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Abstract

Competition is at the essence of most businesses and many managerial decisions include

multiple competing decision makers. Popular examples include decisions on prices and

production volumes, investments into capacities and technologies, or the location selec-

tion of production facilities, warehouses, or retail stores. We model such simultaneous,

non-cooperative decision making in finite games. The predominant solution concept for

a finite game is the identification of a Nash equilibrium. Prior algorithms are limited

to normal-form games, or are restricted to the identification of a single equilibrium or

all pure equilibria (which may fail to exist in general), but can neither enumerate all

equilibria nor select the most likely equilibrium.

This thesis presents a solution method for finite games in a mathematical programming

representation, i.e., action sets and payoffs are succinctly represented through inequality

sets and objective functions, respectively. Our algorithm first determines all equilibria

and subsequently identifies the most probable equilibrium according to the equilibrium

selection theory by Harsanyi (1995). The algorithm is applied to a case study for hy-

drogen fuel station location planning in Munich, building on a novel Competitive flow

capturing location-allocation model (C-FCLM). In contrast to prior formulations, this

model requires no prior knowledge of competitor locations as competitors are expected

to choose locations simultaneously in an emerging competitive environment. We show

that fuel station providers who acknowledge the existence of their competitors and act

accordingly can realize a profit increase of 17%.

We further present a novel inverse optimization approach for a subclass of finite games

called Integer programming games (IPGs). This approach identifies parameter com-

binations that induce the observed (or desired) equilibrium solutions. We show that

this inverse IPG corresponds to a bilevel problem which we solve using a cutting plane

approach. Our approach extends prior methods for inverse optimization of integer pro-

grams to a competitive setting. We showcase its application for a competitive retail

location selection problem: Whereas incumbent retailers can use ample historical data

at a point of sales level to approximate customer attraction parameters and choose their
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locations accordingly, new entrants lack this detailed information. They can, however,

observe the resulting location structure of incumbents and deduct information on cus-

tomer choice parameters using inverse optimization. We find that new entrants who

base their location decision on inversely estimated parameters can improve their profits

by 4-11% on average, compared with new entrants who rely on statistical averages for

customer attraction parameters when making their location decision.
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Chapter 1

Introduction

1.1 Motivation

Economic decision making is hardly ever done in isolation, with companies and decision

makers competing for talent, customers and market share, assets, raw material supply,

or other resources. Yet, competition is often ignored in practice (Pang, 2010) and many

optimization models neglect competitor actions or assume a static competitor decision,

independent from the actions of the examined decision maker. It is apparent that a

decision that is optimal under the pretense of a monopoly will hardly be optimal under

competition. To derive a truly optimal decision, a company has to take the potential

(re-)actions of competitors into account.

Within our work we model competitive decision making in finite games, i.e., games

with a finite number of players (competitors) having a finite number of strategies at

their disposal. For example, competitors might choose (integer) production volumes,

where their capacities act as a natural upper bound. For such finite games, Nash (1951)

proposes the solution concept of a stable fixpoint (later called the Nash equilibrium)

based on three core ideas: A Nash equilibrium is a combination of strategies in which

no player benefits from unilateral deviation (i). Any finite game has at least one Nash

equilibrium in pure or mixed strategies (ii). In a non-cooperative, full information game

between rational players with a single equilibrium, the unique equilibrium is the expected

outcome of the game (iii).

This clear definition (i), general proof of existence (ii) and practical interpretation

(iii) explain the continued popularity of Nash’s solution concept (see, e.g., Nisan et al.,

2007), yet, two main problems remain unsolved: An equilibrium can only be the expected

outcome of the game if it is identifiable by all players (a). An equilibrium can only be the

expected outcome of the game if it is unique (b). There have been many contributions

1



Chapter 1 Introduction

partially addressing these two problems in the past, moving from simple zero-sum two-

player games to increasingly realistic and complex settings. We review contributions

to the identification of Nash equilibria (a) and equilibrium selection approaches (b) in

detail in Section 2.1.

Within our work, we focus on a class of games for which neither of the two problems

has been adequately addressed in prior work: Finite games in a mathematical program-

ming representation (finite mathematical programming games). In contrast to (normal

form) Nash games, in a Mathematical programmming game (MPG) potential strate-

gies, strategy combinations or payoffs are not enumerated, but represented through a

set of inequalities and objective functions, respectively. As such, a MPG resembles a

Nash equilibrium problem (NEP), yet NEPs usually assume continuous decision vari-

ables whereas a MPG allows for discrete or integer decisions (Dragotto et al., 2021).

Integer programming games (IPGs) (as introduced by Köppe et al., 2011) represent a

special class of finite MPGs, in which all decision variables are integer (Köppe et al.,

2011). In contrast to Generalized Nash equilibrium problems (GNEPs), in MPGs and

NEPs the set of strategies per player does not depend on the decisions of other players.

Figure 1.1 provides a graphic representation of this terminology. In the following, the

term Nash equilibrium and equilibrium will be used interchangeably.

GNEP

interdependent
strategy sets

static strategy sets
(NEP/MPG)

continuous
decision variables (NEP)

incl. discrete/integer
decision variables (MPG1)

infinite strategy sets finite strategy sets (finite game / finite MPG)

integer decision variables (IPG)

Figure 1.1: Classes of Nash equilibrium problems, based on Köppe et al. (2011) and Dragotto
et al. (2021)

1In some (rare) cases, the term (G)NEP is also used for simultaneous games with discrete or mixed-
integer decision variables.
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1.2 Contribution and research questions

1.2 Contribution and research questions

Building on an existing sample-generation method for the identification of a single equi-

librium in IPGs (Carvalho et al., 2022), we derive a method for the identification of all

equilibria and the selection of the most probable equilibrium in (complete information

and non-cooperative) finite games. More specifically, we answer the following research

questions (RQ):

RQ 1.1 How can we identify all equilibria in a finite game?

RQ 1.2 Having identified all equilibria in a finite game – how can we select the equi-

librium that is expected to be the outcome of the game based on the respective

player incentives and the equilibrium selection theory by Harsanyi, 1995?

In addition to synthetic benchmark problems such as knapsack games, competitive fa-

cility location and design problems, and competitive lot-sizing problems, we apply the

derived method to a case study of hydrogen fuel station location under emerging com-

petition. Here, we are concerned with the following research questions:

RQ 2.1 How will competition between station providers influence the emerging hydrogen

refueling network structure?

RQ 2.2 How valuable is it for decision makers to take competitor actions into consid-

eration?

RQ 2.3 Should policymakers foster (e.g., through government-backed provider associa-

tions) or impede (e.g., through strict antitrust laws) collaboration between com-

peting providers?

From a practical perspective, the identification of parameters that give rise to an ob-

served equilibrium can be equally insightful as the identification of the equilibrium itself.

Third parties, such as policy makers or new entrants, might wonder why a specific equi-

librium emerged, why this equilibrium can be considered stable or which parameters

induced the decision makers to put in place the observed strategies. Building on an ex-

isting inverse optimization approach for non-competitive integer programs, we present

a method to extract hidden information from observed equilibria in IPGs and show its

application to improve decision making for a new entrant in a competitive retail location

problem. Here, we address the research questions:

3



Chapter 1 Introduction

RQ 3.1 How can we identify parameters that lead to observed equilibria in situations

of simultaneous competition using inverse optimization, taking into account

integrality constraints?

RQ 3.2 How valuable are the derived parameter estimates to new entrants, optimizing

their own market entry location strategy?

1.3 Complexity of equilibrium identification and

selection

In the very first research question (RQ 1.1) we set out to identify all equilibria of a finite

mathematical programming game. Yet, already finding even a single Nash equilibrium

can be considered hard: Nash (1951) shows that for a finite game at least one Nash

equilibrium in pure or mixed strategies exists. Building on this existence guarantee,

Papadimitriou (2007) shows that the identification of a Nash equilibrium is PPAD-

complete, i.e., using polynomial parity arguments on directed graphs it can be shown

that the problem is guaranteed to have a solution, and a solution can be verified by

a deterministic polynomial time algorithm (see Papadimitriou, 1994). However, even

just determining whether a two-player game in strategic form has at least two Nash

equilibria is NP-complete (Gilboa and Zemel, 1989). By definition, the identification of

all equilibria in a finite game is at least as hard.

Kamal Jain has been famously quoted with the saying “if your laptop cannot find

it [the equilibrium], neither can the market” (Papadimitriou, 2007), highlighting the

limited predictive power of an equilibrium concept that cannot be computed by all

market participants. Given the above complexity results, one might be tempted to

ask why even bother devising a method addressing RQ 1.1. Within this thesis, we

will show many practical, realistically sized problems that can be solved within time

limits which are adequate for strategic decision making in practice. Yet, based on the

above complexity results and preliminary experiments, it is to be expected that there

are examples of competitive decision making in practice which cannot be solved within

a reasonable timeframe by the methods discussed in this thesis.

Similarly, inRQ 1.2, we set out to select the most probable equilibrium. In Chapter 3,

we reformulate this problem to several volume computation problems of non-linearly

bounded sets in multiple dimensions. Note that already the volume computation of

linearly bounded sets in multiple dimensions (polyhedra) is known to be #P-hard (Dyer

4



1.4 Outline

and Frieze, 1988), where #P refers to the set of counting problems where the solution

equals the number of paths to acceptance of a non-deterministic polynomial time Turing

machine (Valiant, 1979). We therefore do not determine the volumes exactly and resort

to numerical volume estimation based on a Monte Carlo approach.

1.4 Outline

Chapter 2 reviews related literature, addressing prior contributions on equilibrium iden-

tification and selection, inverse optimization and location selection for (alternative) fuel

stations and retail outlets.

In Chapter 3, we address the equilibrium identification and selection problem for

finite MPGs. We devise a column-and-row generation method, with which we sample

only relevant parts of a MPG and identify equilibria within this sample. We show that,

under the condition the examined MPG is finite, the set of equilibria of the final sample

is equivalent to the set of all equilibria of the original game. We subsequently select

the most probable equilibrium among the set of all equilibria based on an adaptation of

Harsanyi’s equilibrium selection theory (Harsanyi, 1995). This chapter is co-authored

by Stefan Minner (Technical University of Munich) and has been made available as a

working paper under Crönert and Minner (2021a).

In Chapter 4, we examine a scenario of emerging competition under hydrogen fuel

station providers. We extend the Flow capturing location-allocation model (FCLM), a

widely adopted flow-based location problem for alternative fuel stations, to this setting

of simultaneous competition and apply concepts developed in Chapter 3 to solve the

resulting model formulation. Inspired by the Value of the stochastic solution (VSS) in

stochastic programming (Birge and Louveaux, 2011), we highlight the benefit of the

novel approach by introducing the Value of the competitive solution (VCS). Thus, we

quantify the advantage of taking into account apparent competition in comparison with

a näıve approach assuming a monopoly. This chapter has been published under Crönert

and Minner (2021b) and has been co-authored by Stefan Minner (Technical University

of Munich).

We address the inverse optimization problem for IPGs with a novel cut-generation

method in Chapter 5. We apply the derived method to a competitive retail location

problem and highlight the benefit of the extracted hidden information for a new en-

trant observing the current location structure of incumbents. The chapter is available

as a working paper under Crönert et al. (2022), co-authored by Layla Martin (Eind-
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hoven University of Technology), Stefan Minner (Technical University of Munich) and

Christopher S. Tang (University of California, Los Angeles).

Chapter 6 summarizes methodological contributions and insights. It also discusses

limitations of the presented work and provides opportunities for further research.
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Chapter 2

Related literature

This chapter reviews literature about related problem classes and methodological ap-

proaches (Section 2.1 and 2.2) as well as problem formulations concerning competitive

location selection for alternative fuel stations and retail outlets (Section 2.3).

2.1 Equilibrium identification and selection

The structure, in which a Nash equilibrium problem is modeled, drives the choice of

equilibrium identification approaches. Problems with a small number of strategies and

players can be represented in normal-form, enumerating all possible strategy combina-

tions and their associated payoffs per player in a matrix. Generalized Nash equilibrium

problems (GNEPs) and Mathematical programmming game (MPG) formulations can

succinctly represent larger games. Here, strategy sets and combinations are not enu-

merated, but represented through various (in)equality constraints. Therefore, we review

contributions on equilibrium identification separately for normal-form games (2.1.1),

GNEPs (2.1.2) and MPGs (2.1.3), before discussing prior work on equilibrium selection

in Section 2.1.4.

2.1.1 Normal-form games

The majority of approaches able to identify Nash equilibria are targeted towards normal-

form games, examples include the Lemke-Howson (Lemke and Howson, Jr., 1964) and

Porter-Nudelman-Shoham (PNS, Porter et al. (2004)) algorithms as well as the MIP-

Nash proposed by Sandholm et al. (2005) based on a mixed-integer programming formu-

lation. We describe the MIP-Nash algorithm in detail in Section 3.2.2, for an overview

of the Lemke-Howson algorithm and other general equilibrium computation approaches,
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see Stengel (2007). Algorithms requiring a normal-form representation of games (such

as MIP-Nash) cannot be used to effectively address MPGs. Köppe et al. (2011) point

out already the normal-form representation of such a game is exponential in size, since

all possible strategy combinations between players need to be enumerated.

2.1.2 Generalized Nash equilibrium problem (GNEP)

The GNEP is a generalization of the original Nash equilibrium problem (NEP) in which

the player’s action set is no longer static but can instead depend on the competing

players’ selected strategies. For a formal definition of GNEPs and an extensive review

of contributions in the field, see Facchinei and Kanzow (2007). Whereas finite MPGs

and Integer programming games (IPGs) assume discrete or integer decisions, in GNEPs

decision variables are usually assumed to be continuous (see, e.g. the review of Facchinei

and Kanzow (2007)). Discrete or integer decisions are not adequately captured in these

continuous formulations. For example, solving the continuous relaxation of an IPG does

not provide any meaningful information on the number of Nash equilibria, let alone the

detailed strategy set of any (mixed) equilibrium of the original IPG (Carvalho et al.,

2022). However, there have been previous efforts to enable computation and selection of

Nash equilibria in discrete or mixed-integer GNEPs (Hemmecke et al., 2009; Sagratella,

2017a, 2019; Sagratella et al., 2020). Note that these efforts are limited to pure strat-

egy equilibria, which may fail to exist in general: For example, Hemmecke et al. (2009)

propose an algorithm to identify pure equilibria in discrete GNEPs with monotonously

decreasing payoff functions. In Sagratella (2017a) different solution methods to iden-

tify pure equilibria for mixed-integer GNEPs with a potential function are discussed.

Sagratella (2019) presents an enumerative algorithm to compute the whole pure equilib-

rium set for GNEPs with mixed-integer variables. Subsequently, Sagratella et al. (2020)

show an application of this approach to the (competitive) fixed-charge transportation

problem.

2.1.3 Mathematical and integer programming games

Methods utilizing the succinct representation of large strategy sets in MPGs and IPGs

are currently limited to the identification of one equilibrium out of many, or are restricted

to the set of all pure equilibria. Literature on general MPGs is scarce with the term only

recently being introduced by Dragotto et al. (2021). Most prior work focuses on special

cases of MPGs, such as IPGs (Carvalho et al., 2022; Huppmann and Siddiqui, 2018;
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Köppe et al., 2011; Sagratella, 2016, 2017b), or reciprocally-bilinear games (Carvalho

et al., 2021).

Köppe et al. (2011) provide a theoretical approach to compute pure Nash equilib-

ria for IPGs where payoff-functions are the differences between piecewise-linear convex

functions. However, the authors acknowledge that the actual implementation of their

algorithm and its practical application to integer programming games are still out of

reach.

Sagratella (2016) proposes a branching method capable of computing the set of all pure

equilibria of IPGs, which he calls Nash equilibrium problems with discrete strategy sets.

Similar to its GNEP generalization (Sagratella, 2019), the approach iteratively solves

the continuous relaxation of the IPG, and does not determine mixed equilibria. For a

newly introduced class of “2-groups partitionable” games, the author proves existence of

a (pure) equilibrium and provides an alternative, computationally advantageous Jacobi-

type algorithm for the identification of this equilibrium. Sagratella (2017b) generalizes

this algorithm to provide approximate (pure) equilibria for mixed-integer, “2-groups

partitionable” games and presents an application for a Cournot oligopoly model.

Huppmann and Siddiqui (2018) study “binary equilibrium problems” in the context

of electric power markets. In contrast to general IPGs with integer decision variables,

they restrict the decision variables to be binary. Their proposed solution method is

able to find pure-strategy Nash equilibria or “quasi-equilibria” in situations where no

pure equilibrium exists, while neglecting any mixed equilibria. In a quasi-equilibrium

no player can improve their own payoff through unilateral deviation by more than the

compensation payment offered by a third party operator or regulator. Using a multi-

objective program, this third party operator is assumed to select a quasi-equilibrium

in which the required compensation is minimal, in combination with another solution

criterion (e.g., welfare-maximization). In contrast, the approach discussed in Chapter 3

does not rely on the existence of a third party for equilibrium selection. The approach

by Huppmann and Siddiqui (2018) scales well in the number of players (the authors

solve instances with up to 64 players), but is limited in the number of binary decisions,

as switching costs need to be determined for all possible realizations of every binary

decision.

Carvalho et al. (2022) propose a Sample generation method (SGM) for IPGs. They

start with a sample IPG, where players are restricted to a small subset of their orig-

inal action set. As this sample is finite and sufficiently small, it can be transformed

into normal-form through the enumeration of all strategy combinations in the sample,
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and traditional equilibrium finding approaches can be applied. The authors propose the

application of PNS (Porter et al., 2004) to identify a Nash equilibrium of this sampled

game. Having identified this (sample) equilibrium, they search for best-responses for

each player individually. If there is a best-response strategy for any player, that gives

the respective player an incentive to deviate from the identified (sample) equilibrium,

they add the best-response strategy to the player’s sampled strategy set and repeat the

identification of an equilibrium in the new sampled game and the subsequent search for

best-responses. The algorithm terminates when no best-response can be found to the

Nash equilibrium of the sampled game, which proves that it is indeed an equilibrium to

the original IPG. The SGM can compute a single Nash equilibrium for IPGs. While the

identified equilibrium heavily depends on the initialization, the authors did not identify

systematic advantages of any examined initialization procedure. With a larger initial

sample (or using multiple different initializations) the SGM could be used to find addi-

tional equilibria, however, the identification of all equilibria cannot be guaranteed. In

an effort to keep the sample size at a minimum, Carvalho et al. (2022) discuss an alter-

native to the SGM, called m-SGM. In the m-SGM, in each iteration the PNS algorithm

is limited to equilibria that are supported by the newly added best-response strategies.

In case such an equilibrium fails to exist, the method backtracks to the sample of the

previous iteration and calculates an alternative equilibrium to that sample. Although

backtracking rarely occurs in their numerical experiments, the authors report computa-

tional advantages due to the limitation of PNS to equilibria that include newly added

best-response strategies.

For reciprocally-bilinear games, in which each player’s objective is linear in its own

variables and bilinear in its competitors’ variables, Carvalho et al. (2021) propose a

“cut-and-play algorithm” based on constructing increasingly tight approximations of the

convex hull of each player’s action set in the original game and solving the corresponding

approximated game. Their approach returns a single mixed equilibrium or a proof of

non-existence of mixed equilibria.

2.1.4 Equilibrium selection

The introduced algorithms for IPGs (Carvalho et al., 2022; Huppmann and Siddiqui,

2018; Köppe et al., 2011; Sagratella, 2016), or discrete GNEPs (Hemmecke et al., 2009;

Sagratella, 2017b, 2019) do identify a single mixed equilibrium, or some or all pure

equilibria, but cannot identify all mixed equilibria, and thereby do not fully address

the equilibrium selection problem. However, some authors acknowledge the problem of
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multiple equilibria and extend their equilibrium identification approaches accordingly to

partially address the equilibrium selection problem. For example, Sagratella (2019) pro-

poses an approach to select an equilibrium among the set of all pure equilibria. Here, the

selection criterion can be any real-valued function (defined over the equilibrium set), by

consequence the selected equilibrium is not necessarily unique nor unambiguous. Simi-

larly, Carvalho et al. (2022) discuss an extension of their SGM-approach to choose the

optimal (e.g., welfare-maximizing) equilibrium among the set of all correlated equilibria.

In general, theory on equilibrium selection for non-repeated games builds on refine-

ments of the original Nash equilibrium, ruling out any unreasonable (e.g., dominated)

strategies. Following this concept, there are several approaches that enable the reduction

of Nash equilibria to a smaller set of “stable” equilibria (Myerson, 1978; Selten, 1975).

While the exact definition of stability differs between these approaches, they share a

common drawback: They do not reduce the set of Nash equilibria to a single equilib-

rium, which limits their predictive power. Based on further refinements, the methods

proposed by Harsanyi and Selten (1988) and Harsanyi (1995) arrive at a single selected

equilibrium.

Harsanyi and Selten (1988) propose a one-point solution theory: Among a set of equi-

libria, they select the most stable equilibrium predominantly based on pay-off dominance

and risk dominance properties. A pay-off dominant equilibrium yields higher payoffs for

all players compared with a pay-off dominated alternative. Playing accordingly with a

risk-dominant equilibrium yields higher expected payoffs across players compared with a

risk-dominated equilibrium. This expected payoff is calculated based on the assumption

that the likelihood of player p to play accordingly with an equilibrium can be measured

using the ratio of p’s payoff within this equilibrium compared with p’s payoffs for strate-

gies in alternative equilibria. As this stability concept does not necessarily determine

a unique solution, the authors complement their selection theory with a tracing proce-

dure that substitutes a set of (equally stable) equilibria with their centroid. Repeated

elimination of dominated candidates and substitution yields a unique result in a finite

number of steps.

In their original theory of equilibrium selection, Harsanyi and Selten (1988) assume

that players choose the payoff-dominant equilibrium in cases where a payoff-dominant

equilibrium is risk-dominated by an alternative equilibrium. As Aumann (1990) pro-

vides examples in which no rational player would choose the payoff-dominant over the

risk-dominant equilibrium, Harsanyi (1995) proposes a new multilateral risk-dominance

measure as the sole criterion for equilibrium selection.
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Aware that there are alternative equilibrium selection theories, and that theory on

equilibrium selection cannot fully cover behavioral decision making in practice (for an

experimental comparison, see for example Charness et al. (2014)), we focus on Harsanyi’s

equilibrium selection theory when referring to the expected outcome of a game in the

following.

2.2 Inverse optimization and inverse equilibrium

problems

Given a (feasible) solution of an optimization problem (forward problem), the objective

of inverse optimization is to find a set of parameter values such that a variation of the

forward problem based on these parameters leads to optimality of the provided solution.

If there are multiple parameter values that satisfy this condition, usually the parameter

values requiring the smallest adjustment with regards to the original problem are selected

(Heuberger, 2004).

Among other applications, inverse optimization has been employed to identify arc

capacities or costs that render a feasible solution optimal in minimum cut, minimum

cost flow and assignment problems (Ahuja and Orlin, 2001), to elicit supplier costs in

lot-sizing problems (Egri et al., 2014; Pibernik et al., 2011), to improve the incentive

design for the sharing of savings and investments among Medicare providers (Aswani

et al., 2019), and to learn the route choice behavior of experienced drivers in vehicle

routing problems (Chen et al., 2021).

Inverse optimization models differ in the underlying forward problem, focusing on (i)

linear problems (Ahuja and Orlin, 2001), (ii) conic problems (Zhang and Xu, 2010) or

(iii) (mixed-)integer programs (Bodur et al., 2022; Moghaddass and Terekhov, 2021;

Schaefer, 2009; Wang, 2009). As we study the inverse optimization of IPGs, our work

is most closely related to (mixed-)integer programs (iii). Here, Schaefer (2009) pro-

vides a reformulation of an inverse integer problem into a linear program, exponentially

large in the number of constraints of the original inverse problem. Wang (2009) dis-

cuss a cutting-plane algorithm for inverse mixed-integer programs, which decomposes

the inverse optimization problem into a (relaxed) master problem and a cut-generating

subproblem. Moghaddass and Terekhov (2021) extend this to multiple, noisy observa-

tions. Additionally, Bodur et al. (2022) propose using interior points in combination with
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trust-regions instead of extreme points of the subproblem to speed up the generation of

cuts.

Another distinction of inverse optimization models is the differentiation between (a)

deterministic or (b) noisy settings (Aswani et al., 2018). Chan et al. (2021) refer to the

deterministic setting as “classic inverse optimization”, and call the noisy setting “data-

driven inverse optimization”. In a deterministic setting, only a single optimal solution

is observed and used for parameter estimation. In contrast, in Chapter 5 we examine a

noisy setting, allowing for multiple, approximately optimal observations. Whereas most

of the aforementioned contributions (Ahuja and Orlin, 2001; Schaefer, 2009; Wang, 2009;

Zhang and Xu, 2010) focus on deterministic settings, Aswani et al. (2018), Bärmann et al.

(2017), and Bertsimas et al. (2015) and Moghaddass and Terekhov (2020, 2021) introduce

methods that combine inverse optimization with multiple and/or noisy observations.

Lastly, inverse optimization approaches can be categorized based on their ability to

capture (simultaneous) competition between multiple decision-makers. While prior ap-

plications of inverse optimization to equilibrium problems with multiple decision-makers

exist, these contributions are limited to continuous decisions and cannot address IPGs.

For example, Bertsimas et al. (2015) propose a data-driven estimation approach to

inversely optimize parameters leading to observed Nash and Wardrop equilibria. In

exemplary applications, they derive the cost functions in congestion games or demand

information under Bertrand-Nash competition. Similarly, Allen et al. (2022) use inverse

optimization to learn cost functions in generalized Nash games with continuous decision

variables and joint constraints between players.

2.3 Location selection

Location selection is a prime example for strategic integer (or binary) decision making

under competition. Location decisions are often high cost and not easily reversible, at the

same time their impact on customer choice can be considerable. As such, it is crucial to

include potential competitor (re-)actions into one’s location selection. In the following,

we differentiate between location selection for alternative fuel stations (Section 2.3.1),

relying predominantly on a flow-based representation of customer demand traveling from

origin to destination, and classical retail location selection (Section 2.3.2).
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2.3.1 Alternative fuel station location selection

Recent literature on alternative fuel station locations focuses on the optimal location of

Electric vehicle (EV) charging stations and rarely addresses the Hydrogen fuel station

(HFS) location problem (Ko et al., 2017). Pagany et al. (2019) provide a comprehensive

review of more than 160 contributions proposing spatial localization methodologies for

the EV charging infrastructure. Guo et al. (2016) propose an equilibrium model for com-

petitive infrastructure planning of fast charging stations. Their multi-agent optimization

problem with equilibrium constraints builds on node-based demand formulations.

While the HFS location problem is related to these EV charging station applications,

there are some key characteristics that differ and motivate dedicated research for HFS:

• Charging time and station capacity: Even in the best-case with DC-based fast

chargers, Battery electric vehicles (BEVs) require charging times of more than 20-

30 minutes whereas refueling at an HFS takes an Fuel cell electric vehicle (FCEV)

only 3-5 minutes (Shoettle and Sivak, 2016). This implies that limited capacities

(and queuing of vehicles) are important to consider for chargers (see e.g., Jung et

al. (2014) and Upchurch et al. (2009)), but are not as crucial for hydrogen fueling

stations.

• Investment costs: The investment costs for hydrogen fueling stations exceed the

investment cost for charging stations by factor 10-25. Investment costs for fast DC-

chargers are below 100k EUR (Schroeder and Traber, 2012), whereas investment

costs for HFS range from 1 to more than 2.4mn EUR (Apostolou and Xydis, 2019).

With cost implications of this magnitude, considering uncertainties in competitor

actions becomes even more important for HFS location selection.

• Existing infrastructure: While charging station location selection for EVs can be

limited through the accessibility of a high-voltage grid (Muratori, 2018), hydrogen

fueling stations will be limited by the existence of conventional fuel stations or

will be constructed jointly with conventional fuel stations as they share similar

considerations with regards to safety concerns and space requirements (Dagdougui

et al., 2018).

As drivers – and particularly drivers relying on alternative fuels – tend to refuel along

their route (e.g., during their commute) rather than on start- or end-points of their trip

(Kuby et al., 2013), fuel station location models commonly assume path-based demand.

Whereas in node-based location models (e.g., p-median) demand is concentrated to
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distinct nodes in the network, path-based demand models assume that demand occurs

along a path and any facility located along the path could serve the customer mid-route

(Revelle and Eiselt, 2005). For alternative fuel stations, Upchurch and Kuby (2010)

show that path-based demand models are more robust: Facilities located with a path-

based demand model perform better on a node-based objective function, than facilities

located with a node-based demand model do on a path-based objective function.

Facility location models accounting for path-based demand were introduced by Hodg-

son (1990) as an extension to the original covering location-allocation problem by Cooper

(1963) and dubbed the Flow capturing location-allocation model (FCLM). The FCLM

maximizes captured path-based demand by strategically placing facilities along the route

of customers. Since its inception, the FCLM has been extended to account for small path

deviations or detours (Berman et al., 1995a) or a limited vehicle driving range (He et al.,

2018; Kuby and Lim, 2005; Kuby et al., 2009). MirHassani and Ebrazi (2013) discuss

a flexible reformulation of this range-constrained FCLM (also called flow refueling loca-

tion model (Kuby and Lim, 2005, FRLM)), that proves computationally advantageous

for larger problem sizes. Arslan et al. (2019) develop a branch-and-cut algorithm to

further improve solution times. Other extensions address stochastic customer demand

(Berman et al., 1995b) and multi-period network expansions (Chung and Kwon, 2015).

While some prior extensions to the FCLM (e.g., Berman and Krass (1998) and Wu and

Lin (2003)) address competition, in contrast to our setting of simultaneous (emerging)

competition, they assume a static competitive landscape with a priori knowledge about

competitor locations.

There are several prior applications of the FCLM to the hydrogen fuel station location

problem: Variations of the FCLM addressing range limitations with strategic placement

of hydrogen fuel stations have been discussed (Capar and Kuby, 2012; Kim and Kuby,

2011; Kuby et al., 2009; Lim and Kuby, 2010; Upchurch and Kuby, 2010), as well as the

option to account for (slight) deviations of customers from their shortest path (Huang

et al., 2015; Kim and Kuby, 2011; Li et al., 2016). The majority of HFS location models

approaches the problem from an infrastructure planning or policy making perspective.

As such, they do not consider the competitive nature of multiple market players simul-

taneously entering an emerging market. Only Bersani et al. (2009) address possible

competition within their framework. However, similar to the general competitive FCLM

formulations (Berman and Krass, 1998; Wu and Lin, 2003), competitor locations are as-

sumed to be known beforehand, rather than being sequentially or simultaneously decided

by new entrants.
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In conclusion, prior work on path-based models for hydrogen fuel station, alternative

fuel station or electric charging station locations has been limited to non-competitive

or simplified competitive settings where competitor locations are known a priori. How-

ever, as FCEV adoption and by consequence the competitive landscape of HFSs is still

emerging, any location that is optimal today, might become sub-optimal in the short-

term based on competitor actions.

2.3.2 Competitive location selection in retail applications

Competition in facility location has been studied intensively (see the reviews Drezner,

2014; Eiselt et al., 2019) since the seminal works of Hotelling (1929) and Huff (1964)

who considered location choice on a line and probabilistic customer choice behavior,

respectively. Commonly, competitive location models focus on optimal location decisions

of one retailer and assume competitor location decisions to be static (Plastria, 2001) or

to be subject to a leader-follower relationship (Eiselt and Laporte, 1997). Studies of

optimal locations under simultaneous competition (see e.g., Chapter 4 or Godinho and

Dias, 2010) assume full knowledge of both the competitors’ profit function and the

customers’ store choice behavior.

To approximate this customer choice and competitive interactions from empirical data,

a second stream of literature suggests to use maximum likelihood estimation (e.g., Seim,

2006; Zhu and Singh, 2009) or regression models (e.g., Shriver and Bollinger, 2022) on

sales level data. For example, Seim (2006) empirically examines location decisions for

video retailers in a simultaneous game of incomplete information. Zhu and Singh (2009)

extend this model to allow for firm-specific competitive effects and show an application to

discount retailers (Wal-Mart, Kmart, Target). They quantify strong returns for spatial

differentiation, given negative impacts among competitors in close proximity. Shriver

and Bollinger (2022) show that proximity to a store shifts customers from an online

channel to brick-and-mortar stores and limits the chain’s ability to price discriminate.

However, maximum likelihood estimation and regression models require a large and

detailed amount of data, such as historical sales data on the point of sales level which

might not be available to outside parties (e.g., new entrants).

Similarly, parameter estimation in Huff-like models requires more data than publicly

available. Leszczyc et al. (2004) estimate parameters of such a choice model using

customer-specific data to explain competitive effects between retailers, differentiating

between single-purpose and multi-purpose shoppers. Li and Liu (2012) use an extended

Huff model to examine competition between Walmart and K-Mart based on empirical
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data for Cincinnati. They find that location choice drives Walmart’s competitive advan-

tage rather than an inherent brand effect. Pancras et al. (2012) calibrate a multinomial

logit choice model to investigate the influence of cannibalization on facility location

of fast-food restaurants in a dynamic environment. They combine sales data from a

fast-food chain with demographic data to derive detailed insights into the level of can-

nibalization between restaurants of this chain. For the examined chain, they find that

cannibalization effects between two restaurants belonging to the same chain gradually

decrease with distance and are negligible at a distance of up to 10 miles. They do not

account for competitive effects with stores belonging to competing chains, partly due to

the lack of insight into competitors’ store-level sales data.
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Chapter 3

Equilibrium identification and selection

in finite games

Finite games provide a framework to model simultaneous competitive decisions among a

finite set of players (competitors), each choosing from a finite set of strategies. Potential

applications include decisions on competitive production volumes, over capacity deci-

sions to location selection among competitors. The predominant solution concept for

finite games is the identification of a Nash equilibrium. We are interested in larger finite

games, which cannot efficiently be represented in normal-form. For these games, there

are algorithms capable of identifying a single equilibrium or all pure equilibria (which

may fail to exist in general), however, they do not enumerate all equilibria and cannot

select the most likely equilibrium.

We propose a solution method for finite games, in which we combine sampling techniques

and equilibrium selection theory within one algorithm that determines all equilibria and

identifies the most probable equilibrium. We use simultaneous column-and-row gen-

eration, by dividing the n-player finite game into a MIP-master problem, capable of

identifying equilibria in a sample, and two subproblems tasked with sampling (i) best-

responses and (ii) additional solution candidates.

We show algorithmic performance in 2- and 3-player knapsack games as well as facility

location and design games, highlighting differences in solutions between the proposed ap-

proach and state of the art. Thereby, we enable decision makers in competitive scenarios

to base their actions on the most probable equilibrium.

19



Chapter 3 Equilibrium identification and selection in finite games

3.1 Introduction

3.1.1 Problem setting

Hardly any decision is made in isolation and in fact most decision makers are dealing

with fierce competition when trying to find the optimal decision for their problem. The

expected outcome of such a competitive problem setting, or the individually optimal

course of action for each competitor is not evident. Finite games allow us to model

the simultaneous competitive decision making between a finite set of players, where

each player is restricted to a finite set of strategies (action set). We are interested in

large finite games, where the size of the action set impedes the full enumeration of all

possible strategy combinations among all players in normal-form. Instead, we assume

the action set of each player to be represented succinctly by a set of (potentially non-

linear) inequalities, payoffs are calculated based on a player specific objective function

depending on the players’ own decisions and decisions of their competitors. We assume

a non-cooperative full-information game, where players are risk-neutral and purely self-

interested, while having complete information of each other’s payoffs and action sets.

As we assume finite action sets, the existence of mixed equilibria follows directly from

Nash (1951). While this guarantees the existence of at least one equilibrium, it also

implies the possible existence of multiple equilibria. The existence of multiple Nash

equilibria is an issue of considerable practical importance (Köppe et al., 2011), leading

to twofold implications: First, this makes it necessary to have a systematic methodology

that can find all equilibria to a given finite game. Second, the methodology should

be able to select the most probable equilibrium, as the enumeration of (all) possible

equilibria holds limited practical value: A specific Nash equilibrium is a reasonable

outcome of a game, only if every player knows which Nash equilibrium the competitors

are intending to play (Harsanyi and Selten, 1988). In the general case of multiple Nash

equilibria, this can only be the case if there is pre-play communication between players

or, in non-cooperative games, if all players adhere to the same theory or principle when

selecting one among multiple Nash equilibria.

The concept of finite games has many applications; among them are investment deci-

sions in manufacturing technologies (Röller and Tombak, 1993) or location selection and

supply chain design under competition (Dobson and Karmarkar, 1987; Serra et al., 1992),

as well as discrete capacity games (Anderson et al., 2017) or games modeling assortment

competition with multiple products (Federgruen and Hu, 2015). Within transportation

and traffic science, finite games can be used to model and compute user equilibria (the
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steady-state traffic flow pattern, in which no traveler benefits from changing their route,

see Friesz and Bernstein, 2016). In addition, finite games can be used to adequately

model problems that, despite being integer by nature, are as of now predominantly

discussed in their relaxed, continuous variant. Examples include decisions on (discrete)

capacities, as in (simultaneous) variants of the original Spence-Dixit-Model (Dixit, 1980;

Spence, 1977) or competitive newsvendor problems (Lippman and McCardle, 1997), as

well as decisions on (discrete) booking class capacity levels in revenue management games

among airlines (Netessine and Shumsky, 2005). Similarly, competitive inventory models

(e.g., Cachon and Zipkin, 1999) usually assume continuous variables although fractions

of (potentially non-divisible) goods might misrepresent reality.

3.1.2 Research question and contribution

We develop a solution approach for finite games by integrating the identification of all

equilibria with the subsequent selection of the single most probable equilibrium. Thus,

we answer the following two research questions (RQ):

RQ 1.1 How can we identify all equilibria in a finite game?

RQ 1.2 Having identified all equilibria in a finite game - how can we select the equi-

librium that is expected to be the outcome of the game based on the respective

player incentives and the equilibrium selection theory by Harsanyi (1995)?

In answering these two questions, our research adds both methodological and man-

agerial contributions to the existing literature. Methodologically, we extend prior equi-

librium identification methods (Carvalho et al., 2022; Sandholm et al., 2005) to identify

not only one but all Nash equilibria of an n-player finite game (for small n). We then

adapt the existing equilibrium selection theory by Harsanyi (1995), to enable its appli-

cation to finite games, in which the size of the action sets impedes their full enumeration

in normal-form. We highlight our contribution towards managerial decision making in

competitive scenarios by illustrating for selected examples how prior approaches return

unlikely equilibria.

3.2 Equilibrium identification and selection algorithm

We propose an integrated solution method, combining the identification of all Nash

equilibria of a finite game in an exhaustive column-and-row generation based method

with the adaption of Harsanyi’s equilibrium selection theory for finite games.
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Chapter 3 Equilibrium identification and selection in finite games

3.2.1 Definition of finite games

A finite game is a decision problem between a finite number of risk-neutral, non-

cooperating playersN = {1, 2, . . . , n} that possess full information of each other’s payoffs

and action sets. Players decide simultaneously. In a finite game, each player p ∈ N can

choose from the non-empty and finite set of strategies Xp (action set). Let Qp denote

the number of decision variables of player p. A strategy xp = (xp
1, . . . , x

p
i , . . . , x

p
Qp) ∈ Xp

of player p is a specific choice of (not necessarily integer) decision variables xp
i , chosen

from a finite set of values Xp
i : x

p
i ∈ Xp

i . Decision variables xp
i can be real-valued, as long

as this set is ensured to be finite (i.e., discrete and bounded). The finite action set Xp

is defined by Kp inequalities (gk, including the upper and lower bounds of xp
i ) in only

p’s decision variables xp:

Xp = {xp | gk(xp) ≤ 0, ∀k ∈ {1, . . . , Kp}} ≠ ∅ (3.1)

This definition of Xp through a set of inequalities (3.1) enables a succinct representation

of larger action sets. It also permits the usage of mathematical programming solvers in

the application of the proposed methodology to applied problem settings (see Section

3.3). Different to Generalized Nash equilibrium problems (GNEPs), this action set does

not depend on decisions from other players. Each player p maximizes their own payoff

Πp, a function of their own strategy xp, and the selected strategies of their competitors

x−p. Here, we use (·)−p to denote (·) (the respective variable) for all p̃ ∈ N \ {p}. Thus,
x−p refers to a strategy combination across all competitors of p, and X−p is the action

set encompassing all competitor strategy combinations. Given x−p ∈ X−p, a player finds

a best-response to x−p by solving:

max
xp∈Xp

Πp(xp, x−p) (3.2)

A pure profile of strategies x = (xp, x−p) ∈ X= Xp ×X−p that solves (3.2) for all

players, such that no player can benefit from unilaterally deviating from xp, is called

a pure(-strategy) Nash equilibrium (Nash, 1951). Such pure equilibria may not exist

for some finite games, as shown for the special case of Integer programming games

(IPGs) by Carvalho et al. (2018a). We therefore introduce the following notation to

account for general, mixed(-strategy) Nash equilibria: φp = (φxp)xp∈Xp denotes a mixed

strategy of player p, who chooses to play strategy xp with probability φxp . Equally,

φx−p denotes the probability that the competitors p̃ ̸= p each select their respective
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3.2 Equilibrium identification and selection algorithm

strategy xp̃ as part of x−p = (xp̃)p̃∈N\{p}, and with φ−p = (φx−p)x−p∈X−p a resulting

mixed strategy combination. The expected payoff for player p in the mixed strategy

profile φ = (φp, φ−p) is:

Πp(φ) =
∑

xp∈Xp

∑
x−p∈X−p

φxpφx−pΠp(xp, x−p) (3.3)

Accordingly, the expected payoff for player p playing a pure strategy xp in response to

a mixed strategy combination φ−p is defined as:

Πp(xp, φ−p) =
∑

x−p∈X−p

φx−pΠp(xp, x−p) (3.4)

A mixed Nash equilibrium is a mixed strategy profile φ that satisfies (Nisan et al., 2007,

p.55):

Πp(φ) ≥ Πp(xp, φ−p), ∀p ∈ N, ∀xp ∈ Xp (3.5)

3.2.2 Equilibrium identification

The proposed exhaustive Sample generation method (eSGM) builds on the Sample gen-

eration method (SGM) (of Carvalho et al., 2022): Here, an IPG is reduced to a small

sample of enumerated strategies (sampled game), by restricting the strategy sets of all

players to a subset of their respective action set Xp, and subsequently extended, based

on identified (player-specific) best-responses to an equilibrium of this sampled game.

Through the iterative identification of a sample equilibrium and best-responses to this

equilibrium, the SGM converges to a Nash equilibrium of the IPG.

The m-SGM (Carvalho et al., 2022) is an extension of the SGM in which the sup-

port enumeration space is restricted to include newly added best-responses. When there

is no equilibrium that includes the newly added best-response, the best-responses are

discarded and an alternative equilibrium to the previous sample is computed. This

approach reduces the size of the sampled game and can thus be computationally ad-

vantageous when identifying a single equilibrium. As we are interested in characterizing

the full set of equilibria, and not only the equilibrium supported by the newly added

best-response, this advantage would not be applicable in the eSGM. We therefore build

on the standard SGM.

In contrast to the standard SGM, we require two key extensions. Jointly, these two

extensions enable the identification of all Nash equilibria of a finite game. A process
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Chapter 3 Equilibrium identification and selection in finite games

flow diagram of the proposed eSGM algorithm can be found in Appendix 3.C. As with

the standard SGM, we start with a small sample of the original finite game. This small

sample of the original finite game implies that the action of all players is restricted to

the respective subset Sp ⊂ Xp of their original strategies and the sampled strategy space

S = Sp×S−p ⊂ X is sufficiently small to allow the transformation of the sampled game

into normal-form. Thereby, we initially neglect the majority of possible player strategies

(Xp \Sp). We determine the set ΦS of all Nash equilibria of the sampled game by using

an extension of the MIP-Nash algorithm (Sandholm et al., 2005) to n-player games. The

extended MIP-Nash algorithm represents the master problem of the proposed approach.

We refer to a sampled strategy xp ∈ Sp as a column of this problem, as increasing

the sample by one strategy will introduce additional decision variables (representing the

added strategy). As any newly added column (strategy) will also lead to additional

column-dependent constraints, we refer to this approach as a combined column-and-row

generation approach (Muter et al., 2013).

The master problem is a constraint satisfaction problem without objective func-

tion. The absence of an objective function means that, in contrast to classical column-

generation approaches (see e.g., Barnhart et al., 1998), we are not interested in extending

the master problem with columns that improve upon an incumbent solution of the mas-

ter problem. Instead, in subproblem I, we find destabilizing best-responses (or prove the

lack thereof) that render incumbent solutions of the master problem infeasible. Similarly,

in subproblem II, we find additional candidate equilibria (or prove the lack thereof), that

could represent additional solutions to the master problem.

In case any of the two subproblems are able to generate additional columns, we add

the generated columns and the column-dependent rows to the master problem and re-

solve the extended master problem to determine the equilibria of the increased sample

game. We terminate the algorithm once no additional candidate equilibrium and no

further destabilizing best-response can be identified.

The proposed master problem is a MILP for 2-player games, a MIQCP for 3-player

games, and games with n > 3 players accordingly lead to MIP formulations with polyno-

mial degrees of n− 1. For games with up to 3 players, we can solve this master problem

using quadratic solvers, for practical applications with more than 3 players, non-linear

solvers or reformulations would be required. This statement is true regardless of the

payoff function Πp. Rather than using the full original payoff function defined in (3.2),

payoffs in the master problem are represented as input parameters.
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3.2 Equilibrium identification and selection algorithm

However, the two subproblems make use of the payoff function Πp. In subproblem I,

the effect of competitor actions within Πp is fixed. In contrast, subproblem II directly

uses the payoff function of the original finite game as an objective. While we do not

impose any conditions on the payoff functions Πp in general, they clearly drive the

complexity of the subproblems.

Initialization

For the SGM (and by consequence for the proposed eSGM), the choice of the initial

sample S can influence the required solution times (Carvalho et al., 2022). However, in

contrast to the SGM, for the eSGM the identified solution does not change with the used

initialization: In Theorem 3.2, we will show that – independent from the initialization –

all equilibria can be identified. Carvalho et al. (2022) propose to initialize their algorithm

with strategies that are optimal in absence of competition or with strategy combinations

that maximize the total welfare. In the following, we formalize these two initializations,

propose an alternative initial solution, and introduce δ as a measure of competitiveness

of a simultaneous (Nash) game that assesses the benefit of taking into account apparent

competition.

We denote with xLB = (xp
LB, x

−p
LB) the first initialization proposed by Carvalho et al.

(2022), in which players neglect any apparent competition and choose the optimal strat-

egy when all competitor variables are set to 0. Depending on the problem formulation

this zero vector can be infeasible for the competitors. Yet, even in this case, xLB can be

a viable initialization, representing the (feasible) best-response of each player p to the

infeasible zero vector of its competitors.

Building on this competition-neglecting initialization, we propose an alternative ini-

tialization xUB,p= (xp
UB,p, x

−p
UB,p), in which player p maximizes the payoff Πp by choosing

its own decision variables xp
UB,p and the competitors’ decision variables x−p

UB,p, whilst

ensuring that each competitor p̃ ̸= p receives at least the payoff of the lower bound

initialization Πp̃(xLB):

xUB,p =argmax
xp,x−p

Πp(xp, x−p) (3.6)

s.t. Πp̃(xp̃, x−p̃) ≥ Πp̃(xLB) ∀p̃ ̸= p (3.7)

Alternatively, Carvalho et al. (2022) propose the initialization with social welfare op-

timal strategies. We denote with xWF = (xp
WF, x

−p
WF) such a welfare-maximizing strategy
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Chapter 3 Equilibrium identification and selection in finite games

combination, in which players coordinate to maximize the cumulative payoff across all

players:

xWF = argmax
xp,x−p

∑
p∈N

Πp(xp, x−p) (3.8)

Commonly, the Price of Anarchy (PoA) and the Price of Stability (PoS) (see Koutsou-

pias and Papadimitriou, 1999; Nisan et al., 2007) are used as game-theoretic measures

to determine the (in-)efficiency of equilibria or the benefit of third party (e.g., govern-

mental) involvement in non-cooperative games. As we are interested in the necessity of

a game theoretic formulation (i.e., how important it is for competitors to recognize com-

petition), we propose to extend the PoA and the PoS with a measure of competitiveness

based on the introduced initializations (xLB, xUB,p):

Definition 3.1 (Competitiveness of a non-cooperative game).

We define the competitiveness δ of a non-cooperative, full information game, as the

average difference in payoffs across all players between the initializations (xLB, xUB,p):

δ =
1

n

∑
p∈N

Πp(xUB,p)− Πp(xLB)

Πp(xUB,p)
(3.9)

0 ≤ δ ≤ 1 (3.10)

Without loss of generality we assume positive payoffs. The more beneficial it is for

players to react to apparent competition, the larger the enumerator and the closer δ to 1.

In a non-competitive game, where no player can gain an advantage by deciding on behalf

of competitors, δ equals 0. In contrast, in a fully competitive game, where neglecting

competition would yield no payoff at all, δ equals 1.

Computation of all Nash equilibria for small finite games (master problem)

The sufficiently small size of the sampled game enables the use of general (normal-

form based) algorithms for equilibrium identification. In contrast to the PNS algorithm

(Porter et al., 2004) adopted by Carvalho et al. (2022), we opt for the application of

MIP-Nash. While PNS shows comparable performance when only a single equilibrium

is computed, MIP-Nash has computational advantages when identifying all equilibria

of a (sampled) game (Sandholm et al., 2005).

The MIP-Nash algorithm proposed by Sandholm et al. (2005) determines all Nash

equilibria of a normal-form game as the set of feasible solutions to a combination of
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3.2 Equilibrium identification and selection algorithm

constraints that ensures zero regret (i.e. no player can benefit from unilateral changes)

for all played strategies. The authors discuss options to further guide the search for an

equilibrium, for example by adding an objective function that maximizes the total welfare

(to find the social-welfare maximizing equilibrium). As we are interested in computing

all equilibria of a sample, we use the constraint formulation without additional objective

function. While the original formulation is given for two player games, we extend the

approach to n-player games in the following.

Recall that φxp refers to the probability of player p playing strategy xp in a mixed

strategy profile φ and Πp(xp, x−p) denotes player p’s payoff in a pure strategy profile

(xp, x−p). We introduce πxp as the expected payoff for player p playing the pure strategy

xp taking into account the respective competitor reactions and their probabilities, πp =

maxxp∈Sp (πxp) as the maximum expected payoff across all xp in the sample Sp and exp

as the regret for playing xp. Lastly, bxp is an auxiliary binary variable, set to zero for all

strategies xp with a positive probability (φxp > 0) and set to one for all strategies that

are not played (φxp = 0).∑
xp∈Sp

φxp = 1 ∀p ∈ N (3.11)

πxp =
∑

x−p∈S−p

(
Πp(xp, x−p)

∏
p̃ ̸=p

φxp̃

)
∀p ∈ N, ∀xp ∈ Sp (3.12)

πp ≥ πxp ∀p ∈ N, ∀xp ∈ Sp (3.13)

exp = πp − πxp ∀p ∈ N, ∀xp ∈ Sp (3.14)

φxp ≤ 1− bxp ∀p ∈ N, ∀xp ∈ Sp (3.15)

exp −Mbxp ≤ 0 ∀p ∈ N, ∀xp ∈ Sp (3.16)

φxp ∈ [0, 1], bxp ∈ {0, 1}, πxp , πp, exp ∈ R≥0 ∀p ∈ N, ∀xp ∈ Sp (3.17)

Constraint (3.11) ensures that the sum of the probabilities φxp across all strategies xp

of player p amounts to 1. The main difference to the original 2-player formulation of MIP-

Nash by Sandholm et al. (2005) lies in (3.12). Here, the expected payoff πxp of a single

strategy xp is determined as the expected value over all possible competitor reactions and

their probabilities. A competitor strategy x−p represents a combination of individual

decisions by all n− 1 competitors. Therefore, the probability φx−p is determined as the

combined probability of all competitors p̃ ̸= p choosing their respective strategy xp̃. We

can calculate this combined probability as the product of the individual probabilities

φxp̃ . Constraint (3.13) defines πp as the maximum payoff for payer p. We calculate the
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Chapter 3 Equilibrium identification and selection in finite games

regret exp = πp − πxp as the difference between this maximum payoff and the payoff for

strategy xp in (3.14). Constraint (3.15) defines the binary auxiliary variable bxp , which is

equal to 0 for played and 1 for unplayed strategies. Indicator constraint (3.16) combines

this auxiliary variable with the regret exp to ensure that only strategies with zero regret

are played (i.e., have a positive probability φxp).

If one player could benefit from unilaterally changing their own strategy, the regret for

this strategy would be larger than zero. By definition, the restriction to strategies with

zero regret leads to a Nash equilibrium, where no player can benefit from a unilateral

change. Hence, the set of solutions to Constraints (3.11)-(3.16) constitutes the set of

Nash equilibria for an n-player game. For sample S, we denote this set of equilibria of

the sampled game by ΦS. Note that MIP-Nash requires games in normal-form, where

the payoff Πp(xp, x−p) is explicitly given for every strategy combination. As already the

calculation of Πp for all strategy combinations of a large finite game would be intractable,

MIP-Nash cannot be directly applied to (unsampled) large finite games.

Identification of best-response solutions (subproblem I)

While any φ ∈ ΦS identified by the master problem (3.11)-(3.16) is guaranteed to be a

Nash equilibrium for the sampled game, this only holds true for the original finite game

if we can prove the non-existence of not yet sampled best-responses for all players in the

solution space of the original finite game.

To identify these best-responses (or prove the lack thereof) we solve the finite game

independently for each player p, while keeping strategies for all other players fixed to

φ = (φp, φ−p). We adapt (3.2) accordingly and solve the objective function:

max
xp∈Xp\Sp

Πp(xp, φ−p) (3.18)

under the condition that the identified best-response has to yield a payoff higher or equal

to the current (sample) equilibrium φ ∈ ΦS:

Πp(xp, φ−p) ≥ Πp(φp, φ−p) (3.19)

Player p’s solution space Xp remains unchanged to the original finite game (3.1). We

solve (3.18) for all players p ∈ N and for all φ ∈ ΦS of the sampled game and collect so-

lutions (best-responses) in the set Xp
b . These best-responses extend the master problem

by columns and column-dependent rows.
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3.2 Equilibrium identification and selection algorithm

Identification of candidate equilibria (subproblem II)

We further extend the sampled game S based on candidate equilibria that are not yet

part of the sampled game but could represent equilibria of the original finite game. Xc

denotes the set of all candidate equilibria, with xc = (xp
c , x

−p
c ) ∈ Xc as a candidate

equilibrium. To keep this set and by consequence the sample size small, we need to find

conditions for candidate equilibria that are fulfilled by all Nash equilibria, while limiting

the number of added non-equilibria.

From the definition of a Nash equilibrium, it becomes evident that every pure strategy

that is part of the support of an equilibrium has to be optimal for the respective player

with regards to unilateral changes. This observation underlies both the MIP-Nash al-

gorithm (Sandholm et al., 2005) and the PNS algorithm (Porter et al., 2004) and is

formalized in (3.20), where xp
c is a pure strategy in player p’s support of the equilibrium

φ (i.e., φxp
c
> 0):

Πp(xp
c , φ

−p) ≥ Πp(xp, φ−p) ∀xp
c∈ {x̃p ∈ Xp | φx̃p > 0}, ∀xp ∈ Xp, ∀p ∈ N (3.20)

For a formal proof and introduction of this best-response condition, see Proposition 3.1

in Nisan et al. (2007, p.55). As testing condition (3.20) for all possible xp ∈ Xp would

essentially imply the complete enumeration of the finite game, we propose (3.21) and

(3.22) as (necessary, but not sufficient) proxy conditions: Any solution xc = (xp
c , x

−p
c )

to the original finite game, where any player p would benefit from unilaterally deviating

from an admissible strategy, that is not yet sampled xp
c ∈ Xp \ Sp, to one of the already

sampled strategies xp ∈ Sp, cannot be part of a Nash equilibrium and will hence not be

considered as a candidate equilibrium.

Πp(xp
c , x

−p
c ) ≥ Πp(xp, x−p

c ) ∀xp ∈ Sp, ∀p ∈ N (3.21)

xp
c ∈ Xp \ Sp, x−p

c ∈ X−p \ S−p (3.22)

We use (3.21) and (3.22) in combination with the solution space of the original finite

game (3.1). Note that for a given player p̂ and a combination of competitor strategies

x−p̂
c we are only interested in the best-response of p̂ satisfying (3.21). We therefore solve

the problem:

maxΠp̂(xp̂
c , x

−p̂
c ) (3.23)
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Once a solution x̂c is found, we add that solution to the set of candidate equilibria

Xc. We determine all candidate equilibria by eliminating every identified solution (x̂c =

(x̂p̂
c , x̂

−p̂
c )) from the solution space through the use of cuts (3.24) until no further solution

can be found:

x−p̂
c ̸= x̂−p̂

c ∀x−p̂
c ∈ X−p̂ \ S−p̂ (3.24)

Here, the cuts (3.24) not only restrict new solutions to be different from x̂c itself, but

remove all possible combinations of xp̂
c with the competitor actions x̂−p̂

c from the solution

space. This is possible, as any alternative reaction xp̃
c to x̂−p̂

c that would lead to a

Nash equilibrium would be sampled during the identification of best-responses. We use

additional cuts to reduce the solution space with each identified candidate solution x̂c

even further: In a new candidate equilibrium, no player can benefit from unilateral

deviation to an already sampled strategy (3.21), just as no player can benefit from

unilateral deviation to a previously identified candidate solution x̂c that is not yet in the

sample S. For each identified solution x̂c, we add:

Πp(xp
c , x

−p
c ) ≥ Πp(x̂p

c , x
−p
c ) ∀p ∈ N (3.25)

Jointly, (3.24-3.25) can significantly reduce the solution space – and therefore the time for

the identification of all candidate equilibria Xc – with each identified candidate solution

x̂c.

Problem (3.23) guarantees optimality (with regards to Πp̂) of all candidate equilibria

for one player p̂. For all other players p ̸= p̂, Xc might include multiple solutions xp
c for

the same competitor strategies x−p
c . In these cases, we subsequently reduce the set Xc

to include only those xp
c that yield higher payoffs for the respective player p in response

to x−p
c .

While the described search for new candidates is formulated for pure strategies, it

fully covers mixed strategy Nash equilibria, as Theorem 3.1 shows. This guarantees that

all pure strategies that are in the support of a pure or mixed equilibrium will be sampled

and by consequence the application of MIP-Nash will yield all equilibria (see Theorem

3.2).

Theorem 3.1. Any pure strategy xp
c in the support of a mixed strategy Nash equilibrium,

that is not already part of the sample S, satisfies constraint (3.21) and will thus be part

of Xc.
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Proof. Suppose there is a pure strategy profile (xp
c , x

−p
c ) that does not satisfy (3.21) and

is not yet part of the sample (xp
c /∈ Sp, x−p

c /∈ S−p), but is in the support of a mixed

strategy Nash equilibrium φ = (φp, φ−p) (i.e., xp
c is played with a positive probability

φxp
c
in φp by player p and x−p

c is played with a positive probability φx−p
c

in φ−p by

p’s competitors). Based on the assumed violation of (3.21), there would have to be a

strategy x̃p with Πp(x̃p, x−p
c ) > Πp(xp

c , x
−p
c ) that would yield a higher payoff for player

p. By consequence, we can rule out favorable payoffs for p if competitors choose to

play x−p
c as a potential reason for xp

c being in the support of φ. I.e., there has to be

another rationale for p to play xp
c . Thus, x

p
c has to be a best-response to an alternative

strategy x̂−p
c played with positive probability φx̂−p

c
in the same equilibrium. At the same

time x̂−p
c cannot be part of the sample S−p, because x̂−p

c ∈ S−p would imply xp
c ∈ Sp

based on the prior sampling of best-responses. As xp
c is a best-response to x̂−p

c , and

xp
c /∈ Sp, x̂−p /∈ S−p, taken together (xp

c , x̂
−p
c ) satisfy (3.21) and xp

c will be sampled in

Xc.

The proof of Theorem 3.1 makes no assumption on the existence of pure equilibria.

Hence, it also guarantees that all pure strategies in the support of a mixed equilibrium

will be sampled, even if there is no pure equilibrium (and by consequence the corre-

sponding mixed equilibrium will be identified subsequently using MIP-Nash).

Termination and optimality

There are two termination criteria that have to be fulfilled at the same time for the

algorithm to terminate:

Xp
b = ∅ ∀p ∈ N (3.26)

Xc = ∅ (3.27)

The algorithm terminates when there is no best-response to any of the identified

equilibria that is not yet sampled (3.26), and when no additional candidate equilibrium

that is not already part of the sampled game S can be found (3.27). To verify the

non-existence of additional best-responses or candidate equilibria, we show infeasibility

of the column-generating subproblems (3.18-3.19) and (3.21-3.24) respectively. When

both termination criteria are met, the algorithm yields all equilibria Φ of the original

finite game (Φ = ΦS).
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Theorem 3.2. Upon termination, the eSGM algorithm yields the full set of Nash equi-

libria (i.e., all pure equilibria and all mixed Nash equilibria with unique support in pure

strategies) to the original finite game.

Proof. Suppose that an identified solution φ ∈ Φ is not a Nash equilibrium of the original

finite game. By definition, at least one player would benefit from unilaterally deviating.

For this player, there would have to be a best-response that ensures a higher pay-off

and the first termination criterion (3.26) would be violated. Further suppose that there

is an equilibrium that is not part of the solution set Φ, with a pure strategy support

that is different from all other identified equilibria in Φ. By consequence, at least one

strategy xp in the support of this equilibrium would not be part of the sampled game

S. As this strategy xp would satisfy (3.21) and (3.22), the set Xp
c would not be empty

and the second termination criterion (3.27) is violated.

As we defined X to be finite, the algorithm terminates after a finite number of steps.

Note that this convergence is guaranteed in cases where conventional best-response dy-

namics fail to converge (e.g., games with conflicting congestion effects, see Feldman and

Tamir, 2012). While the repeated (iterative) improvement steps of players might cycle

in the case of best-response dynamics, the proposed eSGM (as well as the original SGM)

determines best-responses simultaneously for all players and terminates in case they are

already part of the prior sample, thus preventing cycles.

3.2.3 Equilibrium selection

In the following, we build on the equilibrium selection theory of Harsanyi (1995), ensuring

its two main principles: The probability of a player p to choose a certain strategy is higher

compared with the probability of an alternative strategy, if the former is a best-response

to a larger number of potential (mixed) strategy combinations of p’s competitors than

the latter (i). For non-degenerate unanimity games (i.e., games in which players receive a

payoff only if they successfully coordinate a common strategy), the probability of a player

choosing a strategy is proportional to the strategies’ payoff (ii). We operationalize these

two principles for finite games where action sets are defined through inequalities, avoiding

the evaluation of the first principle (i) for all possible (mixed) strategy combinations.

After termination, the eSGM yields all equilibria of the finite game and the final

sample S, which includes all pure strategies in the support of any equilibrium. Since no

player would choose a pure strategy that is not in the support of any equilibrium, we can

reduce the sample to include only non-dominated strategies supporting an equilibrium.
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3.2 Equilibrium identification and selection algorithm

We refer to this as the reduced sampled game. For each strategy in the reduced sampled

game, we construct stability sets. A stability set of a strategy is the set of (mixed)

strategy combinations across competitors to which the respective strategy is a best-

response (Harsanyi, 1995). We formalize Harsanyi’s definition of stability sets in the

following. After transforming the stability sets into sets of risk indicators, in accordance

with principles (i) and (ii) outlined above, the probability that a player selects a pure

strategy is proportional to the size of these transformed stability sets. For each mixed

equilibrium, we combine these pure strategy probabilities for all strategies in the support

of the mixed equilibrium across all players to determine the equilibrium probability and

thereby the most probable equilibrium.

Reduced sampled game

Harsanyi (1995) applies his equilibrium selection theory to a reduced game, obtained

from the original game after the removal of inferior and duplicate strategies. We opera-

tionalize this reduction for (large) finite games, starting with the set of all equilibria and

thus avoiding the transformation of the finite game into normal-form and the implied

complete enumeration of all strategy combinations.

Based on the introduced eSGM-algorithm, we have all pure strategies in the support

of any equilibrium of the original finite game. We denote this set S̃p
r , restricting the

final sample Sp to pure strategies xp with a strictly positive probability φxp in some

equilibrium φ ∈ Φ:

S̃p
r =

{
xp ∈ Sp

∣∣ ∃ (φ ∈ Φ, φxp > 0)
}
⊆ Sp (3.28)

As no player has an incentive to unilaterally deviate from any strategy in this set S̃p
r , we

restrict the selection approach to strategies in S̃p
r . We further reduce S̃p

r to Sp
r through

the elimination of dominated strategies within this set, leading to the reduced sampled

game Sr = Sp
r × S−p

r :

Sp
r =

{
xp ∈ S̃p

r

∣∣∣ ∃(x−p ∈ S̃−p
r

∣∣ Πp(xp, x−p) ≥ Πp(x̃p, x−p) ∀x̃p ∈ S̃p
r

)}
⊆ S̃p

r (3.29)

Here, (3.29) ensures that for each strategy xp ∈ Sp
r and for any alternative strategy

x̃p ∈ S̃p
r , there exists at least one competitor strategy combination x−p ∈ S̃−p

r for which

x̃p does not outperform xp (i.e., xp is not dominated by x̃p).
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Chapter 3 Equilibrium identification and selection in finite games

Probability vectors and stability sets

The probability vector qp = (qpx−p)x−p∈S−p
r

consists of |S−p
r | probabilities qpx−p , which a

player p assigns to its competitors choosing any pure strategy combination x−p ∈ S−p
r

(Harsanyi, 1995). For a given strategy xp of player p, the stability set Vxp is defined as

the set of probability vectors qp, to which strategy xp of player p is a best-response. Vxp

is a polytope within a simplex in |S−p
r | − 1 dimensions:

Vxp =

qp = (qpx−p)x−p∈S−p
r

∣∣∣∣∣∣
∑

x−p∈S−p
r

qpx−pΠ
p(xp, x−p) ≥

∑
x−p∈S−p

r

qpx−pΠ
p(x̃p, x−p) ∀x̃p ∈ Sp

r


(3.30)

qpx−p ≥ 0 ∀x−p ∈ S−p
r (3.31)∑

x−p∈S−p
r

qpx−p = 1 (3.32)

Here, (3.30) formalizes the best-response condition for probability vectors qp in the

stability set Vxp , (3.31) limits the probabilities of the vector qp to non-negative values and

(3.32) ensures that all probability vectors are normalized to sum to 1. This notation for

Vxp through a combination of linear inequalities is commonly referred to as the boundary

representation of a polytope (Henk et al., 2017).

Risk indicators

Intuitively, the size of the stability set Vxp in the reduced sampled game should be

proportional to player p’s probability to play strategy xp. The bigger the stability set of

xp, the more likely xp is a best-response to a given strategy of competitors. In accordance

with Harsanyi (1995), we do not directly measure the size of this stability set, as such a

measure would not fulfill the proportionality requirement for non-degenerate unanimity

games. To satisfy this requirement, Harsanyi (1995) introduces the strictly positive

vector q̃p = (q̃px−p)x−p∈S−p
r

and the risk indicator rp = (rpx−p)x−p∈S−p
r

with:

q̃px−p =

qpx−p , if qpx−p > 0

ϵ , else
(3.33)
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3.2 Equilibrium identification and selection algorithm

rpx−p =

1
q̃p
x−p∑

x̂−p∈S−p
r

1
q̃p
x̂−p

(3.34)

With ϵ being a sufficiently small number, this indicator formally defines the function

µp : q̃p 7→ rp. Note that a high value of rpx−p for a certain strategy combination x−p

indicates that the probability q̃px−p is small. In other words, selecting a best-response to

x−p is risky for p in the sense that it requires a high payoff to offset the low probability

of x−p for being selected by competitors.

Incentive measurement

We apply µp to all probability vectors qp in the stability set Vxp after transforming the

probability vectors to their strictly positive equivalent (3.33) to arrive at the image set

Wxp :

Wxp = {µp(q̃p)| ∀qp ∈ Vxp} (3.35)

Based on Harsanyi (1995), a strategy xp with a larger set Wxp is less risky (i.e., it is a

best-response to more competitor strategy combinations) compared with an alternative

strategy x̃p with a smaller set Wx̃p : λ(Wx̃p) < λ(Wxp), where λ(·) denotes the volume of

a set in its multi-dimensional space (Lebesgue measure). Building on this observation,

Harsanyi (1995) refers to the size λ of this set Wxp as the incentive of player p to play xp.

This definition fulfills principles (i) and (ii) of Harsanyi’s equilibrium selection theory.

Note that Wxp is a non-linearly bounded set in |S−p
r | − 1 dimensions. We determine

the size of this set λ(Wxp) – representing the incentive of p to play xp – using a Monte

Carlo approach (for details, see Appendix 3.A).

The incentive Ψp
φp of p to choose the mixed strategy φp is the average of λ(Wxp) across

all pure strategies in the support of φp, weighted by their respective probabilities φp
xp :

Ψp
φp =

∑
xp∈Sp

r

φp
xpλ(Wxp) (3.36)

The probability of a player p selecting φp as its selected strategy profile Θp is proportional

to the incentive Ψp
φp for said profile (Harsanyi, 1995):

Prob(Θp = φp) =
Ψp

φp∑
(φ̂p,φ̂−p)∈ΦΨp

φ̂p

(3.37)
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Chapter 3 Equilibrium identification and selection in finite games

As we examine non-cooperative settings, p’s probability Prob(Θp = φp) for φp is indepen-

dent from competitor p̃’s probability Prob(Θp̃ = φp̃) for φp̃. Therefore, the probability

of a given Nash equilibrium φ = (φp, φ−p) to be the most likely outcome of the game

(Θ = (Θp,Θ−p)) is the product of the probability of p and p’s competitors choosing the

respective mixed strategies that define the equilibrium φ:

Prob(Θ = φ) =
∏
p∈N

Prob(Θp = φp) (3.38)

The solution to a finite game is the equilibrium ξ with the highest probability:

ξ = argmax
φ∈Φ

(Prob(Θ =φ)) (3.39)

In cases of a non-unique solution to (3.39), Harsanyi (1995) suggests to use the equal

probability mixture of all equilibria fulfilling (3.39) when there is pre-play communication

between players, and refers to the tracing procedure (Harsanyi and Selten, 1988) in

problems without pre-play communication.

3.2.4 Pareto-optimal and welfare-maximizing equilibria

Based on the general eSGM-algorithm introduced in Section 3.2.2, we propose two exten-

sions for particular problem settings. First, in cases where some form of communication

or coordination between players is possible, players might focus solely on equilibria that

are Pareto-optimal. Second, in some applications there might be a third party or a

transaction mechanism that ensures players are restricted to welfare-maximizing equi-

libria.

Pareto-optimal equilibria (eSGM-PO)

We adapt the search for additional candidate equilibria described in Section 3.2.2. In

addition to the constraints (3.21)-(3.22), candidate equilibria (xp
c , x

−p
c ) need to fulfill:

Πp(xp
c , x

−p
c ) + zpi L

p ≥ Πp(φp
i , φ

−p
i ) ∀(φp

i , φ
−p
i ) ∈ ΦS, ∀p ∈ N (3.40)∑

p∈N

zpi ≤ n− 1 ∀i ∈ {1, . . . , |ΦS|} (3.41)

zpi ∈ {0, 1} ∀i ∈ {1, . . . , |ΦS|}, ∀p ∈ N (3.42)
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3.3 Applications and managerial insights

In (3.40), we set the auxiliary binary variable zpi whenever the payoff for player p based on

the candidate strategy combination (xp
c , x

−p
c ) is inferior to the payoff the player would re-

ceive in an alternative equilibrium i. Here, Lp is a sufficiently large constant; without loss

of generality, we can assume positive payoffs (Πp ≥ 0) and use Lp = maxφi∈ΦS
(Πp(φi))

to provide a tight bound. Using (3.41), we ensure that in every Pareto-optimal equilib-

rium candidate, at least one of the n players is better off than with all other existing

alternative equilibria. Constraint (3.42) restricts zpi to binary values.

As soon as an equilibrium is identified within the sample using MIP-Nash, we add

additional cuts to ensure that the final solution set does not include Pareto-dominated

equilibria: Let (Π̃p, Π̃−p) denote the players’ payoffs in an intermediate solution to the

MIP-Nash constraints (3.11)-(3.16). Any Pareto-optimal solution may not be dominated

by this intermediate solution and thus we can add the following constraints:

πp + zpLp ≥ Π̃p ∀p ∈ N (3.43)∑
p∈N

zp ≤ n− 1 (3.44)

zp ∈ {0, 1} ∀p ∈ N (3.45)

Welfare-maximizing equilibria (eSGM-WM)

If we are only interested in additional candidate equilibria with a higher social welfare,

we can extend constraints (3.21)-(3.22) by:∑
p∈N

Πp(xp
c , x

−p
c ) ≥

∑
p∈N

Πp(φp, φ−p) ∀(φp, φ−p) ∈ ΦS (3.46)

Additionally, as proposed by Sandholm et al. (2005), we limit the search of equilibria

within the sampled game towards welfare-maximizing equilibria. We adapt the n-player

constraint formulation of MIP-Nash by supplementing constraints (3.11)-(3.16) with the

objective function:

max
φxp

∑
p∈N

πp (3.47)

3.3 Applications and managerial insights

We implement the eSGM algorithm and its variants in Python 3 in combination with

Gurobi 9.5. The CPU times are based on an eight-core processor with 2.6 GHz base
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Chapter 3 Equilibrium identification and selection in finite games

frequency. We initialize the eSGM with the player’s optimal strategies when they are

alone in the game (xLB).

We show application of the eSGM in a knapsack game (Carvalho et al., 2022, Section

3.3.1, based on) and a large-scale facility location and design problem (Section 3.3.2).

An additional application for a purely discrete version of the uncapacitated lot-sizing

game proposed by Carvalho et al. (2022) can be found in Appendix 3.D.

3.3.1 Knapsack game

Problem description

Suppose that n players have to choose between a set of I technologies. Players can realize

profits vpi for a given technology i ∈ I and experience synergies (cpp̃i > 0) or penalties

(cpp̃i < 0) when a competitor p̃ ̸= p invests in technology i. xp
i denotes the (binary)

decision of player p to invest into technology i. Each investor maximizes individual

profit:

max
xp
i

∑
i∈I

vpi x
p
i +

∑
p̸̃=p

∑
i∈I

cpp̃i xp
ix

p̃
i (3.48)

The investment costs for player p and technology i is wp
i , the players are limited by their

investment budget W p:∑
i∈I

xp
iw

p
i ≤ W p ∀p ∈ N (3.49)

xp
i ∈ {0, 1} ∀p ∈ N, ∀i ∈ I (3.50)

Computational results

We explore problem setups with n = 2 and n = 3 players, and up to |I| = 60 tech-

nologies. For each setup, we randomly generate 10 instances, where cpp̃i and vpi are

independently drawn from a uniform distribution on interval [−100, 100] ∩ Z. We draw

wp
i from the uniform distribution on interval [0, 100] ∩ Z and set the budgets W p based

on the respective instance number m ∈ {0, . . . , 9}:

W p =

⌊
m

11

∑
i∈I

wp
i

⌋
(3.51)
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3.3 Applications and managerial insights

Figure 3.1 summarizes the results of all game instances for n = 2 players, comparing

the number of identified equilibria |Φ|, the runtime in seconds, and the conditional

probability of the selected equilibrium across the different algorithms (SGM, eSGM-

WM, eSGM-PO, eSGM). While the original SGM approach and the eSGM-PO are

generally faster compared with the eSGM, they can only identify a subset of all equilibria.

For the original SGM, the selected equilibrium solely depends on the initialization of

the algorithm. Here, we initialize the SGM with the player’s optimal strategies in the

absence of competition. The eSGM-WM and the eSGM-PO, however, select the most

likely solution, when players are restricted to the respective subset of equilibria (welfare-

maximizing or Pareto-optimal equilibria, respectively). Note that this solution does not

necessarily represent the most likely solution if players are not restricted to the respective

subset of equilibria. If players can choose freely among all equilibria, the solution of the

eSGM by far outperforms the extensions (eSGM-WM, eSGM-PO) as well as the SGM

in terms of likelihood (Prob) of the identified equilibrium. In particular, there are some

cases where the probability of the equilibrium selected by SGM, eSGM-WM and eSGM-

PO are close or equal to zero, whereas the equilibrium determined by the eSGM has a

probability greater than 50%. Figure 3.1a highlights the total number of mixed equilibria

(denoted by |Φmixed|) in the examined instances. Almost all equilibria are mixed. In 83%

of all instances for n = 2 players, the most likely equilibrium is a mixed equilibrium.

In most cases, this is due to the fact that no pure equilibrium exists, however there are

instances where a mixed equilibrium is determined to be more likely although pure and

mixed equilibria coexist. In Appendix 3.B, we provide an example and explanation for

this observation.

Notably, the number of equilibria significantly decreases with the additional player in

the case of n = 3, with a maximum of two equilibria per game for all instances (|I| ∈
{10, 20, 40}). With the reduced number of equilibria, the likelihood of the equilibrium

identified through the SGM in most cases is equal to or closely resembles the likelihood

of the equilibrium selected by the eSGM. Detailed results for the 3-player case can be

found in the Appendix 3.E (Table 3.4).

3.3.2 Competitive facility location and design problem

Problem description

The competitive facility location and design problem combines location selection with

design choices for each selected location. The problem was introduced by Aboolian et
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Chapter 3 Equilibrium identification and selection in finite games

(a) Number of equilibria |Φ| (b) Prob of the selected eq. among all eq. Φ

(c) CPU runtime in seconds

Figure 3.1: Knapsack game with n = 2, boxplots combine results for |I| ∈ {20, 40, 60}

al. (2007) to model market entry with known prior competitor locations. As part of

the OR-Library, it has been adapted to a leader-follower (Stackelberg) setting, where

a firm decides on the facility location and design under anticipation of its competitors’

decisions (Beresnev, n.d.).

We present the following Nash problem formulation, where the competitors of set

N decide simultaneously on the location and design of their facilities. Assuming a

set I of potential facility locations and a set J of customers, Ri denotes the set of

design alternatives for location i ∈ I. The fixed costs for the players p ∈ N depend on

location (i ∈ I) and design choices (r ∈ Ri) and are given by fp
ir. The demand wj of

customer j ∈ J is split between facilities based on the utility up
ijr a facility presents to

the customer. We calculate up
ijr based on a design dependent location attractiveness apir

and on the distance dij between the facility i and the customer j:

up
ijr =


apir

(dij+1)β
, dij ≤ dmax

0 , dij > dmax

(3.52)
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3.3 Applications and managerial insights

Here, β denotes the distance sensitivity. In contrast to Beresnev (n.d.), we limit the

distance up to which a customer can be served to dmax. This reflects limited delivery

ranges or a limited willingness of customers to travel long distances. Drezner et al.

(2020) use a similar approach in their gradual cover model, where customer attraction is

limited to a sphere of influence and, within this sphere of influence, gradually decreases

with increasing distance to a facility.

Both players maximize the number of attracted customers:

max
xp

∑
j∈J

wj

∑
i∈I
∑

r∈Ri
up
ijrx

p
ir∑

i∈I
∑

r∈Ri
up
ijrx

p
ir +

∑
i∈I
∑

r∈Ri
u−p
ijrx

−p
ir

∀p ∈ N (3.53)

with xp
ir as the (binary) decision of player p to open a facility with design r at location

i. The players are limited by their overall budget and can only choose one design per

location: ∑
i∈I

∑
r∈Ri

fp
irx

p
ir ≤ Bp ∀p ∈ N (3.54)∑

r∈Ri

xp
ir ≤ 1 ∀i ∈ I, p ∈ N (3.55)

xp
ir ∈ {0, 1} ∀i ∈ I, p ∈ N, ∀r ∈ Ri (3.56)

The assumption of a limited sphere of influence of locations on customers (dmax) implies

that the examined competitive facility location and design problem is not a constant

sum game, and social welfare (
∑

p∈P Πp) can differ between equilibria.

Computational results

We use the benchmark data from Beresnev (n.d.), with |I| = 50 potential locations on a

100×100 euclidean square and |J | = 50 customers at the same locations. The companies

A,B can choose between |Ri| = 3 different design alternatives for each location. Both

companies share the same attractiveness (apir = a−p
ir ) and fixed costs (fp

ir = f−p
ir ). Upon

varying the budgets BA and BB and the parameters β and dmax, we compare the runtime

and solution quality of the proposed eSGM and its extensions with the SGM (Carvalho

et al., 2022).

To highlight shortcomings of common normal-form algorithms, we also try to solve

these problems using MIP-Nash (Sandholm et al., 2005). To do so, we first need to

convert the IPG into normal-form through the explicit enumeration of all strategy com-
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binations. Note that with a budget ofBA = BB = 40, there are already more than 100mn

possible strategy combinations. Hence, the required full enumeration of all strategy com-

binations exceeds the imposed time limit of 16 hours already at moderate problem sizes.

As MIP-Nash is clearly outperformed by the sample-based approaches (SGM, eSGM

and extensions) already for smaller instances, we do not report benchmark results in

detail for MIP-Nash.

We test 4 different problem setups, varying the steepness (β) of the distance decay

function and the distance cutoff dmax. For each problem setup (β, dmax) we solve 32

instances with different player budget combinations ranging from BA = BB = 10 to

BA = 40, BB = 80. For all problems, the eSGM was able to solve all 32 instances

within the 16 hour time limit. Table 3.1 shows an overview of the results, unless oth-

erwise stated, we report averages across the 32 instances. The number of equilibria |Φ|
varies greatly between problem setups. The majority of identified equilibria are mixed

(|Φmixed|), and in 53% of all instances, a mixed equilibrium is selected. While there are

also several cases with a unique equilibrium where the SGM yields identical results in

a shorter time, the SGM is not able to prove the uniqueness of this equilibrium. Most

cases, however, exhibit multiple equilibria, leading to notable differences in solutions

between the SGM and the eSGM, with the SGM often resulting in an equilibrium that

is significantly less likely (based on Harsanyi’s theory of player incentives) compared

with the most probable equilibrium identified by the eSGM.

Further details, for the base case (β = 0.5, dmax = 20) can be found in Table 3.2, with

|Φ|, |Φmixed| denoting the total number of equilibria and the number of mixed equilibria

respectively, and with δ the competitiveness of each problem instance (see Definition

3.1). Although most equilibria are mixed, there are some instances with a unique equi-

librium in pure strategies. In more homogeneous problem settings with similar player

budgets, the competitiveness δ is higher compared to instances in which one player is

predominant. If both players share the same budget (BA = BB), the competitiveness

reaches its maximum observed value of 50%. The number of equilibria also increases

with rising competitiveness δ, reaching up to 435 equilibria at maximum competitive-

ness (δ = 50%) in the case of BA = BB = 20. While the equilibrium identified through

the SGM turns out to be the most probable or unique equilibrium in some cases, there

are several cases where equilibrium identification through the SGM would significantly

mislead decision makers. For example, in the case of BA = 10, BB = 60, the SGM

returns an equilibrium with a probability of 3%, that is clearly outperformed by the

most likely equilibrium (86%) identified by the eSGM.
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Table 3.1: Computational results (32 instances per problem setup) for the competitive facility
location and design problem

Problem setup Number of equilibria Runtime (1=SGM) Prob⋆(%)

β dmax |Φmixed|av/|Φ|av |Φ|max eSGM-WM eSGM-PO eSGM SGM eSGM

0.5 20 43/47 435 9.9 29.6 42.2 33 49
2 20 23/26 435 17.5 22.5 23.0 38 53
2 40 2/3 17 6.3 9.4 9.7 62 72
3 40 18/23 125 7.0 13.3 13.2 34 49

⋆ indicates the probability of the selected equilibrium among all equilibria.

3.4 Conclusions and future research

We introduce an integrated column- and row-generation method for the identification

of all equilibria and the subsequent equilibrium selection in n-player finite mathemat-

ical programming games. This solution method enables us to identify the most likely

solution. We show the application of the algorithm for knapsack games, large-scale com-

petitive facility location (and design) problems and uncapacitated lot-sizing games of up

to 3 players.

While the algorithm is capable of solving n-player games, the (n−1)-degree polynomial

constraints make practical problem formulations for multiple (n > 2) players non-linear,

regardless of the players’ payoff functions. Appropriate decomposition or linearization

methods could further reduce the computational effort for n-player games and should

be investigated in further studies to enable practical application for n > 3.

The described solution method is explicitly targeted towards finite Mathematical

programmming games (MPGs). For general MPGs, the original proof of equilibrium

existence (Nash, 1951) would not hold. Even if the existence of equilibria could be

guaranteed (see e.g., Stein et al. (2008) and Carvalho et al. (2018a) for mixed-integer

programming games with separable payoff functions), the potentially infinite size of the

set of candidate solutions could impede termination of the eSGM.

Potential for further research also lies in the relaxation of assumptions around be-

havioral rules. In particular, evolutionary games with discrete strategy sets or integer

constraints (see e.g., Östling et al., 2011) are an interesting related area of research. The

application to such a repeated game between boundedly rational players would require

significant adaptations to the proposed method.
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Table 3.2: Computational results in the base case (β = 0.5, dmax = 20) for the competitive
facility location and design problem
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Appendix 3.A Monte Carlo volume estimation of Wxp

Appendix 3.A Monte Carlo volume estimation of Wxp

As the mapping µp transforming Vxp into Wxp is non-linear, in contrast to Vxp , the

set Wxp has non-linear bounds. To efficiently compute the volume of Wxp we apply a

numerical estimation approach to determine the size λ(Wxp). We use the simple and

widely applied hit-or-miss method for Monte Carlo volume estimation as presented in

Fok and Crevier (1989). Just as Vxp , the set Wxp is a subset of a (|S−p
r |−1)-dimensional

simplex. For Wxp , we can define this simplex ∆ as:

∆ =

rp ∈ R|S−p
r |

∣∣∣∣∣∣rpx−p ≥ 0,
∑

x−p∈S−p
r

rpx−p = 1

 (3.57)

We sample s points r̃p ∼ Dir(α) from a Dirichlet distribution, where the parameter

vector α consists of all ones, i.e., a uniform distribution over this simplex. Let sWxp
be

the number of sampled points that lie within Wxp (i.e., r̃p ∈ Wxp). Given a large enough

sample size s, the size λ(Wxp) can be approximated as:

λ(Wxp) ≈ sWxp

s
λ(∆) (3.58)

Note that although the size λ(∆) of the simplex ∆ can be easily calculated, we do not

require any information about λ(∆) as we determine a player’s probability of a strategy

profile based on the relative incentive of the strategy profile over all alternatives (3.37).

In our implementation we use a sample size of n = 1 × 105, yielding consistent results

for the dimensionality encountered in the examined numerical studies.

Appendix 3.B Equilibrium selection in the knapsack

game

Let us assume a setting for the knapsack game (Section 3.3.1), where two players N =

{A,B} select one out of |I| = 2 technologies. Imagine that a given technology i ∈ I

will only pay off if both competitors select it, meaning that vpi = 0. In this case, if both

competitors prefer the same technology, equilibrium selection would be trivial. In the

following, we assume A strongly prefers i = 1, and B strongly prefers i = 2:

In a symmetric case where cAB
1 = 1, cAB

2 = 10 and cBA
2 = 10, cBA

2 = 1, we have two

pure Nash equilibria (with both players successfully jointly selecting either technology)
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Chapter 3 Equilibrium identification and selection in finite games

and a mixed equilibrium with combinations of the two technologies, yielding the set of

all equilibria: Φ =
{
((1, 0), (1, 0)), ((0, 1), (0, 1)),

((
1
11
, 10
11

)
,
(
10
11
, 1
11

))}
.

Note as the players only have two pure strategies each, the stability set VxA of player

A using strategy xA is a line. Let xA
i=1 = (1, 0) be a pure strategy where A selects

technology 1 and xA
i=2 = (0, 1) the alternate pure strategy where A selects 2. Figure 3.2

shows the stability sets VxA
i=1

and VxA
i=2

for player A.

φxB
i=2

= 0 φxB
i=2

= 1

VxA
i=1

VxA
i=2

Figure 3.2: Stability sets VxA
i=1

and VxA
i=2

for the coordination knapsack game

Using the function µp, we determine the respective setsWxA and calculate the incentive

λ(WxA) for A to play a strategy xA. Following the same process for B, we arrive at the

following incentives for pure strategies:

λ(WxA
i=1

) = λ(WxB
i=2

) =
1

11

λ(WxA
i=2

) = λ(WxB
i=1

) =
10

11

For the mixed equilibrium φ̂ =
((

1
11
, 10
11

)
,
(
10
11
, 1
11

))
we get:

ΨA
φ̂A =

1

11
λ(WxA

i=1
) +

10

11
λ(WxA

i=2
) =

101

121

ΨB
φ̂B =

10

11
λ(WxB

i=1
) +

1

11
λ(WxB

i=2
) =

101

121

Scaling Ψ to ensure a cumulative probability of one per player, yields the probabilities:

Prob(ΘA = xA
i=1) = Prob(ΘB = xB

i=2) = 5%

Prob(ΘA = xA
i=2) = Prob(ΘB = xB

i=1) = 50%

Prob(ΘA = φ̂A) = Prob(ΘB = φ̂B) = 45%

This suggests that successful coordination to either of the two pure equilibria is equally

unlikely with Prob(ΘA = xA
i=1) · Prob(ΘB = xB

i=1) = Prob(ΘA = xA
i=2) · Prob(ΘB =
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Appendix 3.C Process flow diagram

xB
i=2) = 2.25%, whereas the mixed equilibrium φ̂ is the expected outcome of the game

with Prob(ΘA = φ̂A) · Prob(ΘB = φ̂B) = 24.55%.

Appendix 3.C Process flow diagram

Full finite game

Initialize sampled game S ⊂ X

Master problem: Solve the MIP-Nash mas-
ter problem to determine the set of equi-
libria ΦS of the (current) sampled game

Subproblem I: Identify all best-responses
Xp

b ⊂ Xp \ Sp to all φ ∈ ΦS for all players p ∈ N

Increase sample
S by adding newly
identified strategy

combinations
(Xc, X

p
b) to the

master problem

Xp
b = ∅ ∀p ∈ N

Subproblem II: Identify all candidate solu-
tions Xc ⊂ X \ S, that are not outperformed
by a unilateral deviation of one player to any
already sampled strategy x̃p: Πp(xp

c , x
−p
c ) ≥

Πp(x̃p, x−p
c )∀xc ∈ Xc, x̃

p ∈ Sp, p ∈ N

Xc = ∅

Terminate: Φ = ΦS fully represents the
set of solutions to the original finite game

Yes

No

Yes

No

Figure 3.3: Process flow diagram of the proposed eSGM
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Chapter 3 Equilibrium identification and selection in finite games

Appendix 3.D Combinatorial competitive uncapacitated

lot-sizing game

3.D.1 Problem description

Carvalho et al. (2018b) present a combinatorial variant of the competitive uncapacitated

lot-sizing problem. In this combinatorial problem, n players produce a (single) homoge-

neous good in a finite planning horizon |T |. The price of the good pt(qt) is determined by

the market based on the total quantity qt =
∑

p∈N qpt of offered units across all players:

pt(qt) = max{at−btqt, 0}, with at, bt ≥ 0 as market characteristics and qpt as the quantity

offered by player p in period t. zpt denotes production quantities, the binary variable

ypt ∈ {0, 1} denotes production periods. In each period of active production (ypt = 1),

fixed setup costs fp are incurred. Goods that are produced but not sold zpt > qpt increase

the inventory hp
t . As Carvalho et al. (2018b), we assume no holding costs and focus on

the combinatorial decision problem of finding optimal periods of active production ypt .

Decisions on sales and production quantities (qpt and zpt , respectively) follow from the

zero-inventory property (Wagner and Whitin, 1958). Players optimize individual profits

Πp as the difference between operational margin and fixed costs, with ūp
t defining the

last period of active production prior to and including t and cp
ūp
t
as the production cost

in this period (Carvalho et al., 2018b):

max
ypt ,y

−p
t

Πp(ypt , y
−p
t ) =

∑
t∈T |

∑
τ∈{0,...,t} ypτ≥1

q̄pt (pt(qt)− cp
ūp
t
)−

∑
t∈T

fpypt (3.59)

In case a period is not preceded by a period of active production, ūp
t and by consequence

cp
ūp
t
are undefined. Therefore, in (3.59), we limit the sum of the operational margin

to periods with active production or periods that are preceded by a period of active

production.

ūp
t = max{u | u ∈ T, u ≤ t, ypu = 1} ∀t ∈ T, ∀p ∈ N (3.60)

In (3.60), ūp
t is formally defined as the period u ∈ T with active production (ypu = 1)

and the highest cardinality (maxu) smaller or equal to t.

Note that (3.59) expects a decision only on ypt , y
−p. To translate the decision on the

set of production periods into optimal production quantities q̄pt , Carvalho et al. (2018b)

derive an optimality condition by setting the partial derivative of Πp with regards to q̄pt
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Appendix 3.D Combinatorial competitive uncapacitated lot-sizing game

to zero:

∂Πp

∂q̄pt
= 0 → q̄pt =

max
{
at − bt

∑
p̃ ̸=p q

p̃
t − cp

ūp
t
, 0
}

2bt
∀p ∈ N (3.61)

Reformulation yields:

q̄pt =


max

{
pt−cp

ū
p
t
,0

}
bt

, if
∑

τ∈{0,...,t} y
p
τ ≥ 1

0 , else

∀t ∈ T, ∀p ∈ N (3.62)

pt =
at +

∑
p∈N |ypt =1 c

p
ūp
t∑

p∈N ypt + 1
∀t ∈ T (3.63)

This combinatorial model features no independent continuous decision variables. We

solve the model using eSGM with the following implementation of (3.59) and (3.60):

First, we replace max{pt − cp
ūp
t
, 0} with a new auxiliary variable kp

t .

Πp(ypt , y
−p
t ) =

∑
t∈T

(kp
t )

2

bt
−
∑
t∈T

fpypt (3.64)

We introduce opt ∈ {0, 1} as an auxiliary binary variable and ensure kp
t = max{pt−Cp

ūp
t
, 0}

as follows:

kp
t ≤

∑
τ∈{0,...,t}

Mypτ ∀t ∈ T, ∀p ∈ N (3.65)

kp
t ≤ pt − cp

ūp
t
+ optM ∀t ∈ T, ∀p ∈ N (3.66)

kp
t ≥ M(opt − 1) ∀t ∈ T, ∀p ∈ N (3.67)

M(1− opt ) ≥ pt − cp
ūp
t

∀t ∈ T, ∀p ∈ N (3.68)

Whenever pt − cp
ūp
t
≤ 0, (3.68) sets opt = 1 and by consequence kp

t = 0 (3.67). In all

other cases kp
t is maximized according to the objective function (3.64) and hence equal

to kt
p = pt − cp

ūp
t
according to (3.66). Furthermore, to calculate cp

ūp
t
, we introduce the

binary auxiliary variable up
tτ ∈ {0, 1}. We ensure up

tτ = 1, if and only if τ was the last

period of active production for p prior to t (i.e., ūp
t = τ):

up
tτ = 0 ∀t ∈ T, τ ∈ {t+ 1, . . . , |T |}, ∀p ∈ N (3.69)

up
tτ ≤ ypτ ∀t, τ ∈ T, ∀p ∈ N (3.70)
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Chapter 3 Equilibrium identification and selection in finite games

∑
τ∈T

up
tτ ≤ 1 ∀t ∈ T, ∀p ∈ N (3.71)

up
tτ + (1− ypτ )M ≥ up

tt̂
∀t ∈ T, ∀τ ∈ {0, . . . , t}, ∀t̂ ∈ {0, . . . , τ}, ∀p ∈ N (3.72)

up
tt = ypt ∀t ∈ T, ∀p ∈ N (3.73)

(3.69) sets utτ to zero for all periods τ > t. (3.70) ensures that utτ can only be one, if

τ is a period of active production. As we determine the (single) last period of active

production, the sum of utτ over t ∈ T needs to add up to one (3.71), and a more recent

active period always needs to supersede a later period of active production (3.72). Using

up
tτ , we can calculate cp

ūp
t
as:

cp
ūp
t
= cpt

∑
τ∈T

up
tτ ∀t ∈ T, ∀p ∈ N (3.74)

The combinatorial problem (3.59)-(3.74) builds on the property that players decide on

the quantity q̄pt according to optimality condition (3.61). If only a single player was to

unilaterally change their production periods (and by consequence quantity), all other

players are expected to implicitly adapt their production q̄pt to their respective new op-

timum. Carvalho et al. (2018b) show that this implies that the set of equilibria of the

combinatorial problem is a subset of the equilibria of an alternative mixed integer formu-

lation, as equilibria in the combinatorial problem are not only stable against unilateral

changes but also against (implicit) reactions in production quantities from competitors.

3.D.2 Computational results for the competitive uncapacitated

lot-sizing game

We draw the parameters at and bt independently from discrete uniform distributions for

three different time horizons |T | ∈ {10, 20, 50}: at ∼ U{20, 30}, bt ∼ U{3, 5}. For each

time horizon, we generate 10 instances for n = 2 and n = 3 players. We assume setup

costs are constant fp = 1, whereas variable costs start with c̄p ∼ U{29, 31} for t = 0 and

decrease gradually over the time horizon T : cpt = c̄p
(
1− 0.35 t

|T |

)
. The motivation for

this type of cost function is twofold, as it allows to model learning behavior or continuous

performance improvements and provides an indirect way to account for holdings costs:

Producing goods in period t− 1 to sell in period t leads to an increase in cost by factor
0.35
|T | .
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Appendix 3.D Combinatorial competitive uncapacitated lot-sizing game

Table 3.3 shows aggregate (min, mean, max) results for the runtime (RT ) and the

identified number of equilibria |Φ| for each combination (n, |T |) using SGM and eSGM.

Using the eSGM, we show that for the majority of examined instances there is no

unique equilibrium, and some instances show up to 70 equilibria. More than a third of

all equilibria are mixed, but only in 7% of instances the selected equilibrium is a mixed

one. While on average, the conditional probability of the equilibrium selected by the

eSGM only marginally outperforms the unique equilibrium identified using SGM, there

are some cases where the probability of the latter is almost equal to zero whereas the

eSGM selects a highly probable (> 50%) equilibrium.

Table 3.3: Computational results for the competitive uncapacitated lot-sizing game
(RT=runtime in s)

Problem SGM eSGM

n |T | RTmin RTmeanRTmax Prob
⋆(%) RTminRTmeanRTmax |Φ|av |Φmixed|av |Φ|max Prob

⋆(%)

2 10 0.0 0.1 0.2 93 0.1 0.3 0.7 1.8 0.4 7 93
20 0.3 0.5 0.8 82 0.6 3.6 15.1 3.8 1.8 17 84
50 3.5 3.9 4.6 76 7.7 172.2 1533.9 4 1.8 17 83

3 10 0.1 0.1 0.3 91 0.2 0.7 2.2 2.1 0.7 10 93
20 0.4 0.6 1.2 93 2.4 46.6 372.8 2 0.5 5 93
50 2.3 5.1 8.0 62 20.7 1772.5 15968.2 9.7 7.4 70 77

⋆ indicates the probability (in %) of the selected equilibrium among all equilibria.
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Appendix 3.E Knapsack game: 3-player results

Table 3.4: Computational results for the coordination knapsack game with n = 3

Instances SGM eSGM

|I| m |Φ| time (s) Prob⋆(%) |Φ| |Φmixed| time (s) Prob⋆(%)

10 0 1 0 100 1 0 0.1 100
1 1 0 100 1 0 0.1 100
2 1 0 100 1 0 0.1 100
3 1 0 100 1 0 0.1 100
4 1 0 100 1 0 0.2 100
5 1 0.5 71 2 2 15.1 71
6 1 0.1 100 1 0 0.3 100
7 1 1.4 29 2 1 13.9 71
8 1 0.1 100 1 0 0.2 100
9 1 0.1 100 1 0 0.2 100

20 0 1 0 100 1 0 0.1 100
1 1 0.1 100 1 0 0.2 100
2 1 0.1 100 1 0 0.3 100
3 1 0 100 1 0 0.5 100
4 1 0.1 100 1 0 1.0 100
5 1 0.1 100 1 0 1.6 100
6 1 0.1 100 1 0 1.1 100
7 1 0.1 100 1 0 0.5 100
8 1 0.1 100 1 0 0.5 100
9 1 0.1 100 1 0 0.5 100

40 0 1 0 100 1 0 0.2 100
1 1 1.3 50 2 2 10.3 50
2 1 7.6 21 2 2 43.3 79
3 1 0.1 100 1 0 10.5 100
4 1 0.2 99 2 0 38.6 99
5 1 0.2 2 2 0 52.3 98
6 1 0.1 100 1 0 53.7 100
7 1 0.1 100 1 0 55.1 100
8 1 0.1 100 1 0 48.9 100
9 1 0.1 100 1 0 55.5 100

⋆ indicates the probability of the selected equilibrium among all equilibria. Bold prob-
abilities indicate that the equilibrium selected through the eSGM (highest probability)
is a mixed equilibrium.
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Chapter 4

Location selection for hydrogen fuel

stations under emerging provider

competition

Individual hydrogen-based mobility with Fuel cell electric vehicles (FCEVs) is a promis-

ing avenue for green house gas reduction in the transportation sector. With a rise in

popularity of FCEVs and increased governmental grants and funding, investments in

hydrogen refueling stations gain attractiveness for fuel station providers. However, as

uncertainty around adoption rates and emerging competition between station providers

persists, careful location selection becomes crucial for providers willing to invest in hy-

drogen fuel stations.

We formulate a location problem for hydrogen fuel stations as a Competitive flow

capturing location-allocation model (C-FCLM). In contrast to prior formulations, no

prior knowledge of competitor locations is required as we expect competitors to choose

locations simultaneously in an emerging competitive environment. We solve the aris-

ing competitive model formulation as an Integer programming game (IPG). In a real-

world scenario, we identify optimal locations for the two largest competing fuel station

providers in Munich, Germany. Within this study, providers who acknowledge the ex-

istence of their competitor can realize an increase in profit of 17% (averaged across

different scenarios of FCEV market penetration & customer preferences). Central coor-

dination (e.g., through conditional subsidies from policymakers) or cooperation between

the competitors (e.g., through provider associations) could further increase overall prof-

its by 28%, however this increase in profitability comes at the cost of overall customer

travel distance (increased by up to 10% in case of cooperation between providers) as the

average detour a customer has to take to refuel increases.
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4.1 Introduction

4.1.1 Motivation

Compared with other sectors (e.g., energy, industry or agriculture), the transport sec-

tor significantly lacks behind in green house gas reduction, showing a net increase in

greenhouse gases (CO2 equivalent) of 23% compared to 1990 on a European level (Eu-

ropean Environment Agency, 2020). Alternative fuels constitute an important lever to

tackle this gap (McKinnon et al., 2015, pp. 278). To achieve a significant reduction in

green house gas levels, a multitude of policies favoring alternative fuels have been put in

place in individual states as well as internationally in the recently published European

Hydrogen Strategy (European Commission, 2020). In addition to these policies, major

technological breakthroughs (e.g., the liquefaction of hydrogen in organic carriers, re-

ductions in battery production costs or the efficient synthetization of e-fuels) promise

significant contributions to green house gas reduction in transportation.

However, these major changes bring along significant uncertainties for decision makers:

The adoption of new propulsion technologies by customers is still largely unclear (Apos-

tolou and Xydis, 2019; Lyons and Davidson, 2016) and the nature of newly developing

markets (e.g., hydrogen-based mobility) implies an unclear competitive landscape and

uncertainty around competitor actions. Among the main entry barriers limiting adop-

tion of hydrogen mobility remain the lack of available Hydrogen fuel stations (HFSs)

(Ramea, 2019) and the high construction costs of these stations (Viktorsson et al., 2017).

Service providers trying to offer HFSs thus face two major issues: In comparison with

Electric vehicle (EV) charging stations, investment costs for hydrogen fueling stations

are higher (i). This makes location decisions inflexible and planning errors costly. In

contrast to conventional fuel stations, there is little prior knowledge about competitor

locations for HFSs, as multiple providers might scale up hydrogen fueling station net-

works almost simultaneously (ii). Location decisions that are optimal under negligence

of possible competitor decisions, could thus turn out sub-optimal or even unprofitable

under consideration of imminent competitor actions. This second issue especially applies

to location decisions in urban areas where a dense coverage (and thus competition) of

fuel stations can be expected. It might not be as apparent for fuel stations on highways,

with only 2.4% of all (conventional) fuel stations in Germany being located on a highway

(Köhler et al., 2010).

In the absence of a pre-existing hydrogen fuel station infrastructure, we cannot rely

on a Stackelberg-type formulation with a clear leader and a clear follower. Instead,
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it is to be expected that fuel station providers will enter this newly emerging market

almost simultaneously. Early movers can create effective entry barriers through the

preemption of scarce assets (Lieberman and Montgomery, 1988). For HFSs this early

mover advantage is particular relevant based on the limited market size in the near-

term: Once a critical mass of hydrogen fuel stations is reached, late entries cannot

reach the market share required for profitability. To avoid this entry barrier, providers

cannot follow a wait-and-see approach but instead need to make decisions now while

taking into account possible (simultaneous) decisions by their competitors. While there

might be followers in case hydrogen mobility adoption rises in the long-term, the near-

term competitive environment is best modeled using a Nash setting of simultaneous

competition between early movers.

4.1.2 Research question and contribution

The main objective of our research is two-fold: First, we model the inner-city location

decision for service providers building HFSs under consideration of competitor actions.

Second, we apply the resulting problem formulation to a case study in Munich to demon-

strate computational tractability for large scale applications and to deduct managerial

insights. The resulting research questions (RQ) can be detailed as follows:

RQ 2.1 How will competition between station providers influence the emerging hydrogen

refueling network structure?

RQ 2.2 How valuable is it for decision makers to take competitor actions into consid-

eration?

RQ 2.3 Should policymakers foster (e.g., through government-backed provider associa-

tions) or impede (e.g., through strict antitrust laws) collaboration between com-

peting providers?

We extend prior models for alternative fuel station location selection to a simultaneous

competitive setting. Hereby we present the C-FCLM, which is not reliant on a priori

knowledge of competitor locations. We establish analogies to well researched congestion

games, to determine the existence of Nash equilibria for this model. As Flow capturing

location-allocation models (FCLMs) rely on granular data of individual trip origins and

destinations, we quantify the impact of trip aggregation in case granular data is not

available or results in intractable problem sizes.
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4.1.3 Organization

Section 4.2 presents the general C-FCLM. Section 4.3 introduces a solution algorithm,

characteristics of the introduced model and solution aspects. We conduct a numerical

study in Section 4.4 and showcase practical application for hydrogen fueling station

location selection in Munich in Section 4.5. We conclude results and further research

opportunities in Section 4.6.

4.2 The competitive flow capturing location-allocation

model (C-FCLM)

We extend the classical flow-capture location model to a competitive scenario between

two or more decision makers (C-FCLM). When developing and applying the C-FCLM,

we assume facilities to be uncapacitated. Competitors are assumed to be purely self-

interested and have full knowledge of potential competitor actions (strategies) and their

cost structure. In our application of the C-FCLM, we focus on an inner-city setting.

Given the high driving range of FCEVs, we can therefore neglect any range limitations.

We assume that all customers sharing the same origin and destination intend to follow

the same (shortest) path, neglecting potential congestion effects. Customer patronage of

refueling facilities is assumed to be driven by the detour (compared with the originally

intended shortest path) a customer has to take to arrive at the facility.

4.2.1 General C-FCLM

We examine a road network of |K| connected nodes indexed with i, j ∈ K. The traffic

flow through the network is given by flow volume fq, representing the number of cars or

potential customers per year on route q ∈ Q. We represent q by its origin-destination

(OD) pair q = (i, j), with both origin i ∈ K and destination j ∈ K representing nodes of

the original network. Consider a set P of competing fuel station providers. Each provider

p ∈ P wants to find optimal locations within the set of potential locations Kp ⊂ K,

maximizing individual profit Πp (4.1). We calculate the profit as the difference between

operating margin and annual fix costs (including depreciation and maintenance). The

operating margin is driven by the fraction of flow on q that p can capture (yqp ∈ [0, 1]), the

number of customers fq on q and the margin per customer m. Fix costs are determined

by the binary decision to open a location xkp ∈ {0, 1} and the annual cost per facility c.
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max
xkp

Πp = m
∑
q∈Q

fqyqp − c
∑
k∈Kp

xkp, (4.1)

Players are restricted to their respective set of potential locations Kp:

xkp = 0 ∀k ∈ K \Kp, ∀p ∈ P (4.2)

Each customer can only be captured once, no matter how many active nodes it passes.

By consequence, the cumulatively (across all players) captured fraction yqp of the flow

fq on one particular OD-pair q cannot exceed one:∑
p∈P

yqp ≤ 1 ∀q ∈ Q (4.3)

The fraction yqp of customers on OD pair q that player p can capture is driven by

assumptions on customer choice behavior: In their basic version, market capture models

for facility location allocate all customers of a given demand node to the single facility

with the highest customer proximity (Hotelling, 1929; Serra et al., 1999). Relaxing

this all-or-nothing property, other market capture models typically distribute customers

on facilities relatively to a measure of attractiveness, most notably the MAXPROP

formulation by Serra et al. (1999), and the gravity model of Huff (1964). Building

on discrete choice analysis (see Ben-Akiva and Lerman, 1997; McFadden, 1974), the

application of Multinomial logit choice (MNL) models to estimate market capture based

on deterministic (observable) and random (non-observable) utility gained popularity in

various applications (e.g., Benati and Hansen, 2002; Haase and Müller, 2013; Marianov

et al., 2008; Zhang et al., 2012). We opt to extend the application to HFSs and model

yqp based on a MNL model. We assume that the total utility of a facility k for customers

on OD-pair q is given by:

ũqk = uqk + ϵ̃qk ∀q ∈ Q, ∀k ∈ K (4.4)

ϵ̃qk represents the random, non-observable part of the utility, which we assume to be

independently and identically Gumbel distributed. We determine the deterministic util-

ity uqk of a facility k to customers of OD-pair q based on the facility attractiveness ak

(e.g., based on facility size or brand) and the deviation distance dqk a customer faces

when patronizing facility k. We calculate dqk as the difference between the shortest path

length that connects origin and destination of q through the facility k and the length of
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the original (shortest) OD-path:

dqk = d(i, k) + d(k, j)− d(i, j) ∀q = (i, j) ∈ Q, k ∈ K (4.5)

Here, d(i, j) is the shortest path distance between nodes i, j ∈ K. Assuming that a

customer on q = (i, j) always takes the shortest path between origin i and destination j,

d(i, k) + d(k, j) > d(i, j) and hence dqk ≥ 0. As in the FCLM customers are assumed to

refuel along an originally planned route rather than a single purpose trip, the customers’

willingness to take long detours to refuel is limited. We impose a limit of d̄q, which is

calculated based on the minimum of an absolute upper bound d̄ and a relative willingness

to travel d̂ multiplied with the driving distance of the originally planned trip d(i, j):

d̄q = min
(
d̂ · d(i, j), d̄

)
∀q = (i, j) ∈ Q (4.6)

Given a deviation distance dqk and a facility attractiveness ak, we calculate uqk as:

uqk =

{
aαk

(d̄q−dqk)
β

d̄βq
for d̄q ≥ dqk

0 for d̄q < dqk
(4.7)

where α ≥ 0 and β ≥ 0 are parameters reflecting customer sensitivities for ak and dqk,

respectively. The utility increases with a higher attractiveness ak and decreases with

longer deviations dqk, it reaches zero when the deviation distance equals the maximum

willingness to travel d̄q. Instead of penalizing facilities located outside of this willingness

to travel (dqk > d̄q) with a negative utility, we fully excluded these facilities from the

choice set for customers on the respective OD-trip q. As we model an inner-city setting,

there is no obligation to refuel on this specific trip, and no rational customer would

choose a facility outside of their own willingness to travel over the no-choice alternative.

Hence, the probability of a customer q choosing an (active) facility k is (Ben-Akiva and

Lerman, 1997):

yqk =
euqk∑

k̃∈K|dqk̃≤d̄q

euqk̃
∑

p̃∈P xk̃p̃

∀k ∈ K, ∀q ∈ Q

∣∣∣∣ d̄q ≥ dqk,
∑
p̃∈P

xkp̃ > 0 (4.8)

This approach enables a sparse representation, where yqk = 0 for all locations outside

of the customers reach (∀k ∈ K, ∀q ∈ Q | dqk > d̄q). The overall market share of q for
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player p is the cumulative probability across all active facilities that are able to serve q:

yqp =
∑

k∈Kp|dqk≤d̄q

yqkxkp =

∑
k∈Kp|dqk≤d̄q

euqkxkp∑
k̃∈K|dqk̃≤d̄q

euqk̃
∑

p̃∈P xk̃p̃

∀p ∈ P, ∀q ∈ Q (4.9)

We linearize (4.9) by introducing the auxiliary variables yk̃p̃qp ∈ [0, 1], with the following

additional constraints ensuring that yk̃p̃qp = xk̃p̃yqp:

yk̃p̃qp ≤ yqp ∀q ∈ Q, ∀k, k̃ ∈ K, ∀p, p̃ ∈ P (4.10)

yk̃p̃qp ≤ xk̃p̃ ∀q ∈ Q, ∀k, k̃ ∈ K, ∀p, p̃ ∈ P (4.11)

yk̃p̃qp ≥ yqp − (1− xk̃p̃) ∀q ∈ Q, ∀k, k̃ ∈ K, ∀p, p̃ ∈ P (4.12)

Reformulating (4.9) using yk̃p̃qp yields:

∑
k̃∈K|dqk̃≤d̄q

∑
p̃∈P

e(uqk̃)yk̃p̃qp =
∑

k∈K|dqk≤d̄q

e(uqk)xkp ∀q ∈ Q, ∀p ∈ P (4.13)

4.2.2 Conceptual comparison

The approach to model customer choice of facilities differs significantly from previous

models such as the Deviation flow refueling location model (DFRLM) proposed by Kim

and Kuby (2011). In the DFRLM, all customers belonging to an OD-pair q are expected

to take the shortest detour that gives them access to any active refueling facility. In

the non-competitive setting discussed by Kim and Kuby (2011), this approach meets

their requirements. However, for the desired competitive setting we do require a more

granular approach. We introduce a distinction between facilities of different providers,

and we no longer require a homogeneous facility choice from all customers traveling on

the same OD-pair q. Instead, the proposed MNL model allows for heterogeneity in the

decision making between customers of the same route.

Figure 4.1 highlights differences between the two approaches for a simplistic setting

with a single OD-path q, and two deviations enabling the use of two (active) facilities

(A,B) that are not directly located on q. The distance difference between a detour

including A or B amounts to dqA = 0.5 and dqB = 0.7 respectively. In the DFRLM (4.1b),

all customers willing to take a detour are assumed to homogeneously take the slightly

shorter detour through A. As the additional distance to B is hardly noticeable, we argue

that customers in practice might be somewhat indifferent between the two stations. We
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distinguish between the two providers (players) of the respective fuel stations, and divide

the customer demand between both open facilities based on the relative utility they

provide to customers traveling on q. If we assume equal attractiveness between facilities

A and B (aA = aB), based on the shorter detour, A is awarded 62% of the total flow fq

and facility B expects a market share of 38%.

(a) Exemplary setup (b) DFRLM (c) C-FCLM

Figure 4.1: Exemplary comparison of different choice models (β = 3, d̄q = 1.5)

4.3 Solving the C-FCLM

To be able to solve the C-FCLM, we introduce the solution concept of Nash equilibria

in combination with IPGs in Section 4.3.1. We discuss conditions for the existence of

equilibria in Section 4.3.2, briefly summarize a solution method in Section 4.3.3 and

define key performance indicators in Section 4.3.4.

4.3.1 Nash equilibria of integer programming games (IPGs)

The predominant solution concept for games modeling simultaneous competition be-

tween two or more players is the Nash equilibrium. A Nash equilibrium is a stable

fix-point in which no player benefits from unilateral deviations (Nash, 1951). In a pure

equilibrium, each player selects a distinct strategy, whereas in a mixed equilibrium play-

ers randomize between multiple different strategies. A strategic game in which player

actions are defined by binary or integer decision variables can be represented as an IPG

(Köppe et al., 2011). Based on this definition, the C-FCLM constitutes an IPG.

To represent the C-FCLM as an IPG, we rely on the following notation: We describe

with Xp the non-empty and bounded action set of possible strategies of player p. Xp

is given through the set of linear inequalities (4.2)-(4.3) as well as (4.8)-(4.13). Each

60



4.3 Solving the C-FCLM

player optimizes its own payoff Πp, given through the objective function (4.1). We

denote with φ a profile of strategies, where the tuple φ = (φp, φ−p) consists of the

player-specific strategy profiles. A player-specific strategy profile φp is comprised of

elements φxp ∈ [0, 1], that denote the probability of player p playing strategy xp. The

expected payoff for player p in the strategy profile φ amounts to:

Πp(φ) =
∑

xp∈Xp

∑
x−p∈X−p

φxpφx−pΠp(xp, x−p) (4.14)

A mixed Nash equilibrium is a profile of strategies σ = (σp, σ−p) that satisfies:

Πp(σ) ≥ Πp(xp, σ−p), ∀p ∈ P, ∀xp ∈ Xp (4.15)

Note that the Nash equilibrium is a reasonable solution concept of the game, only

if players have complete information of each others strategy space and payoffs. This

assumption is reasonable for the C-FCLM: Due to space limitations in the examined

inner-city setting and the required investments to build a fuel station from scratch it

is rather unlikely that a fuel station provider would invest into a hydrogen fuel station

outside of prior conventional fuel stations. As such, the strategy space of a provider is

limited to their existing conventional fuel stations and any competitor could determine

potential strategies outside-in. It is reasonable to assume that a fuel station provider

could derive profit implications for each location selection of its competitor based on

similar profit margins between the competitors and common knowledge of traffic flow

patterns or customer count observations.

4.3.2 Properties of the C-FCLM

In the following, we determine the existence of Nash equilibria for the C-FCLM. As the

decision variables of the C-FCLM (and therefore the action sets Xp for each player) are

neither empty (the zero solution is a feasible solution) nor unbounded, it follows directly

from Carvalho et al. (2022) that there exists at least one (mixed- or pure strategy) Nash

equilibrium for any C-FCLM. To determine the existence of pure Nash equilibria, we

draw on similarities to well-researched congestion games.

Theorem 4.1 (Existence of pure equilibria). A C-FCLM in which the allocation of

customers to facilities per player is disjunct, the number of facilities per player is given,
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and the customers are indifferent between the facilities at their disposal, has a Nash

equilibrium in pure strategies.

Proof. The proof follows from the transformation of the C-FCLM into a congestion game.

In a congestion game, P players compete for a set of resources q = {1, ..., Q}. Players

choose a subset of all resources and face the cumulative cost of all selected resources.

The cost cq of an individual resource q is a non-decreasing function in the number of

players nq selecting the ressource q (Rosenthal, 1973).

Figure 4.2a visualizes how the choice of resources q (OD-trips) in the C-FCLM can be

induced through the choice of facilities if we assume a disjunct allocation of customers

to facilities (per player). By consequence, there is a one-to-one relationship between

a strategy in the congestion game (selected resources/OD-trips) and a strategy in the

C-FCLM (selected facilities that enable serving the respective OD-trips). If we further

assume that customers are indifferent between the facilities that are able to serve them

(i.e., uqk = uqk̃), and that the number of active facilities per player is fixed, we can define

the cost function as:

cq(nq) = −m
fq
nq

∀q ∈ Q (4.16)

The total cost for player p ∈ P , serving customers Qp ⊂ Q amounts to:

cp =
∑
q∈Qp

cq = −m
∑
q∈Qp

fq
nq

≡
uqk=uqk̃

−m
∑
q∈Q

fqyqp ∀p ∈ P (4.17)

Under the assumption of a fixed number of active facilities per player, we can neglect

fixed costs and thus this cost function is equivalent with the (negated) profit function

(4.1). Thus, a C-FCLM with the aforementioned properties is a congestion game and

by consequence has at least one pure equilibrium (Rosenthal, 1973).

Note that this transformation into a standard congestion game is only possible under

these restrictive assumptions. If customers are not indifferent between alternatives uqk ̸=
uqk̃, or the number of active facilities is not fixed, the transformation yields a weighted

congestion game with separable preferences. For this class of congestion games, there is

no guarantee for the existence of pure Nash equilibria (Milchtaich, 2009). In the general

C-FCLM, where multiple facilities enable access to the same customers for one player

(e.g., Figure 4.2b), a transformation into a congestion game is no longer possible as there
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(a) C-FCLM with disjunct allocation of cus-
tomers to facilities

(b) C-FCLM with overlapping allocation of
customers to facilities

Figure 4.2: The C-FCLM as a congestion game: Choice of resources (customers q) is done
indirectly through the choice of facilities.

is no longer a one-to-one relationship between choice of facilities and served customers

(i.e., resources in the congestion game).

By consequence, we cannot guarantee the existence of pure-strategy Nash equilibria

for the general C-FCLM. In contrast, one can imagine simple instances of the C-FCLM

which do not permit a pure equilibrium (see Appendix 4.A). Note that although we

cannot guarantee the existence of pure equilibria for the C-FCLM, in our practical

application (Section 4.5), we always identified at least one pure NE.

4.3.3 Solving IPGs

In order to solve the C-FCLM we identify all (mixed an pure) equilibria of the IPG

representation of the C-FCLM presented in Section 4.3.1. In contrast to a normal-form

representation commonly used in game theory (Nisan et al., 2007), this IPG representa-

tion is beneficial as it does not require enumeration of all possible strategy combinations.

This advantage is particularly useful for the C-FCLM, as already for small instances with

25 possible locations per player there are (225)2 potential strategy combinations. We use

the eSGM-algorithm discussed in Chapter 3 to solve the IPG without full enumeration

based on column-and-row generation. For convenience, we summarize key steps of the

algorithm:

• Initialization: To initialize the algorithm, we limit each player to a very small

subset of their original strategy set. For these limited strategy sets, we enumerate

all strategy combinations and calculate the respective payoffs per player to derive

a normal-form representation. This normal-form representation is referred to as

the sampled game, as it only represents a small sample of the original IPG. For the
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C-FCLM, we implement this initialization by restricting both players to a single

strategy; the zero solution.

• Sample equilibria (master problem): We use an adaptation of the MIP-Nash al-

gorithm (Sandholm et al., 2005) as the master problem. This master problem

leverages a mixed-integer approach to identify all strategy combinations of the

sampled game in normal-form, in which all players experience zero regret. By

definition (Nash, 1951), these combinations represent the set of Nash equilibria of

the sampled game.

• Best-responses (subproblem I): For each player and each equilibrium of the sampled

game, best-responses are identified in a column-and-row-generating sub problem.

In case there are best-responses, they are added to the master problem, enlarg-

ing the originally sampled game. This means the strategy space for players in

the sampled game is extended by their respective best-responses. We repeat the

identification of equilibria in the master problem (and subsequently repeat the

identification of best-responses) after updating the normal-form representation of

this extended sampled game.

• Additional equilibrium candidates (subproblem II): In case no further (unsampled)

best-responses can be identified for the current equilibrium of the sampled game,

this strategy combination is not only an equilibrium within the sample but also

an equilibrium of the full IPG. However, it might well be that there are multiple

equilibria, and the identified equilibrium is only one out of many. To guarantee the

identification of all equilibria, the sampled game is further enlarged with additional

equilibrium candidates in a second sub problem. An equilibrium candidate is de-

fined as a strategy combination, in which no player benefits from deviating back

to an already sampled strategy. This condition is a necessary, but not sufficient

condition for any equilibrium of the IPG. Therefore, to determine whether the ad-

ditional equilibrium candidates are indeed equilibria of the IPG, the identification

of best-responses is repeated for the enlarged sampled game.

• Termination: The algorithm terminates under two conditions: There is no best-

response to any identified equilibrium of the sampled game (i) and there are no

additional equilibrium candidates (ii).

Condition (i) guarantees, that the identified equilibria of the sampled game are

equilibria for the full game (IPG): In case there is no best-response for any player
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to an identified equilibrium of the sampled game, no player benefits from unilateral

deviation and the sampled game equilibrium constitutes a Nash equilibrium of the

IPG.

Condition (ii) ensures, that all equilibria have been sampled and thus identified.

In case there would be an equilibrium which is not part of the sampled game, it

would constitute an equilibrium candidate and condition (ii) would not be fulfilled.

The described approach implies, that besides solving a mixed-integer master problem,

we need to solve (4.1-4.13) repeatedly in the two subproblems to identify best-responses

and candidate equilibria. Note that the MIP-Nash masterproblem (Crönert and Minner,

2021a; Sandholm et al., 2005) is linear for two players, quadratic for three players and

features n − 1 polynomials for n players. By consequence the algorithm does not scale

well in the number of providers. We explore its scalability in number of candidate

locations and the size of the transportation network in Section 4.4 and 4.5.

4.3.4 The price of equilibria and the value of the competitive

solution

We can guarantee the existence of a mixed equilibrium for the C-FCLM (see Section

4.3.2). While this equilibrium is not necessarily unique, we can identify all equilibria

using the described method (Section 4.3.3). Subsequently, an equilibrium selection ap-

proach (see for example Harsanyi (1995) or Harsanyi and Selten (1988)) could be used

to single out a distinct equilibrium as the unique solution of the game. Instead, in our

studies we opt to report aggregate solution results.

The Price of Anarchy (PoA) is commonly used in literature to measure the (in-)efficiency

of equilibria in games. The PoA compares the objective value of the worst-case equilib-

rium with the optimal outcome if players would coordinate their efforts and share profits

(Koutsoupias and Papadimitriou, 1999; Nisan et al., 2007). As such, it is a measure of

inefficiency arising through selfish behavior and the failure to coordinate. Let us denote

with Θ the set of all equilibria. Formally, we can define the PoA as:

PoA
def
=

minσ∈Θ
∑

p∈P Πp(σp, σ−p)

maxx∈X
∑

p∈P Πp(xp, x−p)
(4.18)

with Πp as the payoff for player p and σ as an equilibrium among the set of all equilibria

Θ. The denominator denotes the maximum possible welfare as the cumulative payoff

across all players, if players were to coordinate their actions x = (xp, x−p) ∈ X.
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In contrast to the PoA, the Price of Stability (PoS) measures the best-case performance

across all equilibria. In case the game only permits a single equilibrium, the PoS is equal

to the PoA. In all other cases, the PoS is at least as close to 1 as the PoA (Nisan et al.,

2007):

PoA ≤ PoS ≤ 1 (4.19)

Formally, we define:

PoS
def
=

maxσ∈Θ
∑

p∈P Πp(σp, σ−p)

maxx∈X
∑

p∈P Πp(xp, x−p)
(4.20)

The PoS is of special interest when the involvement of third parties is considered. For

example, a governmental policy could steer players towards the best-case equilibrium,

and thus ensure a higher social welfare compared with the worst-case PoA. In the absence

of such a third party involvement, the worst-case equilibrium can be just as likely as

the best-case equilibrium. We therefore extend the PoS and the PoA with the Price of

Equilibria (PoE) - a measure of equilibrium (in-)efficency in the mean case:

PoE
def
=

∑
σ∈Θ

∑
p∈P Πp(σp, σ−p)

|Θ|maxx∈X
∑

p∈P Πp(xp, x−p)
(4.21)

The PoE is always in between PoA and PoS: PoA ≤ PoE ≤ PoS ≤ 1. In the spirit of

Roughgarden (2020), this allows us to avoid overly pessimistic (or optimistic) conclusions

and to base our findings on the examination of average-case solutions.

There is no common measure, that is able to determine the benefit of addressing

competition for a single decision maker. To highlight the benefits of a game theo-

retic model, that takes into consideration competitor actions, compared with a non-

competitive model, we propose the Value of the competitive solution (VCS). The VCS

follows the general concept of the (relative) Value of the stochastic solution (VSS) in

stochastic programming. It compares the objective value between competitive and non-

competitive model formulations for single decision makers in competitive settings. As

such, it measures the losses a player has to face when ignoring apparent competition:

V CSp
def
=


0 ,Πp(σp, σ−p) = 0

1 ,Πp(x̂p, σ−p) < 0

Πp(σp,σ−p)−Πp(x̂p,σ−p)

Πp(σp,σ−p)
, else

∀p ∈ P (4.22)
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V CS
def
=

∑
p∈P V CSp

|P |
(4.23)

where Πp(σp, σ−p) is the payoff for player p, when p and the competitors −p select

their strategies according to the equilibrium σ. In contrast, Πp(x̂p, σ−p) is the payoff

for player p when p plays the strategy x̂p that is optimal in the absence of competition

and the competitors −p play according to the equilibrium σ. In general, the relative

difference between the equilibrium solution and this non-competitive solution defines

the VCS. Note that in our application, the equilibrium solution cannot be negative

(Πp(σp, σ−p) ≥ 0) as players are not forced to invest (the zero-solution is a feasible

solution). To avoid division by zero, we separately deal with the case of a zero-solution

in (4.22). However, it might very well be the case that the profit of the non-competitive

solution is negative (Πp(x̂p, σ−p) < 0), if p did not foresee the action of competitors

−p and thereby made a non-profitable (and non reversible) investment. If the non-

competitive solution is negative, the relative difference between the equilibrium solution

and the non-competitive solution is bigger than 1. As the increase of this relative

difference with a decreasing equilibrium solution (Πp(σp, σ−p)) is counter-intuitive, we

limit the VCS to 1. Equations (4.22)-(4.23) define the VCS for a single equilibrium.

For our numerical experiments and the case study (Section 4.4 and 4.5) we report mean

results across all equilibria.

4.4 Numerical results

The following numerical experiments are based on an implementation of the solution

procedure introduced in Section 4.3.3 in Python 3. We use Gurobi 9.1 to solve the

described master problem (identification of equilibria in the sampled game) and sub-

problems (extension of sampled game with best-responses and equilibrium candidates).

We use a 2.6 GHz processor, with 4 available cores. Section 4.4.1 describes numeri-

cal experiments on a standard test instance commonly used for FCLMs, Section 4.4.2

determines the approximation error of the aforementioned clustering approach.

4.4.1 Test network

We test the C-FCLM on a 25-node network (Figure 4.3a), originally proposed by Simchi-

Levi and Berman (1988) and used by various authors (Hodgson, 1990; Huang et al., 2015;

Kim and Kuby, 2011; Kuby and Lim, 2005; Li et al., 2018; Lim and Kuby, 2010; Lin and

67



Chapter 4 Location selection for hydrogen fuel stations under competition

Lin, 2018; Tran and Nguyen, 2019) for flow-capture location models. Flow through the
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Figure 4.3: Test network encompassing 25 nodes, 43 edges and 300 OD-pairs

network (see Figure 4.3b) is based on a gravitational model, assigning a flow quantity

to each of the 300 OD-pairs on the shortest path between origin and destination based

on their weights ξ (node size in Figure 4.3a, based on Hodgson, 1990):

fq =
ξiξj

d(i, j)1.5
∀q = (i, j) ∈ Q (4.24)

We assume a willingness of customers to travel 10%, 20% or 30% longer than their orig-

inal shortest path (d̂ ∈ {0.1, 0.2, 0.3}), without an absolute limit on the travel distance

(d̄ = ∞). Apart from d̂ (and by consequence d̄q), in our experimental setup we vary the

investment cost per facility c ∈ {1500, 3000, 4500, 6000, 7500}. We assume β ∈ {1, 2, 3}
for the customer sensitivity towards driving distance. We neglect differences in facility

attractiveness and assume α = 0. Each player can choose from a set of |Kp| ∈ {2, 3, 4, 5}
randomly drawn locations out of the 25 nodes of the network. For each problem setup

(d̂, c, |Kp|), we sample 100 candidate location sets. Table 4.1 reports mean results across

all samples, highlighting effects on runtime, the number of equilibria |Θ|, the VCS and

PoA,PoE and PoS, depending on the examined parameter combination. As differences

between different values of β were minuscule, results are aggregated for β ∈ {1, 2, 3}.
We observe that while the runtime stays strictly below 1 minute, it slightly increases

with an increase in the willingness to travel of customers d̂, and strongly depends on

the number of candidate locations per player (|Kp|). This behavior is expected, as the

increased strategy space of the players renders the proof that all equilibria have been

identified more complex and time consuming. In contrast, the first equilibrium was
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identified in mere seconds. In all cases, recognizing competition improves the outcome

for at least one player. This effect is particularly evident when customers are more

sensitive with regards to deviation distance (d̂ = 0.1) and if investment costs are high

(and by consequence, planning errors costly).

Figure 4.4 shows the effect of competition between red (circle) and green (triangle)

for c = 4500, β = 1 and d̂ = 0.1 in detail. Selected locations are represented with filled

markers, potential locations (|Kp| = 4) are shown with non-filled markers. If unaware

of the existence of their competitor (Figure 4.4a), red chooses a location in the lower

left, whereas green selects a location in the lower right. In contrast, if both players are

aware of the emerging competition, green additionally opens a location in the lower left

in direct competition with red. By acting in accordance with Hotelling’s law (Hotelling,

1929), green can increase profits by 12% from 6247 (profit based on locations in Figure

4.4a) to 6991 (based on Figure 4.4b).

(a) Non-competitive setting (b) Competitive setting

Figure 4.4: Comparison of results in a competitive and a non-competitive setting for c = 4500,
d̂ = 0.1, β = 1

For the examined 25-node network, the competitive solution of the C-FCLM leads to

an average price of anarchy of 80% and a mean price of equilibria of 81% (across all

parameter variations). This implies that in this case, central or coordinated planning

can yield around 20% higher profits for fuel station providers. The majority of problem

instances resulted in a unique Nash equilibrium, however some cases featured up to eight

equilibria.
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Table 4.1: C-FCLM results for the 25-node test network (mean of 300 samples per problem
setup)

|Kp| c d̂ runtime, sec V CS, % PoA, % PoE, % PoS, % |Θ|
2 1500 0.1 9.4 0% 92% 92% 92% 1

0.2 10.7 0% 92% 92% 92% 1
0.3 12.4 1% 91% 91% 91% 1

3000 0.1 11.2 4% 94% 94% 94% 1
0.2 18 4% 87% 87% 87% 1
0.3 19.5 3% 82% 82% 82% 1

4500 0.1 12.3 7% 88% 90% 92% 1.2
0.2 14.7 5% 91% 92% 93% 1.2
0.3 17.8 1% 91% 91% 91% 1

6000 0.1 10.8 8% 74% 77% 81% 1.2
0.2 14.7 4% 84% 86% 87% 1.2
0.3 15.6 1% 86% 87% 89% 1.2

7500 0.1 10.1 38% 86% 91% 96% 1.2
0.2 14.1 15% 72% 74% 76% 1.2
0.3 14.5 2% 79% 79% 79% 1

3 1500 0.1 13.9 1% 92% 92% 92% 1
0.2 21.4 2% 89% 89% 89% 1
0.3 26.4 4% 85% 85% 85% 1

3000 0.1 15.7 3% 86% 87% 87% 1.2
0.2 21.4 3% 88% 88% 88% 1
0.3 31 3% 80% 80% 80% 1

4500 0.1 14.7 4% 75% 77% 79% 1.4
0.2 21 2% 80% 81% 83% 1.4
0.3 34.2 3% 78% 81% 84% 1.6

6000 0.1 13.3 12% 66% 68% 71% 1.2
0.2 18.6 4% 76% 76% 76% 1
0.3 27.2 4% 78% 78% 78% 1

7500 0.1 12.3 28% 71% 78% 81% 1.2
0.2 17 7% 65% 65% 65% 1
0.3 20.1 2% 70% 70% 70% 1

4 1500 0.1 21.4 0% 93% 93% 93% 1
0.2 34.2 6% 87% 87% 87% 1
0.3 44 8% 83% 83% 83% 1

3000 0.1 23.6 3% 88% 89% 90% 1.4
0.2 41.7 5% 80% 81% 82% 1.4
0.3 41.4 3% 79% 79% 79% 1

4500 0.1 26.1 5% 81% 83% 85% 1.4
0.2 26.7 4% 80% 80% 80% 1
0.3 33.4 3% 81% 81% 81% 1

6000 0.1 17.7 6% 75% 75% 75% 1
0.2 31 5% 78% 78% 79% 1.4
0.3 34.6 7% 77% 77% 77% 1.4

7500 0.1 16.4 21% 74% 74% 74% 1
0.2 22.3 6% 68% 68% 68% 1
0.3 29.2 4% 71% 72% 73% 1.2

5 1500 0.1 34.3 1% 90% 90% 90% 1
0.2 58.9 4% 84% 84% 84% 1
0.3 65.2 8% 81% 81% 81% 1

3000 0.1 28.6 3% 85% 85% 85% 1
0.2 45.4 3% 81% 81% 82% 1.2
0.3 55 5% 77% 77% 77% 1

4500 0.1 32.6 2% 77% 77% 78% 1.2
0.2 40.9 1% 79% 81% 81% 1.4
0.3 56.3 6% 74% 76% 77% 1.4

6000 0.1 27.8 3% 72% 72% 72% 1
0.2 37.4 2% 75% 75% 75% 1.2
0.3 49.8 3% 70% 71% 72% 1.4

7500 0.1 24.6 13% 62% 62% 62% 1
0.2 32 0% 70% 70% 70% 1
0.3 37.2 2% 70% 70% 70% 1
mean 26.4 5% 80% 81% 82% 1.1
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4.4.2 Clustering

In Section 4.4.1 we observed influences on runtime through the number of candidate

locations |Kp| and the relative deviation distance d̂. In addition to these previously

examined runtime effects, the number of distinctly modeled OD-trips |Q| clearly drives

the number of variables in the C-FCLM and by consequence model complexity. While the

examined 25-node network can be solved (i.e., all equilibria are identified) within seconds

for most cases, real-world applications might lead to significantly more complex networks

with a large number of OD-pairs |Q| (see Section 4.5) that will exceed computational

limitations during the identification of all equilibria.

As the distance from one node to a neighboring node can be negligibly small in such a

dense urban environment, we expect only slight approximation errors when aggregating

similar OD-trips. We propose to combine OD trips, that hardly differ (in terms of

euclidean distance) in their origin and destination node, into a common cluster. This

cluster is represented through a single representative OD pair (the cluster center), which

accounts for the cumulative flow of all OD-pairs within the cluster. We aggregate all

OD-pairs q ∈ Q into |C| clusters c ∈ C minimizing the total weighted squared error Φ:

Φ =
∑
q́∈Q

min
c∈C

fq́||q́ − c||2, (4.25)

with q́ ∈ R4 as a four dimensional vector representation of the OD-pair q with x, y-

coordinates for the origin and the destination node. Finding the global optimum to

(4.25) is NP-hard even for non-weighted clustering in R2 (Mahajan et al., 2012) or when

limiting the number of clusters |C| to two (Aloise et al., 2009). Therefore local search

algorithms such as kmeans (Lloyd, 1982) are used. We use kmeans++ (Arthur and Vas-

silvitskii, 2006), an extension of the original kmeans algorithm that ensures O(log |C|)-
competitiveness with optimal clustering. In the proposed clustering approach we use

the coordinates of the origin and the destination node, as well as the flow fq to fully

characterize a given OD-pair q and to determine its proximity to other OD-pairs. Nat-

urally, one could also think of alternative proximity measurements to determine which

OD-trip belongs to which cluster. For example, we could define clusters by enforcing

that each OD-trip in the cluster shares a certain percentage of its shortest path with

the shortest path of the cluster center. However, this definition would imply that two

OD-trips that start and end very close to each other, and whose shortest paths are close

but separate throughout the trip would not be part of the same cluster, despite facing
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similar deviations to potential fuel station locations. Another alternative proximity for-

mulation could be based directly on these deviation distances to potential fuel station

locations (dqk). Two OD-trips, that face the same or similar distances to all potential

fuel station locations k ∈ K can clearly be considered similar and should belong to

the same cluster. While this would be an appropriate proximity measure in theory, it

would imply clustering in R|K| instead of R4 and thus significantly hinder computational

performance. We therefore opted to use origin/destination coordinates to determine

proximity of OD-trips.

We apply this clustering approach to examine the introduced error in a controlled

numerical experiment based on the 25-node test network. Clearly, this error depends

on the allowed number of clusters. The optimal cluster count |C| is a trade-off between

reduced computation time and the resulting approximation error. To evaluate this trade-

off, we determine the difference between results of the original network (|Q| = 300)

and the clustered representation while varying |C|. As in Section 4.4.1, player specific

candidate locations Kp are drawn at random from a uniform distribution across all 25

nodes. To isolate clustering effects, we keep c and d̂ fixed (c = 6000, d̂ = 0.1).

Figure 4.5 shows the effects of clustering on the absolute error ∆abs for PoE and VCS.

∆abs is the absolute difference (in PoE or VCS, respectively) between the original solution

and the solution of the clustered representation (evaluated in the objective functions of

the original model). Each data point reflects the mean of 100 samples. When cutting

the number of explicitly modeled OD-trips in half (|C| = 150), we can reduce runtimes

by more than 50%, at the cost of deviations of 2-4 percentage points in the reported

VCS and PoE. Note that in this synthetic setting, the ratio of candidate locations across

both players (|K| = 6 to 8) to the total number of nodes in the network (25) is high. In

reality, if players are restricted to a small subset of locations (e.g., existing conventional

fuel stations) in a very large and dense urban network, we expect smaller deviations.

4.5 Case study

In the following case study, we assess HFS location selection for two competing players

in the city of Munich, Germany. Reported runtimes have been achieved with a 2.6 GHz

processor at 16 available cores.
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(b) |Kp| = 4

Figure 4.5: Effects of clustering OD-trips on PoE, VCS and runtime (normalized for
|Q|=300), mean results for 100 samples per data point

4.5.1 Pre-processing

Figure 4.6 shows the network of main roads in Munich. This network consists of more

than 9000 nodes and more than 15000 edges (Figure 4.6a). Each edge refers to a road

section with a mean length of 146 meters. On average, a node connects 2.4 road sections.

Flow through the network in OD-pairs is given by agent-based simulations from Moeckel

et al. (2020) (Figure 4.6b).

(a) Munich main road network (>9000
nodes, >15000 edges)

(b) Flow density through the network
(>50000 OD-pairs)

Figure 4.6: Munich main road network and traffic flow

The pre-processing builds on the following assumptions:

(1) As nodes representing junctions of the road network are always superior (in terms

of vehicle flow) to neighboring nodes that are not part of a junction and the distance

to the next junction is negligible within a city, we can neglect non-junction nodes.

73



Chapter 4 Location selection for hydrogen fuel stations under competition

(2) As the real estate in Munich is limited, and investment costs for building a new

fuel station are prohibitively high, we expect hydrogen fuel stations exclusively

at existing (conventional) fuel stations of the respective players. To reduce the

set of candidate locations to existing fuel stations, we rely on publicly available

geo-spatial information from openstreetmap (OSM, 2020). We parse all known

locations of existing fuel stations and for each select the closest junction as a

proxy location. We limit our examination to the two biggest fuel station providers

in Munich (P0=Shell, P1=Aral). Figure 4.7a shows the candidate locations for

both players.

(3) As many OD-trips through the network share similar paths on the majority of their

route, we can reduce model complexity through aggregation. We depict multiple

similar OD-trips with a single (representative) OD-pair q (see Section 4.4.2) and

reduce the number of explicitly modeled OD-pairs into nc = 1000 clusters. Figure

4.7b shows an exemplary representation of a cluster through its center route (red)

with the original OD-trips in blue. The final model consists of |Q| = 1000 OD-pairs

and |K| = 34 potential facility locations among |N | = 2 competing players.

(a) Potential fuel station locations for P0 (red)
and P1 (green)

(b) Exemplary cluster of original OD-trips
(blue) and center representation (red)

Figure 4.7: Potential fuel station locations and exemplary cluster representation of OD-trips

We aggregate the traffic data to one representative year and accumulate all (potential)

customers sharing the same origin and destination to the flow fq of said OD-pair q. We

denote with γ the share of all cars using an FCEV-drivetrain (market penetration) and

scale the traffic flow with the expected FCEV market penetration according to three

different scenarios (γ ∈ {5%, 10%, 15%}), as well as the average hydrogen consumption
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per FCEV to arrive at actual hydrogen fuel demand data. We neglect differences in size,

price or brand between (potential) fuel stations (α = 0). Based on Brown et al. (2013),

we assume a retail markup of ≈ 10 ct per kg (above the current markup for conventional

fuel) and 20 ct per kg of additional margin through convenience product sales in store.

At an average transaction volume of ≈ 3.3 kg, this yields m = 1 EUR in operational

margin per served customer.

The assumption that differences in prices and profit margins between providers are

negligible is common in prior literature on competitive hydrogen fuel station location

selection (Bersani et al., 2009) or in prior competitive variants of the FCLM (Berman

and Krass, 1998; Wu and Lin, 2003). This assumption is sensible, as the majority of the

contribution margin of fuel station providers comes from the sales of convenience goods

rather than fuel sales (Brown et al., 2013). We expect the margin of convenience goods

to be comparable across fuel stations and brands. Neglecting potential economies of

scale, the margin per customer m can thus be assumed to be exogenous industry knowl-

edge. Nevertheless, price competition clearly plays a role in the day-to-day business for

conventional fuel stations (Bergantino et al., 2020) – and thus might also be relevant

for hydrogen fuel stations in the near term. However, while the number of low-cost

competitor stations in close proximity has a measurable effect on price levels for con-

ventional fuel stations, other, structural factors such as type of road, population count,

real estate value or the number of commercial businesses are by fare more influential on

the fuel price (Bergantino et al., 2020). Hence price competition will likely be limited

to operational decision making and will not influence the strategic location decision on

the HFS network as a whole.

Depending on the fuel station capacity and technology, Apostolou and Xydis (2019)

list investment costs for HFS ranging from 1.0 − 2.4mn EUR, for our calculations we

assume an initial investment of 1.5mn EUR and depreciate over 15 years with a yearly

depreciation of 0.1mn EUR and maintenance costs of 0.05mn EUR yielding yearly fix

costs of c = 0.15mn EUR.

As we are lacking data on actual customer sensitivities (e.g., β, d̂), we explore results

under various problem settings using a full factorial design. Besides the scenarios of

FCEV market penetration (γ), we vary the maximum deviation distance customers are

willing to drive (d̂ ∈ {10%, 15%, 20%}) and the customer sensitivity towards distance

β ∈ {1, 2, 3}. In addition to the relative deviation distance limit d̂ we employ an absolute

limit of d̄ = 3 as we do not expect drivers taking an inner-city detour of more than 3
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km to refuel. In total, this setup yields 27 problem instances with different parameter

combinations (β, d̂, γ).

4.5.2 Computational results

In all 27 instances, we identified at least one pure Nash equilibrium, even though the

existence of pure Nash equilibria is not guaranteed for the C-FCLM (see Section 4.3.2).

As practical implications are hard to deduct from mixed equilibria, we report results for

pure equilibria only. In some instances, the equilibrium was not unique, with up to 3

equilibria per instance. In these cases with multiple equilibria, we report mean values

across all (pure) equilibria. Figure 4.8 shows the effects of the different factor levels

on the average yearly profit per provider (Π̃p), the V CS (see Section 4.3.4), the total

number of active hydrogen fuel stations n and the total solution runtime.

We observe that solution runtime increases with an increase in d̂, as customers take

more alternative stations into account. Solution runtime also increases with a higher

penetration: As it becomes more attractive to open facilities for fuel station providers,

the average number of hydrogen stations n increases and the strategy space expands.

In the most complex setting with a high willingness to travel d̂ = 0.2 and a large

hydrogen penetration γ = 0.15 runtime reaches up to 15000 seconds (≈ 4.2h), despite

prior clustering of OD-trips. Evidently, a higher penetration increases the average annual

profit per provider from ≈ 13k EUR at γ = 5% to more than 200k EUR at γ = 15%. In

contrast, the competitiveness (i.e., the VCS) is especially high for a very small FCEV

penetration (γ = 5%). As margins are especially small with low FCEV adoption, two

competing HFS that are unintentionally in very close proximity might very well yield

negative returns for both providers, highlighting the need to take possible competitor

actions into consideration during location planning. On average, across all instances the

VCS amounts to 17% which suggests that hydrogen fuel station providers who take into

account likely competitor (re-)actions can substantially increase profitability.

If the two players were allowed to collaborate, they would be able to further increase

profits by 28% (based on a mean PoE of 72%). Notably, this increase in provider

profit comes at the cost of customer utility: Customers would suffer from an increase in

deviation distance of up to 10% (average: 3%) as collaboration between providers would

lead to a reduced number of HFS. For policymakers this means, that while fostering

collaboration (e.g., through less strict antitrust laws or government-backed provider

associations) benefits the providers, it does not imply a higher number of fuel stations

and thus could have an adverse effect on the customer (i.e., FCEV driver) experience.
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Figure 4.8: Effects on runtime, average number of fuel stations n, the V CS and PoE, and the
average (yearly) payoff per player Π̃p for different parameter settings of β, γ, d̂

77



Chapter 4 Location selection for hydrogen fuel stations under competition

Figure 4.9 exemplifies spatial differences between a competitive and a non-competitive

setting for γ = 15%, d̂ = 10% and β = 3. In the non-competitive setting (Figure 4.9a),

where both players are unaware of competition and optimize independently, we see an

accumulation of two competing HFS in the east. This close proximity significantly

reduces profitability for the red player, leading to losses when compared to the spatially

differentiated competitive solution in Figure 4.9b.

(a) Non-competitive setting (b) Competitive setting

Figure 4.9: Comparison of results in a non-competitive and in a competitive setting for γ =
15%, d̂ = 10%, β = 3

4.6 Conclusions and future research

By extending the FCLM to a competitive setting, and solving the resulting model in

various numerical experiments and in a case study, we show that taking emerging compe-

tition and possible competitor actions into account can help decision makers who select

hydrogen fuel station locations to realize savings of 17% on average (mean across all

examined scenarios). A price of anarchy around 60% and a mean price of equilibria of

72% suggests, that collaboration between providers (under applicable antitrust laws) or

a centrally planned hydrogen supply chain could substantially benefit providers. While

this might decrease the hurdle to invest at very low FCEV market penetration, it does

come at the cost of longer deviation distances for customers at higher market penetra-

tion, with customers experiencing a sparser network of HFSs.

The proposed model assumes equal prices and margins for all competitors. Evidently,

a player could try to compensate an inferior location by partially decreasing fuel prices

at the cost of margins and thus increase the facility attractiveness ak. A natural ex-
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tension of the model would hence reflect not only decisions on locations but also the

price level of each location and incorporate the effect of different price levels among

facilities on customer choice. Further research opportunities lie within a multistage

stochastic extension of the proposed framework for competitive flow-capture location-

allocation models. As we are facing uncertain technology adoption, the advantages of

a dynamic, stochastic formulation are evident. For non-competitive settings, similar

formulations are readily available (Hosseini and MirHassani, 2015; Tan and Lin, 2014;

Wu and Sioshansi, 2017). In a competitive setting, however, such an extension is not

straightforward as characteristics of dynamic and stochastic games (e.g., subgame per-

fection and non-credible threats, see Selten, 1975) have not yet been properly addressed

for IPGs and conventional (extensive form-based) game theoretic models able to identify

subgame perfect equilibria would require the full enumeration of each and every possible

strategy combination.
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Appendix 4.A C-FCLM without a pure equilibrium

Imagine a C-FCLM with four OD-trips q ∈ Q = {q1, q2, q3, q4} and |K| = 4 facilities

split on |P | = 2 competitors: K0 = {k1, k2}, K1 = {k3, k4}. The utility uqk of a facility

k perceived by customers on a certain OD-trip q is given in Table 4.2. Note that the

utility uq4k1 equals zero, we assume that q4 cannot be served by k1 as dq4k1 > d̄q. We

further assume customer flows of fq = [215, 220, 1, 2], margins and fix costs of m = 1 and

c = 100, respectively. Given the small number of facilities per player, we can enumerate

all strategies, and transform the C-FCLM into the normal-form game of Table 4.3.

Deletion of dominated strategies yields Table 4.4, which shows no pure equilibria and

one mixed equilibrium with player one randomizing between k1 (70%) and k2 (30%) and

player two randomizing between k3 and k4 with 73% and 27% probability.

Table 4.2: Utility uqk for examplary C-FCLM without pure Nash equilibrium

uqk k1 k2 k3 k4
q1 1.1 3.2 1.4 3.6
q2 2.8 0.7 2.7 0.7
q3 0.7 1.1 1.1 0.7
q4 0 1.8 1.6 0.7

Table 4.3: C-FCLM without pure Nash equilibrium in normal-form representation

x1 = [xk3, xk4]

[0, 0] [1, 0] [0, 1] [1, 1]

x0 = [xk1, xk2]

[0, 0] 0,0 0,338 0,338 0,238

[1, 0] 336,0 107.3,130.8 113.5,124.5 23.1,114.9

[0, 1] 336.0,0 112.9,125.1 98.1,139.91 7.2,130.8

[1, 1] 238,0 110.0,28.2 92.7,45.3 1.8,36.2

Table 4.4: C-FCLM without pure Nash equilibrium in reduced normal-form representation

x1 = [xk3, xk4]

[1, 0] [0, 1]

x0 = [xk1, xk2]
[1, 0] 107.3,130.8 113.5,124.5

[0, 1] 112.9,125.1 98.1,139.9
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Chapter 5

Inverse optimization for parameter

estimation arising from competitive

retail location selection

When determining store locations, competing retailers must take customers’ store choice

into consideration. Customers predominantly select which store to visit based on price,

accessibility, and convenience. Incumbent retailers can estimate the weight of these

factors (customer attraction parameters) using granular historical data. Their loca-

tion decision under full information and simultaneous competition translates into an

integer programming game. Unlike those incumbents, new entrants lack this detailed

information; however, they can observe the resulting location structure of incumbents.

Assuming the observed location structure is (near-)optimal for all incumbent retailers,

a new entrant can use these observations to estimate customer attraction parameters.

To facilitate this estimation, we propose an inverse optimization approach for Integer

programming games (IPGs), enabling a new entrant to identify parameters that lead

to the observed equilibrium solutions. We solve this inverse IPG via decomposition by

solving a master problem and a subproblem. The master problem identifies parameter

combinations for which the observations represent (approximate) Nash equilibria when

compared with optimal solutions enumerated in the subproblem. This row-generation

approach extends prior methods for inverse integer optimization to competitive settings

with (approximate) equilibria.

We compare the decision-making of new entrants selecting locations based on expected

values or scenarios of customer attraction parameters with new entrants using inversely

estimated parameters for their location decisions. New entrants who rely on inversely

optimized parameters can improve their profits by 4-11% on average. This benefit can
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Chapter 5 Inverse optimization for parameter estimation

be realized with as little as one or two observations, yet additional observations help to

increase prediction reliability significantly.

5.1 Introduction

By offering lower prices, some grocery retailers established large stores (superstores) in

the outskirts of cities to attract consumers to shop at these stores by purchasing larger

quantities with less frequent visits (Bell et al., 1998; Leszczyc et al., 2004). Nowadays,

increasingly fast-paced consumers find more convenient alternatives, moving to bite-size

consumption in smaller stores close to their work or home (Belavina et al., 2017). Retail-

ers react accordingly and prioritize stores inside cities, focusing on customer proximity

but reducing sales area and assortment to compensate for the higher cost of retail space.

While store location is a key element of customer attraction, other factors such as store

brand recognition, the retailers’ assortment, or price levels can also play a crucial role

in the customers’ store selection. Without in-depth knowledge of these customer attrac-

tion parameters, retailers cannot choose their store locations optimally. Prior research

determines these customer attraction parameters based on customer surveys which are

prone to response biases, or using estimation techniques based on discrete choice models

in combination with granular sales data (e.g., maximum likelihood estimation). Ben-

Akiva and Lerman (1997) provide a general introduction to discrete choice theory, for

applications to retail operations and market shares, see Cooper and Nakanishi (1988) or

Berbeglia et al. (2021). While maximum likelihood estimation and similar approaches

can be an appropriate tool for incumbent retailers with plenty of sales records available

at existing locations; a new entrant is unlikely to have access to such granular data. To

overcome this challenge, we address this issue faced by a new entrant by examining com-

petitive retail location selection and estimating customer attraction parameters based

on limited, observable information on existing locations of incumbents.

Selecting store locations of multiple competing retail chains is modeled as a simultane-

ous competitive location problem. This assumption on the sequence of decision-making

between the competing retail chains is a key differentiator between competitive loca-

tion models (Eiselt et al., 2019). In line with location selection of established retail

chains in practice, we focus on store location selections arising from a simultaneous

competitive situation between a finite number of competing retail chains, with no clear

leader-follower relationship. We model such a simultaneous competitive setting as an

IPG. An IPG is a non-cooperative, full-information simultaneous move game between
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two or more competing players in which the (integer) decision of each player affects the

objective function of their competitors. The predominant solution concept for IPGs is

a Nash equilibrium (Carvalho et al., 2022; Köppe et al., 2011; Nash, 1951); for our

application, such an equilibrium is a combination of store location decisions in which no

retail chain benefits from unilateral deviation.

We consider the situation of a single outside party who can observe the result of a

non-cooperative simultaneous location selection game (formulated as an IPG) associated

with multiple incumbents. In the following, we assume this external observer is a new

entrant who is interested in extracting information to optimize its own market entry

location selection. Similarly, public authorities and city planners as external observers

could be interested in the parameter estimates to guide regulatory and planning efforts.

Incumbents have full knowledge of each other’s payoffs and the customer choice behav-

ior (e.g., through estimates based on historical sales data). They know the customers’

valuation for brand, store location, and travel distance or convenience of general acces-

sibility. Their observable location decisions are thus (near-)optimal and constitute an

(approximate) Nash equilibrium of an IPG. However, in contrast to the incumbents,

the new entrant does not know the customers’ choice behavior and lacks the sales data

required for conventional estimation. Yet, they can use the observed (near-)optimal lo-

cation selection of incumbents in combination with their knowledge of other parameters

(e.g., location costs, population count) to deduce information on customer store choice

based on inverse optimization.

Given a (feasible) solution to the IPG associated with the incumbents (i.e., the forward

problem), the new entrant solves an inverse optimization problem (inverse IPG). The

objective of this inverse IPG is to find a set of parameter values such that a variation of

the forward problem IPG based on these parameters leads to optimality of the provided

solution. Therefore, our goal is to examine the new entrant’s problem by solving the

inverse optimization of IPGs; i.e., the estimation of the parameter set that defines the

observed equilibrium arising from competition between the incumbents. Subsequently,

these estimated customer attraction parameters improve the ability of the new entrant

to make their own market entry location decisions.

5.1.1 Contribution

While existing approaches can inversely optimize parameters in integer programs (Wang,

2009) or in continuous equilibrium applications (Bertsimas et al., 2015), no approach that

integrates both integrality and competition (equilibria) in inverse optimization exists.
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We contribute to the literature on inverse optimization by extending prior methods for

inverse integer problems to solve the inverse optimization of competitive integer problems

(IPGs). This enables the estimation of parameters that explain the behavior of multiple

competitors observed in a Nash equilibrium. To deal with noisy observations, which do

not fully represent the decision-making expected based on the underlying ground-truth

parameters, or with situations in which no pure Nash equilibrium exists, we introduce

the method for the more general ϵ−Nash equilibria. The proposed method offers a

plethora of applications beyond competitive location decisions, including the estimation

of parameters in capacity or inventory games, as well as (competitive) investment or

assortment decisions. We thus provide an approach to evaluate (integer) decisions under

simultaneous competition observed in practice.

5.1.2 Organization

Section 5.2 provides background on IPGs and formalizes the (inverse) problem. We

examine a stylized example and develop a general solution methodology in Section 5.3.

In Section 5.4, we conduct numerical experiments to assess the value of the developed

methodology for new entrants and its ability to extract information from observations.

Section 5.5 summarizes the main findings and provides an outlook on future research

directions.

5.2 Context and problem setting

We briefly describe IPGs in Section 5.2.1 and introduce the general problem and key

assumptions in Section 5.2.2, before formalizing the customer choice problem (Section

5.2.3), the incumbents location selection problem (Section 5.2.4) and the inverse opti-

mization problem of the new entrant (Section 5.2.5).

5.2.1 A general description of integer programming games (IPGs)

An IPG is a simultaneous move game between n-players i ∈ I = {1, ..., n} in which

a player’s strategy xi ∈ Si is comprised of zi bounded integer decisions (Köppe et al.,

2011). The finite action set Si of possible strategies for each player i is given by Qi

inequalities:

Si =
{
xi ∈ Zzi | wq(xi) ≤ 0, ∀q ∈ {1, . . . , Qi}

}
. (5.1)
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Here, wq represents any real-valued function. Prior literature (Carvalho et al., 2022;

Köppe et al., 2011) assumes wq to be linear, but, in the case of Carvalho et al. (2022),

does not restrict all decision variables to integers. We denote with −i all players except

i, i.e., −i = I \ {i}. Then, x−i is a combination of strategies of i’s competitors, i.e.,

x−i = (xĩ)ĩ∈−i. Players i choose their strategies xi to maximize payoffs Πi(xi,x−i),

which depends both on their own decision and the decision of their competitors. Thus,

a popular solution concept for IPGs is a Nash equilibrium in which no player benefits

from unilateral deviation (see Nash, 1951):

Πi(xi,x−i) ≥ Πi(x̃i,x−i) ∀x̃i ∈ Si, ∀i ∈ I (5.2)

However, such pure Nash equilibria do not provably exist for general IPGs (Carvalho

et al., 2022). For IPGs without pure Nash equilibria, common solution concepts in-

clude identifying approximate Nash equilibria or mixed equilibria. In an approximate

Nash equilibrium, no player can benefit by more than ϵ from unilateral deviation (see

Daskalakis et al., 2006; Papadimitriou, 2007):

Πi(xi,x−i) + ϵ ≥ Πi(x̃i,x−i) ∀x̃i ∈ Si, ∀i ∈ I (5.3)

A mixed equilibrium implies that players randomize over multiple strategies in the sup-

port of the equilibrium. The interpretation of such a randomized behavior can be diffi-

cult for some applications, particularly if modeled as single-shot games (Friedman and

Zhao, 2021). In contrast, the interpretation of ϵ in an approximate Nash equilibrium is

straightforward, be it the representation of partial player irrationality, players acting on

imperfect input data, or simply unwillingness to change the status quo unless potential

savings exceed a threshold. We will therefore rely on approximate Nash equilibria in the

following.

Among other applications, IPGs, as introduced above, are used to model competi-

tive location decisions in simultaneous move games (see, e.g., Chapter 4 or Crönert and

Minner, 2021b). Methods to solve IPGs and closely related problem settings through

the identification or selection of a Nash equilibrium are discussed by Sagratella (2019),

Crönert and Minner (2021a, cf. Chapter 3) and Carvalho et al. (2022). In our motivating

example of competitive retail location, such a Nash equilibrium represents location de-

cisions of incumbent retail chains. In contrast, we are interested in the inverse problem,

i.e., given a set of observed location decisions in an equilibrium, can we deduce hidden

information on parameters that explain the observed choices?
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5.2.2 Our context

We investigate a problem setting that involves three groups of actors: Customers (Sec-

tion 5.2.3), incumbent retailers (Section 5.2.4) and a new entrant (Section 5.2.5). Ap-

pendix 5.D provides an overview of the notation used for the subproblems of the re-

spective actors. Figure 5.1 shows the relationship and inter-dependencies between these

actors. Incumbent retailers choose to open a subset of their candidate locations (red

downward arrows) based upon their prior knowledge of each other’s payoff structures

and customer choice behavior (full information). They obtained this information by

leveraging market experience, e.g., from historical sales data. The customers react to

the chosen locations of all incumbent retailers by selecting certain stores they frequent

(green upward arrows). We assume that the incumbents’ selection of stores is in an

(approximate) Nash equilibrium, i.e., is (near-)optimal given the customers’ choice. A

new entrant (the eye) observes the locations of the incumbents (blue horizontal arrows)

and uses the gathered information to estimate the customers’ choice parameters (blue

dashed horizontal arrows). Subsequently, the new entrant can leverage the information

to optimize their own location decision (not shown).

Customers

Incumbent 1 Incumbent 2 . . .
compete

select
lo
cation

s

ch
o
ose

sto
re

observe locations

estimate choice
parameters

Figure 5.1: Problem structure and subproblems

While Figure 5.1 shows only a single observation, we assume the new entrant has

access to multiple observations o ∈ O. From a theoretical perspective, the availability

of multiple observations could be motivated through multiple equilibria in the same

problem setting, or, in a more applied sense, the new entrant could observe multiple

(sub-)regions. We implicitly assume that the observations (or the underlying regions)

are sufficiently similar, i.e., customers behave similarly across all observations. The

observations are limited to locations of incumbents in the same market segment, ignoring
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locations of retailers in other segments. While all retailers fiercely compete within the

same segment, inter-segment effects are often negligible (see, e.g., Cleeren et al., 2010,

for inter-segment competition of grocery retailers).

5.2.3 Customer choice

Customer patronage is driven by customers maximizing the utility they expect from

the respective stores. The utility uo
ijk that customers in location j ∈ J receive from a

facility k ∈ K operated by an (incumbent) retail chain i ∈ I in observation o is defined

by a linear additive utility function. Note that this assumption is not as restrictive as

it seems. With additional computational effort, Multiplicative competitive interaction

(MCI) models (including the Huff-gravity model, Huff, 1964) or Multinomial logit choice

(MNL) models could be used after reformulation into log-linear functions which are lin-

ear in the customer choice parameters. Yet, many studies on the predictive accuracy

of market share models report little benefit of the more complex MCI or MNL models

over linear models (Cooper and Nakanishi, 1988). The utility function builds on the

following observations: The accessibility (e.g., proximity) of a store is a key driver for

store choice, especially in grocery retailing (Statista, 2019a,b). Other important deci-

sion factors, such as differences in pricing, assortment, or product quality, depend on the

store brand rather than the store location and are captured by an aggregate measure

of retail chain brand attractiveness βi. The vector β = (βi)i∈I summarizes βi across

all incumbents. The convenience of a location captures synergies with other points of

interest in close proximity to the store (e.g., subway stations, gas stations, pharmacies,

or organic supermarkets) in the spirit of multi-purpose shopping trips (see, e.g., Mari-

anov et al., 2018). The customer choice parameter α describes the relative importance

of accessibility over the convenience of multi-purpose shopping for customers. To ensure

comparability, both accessibility and convenience are normalized between 0 and 1. We

normalize the convenience measure gok of store k in observation o, by comparing it with

the the maximum convenience score across all store locations ḡ = maxk∈K,o∈O(g
o
k), yield-

ing g̃ok =
gok
ḡ
. Similarly, the normalized accessibility d̃ojk is determined by the distance dojk

between store k and customers in j in relation to a maximum willingness to travel d̄:

d̃ojk =
d̄−dojk

d̄
. I.e., a store k is “more accessible” to customer j the closer d̃ojk is to 1. This

definition of accessibility relates to research on the limited willingness of customers to

travel beyond a threshold distance (Access Development, 2016; Anders, 2015). Other

accessibility criteria, such as the driving time by car, taking into account road networks
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and congestion, or the availability of sufficient parking space, could also be included in

alternative definitions of accessibility.

We assume that both store brand attractivity 0 ≤ βi ≤ 1 and the relative importance

0 ≤ α ≤ 1 of accessibility (d̃ojk) over convenience (g̃ok) are chosen from their respective

discrete sets βi ∈ B and α ∈ A. Jointly, they define the utility uo
ijk as

uo
ijk = βi + αd̃ojk + (1− α)g̃ok. (5.4)

We assume that α and βi (i ∈ I) are homogeneous across the examined market and

are not location-dependent. This assumption is reasonable, as we examine competition

within one segment (e.g., discount supermarkets). While the size of the customer base

for this segment (i.e., the number of customers with a general interest in buying from

any of the retailers) might differ between customer locations j according to their average

income, the preferences (α,β) of customers willing to shop in the respective segment are

unlikely to vary greatly between locations.

Based on the utility uo
ijk (5.4) a store k of retailer i provides to customers located in

j, the expected fraction fij of customers that patronize i’s stores is assumed to follow

Luce’s choice axiom (see Luce, 1959)

f o
ij =

∑
k∈K|djk≤d̄

xo
iku

o
ijk∑̃

i∈I

∑
k∈K|djk≤d̄

xo
ĩk
uo
ĩjk

∀i ∈ I, ∀j ∈ J, ∀o ∈ O. (5.5)

This fractional patronage is based on the cumulative utility provided by all stores of

i to customers at j, relative to the cumulative utility provided by all stores (including

i’s competitors) considered by customers at j.

Figure 5.2 illustrates a simple network of customer locations and potential store lo-

cations. Highlighting the interplay between arc-based parameters (djk), store-based

parameters (gk) and retail chain brand-based valuations (βi). Here, the red chain (r)

has two potential locations A and B, whereas the blue chain (b) has three potential lo-

cations C, D, and E. The dashed connection to E signifies that E is not reachable within

the customers’ maximum willingness to travel, i.e., djE > d̄. This means customers at j

are willing to travel to 4 out of 5 potential locations.
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A

gA, βr
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Figure 5.2: Network structure with one customer location (|J |=1), five potential retail loca-
tions (|K| = 5) and two incumbents (I = {red (r),blue (b)})

5.2.4 Forward problem: Incumbents’ simultaneous location

selection problem

We now describe the Integer programming game (IPG) between competing incumbents

selecting their store locations simultaneously. Each incumbent retail chain i maximizes

their own profit. For convenience, we assume costs and margins are annualized. For each

observation o, the parameter x̂o
ik = 1 indicates retail chain i operates at location k. The

variable xo
ik ∈ {0, 1} represents an alternative location decision available to retail chain

i. The profit Πo
i

(
xo
i , x̂

o
−i

)
retail chain i can attain with strategy xo

i := (xo
ik)k∈K ∈ Si

when other retail chains choose the observed strategies x̂o
−i during observation o, is given

by

Πo
i

(
xo
i , x̂

o
−i

)
=

∑
j∈J

mo
ijp

o
jf

o
ij︸ ︷︷ ︸

annualized operating margin

−
∑
k∈K

coikx
o
ik.︸ ︷︷ ︸

annualized fixed costs

(5.6)

The parameter mo
ij is the average annual cumulative contribution margin for retail

chain i per customer who resides in j, poj is the (exogenous) population count or size of

the customer base in j, and the (exogenous) parameter coik reflects all location-dependent

costs, such as rental costs, and location-independent costs, such as salaries or equipment,

for location k and retail chain i. Customer counts, contribution margins, and costs may

differ between observations and are hence indexed with o.

Retail chains optimize their respective (annualized) profits, taking into consideration

their competitors’ location choices and the customer base and cost structure of the

respective observation. Thus, for any given set of parameters (α,β) the strategies xo
i of
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all retail chains i ∈ I form an (approximate) Nash equilibrium (see Section 5.2.1) where

the equilibrium strategies xo
i depend on (α,β).

5.2.5 Inverse problem: The new entrant’s parameter estimation

problem

Upon observing the equilibrium store locations selected by incumbents x̂o
i (but not α,

β), the new entrant aims to estimate (α,β) such that they can use the estimated pa-

rameters to optimally select its own locations. This inverse problem can be described

as follows. The new entrant is aware of the dependency x̂o
i (α,β) between incumbent

decision and customer choice parameters based on the incumbents’ profit function. Esti-

mating (α,β) from x̂o
i involves the inverse problem to identify a set of parameters (α,β)

that best explains the currently observed structure of locations x̂o
i across the competing

incumbent retail chains i ∈ I as the outcome of the forward problem (5.4)-(5.6). Our

inverse problem minimizes the L1-norm || · || of δ := (δoi )i∈I,o∈O, with δoi as the unilateral

improvement potential of retail chain i in observation o, i.e.,

δoi = max
xo
i∈Si

{
Πo

i

(
xo
i , x̂

o
−i

)}
− Πo

i

(
x̂o
i , x̂

o
−i

)
∀i ∈ I, ∀o ∈ O (5.7)

inverse IPG :min
α,β

||δ|| = min
α,β

∣∣∣∣∣
∣∣∣∣∣
(
max
xo
i∈Si

{
Πo

i

(
xo
i , x̂

o
−i

)}
− Πo

i

(
x̂o
i , x̂

o
−i

))
i∈I,o∈O

∣∣∣∣∣
∣∣∣∣∣ (5.8)

subject to (5.4)-(5.6). If an exact Nash equilibrium exists, the unilateral improvement

potential across all retail chains and observations will be zero (minα,β ||δ|| = 0). In

contrast, in an ϵ-Nash equilibrium, a (small) unilateral improvement potential remains

for one ore more chains: ϵ = minα,β max δ. While the game theoretic literature com-

monly minimizes this maximum improvement potential ϵ across all retail chains (see

Daskalakis et al., 2006; Papadimitriou, 2007); with the L1-norm, we choose to minimize

the cumulative deviations over all observations and retail chains, i.e., ϵ ≈ minα,β ||δ||.
Thus, by equally weighing all observations, we avoid putting too much focus on a sin-

gle observation outlier. Under the premise that the currently observed infrastructure

is near-optimal, the parameter set solving (5.8) reflects customer decisions in practice:

No retailer would have (substantial) incentive to deviate from the observed structure.

We discuss an alternative to the L1-norm based objective function (5.8) of this inverse

problem in Appendix 5.E. Note that it is common in inverse optimization literature
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to continue to refer to parameters of the forward problem (here: α,β) as parameters,

although they are represented in the inverse problem as decision variables. For conve-

nience and to avoid confusion, we list all decision variables and (input) parameters in

Appendix 5.D (Table 5.2).

5.3 Inverse optimization for parameter estimation in

integer programming games

We motivate the need for a dedicated solution approach for inverse IPGs given in (5.8)

based on a stylized example in Section 5.3.1, before Section 5.3.2 details our methodol-

ogy. Sections 5.3.3 and 5.3.4 propose two improvements to the introduced methodology;

tackling the existence of multiple solutions (parameter combinations) of the inverse IPG

and the long runtimes in the forward problems, respectively.

5.3.1 A stylized example

Using a stylized example, we show that the enumeration of all constraints of the inverse

problem is inefficient, the constraints can be non-convex, and that multiple solutions

(parameter combinations) to the inverse IPG may exist, potentially in disconnected

optimal regions.

Revisiting the example from Figure 5.2, two incumbent retail chains i ∈ I = {red (r),

blue (b)}, compete over customers located in j, i.e., |J | = 1. In contrast to Figure 5.2,

we now ignore location E since customers are not willing to travel that far. To simplify

exposition, we focus on a single observation, and thus drop all indices o ∈ O. Within

this stylized example, retailers maximize a simplified payoff function where pj = 1 and

margins across customers and fixed costs across location are constant (m = mij, c = cik)

Πi(xi,x−i) = m
∑
j∈J

fij − c
∑
k∈K

xik (5.9)

with fij as given by (5.5).

We denote with xr = (xrA, xrB) the decision of the red chain and with xb = (xbC, xbD)

the decision of the blue chain. Assume that the new entrant observes an (approximate)

Nash equilibrium (x̂r, x̂b) where x̂r = (xrA = 0, xrB = 1) (i.e., the red chain opens only

location B) and x̂b = (xbC = 1, xbD = 1) (i.e., the blue chain opens both locations C

and D), as shown in Figure 5.3b. As we are dealing with discrete decisions, we cannot
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Figure 5.3: Network model with a single customer and two retail chains simultaneously se-
lecting among four locations

exploit KKT conditions to characterize this equilibrium. Instead, we determine customer

choice parameters by ensuring optimality of the observed decisions by comparing with

all possible unilateral deviations

max
xi∈Si

Πi (xi, x̂−i) ≥ Πi (xi, x̂−i) ∀i ∈ {r, b}, ∀xi ∈ Si, (5.10)

yielding

δi ≥ Πi (xi, x̂−i)− Πi (x̂i, x̂−i) ∀i ∈ {r, b}, ∀xi ∈ Si. (5.11)

We assume an exemplary set of parameters (d̃A = 0.5, d̃B = 0.4, d̃C = 0.7, d̃D =

0.4, g̃A = 0.4, g̃B = 0.5, g̃C = 0.45, g̃D = 0.65, m = 1000, c = 160) to explore some

key problem characteristics in the following. Because x̂r = (xrA = 0, xrB = 1) and

x̂b = (xrC = 1, xrD = 1), we can use (5.6) to show that red’s payoff in the observed

solution is

Πr (x̂r, x̂−r) = 1000
∑
j∈J

frj − 160(x̂rA + x̂rB)

=

(
1000

βr + 0.4α + 0.5 (1− α)

βr + 2βb + 1.5α + 1.6 (1− α)
− 160

)
.

(5.12)
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Also, we can consider an alternative solution for red that constitutes a unilateral move

so that xr = (1, 1) and x̂b = (1, 1) and the corresponding payoff is

Πr (xr, x̂−r) = 1000
∑
j∈J

frj − 160(xrA + xrB)

=

(
1000

2βr + 0.9α + 0.9 (1− α)

2βr + 2βb + 2α + 2 (1− α)
− 360

)
. (5.13)

When comparing red’s payoff in the observed solution Πr (x̂r, x̂−r), with the payoff

Πr (xr, x̂−r) in an alternative solution where red opens both locations xr = (1, 1), one of

the constraints in (5.11) yields

δr ≥
(
1000

2βr + 0.9α + 0.9 (1− α)

2βr + 2βb + 2α + 2 (1− α)
− 360

)
−
(
1000

βr + 0.4α + 0.5 (1− α)

βr + 2βb + 1.5α + 1.6 (1− α)
− 160

)
.

(5.14)

The example of (5.14) shows that the constraints defining δi in (5.11) can be non-convex.

Solving (5.8) (i.e., minα,β ||δ||) under constraints (5.11) defines the optimal region for

the unknown parameters (α,β). To enable two-dimensional visualization, we enforce an

additional constraint on βi, imposing a cumulative brand effect: βr + βb = 1. This fixed

relation of a customers appreciation of one chain over the other allows us to depict two

dimensional optimal regions for two examples in Figure 5.4. We re-use the parameter

set from above, but slightly increase location fixed costs c for Figure 5.4a compared

with Figure 5.4b. In both examples, the equilibrium is exact (i.e., ϵ = minα,β ||δ|| = 0).

The resulting optimal regions have non-linear boundaries (Figure 5.4a). In some cases,

they consist of multiple, disconnected and non-convex sub-regions (Figure 5.4b). As we

move from higher to lower fixed costs, many combinations of α,β that were optimal

before (Figure 5.4a) are now excluded from the optimal region (Figure 5.4b). For these

excluded combinations, the constraint (5.14) becomes binding: Due to the reduced fixed

costs, a decision by red to open both locations xr = (1, 1) is favored over the observed

solution x̂r = (0, 1) in which only a location at B is opened (xrB = 1).

In this stylized example, enumerating all possible alternative strategies xi ∈ Si per

player i ∈ I leads to
∑

i∈I |Si| = 8 constraints (5.11) defining δ(α,β). However, it is

clear that in realistically-sized problem instances, such a full enumeration is intractable,

and many of the enumerated constraints would be dominated. For example, in the case

of Figure 5.4a, two out of the eight constraints suffice to fully describe the solution space
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(a) Optimal region, assuming a relative
chain attractiveness of βr + βb = 1 and
fixed costs of c = 170

(b) Optimal region, assuming a relative
chain attractiveness of βr + βb = 1 and
fixed costs of c = 160

Figure 5.4: Optimal region (||δ|| = 0) for the inverse network problem

for ||δ|| = 0. Therefore, we propose a row-generation approach, called invIPG, limiting

the number of enumerated constraints (5.11) while determining a feasible parameter

combination that solves the respective inverse IPG.

5.3.2 Solution approach: invIPG

We build on the general concept from Wang (2009) and split the problem into a master

problem, identifying the parameter combination (α,β), and row-generating subprob-

lems, solving the forward problem for each player and each observation. However, in

contrast to Wang (2009), we are not interested in finding solutions to the master prob-

lem that minimize deviations from a prior (e.g., an initial guess). Instead, we identify

solutions that minimize the unilateral improvement potential δ across all players. This

allows us to identify parameter combinations that define an (approximate) equilibrium

in an IPG.

Figure 5.5 summarizes the concept of the proposed invIPG method. We initialize

the algorithm with an empty set of subproblem solutions, S̃i = ∅, and solve the master

problem which represents a relaxed version of the inverse problem: Given observations

x̂, the inverse problem minimizes the unilateral improvement potential δ := (δoi )i∈I,o∈O

between the observed solution x̂o
i and the optimal (for a given α,β) solutions xo

i across

all observations o ∈ O and players i ∈ I, by choosing the estimation parameters α,β.
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Initialize: S̃i = ∅

Solve master prob-
lem (5.15)-(5.18)

Solve subprob-
lem (5.19)

(∀i ∈ I, ∀o ∈ O)

Check if: xo
i /∈ S̃i(∀i ∈

I, ∀o ∈ O)

Update master
problem: S̃i = S̃i ∪

{xo
i} (∀i ∈ I, ∀o ∈ O)

Terminate

α,β

xo
i

yes no

Figure 5.5: Flow chart of the invIPG algorithm

Through enumeration of all alternative strategies x̃i ∈ Si one can reformulate this inverse

problem (5.8) to

Master problem: min
α,β

||δ|| = min
α,β

||(δoi )i∈I,o∈O|| (5.15)

δoi = Πo
i

(
xo
i , x̂

o
−i

)
− Πo

i

(
x̂o
i , x̂

o
−i

)
∀i ∈ I, ∀o ∈ O

(5.16)

Πo
i

(
xo
i , x̂

o
−i

)
≥ Πo

i

(
x̃o
i , x̂

o
−i

)
∀i ∈ I, ∀o ∈ O, x̃o

i ∈ Si.

(5.17)

Instead of ensuring that xo
i are optimal compared to all alternative strategies x̃i ∈ Si,

we relax (5.16)-(5.17) to apply to the gradually increasing subset S̃i of Si only (S̃i ⊆ Si)

δoi ≥ Πo
i

(
x̃o
i , x̂

o
−i

)
− Πo

i

(
x̂o
i , x̂

o
−i

)
∀i ∈ I, ∀o ∈ O, x̃o

i ∈ S̃i. (5.18)

For the competitive retail location problem, the profit functions Πo
i are defined in (5.4)-

(5.6) of Section 5.2.4. In the described master problem, location decisions (x̃o
i , x̂

o
i ) are
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enumerated, but estimation parameters (α,β) represent decision variables. As the profit

functions (5.4)-(5.6) are non-linear in the estimation parameters (α,β) we provide a

linearization in Appendix 5.B.

After identifying an initial feasible parameter set through the master problem, we

iteratively reconstruct the initially relaxed conditions (5.16)-(5.17) through (5.18) by

increasing S̃i with solutions from the forward problem: Based on the current (incumbent)

solution of the parameter set from the master problem, the forward problem (Section

5.2.4) is solved to optimality for every player and observation, returning an (integer)

solution xo
i .

Subproblem: max
xo
i

Πo
i

(
xo
i , x̂

o
−i

)
= max

xo
i

∑
j∈J

mo
ijp

o
jf

o
ij −

∑
k∈K

coikx
o
ik ∀i ∈ I, ∀o ∈ O

(5.19)

Note that in this subproblem, (α,β) are parameters (current incumbent solution of the

master problem) rather than decision variables. However, the profit functions (5.4)-(5.6)

are now non-linear in the location decisions xo
i . This new non-linearity of the subproblem

can be linearized as a product between a binary decision xo
ik and a continuous decision

f o
ij (for reference, see Appendix 5.A). The solution xo

i to this subproblem is added to S̃i

S̃i = S̃i ∪ {xo
i} ∀i ∈ I, ∀o ∈ O. (5.20)

Any feasible parameter set in the master problem must now ensure (approximate) op-

timality of the observations when compared with the newly added solutions from the

subproblems in (5.18). The increased master problem and subproblems are solved until

the algorithm converges when the subproblem does not result in new cuts for the master

problem (Theorem 5.1).

Theorem 5.1. The invIPG converges in a finite number of iterations.

Proof. Si denotes the finite set of all possible strategies. For the competitive retail

location problem, xo
i ∈ Si with xo

i = (xo
ik)k∈K . As the number of observations |O|, the

number of potential locations |K| and the number of retail chains |I| is finite, this set Si

is finite. In each iteration, at least one strategy xo
i is added to S̃i ⊆ Si. By consequence,

in the worst case, the algorithm terminates in a finite number of iterations after full

enumeration of all pure strategies (S̃i = Si).
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Remark 5.1. In Section 5.2.1, we allow action sets Si to be defined by any (potentially

non-linear) real-valued functions wq but restrict ourselves to IPGs, in which all decision

variables are integer and bounded, to ensure Si is finite. Alternatively, one could allow

mixed-integer IPGs in combination with linear inequalities to define Si and rely on the

finite number of extreme points of a polyhedron to prove convergence in a finite number

of iterations in Theorem 5.1 (see Wang, 2009, for non-competitive inverse mixed-integer

problems).

Note that Theorem 5.1 does not make any assumptions with regard to the nature of

the observed equilibria (ϵ-Nash or Nash equilibrium). In case all observations represent

exact Nash equilibria, the algorithm terminates with ϵ = minα,β ||δ|| = 0. In case any

observation is an ϵ−Nash equilibrium, the algorithm still converges and terminates with

minα,β ||δ|| > 0.

5.3.3 Existence of multiple parameter solutions

An IPG can have multiple equilibria; the identification of the expected equilibria among

the set of all equilibria is of considerable importance and an interesting field of re-

search (equilibrium selection theory, see, e.g., Chapter 3 or Crönert and Minner, 2021a;

Harsanyi, 1995). For the invIPG, the existence of multiple equilibria of the underlying

IPG is not an issue – either the final (approximate) equilibrium can be readily observed

in practice, or multiple equilibria can be used as multiple observations in the algorithm.

Yet, as the stylized example in Section 5.3.1 shows, the solution to the invIPG itself

may not be unique, with multiple parameter combinations satisfying (5.15). Egri et al.

(2014) make a similar observation for their formulation of an inverse economic lot sizing

problem and propose a bounding box of the feasible region of all solutions to their inverse

optimization problem. In contrast to their problem formulation, the optimal region in

our inverse problem may be non-convex and feasible regions might be unconnected (see

Figure 5.4b in Section 5.3.1). Consequently, a single bounding box cannot adequately

describe the feasible region for these instances.

The invIPG terminates with the identification of a single parameter combination (α,β)

that minimizes the unilateral improvement potential δ across all players and observa-

tions. Similar to the identification of all solutions to integer programs (see, e.g., Tsai et

al., 2008), one could iteratively enumerate all possible solutions by excluding identified

solutions through cuts. As both α ∈ A and β ∈ B are defined on a finite solution space
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(discrete and bounded), using the same line of argumentation as in Theorem 5.1 such

an approach would terminate in a finite number of iterations.

5.3.4 Approximate cuts

The forward problem turns out to be hard to solve for larger problem instances. For

most instances, the solver (here: Gurobi 9.5) quickly identifies the optimal solution and

spends most computation time proving this optimality. Bodur et al. (2022) observe

a similar behavior for non-competitive inverse mixed-integer optimization and propose

to stop the cut-generating subproblem early in case a feasible solution has been found

and the time threshold has been exceeded. Related approaches are also common in

Benders decomposition approaches in the form of inexact Benders cuts (see, e.g., Zakeri

et al., 2000). Instead of a threshold on the total solution time of the subproblem as

suggested by Bodur et al. (2022), we prematurely stop the solver for the subproblem in

case no improved solution has been found within a predefined timelimit (see extended

algorithmic flow chart in the Appendix 5.C, Figure 5.9). This adapted stopping criterion

avoids early termination when the solver continues to find better solutions, as observed

in some preliminary numerical experiments. In combination with (5.18) and (5.20),

approximate solutions represent valid and effective inequalities which are added to the

master problem.

Lemma 5.1. Approximately optimal solutions to the subproblem are valid and effective

inequalities for the relaxed master problem.

Proof. Let x̃o
i be an approximate solution to the subproblem (5.19). I.e., there exists a

solution xo
i ∈ So

i \ S̃o
i , such that Πo

i (x
o
i , x̂

o
−i) ≥ Πo

i (x̃
o
i , x̂

o
−i) for the current (α,β). How-

ever the solution x̃o
i ensures higher payoffs for i, compared with all already enumerated

solutions x̌o
i ∈ S̃o

i : Π
o
i (x̃

o
i , x̂

o
−i) > Πo

i (x̌
o
i , x̂

o
−i).

This solution represents a valid cut, since in the original inverse problem (5.18) has to

hold for any x̃o
i ∈ Si (see (5.7)). It is effective, since it improves the players profit Πo

i for

the incumbent parameter combination (α,β) compared to all other already enumerated

solutions S̄i.

As before, we repeatedly solve master and subproblems until no new approximate cuts

can be identified within the timelimit. However, in an additional final step, we solve

the subproblem to optimality once for every observation o ∈ O and retail chain i ∈ I to

identify any additional (exact) cuts. If this final step also does not yield any new cuts,
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the algorithm terminates; otherwise, it continues with identifying additional exact cuts.

Even though cuts are approximated in early iterations, this final step ensures optimality

of the identified parameter combination after termination. We assess the implications

of this extension on runtime in a numerical study in Section 5.4.2.

5.4 Numerical study

We implement the invIPG in Python 3.8 and use Gurobi 9.5 as a solver. Reported

runtimes are based on an 8 core CPU with a 2.1 GHz base frequency (3.7 GHz boost)

and 22 GB RAM.

We examine problem instances with two incumbent retailers (|I| = 2) and a single new

entrant. Parameter data (djk, gk, p
o
j , c

o
ik) is common knowledge and sampled randomly.

For population size poj and costs coik we use a uniform distribution (poj , c
o
ik ∼ U(45, 55)).

Upper and lower bounds of these distributions are chosen to define a meaningful

problem in which it is profitable for incumbents to open some but not all potential

locations. A ±10% deviation of minimum and maximum values from the distribution

mean allows for sufficiently diverse locations while avoiding trivial problems in which

some locations are clearly optimal, regardless of the customer choice parameters (α,β).

To determine djk, we calculate the Euclidean distance between randomly sampled

locations (J,K), uniformly distributed on a 100-by-100 plane. To generate gk, we sample

additional random locations of 50 complementary stores from the same distribution and

determine the average proximity of a location k to these complementary stores. Profit

margins are assumed to be constant; mij = 1, ∀i ∈ I, ∀j ∈ J . We examine two

smaller problem instances (|J | = |K| = 10, |J | = |K| = 20) with a maximum customer

willingness to travel d̄ = 100 and a larger instance (|J | = |K| = 30) with a reduced

maximum distance between customers and the stores relevant to them (d̄ = 50).

The ground-truth values of the customer choice parameters α̂ and β̂ are known to the

incumbents but unknown to the new entrant. In the first two experiments (Sections 5.4.1

and 5.4.2), we assume constant values α̂ = 0.4 and the relative appreciation of customers

for one retail chain over the other to be fixed (β̂1 = 1.5 · β̂0). This limits random effects

and reduces the number of required samples, enabling a ceteris paribus examination

of the effects of an increase in the number of observations (Section 5.4.1) or the usage

of approximate cuts (Section 5.4.2). For the last experiment (Section 5.4.3), which

compares the decision-making of a new entrant applying the invIPG to benchmarks based

on full information and scenario sampling approaches, we increase the number of samples
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and choose customer choice parameters from a uniform distribution (α̂, β̂0, β̂1 ∼ U(0, 1))

Equilibrium locations x̂ observed by the new entrant are generated from these ground-

truth values through a series of iterated best responses between the two incumbents.

Note that this approach does not provably lead to a pure-strategy equilibrium; instead,

it may very well be the case that the iterated best responses cycle. In one-third of the

examined instances, we observe this cycling behavior for one of the observations. In these

cases, we break the cycle and let the current solution represent the observation of an

approximate equilibrium. In addition to these approximate equilibria based on cycling

best-responses, in experiments with noisy observations, we assume incumbents do not

know α̂, β̂i exactly during the generation of equilibrium observations, but instead rely

on noisy distortions of α̂: α̃ ∼ N(µ = α̂, σ = 0.05) and β̂i: β̃i ∼ N(µ = β̂i, σ = 0.05).

These absolute distortions of σ = 0.05 correspond to a relative coefficient of variation

of cv = 10% and could represent unobserved parameters or simply imperfections in the

incumbents’ sales data and their estimation of customer attraction parameters. The new

entrant estimates α and β from their respective discrete sets A and B. In the absence

of additional information, we assume sets A and B with equal spacing and a granularity

of two decimal points, i.e., A = B = {0, 0.01, 0.02, . . . , 1}.

5.4.1 Existence of multiple solutions (parameter combinations)

We discuss the possible existence of multiple parameter combinations that solve the

inverse IPG in Section 5.3.1 and 5.3.3. Before applying the invIPG to the competitive

retail location problem, we first assess the characteristics that drive the existence of

multiple solutions and the likelihood of multiple solutions in different problem settings.

This experiment illustrates the conclusiveness of observations, determining the extent

to which the incumbent’s location decisions contain descriptive information on customer

choice parameters – or whether arbitrary parameters would lead to the same observa-

tions. We investigate the influence of the number of observations (|O| ∈ {4, 6, 8}) and
the noisiness of the observations (σ ∈ {0, 0.05}) on the (relative) size of the optimal re-

gion Γ (i.e., the fraction of all possible parameter combinations that equally well explain

the observations). Define γ as a binary indicator determining whether a parameter set

(α,β) is optimal, i.e., γ(α,β) = 1, iff ||δ(α,β)|| = minα̃,β̃ ||δ(α̃, β̃)||.
The relative size of the optimal region Γ is the area of parameter combinations that

lead to a minimal value of δ (γ = 1) compared to the size of the full solution space, i.e.,

Γ =
∫
α

∫
β γ(α,β)dαdβ∫
α

∫
β 1dαdβ

. Note that the objective of the invIPG was the identification of a

single parameter combination satisfying γ(α,β) = 1, rather than all optimal parameter
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combinations. Therefore, it cannot be applied to calculate Γ. In the absence of an

analytical solution to Γ, we enumerate all possible combinations of (α,β) and calculate

the respective γ(α,β). For all of these combinations, this implies solving a mixed-integer

program (5.7) for each o ∈ O and i ∈ I. With a granularity of two decimal points

(|A| = |B| = 100) for α, β0, β1 we need to enumerate and solve 1003 = 1 million different

parameter combinations. It is evident that such an approach would not be feasible

in an experimental design involving a large number of random samples. Therefore,

we examine only parts of the solution space by introducing an additional constraint

for the cumulative brand effect: β0 + β1 = B. We examine three different values for

B ∈ {0.5, 0.75, 1}. This limitation of the näıve enumerative approach demonstrates the

benefit of the invIPG, which requires no such assumption.

Table 5.1 examines the number of disconnected optimal regions, the cumulative size

of these regions (Γ) and the minimum error (L2-norm) between a solution within any

of the optimal regions and the original ground-truth parameter values α̂, β̂. Each row

summarizes results for n = 20 samples, aggregating samples across different values of

B or |O|, respectively. In all but 4% of samples, the problems yield only one optimal

region. Both a higher number of observations and the existence of noise effectively

reduce the size of the optimal region(s) (Γ). However, noisy observations clearly hinder

solution quality as the error between optimal region and ground-truth value increases

significantly in presence of noise. Even in the absence of noise, some of the observations

represent approximate equilibria. These approximate equilibria arise if the iterated best

responses used to generate observations do cycle. For these approximate equilibria, the

ground-truth value is not necessarily part of the optimal region, leading to outliers with

an error greater than 0.

5.4.2 Effects of approximate cuts

We now move from the complete enumeration of the solution space to the application of

the invIPG for larger problem instances. Section 5.3.4 discusses the possibility of further

speeding up the runtime of the invIPG through the usage of approximate instead of exact

cuts. This experiment examines the advantage of approximate cuts on solution time. In

our implementation, the incumbent subproblem solution terminates with an approximate

cut in case no improved solution has been found within a timelimit of 200 seconds. Each

boxplot in Figure 5.6 summarizes runtimes for n = 20 samples of a larger problem

(|J | = |K| = 30, |O| = 6, α̂ = 0.4, β̂0 = 0.4, β̂1 = 0.6). Lower and upper box limits show

the first and third quartile, the green horizontal line indicates the median, and whiskers
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Table 5.1: Solution characteristics for |J | = |K| = 10 in the absence (cv = 0%) and presence
(cv = 10%) of noise, n = 20 samples per row

Number of Size of Error

optimal regions optimal regions ||(α,β)−(α̂, β̂)||2
cv(%) O B min mean max min mean max min mean max
0 4 0.5 1 1.0 1 0.0 0.03 0.17 0.0 0.0 0.06
0 4 0.75 1 1.0 1 0.0 0.02 0.17 0.0 0.02 0.13
0 4 1.0 1 1.15 3 0.0 0.01 0.14 0.0 0.04 0.18
0 6 0.5 1 1.0 1 0.0 0.01 0.05 0.0 0.01 0.06
0 6 0.75 1 1.0 1 0.0 0.01 0.06 0.0 0.02 0.13
0 6 1.0 1 1.1 2 0.0 0.0 0.04 0.0 0.03 0.15
0 8 0.5 1 1.0 1 0.0 0.01 0.05 0.0 0.01 0.06
0 8 0.75 1 1.05 2 0.0 0.0 0.02 0.0 0.03 0.23
0 8 1.0 1 1.1 2 0.0 0.0 0.02 0.0 0.04 0.15
10 4 0.5 1 1.0 1 0.0 0.02 0.1 0.0 0.02 0.06
10 4 0.75 1 1.05 2 0.0 0.01 0.07 0.0 0.03 0.1
10 4 1.0 1 1.0 1 0.0 0.01 0.05 0.0 0.04 0.18
10 6 0.5 1 1.0 1 0.0 0.01 0.05 0.0 0.02 0.06
10 6 0.75 1 1.05 2 0.0 0.01 0.06 0.0 0.02 0.05
10 6 1.0 1 1.05 2 0.0 0.01 0.04 0.0 0.04 0.2
10 8 0.5 1 1.11 3 0.0 0.0 0.05 0.0 0.04 0.13
10 8 0.75 1 1.05 2 0.0 0.0 0.02 0.0 0.04 0.15
10 8 1.0 1 1.05 2 0.0 0.0 0.02 0.0 0.06 0.15

extend to largest or smallest data points within a maximum distance of 1.5 times the

interquartile range from the box limits. The illustration focuses on runtimes, as the

identified solutions are identical for both approaches. Using approximate cuts reduces

the median runtime by 38% from ≈ 5.7 hours to ≈ 4.3 hours. It proves particularly

useful for hard-to-solve instances with very large runtimes in the standard approach.

In all cases, both approaches require the same number of cuts and the same number

of iterations. In fact, the identified approximate cuts turned out to be identical to the

exact cuts in the standard approach, although this is not necessarily the case in general.

5.4.3 Comparison to full information and sampling-based

benchmarks

To quantify the advantage of the invIPG for a new entrant, we assume the entrant

solves a sequential competitive facility location problem for given incumbent locations.

We determine profits of the entrant’s location decision based on inversely estimated

parameters (invIPG) and compare it to new entrants’ decisions based on information
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Figure 5.6: Runtime (in seconds) of the invIPG in its standard version and with approximate
cuts for n = 20 samples per boxplot, not shown are three instances exceeding the
timelimit of 80k seconds for both approaches

regarding the distribution from which the parameters are drawn. For the latter, we

distinguish between an approach relying on the Distribution mean (DM) and an ap-

proach representing the distribution through Sample average approximation (SAA). All

approaches (invIPG, DM, SAA) are compared to decision-making under full information

about the ground-truth parameters (α̂, β̂) used to generate the observed equilibria.

A new entrant who bases their store location decision on information about the Dis-

tribution mean (DM) of these parameters would assume α = µα̂ = 0.5, β0 = µβ̂0
= 0.5,

and β1 = µβ̂1
= 0.5. For the SAA, we assume that the new entrant uses 64 scenarios,

with all possible combinations of α, β0, β1 being chosen from {0.2, 0.4, 0.6, 0.8}. Since the
ground-truth values of α̂, β̂0, β̂1 are assumed to be uniformly distributed, this scenario

approach enables a comprehensive and reproducible representation of the underlying

distribution and was thus chosen over other sampling techniques (e.g., Monte Carlo

method, Latin hypercube sampling). All scenarios are assigned equal probabilities and

the new entrant selects locations yielding the highest average profit across all scenarios

(for a detailed introduction to SAA, see Birge and Louveaux, 2011). In contrast, a new

entrant relying on the invIPG uses all available observations in O to estimate these pa-

rameters. In addition, for all approaches (invIPG, DM, SAA) the new entrant needs an

estimate β2 of the customers’ appreciation of their own brand. As we are interested in

the value of information extracted from the observed location structure of incumbents,

we assume this estimate equals the ground-truth value β̂2 = β̂2 ∼ U(0, 0.5) in all cases.

This distribution of β̂2 has a lower maximum value compared to β̂0 and β̂1 as we expect
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a reduced initial customer appreciation for the new entrant. We identify the entrant’s

optimal location decisions based on the three different approaches and determine the

respective profits of these decisions under the ground-truth customer attraction param-

eters. Figure 5.7 and 5.8 show the relative profit, normalized to a profit of 100% under

full information, for two problem sizes, with n = 100 (for |J | = |K| = 10) and n = 40

(for |J | = |K| = 20) samples, respectively. We employ a timelimit of 20k seconds for

the invIPG and use the current incumbent solution in case the invIPG did not converge

within the timelimit.

Figure 5.7: Relative profit of a new entrant based on parameters estimated by the invIPG,
Distribution mean (DM), or Sample average approximation (SAA) approach for
|J | = |K| = 10, n = 100 samples per boxplot.

The invIPG outperforms both the näıve DM approach and the SAA, with a median

profit close to or equal to the profit under full information (100%). Across these in-

stances, using the invIPG leads to an increase in median profits by 4-11 percentage

points. The advantage of the invIPG is on the lower end of this range (≈ 4%) for small

problem instances (|J | = |K| = 10, Figure 5.7) and is particularly evident (≈ 11%)

with a larger problem size (|J | = |K| = 20). The larger problem size increases the

importance of the location decision and thus emphasizes the value of the estimation of

customer choice parameters through the invIPG. In addition to this general improve-

ment in the median relative profit, the invIPG clearly benefits from an increase in the

number of observations, reducing the occurrence of outliers and improving the reliability

of the estimation. This effect is not as apparent for the larger problem size in Figure 5.8

as the invIPG exceeds the 20k seconds timelimit for approximately 40% of all instances

and is thus not solved to optimality in many cases with a large amount of observations.
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Figure 5.8: Relative profit of a new entrant based on parameters estimated by the invIPG,
Distribution mean (DM), or Sample average approximation (SAA) approach for
|J | = |K| = 20, n = 40 samples per boxplot.

5.5 Conclusion

Applying the invIPG method to the competitive retail location problem enables retriev-

ing reliable and helpful information on customer choice. This information particularly

benefits new market entrants who can improve their market entry location strategy

accordingly. In our numerical experiments, new entrants who observe prior equilibria

between incumbents can consistently realize savings of 4 − 11% on average with some

instances showing significantly higher improvements compared to a scenario-based ap-

proach (SAA). The retrieved customer choice information could also be valuable to

other market participants without access to granular sales data, e.g., for city planners,

policymakers, or regulatory authorities.

The application of the invIPG towards retail location involves some limitations. In our

numerical experiments, we assume that all observations belong to similar regions and

that (in the absence of noisy observations) customers behave identically in all regions.

It would be valuable to test this hypothesis in future research, leveraging real-world

data sets to obtain additional insights into the possible gains of inverse optimization for

market entrants in practice. Furthermore, the presented approach relies on parameter-

izing the customers’ utility function. It thus presumes a prior general knowledge of the

decision-making of the customer and the incumbents. In future work, one could attempt

to learn the customers’ appreciation of a store (utility) from the incumbents’ decisions

using nonparametric machine learning models rather than presupposing the customers’
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utility function structure. Lastly, the approach assumes a full-information game between

incumbents and focuses on information extraction through a new entrant. Similarly, in-

cumbents who possess only partial information about their competitors could aim to

improve their competitor knowledge through inverse optimization of observed decisions.

We chose the (inverse) retail location problem as a tangible example of competitive

integer decision-making in practice. However, our approach straightforwardly extends

to other inverse IPGs. Applications to other problems such as capacity or assortment

competition in retail or competition between logistics service providers routing vehicles

could prove an exciting avenue for future research.
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Appendix 5.A Linearization of the forward problem

Most solvers do not support the fractional, non-convex equality constraints in (5.5)-(5.6).

We therefore reformulate (5.6) into the non-convex quadratic inequality

Πo
i (x

o
i , x̂

o
−i) ≤

∑
j∈J

mo
ijp

o
j f̂

o
ij −
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k∈K

x̂o
ikc

o
ik. (5.21)

With f o
ij (the market share for (xo

i , x̂
o
−i)) following from (5.5), we reformulate the above

inequalities to
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provides tight bounds for (5.23). We linearize (5.22) by intro-

ducing the auxiliary variable yoijk = f o
ijx

o
ik, yielding∑

k∈K|djk≤d̄

yoijku
o
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Because yoijk is a product of a binary (xo
ik) and a continuous (f o

ij ∈ [0, 1]) decision variable,

we can equally represent it based on the following linear inequalities

yoijk ≤ xo
ik (5.25)

yoijk ≤ f o
ij (5.26)

yoijk ≥ f o
ij − (1− xo

ik). (5.27)

Appendix 5.B Linearization of non-convex linking

constraints

The non-linearity in (5.22) arises through multiplication of f o
ij with α,β (decision vari-

ables in the master problem). This non-convex quadratic problem formulation can be

solved by some commercial solvers (e.g., Gurobi 9.5) at the expense of long runtimes.

Alternatively, since α,β are discrete, with a predetermined number of discrete steps
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(|A|, |B|), we can linearize (5.22) using binary expansion (see, e.g. Kleinert et al., 2021).

We illustrate the approach for the product of f o
ij and βi. We represent βi using binary

decision variables β̃si as

βi =

∑
s∈[0,...,⌈ln |B|+1⌉] β̃si2

s

|B|
∀i ∈ I (5.28)

β̃si ∈ {0, 1} ∀i ∈ I, ∀s ∈ [0, . . . , ⌈ln |B|+ 1⌉] (5.29)

Hence, the product f o
ijβi reduces to the product between a binary and continuous vari-

able, which can easily be linearized as

f o
ijβi =

∑
s∈[0,...,⌈ln |B|+1⌉] f

o
ijβ̃si2

s

|B|
. (5.30)

108



Appendix 5.C Extended flowchart for the usage of approximate cuts

Appendix 5.C Extended flowchart for the usage of

approximate cuts

Initialize: S̃i = ∅

Solve master prob-
lem (5.15-5.18)

Solve subproblem
(5.19), terminate
if best bound

has not improved
within timelimit
(∀i ∈ I, ∀o ∈ O)

Check if: xo
i /∈ S̃i(∀i ∈

I, ∀o ∈ O)

Update master
problem: S̃i = S̃i ∪

{xo
i} (∀i ∈ I, ∀o ∈ O)

Solve subproblem
(5.19) to optimality
(∀i ∈ I, ∀o ∈ O)

Check if: xo
i /∈ S̃i(∀i ∈

I, ∀o ∈ O)
Terminate

α,β

xo
i

yes

no

xo
i

yes no

Figure 5.9: Flowchart of invIPG algorithm using approximate cuts
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Appendix 5.D Overview of notation

Table 5.2: Sets, indices, parameters, and variables in the inverse problem

Sets

I set of incumbent retailers
J set of customer locations (multiple customers per location)
K set of potential facility locations across all retailers
Ki ⊆ K set of potential facility locations per retailer i ∈ I
O set of observations
Si set of all possible strategies of retailer i ∈ I

Exogenous parameters

poj population/customer count for j ∈ J in observation o ∈ O
mo

ij margin per customer for j ∈ J for retailer i ∈ I in observation
o ∈ O

coik costs for retailer i ∈ I in location k ∈ K (e.g., rent, salaries, equip-
ment) in observation o ∈ O

d̄ maximum distance tolerated by customers
dojk distance between j ∈ J and location k ∈ K in observation o ∈ O

d̃ojk normalized accessibility between j ∈ J and location k ∈ K in
observation o ∈ O

gok convenience of location k ∈ K based on points of interest in prox-
imity in observation o ∈ O

g̃ok normalized convenience of location k ∈ K in observation o ∈ O
ḡ highest convenience, ḡ = maxk∈K,o∈O gok
x̂o
i observed locations of retailer i ∈ I in observation o ∈ o

A set of potential customer choice paramaters α ∈ A
B set of potential customer choice paramaters βi ∈ B

Endogenous variables

uo
ijk utility of facility k ∈ K of i ∈ I for customers j ∈ J

f o
ij fraction of customers in j patronizing retailer i
xo
ik 1, only if retailer i ∈ I opens facility k ∈ K

α normalized sensitivity towards distance
β = (βi)i∈I vector of brand attractiveness for retail chains i ∈ I
δ := (δoi )i∈I,o∈O vector of unilateral improvement potentials
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Appendix 5.E Hamming distances as an alternative

objective function

In Sections 5.2.5 and 5.3.2, we define the minimization of the cumulative unilateral im-

provement potential (minα,β ||δ||) as the overarching objective of the invIPG. Instead of

minimizing this difference in profits between a decision x̃o
i that is optimal for a parame-

ter set (α,β) and an observed decision (x̂o
i ), one could minimize the Hamming distance

(HD) between the two decisions, i.e.,

min
α,β

∣∣∣∣∣∣(x̃o
i − x̂o

i )i∈I,o∈O

∣∣∣∣∣∣ (5.31)

s.t. Πo
i (x̃

o
i , x̂

o
i ) ≥ max

xo
i∈Si

Πo
i (x

o
i , x̂

o
i ) ∀i ∈ I,∀o ∈ O. (5.32)

In Figure 5.10, we refer to this alternative as the invIPG-HD and compare runtime

and solution quality with the invIPG. As a metric for the solution quality, we use the

error (L2-norm) between the inversely estimated parameters and the ground-truth val-

ues (sampled from distributions as in Section 5.4.3). While solution quality is almost

identical for both objective functions, the invIPG based on the unilateral improvement

potential presented in Section 5.2.5 and 5.3.2 results in approximately 2-times faster

average runtimes compared with the invIPG-HD. This computational advantage of the

invIPG can be explained by the number of binary decision variables in the master prob-

lem. The invIPG represents a strict decomposition; all (binary) location decisions are

outsourced to the subproblems. The master problem merely compares payoffs for enu-

merated subproblem solutions with the observed location structure. In contrast, the

invIPG-HD requires some binary decisions decision variables x̃o
i in the master problem,

significantly increasing its complexity and the number of nodes the solver explores in its

branch and bound process.
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(a) Runtime in seconds (b) Error (L2-norm) between inversely esti-

mated parameter and ground-truth val-

ues

Figure 5.10: Effects of a Hamming distance based objective function (invIPG-HD) on runtime
and solution quality for problem size |J | = |K| = 10 and n = 50 samples per
boxplot
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Conclusion

6.1 Summary

We investigate different aspects of simultaneous competitive decision-making in finite

games and extend prior methods to enable the identification, selection, and inverse op-

timization of equilibria in this class of games. In various numerical experiments across

different applications, we quantify the advantage of acting in anticipation of competition.

In Chapter 3, we propose the exhaustive Sample generation method (eSGM) for the

identification of all equilibria and the subsequent equilibrium selection in finite games.

The eSGM builds on the existing Sample generation method (SGM) that enables the

identification of a single equilibrium.

RQ 1.1 How can we identify all equilibria in a finite game?

The eSGM complements the sampling approach of the SGM with two key changes.

Instead of identifying a single equilibrium in the current sample, we identify all equilibria

using an adaptation of MIP-Nash for n-player normal-form games. Rather than only

enlarging the sample by best-responses to these equilibria, we also add further candidate

solutions based on necessary but not sufficient criteria for additional equilibria. Jointly,

these two changes enable the identification of all equilibria.

RQ 1.2 Having identified all equilibria in a finite game – how can we select the equi-

librium that is expected to be the outcome of the game based on the respective

player incentives and the equilibrium selection theory by Harsanyi, 1995?

We show that, after the enumeration of all equilibria through the eSGM, the equilibrium

selection theory by Harsanyi can be applied with minor adaptations. As the approach

requires complex high-dimensional volume calculations of non-linearly bounded sets, we

propose a Monte Carlo volume estimation as an alternative to exact volume calcula-

113



Chapter 6 Conclusion

tions. In various numerical examples of knapsack, location and lot-sizing games, we

show the advantage of the eSGM with equilibrium selection over its predecessor (SGM).

For example, in the examined instances of a 2-player knapsack game the equilibrium

selected through the eSGM on average has a 40% higher probability compared with the

equilibrium identified through the SGM.

In Chapter 4, we apply the eSGM to a case study of Hydrogen fuel station (HFS)

location under emerging competition.

RQ 2.1 How will competition between station providers influence the emerging hydrogen

refueling network structure?

We extend prior model formulations for alternative fuel station location selection to this

simultaneous competitive setting. Depending on the network structure and economic

parameters, one can observe concentration effects, as reported by Hotelling, 1929 for

competitive location selection on a line, or dispersion effects.

RQ 2.2 How valuable is it for decision makers to take competitor actions into consid-

eration?

In a case study for Munich, we show that decision makers acting in anticipation of

apparent competition can increase their profits by 17% on average when compared with

decision makers neglecting competition.

RQ 2.3 Should policymakers foster (e.g., through government-backed provider associa-

tions) or impede (e.g., through strict antitrust laws) collaboration between com-

peting providers?

Collaboration between the competitors could further increase profits by 28% on aver-

age, however, the sparser network of HFSs would imply longer deviation distances for

customers with detours increasing by 3% on average.

Last, in Chapter 5, we devise a method for the inverse optimization of parameters

that lead to observed equilibria in Integer programming games (IPGs).

RQ 3.1 How can we identify parameters that lead to observed equilibria in situations

of simultaneous competition using inverse optimization, taking into account

integrality constraints?

We reformulate the inverse optimization problem for IPGs into a bilevel problem. Here,

the master problem selects parameters that minimize the unilateral improvement poten-

tial for all players. To determine this unilateral improvement potential, we compare the
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players’ payoffs in the observed equilibrium with their payoffs in alternative strategies,

which are enumerated iteratively in subproblems.

RQ 3.2 How valuable are the derived parameter estimates to new entrants, optimizing

their own market entry location strategy?

The advantage of this approach becomes particularly evident in an exemplary applica-

tion where a new entrant lacks detailed information on underlying problem parameters,

but has knowledge of the general payoff structure of incumbents and can observe the

equilibrium outcome of their competitive location selection. For the competitive retail

location problem, we show that a new entrant using our inverse optimization approach

to extract hidden information on customer choice parameters can improve their profits

by 4-11%, when compared with a new entrant relying on simple statistical information

or sample average approximation.

6.2 Limitations and future research

The methods discussed in this thesis focus on finite Mathematical programmming games

(MPGs) or finite IPGs. By definition, a mixed-integer game in which some decisions are

continuous is not finite and cannot be addressed by our methodology. In the absence of

a finite set of strategies for each decision maker, the original proof of existence of Nash

equilibria (Nash, 1951) does not hold. While there are some conditions under which an

equilibrium is guaranteed to exist for non-finite games (see, e.g., Carvalho et al., 2022),

some of the theorems presented throughout this thesis would not hold. The adaptation

of methods presented in this thesis to non-finite MPGs thus provides a valuable future

research opportunity.

Whereas the applied equilibrium selection approach based on the theory of Harsanyi

(1995) does intuitively hold for rational, non-cooperative decision makers, decision mak-

ing in practice can be far from rational. A detailed comparison of behavioral analyses of

competitive decision making (see e.g., Camerer, 2011) and predicted outcomes based on

the presented methodology would be required to confirm model outcomes in practice.

We apply the methods toward competitive location selection for alternative fuel sta-

tions and retailing. In both cases, we assume a simultaneous one-shot game between

the competitors, whereas in practice the location decisions will likely be dispersed over

several years. An extension of both solving methodology and model formulations to

multi-stage games could thus further improve practical applicability.
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Such a dynamic multi-stage game could also include uncertainties beyond the competi-

tors’ decision making. For example, in the case of HFS location selection in Chapter 4,

after their initial location selection in the first stage, providers might gain additional

knowledge on Fuel cell electric vehicle (FCEV) penetration and customer demand to use

in a potential second stage. It might thus become necessary to extend the deterministic

perspective discussed in this work with stochastic considerations.

The applications and model formulations addressed in this thesis are of considerable

size, and strategy sets can encompass several billion possible strategies per player. How-

ever, at this problem size, the proposed methods reach computational limitations with

runtimes approaching multiple hours and in rare cases exceeding a full day. Hence,

larger-scale problems will likely require additional algorithmic advances or (potentially

problem-specific) decomposition approaches to enable reasonable runtimes.

While both the eSGM proposed in Chapter 3 and the invIPG discussed in Chapter

5 are formulated for n-player games, for the eSGM practical application is limited to

a small number of players. Already games with n = 3 players require a solver for

quadratic constraints, games with n > 3 players would need reformulation and will be

hard to solve.

Despite the above limitations, the methods discussed in this thesis could already

yield valuable theoretical and managerial insights in other applications of integer/binary

problems. The majority of these problems are as of yet considered without addressing

competition, or competitive considerations are limited to leader-follower relationships or

continuous relaxations of these problems. Among others, examples of potential further

applications include inventory problems, capacity decisions, or assortment competition.
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Secure collaborative supply chain planning and inverse optimization – The JELS

model. European Journal of Operational Research 208 (1), pp. 75–85.

Plastria, Frank (2001). Static competitive facility location: An overview of optimisation

approaches. European Journal of Operational Research 129 (3), pp. 461–470.

Porter, Ryan, Eugene Nudelman, and Yoav Shoham (2004). Simple search methods for

finding a Nash equilibrium. Proceedings of the National Conference on Artificial

Intelligence, pp. 664–669.

126

https://www.openstreetmap.org
https://www.openstreetmap.org


Bibliography

Ramea, Kalai (2019). An integrated quantitative-qualitative study to monitor the uti-

lization and assess the perception of hydrogen fueling stations. International Journal

of Hydrogen Energy 44 (33), pp. 18225–18239.

Revelle, Charles S and Horst A Eiselt (2005). Location analysis: A synthesis and survey.

European Journal of Operational Research 165 (1), pp. 1–19.
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