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Abstract
Objective
MS is an autoimmune demyelinating disease of the CNS, which causes neurologic deficits in
young adults and leads to progressive disability. The aryl hydrocarbon receptor (AHR), a
ligand-activated transcription factor, can drive anti-inflammatory functions in peripheral im-
mune cells and also in CNS-resident cells. Laquinimod is a drug developed for the treatment of
MS known to activate AHR, but the cellular targets of laquinimod are still not completely
known. In this work, we analyzed the contribution of AHR activation in astrocytes to its
beneficial effects in the experimental autoimmune encephalomyelitis (EAE) preclinical model
of MS.

Methods
We used conditional knockout mice, in combination with genome-wide analysis of gene ex-
pression by RNA-seq and in vitro culture systems to investigate the effects of laquinimod on
astrocytes.

Results
We found that AHR activation in astrocytes by laquinimod ameliorates EAE, a preclinical
model of MS. Genome-wide RNA-seq transcriptional analyses detected anti-inflammatory
effects of laquinimod in glial cells during EAE. Moreover, we established that the Delaq
metabolite of laquinimod dampens proinflammatory mediator production while activating
tissue-protective mechanisms in glia.

Conclusions
Taken together, these findings suggest that AHR activation by clinically relevant AHR agonists
may represent a novel therapeutic approach for the treatment of MS.
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MS is a chronic inflammatory disease of the CNS, which in most
patients initially presents with a relapsing-remitting course
(RRMS).1 This relapsing-remitting stage is often followed by a
secondary progressive phase (SPMS) characterized by the pro-
gressive and irreversible accumulation of neurologic deficits. In
primary progressive MS (PPMS), neurologic impairment pro-
gresses continuously without superimposed relapses.1 Most
current immunomodulatory therapies in MS target the adaptive
immune response, which is mostly relevant to the relapsing-
remitting phase ofMS.2However, there is an unmet clinical need
for therapeutic approaches to target CNS-intrinsic mechanisms
of disease pathology driven by astrocytes and microglia, which
are thought to promote disease progression in SPMS and
PPMS.2

The aryl hydrocarbon receptor (AHR) is a ligand-activated
transcription factor with important effects in inflammatory
responses driven by CNS-resident and peripheral cells.3,4

Indeed, AHR activation by endogenous, microbial derived
or therapeutically administered agonists has been shown
to ameliorate experimental autoimmune encephalomyelitis
(EAE), the animal model of MS.5–9 Moreover, AHR acti-
vation in CNS-resident glial cells including astrocytes and
microglia mediates tissue-protective and regenerative effects
relevant to progressive stages of MS.10–12 However, AHR
agonistic activity in serum is reduced in patients with MS,
potentially contributing to the dysregulation of proin-
flammatory and neurodegenerative mechanisms.10,13,14

Laquinimod (Laq) activates AHR and showed positive effects in
someMS clinical trials.15–18 In addition to relapse reduction, Laq
administration resulted in the reduction of white and graymatter
atrophy and diminished permanent black hole formation in
MS,18 suggesting that Laq acts on CNS-resident cells relevant to
MS progression. However, clinical use of Laq is hampered due to
an incomplete understanding of its modes of action, potential
side effects, and limited clinical efficacy.

In this study, we report that AHR activation in astrocytes by
the Laq metabolite Delaq ameliorates EAE. These findings
may guide the development of future therapeutic approaches
based on AHR activation in acute and chronic inflammation.

Methods
Mice
Female C57Bl/6 mice and 1–3-day-old pups from C57Bl/6J
mice were obtained from the Jackson Laboratory and were

kept in a pathogen-free facility at the Harvard Institutes of
Medicine. Glial fibrillary acidic protein (GFAP)-AHR and
LysM-AHR mice have been described before.10,11,19 All ex-
periments were performed in accordance with guidelines
prescribed by the Institutional Animal Care and Use Com-
mittee at Harvard Medical School.

EAE Induction and Treatment
EAE was induced in 8-week-old mice by subcutaneous
immunization with 150 μg MOG35–55 peptide emulsified in
complete Freund adjuvant (Difco Laboratories, Detroit,
MI) per mouse, followed by administration of 200 ng
pertussis toxin (List biological Laboratories, Inc., Camp-
bell, CA) on days 0 and 2 as described.10,20 Clinical signs of
EAE were assessed as follows: 0, no signs of disease; 1, loss
of tone in the tail; 2, hind limb paresis; 3, hind limb pa-
ralysis; 4, tetraplegia; and 5, moribund. All agents were
purchased from Sigma-Aldrich (St. Louis, MO). Starting
from day 2 after disease induction, mice were treaty daily
with oral gavage of Laq (25 mg/kg) or vehicle,
respectively.

Isolation of Cells From Adult Mouse CNS
Mononuclear cells were isolated from the CNS as previously
described, and astrocytes, monocytes, and microglia were
sorted as described before.10,20 Isolated CNS cells were
stained with fluorochrome-conjugated antibody to CD11b
(M1/70, 1:100), CD45 (90, 1:100), Ly6C1 (HK1.4, 1:100),
CD105 (N418, 1:100), CD140a (APA5, 1:100), CD11c
(N418, 1:100), F4/80 (BM8, 1:50), O4 (O4, Miltenyi Biotec,
1:10), and CD19 (eBio1D3, 1:100). All antibodies were from
eBioscience or BD Pharmingen, unless otherwise mentioned.
Microglia were sorted as CD11b+ cells with low CD45 expression
and low LY6C1 (CD11b+CD45lowLy6C1low), inflammatory
monocytes were considered as CD45hiCD11b+Ly6C1hi. Astro-
cytes were sorted as CD11blowCD45low Ly6C1low

CD105lowCD140alowCD11blowF4/80lowO4lowCD19low after the
exclusion of lymphocytes, microglia, oligodendrocytes, and
monocytes. Sorted astrocyteswere >85%GFAP+ as determined by
fluorescence-activated cell sorting analysis and by quantitative PCR
(qPCR) analysis of the expression of the astrocyte markers Gfap,
Aldh1l1, and Aqp4.

Flow Cytometry Staining and Acquisition
Mononuclear cell suspensions were prepared as previously
described.10 Antibodies for flow cytometry were purchased
from eBioscience or BD Pharmingen and used at a concen-
tration of 1:100 unless recommended otherwise by the
manufacturer. Cells were then analyzed on an LSRII or

Glossary
AHR = aryl hydrocarbon receptor; EAE = experimental autoimmune encephalomyelitis; EDTA = ethylenediaminetetraacetic
acid; GFAP = glial fibrillary acidic protein; GSEA = gene set enrichment analyses; IL = interleukin; IPA = ingenuity pathway
analysis; Laq = laquinimod; NF-κB = nuclear factor kappa B; PPMS = primary progressive MS; qPCR = quantitative PCR;
RRMS = relapsing-remitting MS; SPMS = secondary progressive MS; TNFα = tumor necrosis factor-α.
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MACSQuant flow cytometer (BD Biosciences, Franklin
Lakes, NJ, and Miltenyi Biotec, Bergisch Gladbach, Germany,
respectively).

Sequence Alignment and Quantification
The reads were aligned to the GRCm38 reference genome
using STAR (v2.7.3a),21 and the aligned reads were quantified
using RSEM (v1.3.1).22

Differential Expression Analysis and
Downstream Analysis
The quantification results from RSEM were aggregated and
analyzed using DESeq2,23 and the log2 fold changes of genes
were shrunk using the Approximate posterior estimation for
GLM coefficients (ApeGLM).24 The downstream analysis was
performed using gene set enrichment analyses (GSEA) and in-
genuity pathway analysis (IPA).

Ingenuity Pathway Analysis
To determine significant pathways, differentially expressed genes
that passed false discovery rate <0.1 for vehicle vs Laq-treated

mice were uploaded and analyzed using the IPA tool. p Values
were calculated using the Fisher exact test.

Network Analysis
The network diagram was generated using IPA. The activation
status of a pathway was predicted using IPA’s upstream regula-
tory tool by an activation z score. The z score was calculated
using the formula z = (Σiwixi)/(√Σiwi

2), where wi is the weight
of gene i and xi is the number of activating and inhibiting pre-
dictions of gene i. Positive z score indicated upregulated path-
way, whereas negative z score indicated downregulated pathway
as the overall effect.

Quantitative PCR
RNA was extracted with RNAeasy kit (Qiagen, Hilden, Ger-
many), and complementary DNA was prepared and used for
qPCR, with the results normalized to Gapdh levels. All primers
and probes were from Applied Biosystems. Mouse: Ccl2
Mm00441242_m1, Cyp1b1 Mm00487229_m1, Gapdh
Mm99999915_g1, Il10 Mm00439614_m1, Nos2
Mm00440502_m1, and TnfaMm00443258_m1.

Figure 1 Laquinimod Acts on Dendritic Cells to Ameliorate EAE

EAEwas induced in control (A) and LysM-AHR (LysMCre AHRfl/fl, B) mice. Animals were treatedwith daily oral doses of laquinimod or vehicle starting fromday 2
after immunization. Clinical scores are mean ± SEM and representative of 2 independent experiments. **p < 0.01 by 2-way analysis of variance (ANOVA). (C
andD) Absolute numbers and (E) relative fractions of CNS-infiltrating T cells were determined by fluorescence-activated cell sorting staining for CD3, CD4, IFN-
γ, and IL-17A. Data are mean ± SEM. *p < 0.05. AHR = aryl hydrocarbon receptor; EAE = experimental autoimmune encephalomyelitis; IFN = interferon; IL =
interleukin; n.s. = not significant as determined by 1-way analysis of variance followed by the Tukey post hoc test.
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Primary Astrocyte Cultures
Cerebral cortices from neonatal C57Bl/6J mice aged 1–3 days
were dissected, stripped of their meninges, digested with
0.25% trypsin–ethylenediaminetetraacetic acid (EDTA) and
DNAse I (1 mg/mL) for 15 minutes, and dispersed to single-
cell level by passing through a cell strainer (70 μm). The cell

suspension was then cultured at 37°C in humidified 5% CO2,
95% air on poly-L-lysine (Sigma) coated 175-cm2 cell culture
flasks. The medium was replaced every 4–5 days. After 7–10
days, cells reached confluence, and astrocytes were isolated by
mild trypsinization with trypsin-EDTA (0.06%) as previously
described.10 Cells were >95% astrocytes as determined by

Figure 2 Laquinimod Acts on Astrocytes to Ameliorate Late Stage EAE

(A) EAE was induced in control and GFAP-AHR (GFAPCre AHRfl/fl). Animals were treated with daily oral doses of laquinimod or vehicle starting from day 2 after
immunization. Clinical scores are mean ± SEM and representative of 2 independent experiments. *p < 0.05. **p < 0.01. ***p < 0.001 by 2-way analysis of
variance (ANOVA). (B) Absolute numbers of CNS-infiltrating proinflammatory monocytes as determined by fluorescence-activated cell sorting (FACS) staining
for CD11b, CD45, and Ly6C. Data aremean ± SEM. (C) Absolute numbers and (D) relative fractions of CNS-infiltrating T cells were determined by FACS staining
for CD3, CD4, IFN-γ, and IL-17A. Data are mean ± SEM of n = 5 mice per group and representative of 3 independent experiments. AHR = aryl hydrocarbon
receptor; EAE = experimental autoimmune encephalomyelitis; GFAP = glial fibrillary acidic protein; IFN = interferon; IL = interleukin; n.s. = not significant as
determined by 1-way ANOVA followed by the Tukey post hoc test.
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staining with GFAP or GLAST, with less than 5% contami-
nation of CD11b+ microglia cells After the isolation pro-
cedure, cells were further plated as required for the specific
experiments. Astrocyte cultures were activated with tumor
necrosis factor-α (TNFα) and interleukin (IL)-1β (5 ng/mL
and 10 ng/mL, respectively, both R&D Systems) in the
presence of Laq 100 ng/mL, Delaq 100 ng/mL, or vehicle.
Unless otherwise indicated, RNA analysis was performed 24
hours after start of treatment.

Statistical Analysis
Statistical analyses were performed with Prism software
(GraphPad, San Diego, CA), using the statistical tests in-
dicated in the individual figure legends. No samples were
excluded. The investigators were blinded as to the treat-
ment of mice in individual experiments. p Values of <0.05
were considered significant. All error bars represent SEM
or SD as noted in the individual figure legends. Unless
otherwise stated, 3 independent experiments were used for
all assays, and displayed figures are representative.

Data Availability
Anonymized data that are not published in this article
will be made available on request from any qualified
investigator.

Results
Laq Ameliorates Autoimmune CNS
Inflammation Independent of AHR in
Myeloid Cells
To analyze the cell populations involved in the AHR-dependent
therapeutic effects of Laq on EAE, we used LysMCre AHRfl/fl

mice (LysM-AHR mice) in which AHR is deleted in myeloid
cells including monocytes, macrophages, granulocytes, and some
microglia. Starting 2 days after EAE induction by immunization
with MOG35-55, mice were treated with Laq or vehicle adminis-
tered by gavage. Laq ameliorated EAE both in control and LysM-
AHRmice as indicated by a reduction of the clinical score (figure
1, A and B) and the number and fractions of CNS-infiltrating
effector T cells (figure 1, C–E).

AHR in Astrocytes Contributes to the
Protective Effects of Laq in Late-Stage EAE
AHR in astrocytes limits CNS inflammation by suppressing
nuclear factor kappa B (NF-κB) activation and the expression
of NF-κB-driven transcriptional modules that promote in-
flammation and neurodegeneration.4,10 Thus, to evaluate the
role of AHR activation in astrocytes in the therapeutic effects
of Laq in EAE, we used GFAPCre Ahrfl/fl mice (GFAP-AHR
mice) in which AHR has been deleted from astrocytes.10

Figure 3 Laquinimod Acts on Astrocytes by Modulating the Production of Proinflammatory Cytokines, Chemokines, and
Neurotoxic Mediators

(A) Heat map of expressed (detected at level 0.1 in at least 2 of 3 samples) genes (signal:noise ratio) of astrocytes fluorescence-activated cell sorting sorted
fromanimals as in (figure 2A). Data representmeans of n = 3mice. Gene expression levels are row centered and log2 transformed and saturated at levels −0.5
and +0.5 for visualization satisfying a false discovery rate <0.1. (B) Principal component analysis plot of RNA sequencing data isolated frommicroglia of mice
as in (A). AHR = aryl hydrocarbon receptor; GFAP = glial fibrillary acidic protein.
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Laq administration delayed EAE onset in GFAP-AHR mice,
but failed to ameliorate EAE in GFAP-AHR mice during the
late stage of the disease (figure 2A). Moreover, Laq admin-
istration failed to reduce the number of CNS-infiltrating
proinflammatory monocytes and number and fractions of
effector T cells in GFAP-AHR mice (figure 2, B–D). Indeed,
Laq administration in GFAP-AHR mice exacerbated proin-
flammatory monocyte influx into the CNS (figure 2B), po-
tentially due to the pronounced upregulation of CCL2
following AHR deletion in astrocytes and a dysregulation of
the astrocyte to microglia crosstalk in GFAP-AHR mice,
which we have previously demonstrated.10 Taken together,
these findings suggest that AHR activation in astrocytes
contributes to the beneficial effects of Laq during chronic
CNS inflammation.

Laq Suppresses Disease-Promoting
Transcriptional Modules in Astrocytes via AHR
To further investigate the beneficial effects of AHR activation
by Laq during EAE, we analyzed by RNA-seq the transcrip-
tional response of control and AHR-deficient astrocytes in
Laq-treated mice. Laq treatment had significant effects in the
transcriptional response of astrocytes in control, but not
GFAP-AHR mice, suggesting that the effects of Laq on as-
trocytes are mediated by AHR (figure 3, A and B). Indeed, in
agreement with the reported ability of AHR to suppress NF-
κB activation in astrocytes during the course of EAE,10,11,25

ingenuity pathway analyses detected a significant down-
regulation of NF-κB-driven proinflammatory mechanisms
(table). In agreement with these findings, we detected the
downregulation of NF-κB–driven proinflammatory mediators
such as IL-6 and iNOS (table).11,26–28 Moreover, we also
detected a Laq-induced regulation of transcriptional programs
associated with the production of chemokines, neurotrophin,
and axonal guidance signaling, as well as pathways relevant for
transendothelial migration (figure e-1, links.lww.com/NXI/

A382). Collectively, these findings suggest that AHR activa-
tion induced in astrocytes by Laq treatment downmodulates
transcriptional responses that promote CNS pathogenesis.

Laq Acts on Astrocytes to Reduce Microglia
Proinflammatory Pathways
Astrocytes and microglia play important roles in the CNS
both during health and disease.12,29 Indeed, the crosstalk
between astrocytes and microglia controls their proin-
flammatory and disease-promoting responses in EAE and
MS.30 The inefficient activity of LysM-Cre in microglia limits
our ability to evaluate the effects of direct microglial AHR
activation by Laq treatment in EAE. However, astrocytes can
secrete granulocyte-macrophage colony-stimulating factor,
IL-33, and additional factors to modulate microglial re-
sponses.31 Thus, we evaluated the effects of AHR activation in
astrocytes by Laq administration on microglial transcriptional
response during EAE. Laq-triggered AHR activation in as-
trocytes during EAE had significant effects on the transcrip-
tional response of microglia as determined by RNA-seq
(figure 4). Indeed, GSEA detected the upregulation of
proinflammatory pathways in microglia from Laq-treated
GFAP-AHR compared with control mice (figure e-2, links.
lww.com/NXI/A382), supporting a role of AHR-driven
transcriptional modules in astrocytes on the control of
microglial responses during EAE.

Laq Metabolite Delaq Activates AHR-Driven
Protective Mechanisms in EAE
Hepatic metabolism leads to the breakdown of Laq to its de-
ethylated metabolite Delaq (de-ethylated Laq), a potent AHR
agonist.32 However, it is still unclear whether Laq or its me-
tabolite Delaq activates AHR to limit CNS inflammation. To
address this point, we treated primary murine astrocyte cul-
tures with equimolar concentrations of Laq or Delaq. Delaq,
but not Laq, induced the expression of the AHR

Table Ingenuity Pathway Analysis of Pathways Regulated in Astrocytes from Control Laquinimod vs Control
Vehicle-Treated Mice

Ingenuity canonical pathways p Value z score

NF-κB signaling 1.07152E-05 −1.616

VEGF signaling 1.23027E-05 −1.147

GM-CSF signaling 3.63078E-05 −1.291

Integrin signaling 3.98107E-05 −3.087

JAK/Stat signaling 6.0256E-05 −0.471

IL-6 signaling 0.000371535 −1.279

iNOS signaling 0.021877616 −1.134

Leukocyte extravasation signaling 0.024547089 −1.877

Neuroinflammation signaling pathway 0.029512092 −2.475

Abbreviations: GM-CSF = granulocyte-macrophage colony-stimulating factor; IL = interleukin; NF-κB = nuclear factor kappa B; VEGF = vascular endothelial
growth factor.
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transcriptional target Cyp1b1 both in resting astrocytes and in
astrocytes activated with the proinflammatory stimuli TNFα
and IL-β (figure 5A). Indeed, Delaq reduced the expression of
genes associated with disease-promoting astrocyte activities
during EAE, such as immune cell recruitment (Ccl2) and
neurotoxicity and microglia activation (Nos2 and Tnfa), while
it enhanced the expression of anti-inflammatory Il10 (figure
5B). These findings suggest that Delaq, but not Laq, activates

AHR in astrocytes to induce anti-inflammatory and tissue
protective mechanisms that limit CNS pathology.

Discussion
In clinical trials conducted in patients with MS, Laq reduced
MS relapse rates and slowed the accumulation of white and
gray matter atrophy,16,17,33 suggesting that in addition to its
effects on peripheral immune cells,34–38 AHR activation in-
terferes with mechanisms of disease pathogenesis driven by
CNS-resident cells. However, it remains unclear whether these
suppressive effects of Laq on brain atrophy are an indirect result
from its effects on peripheral immune cells and/or reflect direct
effects of Laq on CNS-residents cells. In this context, our study
identifies neuroprotective and anti-inflammatory effects of Laq
mediated byAHR activation inCNS-resident glial cells. Indeed,
Laq administration led to the activation of AHR in astrocytes,
which was associated with clinical improvement during late
stages of EAE, reduction of CNS-infiltrating proinflammatory
monocytes and T-cell numbers, and polarization. Transcrip-
tional analyses identified astrocyte-intrinsic effects of Laq,
which included dampening of proinflammatory pathways and
enhancement of anti-inflammatory and tissue-regenerative
mechanisms. Moreover, the astrocyte responses induced by
Laq also decreased proinflammatory responses in microglia
indirectly, suggesting that Laq affects the modulation of
microglial responses by astrocytes. Finally, our in vitro studies
on primary astrocytes in culture suggest that these beneficial
effects of Laq administration are mediated by its metabolite
Delaq. Taken together, these results underline the potential
role of AHR-targeted therapies for the management of neu-
rodegenerative diseases.

Several studies analyzed the effects of Laq on the peripheral
immune compartment. One of the first studies testing the
effects of Laq in EAE determined dose-dependent reduction
of clinical symptoms in MOG35-55-induced EAE: although
peripheral immune cell counts in secondary lymphoid organs
were unaltered, immune cell infiltration into the CNS was
greatly reduced in Laq-treated animals.38 Moreover, Laq
treatment initiated after the first relapse also proved effective
in reducing relapse number and severity in a chronic EAE
model.39 More recently, Laq was also shown to reduce au-
toimmune inflammatory damage to the optic nerve and retina,
which are usually affected in MS.40 These beneficial effects
were attributed in part to a shift in the phenotype and mi-
gratory properties of T cells.37,38 Moreover, Laq showed
beneficial effects in B cell–dependent spontaneous chronic
EAE models, where Laq reduced the activation of dendritic, T
follicular helper, and T memory cells, while expanding the
compartment of regulatory T cells.41 In addition, Laq
inhibited the development of meningeal B-cell aggregates and
myelin-specific antibody secretion.41 Finally, Laq was also
shown to enhance immunomodulatory functions of natural
killer cells in their interaction with CD155 positive dendritic
cells due to alterations in dendritic cell antigen presentation

Figure 4 Laq Acts on Astrocytes to Indirectly Modulate
Microglial Proinflammatory Pathways

Heat map of expressed genes (signal:noise ratio) of microglia fluorescence-
activated cell sorting sorted from Laq-treated control and GFAP-AHR ani-
mals. Gene expression levels are row centered and log2 transformed and
saturated at levels −0.5 and +0.5 for visualization satisfying a false discovery
rate <0.1. AHR = aryl hydrocarbon receptor; GFAP = glial fibrillary acidic
protein; Laq = laquinimod.
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function.42 Together with previous observations, our findings
suggest that the anti-inflammatory effects of Laq in the pe-
ripheral immune compartment target the interactions of
dendritic cells with components of the adaptive immune
system.

Laq administration has been shown to trigger AHR activation in
vivo,43,44 most likely via its active metabolite Delaq, as demon-
strated for glial cells here. Of note, Delaq itself cannot be ad-
ministered in vivo because of its low solubility and short half-life,
suggesting that Laq is metabolized into Delaq in the local mi-
croenvironment.32 Using complete AHR-deficient mice, 2 in-
dependent groups determined that the suppression of EAE by
Laq administration is AHR dependent, although AHR-
independent mechanisms may also play a role.43,44 Indeed, the
induction of brain-derived natriuretic factor, a glial neuro-
protective factor, is driven by Laq in an AHR-independent
manner, suggesting that Laq engages additional pathways in glial
cells in addition to AHR to promote the production of neuro-
protective factors and regulators of excitotoxic neurotransmitters
including glutamate.44–46 Although our transcriptional analyses
corroborate profound alterations in astrocyte transcriptional
profiles during EAE induced by astrocyte AHR deficiency,10 they
also point to the existence of AHR-independent mechanisms

induced by Laq in AHR-deficient astrocytes in GFAP-AHRmice.
In these lines, the expression of neuroprotective factors induced
by Laq in astrocytes was only partially suppressed in GFAP-AHR
mice. In this context, Tapinarof is a novel AHR agonist developed
for the treatment of skin inflammation.47 Of interest, the thera-
peutic effects of Laq are mediated by AHR and the transcription
factor NFR2,47 which promotes the production of neutrotrophic
and anti-oxidant factors in astrocytes and is the target of dimethyl
fumarate.48 Thus, Laq may potentially activate NRF2 and other
transcription factors in addition to AHR to modulate the tran-
scriptional response of astrocytes during CNS inflammation.
These pathways are of great relevance for disease progression in
chronic stages of MS, which are not properly modeled by the
C57Bl/6 model of EAE. Hence, additional studies should in-
vestigate the effects of Laq on additional preclinical models, such
as the chronic progressive EAEmodel in nonobese diabetic mice
or the cuprizone-induced model of demyelination and neuro-
degeneration, which recapitulates recapitulate some aspects of the
progressive MS.

In summary, our study suggests that AHR activation in as-
trocytes is a potential therapeutic approach for neurologic
disorders. Our findings also suggest that Delaq, a short-lived
metabolite of Laq produced in the liver, mediates the

Figure 5 Delaq Is the Active Metabolite of Laquinimod and Dampens Proinflammatory Activation of Primary Astrocytes

(A) Primary astrocytes fromneonatalmicewere activatedwith TNFα and IL-1β in the presence of vehicle, laquinimod, or Delaq. RNAwas isolated, transcribed,
and subjected to qPCR for the AHR responsive gene Cyp1b1. Data are mean ± SEM and representative of 2 independent experiments. (B) Primary astrocytes
were activated as in (A) in the presence of vehicle orDelaq. RNAwas isolated, transcribed, and subjected to qPCR for the indicated genes. Data aremean± SEM
and representative of 2 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. IL = interleukin; n.s. = not significant as determined by
1-way analysis of variance followed by the Tukey post hoc test; qPCR = quantitative PCR; TNFα = tumor necrosis factor-α.
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therapeutic effects of Laq. Thus, a second generation of AHR
activators aimed at achieving increased AHR activation within
the CNS may provide novel therapeutic approaches for MS
and other neurologic disorders.
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