitation,
there was a lower risk for fatalities (42.5% versus 50.8%). On days with fatalities, more
south-eastern wind occurred at 2 pm. For most of the proportions, wind directions were
very similar (Figure 3.10). On winter days with normal snow cover (64.1% versus 57.5%;
p-value <0.0001) more fatalities occurred (Figure 3.11).

3.6 Multivariate analysis of the influence on fatalities

Multivariable analyses revealed the influence of key weather variables influencing fatal
accidents, including cloudiness, snow type, global radiation, precipitation, temperature,
and humidity (Table 3.3). Statistically significant weekend effects, increasing the odds
of fatal accidents, were detected for many of the specific disciplines. It was adjusted
for this effect in the calculation of the magnitudes of impacts of the particular weather
variables, which are now discussed in turn.

The impact of the cloudiness was to reduce the odds of fatal accidents both in the
winter and summer. Specifically, a 10% increase in cloudiness reduced the odds of fatal
accidents by 5% for mountaineering, 10% for climbing, 9% for other summer sports, and

7% for skiing in the winter.

While snowfall reduced the odds of fatal accidents in the summer, it more pronouncedly
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Figure 3.8: Differences in means of meteorological variables between days with and without
fatalities along with 95% confidence intervals. Horizontal lines separate meteorological groups;
days with missing data are not included; significant differences are indicated by *** for p-value
<0.001, ** <0.01, and * <0.05.

increased the odds of fatal accidents in the winter. Specifically, for mountaineering in
the summer, the odds ratios for fatal accidents for the snow types spots, perforated and
full, compared to the reference of no snow, were 0.45, 0.36, and 0.20, respectively. In
other words, full snow reduced the odds of a fatal accident by 80%. In contrast, the
respective odds ratios for skiing in the winter were 1.88, 2.52, and 3.69, meaning that
full snow increased the odds of a fatal accident nearly 4-fold. For off-trail skiing in the
winter, the odds ratios for fatal accidents for the respective snow types compared to no
snow were 2.42, 2.33, and 7.39.

Global radiation increased the odds of fatal mountaineering accidents in the summer and
tours in the winter, with odds ratios of 1.11 and 1.28, respectively, per kWh/m? increase.
Precipitation was only associated with fatal accidents in the summer due to climbing,
with an odds ratio of 0.85 per Imm increase. The temperature influenced fatal accidents
both in summer and winter, with odds ratios due to mountain biking and suicide of 1.13
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Figure 3.9: Proportion of precipitation types between days with and without fatalities by
season.

and 1.08, respectively, per 1°C increase. Finally, relative humidity only slightly reduced
winter mountaineering fatal accidents, with an odds ratio of 0.98 for an increase of 1%.

3.7 Discussion

Adverse impacts of climate change on human health, especially through an increase in
extreme weather incidents, may be alleviated by clear adaptation strategies and preventive
measures. Recently, effects on fatal mountain accidents have come into focus, also due
to novel popularity in mountaineering activities. Although descriptions of the effects of
the Central European heatwave of summer 2003 suggested strong impacts in the Alps
(DAV 2015), a comprehensive analysis of weather effects on mortality in the mountains
has been lacking so far. This study quantified for the first time the impact of weather
on fatal mountain accidents in the highly visited region of Austria in Central Europe.
The findings here confirm similar results from previous studies on selected disciplines
and regions.

Aschauer et al. (2007) analyzed skiing accidents in winter and compared the information
with randomly selected skiers in a ski resort in Austria. They reported a smaller number
of injuries during poor weather conditions, for example during increased clouds, which
is supported by this study. Aschauer et al. (2007) claimed further that the risk was
reduced during cloudy weather as fewer people went skiing.

Suicide represents a not uncommon reason for mountain fatalities, as validated in this
study. Sim et al. (2020) showed a link between suicide, higher temperatures, and other
weather patterns. Koszewska et al. (2019) associated a special warm mountain wind
with suicide and showed an effect by season. The present study detected an association
between suicides and warmer temperatures in winter, supporting Ajdacic-Gross et al.
(2007). They found the effect was more a factor of lack of cold rather than heat. Deisen-
hammer et al. (2003) showed an association between suicide and high temperature,
low relative humidity, thunderstorms, and days following thunderstorms in the state of
Tyrol. However, in this study across Austria, most suicides were committed when it was
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Figure 3.10: Proportion of wind directions between days with and without fatalities by season.

sunny (48.2%) or cloudy (30.7%), with only one fatality occurring during a thunderstorm.

T. Mueller et al. (2019) prospectively analyzed injuries on ski touring. They concluded
that poor weather was one of the leading causes of injuries, though a precise definition
of poor weather was not provided. In this study, increased odds of fatal accidents for
tours in the winter were only associated with higher global radiation, which could be due
to higher numbers of visitors attracted by more favorable weather forecasts, worse snow
conditions, or more exhaustion. Soulé et al. (2017) reported ski tours as the third-highest
reason for fatal accidents in French mountain areas. They concluded that their results do
not necessarily imply that ski tours are the most dangerous due to a lack of participant
numbers.

Climate change is presumed to (directly) alter the mountain experience encompassing all
tourism and recreation activities via impacts on the mountain cryosphere, ecosystems,
infrastructure, and hazards (Hock et al. 2019). But also (indirectly) via climate-change-
induced altered economic growth, including reductions to the available household income
for tourism; see Pretis et al. (2018). Shorter seasons of snow cover and declining glaciers
reduce skiing options and the attractiveness of trekking. Thawing permafrost threatens
the safety of hikers and mountaineers, for example leading to changes in iconic routes to
the Mont Blanc (Mourey et al. 2019). If the climate changes as projected under several
scenarios (IPCC 2018), summer sports periods will become longer, potentially increasing
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Figure 3.11: Proportion of snow types between days with and without fatalities by season.

fatal accidents, as the link to weather patterns has shown here.

A limitation of the analyses is that individual characteristics, including gender or potential
human risk factors, are not included in the provided database of the Austrian Board
of Trustees for Alpine Safety but require additional surveys and case-control studies as
described, e.g., by Faulhaber et al. (2020). However, the analysis here focused on all
fatal accidents as well as by discipline, and the proportion of age-gender subgroups by
discipline can be vaguely inferred. Specific weather conditions at the accident site were
recorded in text form and were often missing. Here, more detail and comprehensive
reporting might help identify more precise patterns associated with fatal accidents, as
would more exact coordinates of the accident site. Therefore, analyses of particular types
of accidents, which depend on hazards at a certain location, such as avalanches and
lighting accidents, could then be performed (Stréhle et al. 2018; Techel et al. 2016). In
general, (direct) climatic influences on human mobility have to be taken into account.
There is some debate on the multi-causal nature of mobility as reported, e.g., by Thal-
heimer et al. (2021) for the case of herders in East Africa; however, the time period of
this study would not anticipate changing social norms or economic opportunities to be of
short-term influence on a traditional tourism area in Central Europe. Nevertheless, since
the numbers of visitors to the Austrian mountains were not recorded, analyses could not
adjust for effects due to increased visitor numbers. However, weekend effects served as
a surrogate that was adjusted for in the analyses.

3.8 Conclusion

Associations between weather patterns and fatal mountain accidents detected in this
observational study may be mediated by the influence of weather and its interaction
with the season on visitor numbers. Skiers are less likely to visit mountains on low-snow
days in the winter, which would reduce overall fatal accidents. Conversely, less mountain
snow may be more favorable for spring hikes, leading to more visitors and accidents
due to improper equipment. Alpine safety councils, such as the Alpine Skiing Safety
Council in Norway (Ekeland et al. 1989) or the Austrian Board of Trustees for Alpine
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3.8 Conclusion

Safety (Austrian Board of Trustees for Alpine Safety 2021), focus on recommendations
and standards for construction, equipment, and behavior in the mountains, as checking
the weather forecast to prevent injuries and fatal accidents. Furthermore, the Austrian
Board of Trustees for Alpine Safety and cooperators established an emergency app in
2019 for parts of Austria, Italy, and Germany to improve the rescue speed. Weather
forecasts with associated increased accident risks could be directly incorporated into the
app, advising recreational visitors in the mountains to behave cautiously when weather
patterns interact with the season to increase the risk of fatal accidents.
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Table 3.3: Multivariable logistic regression model associations between weather variables and
fatal accidents for summer and winter disciplines.

Meteorological variable Odds Ratio  95% confidence interval p-value
Summer

Mountaineering (n=965)

Cloudiness average (by 1/10) 0.95 0.92 - 0.97 <0.0001
Snow type, reference = none <0.0001
- Spots 0.45 0.24 - 0.76

- Perforated snow cover 0.36 0.17 - 0.65

- Full snow cover 0.20 0.10-0.34

Global radiation (by 1 KWh/m?) 1.11 1.06 — 1.16 <0.0001
Weekend 1.45 1.27 - 1.65 <0.0001
Climbing (n=169)

Precipitation 7 am (by 1 mm) 0.85 0.78 — 0.93 <0.0001
Cloudiness 7 am (by 1/10) 0.90 0.86 — 0.94 <0.0001
Mountain biking (n=57)

Temperature 7 pm (by 1°C) 1.13 1.05-1.21 0.0005
Alpine tour (n=47)

Weekend 2.85 1.60 — 5.09 0.0004
White water sports (n=23)

Weekend 4.70 2.04 - 11.67 0.0002
Others (n=121)

Cloudiness 2 pm (by 1/10) 0.91 0.86 — 0.96 0.0003
Winter

Mountaineering (n=210)

Relative humidity 2 pm (by 1%) 0.98 0.98 - 0.99 <0.0001
Weekend 1.69 1.28 - 2.23 0.0002
Skiing (n=428)

Cloudiness 2 pm (by 1/10) 0.93 0.90 - 0.95 <0.0001
Snow type, reference = none <0.0001
- Spots 1.88 1.09 - 3.13

- Perforated snow cover 2.52 1.60 — 3.92

- Full snow cover 3.69 2.74-5.10

Weekend 1.45 1.19-1.77 0.0002
Suicide (n=121)

Temperature 7 am (by 1°C) 1.08 1.04-1.13 <0.0001
Tour (n=225)

Global radiation (by 1 kWh/m?) 1.28 1.12-1.46 0.0004
Weekend 2.08 1.60 — 2.70 <0.0001
Off-trail skiing (n=124)

Snow type, reference = none <0.0001
- Spots 2.42 0.63 - 8.01

- Perforated snow cover 2.33 0.69 — 7.31

- Full snow cover 7.39 3.71 - 17.50

no significance:
forest accident, traffic, hunting, cross-country skiing, ice climbing,
snowshoeing, toboggan sports

The number of days with fatal accidents the model is based on is given by n.
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4 Drought effects of annual and
long-term temperature and
precipitation on mortality risk for
nine common European tree
species

A portion of this chapter is published in Neumair M., Ankerst D.P., Potocic N., Tim-
mermann V., Ognjenovic M., Brandl S., Falk W. Warmer climate and weather pat-
terns increase the risk of mortality for common European tree species. bioRxiv, 2022,
https://doi.org/10.1101/2022.11.10.515913. Matthias Neumair performed all statisti-
cal analyses, visualization and interpretation of results. Matthias Neumair wrote the
manuscript with contributions from all other co-authors.

Mortality as premature tree death is a ubiquitous phenomenon in ecosystems in space
and time that can manifest as a diffuse background process, as self-thinning in stands, or
due to pulse events that include phenomena such as heat waves, droughts, fires, floods,
windstorms, ice storms, snow, and pest outbreaks. The frequency and magnitude of
the latter are expected to change because of human behaviors interacting with climate
and land-use change, as well as species invasions (Jentsch and P. White 2019). In
addition, background tree mortality is likely to be affected by gradual climate changes,
such as increasing temperature and decreasing water availability (Taccoen et al. 2019).
Forest management with a tendency towards even-aged monocultures on sites outside
the natural range of species, as in the case of Norway spruce in Europe (Caudullo et al.
2016), is another factor that increases mortality risk (Brandl et al. 2020). Mortality
of dominant trees in stands results in an economic loss (Hanewinkel et al. 2013) and
reduces ecosystem services to various degrees (R. C. Mueller et al. 2005; Thom and
Seidl 2016).

Mortality events can either happen fast (as a result of storms, fire, and bark beetle
outbreaks) or rather slow through various decline processes (most often interactions
including climate, insects, or pathogens like root rot or blue stain fungi). Previous studies
have found associations between tree mortality and climate (Brandl et al. 2020), weather
(Neumann et al. 2017), soil (Maringer et al. 2021), stand parameters (Maringer et al.
2021; Taccoen et al. 2021), and insects and diseases (Anderegg et al. 2015). However,
tree mortality is a complex process (Anderegg et al. 2015; Manion 1991) and difficult
to decipher due to competing and largely unobserved mechanisms operating over large
climatic gradients. For example, the weather has both direct and indirect effects on tree
vitality, e.g., via its impact on insect populations (Anderegg et al. 2015).
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4 Drought effects of temperature and precipitation on tree mortality risk

Climate change influences many processes related to disturbances and tree mortality
(Machado Nunes Romeiro et al. 2022). Warmer winters affect growth in temperature-
limited regions, but in boreal or temperate forests also increase risks for frost damage
(missing snow cover), insect attacks (reproduction and survival), wildfire, and root rot
(Machado Nunes Romeiro et al. 2022). Rising temperatures have major impacts on
drought severity due to vapor pressure deficit leading to climate change-type drought
(Carnicer et al. 2011), hot or hotter drought (Allen et al. 2015). Although drought has
historically shaped European forests (e.g., Przybylak et al. 2020), steep temperature rises
are likely to increase the frequency and magnitude of record events (Allen et al. 2015;
Forzieri et al. 2021; Park Williams et al. 2013; Senf and Seidl 2021b). These phenomena
strike managed forests that differ from natural forests in many ways and tend to lower
resilience and robustness due to low complexity (species, genetics, structure, thinning
regime).

Two interrelated physiological mechanisms are associated with drought-induced tree
mortality. The first is a hydraulic failure through partial or complete loss of xylem
function from embolism that inhibits water transport, leading to tissue desiccation. The
second is carbon starvation as a consequence of stomatal closure. Reduced carbon uptake
leads to an imbalance between carbohydrate demand and supply, resulting in difficulties
in meeting osmotic, metabolic, and defensive carbon requirements, which weaken trees
and makes them more vulnerable to biotic and abiotic stresses. In extreme cases, this
can lead to mortality by carbon starvation (Adams et al. 2017; McDowell and Allen 2015).

Tree species (and regionally adapted ecotypes) differ in their tolerance to environmental
stress and, therefore, their ability to withstand changes in climate and climate-induced
disturbances (W. Wang et al. 2012). Choat et al. (2018) state that “plants have limited
physiological potential to respond to rapid changes in the environment” due to the
fine balance of carbon gain and the risk of hydraulic failure. So, despite a general
adaptation to environmental conditions, e.g., in life expectancy, growth rates, root to
shoot allocation patterns, leaf area index, and leaf phenology, stomatal control or water
use efficiency that reflect their differing distribution, strong changes in climate have the
potential to harm trees. Whereas xylem hydraulic failure seems to be ubiquitous across
multiple tree taxa at drought-induced mortality, evidence supporting carbon starvation is
not universal and more common for gymnosperms than angiosperms (Adams et al. 2017).
Species differ in their degree to adapt wood anatomical traits (Vander Mijnsbrugge et al.
2020) or, e.g., the degree to which they can compensate for leaf damage caused by
insects during the spring (e.g., summer shoots of Q. petraea and Q. robur). Furthermore,
tree species suffer from specialized insects or pests. For example, Norway spruce is
strongly affected by the bark beetle Ips typographus (McDowell and Allen 2015). The
shallow root system of spruce intensifies drought risk (Caudullo et al. 2016; Netherer et al.
2019). Another example of differences is the consequence of premature leaf shedding,
which in the case of beech, with its thin bark, can lead to bark damage and a spiral of
decline (Schuldt et al. 2020).

Managed forests in Europe accumulated substantial amounts of biomass in the 20th
century. The changes in forest structure in combination with climate change and other
human impacts led to an episode of increasing forest disturbances in recent decades (Senf
and Seidl 2021a). To fulfill ecosystem services in the future, it is essential to increase
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the resilience of managed stands and, to do that, understand the causes and patterns
of mortality. Long-term climate values, such as 30-year temperature or precipitation
averages, constitute predisposing factors that may lead to a slow decline and a gradual
increase in background mortality. However, an effect on mortality might become only
apparent in combination with inciting factors, i.e., current or very recent annual climate
anomalies. To capture these effects, this study investigated data series until 2020, as
the 2018 drought and heat wave in central and eastern Europe were described to be
accompanied by large-scale mortality and lag effects (Brun et al. 2020; Schuldt et al.
2020; Senf and Seidl 2021b). Revealing the links between long-term climate data,
short-term weather anomalies and mortality could help improve management. This study
focuses on long-term 30-year average climate (temperature, precipitation) and yearly
weather anomaly-induced mortality patterns in Europe as these are expected to increase
dramatically (Forzieri et al. 2021; Senf and Seidl 2021b).

Because mortality is a rare event in forests, short-term or small-scale studies lack power
to identify key management and climatic indicators. The pan-European International
Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on
Forests (ICP Forests) crown condition data set covers a large climatic gradient and
therefore provides a rich information source for mortality modeling studies (Brandl et al.
2020; Neumann et al. 2017). Therefore, this data set was used in this study despite
a limited information depth on stand characteristics and soil information, related to
mortality (Maringer et al. 2021; Taccoen et al. 2021). The time series was limited to
2011 to 2020 due to the introduction of the removal code in the data in 2011 and to
control for common long-term average effects in the analysis of the most recent and
relevant data for contemporary forests.

The three hypotheses of this study were, first, individual tree mortality is driven by both
annual anomalies and long-term 30-year average temperature and precipitation effects,
interacting with stand variables and species. Second, the effects of drought in Europe
can be witnessed via temperature and precipitation on tree mortality in the drought year
and the following years. Third, although heterogeneous by species, risk mortality profiles
among species that grow at similar sites may exhibit similarities.

4.1 European tree mortality data

The ICP Forests provided tree mortality data across Europe for the decade spanning
2011 to 2020. Level | data on systematic 16x16 km grids were pooled with Level Il
intensive monitoring plots (Michel et al. 2018).Although these monitoring levels used
different plot designs, they shared the same assessment method, and data were pooled
to tree-year observations. Individual tree crown condition has been assessed annually by
the ICP Forests since the 1980s, depending on the country. Since 2011 Level | trees were
reported with an additional removal or mortality code, enabling distinction between trees
that died and trees that were removed through management operations. Even though
this removal code was established for Level Il plots earlier, tree observations starting
from 2011 were used for both data sets to have a consistent time range. The mortality
events were classified as those due to biotic and abiotic causes, as well as standing
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dead trees where the cause of death was unknown (Table 4.1). Planned utilization
(forest management) and fallen trees were excluded. The status of fallen trees is often
unknown due to an ambiguity in the ICP Forests coding system. Overall, 746,478
tree-year observations from 32 countries were analyzed. These observations came from
130,018 trees from 8,618 plots over the ten years studied.

Table 4.1: Tree mortality classification.

Description Category Mortality
Utilization for biotic reasons, e.g. in- Tree has been cut and removed, Yes
sect damage only its stump has been left

Utilization for abiotic reasons, e.g. Tree has been cut and removed, Yes
windthrow only its stump has been left

Biotic reasons, e.g. bark beetle attack Standing dead tree Yes
Abiotic reasons, e.g. drought, lightning Standing dead tree Yes
Unknown cause of death Standing dead tree Yes
Tree alive and measurable (new, note Tree alive No
this is different than a missing value)

Tree alive, in current and previous in- Tree alive No
ventory

New alive tree (ingrowth) Tree alive No
Alive tree (present but not assessed in  Tree alive No
previous inventory, incl. replacement

trees)

For all plots, the plot information aspect (Flat, South, West, ...) and stand mean age
were used. Since individual tree age was not recorded, mean stand age was used as a
proxy, provided in 20-year classes, with one category for irregular stands. The irregular
mean stand age class refers to uneven-aged stands containing two or more distinct age
classes. For inclusion analyses, only codominant and dominant trees older than 40 years
were considered to focus on climatic drought and neglect competition effects. Only the
most common European tree species were included in the analysis. Specifically, only the
nine species with more than 10,000 tree-year observations and at least 100 dead trees in
the sample were included in the analysis, as shown in Table 4.2.

4.2 European weather data

Tree mortality data were combined with weather data at plot location from ClimatEU
(Marchi et al. 2020), which mapped climate indices at a 2.5 arcmin grid (approxi-
mately 5 km) over Europe. An advantage was that the data software applied partial
differential equations to adjust the weather for the provided elevation. Bioclimatic
variables such as temperature, precipitation, and continentality were considered for
different periods. A complete list of all variables can be found in Table 4.3. Annual
and seasonal weather characteristics of the year of reported tree death and the three
previous years were used. Winter was defined as December of the previous year to
February, spring as March to May, summer as June to August, and the vegetation period
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as May to September. To account for the general environment a tree grew in, anomalies
of the weather variables were calculated at the plot level by subtracting the 30-year
mean of the years 1981 to 2010 of the seasonal value. The climate normal for these
30 years was selected because all tree stands experienced it. Annual, summer, and
vegetation period variables from the year before tree death were used as risk factors
since crown condition assessments were performed in summer. As further predictors,
the cumulative means of the previous three years were calculated, starting from the
first concerned year, depending on summer or winter variables. Climate normals were
used as predictors for the general environment, with additionally the difference of mean
warmest and mean coldest temperature, resulting in 50 weather characteristics of interest.

Table 4.2: European tree species present in the study with data on tree-year observations
from 2011 to 2020.

Scientific name Common name Alive (n) Dead (n)
Fagus sylvatica European beech 147,930 419
Pinus nigra black pine 45,102 132
Picea abies Norway spruce 156,740 1,399
Pinus sylvestris Scots pine 225,722 953
Betula pendula silver birch 21,549 145
Quercus cerris Austrian oak 28,536 101
Carpinus betulus European hornbeam 17,550 103
Quercus robur pedunculate oak 47,945 277
Quercus petraea sessile oak 51,643 232
Total 742,717 3,761

4.3 Statistical analyses

To investigate yearly trends and corresponding weather effects, mortality was reported
as the number of observed dead trees in one year divided by all observed trees for that
year and compared with the annual weather variables averaged for all available trees for
one year. All annual measures were standardized to mean 0 and standard deviation 1
over the ten years. Mortality was shown for all tree species together and combined with
the weather trends described in an exploratory fashion. Associations in annual trends
do not necessarily imply significant associations in the aggregated logistic regression
models, which pool all annual observations and adjust for all potential confounding
variables, such as age. Individual annual trend analyses do not have sufficient sample
sizes to adjust for confounding variables and would lead to high amounts of multiple
comparisons and spurious statistical associations. Pooling annual data into a single
logistic regression for investigating the multiple conflicting effects on tree mortality
obtains sufficient sample size and power for detecting significant effects of weather and
climate factors regardless of the year(s) in which they occurred. Because tree death
is only observed yearly, meaning that the specific date of the death is not observed
and only the cumulative survival over the year, ordinary survival models that do not
account for interval censoring, such as the Cox proportional hazards model, are not
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Table 4.3: Weather characteristics. Variables of the first three groups were available for each
year from 2010 to 2020; 30-year averages were calculated from 1981 to 2010 and kept fixed
for each year.

Variable Group

Winter temperature
Winter temperature

Average temperature of the coldest month (°C)
Average temperature in winter (Dec.(previous year) -
Feb.) (°C)

Average temperature of the warmest month (°C) Vegetation period temperature
Average temperature in spring (Mar. - May) (°C) Vegetation period temperature
Average temperature in summer (Jun. - Aug.) (°C)  Vegetation period temperature
Average temperature in vegetation period (Mai - Sep.) Vegetation period temperature
(°C)

Total precipitation in winter (mm)

Total precipitation in spring (mm)

Total precipitation in summer (mm)

Annual total precipitation (mm)

Total precipitation in vegetation period (mm)

Precipitation
Precipitation
Precipitation
Precipitation
Precipitation

30-year normal of average temperature of the coldest
month (°C)

30-year normal of average temperature of the warmest
month (°C)

30-year normal of average temperature in winter (°C)
30-year normal of average temperature in spring (°C)
30-year normal of average temperature in summer
(°Q)

30-year normal of average temperature in vegetation
period (°C)

30-year normal of temperature difference between av-
erage temperature of the warmest and coldest month,
or continentality (°C)

30-year normal of total precipitation in winter (mm)
30-year normal of total precipitation in spring (mm)
30-year normal of total precipitation in summer (mm)
30-year normal of annual total precipitation (mm)
30-year normal of total precipitation in vegetation

Normal temperature
Normal temperature

Normal temperature
Normal temperature
Normal temperature

Normal temperature

Normal temperature

Normal precipitation
Normal precipitation
Normal precipitation
Normal precipitation
Normal precipitation

period (mm)

appropriate. Abbott (1985) showed that logistic regression could be used to approximate
interval-censored survival data analysis. Following Boeck et al. (2014), this approach
was adopted to analyze yearly tree mortality in this thesis. Age and aspect were only
considered as a predictor in the final model for a tree species if tree-year observations were
observed for all categories. The interpretation of the coefficients from logistic regression
is as follows: the exponential of the coefficient for a particular covariate in the model is
the odds ratio (OR) for experiencing tree mortality for a unit increase in the covariate
according to its unit of measurement, for example for an increase in one degree Celsius
(°C) temperature or its anomaly. For categorical variables, the interpretation is the
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change in OR for each category compared to a reference category. As the unit increase,
we chose one °C for temperature and 50 mm for precipitation variables as a reasonable
difference over the large gradient of Europe. We calculated the area under the re-
ceiver operating characteristic curve (AUC) for model evaluation as an accuracy measure.
An AUC greater than 50% indicates the ability to detect tree mortality (Mandrekar 2010).

Risk factor significance was assessed via likelihood ratio tests, with all tests performed at
the 0.05 level of significance. For selecting the optimal model, forward selection starting
with an intercept-only model was performed as follows. Conditioned on the current model,
adding a variable with the smallest p-value among all variables not in the model was
considered and included if the p-value fell below 0.05. Multicollinearity among risk factors
was reduced by building variable groups according to similarity following approaches in
species distribution modeling by Mellert et al. (2011) and Thurm et al. (2018). Therefore,
variable groups were formed, as shown in Table 4.3. For each group of qualitatively
similar variables, such as multiple measures of precipitation, only the best single variable
significantly improving the model in terms of the lowest p-value was included in the
model. The disadvantage of incorporating both long-term average (climate normal)
and immediate anomaly (weather data) climate signals in models is their correlation,
which leads to interference within the regression models and, sometimes, contradictory
effects. Interaction terms were included in the models when statistically significant.
These were used to gain insight into the interfering effects of the correlated risk factors.
This procedure led to models with a maximum of five main effects from climate or
weather variables plus potential interaction terms among them. For each species, the
final model was evaluated at each location in the data set with the corresponding weather
factors and visualized via prediction maps alongside areas of observed dead trees. Similar
reacting tree species were identified by hierarchical cluster analysis on the transformed
model coefficients, whether they were increasing or decreasing the odds of mortality. All
computations and figures were made with the statistical package R version 4.1.1 (R
Core Team 2021).

4.4 Results

In total, 746,478 tree-year observations were recorded among nine species from 2011 to
2020 (Table 4.2).

Annual rates of mortality for the nine species, shown in Figure 4.1, vary from near 0%
to above 2.5% and show peaks after the 2013, 2015, and 2018 drought periods in
Central Europe. Norway spruce and silver birch exhibited the highest mortality values,
exceeding 1.5% in 2019 and 2020. Figures 4.2 and 4.3 overlay the trends in mortality
along with annual average temperature and precipitation variables, showing how increases
in temperature or decreases in precipitation could induce increases in mortality for all
species. Here we can also see effects that were unrelated to mortality. Therefore,
Figures 4.6, 4.8, 4.10, 4.12, 4.14, 4.16, 4.18, 4.20 and 4.22 show the corresponding
plots by individual species only for significant effects. For instance, for European beech,
only the average temperature of the warmest month is selected for the final model from
Figure 4.3. Significant associations between mortality and weather characteristics are
summarized in Figure 4.4 and show heterogeneity of effects across the nine species.
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Multivariate risk models across species performed relatively well for predicting mortality,
with all AUCs exceeding 67%.
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2.0
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0.5+ » O. R. European hornbeam
“!‘; g \ European beech
‘ sessile oak
Nt S == Austrian oak
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Figure 4.1: Annual mortality by species from 2011 to 2020.

Tree species in Figure 4.4 were grouped according to clustering of effects (Figure 4.5).
Sessile oak is mostly different from the other species but slightly grouped with European
beech and black pine as they all showed decreasing mortality with increased vegetation
period temperature. Scots pine and Norway spruce were the only two species with
decreasing effect of the interaction of precipitation and vegetation period temperature.
Together with pedunculate oak, these three species had all individual effects with increas-
ing mortality. Austrian oak and silver birch had a decreasing effect with higher winter
temperatures. European hornbeam and Austrian oak showed decreasing mortalities with
more normal precipitation. For clustering, the individual variable of the variable group
was neglected, and they are discussed in the following paragraphs.
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Figure 4.2: Annual values in winter and spring weather variables and mortality (black line)
for the individual species. All variables have been standardized by subtraction of their means
and divided by their standard deviations.
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Figure 4.3: Annual values in summer weather variables and mortality (black line) for the
individual species. All variables have been standardized by subtraction of their means and

divided by their standard deviations.
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Figure 4.4: Odds ratio (OR) estimates based on stand and weather characteristics of all
species by variable groups. OR’s above 1 indicate that the increasing values of the risk factor
increase the risk of tree death, while OR’s below 1 indicate increasing values of the risk factors
decrease the risk of tree death. OR's equal to 1 indicate the risk factor has no impact on tree
death. Normal indicates the average of the annual respective weather variable measurements
during the 30 years 1981 to 2010. For variables without this prefix, the anomaly is calculated
by subtracting the climate normal from the seasonal value at the plot level. Red indicates
an increase in tree death odds; green a decrease. The area under the receiver operating
characteristic curve (AUC) indicates discrimination of a risk model for predicting the outcome
of tree death, with higher values indicating better discrimination of trees that experienced
death compared to those that did not. All effects were significant (p < 0.05) except winter
temperature in Scots pine (OR=1.03) and precipitation for sessile oak (OR=0.98). The
selected variable within the variable group (Table 4.3) is indicated with abbreviations beside
the averaged years for annual variables. Further model details can be found in Tables 4.4
to 4.12.
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Figure 4.5: Dendrogram for similar tree species according to odds ratios of variable groups.
Hierarchical cluster analysis was performed on the transformed model coefficients, whether
they increased or decreased the odds of mortality.

European beech

Among 148,349 European beech tree-year observations from 2011 to 2020, 419 trees
died (Table 4.1). European beech had lower annual mortality rates than the other
species during most years and was less affected by the droughts of 2013, 2015, and
2018 than the other species (Figure 4.1). Stand age of more than 120 years increased
the odds of tree mortality by 53% compared to the reference age of 41 to 60 years
(OR 1.53, Table 4.4). Compared with flat terrain, eastern exposition increased the odds
of tree mortality by 58%, whereas south-western exposition decreased it by 48%. As
a long-term climatic effect, plots with a one °C higher continentality, defined as the
average of the difference between the warmest and coldest month average temperature
over the 30 years from 1981 to 2010, experienced increased odds for tree mortality by
22%. Additionally, a one °C increase in the average temperature of the coldest month
of the current winter increased the odds of tree mortality by 19%. This effect was
confirmed by the results shown in Figure 4.6, where except for 2012 and 2013, years
with a higher average temperature of the coldest month also had increased mortality.
This can be seen especially in the drought year 2015. A 50 mm increase in winter
precipitation of the current year decreased the odds of tree mortality by 26%. This
association is seen in Figure 4.6 from 2018 onward, when winter precipitation decreased
and mortality increased. One °C increase in the average temperature of the warmest
month aggregated over the three previous years decreased the odds of tree mortality
by 50%. This can be seen especially in the years 2016 to 2019, with less mortality
following the temperature peaks in 2015 and 2018 (Figure 4.6). Combined, an increase
in precipitation sum of winter and warmest month mean temperature led to 39% higher
odds of tree mortality. The resulting model led to the evaluations shown in Figure 4.7,
indicating higher mortality risks in northern and east-central Europe, with lower risks
further west and in the south, depending on the year in question.
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Figure 4.6: Annual values of weather variables and mortality (black line) for European beech.
All variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined

are shown.
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Table 4.4: Logistic regression model estimates for European beech along with 95% confidence

intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) 0.003
61 - 80 1.03 0.74 - 1.45
81 - 100 0.85 0.60 -1.21
101 - 120 0.91 0.63-1.33
>120 1.53 1.10-2.14
Irregular stands 1.37 0.88 —2.11
Aspect (Reference Flat) < 0.0001
North 1.31 0.89 - 1.98
North-east 0.71 0.45-1.14
East 1.58 1.04 - 2.42
South-east 0.56 0.30 - 1.02
South 0.78 0.47 - 1.27
South-west 0.52 0.28 - 0.93
West 0.85 0.54 - 1.33
North-west 1.42 0.94 -2.19
Temperature difference between average tem- 1.22 1.15-1.29 < 0.0001
perature of the coldest and the warmest month
(continentality) 30-years average (°C)
Average temperature of the coldest month 1.19 1.13-1.26 < 0.0001
anomaly at reported tree mortality year (°C)
Total precipitation in winter anomaly average 0.74 0.56 - 0.96 0.02
of the reported tree mortality year (50mm)
Average temperature of the warmest month 0.50 0.37 - 0.67 < 0.0001
anomaly average of three previous years before
reported tree mortality year (°C)
Interaction between total precipitation in winter 1.39 1.15-1.66  0.0005

anomaly average of the reported tree mortality
year and average temperature of the warmest
month anomaly average of three previous years
before reported tree mortality year (°C * 50mm)
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Figure 4.7: Spatial evaluation of modeled tree mortality for European beech for all analyzed
ICP Forests plots on a logarithmic color scale. Black points indicate observations of dead trees
(n=419).
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Black pine

Among 451,234 black pine tree-year observations from 2011 to 2020, 132 trees died
(Table 4.1). Black pine had a peak in mortality in 2015 (Figure 4.1). Stand age
of 41 to 60 years resulted in the highest odds of tree mortality, 67% to 55% higher
than for other age groups (Table 4.5). For aspect, south, south-east and east expo-
sition increased the mortality odds by up to 392% (OR 4.92 for south aspect). As
a 30-year climatic long-term effect, plots with more summer precipitation and higher
summer temperature had increased tree death odds by 38% and 46%, respectively.
Additionally, a higher average temperature of the coldest month in the current and
previous year increased the odds of tree death by 38%. This association cannot be
observed in Figure 4.8. Higher winter precipitation in the current year increased the
odds of tree death by 16% per 50 mm, which can be seen especially in 2015, but not
in 2013 (Figure 4.8). Higher spring mean temperature of the current year and the
two previous years decreased the odds of tree death by 53% per 1°C. This association
can be seen in Figure 4.8, where mortality decreased after the 2018 peak in spring
temperature, and the mortality peak in 2015 was preceded by lower spring temperatures
in the three previous years. The model evaluations indicated higher mortality risks in
central Europe, which is the edge of the distribution of this species in Europe (Figure 4.9).
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Figure 4.8: Annual values of weather variables and mortality (black line) for Black pine. All
variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined
are shown.
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Table 4.5: Logistic regression model estimates for Black pine along with 95% confidence
intervals and Likelihood ratio test p-values. Trees older than 120 years were excluded due to

the lack of tree mortalities in this group.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) < 0.0001
61 - 80 0.43 0.24 - 0.75
81 - 100 0.33 0.15-0.63
101 - 120 0.33 0.16 — 0.65
Irregular stands 0.45 0.22 - 0.86
Aspect (Reference Flat) 0.003
North 2.36 0.83 — 8.46
North-east 2.96 1.07 -
10.51
East 4.42 1.69 -
15.13
South-east 3.95 1.27 -
14.70
South 4.92 1.83 -
17.12
South-west 1.64 0.55 -6.00
West 1.95 0.58 — 7.55
North-west 2.26 0.76 — 8.19
Average temperature in summer 30-years aver- 1.38 1.22 -1.55 < 0.0001
age (°C)
Total precipitation in summer 30-years average 1.46 1.34-159 < 0.0001
(50mm)
Average temperature of the coldest month 1.38 1.19-1.61 < 0.0001
anomaly average of the reported tree mortality
and one previous year (°C)
Average temperature in spring anomaly average 0.47 0.30 -0.73  0.0007
of the reported tree mortality year and two pre-
vious years (°C)
Total precipitation in winter anomaly of the 1.16 1.04 -1.29 0.008

reported tree mortality year (50mm)
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Figure 4.9: Spatial evaluation of modeled tree mortality for Black pine for all analyzed ICP
Forests plots on a logarithmic color scale. Black points indicate observations of dead trees
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Norway spruce

Among 156,740 Norway spruce tree-year observations from 2011 to 2020, 1,399 trees
died (Table 4.1). Norway spruce had higher mortality rates than most other species in
2011 and from 2018 to 2020 (Figure 4.1). This effect was strong in central Europe and
even southern Sweden (Figure 4.11). Stand age 61 to 80 years resulted in the lowest
odds of tree mortality, being 33% lower than other age groups (Table 4.6). Norway
spruce showed lower odds for south-west, west, and north-west aspects (27% - 45%)
and higher odds for all other expositions (17% - 70%). As a 30-year climatic long-term
effect, plots with more precipitation in the vegetation period and higher continentality
had increased tree mortality odds by 6% and 10%, respectively. Additionally, a higher
average temperature of the coldest month in the current year increased the odds of tree
mortality by 4% for a one °C increase, driven by the years 2018 to 2020 (Figure 4.10).
During the vegetation period, higher average temperature in two previous years and
more precipitation in the previous year led to higher tree mortality odds (128% and 27%,
respectively) and their interaction to 19% lower tree mortality odds. Figure 4.10 shows
a peak in vegetation period temperature in 2018 accompanied by low precipitation with
increased mortality in the following years. Model evaluations indicated high mortality
risks over the whole of Europe in recent years (Figure 4.11).
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Figure 4.10: Annual values of weather variables and mortality (black line) for Norway spruce.
All variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined
are shown.
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4 Drought effects of temperature and precipitation on tree mortality risk

Table 4.6: Logistic regression model estimates for Norway spruce along with 95% confidence
intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) < 0.0001
61 — 80 0.67 0.55 -0.80
81 — 100 0.90 0.76 — 1.08
101 - 120 1.06 0.88 — 1.27
>120 0.79 0.64 — 0.96
Irregular stands 1.19 0.89 — 1.56
Aspect (Reference Flat) < 0.0001
North 1.47 1.22 -1.76
North-east 1.31 1.05-1.63
East 1.17 0.94 — 1.45
South-east 1.47 1.19 -1.80
South 1.71 1.41 -2.06
South-west 0.73 0.56 - 095
West 0.68 0.53 -0.87
North-west 0.55 0.42-0.72

Total precipitation in vegetation period 30-years 1.06 1.04-1.08 < 0.0001
average (50mm)

Temperature difference between average tem- 1.10 1.07-1.13 < 0.0001
perature of the coldest and the warmest month

(continentality) 30-years average (°C)

Average temperature of the coldest month 1.04 1.01 -1.06 0.004
anomaly at reported tree mortality year (°C)

Average temperature in vegetation period 2.28 2.01-260 < 0.0001
anomaly average of two previous years before

reported tree mortality (°C)

Total precipitation in vegetation period anomaly 1.27 122 -133 < 0.0001
of the previous year before reported tree mor-

tality (50mm)

Interaction between average temperature in veg- 0.81 0.77-0.85 < 0.0001
etation period anomaly average of two previous

years before reported tree mortality and total

precipitation in vegetation period anomaly of

the previous year before reported tree mortality

(°C * 50mm)
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Figure 4.11: Spatial evaluation of modeled tree mortality for Norway spruce for all analyzed
ICP Forests plots on a logarithmic color scale. Black points indicate observations of dead trees

(n=1,399).
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4 Drought effects of temperature and precipitation on tree mortality risk

Scots pine

Among 225,722 Scots pine tree-year observations from 2011 to 2020, 953 trees died
(Table 4.1). Scots pine had consistently increasing mortality rates from 2014 to 2020
(Figure 4.1). Stand age 41 to 60 years resulted in the highest odds of tree mortality
(Table 4.7). North-west aspect had 593% higher tree mortality odds compared to flat
plots. As a 30-year climatic long-term effect, plots with more spring precipitation and a
higher average temperature of the warmest month had increased tree mortality odds
by 109% and 28%, respectively. However, their interaction reduced tree mortality odds
by 5%. The higher average temperature in the vegetation period of two previous years
increased the odds of tree mortality by 189%. Figure 4.12 shows mainly increasing
mortality with increasing vegetation period temperature. The temperature peak in 2018
was also seemingly associated with 2020 mortality. The higher average temperature of
the coldest month during the three previous years increased the odds of tree mortality by
3%. This association can be seen in Figure 4.12, where the winter temperature rose from
2012 to 2015, whereas the mortality increased from 2014 to 2020. More precipitation in
the three previous years led to 79% higher tree mortality odds. Figure 4.12 shows high
precipitation from 2012 to 2014, 2016, and 2017 and increasing mortalities from 2014
onward. The interaction between mean vegetation period temperature and precipitation
decreased the tree mortality odds by 20%. The model evaluations indicated no spatial
pattern (Figure 4.13).
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Figure 4.12: Annual values of weather variables and mortality (black line) for Scots pine. All
variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined
are shown.
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Table 4.7: Logistic regression model estimates for Scots pine along with 95% confidence

intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) < 0.0001
61 - 80 0.58 0.49 - 0.69
81 - 100 0.64 0.53 -0.77
101 - 120 0.56 0.43-0.72
>120 0.73 0.55 - 0.96
Irregular stands 0.81 0.55-1.15
Aspect (Reference Flat) < 0.0001
North 1.29 0.95-1.72
North-east 6.93 5.61 — 8.54
East 2.10 1.44 — 297
South-east 1.13 0.71-1.71
South 1.56 1.18 - 2.03
South-west 1.21 0.83 -1.69
West 2.76 2.11 - 355
North-west 2.73 2.10 - 3.52
Average temperature of the warmest month 30- 1.28 1.15-1.43 < 0.0001
years average (°C)
Total precipitation in spring 30-years average 2.10 1.27 - 3.42 0.004
(50mm)
Interaction between average temperature of 0.95 0.92 -0.98 0.0004
the warmest month 30-years average and to-
tal precipitation in spring 30-years average (°C
* 50mm)
Average temperature in vegetation period 2.89 245 -342 < 0.0001
anomaly average of two previous years to the
reported tree mortality year (°C)
Annual total precipitation anomaly average of 1.79 1.57 -2.05 < 0.0001
three previous years to the reported tree mortal-
ity year (50mm)
Average temperature of the coldest month 1.03 0.96 - 1.11 0.4
anomaly average of the reported tree mortality
and three previous years (°C)
Interaction between average temperature in veg- 0.80 0.70-0.91  0.0008
etation period anomaly average of two previous
years to the reported tree mortality year and
annual total precipitation anomaly average of
three previous years to the reported tree mortal-
ity year (°C * 50mm)
Interaction between average temperature of the 1.17 1.11-1.24 < 0.0001

coldest month anomaly average of the reported
tree mortality and three previous years and an-
nual total precipitation anomaly average of three
previous years to the reported tree mortality year
(°C * 50mm)
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Figure 4.13: Spatial evaluation of modeled tree mortality for Scots pine for all analyzed ICP
Forests plots on a logarithmic color scale. Black points indicate observations of dead trees

(n=953).

78



4.4 Results

Silver birch

Among 21,694 silver birch tree-year observations from 2011 to 2020, 145 trees died
(Table 4.1). Silver birch has had increasing mortality since 2015 (Figure 4.1). The
older the tree stands, the higher their odds of tree mortality (Table 4.8). As a 30-year
long-term effect, plots with higher average winter temperatures had increased tree
mortality odds by 15%. Higher average vegetation period temperatures in the previous
two years increased tree mortality odds by 444%. This association can be seen in
Figure 4.14, where increased vegetation period temperature in 2018 was accompanied
by increased mortality in 2019 and 2020. The high temperature in 2018 seems to have
had a negative effect until 2020. The average winter temperature in the current year
decreased the tree mortality odds by 10%. This association could be seen from 2014
to 2016, when the winter temperature increased, and mortality decreased. The model
evaluations indicated a higher mortality risk in southern Europe, with an increasing trend
over the years (Figure 4.15).
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Figure 4.14: Annual values of weather variables and mortality (black line) for Silver birch. All
variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined
are shown.
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4 Drought effects of temperature and precipitation on tree mortality risk

Table 4.8: Logistic regression model estimates for Silver birch along with 95% confidence

intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) 0.0004
61 — 80 1.77 1.16 - 2.74
81 - 100 1.87 1.01 -3.33
101 - 120 3.53 158 -7.12
>120 4.74 2.25 -9.27
Irregular stands 1.68 082-3.36
Average temperature in winter 30-years average 1.15 1.08 - 1.23 < 0.0001
(°C)
Average temperature in vegetation period 5.44 3.38-8.91 < 0.0001
anomaly average of two previous years before
reported tree mortality (°C)
Average temperature in winter anomaly at re- 0.90 0.82 - 0.99 0.03

ported tree mortality year (°C)
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Figure 4.15: Spatial evaluation of modeled tree mortality for silver birch for all analyzed ICP
Forests plots on a logarithmic color scale. Black points indicate observations of dead trees

(n=145).
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4 Drought effects of temperature and precipitation on tree mortality risk

Austrian oak

Among 28,637 Austrian oak tree-year observations from 2011 to 2020, 101 trees died
(Table 4.1). Austrian oak had the highest mortality in 2014 and a smaller peak in 2018
(Figure 4.1). This species is spread in south-eastern Europe (Figure 4.17). 30-year
long-term higher average spring temperature increased tree mortality odds by 60%, and
more winter precipitation decreased tree mortality odds by 15% (Table 4.9). Higher
average winter temperature and higher summer precipitation during the three previous
years decreased the odds of tree mortality by 40%. These opposing trends can be
observed, for example, in 2014, when a temperature and precipitation peak was followed
by a mortality decrease during the following years (Figure 4.16). The model evaluations
indicated higher mortality risks in 2013 and 2014 in central Europe (Figure 4.17).
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Figure 4.16: Annual values of weather variables and mortality (black line) for Austrian oak.
All variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined
are shown.
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4.4 Results

Table 4.9: Logistic regression model estimates for Austrian oak along with 95% confidence

intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval

Mean temperature of spring 30-years average 1.60 1.35-1.92 < 0.0001

(°Q)

Precipitation sum of winter 30-years average 0.85 0.72 -0.98 0.02

(50mm)

Average temperature in winter anomaly average 0.60 0.42 - 0.86 0.005

of the reported tree mortality year and three

previous years(°C)

Total precipitation in summer anomaly average 0.60 0.43 -0.86 0.005

of three previous years to the reported tree mor-
tality year (50mm)
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Figure 4.17: Spatial evaluation of modeled tree mortality for Austrian oak for all analyzed
ICP Forests plots on a logarithmic color scale. Black points indicate observations of dead trees

(n=101).

84



4.4 Results

European hornbeam

Among 17,653 European hornbeam tree-year observations from 2011 to 2020, 103 trees
died (Table 4.1). Mortality for European hornbeam was strongly affected in 2011 and
2019 (Figure 4.1). Tree stands older than 120 years had the highest tree mortality, with
odds 376% higher than those of 41 to 60-year-old stands (Table 4.10). 30-year long-term
higher continentality increased tree death odds by 46%, and more precipitation in the
vegetation period decreased tree death odds by 17% per 50 mm. The higher average
temperature of the warmest month of the previous year and more winter precipitation in
the current year increased the odds of tree mortality by 54% and 78%, respectively. The
temperature association can be seen mainly for the years 2017 to 2019 when an increase
in temperature increased mortality the following year (Figure 4.18). For precipitation,
this increasing effect can be seen in all other years except 2011 and 2019. The model
evaluations indicated a higher risk in eastern Europe (Figure 4.19).
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Figure 4.18: Annual values of weather variables and mortality (black line) for European
hornbeam. All variables have been standardized by subtraction of their means and divided by
their standard deviations. Only variables from the final model in the pooled analysis over all
years combined are shown.
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4 Drought effects of temperature and precipitation on tree mortality risk

Table 4.10: Logistic regression model estimates for European hornbeam along with 95%
confidence intervals and Likelihood ratio test p-values. Irregular-aged trees were excluded due

to lack of tree mortalities in this group.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) 0.0003
61 — 80 1.32 0.77 - 2.28
81 - 100 1.25 0.64 — 2.39
101 - 120 1.46 0.68 — 2.97
>120 4.76 2.49 - 8.98
Temperature difference between average tem- 1.46 1.26 - 1.73 < 0.0001
perature of the coldest and the warmest month
(continentality) 30-years average (°C)
Total precipitation in vegetation period 30-years 0.83 0.70 - 0.97 0.02
average (50mm)
Total precipitation in winter anomaly average of 1.78 1.25 -2.49 0.002
the reported tree mortality year and the previous
year (50mm)
Average temperature of the warmest month 1.54 1.15-2.09 0.003

previous year to reported tree mortality (°C)
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Figure 4.19: Spatial evaluation of modeled tree mortality for European hornbeam for all
analyzed ICP Forests plots on a logarithmic color scale. Black points indicate observations of

dead trees (n=103).
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4 Drought effects of temperature and precipitation on tree mortality risk

Pedunculate oak

Among 48,222 pedunculate oak tree-year observations from 2011 to 2020, 277 trees
died (Table 4.1). Pedunculate oak exhibited the highest mortality in 2011, 2015, and
2020 with the strongest effects in south-eastern parts of central Europe (Figure 4.21).
30-year long-term higher summer temperature and precipitation increased tree mortality
odds by 28% and 34%, respectively (Table 4.11). Higher average temperature of the
warmest month during the previous three years increased the odds of tree mortality
by 97%. Figure 4.20 shows the immediate association between the warmest month
temperature for 2015 and the 2018 high-temperature association with a two-year delay
increase in mortality in 2020. The higher average temperature of the coldest month in
the reported year and more winter precipitation during the two previous years increased
tree mortality odds by 19% and 86%, respectively, whereas their interaction decreased
the mortality odds by 22%. Figure 4.20 indicates the direct association of coldest month
temperature except for 2014, which seemed to influence 2015 mortality. The winter
precipitation association appears to be driven by the higher precipitation in 2013 and
2018, with higher mortality in 2015 and 2020.
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Figure 4.20: Annual values of weather variables and mortality (black line) for Pedunculate
oak. All variables have been standardized by subtraction of their means and divided by their
standard deviations. Only variables from the final model in the pooled analysis over all years
combined are shown.

88



4.4 Results

Table 4.11: Logistic regression model estimates for Pedunculate oak along with 95% confidence

intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval

Average temperature in summer 30-years aver- 1.28 1.19-139 < 0.0001

age (°C)

Total precipitation in summer 30-years average 1.34 1.19-1.48 < 0.0001

(50mm)

Average temperature of the warmest month 1.97 1.42 -2.73 < 0.0001

anomaly average of the three previous year to

reported tree mortality (°C)

Average temperature of the coldest month 1.19 1.09-130 < 0.0001

anomaly average of the reported tree mortality

year (°C)

Total precipitation in winter anomaly average of 1.86 1.39-2.46 < 0.0001

two previous years to the reported tree mortality

year (50mm)

Interaction between average temperature of the 0.78 0.66 — 0.91 0.002

coldest month anomaly average of the reported
tree mortality year and total precipitation in
winter anomaly average of two previous years to
the reported tree mortality year (°C * 50mm)
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Figure 4.21: Spatial evaluation of modeled tree mortality for Pedunculate oak for all analyzed
ICP Forests plots on a logarithmic color scale. Black points indicate observations of dead trees

(n=277).
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4.4 Results

Sessile oak

Among 51,875 sessile oak tree-year observations from 2011 to 2020, 232 trees died
(Table 4.1). Sessile oak experienced decreasing mortality from 2011 to 2016 and a slight
increase from 2016 to 2020 (Figure 4.1). Tree stands between 41 and 60 years, and plots
with north aspects showed the highest tree mortality (Table 4.12). 30-year long-term
higher continentality and annual precipitation decreased tree mortality odds by 41%
and 69%, respectively, whereas their interaction increased the odds by 6%. The higher
average temperature in spring during the previous two years decreased the odds of tree
mortality by 56%. Higher average winter temperature during the three previous years
and more summer precipitation during the two previous years reduced the mortality odds
by 42% and 2%, respectively, and their interaction reduced the odds by a further 36%.
These associations are mostly seen after all three variable peaks in 2014, followed by a
mortality decrease in the following years (Figure 4.22). The model evaluations indicated a
higher mortality risk in central parts of Europe, especially from 2013 to 2015 (Figure 4.23).

)

5

n 27

o

g 11

S

D - -~ 7

N

S ~ “

S

@ —1-

°

c

8 -2

w T T T T T T T T T T
- N (92] <t o (o] N~ [ee] [o)] o
- — — — — - — — i N
o o o o o o o o o o
N N N N N N N N N N

Observation year

Average temperature in spring
Average temperature in winter

Total precipitation in summer

Figure 4.22: Annual values of weather variables and mortality (black line) for Sessile oak. All
variables have been standardized by subtraction of their means and divided by their standard
deviations. Only variables from the final model in the pooled analysis over all years combined
are shown.
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4 Drought effects of temperature and precipitation on tree mortality risk

Table 4.12: Logistic regression model estimates for Sessile oak along with 95% confidence

intervals and Likelihood ratio test p-values.

Variable Odds ratio Confidence  P-value
interval
Mean stand age (Reference 41 - 60) < 0.0001
61 — 80 0.73 0.50 - 1.05
81 - 100 0.39 0.25 - 0.57
101 - 120 0.37 0.20 - 0.63
>120 0.48 0.25-0.84
Irregular stands 0.43 0.21 -0.82
Aspect (Reference Flat) 0.0001
North 2.42 1.46 — 4.06
North-east 1.29 0.71 -2.31
East 1.48 0.87 —2.54
South-east 1.50 0.83 - 2.70
South 0.74 0.34 - 1.50
South-west 0.78 0.42 -1.42
West 1.11 0.59 - 2.02
North-west 0.93 0.44 - 1.85
Temperature difference between average tem- 0.59 0.41-0.82 0.002
perature of the coldest and the warmest month
(continentality) 30-years average (°C)
Annual total precipitation 30-years average 0.31 0.19-0.49 < 0.0001
(50mm)
Interaction between temperature difference be- 1.06 1.04-1.09 < 0.0001
tween average temperature of the coldest and
the warmest month 30-years average and an-
nual total precipitation 30-years average (°C *
50mm)
Average temperature in spring anomaly average 0.44 0.29 - 0.67  0.0001
of the reported tree mortality year and two pre-
vious years (°C)
Average temperature in winter anomaly average 0.58 0.47-0.70 < 0.0001
of the reported tree mortality year and three
previous years (°C)
Total precipitation in summer anomaly average 0.98 0.80 - 1.19 0.8
of two previous years to the reported tree mor-
tality year (50mm)
Interaction between average temperature in win- 0.64 0.50 — 0.83 0.001

ter anomaly average of the reported tree mor-
tality year and three previous years and total
precipitation in summer anomaly average of two
previous years to the reported tree mortality
year (°C * 50mm)
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Figure 4.23: Spatial evaluation of modeled tree mortality for Sessile oak for all analyzed ICP
Forests plots on a logarithmic color scale. Black points indicate observations of dead trees

(n=232).
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4 Drought effects of temperature and precipitation on tree mortality risk

4.5 Discussion

The analysis presented here, based on annual assessments of common tree species in
European forests from 2011 to 2020, showed individual tree mortality to be impacted
by long-term climate averages and weather factors. This aligns with previous findings
(Brandl et al. 2020; Neumann et al. 2017), forming this study's first hypothesis.

Long-term climate averages and their change rate (evolution) over time showed impor-
tance for a broad range of species to explain background mortality in France (Taccoen
et al. 2019). Likewise, Brandl et al. (2020) found long-term climate variables influencing
mortality with higher temperature and lower precipitation increasing mortality risks.
Generally, higher temperatures within growing seasons are related to higher evaporative
demand and, therefore, might lead to drought stress (Eamus et al. 2013). Additionally,
they are favored by pests. For example, in the case of bark beetles, more generations
can fully develop within the season (Marini et al. 2012). Northward and altitudinal
spread of forest insects was shown to have a strong temperature dependency, as reviewed
in Pureswaran et al. (2018). The high risk of losing climatic niches for many species
due to climate warming was also indicated by studies on the predictive distribution
of species (Bombi et al. 2017; Dyderski et al. 2018; Thurm et al. 2018) and studies
on vegetation samples (Gottfried et al. 2012; Schmidtlein et al. 2013). Brandl et al.
(2020) additionally discussed the effect of increased growth and faster development
under warmer temperatures so that trees moved faster along their life trajectories and
died at younger ages with constant self-thinning lines.

In the data of this study, higher temperature normals (winter, spring, summer, warmest
month, continentality) were related to higher mortality for all species except sessile oak.
Results were comparable with Brandl et al. (2020) for spruce, beech, and Scots pine;
their study did not separate oak species. This study found higher long-term summer
temperatures related to higher mortality for pedunculate oak. Whereas, in the case of
sessile oak, higher continentality reduced mortality. The ability of pedunculate oak to
withstand continental conditions was well reflected in its eastern distribution range far
into Russia. Still, sessile oak was not distributed to that extent, so the result was not
evident. Oak decline has been reported to be associated with human, environmental
and biotic factors, such as lowering groundwater table, absence of flooding, pollution,
non-adapted silvicultural practices, and climate change (Eaton et al. 2016). Furthermore,
pedunculate oak also grows on heavier soils in wet lowlands and damp areas by streams
and rivers, tolerating periodic flooding. Thus, this species’s vitality might depend more
on soil conditions and water table (Kosti¢ et al. 2021). The overall relation pattern
between sessile oak and climate variables differed from the rest of the species set, possibly
due to decreasing mortality trends in the decade studied.

Long-term averages for precipitation either increased (pedunculate oak, spruce, Scots
pine, and black pine) or decreased (hornbeam, Austrian and sessile oak) odds ratios for
mortality. We can only speculate why higher summer precipitation is related to higher
mortality in the case of pedunculate oak, a drought-tolerant species (Eaton et al. 2016;
Niinemets and Valladares 2006). A common problem for oaks is a combination of mildew
of the second leaf flushing after massive defoliation (Eaton et al. 2016). The effect for
spruce is very weak, which is in line with Brand| et al. (2020), who found no precipitation
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4.5 Discussion

effect for this species. Black pine provenances might suffer from fungal diseases (winter
temperature and summer rain were both positively correlated with Diplodia colonization
on cones in France and become virulent after drought periods (Fabre et al. 2011)). The
results of this study support these findings. Higher spring precipitation showed an odds
ratio above 2 for Scots pine. This, again, might be linked to Diplodia or other fungi or to
wet snow (most likely in late autumn and early spring) and subsequent crown breakage
that starts a decline spiral (Nykanen et al. 1997).

Besides long-term climate data (predisposing factors) that are related to diffuse back-
ground mortality, climate anomalies (pulse events) showed important effects on mortality
and can be seen as inciting factors (Manion 1992, 1991; Senf et al. 2020; Sturrock
et al. 2011). Anomalies are known to reduce growth (Thurm et al. 2018; Vanoni et al.
2016) or vitality measured, for example, as annual defoliation (Eickenscheidt et al. 2019).
Mortality occurs when physiological thresholds are exceeded (Schuldt et al. 2020; Senf
et al. 2020; Vanoni et al. 2016), which is likely under extremes as “plants have limited
physiological potential to respond to rapid changes in the environment” (Choat et al.
2018). Climate and weather also promote systemic effects linked to vitality decline, such
as pests or diseases that favor warmer temperatures (Sturrock et al. 2011). The impact
of weather anomalies on forest insects is complex, but anomalies such as unusually warm
or dry conditions can serve as initial eliciting factors for pest outbreaks (Raffa et al. 2008).

Except for European hornbeam, two to three-year averages of temperature anomalies
for the warmest month, summer, spring, and vegetation periods primarily influenced the
models, indicating lag effects, longer-lasting stress and favorable weather conditions for
insects or fungi. Summer, vegetation period, or annual precipitation sum anomalies were
significantly selected as two to three-year averages except for spruce. In contrast, the
effects of winter anomalies (temperature and precipitation) had shorter periods. There-
fore, they often had a more direct relation with mortality of the subsequent assessment
in summer. This might indicate different processes: stress via heat and drought, which
starts a decline and an immediate effect on insects or pathogens, but also a change in
phenology that increases the risk for late frost damage or insect damage. A review on
the phenological form of pedunculate oak states that there are two phenological types —
early and late flushing — and that the late form of oak is more resistant to spring frosts
and insect damage (Utkina and Rubtsov 2017).

This study found that warmer than average winters reduced mortality for birch, Austrian
and sessile oak. At the same time, warmer coldest month temperatures increased the risk
for pedunculate oak, spruce, Scots pine, beech, and black pine. Neumann et al. (2017)
found that a warmer than average maximum temperature of the winter season increased
mortality. In contrast, a warmer than average minimum temperature of the winter
season decreased mortality in Europe’s 2000 to 2012 period, which was interpreted as a
reduction in cold-induced mortality. Warmer winters, earlier flushing, higher risk of late
frost, higher survival of insects (Allen et al. 2010), and reduced cold-induced mortality
under harsh environments might be related to this study’s findings. Still, it is unclear
why birch, an extremely cold hard species, is harmed by harsher winters. Austrian and
sessile oak show lower cold hardiness and might benefit (hardiness ranking according to
Roloff and Grundmann (2008)). Dietze and Moorcroft (2011) found differing responses
for minimum winter temperature for differing plant functional types in North America,
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highlighting the regional and species-specific differences between effect and response
found here. Northern types showed higher mortality under colder winter (ice damage or
freeze embolism), a result found in this study for birch, Austrian and sessile oak, the
latter two not growing in Northern Europe.

In line with several studies (Allen et al. 2015, 2010; Brand| et al. 2020; Ciais et al. 2005;
Maringer et al. 2021) and expectations of this study, warmer temperatures in the previous
year increased mortality risk dramatically for five out of nine species. This was strongest
for species that dominate Northern European forests (birch, spruce, Scots pine) either
because they are not adapted to this situation or the link to insects and pests, which
benefit from reduced temperature limitation. The overall effect of the coupling of stress
and population dynamics driven by drought and heat is well documented in bark beetle
infesting spruce (Anderegg et al. 2015; Marini et al. 2012; Raffa et al. 2008). This study
found a contrasting result for sessile oak, beech, and black pine (higher temperatures in
spring or warmest month related to reduced mortality). This effect should be expected in
regions where warming reduces stress. For instance, Jolly et al. (2005) described how an
extended vegetation period resulted in better tree growth in the Swiss Alps. Black pine
growth improves with positive spring water balance (Marqués et al. 2016), so positive
spring anomalies might reduce mortality when accompanied by precipitation or when
growth limits due to low temperatures are reduced. Findings for spruce and beech but
not for Scots pine are in line with the results of Nothdurft (2013), though the latter
study focused on only one region in Germany and was based on a small data set and a
different period.

Effects of precipitation anomalies split up between winter and non-winter periods (veg-
etation period, summer, or annual precipitation). Three of four species (hornbeam,
pedunculate oak, black pine) suffered from higher winter precipitation. A result typically
related to wind throw risk due to water-saturated soils when it coincides with high
winds (reviewed by Mitchell (2013)), which was excluded from the data set of this
study. Annual, summer, or vegetation period precipitation anomalies had to be taken
as variables of the previous years, as the crown condition survey takes place in summer.
Therefore, results do not reflect only direct drought effects but also lagged consequences,
which was apparent from the steep increase of mortality following 2018 for spruce and
birch in data of this study (Brun et al. (2020) and Senf et al. (2020)). Neumann et al.
(2017)) pointed out that variability between summer and spring anomalies of the previous
period are drivers of mortality (wet summer and dry spring). A reason for this might be
the timing of bud formation in mid-summer so that the number of leaves is higher after
a wet period which increases water demand in a subsequent drought in the following
spring or summer (Meier and Leuschner 2008). Only Austrian oak witnessed a clear
beneficial effect of higher precipitation, which is in accordance with drought susceptibility
of this species (Colangelo et al. 2018). Effects of interaction between temperature and
precipitation variables for spruce and Scots pine could be interpreted in the way that
rising temperatures in the vegetation period can be compensated by higher precipitation.

Interpretation of observed results regarding the impact of aspect on mortality has limita-
tions. Aspect and slope were not significant in other studies (Maringer et al. 2021). The
data on aspect did not incorporate information on the slope. However, steep slopes in
southern directions are understood to be warmer (Reger et al. 2011). Effects of aspect
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could be hypothesized that southwest slopes are drier and warmer, and north-facing
slopes are colder and even prone to frost-drought (Tranquillini 1982). In the models,
beech and oaks tended to have lower mortality on the south and west-facing sites,
whereas spruce exhibited this pattern only for western slopes. For black pine, the highest
mortality estimates were calculated for sites facing east and west, while it was northeast
and northwest for Scots pine. These are, of course, just generalized results of the models
under the caveat that each species will favor different aspects, depending on altitude
and latitude.

Neumann et al. (2017) found that warm summers and high seasonal precipitation vari-
ability increased the likelihood of tree death and that age was an important driver of
mortality for European tree species. Brandl et al. (2020) found an increasing mortality
risk with age for spruce and beech, but not so clear dependencies for oaks and Scots pine.
This study found decreasing mortality with age for pine and oak species and a similar
but weak trend for spruce. For beech, risk first diminished and then increased with age.
Age increased mortality considerably for the short-lived pioneer species silver birch and
short-lived hornbeam (Leuschner and Ellenberg 2017). Trees in uneven-aged stands
had higher mortality compared to the reference group 41-60 years for Norway spruce,
European beech, and silver birch but lower mortality for Scots pine and sessile and
pedunculate oak. Age effects might be related to the development stages of stands, and
age effects were leveled out between species when survival probabilities were displayed
over tree height in the study by Maringer et al. (2021).

According to the second hypothesis, the effects of extreme and long-lasting droughts
and heat waves on mortality are related to the short-term effects of annual anomalies.
Europe has experienced a series of extremely hot and dry summers (2003, 2010, 2013,
2015, 2018) (Buras et al. 2020; Hanel et al. 2018). Heatwaves drove droughts and
precipitation deficits in the vegetation period and affected certain parts of Europe. The
effects on vegetation were modulated by the weather conditions in the preceding winter
or subsiding seasons. For example, the 2015 summer was the hottest since 1950 across
a large part of eastern and south-western Europe. Still, in terms of annual precipitation
deficit, the severity of the 2015 drought was possibly limited due to the preceding wet
winter over a large part of Europe (Hanel et al. 2018). Buras et al. (2020) described
2018 as characterized by a climatic dipole, “featuring extremely hot and dry weather
conditions north of the Alps but comparably cool and moist conditions across large parts
of the Mediterranean”. These spatio-temporal patterns affect mortality as species are not
evenly distributed and are affected in single events. This was reflected in data here that
exhibited a steep increase in annual mortality after 2018 for spruce, birch, and beech but
showed no signs of increased mortality for species with a Mediterranean distribution like
Austrian oak and black pine, or species that encompass at least considerable distributions
in the Mediterranean like sessile oak. The effects of the drought in 2018 on spruce and
beech in Germany were enhanced by consecutive drought years and led to increased
mortality rates (Obladen et al. 2021). This aggravating effect of consecutive unfavorable
weather conditions with an increase in soil moisture drought (Hanel et al. 2018) explains
the absence of a drop in annual mortality for Norway spruce or birch after 2018. Strong
drought-legacy effects in 2019, with missing physiological recovery, that leave trees highly
vulnerable to secondary insect or fungal pathogen attacks were also reported (Moravec
et al. 2021; Schuldt et al. 2020). In contrast, there was no effect of the hot and dry
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summer of 2013 (Hanel et al. 2018) visible in the data of this study. Apart from Austrian
oak, there was no increased annual mortality in 2013 or 2014. Thus, we can conclude
that short-term effects of annual anomalies influence tree mortality. Still, the severity of
the effects is also shaped by previous (Hanel et al. 2018) and subsequent (Schuldt et al.
2020) weather conditions.

The third hypothesis is difficult to judge as it is somewhat contradicting the assumption
of an individual response of species to environmental stress. Nevertheless, this hypothesis
was formulated due to spatial aspects in species distribution. Figure 4.4 can be inter-
preted for the grouping of species according to effects. It revealed similarities between
some broadleaved species of warmer climates and lowlands (Austrian and sessile oaks)
and species that also occur in higher elevations and colder climates (spruce, pine, and
pedunculated oak) with distinct cold hardiness, as described by Kreyling et al. (2012) for
P. nigra. Q. cerris forms mixed stands together with Q. petraea in Austria and southern
Slovakia as outposts in the Pannonian region (Leuschner and Ellenberg 2017). Beech
and hornbeam appear to fall between those two groups. The pioneer species silver birch,
with only three significant climate or weather variables impacting its mortality, is hard to
classify with other species. Species tolerating warmer conditions possess mechanisms to
withstand heat and drought to a certain degree. Oak seedlings, for example, exposed
to drought have been shown to have adapted their growth and xylem structure to
improve drought resistance, for instance, via reduction of latewood vessel size (Vander
Mijnsbrugge et al. 2020). Grouping according to distribution was also performed for
North American species into plant functional traits with subsequent mortality patterns
analyzed by Dietze and Moorcroft (2011), who distinguished between angiosperms and
gymnosperms. Shade tolerance and abundant species groups were further separated into
Northern and Southern ranges according to established differences in climatic tolerances.
Only the distributional aspect of this classification might be appropriate for this study.

The lowland and higher elevation groups differed clearly in the effects of winter tempera-
ture anomalies. Broadleaved species of warmer climates might benefit from a lower risk
of severe frost damage and a longer vegetation period with earlier flushing to allow for
the use of soil water stocks from winter precipitation (e.g. in Mediterranean ecosystems).
The negative effect of warmer (and wetter) winters for conifers is often related to wind
throw (Maringer et al. 2021), an effect we excluded from our data set. Still, trees can
be injured by snow break, and there is feedback on pathogens and pests with winter
anomalies. Besides that, warmer winters are known to increase the likelihood of late
spring frost damage in frost-prone regions as trees begin wood formation, leaf release,
and flowering weeks earlier compared to the mid-twentieth century (Puchatka et al.
2017, 2016). The greater frequency of late spring frosts is related to climate warming
(Sangiiesa-Barreda et al. 2021).

A limitation of the study was the low event rate of mortality that affects the power
for complex multivariable statistical models to detect weather and climate impacts,
particularly concerning interactions among risk factors. These limitations are common to
any study of rare events. Mortality is assessed annually, necessitating logistic regression
methods for interval-censored data as described in the methods. While exact mortality
dates are available for humans and animals and allow more accurate modeling, such
as by the Cox proportional regression model, they do not exist for trees, where annual

98



4.6 Conclusion

assessment might be considered the least coarse option available for mortality assess-
ments. The logistic regression methods outlined in this study for binary outcomes are
easily transportable to other forest monitoring scenarios. They produce interpretable
odds ratios that provide quantitative effect sizes and statistical significance.

4.6 Conclusion

Different types of mortality — background or disturbances - are related to different
variables and time scales. Multi-year stress events hit managed forests with tremendous
economic loss and hamper fulfillment of ecosystem services, for example, carbon stor-
age. This study's tree mortality models and predictions, combined with climate change
projections, could be used to improve forest management planning. It is important to
stress that climate warming increases the risk of mortality of all studied tree species with
less severity in the case of sessile oak, and this understanding should be the baseline
of future forest management plans throughout Europe. Optimal tree species may be
selected for planting, dependent on regional climates. Still, it is vital to understand the
differences in mortality between managed or hugely human-influenced forests and natural
forests. The individual tree logistic regression models should be updated annually with
new mortality data, including precise age estimates. This would be especially beneficial
for increasing the statistical power to detect effects for other tree species and incorporate
recent weather events, thus maximally preparing for an uncertain future under climate
change. Remote sensing techniques add additional value for future data on individual
tree mortality.
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The three applications of this thesis assess only possible associations with the available
data. As already stated in the individual conclusions, there have been limitations to the
studies regarding the data quality. Increasing the data quality would increase the number
of observations and hence the power to detect significant associations, resulting in better
interpretation, understanding, and predictions. This could reduce unnecessary surgeries,
improve forest management, and make mountain sports safer. The main concerns are the
realization and handiness of suggested improvements, which are discussed in the following.

5.1 Prostate cancer risk tool

Human medicine is improving continuously. This includes new medical instruments,
techniques, and drugs. Further, the population is changing continually, as seen in the
demography. These changes apply to prostate cancer and lead to the need for currently
updated risk calculators. The biopsy method has improved from 10-12 core biopsies to
Magnetic Resonance Imaging (MRI)-assisted biopsies. Prostate Biopsy Collaborative
Group (PBCG) biopsy data from the new method is currently collected as part of an
international PBCG headed by investigators in Australia. The international PBCG now
additionally includes center in Asia, expanding the demographic scope from North Amer-
ica, Europe, and the Caribbean. The new data collection is an excellent opportunity
to overcome the missingness problem learned from the PBCG. To improve predictions,
clinics should be urged to collect all variables. Using a standardized input form, as the
international PBCG currently does, secures data quality and consistency. With more
outcomes collected, expanded definitions of prostate cancer can be investigated beyond
clinically significant prostate cancer (csPCA) in the PBCG.

The future of prostate biopsies will further improve with automated techniques. Currently,
extracted tissues are viewed by a pathologist who decides on the score according to a
scale. These results depend on the pathologist's experience (Varma et al. 2018). Machine
learning approaches for image recognition can be used to obtain consistent scores (Dov et
al. 2022), which could also be on a finer scale and improve the accuracy of risk prediction.

Another challenge to develop risk tools is the data transfer, which must pass the approval
process of several ethical offices, taking time and slowing down research. One solution is
to take the analysis to the data and use meta-analyses to combine the individual cohort
results (Gaye et al. 2014). Since only model coefficients have to be transferred, no
extended ethics approval is necessary. On the other hand, analyses are out of the hand
of a central statistical group. Classical statistical and data quality checks for outliers or
suspicious cases need to be performed individually.
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Lessons learned from the PBCG project endorse the following four data-science-driven
strategies for improving clinical risk prediction. Firstly, to actively design prospective data
collection, monitoring, analysis, and validation of risk tools using the same standards as
for clinical trials. Secondly, to post risk tools and model formulas online to maximize
doctor-patient decision-making and multiple external validations. Thirdly, the proposal
is to dynamically update risk tools and tailor them to individual clinical centers to
adapt to changing demographic and clinical landscapes. Fourthly, to accommodate
missing data to optimize model training and flexibility in online tools for users who
do not have all information. Following these strategies will lead to more effective risk
prediction tools to assist clinical practice, as high-quality data will lead to high-quality
risk predictions. Lessons of the PBCG are not limited to prostate cancer. Risk tools
for breast cancer (Kanimozhi et al. 2019), psychosis onset (Studerus et al. 2020), dia-
betes (Dunkler et al. 2015), and many more can be improved by actively designed studies.

5.2 Austrian mountain sports

The Alpine Safety Board collects data on mountain accidents and fatalities to publish
reports regularly. The extent of the data highly depends on the information collected
by the rescue service about the victim at the accident site, the hospital, and from
other witnesses who observed the accident or knew the victim. This is currently col-
lected in text form, leading to many similar but different phrased entries. For optimized
data collection, a standardized entry form should be used, as recommended by the PBCG.

Currently, the time is not usable since it is only rarely provided, and a system time is
often entered. The exact time is important since the weather changes quickly in these
regions, especially extreme weather events, which are only apparent for a certain time.
Additionally, an exact position is necessary for more accurate analyses of fatal accidents.
The topography changes quickly in the mountains, changing the weather association
to the accident. As for firefighters, radio communication between the control station
and rescue team occurs. This communication service was changed in recent years from
analog to digital. Firefighters have to press a button as soon as they arrive at the
emergency location such that the control station is informed about the progress. This is
easy and does not disturb the rescue process. We are unsure if the Alpine rescue team
has to follow the same procedure but could do so easily. In addition, they could transmit
the GPS position when pressing this button. As a proxy for the time, one would have
the rescue time, which could differ a lot from the accident time if the victim was alone
or mobile service was unavailable. The exact time and position could refine association
analyses and be relatively easy to implement.

Further helpful information would be personal information about the victim. This is
an easier task if it is an ordinary accident but becomes more complicated if it is fatal.
However, in both cases, it would improve the understanding as one can adjust analyses
for personal factors. This information should include but is not limited to age, gender,
personal fitness, experience level, safety equipment used (depending on sport type), and
known potential human risk factors, such as hypertension. To improve the data collection
process, one could introduce an App with drop-down menus for ease of use, as every
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investigator could type in the information with their mobile phone. These drop-down
menus can also allow missing factors if the field can not be answered. The prostate
cancer application has shown appropriate analyses accommodating potentially missing
data.

Data collection strategies apply after an accident, but what can be done to prevent
fatal accidents or accidents? To reduce fatal accidents, the key measures are faster
rescue and better help. Different people and personalities participate in mountain sports,
ranging from people who like to have nice foto for social media with no experience and
improper equipment to experts with a lot of knowledge but also a high willingness for
risks. Due to the wide range of participants, safety policies need to be addressed for
all of them. Another difficulty is the fact that changes take time. As an example, one
can consider the introduction of helmets for skiing. They are not mandatory in Austria,
but people choose to wear them, so it took almost one generation to reach the point
where almost everyone wears one. The problem was not that older people did not realize
helmets would be safer. It was that they had learned and performed skiing all their life
without one. But when it came to the safety of their children, they equipped them with
a helmet from the start. Another challenge is finding solutions that can be applied to
many mountain sports types to reach as many people as possible.

As already outlined in the conclusion of Chapter 3, the Austrian Board of Trustees for
Alpine Safety and cooperators established an emergency App in 2019 for parts of Austria,
Italy, and Germany to improve the rescue speed. An issue with the App is that hardly
anyone knows about it. So advertisement is necessary until the App becomes standard,
like the helmet achieved for skiing. Another issue with the App is that its primary purpose
is to transmit GPS coordinates to the rescue service, which is nowadays a functionality
of a regular emergency call on mobile phones. Therefore, the App needs to be improved
with additional functionality. We suggest it becomes accessible offline directly at the
accident to walk the injured person or helper through first aid steps, otherwise performed
by emergency teams via phone. Additionally, the App could provide short first aid tutori-
als once a month not to overwhelm users while preparing them for safety in the mountains.

Another safety feature could be registration before participating in a sport. For hiking,
something similar exists for multi-day trips via guest books at the huts. If someone
gets lost, one can follow their route. While more critical for people doing sports alone,
accidents involving more than one person also happen. Such a feature must be easy to
use; otherwise, it would not be used. At the starting point, one could do check-in and
give the route a name, for example, the summit. The App could suggest close summits
or titles other users have used. Additionally, the expected time should be included to
account for when lack of check-in becomes suspicious. For popular hikes, one could set
up QR codes at the starting point with all information and checkpoints in between, as in
the huts for longer routes. As the batteries improve, GPS coordinates can be transmitted
more continuously. If tracked continuously, the App could also recognize accidents
by the moving profile and for severe accidents, immediately call emergency services.
Something similar exists already for smart watches for certain sports types. Professionals,
in particular, participate in mountain sports more often alone and need these adaptations.
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An App becomes more valuable the more it can connect features from other existing
Apps. Apps helping to plan a sports day have become more commonly used, as well
as those incorporating weather forecasts specialized for mountainous regions. Such
planning Apps as Komoot and Bergfex can also lead hikers through chosen routes.
Combining these features into the App or linking the safety App to other GPS Apps
would increase safety. Further, the inclusion of webcams could assist in improving the
planning process and assessments of current risks of routes. With the weather forecast
included, one could estimate risks for a planned tour on a specific day, which could then
be distributed by tourist information offices, web pages, huts, and other accommodations.

For better planning, it is necessary to account for the number of people at risk, which is
currently lacking. The App’s before-mentioned check-in function could also provide a
number of people at risk, allowing models to adjust for that. On the one hand, more
people at risk means more potential accidents and more people to help on the spot of the
accident. On the other hand, for some sports, such as skiing, more people also means
that the sport becomes more prone to a higher risk of crashes from other participants.

Finally, we must say that preventing accidents will not be possible altogether. With
better equipment and knowledge, mountain sports continue to become safer. This also
leads to more willingness to risk and makes it accessible to a broader range of people.
Hence, safety improvement will always be an issue.

Mountain suicides and work accidents were not discussed so far, as they have different
mechanisms. Safety at work improved in the past and should continue to do so. Suicide
requires preventive measures unrelated to the mountains since people often live in the
valleys. But safety Apps could at least expedite the rescue process and increase survival.
One could set up signs for help hotlines and recreational sites at suicide hotspots, with
the aim to deter life-threatening decisions.

5.3 Climate-based forest management

A common issue of the presented studies was that events were rarely observed. To
overcome this issue, cooperations were built to overcome the small sample size with
data from different sites. The International Co-operative Programme on Assessment
and Monitoring of Air Pollution Effects on Forests (ICP Forests) were founded to create
a European-wide data set of tree damage and mortality. Before, every country selected
its own variables of interest, and no standard existed between countries. This can still
be observed as countries collect more variables and submit only mandatory variables.
More variables should be compulsory to improve the data quality. For instance, the
consistent collection of the slope would improve the predictions as it most likely would
interact with aspects. The beauty of such stand-level variables is that they must be
collected only once for a plot and updated now and then. More improvement of models
could be reached by collecting more information on the individual tree level. Tree age
is an example managed by some countries by exact tree age instead of the age classes
used by ICP Forests. Changing the requirement to actual age will incur guesses and
inaccuracies for older trees, but will become more accurate with time, as the exact
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age is only accessible if the planting date is known. With precise age, models could
better distinguish between mortality due to age versus environmental influences. Data
collection should be further standardized across ICP Forests countries to ensure a robust
data basis for future management decisions. The standardization process should follow
the recommendations from the prostate cancer study.

One limitation of tree mortality studies is that tree death is not standardized as for
human death. A tree that is declared dead could recover after years. Further, a tree with
breakage could bud and build a new crown. Tree death is thus subjective with criteria
that likely differed among the ICP Forests countries. Therefore, standard definitions for
the event of tree death need to be implemented. Again in the spirit of the prostate
cancer application of this thesis, standardized entry forms are needed for all outcomes
and risk factors that can be implemented in user-friendly interfaces to correct data upon
entry. Currently, it is possible that a tree is classified as dead in one year but would be
classified dead in a different year with another investigator or in an other country. One
approach which circumvents the issues is remote sensing techniques, whereby dead trees
could be identified with image recognition with machine learning. By this approach,
only the dominant canopy could be investigated as in this application. Competition
effects within the lower canopy could not be detected. Maps of tree vitality could
be overlayed with weather and topographic maps. Weather needs to be aggregated
to the same time scale as the tree data, which is currently only annually. Daily mea-
surements would lead to an enormous database that could be handled by machine learning.

Classical and interpretable approaches, such as logistic regression, could be further im-
proved by adjusting for spatial effects. These can, for example, be exponential functions
peaking in a center and declining with further distance, as shown in Figure 5.1. Using
multiple of these over whole Europe can model spatial patterns over time. For our study,
we implemented this approach but experienced some shortcomings. To overlap Europe
with spatial functions requires a sufficient amount of mortalities to have enough power to
find significant effects. Further, as the weather is highly correlated with spatial locations,
spatial functions obfuscate weather effects, as spatial soil and background information is
confounded with the weather. We focused on interpretable results for this study and
used classical logistic regression due to lack of power.

This study focused on the most common tree species as sufficient data was available.
Still, more uncommon tree species could be more resistant to climate change conditions
and, therefore, interesting for forest management. For the ICP Forests data, more of
these species could be selected and analyzed. But these trees grow in environments
with other tree species dominant. Therefore, exploring these tree species in regions
where they are the dominant species and transferring the results to Europe under climate
change scenarios makes sense. For the common species, further investigation would be
interesting into how they react to stress, such as single drought events. Field experiments
under harsh conditions to investigate time delay effects or precipitation thresholds for
common species are complex. It takes years to accumulate data, and only some trees
die after a particular time. Control groups are needed leading to large areas of study.
Grown trees exposed to experimental conditions are also required. Tree mortality risks
could serve as warnings for regions in danger, instigating prevention, such as irrigation.
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Figure 5.1: One selected exponential spatial basis function. In this example, twelve basis
functions peaking at different locations were overlayed on Europe to cover it completely. These
basis functions can be used to investigate spatial effects in regression models.

Weather is measured at stations and interpolated to continuous maps, which depends on
the topography, such as mountains or oceans. Often weather data are not interpolated in
great detail as this brings high uncertainty. Other weather data sets may lack information
regarding different indices and only provide a few characteristics. Another issue is
that weather needs to mirror the same time scale as the outcomes for the association
analyses. All data sets need to be updated regularly, as has been argued for the prostate
cancer application, which could be expedited by extracting information from satellite
images. This way, essential variables like precipitation could be assessed and updated daily.

Several indices exist for further investigation of drought effects, including the the Stan-
dardized Precipitation Evapotranspiration Index (SPEI). These indices are combinations
of individual weather variables and aim for thresholds for drought identification. The
German weather institute defines a drought for a specific location if the SPEI value
is smaller than minus one standard deviation. An issue with this definition is that it
depends on the data used. The same SPEI value can indicate a drought in one data set
but not in another. It is questionable whether a drought in wet regions means the same
as in dry areas. Since defining a European-wide drought threshold is complex and as the
drought indices are combinations and transformations of individual variables, it can be
more efficient to develop risk models directly from the individual variables, as performed
in this thesis application. Many weather variables and multicollinearity lead to problems
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for estimation but not for prediction.

Trees play an essential role in climate change and fighting against it. Dying and harvested
trees reduce the number of trees over decades. Trees are related to climate change
in a direct manner as oxygen providers and air cleaners, but also indirectly as carbon
stores or air coolers. Therefore, many organizations plant trees to reduce climate change
effects. But to a certain degree, climate change effects will be observed in the future.
To assist tree planting and commercial forest harvesting, tree species that are more
resistant to coming conditions are needed. Understanding tree mortality processes build
the basis to transfer knowledge to predictions for a future world that faces climate change.
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